Client SDK Test Spec.

This document describes the tests and the cases that we will run in order to test the Comet fax client SDK.

Todo:

· Update this document to match the new client API functionality, since we do not support anymore backward compatibility, and the C interface becomes private, and the public interface is a COM object.

Document History/Revision

This file is located at \\haifaslm\slmcomet\src\fax\faxtest\docs\SDKTestSpec.doc .

*1 Topic should be addressed in each project test plan

Micky Snir (MickyS) – July 25, 1998 – 1st version. Draft.

1. General

The fax SDK includes the following interfaces:

· Client C API (fxsapi.dll).

· Client COM interface (FxsCom.dll)

2. Methodology

· All APIs.
Each API will be called to check at least for its existence (ANSI & UNICODE).

· Illegal parameters.
Each API will be called with illegal parameters.
We define level-2 parameters as members of structs that are level-1 parameters.
Illegal level-2 parameters will be tested as well.
The number of combinations of illegal parameters is very big. Therefor, we will test only combinations of only 1 illegal parameter at a time. More complex scenarios will be tested only if they seem “logical” combinations, i.e. users are likely to call the function with this combination of illegal parameters.

· Error messages.
We strive to get every possible error return value. This bullet overrides restrictions in previous bullet.

· Success.
We must call each API at least once with success. Success should be verified besides the actual return value.

· Multithreading.
Each API will be called simultaneously from different threads.
Different APIs will be called from different threads. We have too many combinations here, so we will chooses only the important combinations. I consider the most important cases the ones in which a fax handle is closed while another thread uses it, or aborting jobs.
Multithreading bugs are usually time-dependent on context switches. Therefore most multithreading cases should run many times (in stress mode) and on multiprocessor machines.

· Canceling.
This item may be considered as a subset of Multithreading and/or States but I give this item special attention because it is a very fruitful one (bug-wise).
The general idea is to cancel jobs, close handles while performing operations with them and specifically: terminating treads (TerminateThred()) and canceling IO (CancelIo()).
TerminateThred() should be performed with caution to prevent test-resource leaks.

· States.
We will define interesting scenarios that will exercise the APIs in different states.

· Low memory.
We will hog memory and call the APIs. We strive for the out-of-memory error. These cases should be designed in such a way that they will be able to make the API call fail on different allocations (don’t always make the API fail on the 1st allocation).
Important points:
– Stress an API that fails due to out of memory condition because it may find memory leaks. It is a common bug to forget to de-allocate resources.
– Perform a sanity check after an API-call on low memory. The reasons are that 1) the call may succeed but an allocation actually failed, and 2) the call failed but resources where not properly released. 
A sanity check is performed after releasing the hogged memory.

· Memory leaks.
Check for memory leaks by stressing API calls and keeping track of the working set.
The most promising API calls are the ones that fail.

· Stress.
Each case will have a corresponding stress mode in which the case is executed many times.
Executing concurrently independent test cases may save time as well as find new bugs.

· Verification.
We should verify each and every operation.
One of the challenges is to verify that sent faxes have reached their destination in high quality. The challenge arises from the distributed nature of the operation. Same for aborted faxes.

Note that there is some overlapping among the items above, e.g. multithreading is a kind of state. We should not have the same test case for each item.

3. Client C API (fxsapi.dll)

General

This API allows any application to send faxes, query and change fax jobs, query and change fax server configurations.

Each API test will be provided as a DLL and a DLL wrapper that will allow each case to be run via a DTM agent.

TBD: is the Win9X and WfW interface different? Probably so since it’s 16 bit. This means that we need to develop different API tests for these platforms.

Test cases

Illegal parameters

TBD: for each API list the illegal parameter(s) and the expected result.

Question: should we enumerate the test cases to match their case number in the actual test?

Error messages

TBD: for each API list each error message, and how to make the API return it.

Question: should we enumerate the test cases to match their case number in the actual test?

Success

TBD: for each API write a common scenario in which the API succeeds and the success can be verified.
We should define several main-stream scenarios that will catch all the APIs instead of defining a scenario per API.

Question: should we enumerate the test cases to match their case number in the actual test?

Multithreading

TBD: invoke each API concurrently from several threads.
If the concurrent invocation makes sense, verify the return values and the functionality.

If the concurrent invocation does not make sense, verify that the client is stable after the invocation, i.e. perform sanity check.

TBD: list the APIs that should be invoked concurrently with each other. Give special attention to aborting and closing while performing, and make sure these are stresses in order to catch the critical sections.

Question: should we enumerate the test cases to match their case number in the actual test?

Canceling

TBD.

States

This section requires special attention, as there are infinite scenarios, and we should try and find the equivalence classes, and within them the important ones.

TBD: list the scenarios and the expected results.

Question: should we enumerate the test cases to match their case number in the actual test?

Low memory

These cases should be designed carefully, for example the test itself should not fail due to lack of memory.

The general idea is to repeatedly allocate memory until we fail and then to call an API. One possible parameter is the quanta that we allocate until we fail.
A special challenge is to concurrently call an API and allocate memory, in order to cause a memory allocation failure within the API, but not on its 1st allocation call.

A sanity check must be performed even if a call succeeds, because the API may have returned a success value wrongfully.

TBD: list the cases.

Question: should we enumerate the test cases to match their case number in the actual test?

Memory leaks

Memory leaks will be found by stressing API calls and monitoring the PeakWorkingSetSize with calls to GetProcessMemoryInfo().

TBD: list the cases.

Question: should we enumerate the test cases to match their case number in the actual test?

Stress

Stress only those APIs / scenarios that were not stressed in previous cases.

TBD: list the cases.

Question: should we enumerate the test cases to match their case number in the actual test?

4. Client COM interface

General

We will test this interface via C++, VB and VBS. The common cases will be listed only once.

TBD: what are the important cases when testing COM interface. Like reference counting etc.

Test cases

Illegal parameters

TBD: for each API, list the illegal parameter(s) and the expected result.

Question: should we enumerate the test cases to match their case number in the actual test?

Error messages

TBD: for each API, list each error message, and how to make the API return it.

Question: should we enumerate the test cases to match their case number in the actual test?

Success

TBD: for each API, write a common scenario in which the API succeeds and the success can be verified.
We should define several mainstream scenarios that will catch all the APIs instead of defining a scenario per API.

Question: should we enumerate the test cases to match their case number in the actual test?

Multithreading

C++ only.

TBD: invoke each API concurrently from several threads.
If the concurrent invocation makes sense, verify the return values and the functionality.

If the concurrent invocation does not make sense, verify that the client is stable after the invocation, i.e. perform sanity check.

TBD: list the APIs that should be invoked concurrently with each other. Give special attention to aborting and closing while performing, and make sure these are stresses in order to catch the critical sections.

Question: should we enumerate the test cases to match their case number in the actual test?

Canceling

TBD.

States

This section requires special attention, as there are infinite scenarios, and we should try and find the equivalence classes, and within them the important ones.

TBD: list the scenarios and the expected results.

Question: should we enumerate the test cases to match their case number in the actual test?

Low memory

C++ only.

These cases should be designed carefully, for example the test itself should not fail due to lack of memory.

The general idea is to repeatedly allocate memory until we fail and then to call an API. One possible parameter is the quanta that we allocate until we fail.
A special challenge is to concurrently call an API and allocate memory, in order to cause a memory allocation failure within the API, but not on its 1st allocation call.

A sanity check must be performed even if a call succeeds, because the API may have returned a success value wrongfully.

TBD: list the cases.

Question: should we enumerate the test cases to match their case number in the actual test?

Memory leaks

C++ only.

Memory leaks will be found by stressing API calls and monitoring the PeakWorkingSetSize with calls to GetProcessMemoryInfo().

TBD: list the cases.

Question: should we enumerate the test cases to match their case number in the actual test?

Stress

Stress only those APIs / scenarios that were not stressed in previous cases.

TBD: list the cases.

Question: should we enumerate the test cases to match their case number in the actual test?

SDK Test Spec
Microsoft Confidential
Page 5
03/18/99

