Extended FSP API
Page 60
01/23/00
EFSP Test Specifications
Page 12
Last Modified On: 01/21/00 4:02 PM

[image: image1.jpg]Microsoft®
__Edge Server

Comet Fax Server

Extended Fax Service Provider
Test Specification

Revision 0.1

Last Updated On: 12/17/99 10:40 AM
By: Sigalit Bar

Copyright © by Microsoft Corporation

ALL RIGHTS RESERVED
Note This documentation is an early release of the final product documentation and is only for limited distribution outside of Microsoft and not for redistribution. It is meant to accompany software still in development. Some of the information in the documentation may be inaccurate or may not be an accurate representation of the functionality in the final released product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

This is a preliminary document and may be changed substantially prior to final commercial release. This document is provided for informational purposes only and Microsoft Corporation makes no warranties, either express or implied, in this document. The entire risk of the use or the results of the use of this document remains with the user. Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 1999 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Visual Basic, Win32, and Windows are registered trademarks, and Visual C++ and Windows NT are trademarks of Microsoft Corporation in the U.S.A. and other countries.

Unicode is a trademark of Unicode, Incorporated.

All other trademarks are the property of their respective owners.

121
Scope

2
Revision Information
12
3
References
12
4
Overview
12
5
Test Objectives and Strategy
12
6
Component Tests
13
6.1
Exported Functions
13
6.1.1
FSP Exported Functions
13
6.1.1.1 Test Case – An FSP exports all mandatory functions
13
6.1.1.2 Test Case – A Virtual FSP exports the FaxDevVirtualDeviceCreation API
13
6.1.1.3 Test Case – An FSP supporting device configuration exports the FaxDevConfigure API
14
6.1.2
EFSP Exported Functions
14
6.1.2.1 Test Case – An EFSP exports all mandatory functions
14
6.1.2.2 Test Case – A Virtual EFSP exports the FaxDevEnumerateDevices API
14
6.1.2.3 Test Case – An EFSP supporting logging exports the FaxDevGetLogData API
15
6.1.2.4 Test Case – An EFSP supporting job context reestablishment exports the FaxDevReestablishJobContext API
15
6.2
Invalid API Parameters
15
6.2.1
FSP APIs – Invalid Out Parameters
15
6.2.1.1 Test Case – FSP FaxDevInitialize correctly handles NULL out parameters
15
6.2.1.2 Test Case – FSP FaxDevVirtualDeviceCreation correctly handles NULL out parameters
15
6.2.1.3 Test Case – FSP FaxDevReportStatus correctly handles NULL out parameters
16
6.2.2
FSP APIs – Invalid In Parameters
16
6.2.2.1 Test Case – FSP FaxDevInitialize correctly handles NULL in parameters
16
6.2.2.2 Test Case – FSP FaxDevVirtualDeviceCreation correctly handles NULL in parameters
17
6.2.2.3 Test Case – FSP FaxDevSend correctly handles NULL in parameters
17
6.2.2.4 Test Case – Non-Virtual FSP FaxDevSend correctly handles a NULL FaxSendCallback in parameter
17
6.2.2.5 Test Case – FSP FaxDevSend correctly handles an invalid FaxSend.FileName in parameter
18
6.2.2.6 Test Case – FSP FaxDevSend correctly handles an invalid FaxHandle in parameter
18
6.2.2.7 Test Case – FSP FaxDevReportStatus correctly handles NULL in parameters
18
6.2.2.8 Test Case – FSP FaxDevReportStatus correctly handles an invalid FaxHandle in parameter
19
6.2.3
EFSP APIs – Invalid Out Parameters
19
6.2.3.1 Test Case – EFSP FaxDevInitializeEx correctly handles NULL out parameters
19
6.2.3.2 Test Case – Virtual EFSP FaxDevEnumerateDevices correctly handles NULL out parameters
19
6.2.3.3 Test Case – EFSP FaxDevSendEx correctly handles NULL out parameters
20
6.2.3.4 Test Case – FaxDevSendEx of an EFSP that supports job context reestablishment correctly handles NULL out parameters
20
6.2.3.5 Test Case – FaxDevSendEx of an EFSP that supports job context reestablishment correctly handles a zero value in the FSPI_MESSAGE_ID.dwIdSize out parameter
20
6.2.3.6 Test Case – EFSP FaxDevReportStatusEx correctly handles NULL out parameters
21
6.2.3.7 Test Case – EFSP FaxDevGetLogData correctly handles NULL out parameters
21
6.2.3.8 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles NULL out parameters
21
6.2.4
EFSP APIs – Invalid In Parameters
22
6.2.4.1 Test Case – EFSP FaxDevInitializeEx correctly handles NULL in parameters
22
6.2.4.2 Test Case – EFSP FaxDevSendEx correctly handles NULL in parameters
22
6.2.4.3 Test Case – EFSP FaxDevSendEx correctly handles in parameters indicating non existent filenames
23
6.2.4.4 Test Case – EFSP FaxDevSendEx correctly handles in parameters indicating invalid files
23
6.2.4.5 Test Case – EFSP FaxDevSendEx correctly handles an invalid dwDeviceId in parameter
24
6.2.4.6 Test Case – EFSP FaxDevSendEx correctly handles an invalid FSPI_COVERPAGE_INFO.dwCoverPageFormat in parameter
24
6.2.4.7 Test Case – EFSP FaxDevReportStatusEx correctly handles NULL in parameters
25
6.2.4.8 Test Case – EFSP FaxDevReportStatusEx correctly handles an invalid hJob in parameter
25
6.2.4.9 Test Case – EFSP FaxDevGetLogData correctly handles NULL in parameters
25
6.2.4.10 Test Case – EFSP FaxDevGetLogData correctly handles an invalid FaxHandle in parameter
25
6.2.4.11 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles NULL in parameters
26
6.2.4.12 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles an invalid FSPI_MESSAGE_ID in parameter
26
6.2.4.13 Test Case – FaxDevReestablishJobContext of a Non-Virtual EFSP that supports job context reestablishment correctly handles NULL in parameters
27
6.2.4.14 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles an invalid dwDeviceId in parameter
27
6.2.5
Common APIs – Invalid Out Parameters
27
6.2.5.1 Test Case – FaxDevStartJob correctly handles NULL out parameters
27
6.2.5.2 Test Case – FaxDevReceive of an FSP or EFSP that supports T.Routing correctly handles NULL out parameters
27
6.2.6
Common APIs – Invalid In Parameters
28
6.2.6.1 Test Case –FaxDevStartJob correctly handles NULL in parameters
28
6.2.6.2 Test Case – FaxDevEndJob correctly handles NULL in parameters
28
6.2.6.3 Test Case – FaxDevEndJob correctly handles an invalid FaxHandle in parameter
29
6.2.6.4 Test Case – FaxDevReceive correctly handles NULL in parameters
29
6.2.6.5 Test Case – FaxDevReceive of a Non-Virtual FSP or Non-Virtual EFSP correctly handles NULL in parameters
29
6.2.6.6 Test Case – FaxDevReceive correctly handles a FaxReceive.FileName in parameter indicating a non-existent filename
29
6.2.6.7 Test Case – FaxDevReceive correctly handles an invalid FaxHandle in parameter
30
6.2.6.8 Test Case – FaxDevAbortOperation correctly handles NULL in parameters
30
6.2.6.9 Test Case – FaxDevAbortOperation correctly handles an invalid FaxHandle in parameter
30
6.2.6.10 Test Case – LineCallbackFunction of a Non-Virtual FSP or EFSP correctly handles NULL in parameters
30
6.2.6.11 Test Case – LineCallbackFunction of a Non-Virtual FSP or EFSP correctly handles an invalid FaxHandle in parameter
31
6.2.6.12 Test Case – LineCallbackFunction of a Non-Virtual FSP or EFSP correctly handles an invalid dwMessage in parameter
31
6.2.6.13 Test Case – FaxExtInitializeConfig of an FSP or EFSP correctly handles NULL in parameters
32
6.3
Valid API Parameters
32
6.3.1
FSP APIs – Valid Parameters
32
6.3.1.1 Test case – FSP FaxDevInitialize correctly sets out parameters
32
6.3.1.2 Test case – Virtual FSP FaxDevVirtualDeviceCreation correctly sets out parameters
33
6.3.1.3 Test Case – FSP FaxDevReportStatus correctly sets out parameters
33
6.3.2
EFSP APIs – Valid Parameters
34
6.3.2.1 Test Case – EFSP FaxDevInitializeEx correctly sets out parameters
34
6.3.2.2 Test Case – EFSP FaxDevSendEx correctly sets out parameters
34
6.3.2.3 Test Case – EFSP FaxDevSendEx correctly handles FAT and NTFS files
34
6.3.2.4 Test Case – EFSP FaxDevReportStatusEx correctly sets out parameters
35
6.3.2.5 Test Case – Virtual EFSP FaxDevEnumerateDevices correctly sets out parameters
35
6.3.2.6 Test Case – EFSP FaxDevGetLogData correctly sets out parameters
36
6.3.3
Common APIs – Valid Parameters
36
6.3.3.1 Test Case – FaxDevStartJob correctly sets out parameters
36
6.3.3.2 Test Case – FaxDevReceive correctly sets out parameters
36
6.3.3.3 Test Case – FaxDevReceive correctly handles FAT and NTFS files
36
6.4
Service Callbacks
37
6.4.1
FSP properly invokes Service Callbacks
37
6.4.1.1 Test Case – FSP never invokes FaxServiceCallback
37
6.4.1.2 Test Case – FaxDevSend of Non-Virtual FSP correctly invokes FaxSendCallback
37
6.4.1.3 Test Case – FaxDevSend of Non-Virtual FSP correctly behaves according to return value of FaxSendCallback
37
6.4.2
EFSP properly invokes Service Callbacks
38
6.4.2.1 Test Case – EFSP FaxDevSendEx correctly invokes FaxServiceCallbackEx
38
6.4.2.2 Test Case – EFSP FaxDevSendEx correctly handles return values of FaxServiceCallbackEx
38
6.4.2.3 Test Case – EFSP FaxDevReceive correctly invokes FaxServiceCallbackEx
39
6.4.2.4 Test Case – EFSP FaxDevReceive correctly handles return values of FaxServiceCallbackEx
40
6.4.3
FSP \ EFSP properly invoke FaxExt Service Callbacks
41
6.4.3.1 Test Case – return values of FaxExtGetExtensionData are handled correctly
41
6.4.3.2 Test Case – return values of FaxExtSetExtensionData are handled correctly
41
6.4.3.3 Test Case – return values of FaxExtRegisterForExtensionEvents are handled correctly
42
6.4.3.4 Test Case – return values of FaxExtUnregisterForExtensionEvents are handled correctly
42
6.5
EFSP Implementation According to Capabilities
42
6.5.1
Broadcast
43
6.5.1.1 Test Case – FaxDevSendEx of an EFSP that supports FSPI_CAP_BROADCAST correctly handles a multi-recipient broadcast job.
43
6.5.1.2 Test Case – FaxDevSendEx of an EFSP that does not support FSPI_CAP_BROADCAST correctly fails a multi-recipient broadcast job.
43
6.5.1.3 Test Case – EFSP FaxDevReportStatusEx correctly handles parent job handle.
43
6.5.1.4 Test Case – EFSP FaxDevGetLogData correctly handles parent job handle.
44
6.5.2
Multi-Send
44
6.5.2.1 Test Case – FaxDevSendEx of an EFSP that supports FSPI_CAP_MULTISEND correctly handles concurrent send jobs.
44
6.5.2.2 Test Case – FaxDevSendEx of an EFSP that does not support FSPI_CAP_MULTISEND correctly handles concurrent send jobs.
45
6.5.3
Scheduling
45
6.5.4
Abort
46
6.5.4.1 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_RECIPIENT correctly handles a valid recipient job hFaxHandle.
46
6.5.4.2 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_RECIPIENT correctly handles a valid recipient job hFaxHandle already in FSPI_JS_ABORTING status.
46
6.5.4.3 Test Case – FaxDevAbortOperation of an EFSP that does not support FSPI_CAP_ABORT_RECIPIENT correctly handles a valid recipient job hFaxHandle.
47
6.5.4.4 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_PARENT correctly handles a valid parent job hFaxHandle.
47
6.5.4.5 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_PARENT correctly handles a valid parent job hFaxHandle already in FSPI_JS_ABORTING status.
48
6.5.4.6 Test Case – FaxDevAbortOperation of an EFSP that does not support FSPI_CAP_ABORT_PARENT correctly handles a valid parent job hFaxHandle.
48
6.5.5
Auto-Retry
49
6.5.5.1 Test Case – FaxDevSendEx of an EFSP that supports FSPI_CAP_AUTO_RETRY correctly retries a recipient job.
49
6.5.6
Job Context Reestablishment
49
6.5.6.1 Test Case – FaxDevInitializeEx of an EFSP that supports job context reestablishment correctly sets the lpdwMaxMessageIdSize out parameter
49
6.5.6.2 Test Case – FaxDevInitializeEx of an EFSP that does not support job context reestablishment correctly sets the lpdwMaxMessageIdSize out parameter
50
6.5.6.3 Test Case – FaxDevSendEx of an EFSP that supports job context reestablishment correctly sets message id out parameters
50
6.5.6.4 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly sets out parameters
51
6.5.7
Branding
51
6.5.7.1 Test Case – FaxDevSendEx of an EFSP that supports branding correctlly renders the fax
51
6.5.7.2 Test Case – FaxDevSendEx of an EFSP that does not support branding correctlly renders the fax
52
6.6
API Sequence
52
6.6.1
EFSP Initialization Sequence
52
6.6.1.1 Test case – FaxDevEnumerateDevices may be invoked again any time after a successful initialization sequence
52
6.6.2
Send \ Receive Sequence (FSP and EFSP)
52
6.6.2.1 Test case – FaxDevEndJob of job in non-final state should succeed.
52
6.6.2.2 Test case – FaxDevAbortOperation of job in final state should fail.
53
6.7
API Concurrency
54
6.7.1
Common APIs
54
6.7.1.1 Test case – concurrent calls to FaxDevAbortOperation with same job handle, all calls should succeed.
54
6.7.1.2 Test case – call to FaxDevAbortOperation before FaxDevReceive of same job handle starts execution, should succeed.
54
6.7.1.3 Test case – call to FaxDevAbortOperation while FaxDevReceive of same job handle is executing should succeed.
55
6.7.1.4 Test case – call to FaxDevAbortOperation while FaxDevEndJob of same job handle is executing should fail.
55
6.7.1.5 Test case – concurrent calls to FaxDevStartJob on different devices, all calls should succeed.
56
6.7.1.6 Test case – concurrent calls to FaxDevReceive with different job handles on different devices, all calls should succeed.
56
6.7.1.7 Test case – concurrent calls to FaxDevEndJob with different job handles, all calls should succeed.
57
6.7.1.8 Test case – For a Virtual FSP or Virtual EFSP, concurrent calls to LineCallbackFunction should succeed.
57
6.7.2
FSP APIs
58
6.7.2.1 Test case – concurrent calls to FaxDevSend with different job handles on different devices, all calls should succeed.
58
6.7.2.2 Test case – concurrent calls to FaxDevReportStatus with different job handles, all calls should succeed.
59
6.7.2.3 Test case – concurrent calls to FaxDevReportStatus with same job handle, all calls should succeed.
59
6.7.3
EFSP APIs
60
6.7.3.1 Test case – concurrent calls to FaxDevSendEx on different devices, all calls should succeed.
60
6.7.3.2 Test case – on EFSP that supports FSPI_CAP_MULTISEND, all concurrent calls to FaxDevSendEx on same device should succeed.
60
6.7.3.3 Test case – concurrent calls to FaxDevReportStatusEx with different job handles, all calls should succeed.
61
6.7.3.4 Test case – concurrent calls to FaxDevReportStatusEx with same job handle, all calls should succeed.
61
6.7.3.5 Test case – concurrent calls to FaxDevReestablishJobContext with different message ids, all calls should succeed.
62
6.7.3.6 Test case – concurrent calls to FaxDevGetLogData, all calls should succeed.
63
6.7.3.7 Test case – shutdown while FaxDevStartJob is executing should succeed.
63
6.7.3.8 Test case – shutdown while FaxDevReceive is executing should succeed.
63
6.7.3.9 Test case – shutdown while FaxDevEndJob is executing should succeed.
64
6.7.3.10 Test case – shutdown while FaxDevReportStatusEx is executing should succeed.
65
6.7.3.11 Test case – shutdown while FaxDevSendEx is executing should succeed.
66
6.7.3.12 Test case – shutdown while FaxDevReestablishJobContext is executing should succeed.
66
6.7.3.13 Test case – shutdown while FaxDevGetLogData is executing should succeed.
67
6.7.3.14 Test case – shutdown while FaxDevInitializeEx is executing should succeed.
67
6.7.3.15 Test case – shutdown while FaxDevEnumerateDevices is executing should succeed.
68
6.8
Low Memory Conditions
68
6.8.1
FSP APIs function in Low Memory Conditions
69
6.8.1.1 Test case – FSP FaxDevInitalize functions correctly in low memory conditions
69
6.8.1.2 Test case – Virtual-FSP FaxDevVirtualDeviceCreation functions correctly in low memory conditions
69
6.8.1.3 Test case – FSP FaxDevSend functions correctly in low memory conditions
69
6.8.1.4 Test case – FSP FaxDevReportStatus functions correctly in low memory conditions
70
6.8.2
EFSP APIs function in Low Memory Conditions
71
6.8.2.1 Test case – EFSP FaxDevInitalizeEx functions correctly in low memory conditions
71
6.8.2.2 Test case – Virtual EFSP FaxDevEnumerateDevices functions correctly in low memory conditions
71
6.8.2.3 Test case – EFSP FaxDevSendEx functions correctly in low memory conditions
71
6.8.2.4 Test case – EFSP FaxDevReportStatusEx functions correctly in low memory conditions
72
6.8.2.5 Test case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment, functions correctly in low memory conditions
72
6.8.2.6 Test case – EFSP FaxDevGetLogData functions correctly in low memory conditions
73
6.8.3
Common APIs function in Low Memory Conditions
73
6.8.3.1 Test case – FSP FaxDevStartJob functions correctly in low memory conditions
73
6.8.3.2 Test case – FaxDevEndJob functions correctly in low memory conditions
73
6.8.3.3 Test case – FSP FaxDevAbortOperation functions correctly in low memory conditions
74
6.8.3.4 Test case – FaxDevReceive functions correctly in low memory conditions
74
6.8.3.5 Test case – FaxExtInitializeConfig functions correctly in low memory conditions
75
6.8.3.6 Test case – FaxExtConfigChange functions correctly in low memory conditions
75
6.9
Driver Verifier
75
6.9.1
Third Party Drivers Integrity
75
6.9.2
Handling Third Party and System Drivers Failures
76
7
Integration Tests
77
7.1
Setup and Configuration
77
7.1.1
Setup
77
7.1.1.1 Test case – FSP / EFSP setup on server machine fails if service is down
77
7.1.1.2 Test case – FSP / EFSP is successfully setup on server machine while service is up
77
7.1.1.3 Test case – FSP / EFSP is successfully uninstalled from server machine while service is down
78
7.1.1.4 Test case – FSP / EFSP cannot be uninstalled from server machine while service is up
78
7.1.2
Configuration
79
7.1.2.1 Test case – FSP / EFSP is successfully configured via the local Comet Fax Service Admin Console
79
7.1.2.2 Test case – FSP / EFSP is successfully configured via a remote Comet Fax Service Admin Console
79
7.2
Initialization
80
7.2.1
FSP Initialization
80
7.2.1.1 Test case – FSP is successfully loaded and initialized when there are no modems installed on server machine
80
7.2.1.2 Test case – FSP is successfully loaded and initialized when there are modems installed on server machine
80
7.2.2
EFSP Initialization
81
7.2.2.1 Test case – EFSP is successfully loaded and initialized when there are no modems installed on server machine
81
7.2.2.2 Test case – EFSP is successfully loaded and initialized when there are modems installed on server machine
82
7.3
Sending
82
7.3.1
Fax Pages
82
7.3.1.1 Test case – Single Page Fax without a cover page is successfully sent
82
7.3.1.2 Test case – Single Page Fax with a cover page is successfully sent
83
7.3.1.3 Test case – A Cover page fax is successfully sent
83
7.3.1.4 Test case – A multiple page fax without a cover page is successfully sent
83
7.3.1.5 Test case – A multiple page fax with a cover page is successfully sent
83
7.3.2
Fax Session
84
7.3.2.1 Test case – Sending a fax to a busy line
84
7.3.2.2 Test case – Sending a fax to a no-answer line
84
7.3.2.3 Test case – Sending a fax to a line that will disconnect in the middle of the fax session
84
7.3.2.4 Test case – Sending a fax to a non-fax line that will answer and disconnect
85
7.3.2.5 Test case – Sending a fax when there is no dial tone
85
7.3.3
Concurrency
85
7.3.3.1 Test case – Send faxes concurrently on all FSP’s or EFSP’s devices
85
7.3.3.2 Test case – Send faxes concurrently using a single EFSP device that supports FSPI_CAP_MULTISEND
86
7.3.3.3 Test case – Send a fax on an already receiving device of an EFSP that supports FSPI_CAP_MULTISEND
86
7.4
Receiving
86
7.4.1
Fax Pages
86
7.4.1.1 Test case – Single Page Fax is successfully received
86
7.4.1.2 Test case – A multiple page fax is successfully received
87
7.4.2
Fax Session
87
7.4.2.1 Test case – Receiving a fax from a line that will disconnect before the first page is received
87
7.4.2.2 Test case – Receiving a fax from a line that will disconnect after the first page is received
87
7.4.2.3 Test case – Receiving a non-fax call
88
7.4.3
Concurrency
88
7.4.3.1 Test case – Receive faxes concurrently on all FSP’s or EFSP’s devices
88
7.4.3.2 Test case – Receive faxes concurrently using a single EFSP device that supports FSPI_CAP_MULTISEND
88
7.4.3.3 Test case – Receive a fax on an already sending device of an EFSP that supports FSPI_CAP_MULTISEND
89
7.5
Aborting
89
7.5.1
Fax Pages
89
7.5.1.1 Test case – Aborting an inbound fax before the first page is received
89
7.5.1.2 Test case – Aborting an inbound fax after the first page is received
89
7.5.1.3 Test case – Aborting an inbound fax after the 45th page is received
90
7.5.1.4 Test case – Aborting an inbound fax after N milliseconds
90
7.5.1.5 Test case – Aborting an outbound fax before the first page is sent
90
7.5.1.6 Test case – Aborting an outbound fax after the first page is sent
90
7.5.1.7 Test case – Aborting an outbound fax after the 45th page is sent
91
7.5.1.8 Test case – Aborting an outbound fax after N milliseconds
91
7.5.2
Concurrency
91
7.5.2.1 Test case – Abort multiple inbound jobs simultaneously on all FSP’s or EFSP’s devices
91
7.5.2.2 Test case – Abort multiple inbound jobs simultaneously on a single EFSP device that supports FSPI_CAP_MULTISEND
92
7.5.2.3 Test case – Abort an inbound job on a sending and receiving device of an EFSP that supports FSPI_CAP_MULTISEND
92
7.5.2.4 Test case – Abort multiple outbound jobs simultaneously on all FSP’s or EFSP’s devices
92
7.5.2.5 Test case – Abort multiple outbound jobs simultaneously on a single EFSP device that supports FSPI_CAP_MULTISEND
93
7.5.2.6 Test case – Abort an inbound job on a sending and receiving device of an EFSP that supports FSPI_CAP_MULTISEND
93
7.6
Cover Pages
93
7.6.1
Default Server Cover Pages
93
7.6.1.1 Test case – Server Cover Page CONFDENT.COV is successfully sent
93
7.6.1.2 Test case – Server Cover Page FYI.COV is successfully sent
94
7.6.1.3 Test case – Server Cover Page GENERIC.COV is successfully sent
95
7.6.1.4 Test case – Server Cover Page URGENT.COV is successfully sent
95
7.6.2
Personal Cover Pages
96
7.6.2.1 Test case – Personal Cover Page containing all fields is successfully sent
96
7.6.2.2 Test case – Personal Cover Page containing no fields is successfully sent
97
7.6.2.3 Test case – Personal Cover Page containing only a subject is successfully sent
98
7.6.2.4 Test case – Personal Cover Page containing only a note is successfully sent
99
7.7
Shutdown
100
7.7.1
Common
100
7.7.1.1 Test case – FSP\EFSP successfully shutsdown while device is sending
100
7.7.1.2 Test case – FSP\EFSP successfully shutsdown while device is receiving
100
7.7.1.3 Test case – FSP\EFSP successfully shutsdown while aborting an outbound job
101
7.7.1.4 Test case – FSP\EFSP successfully shutsdown while aborting an inbound job
101
7.7.1.5 Test case – FSP\EFSP successfully shutsdown while starting a job (FaxDevStartJob)
102
7.7.1.6 Test case – FSP\EFSP successfully shutsdown while ending a job (FaxDevEndJob)
102
7.7.2
EFSP
102
7.7.2.1 Test case – EFSP successfully shutsdown while reporting status (FaxDevReportStatusEx)
102
7.7.2.2 Test case – EFSP that supports job context reestablishment successfully shutsdown while reestablishing job context (FaxDevReestablishJobContext)
103
7.7.2.3 Test case – EFSP successfully shutsdown while enumerating devices (FaxDevEnumerateDevices)
103
7.7.2.4 Test case – EFSP successfully shutsdown while initializing (FaxDevInitializeEx)
103
7.7.2.5 Test case – EFSP successfully shutsdown while getting log data (FaxDevGetLogData)
104
7.7.3
FSP
104
7.7.3.1 Test case – FSP successfully shutsdown while reporting status (FaxDevReportStatus)
104
7.8
Stress
104
7.8.1.1 Test case – Many sends receives and aborts on all FSP\EFSP devices simultaneously
104
8
Specific Tests
105
8.1
Implementation of the T30 Protocol
105
8.2
Implementation using a Network
105
8.3
Implementation delegating work to another Server
106
9
Test Tools
107
9.1
FSP Tester
107
9.2
EFSP Tester
107
9.3
Hogger
107
9.4
Driver Verifier
107
9.5
SendBroadcastFax
108
9.6
Abort Tool
108
9.7
Cover Pages Arsenal
109

1 Scope

This document describes the tests that Extended Fax Service Provider (EFSP) components must undergo in order to assure sufficient quality and proper integration with the Microsoft® Windows NT® Fax Service.
Microsoft® strongly urges any party implementing an Extended Fax Service Provider to carry out each and every one of the tests detailed in this document, and verify that the EFSP behaves as expected. Any deviance from the expected EFSP behavior described in this document should be considered a bug and appropriate measures should be taken to fix the EFSP code.

2 Revision Information

Revision
Date
Author
Description

0.1
23-Jan-2000
Sigalit Bar
· Initial version

3 References

1. Comet Fax Server – Extended Fax Service Provider Interface (Version 0.8 Microsoft Corporation)

2. The Extended Fax SDK

3. NT 5.0 Fax SDK Documentation

4. Microsoft Fax Cover Page Template File Format (Version 2.0 Microsoft Corporation)

4 Overview

The Fax Service Provider API was first published in the NT 5.0 Fax SDK to allow 3rd parties to integrate fax devices and Fax Services to the Microsoft® Windows NT® Fax Service. The EFSPI is an extended version of this API that was designed to better support Fax over IP services and efficient fax broadcasting.

This document first gives an overview of the test objectives and the strategy used to achieve these objectives, describing the three categories of tests that will be applied for testing an Extended Fax Service Provider. The document then goes into every test category detailing the test areas that it covers, specifying all the tests that should be carried out and the expected Extended Fax Service Provider behavior for each test.

Lastly this document lists test tools that Microsoft® has made available for 3rd party Extended Fax Service Provider developers to aid them in carrying out these tests.

This document is intended to be read by application programmers that are familiar with fax technologies, the NT 5.0 Fax Service Provider Interface and the Comet Fax Extended Fax Service Provider Interface.

5 Test Objectives and Strategy

The tests described in this document are designed to assure that an Extended Fax Service Provider component is of sufficient quality and is properly integrated with the Microsoft® Windows NT® Fax Service.

The tests are aimed at three major objectives:

· Testing correct implementation of the required Extended Fax Service Provider APIs (parameters, error values, etc.)

· Testing correct behavior of an Extended Fax Service Provider under Microsoft® Windows NT® Fax Service user scenarios (such as sending, receiving, aborting, broadcast, multi-send, etc.)

· Testing specific Extended Fax Service Provider implementations (such as over a network, using telephony devices, using device boards, etc.)

This document divides the tests into three categories - Component tests, Integration tests and Specific tests; each category corresponds to one of the objectives accordingly.

6 Component Tests

The following Component Tests invoke the APIs outside of the Microsoft® Windows NT® Fax Service context. The tests look at the Fax Service Provider or Extended Fax Service Provider as an independent component that exports the FSPI or EFSPI, verifying that the Fax Service Provider or Extended Fax Service Provider DLL has implemented the functionality of the API as specified by the FSPI and EFSPI documentation.

6.1 Exported Functions

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL exports a valid set of functions.

Section 6.2.1 lays out the tests for a Fax Service Provider, while section 6.2.2 does so for an Extended Fax Service Provider.

6.1.1 FSP Exported Functions

6.1.1.1 Test Case – An FSP exports all mandatory functions

This test case verifies that a Fax Service Provider DLL has exported all the mandatory (non-optional) functions.

Scenario –

1. Verify that the DLL is successfully loaded by a call to the Win32 API LoadLibrary, and that the handle returned from the call (marked hLib) does not equal NULL.

2. Use the handle hLib to get a pointer to the FSP’s FaxDevInitialize function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevInitialize”) returns a non-NULL pointer of type PFAXDEVINITIALIZE.

3. Use the handle hLib to get a pointer to the FSP’s FaxDevStartJob function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevStartJob”) returns a non-NULL pointer of type PFAXDEVSTARTJOB.

4. Use the handle hLib to get a pointer to the FSP’s FaxDevEndJob function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevEndJob”) returns a non-NULL pointer of type PFAXDEVENDJOB.

5. Use the handle hLib to get a pointer to the FSP’s FaxDevSend function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevSend”) returns a non-NULL pointer of type PFAXDEVSEND.

6. Use the handle hLib to get a pointer to the FSP’s FaxDevReceive function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevReceive”) returns a non-NULL pointer of type PFAXDEVRECEIVE.

7. Use the handle hLib to get a pointer to the FSP’s FaxDevReportStatus function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevReportStatus”) returns a non-NULL pointer of type PFAXDEVREPORTSTATUS.

8. Use the handle hLib to get a pointer to the FSP’s FaxDevAbortOperation function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevAbortOperation”) returns a non-NULL pointer of type PFAXDEVABORTOPERATION.

6.1.1.2 Test Case – A Virtual FSP exports the FaxDevVirtualDeviceCreation API

This test case verifies that a Virtual Fax Service Provider DLL exports the FaxDevVirtualDeviceCreation API.

Scenario –

1. Verify that the DLL is successfully loaded by a call to the Win32 API LoadLibrary, and that the handle returned from the call (marked hLib) does not equal NULL.

2. Use the handle hLib to get a pointer to the FSP’s FaxDevVirtualDeviceCreation function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevVirtualDeviceCreation”) returns a non-NULL pointer of type PFAXDEVVIRTUALDEVICECREATION.

Note that a Virtual FSP must also export all the mandatory APIs (as tested in 6.2.1.1).

6.1.1.3 Test Case – An FSP supporting device configuration exports the FaxDevConfigure API

This test case verifies that a Fax Service Provider DLL that supports device configuration exports the FaxDevConfigure API.

Scenario –

1. Verify that the DLL is successfully loaded by a call to the Win32 API LoadLibrary, and that the handle returned from the call (marked hLib) does not equal NULL.

2. Use the handle hLib to get a pointer to the FSP’s FaxDevConfigure function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevConfigure”) returns a non-NULL pointer of type PFAXDEVCONFIGURE.

Note that an FSP that supports device configuration must also export all the mandatory APIs (as tested in 6.2.1.1).

6.1.2 EFSP Exported Functions

6.1.2.1 Test Case – An EFSP exports all mandatory functions

This test case verifies that an Extended Fax Service Provider DLL has exported all the mandatory (non-optional) functions.

Scenario –

1. Verify that the DLL is successfully loaded by a call to the Win32 API LoadLibrary, and that the handle returned from the call (marked hLib) does not equal NULL.

2. Use the handle hLib to get a pointer to the EFSP’s FaxDevInitializeEx function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevInitializeEx”) returns a non-NULL pointer of type PFAXDEVINITIALIZEEX.

3. Use the handle hLib to get a pointer to the FSP’s FaxDevStartJob function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevStartJob”) returns a non-NULL pointer of type PFAXDEVSTARTJOB.

4. Use the handle hLib to get a pointer to the FSP’s FaxDevEndJob function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevEndJob”) returns a non-NULL pointer of type PFAXDEVENDJOB.

5. Use the handle hLib to get a pointer to the FSP’s FaxDevSendEx function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevSendEx”) returns a non-NULL pointer of type PFAXDEVSENDEX.

6. Use the handle hLib to get a pointer to the FSP’s FaxDevReceive function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevReceive”) returns a non-NULL pointer of type PFAXDEVRECEIVE.

7. Use the handle hLib to get a pointer to the FSP’s FaxDevReportStatusEx function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevReportStatusEx”) returns a non-NULL pointer of type PFAXDEVREPORTSTATUSEX.

8. Use the handle hLib to get a pointer to the FSP’s FaxDevAbortOperation function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevAbortOperation”) returns a non-NULL pointer of type PFAXDEVABORTOPERATION.

9. Use the handle hLib to get a pointer to the FSP’s FaxDevShutdown function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevShutdown”) returns a non-NULL pointer of type PFAXDEVSHUTDOWN.

6.1.2.2 Test Case – A Virtual EFSP exports the FaxDevEnumerateDevices API

This test case verifies that a Virtual Extended Fax Service Provider DLL exports the FaxDevEnumerateDevices API.

Scenario –

1. Verify that the DLL is successfully loaded by a call to the Win32 API LoadLibrary, and that the handle returned from the call (marked hLib) does not equal NULL.

2. Use the handle hLib to get a pointer to the FSP’s FaxDevEnumerateDevices function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevEnumerateDevices”) returns a non-NULL pointer of type PFAXDEVENUMERATEDEVICES.

Note that a Virtual EFSP must also export all the mandatory APIs (as tested in 6.2.2.1).

6.1.2.3 Test Case – An EFSP supporting logging exports the FaxDevGetLogData API

[TBD] FaxDevGetLogData is not supported in this release.
6.1.2.4 Test Case – An EFSP supporting job context reestablishment exports the FaxDevReestablishJobContext API

This test case verifies that a Fax Service Provider DLL that supports device configuration exports the FaxDevReestablishJobContext API.

Scenario –

1. Verify that the DLL is successfully loaded by a call to the Win32 API LoadLibrary, and that the handle returned from the call (marked hLib) does not equal NULL.

2. Use the handle hLib to get a pointer to the FSP’s FaxDevReestablishJobContext function.
That is, verify that a call to the Win32 API GetProcAddress(hLib, “FaxDevReestablishJobContext”) returns a non-NULL pointer of type PFAXDEVREESTABLISHJOBCONTEXT.

Note that an EFSP that supports job context reestablishment must also export all the mandatory APIs (as tested in 6.2.2.1).

6.2 Invalid API Parameters

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL implementation of the required APIs correctly handles invalid parameters.

Sections 6.2.1 and 6.2.2 lay out the tests for a Fax Service Provider, sections 6.2.3 and 6.2.4 do so for an Extended Fax Service Provider, and sections 6.2.5 and 6.2.6 deal with APIs common to both Fax Service Providers and Extended Fax Service Providers.

6.2.1 FSP APIs – Invalid Out Parameters

6.2.1.1 Test Case – FSP FaxDevInitialize correctly handles NULL out parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevInitialize to fail, returning FALSE when invoked with NULL out parameters.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevInitialize with the LineCallbackFunction out parameter set to NULL, as follows:
BOOL fRetVal = FaxDevInitialize(LineAppHandle, HeapHandle, NULL, FaxServiceCallback);
Where, LineAppHandle is a handle to the fax service's registration with TAPI, HeapHandle is a valid heap handle, and FaxServiceCallback is a pointer of type PFAX_SERVICE_CALLBACK pointing to an existent function of that type.

2. Verify that FaxDevInitialize sets the above fRetVal to FALSE.

6.2.1.2 Test Case – FSP FaxDevVirtualDeviceCreation correctly handles NULL out parameters

This test case verifies that a Virtual Fax Service Provider DLL has implemented FaxDevVirtualDeviceCreation to fail, returning FALSE when invoked with NULL out parameters.

Scenario –

1. Invoke the Virtual Fax Service Provider’s FaxDevVirtualDeviceCreation with the DeviceCount out parameter set to NULL, as follows:
BOOL fRetVal1 = FaxDevVirtualDeviceCreation(NULL, DeviceNamePrefix, DeviceIdPrefix, CompletionPort, CompletionKey);
Where, DeviceNamePrefix is a valid (non-NULL) pointer to a WSTR, DeviceIdPrefix is a valid (non-NULL) pointer to a DWORD, CompletionPort is a valid handle to an I/O Completion Port that can receive LINEMESSAGE packets from the FSP, and CompletionKey is a valid completion key.

2. Verify that FaxDevVirtualDeviceCreation sets the above fRetVal1 to FALSE.

3. Invoke the Virtual Fax Service Provider’s FaxDevVirtualDeviceCreation with the DeviceNamePrefix out parameter set to NULL, as follows:
BOOL fRetVal2 = FaxDevVirtualDeviceCreation(DeviceCount, NULL, DeviceIdPrefix, CompletionPort, CompletionKey);
Where, DeviceCount is a valid (non-NULL) pointer to a DWORD, DeviceIdPrefix is a valid (non-NULL) pointer to a DWORD, CompletionPort is a valid handle to an I/O Completion Port that can receive LINEMESSAGE packets from the FSP, and CompletionKey is a valid completion key.

4. Verify that FaxDevVirtualDeviceCreation sets the above fRetVal2 to FALSE.

5. Invoke the Virtual Fax Service Provider’s FaxDevVirtualDeviceCreation with the DeviceIdPrefix out parameter set to NULL, as follows:
BOOL fRetVal3 = FaxDevVirtualDeviceCreation(DeviceCount, DeviceNamePrefix , NULL, CompletionPort, CompletionKey);
Where, DeviceCount is a valid (non-NULL) pointer to a DWORD, DeviceNamePrefix is a valid (non-NULL) pointer to a WSTR, CompletionPort is a valid handle to an I/O Completion Port that can receive LINEMESSAGE packets from the FSP, and CompletionKey is a valid completion key.

6. Verify that FaxDevVirtualDeviceCreation sets the above fRetVal3 to FALSE.

6.2.1.3 Test Case – FSP FaxDevReportStatus correctly handles NULL out parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReportStatus to fail, returning FALSE when invoked with NULL out parameters.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevReportStatus with the FaxStatus, FaxStatusSize and FaxStatusSizeRequired set to NULL, as follows:
BOOL fRetVal = FaxDevReportStatus(FaxHandle, NULL, 0, NULL);
And where, all the other parameters of FaxDevReportStatus are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevReportStatus sets the above fRetVal to FALSE.

6.2.2 FSP APIs – Invalid In Parameters

6.2.2.1 Test Case – FSP FaxDevInitialize correctly handles NULL in parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevInitialize to fail, returning FALSE when invoked with NULL in parameters.
Notice that we only check for the imperative in parameters, which the FSP cannot do without.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevInitialize with the HeapHandle in parameter set to NULL, as follows:
BOOL fRetVal1 = FaxDevInitialize(LineAppHandle, NULL, LineCallbackFunction, FaxServiceCallback);
Where, LineAppHandle is a handle to the fax service's registration with TAPI, LineCallbackFunction is a valid (non-NULL) pointer to a PFAX_LINECALLBACK, and FaxServiceCallback is a pointer of type PFAX_SERVICE_CALLBACK pointing to an existent function of that type.

2. Verify that FaxDevInitialize sets the above fRetVal1 to FALSE.

6.2.2.2 Test Case – FSP FaxDevVirtualDeviceCreation correctly handles NULL in parameters

This test case verifies that a Virtual Fax Service Provider DLL has implemented FaxDevVirtualDeviceCreation to fail, returning FALSE when invoked with NULL in parameters.
Notice that we only check for the imperative in parameters, which the FSP cannot do without.

Scenario –

1. Invoke the Virtual Fax Service Provider’s FaxDevVirtualDeviceCreation with the CompletionPort in parameter set to NULL, as follows:
BOOL fRetVal1 = FaxDevVirtualDeviceCreation(DeviceCount, DeviceNamePrefix, DeviceIdPrefix, NULL, CompletionKey);
Where, DeviceCount is a valid (non-NULL) pointer to a DWORD, DeviceNamePrefix is a valid (non-NULL) pointer to a WSTR, DeviceIdPrefix is a valid (non-NULL) pointer to a DWORD, and CompletionKey is a valid completion key.

2. Verify that FaxDevVirtualDeviceCreation sets the above fRetVal1 to FALSE.

3. Invoke the Virtual Fax Service Provider’s FaxDevVirtualDeviceCreation with the CompletionPort in parameter set to NULL, as follows:
BOOL fRetVal2 = FaxDevVirtualDeviceCreation(DeviceCount, DeviceNamePrefix, DeviceIdPrefix, CompletionPort, NULL);
Where, DeviceCount is a valid (non-NULL) pointer to a DWORD, DeviceNamePrefix is a valid (non-NULL) pointer to a WSTR, DeviceIdPrefix is a valid (non-NULL) pointer to a DWORD, and CompletionPort is a valid handle to an I/O Completion Port that can receive LINEMESSAGE packets from the FSP.

4. Verify that FaxDevVirtualDeviceCreation sets the above fRetVal2 to FALSE.

6.2.2.3 Test Case – FSP FaxDevSend correctly handles NULL in parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevSend to fail, returning FALSE when invoked with NULL in parameters.
Notice that we only check for the imperative in parameters, which the FSP cannot do without.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevSend with the FaxHandle in parameter set to NULL, as follows:
BOOL fRetVal1 = FaxDevSend(NULL, FaxSend, FaxSendCallback);
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevSend sets the above fRetVal1 to FALSE.

3. Invoke the Fax Service Provider’s FaxDevSend with the FaxSend in parameter set to NULL, as follows:
BOOL fRetVal2 = FaxDevSend(FaxHandle, NULL, FaxSendCallback);
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

4. Verify that FaxDevSend sets the above fRetVal2 to FALSE.

5. Invoke the Fax Service Provider’s FaxDevSend with the FaxSend.FileName in parameter set to NULL, as follows:
BOOL fRetVal3 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

6. Verify that FaxDevSend sets the above fRetVal3 to FALSE.

7. Invoke the Fax Service Provider’s FaxDevSend with the FaxSend.ReceiverNumber and FaxSend.CallHandle in parameters are both set to NULL, as follows:
BOOL fRetVal4 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

8. Verify that FaxDevSend sets the above fRetVal4 to FALSE.

6.2.2.4 Test Case – Non-Virtual FSP FaxDevSend correctly handles a NULL FaxSendCallback in parameter

This test case verifies that a Non-Virtual Fax Service Provider DLL has implemented FaxDevSend to fail, returning FALSE when invoked with a NULL FaxSendCallback in parameter.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevSend with the FaxSendCallback in parameter set to NULL, as follows:
BOOL fRetVal = FaxDevSend(FaxHandle, FaxSend, NULL);
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevSend sets the above fRetVal to FALSE.

6.2.2.5 Test Case – FSP FaxDevSend correctly handles an invalid FaxSend.FileName in parameter

This test case verifies that a Fax Service Provider DLL has implemented FaxDevSend to fail, returning FALSE when invoked with an invalid FaxSend.FileName in parameter.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevSend with the FaxSend.FileName in parameter set to a non-existent filename, as follows:
BOOL fRetVal1 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevSend sets the above fRetVal1 to FALSE.

3. Invoke the Fax Service Provider’s FaxDevSend with the FaxSend.FileName in parameter set to a filename of an existent file with an invalid TIF format, as follows:
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

4. Verify that FaxDevSend sets the above fRetVal2 to FALSE.

6.2.2.6 Test Case – FSP FaxDevSend correctly handles an invalid FaxHandle in parameter

This test case verifies that a Fax Service Provider DLL has implemented FaxDevSend to fail, returning FALSE when invoked with an invalid FaxHandle in parameter.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevSend, as follows:
BOOL fRetVal = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, FaxHandle is a non-zero value that was not obtained via a prior call to the FSP’s FaxDevStartJob API, and is thus invalid.
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevSend sets the above fRetVal to FALSE.

6.2.2.7 Test Case – FSP FaxDevReportStatus correctly handles NULL in parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReportStatus to fail, returning FALSE when invoked with NULL in parameters.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevReportStatus with the FaxHandle set to NULL, as follows:
BOOL fRetVal1 = FaxDevReportStatus(NULL, FaxStatus, FaxStatusSize, FaxStatusSizeRequired);
And where, all the other parameters of FaxDevReportStatus are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevReportStatus sets the above fRetVal1 to FALSE.

3. Invoke the Fax Service Provider’s FaxDevReportStatus with the FaxStatusSize set to zero, as follows:
BOOL fRetVal2 = FaxDevReportStatus(FaxHandle, FaxStatus, 0, FaxStatusSizeRequired);
Where, FaxStatus is not NULL.
And where, all the other parameters of FaxDevReportStatus are valid as documented in the NT5 Fax SDK.

4. Verify that FaxDevReportStatus sets the above fRetVal2 to FALSE.

6.2.2.8 Test Case – FSP FaxDevReportStatus correctly handles an invalid FaxHandle in parameter

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReportStatus to fail, returning FALSE when invoked with an invalid FaxHandle in parameter.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevReportStatus, as follows:
BOOL fRetVal = FaxDevReportStatus(FaxHandle, FaxStatus, FaxStatusSize, FaxStatusSizeRequired);
Where, FaxHandle is a non-zero value that was not obtained via a prior call to the FSP’s FaxDevStartJob API, and is thus invalid.
And where, all the other parameters of FaxDevReportStatus are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevReportStatus sets the above fRetVal to FALSE.

6.2.3 EFSP APIs – Invalid Out Parameters

6.2.3.1 Test Case – EFSP FaxDevInitializeEx correctly handles NULL out parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevInitializeEx to fail, returning FSPI_E_FAILED when invoked with NULL out parameters.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevInitializeEx with the LineCallbackFunction out parameter set to NULL, as follows:
HRESULT hr1 = FaxDevInitializeEx(hFsp, LineAppHandle, NULL, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, hFsp is a valid handle, LineAppHandle is a handle to the fax service's registration with TAPI, FaxServiceCallbackEx is a pointer of type PFAX_SERVICE_CALLBACK_EX pointing to an existent function of that type, and lpdwMaxMessageIdSize is a valid (non-NULL) pointer to a DWORD.

2. Verify that FaxDevInitializeEx sets the above hr1 to FSPI_E_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevInitializeEx with the lpdwMaxMessageIdSize out parameter set to NULL, as follows:
HRESULT hr2 = FaxDevInitializeEx(hFsp, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, NULL);
Where, hFsp is a valid handle, LineAppHandle is a handle to the fax service's registration with TAPI, LineCallbackFunction is a valid (non-NULL) pointer to a PFAX_LINECALLBACK and FaxServiceCallbackEx is a pointer of type PFAX_SERVICE_CALLBACK_EX pointing to an existent function of that type.

4. Verify that FaxDevInitializeEx sets the above hr2 to FSPI_E_FAILED.

6.2.3.2 Test Case – Virtual EFSP FaxDevEnumerateDevices correctly handles NULL out parameters

This test case verifies that a Virtual Extended Fax Service Provider DLL has implemented FaxDevEnumerateDevices to fail, returning FSPI_E_FAILED when invoked with NULL out parameters.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevEnumerateDevices with the lpdwDeviceCount out parameter set to NULL, as follows:
HRESULT hr = FaxDevEnumerateDevices (dwDeviceIdBase, NULL, lpDevices);
Where, lpDevices is a valid (non-NULL) pointer to an FSPI_DEVICE_INFO.
And where, all the other parameters of FaxDevEnumerateDevices are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevEnumerateDevices sets the above hr to FSPI_E_FAILED.

Notice that it is valid to invoke FaxDevEnumerateDevices with lpDevices=NULL when lpdwDeviceCount is a valid (non-NULL) pointer to a DWORD.

6.2.3.3 Test Case – EFSP FaxDevSendEx correctly handles NULL out parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to fail, returning FSPI_E_FAILED when invoked with NULL out parameters.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the lphRecipientJobs out parameter set to NULL, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, NULL, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_E_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the lphParentJob out parameter set to NULL, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, NULL);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_E_FAILED.

6.2.3.4 Test Case – FaxDevSendEx of an EFSP that supports job context reestablishment correctly handles NULL out parameters

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment has implemented FaxDevSendEx to fail, returning FSPI_E_FAILED when invoked with NULL message id out parameters.
Note that this test case only verifies correct handling of lpRecipientMessageIds=NULL and lpParentMessageId=NULL. An EFSP supporting job context reestablishment must also successfully handle other NULL out parameters as indicated in test case 6.3.3.3.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the lpRecipientMessageIds out parameter set to NULL, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, NULL, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_E_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the lpParentMessageId out parameter set to NULL, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, NULL, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_E_FAILED.

6.2.3.5 Test Case – FaxDevSendEx of an EFSP that supports job context reestablishment correctly handles a zero value in the FSPI_MESSAGE_ID.dwIdSize out parameter

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment has implemented FaxDevSendEx to fail, returning FSPI_E_FAILED when invoked with a zero FSPI_MESSAGE_ID.dwIdSize value.
Please note that the EFSP should similarly handle a FSPI_MESSAGE_ID.dwIdSize value that is smaller then the value the EFSP reported in the lpdwMaxMessageIdSize out parameter of FaxDevInitializeEx.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpRecipientMessageIds is a valid pointer to an array of dwNumRecipients FSPI_MESSAGE_ID structures with their FSPI_MESSAGE_ID.dwIdSize member set to zero.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_E_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpParentMessageId is a valid pointer to a FSPI_MESSAGE_ID structure with its FSPI_MESSAGE_ID.dwIdSize member set to zero.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_E_FAILED.

6.2.3.6 Test Case – EFSP FaxDevReportStatusEx correctly handles NULL out parameters

This test case is covered by Test Case – EFSP FaxDevReportStatusEx correctly handles NULL in parameters sub-clauses 3 and 4.
6.2.3.7 Test Case – EFSP FaxDevGetLogData correctly handles NULL out parameters

[TBD] FaxDevGetLogData is not supported in this release.
6.2.3.8 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles NULL out parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReestablishJobContext to fail, returning the appropriate error value, when invoked with NULL out parameters.

Notice that we only check for the imperative in parameters, which the EFSP cannot do without.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevReestablishJobContext API with the lpRecipientJobs out parameter set to NULL, as follows:
HRESULT hr1 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob, dwRecipientCount, lpcRecipientMessageIds, NULL);
Where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevReestablishJobContext sets the above hr1 to FSPI_E_FAILED.

For an EFSP that support job context reestablishment at the parent job level, also check the above for the lphParentJob out parameter.

6.2.4 EFSP APIs – Invalid In Parameters

6.2.4.1 Test Case – EFSP FaxDevInitializeEx correctly handles NULL in parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevInitializeEx to fail, returning FSPI_E_FAILED when invoked with NULL in parameters.
Notice that we only check for the imperative in parameters, which the EFSP cannot do without.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevInitializeEx with the LineCallbackFunction out parameter set to NULL, as follows:
HRESULT hr = FaxDevInitializeEx(hFsp, LineAppHandle, LineCallbackFunction, NULL, lpdwMaxMessageIdSize);
Where, hFsp is a valid handle, LineAppHandle is a handle to the fax service's registration with TAPI, LineCallbackFunction is a valid (non-NULL) pointer to a PFAX_LINECALLBACK, and lpdwMaxMessageIdSize is a valid (non-NULL) pointer to a DWORD.

2. Verify that FaxDevInitializeEx sets the above hr to FSPI_E_FAILED.

6.2.4.2 Test Case – EFSP FaxDevSendEx correctly handles NULL in parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to fail, returning FSPI_E_FAILED when invoked with NULL in parameters.

Notice that we only check for the imperative in parameters, which the EFSP cannot do without.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the lpcwstrBodyFileName and lpcCoverPageInfo in parameters both set to NULL, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, NULL, NULL, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_E_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, NULL, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcCoverPageInfo.lpwstrCoverPageFileName is set to NULL.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_E_FAILED.

5. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the dwNumRecipients in parameter set to zero, as follows:
HRESULT hr3 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, 0, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

6. Verify that FaxDevSendEx sets the above hr3 to FSPI_E_FAILED.

7. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the lpcRecipientProfiles in parameter set to NULL and the dwNumRecipients in parameter set to non-zero, as follows:
HRESULT hr4 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, NULL, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

8. Verify that FaxDevSendEx sets the above hr4 to FSPI_E_FAILED.

9. Invoke the Extended Fax Service Provider’s FaxDevSendEx with the lpcRecipientProfiles in parameter set to NULL and the dwNumRecipients in parameter set to non-zero, as follows:
HRESULT hr5 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where lpcRecipientProfiles is a valid pointer to an array of dwNumRecipients FSPI_PERSONAL_PROFILE structures with their lpwstrFaxNumber member set to NULL.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

10. Verify that FaxDevSendEx sets the above hr5 to FSPI_E_FAILED.

6.2.4.3 Test Case – EFSP FaxDevSendEx correctly handles in parameters indicating non existent filenames

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to fail, returning FSPI_E_FAILED when invoked with in parameters indicating non-existent filenames.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcwstrBodyFileName contains the name of a non-existent TIF file, and lpcCoverPageInfo.lpwstrCoverPageFileName contains the name of an existent cover page file.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that
either - FaxDevSendEx sets the above hr1 to FSPI_E_FAILED;
or - FaxDevSendEx completes successfully (setting the above hr1 to FSPI_S_OK), but later reports a FSPI_MSG_JOB_STATUS message (via FaxServiceCallbackEx) with status FSPI_JS_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcwstrBodyFileName contains the name of a existent TIF file, and lpcCoverPageInfo.lpwstrCoverPageFileName contains the name of a non-existent cover page file.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that
either - FaxDevSendEx sets the above hr2 to FSPI_E_FAILED;
or - FaxDevSendEx completes successfully (setting the above hr2 to FSPI_S_OK), but later reports a FSPI_MSG_JOB_STATUS message (via FaxServiceCallbackEx) with status FSPI_JS_FAILED.

6.2.4.4 Test Case – EFSP FaxDevSendEx correctly handles in parameters indicating invalid files

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to fail, returning FSPI_E_FAILED when invoked with in parameters indicating invalid files.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcwstrBodyFileName contains the name of a file with invalid TIF format (e.g a “Word” document renamed as InvalidTiff.tif).
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that
either - FaxDevSendEx sets the above hr1 to FSPI_E_FAILED;
or - FaxDevSendEx completes successfully (setting the above hr1 to FSPI_S_OK), but later reports a FSPI_MSG_JOB_STATUS message (via FaxServiceCallbackEx) with status FSPI_JS_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcCoverPageInfo.lpwstrCoverPageFileName contains the name of an existent file with an invalid cover page format (e.g a “Word” document renamed as InvalidCP.cov).
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that
either - FaxDevSendEx sets the above hr2 to FSPI_E_FAILED;
or - FaxDevSendEx completes successfully (setting the above hr2 to FSPI_S_OK), but later reports a FSPI_MSG_JOB_STATUS message (via FaxServiceCallbackEx) with status FSPI_JS_FAILED.

6.2.4.5 Test Case – EFSP FaxDevSendEx correctly handles an invalid dwDeviceId in parameter

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to fail, returning the appropriate error value, when invoked with an invalid dwDeviceId in parameter.

Note that if the EFSP is Non-Virtual the dwDeviceId must be set to an invalid TAPI permanent device id. In case the EFSP is virtual, the dwDeviceId must be set to an invalid EFSP device id.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx API with the dwDeviceId in parameter set to an invalid device id, as follows:
HRESULT hr = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr to FSPI_E_FAILED.

6.2.4.6 Test Case – EFSP FaxDevSendEx correctly handles an invalid FSPI_COVERPAGE_INFO.dwCoverPageFormat in parameter

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to fail, returning FSPI_E_FAILED when invoked an invalid FSPI_COVERPAGE_INFO.dwCoverPageFormat in parameter.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevSendEx as follows:
HRESULT hr = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcCoverPageInfo.dwCoverPageFormat is set to a non-zero value other than FSPI_COVER_PAGE_FMT_COV.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that
either - FaxDevSendEx sets the above hr to FSPI_E_FAILED;
or - FaxDevSendEx completes successfully (setting the above hr to FSPI_S_OK), but later reports a FSPI_MSG_JOB_STATUS message (via FaxServiceCallbackEx) with status FSPI_JS_FAILED.

6.2.4.7 Test Case – EFSP FaxDevReportStatusEx correctly handles NULL in parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReportStatusEx to fail, returning the appropriate error value, when invoked with NULL in parameters.

Notice that we only check for the imperative in parameters, which the EFSP cannot do without.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevReportStatusEx API with the hJob in parameter set to NULL, as follows:
HRESULT hr1 = FaxDevReportStatusEx(NULL, lpStatus, dwStatusSize, lpdwRequiredStatusSize);
Where, all the other parameters of FaxDevReportStatusEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevReportStatusEx sets the above hr1 to FSPI_E_INVALID_JOB_HANDLE.

3. Invoke the Extended Fax Service Provider’s FaxDevReportStatusEx API with the lpStatus and lpdwRequiredStatusSize in parameters both set to NULL and the dwStatusSize in parameter is set to a non-zero value, as follows:
HRESULT hr2 = FaxDevReportStatusEx(hJob, NULL, dwStatusSize, NULL);
Where, all the other parameters of FaxDevReportStatusEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevReportStatusEx sets the above hr2 to FSPI_E_FAILED.

5. Invoke the Extended Fax Service Provider’s FaxDevReportStatusEx API with the dwStatusSize set to zero, as follows:
HRESULT hr3 = FaxDevReportStatusEx(hJob, lpStatus, 0, lpdwRequiredStatusSize);
Where, all the other parameters of FaxDevReportStatusEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

6. Verify that FaxDevReportStatusEx sets the above hr3 to FSPI_E_BUFFER_OVERFLOW.

6.2.4.8 Test Case – EFSP FaxDevReportStatusEx correctly handles an invalid hJob in parameter

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReportStatusEx to fail, returning the appropriate error value, when invoked with an invalid hJob in parameter.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevReportStatusEx API, as follows:
HRESULT hr1 = FaxDevReportStatusEx(hJob, lpStatus, dwStatusSize, lpdwRequiredStatusSize);
Where, hJob is a non-zero value that was not obtained via a prior call to the EFSP’s FaxDevSendEx API or the EFSP’s FaxDevStartJob API, and is thus invalid.
And where, all the other parameters of FaxDevReportStatusEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevReportStatusEx sets the above hr1 to FSPI_E_INVALID_JOB_HANDLE.

6.2.4.9 Test Case – EFSP FaxDevGetLogData correctly handles NULL in parameters

[TBD] FaxDevGetLogData is not supported in this release.

6.2.4.10 Test Case – EFSP FaxDevGetLogData correctly handles an invalid FaxHandle in parameter

[TBD] FaxDevGetLogData is not supported in this release.

6.2.4.11 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles NULL in parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReestablishJobContext to fail, returning the appropriate error value, when invoked with NULL in parameters.

Notice that we only check for the imperative in parameters, which the EFSP cannot do without.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevReestablishJobContext API with the dwRecipientCount in parameter set to zero, as follows:
HRESULT hr1 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob, 0, lpcRecipientMessageIds, lpRecipientJobs);
Where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevReestablishJobContext sets the above hr1 to FSPI_E_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevReestablishJobContext API with the lpcRecipientMessageIds in parameter set to NULL and the dwRecipientCount set to a non-zero value, as follows:
HRESULT hr2 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob, dwRecipientCount, NULL, lpRecipientJobs);
Where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevReestablishJobContext sets the above hr2 to FSPI_E_FAILED.

6.2.4.12 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles an invalid FSPI_MESSAGE_ID in parameter

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReestablishJobContext to fail, returning the appropriate error value, when invoked with an invalid FSPI_MESSAGE_ID in parameter.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevReestablishJobContext API with the lpcRecipientMessageIds in parameter set to point at an array of FSPI_MESSAGE_ID structures with their dwIdSize members set to zero, as follows:
HRESULT hr = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob, dwRecipientCount, lpcRecipientMessageIds, lpRecipientJobs);
Where, lpcRecipientMessageIds[i].dwIdSize=0, for i between 0 and (dwRecipientCount –1).
And where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevReestablishJobContext sets the above hr to FSPI_E_FAILED.

3. Invoke the Extended Fax Service Provider’s FaxDevReestablishJobContext API with the lpcRecipientMessageIds in parameter set to point at an array of FSPI_MESSAGE_ID structures with their lpbId members pointing to invalid message ids, as follows:
HRESULT hr = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob, dwRecipientCount, lpcRecipientMessageIds, lpRecipientJobs);
Where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevReestablishJobContext sets the above hr to FSPI_E_FAILED.

For an EFSP that support job context reestablishment at the parent job level also check the above for the lpcParentMessageId in parameter.

6.2.4.13 Test Case – FaxDevReestablishJobContext of a Non-Virtual EFSP that supports job context reestablishment correctly handles NULL in parameters

This test case verifies that a Non-Virtual Extended Fax Service Provider DLL has implemented FaxDevReestablishJobContext to fail, returning the appropriate error value, when invoked with NULL in parameters.

Notice that a non-virtual EFSP that supports job context reestablishment must also successfully pass test case 6.3.4.7.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevReestablishJobContext API with the hTapiLine in parameter set to NULL, as follows:
HRESULT hr = FaxDevReestablishJobContext(NULL, dwDeviceId, lpcParentMessageId, lphParentJob, dwRecipientCount, lpcRecipientMessageIds, lpRecipientJobs);
Where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevReestablishJobContext sets the above hr to FSPI_E_FAILED.

6.2.4.14 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly handles an invalid dwDeviceId in parameter

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReestablishJobContext to fail, returning the appropriate error value, when invoked with an invalid dwDeviceId in parameter.

Note that if the EFSP is Non-Virtual the dwDeviceId must be set to an invalid TAPI permanent device id. In case the EFSP is virtual, the dwDeviceId must be set to an invalid EFSP device id.

Scenario –

1. Invoke the Extended Fax Service Provider’s FaxDevReestablishJobContext API with the dwDeviceId in parameter set to an invalid device id, as follows:
HRESULT hr = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob, dwRecipientCount, lpcRecipientMessageIds, lpRecipientJobs);
Where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevReestablishJobContext sets the above hr to FSPI_E_FAILED.

6.2.5 Common APIs – Invalid Out Parameters

6.2.5.1 Test Case – FaxDevStartJob correctly handles NULL out parameters

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevStartJob to fail, returning FALSE when invoked with NULL out parameters.

Scenario –

1. Invoke FaxDevStartJob with the FaxHandle out parameter set to NULL, as follows:
BOOL fRetVal = FaxDevStartJob(LineHandle, DeviceId, NULL, CompletionPortHandle, CompletionKey);
Where, all the other parameters of FaxDevStartJob are valid as documented in the NT 5.0 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal to FALSE.

6.2.5.2 Test Case – FaxDevReceive of an FSP or EFSP that supports T.Routing correctly handles NULL out parameters

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevReceive to fail, returning FALSE when invoked with NULL out parameters.

Scenario –

1. Invoke FaxDevReceive with the FaxReceive.ReceiverNumber out parameter set to NULL, as follows:
BOOL fRetVal = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, all the other parameters of FaxDevReceive are valid as documented in the NT 5.0 Fax SDK.

2. Verify that FaxDevReceive sets the above fRetVal to FALSE.

6.2.6 Common APIs – Invalid In Parameters

6.2.6.1 Test Case –FaxDevStartJob correctly handles NULL in parameters

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevStartJob to fail, returning FALSE when invoked with NULL in parameters.

Scenario –

1. Invoke the Fax Service Provider’s FaxDevStartJob with the LineHandle in parameter set to NULL, as follows:
BOOL fRetVal1 = FaxDevStartJob(NULL, DeviceId, FaxHandle , CompletionPortHandle, CompletionKey);
Where, DeviceId is the TAPI line device identifier associated with the fax job, FaxHandle is a valid (non-NULL) pointer to a HANDLE, CompletionPortHandle is a valid handle to an I/O Completion Port to be used by the FSP in calls to PostQueuedCompletionStatus, and CompletionKey is a valid completion key to be used by the FSP in calls to PostQueuedCompletionStatus.

2. Verify that FaxDevStartJob sets the above fRetVal1 to FALSE.

3. Invoke the Fax Service Provider’s FaxDevStartJob with the DeviceId in parameter set to NULL, as follows:
BOOL fRetVal2 = FaxDevStartJob(LineHandle, NULL, FaxHandle , CompletionPortHandle, CompletionKey);
Where, LineHandle is a valid handle to the open line device associated with the fax job, FaxHandle is a valid (non-NULL) pointer to a HANDLE, CompletionPortHandle is a valid handle to an I/O Completion Port to be used by the FSP in calls to PostQueuedCompletionStatus, and CompletionKey is a valid completion key to be used by the FSP in calls to PostQueuedCompletionStatus.

4. Verify that FaxDevStartJob sets the above fRetVal2 to FALSE.

5. Invoke the Fax Service Provider’s FaxDevStartJob with the CompletionPortHandle in parameter set to NULL, as follows:
BOOL fRetVal3 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle , NULL, CompletionKey);
Where, LineHandle is a valid handle to the open line device associated with the fax job, DeviceId is the TAPI line device identifier associated with the fax job, FaxHandle is a valid (non-NULL) pointer to a HANDLE, and CompletionKey is a valid completion key to be used by the FSP in calls to PostQueuedCompletionStatus.

6. Verify that FaxDevStartJob sets the above fRetVal3 to FALSE.

7. Invoke the Fax Service Provider’s FaxDevStartJob with the CompletionPortHandle in parameter set to NULL, as follows:
BOOL fRetVal4 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle , CompletionPortHandle, NULL);
Where, LineHandle is a valid handle to the open line device associated with the fax job, DeviceId is the TAPI line device identifier associated with the fax job, FaxHandle is a valid (non-NULL) pointer to a HANDLE, and CompletionPortHandle is a valid handle to an I/O Completion Port to be used by the FSP in calls to PostQueuedCompletionStatus.

8. Verify that FaxDevStartJob sets the above fRetVal4 to FALSE.

6.2.6.2 Test Case – FaxDevEndJob correctly handles NULL in parameters

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevEndJob to fail, returning FALSE when invoked with NULL in parameters.
Notice that we only check for the imperative in parameters, which the FSP or EFSP cannot do without.

Scenario –

1. Invoke FaxDevEndJob with the FaxHandle in parameter set to NULL, as follows:
BOOL fRetVal = FaxDevEndJob(NULL);
2. Verify that FaxDevEndJob sets the above fRetVal to FALSE.

6.2.6.3 Test Case – FaxDevEndJob correctly handles an invalid FaxHandle in parameter

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevEndJob to fail, returning FALSE when invoked with an invalid FaxHandle in parameter.

Scenario –

1. Invoke FaxDevEndJob, as follows:
BOOL fRetVal = FaxDevEndJob(FaxHandle)
Where, FaxHandle is a non-zero value that was not obtained via a prior call to the FSP’s FaxDevStartJob API or the EFSP’s FaxDevSendEx API, and is thus invalid.

2. Verify that FaxDevEndJob sets the above fRetVal to FALSE.

6.2.6.4 Test Case – FaxDevReceive correctly handles NULL in parameters

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevReceive to fail, returning FALSE when invoked with NULL in parameters.

Notice that we only check for the imperative in parameters, which the FSP or EFSP cannot do without.

Scenario –

1. Invoke FaxDevReceive with the FaxHandle in parameter set to NULL, as follows:
BOOL fRetVal1 = FaxDevReceive(NULL, CallHandle, FaxReceive);
Where, all the other parameters of FaxDevReceive are valid as documented in the NT 5.0 Fax SDK.

2. Verify that FaxDevReceive sets the above fRetVal1 to FALSE.

3. Invoke FaxDevReceive with the FaxReceive.FileName in parameter set to NULL, as follows:
BOOL fRetVal2 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, all the other parameters of FaxDevReceive are valid as documented in the NT 5.0 Fax SDK.

4. Verify that FaxDevReceive sets the above fRetVal2 to FALSE.

6.2.6.5 Test Case – FaxDevReceive of a Non-Virtual FSP or Non-Virtual EFSP correctly handles NULL in parameters

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevReceive to fail, returning FALSE when invoked with NULL in parameters.
Note that a Non-Virtual FSP or EFSP must also successfully pass test case 6.2.6.4.

Scenario –

1. Invoke FaxDevReceive with the CallHandle in parameter set to NULL, as follows:
BOOL fRetVal = FaxDevReceive(FaxHandle, NULL, FaxReceive);
Where, all the other parameters of FaxDevReceive are valid as documented in the NT 5.0 Fax SDK.

2. Verify that FaxDevReceive sets the above fRetVal to FALSE.

6.2.6.6 Test Case – FaxDevReceive correctly handles a FaxReceive.FileName in parameter indicating a non-existent filename

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevReceive to fail, returning FALSE when invoked with a FaxReceive.FileName in parameter indicating a non-existent filename.

Scenario –

1. Invoke FaxDevReceive with the FaxReceive.FileName in parameter set to indicate a non-existent filename, as follows:
BOOL fRetVal = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, all the other parameters of FaxDevReceive are valid as documented in the NT 5.0 Fax SDK.

2. Verify that FaxDevReceive sets the above fRetVal to FALSE.

6.2.6.7 Test Case – FaxDevReceive correctly handles an invalid FaxHandle in parameter

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevReceive to fail, returning FALSE when invoked with an invalid FaxHandle in parameter.

Scenario –

1. Invoke FaxDevReceive, as follows:
BOOL fRetVal = FaxDevReceive (FaxHandle, CallHandle, FaxReceive)
Where, FaxHandle is a non-zero value that was not obtained via a prior call to the FSP’s FaxDevStartJob API or the EFSP’s FaxDevSendEx API, and is thus invalid.
And where, all the other parameters of FaxDevReceive are valid as documented in the NT 5.0 Fax SDK.

2. Verify that FaxDevReceive sets the above fRetVal to FALSE.

6.2.6.8 Test Case – FaxDevAbortOperation correctly handles NULL in parameters

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevAbortOperation to fail, returning FALSE when invoked with NULL in parameters.
Notice that we only check for the imperative in parameters, which the FSP or EFSP cannot do without.

Scenario –

1. Invoke FaxDevAbortOperation with the FaxHandle in parameter set to NULL, as follows:
BOOL fRetVal = FaxDevAbortOperation(NULL);
2. Verify that FaxDevAbortOperation sets the above fRetVal to FALSE.

6.2.6.9 Test Case – FaxDevAbortOperation correctly handles an invalid FaxHandle in parameter

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevAbortOperation to fail, returning FALSE when invoked with an invalid FaxHandle in parameter.

Scenario –

1. Invoke FaxDevAbortOperation, as follows:
BOOL fRetVal = FaxDevAbortOperation (FaxHandle);
Where, FaxHandle is a non-zero value that was not obtained via a prior call to the FSP’s FaxDevStartJob API or the EFSP’s FaxDevSendEx API, and is thus invalid.

2. Verify that FaxDevAbortOperation sets the above fRetVal to FALSE.

6.2.6.10 Test Case – LineCallbackFunction of a Non-Virtual FSP or EFSP correctly handles NULL in parameters

This test case verifies that a Non-Virtual Fax Service Provider or a Non-Virtual Extended Fax Service Provider DLL has implemented LineCallbackFunction to fail, returning FALSE when invoked with NULL in parameters.

Scenario –

1. Invoke the FSP’s FaxDevInitialize or the EFSP’s FaxDevInitializeEx, as follows:
BOOL fRetVal1 = FaxDevInitialize(LineAppHandle, HeapHandle, &LineCallbackFunction, FaxServiceCallback);
or
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, &LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all parameters of FaxDevInitialize or FaxDevInitializeEx are valid as documented in the NT 5.0 Fax SDK and “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that the FSP’s FaxDevInitialize sets the above fRetVal1 to TRUE or that the EFSP’s FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

3. Invoke LineCallbackFunction, as follows:
BOOL fRetVal2 = LineCallbackFunction(NULL, hDevice, dwMessage, dwInstance, dwParam1, dwParam2, dwParam3);
Where, all the other parameters of LineCallbackFunction are valid as documented in the NT 5.0 Fax SDK.

4. Verify that LineCallbackFunction sets the above fRetVal2 to FALSE.

5. Invoke LineCallbackFunction, as follows:
BOOL fRetVal3 = LineCallbackFunction(FaxHandle, hDevice, 0, dwInstance, 0, 0, 0);
Where, all the other parameters of LineCallbackFunction are valid as documented in the NT 5.0 Fax SDK.

6. Verify that LineCallbackFunction sets the above fRetVal3 to FALSE.

6.2.6.11 Test Case – LineCallbackFunction of a Non-Virtual FSP or EFSP correctly handles an invalid FaxHandle in parameter

This test case verifies that a Non-Virtual Fax Service Provider or a Non-Virtual Extended Fax Service Provider DLL has implemented LineCallbackFunction to fail, returning FALSE when invoked with an invalid FaxHandle in parameter.

Scenario –

1. Invoke the FSP’s FaxDevInitialize or the EFSP’s FaxDevInitializeEx, as follows:
BOOL fRetVal1 = FaxDevInitialize(LineAppHandle, HeapHandle, &LineCallbackFunction, FaxServiceCallback);
or
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, &LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all parameters of FaxDevInitialize or FaxDevInitializeEx are valid as documented in the NT 5.0 Fax SDK and “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that the FSP’s FaxDevInitialize sets the above fRetVal1 to TRUE or that the EFSP’s FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

3. Invoke LineCallbackFunction, as follows:
BOOL fRetVal2 = LineCallbackFunction(FaxHandle, hDevice, dwMessage, dwInstance, dwParam1, dwParam2, dwParam3);
Where, FaxHandle is a non-zero value that was not obtained via a prior call to the FSP’s FaxDevStartJob API or the EFSP’s FaxDevSendEx API, and is thus invalid.

4. Verify that LineCallbackFunction sets the above fRetVal2 to FALSE.

6.2.6.12 Test Case – LineCallbackFunction of a Non-Virtual FSP or EFSP correctly handles an invalid dwMessage in parameter

This test case verifies that a Non-Virtual Fax Service Provider or a Non-Virtual Extended Fax Service Provider DLL has implemented LineCallbackFunction to fail, returning FALSE when invoked with an invalid dwMessage in parameter.

Scenario –

1. Invoke the FSP’s FaxDevInitialize or the EFSP’s FaxDevInitializeEx, as follows:
BOOL fRetVal1 = FaxDevInitialize(LineAppHandle, HeapHandle, &LineCallbackFunction, FaxServiceCallback);
or
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, &LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all parameters of FaxDevInitialize or FaxDevInitializeEx are valid as documented in the NT 5.0 Fax SDK and “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that the FSP’s FaxDevInitialize sets the above fRetVal1 to TRUE or that the EFSP’s FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

3. Invoke LineCallbackFunction, as follows:
BOOL fRetVal2 = LineCallbackFunction(FaxHandle, hDevice, dwMessage, dwInstance, dwParam1, dwParam2, dwParam3);
Where, dwMessage is a non-zero value that is not a valid TAPI line device message (e.g. 0x800).

4. Verify that LineCallbackFunction sets the above fRetVal2 to FALSE.

6.2.6.13 Test Case – FaxExtInitializeConfig of an FSP or EFSP correctly handles NULL in parameters

This test case verifies that a Non-Virtual Fax Service Provider or a Non-Virtual Extended Fax Service Provider DLL has implemented LineCallbackFunction to fail, returning FALSE when invoked with an invalid dwMessage in parameter.

Scenario –

1. Invoke FaxExtInitializeConfig, as follows:
HRESULT hr1 = FaxExtInitializeConfig(NULL, pSetExtData, pRegister, pUnregister, pFreeBuffer);
Where, all other parameters of FaxExtInitializeConfig valid as documented in the “Fax Server Extension Configuration Mechanism” document.

2. Verify that FaxExtInitializeConfig sets the above hr1 to FSPI_E_FAILED.

3. Invoke FaxExtInitializeConfig, as follows:
HRESULT hr2 = FaxExtInitializeConfig(pGetExtData, NULL, pRegister, pUnregister, pFreeBuffer);
Where, all other parameters of FaxExtInitializeConfig valid as documented in the “Fax Server Extension Configuration Mechanism” document.

4. Verify that FaxExtInitializeConfig sets the above hr2 to FSPI_E_FAILED.

5. Invoke FaxExtInitializeConfig, as follows:
HRESULT hr3 = FaxExtInitializeConfig(pGetExtData, pSetExtData, NULL, pUnregister, pFreeBuffer);
Where, all other parameters of FaxExtInitializeConfig valid as documented in the “Fax Server Extension Configuration Mechanism” document.

6. Verify that FaxExtInitializeConfig sets the above hr3 to FSPI_E_FAILED.

7. Invoke FaxExtInitializeConfig, as follows:
HRESULT hr4 = FaxExtInitializeConfig(pGetExtData, pSetExtData, pRegister, NULL, pFreeBuffer);
Where, all other parameters of FaxExtInitializeConfig valid as documented in the “Fax Server Extension Configuration Mechanism” document.

8. Verify that FaxExtInitializeConfig sets the above hr4 to FSPI_E_FAILED.

9. Invoke FaxExtInitializeConfig, as follows:
HRESULT hr5 = FaxExtInitializeConfig(pGetExtData, pSetExtData, pRegister, pUnregister, NULL);
Where, all other parameters of FaxExtInitializeConfig valid as documented in the “Fax Server Extension Configuration Mechanism” document.

10. Verify that FaxExtInitializeConfig sets the above hr5 to FSPI_E_FAILED.

6.3 Valid API Parameters

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL implementation of the required APIs correctly sets all out parameters.

Section 6.3.1 lays out the tests for a Fax Service Provider, section 6.3.2 does so for an Extended Fax Service Provider, and section 6.3.3 deals with APIs common to both Fax Service Providers and Extended Fax Service Providers.

6.3.1 FSP APIs – Valid Parameters

6.3.1.1 Test case – FSP FaxDevInitialize correctly sets out parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevInitialize to set all out parameters to valid values.

Scenario –

1. Invoke FaxDevInitialize, as follows:
BOOL fRetVal = FaxDevInitialize(LineAppHandle, HeapHandle, LineCallbackFunction, FaxServiceCallback);
Where, LineCallbackFunction is a valid pointer to a PFAX_LINECALLBACK variable and *LineCallbackFunction=NULL.
And where, all the other parameters of FaxDevInitialize are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevInitialize sets the above fRetVal to TRUE.
Also verify that after the call *LineCallbackFunction!=NULL and points to a valid line callback function.

6.3.1.2 Test case – Virtual FSP FaxDevVirtualDeviceCreation correctly sets out parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevVirtualDeviceCreation to set all out parameters to valid values.

Scenario –

1. Invoke FaxDevVirtualDeviceCreation, as follows:
BOOL fRetVal = FaxDevVirtualDeviceCreation(DeviceCount, DeviceNamePrefix, DeviceIdPrefix, CompletionPort, CompletionKey);
Where, DeviceCount is a valid pointer to a DWORD and *DeviceCount=0.
Where, DeviceIdPrefix is a valid pointer to a DWORD and *DeviceIdPrefix=0.
Where, DeviceNamePrefix is a valid pointer to a zeroed WSTR.
And where, all the other parameters of FaxDevVirtualDeviceCreation are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevVirtualDeviceCreation sets the above fRetVal to TRUE.
Verify that after the call *DeviceCount!=0 and indicates the correct number of devices exported by the FSP.
Verify that *DeviceIdPrefix!=0 and indicates the correct device id prefix that the FSP uses.
Also verify that DeviceNamePrefix indicates the correct name prefix that the FSP uses, and that the length of this prefix is shorter than 127 characters.

6.3.1.3 Test Case – FSP FaxDevReportStatus correctly sets out parameters

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReportStatus to set out parameters to valid values.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the other parameters of FaxDevStartJob are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal1 to TRUE.

3. Invoke FaxDevSend, as follows:
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, FaxHandle is the variable from the previous call to FaxDevStartJob.
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

4. Verify that FaxDevSend sets the above fRetVal2 to TRUE.

5. Invoke FaxDevReportStatus, as follows:
BOOL fRetVal3 = FaxDevReportStatus(FaxHandle, NULL, 0, FaxStatusSizeRequired);
Where, FaxHandle is the variable from the previous call to FaxDevSend.
And where, FaxStatusSizeRequired is a valid pointer to a DWORD and *FaxStatusSizeRequired=0.
6. Verify that FaxDevReportStatus sets the above fRetVal3 to TRUE.
Also verify that *FaxStatusSizeRequired!=0 and is set to the required size for the status buffer.

7. Invoke FaxDevReportStatus, as follows:
BOOL fRetVal4 = FaxDevReportStatus(FaxHandle, FaxStatus, FaxStatusSize, FaxStatusSizeRequired2);
Where, FaxStatusSizeRequired2 is a valid pointer to a DWORD and *FaxStatusSizeRequired2=0.
Where, FaxStatusSize=*FaxStatusSizeRequired.
And where, FaxHandle is from the previous call to FaxDevReportStatus.
8. Verify that FaxDevReportStatus sets the above fRetVal4 to TRUE.
Also verify that after the call * FaxStatusSizeRequired2=0 and FaxStatus indicates the current status of job FaxHandle.

6.3.2 EFSP APIs – Valid Parameters

6.3.2.1 Test Case – EFSP FaxDevInitializeEx correctly sets out parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevInitializeEx to set all out parameters to valid values.

Scenario –

1. Invoke FaxDevInitializeEx, as follows:
HRESULT hr = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, LineCallbackFunction is a valid pointer to a PFAX_LINECALLBACK variable and *LineCallbackFunction=NULL.
And where, all the other parameters of FaxDevInitializeEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitializeEx sets the above hr to FSPI_S_OK.
Also verify that after the call *LineCallbackFunction!=NULL and points to a valid line callback function.

6.3.2.2 Test Case – EFSP FaxDevSendEx correctly sets out parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to set all out parameters to valid values.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, * lphParentJob=NULL and lphRecipientJobs is a valid pointer to an array of dwNumRecipients HANDLEs with every lphRecipientJobs[i]=NULL.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr to FSPI_S_OK.
Also verify that after the call every lphRecipientJobs[i]!=NULL and contains a valid recipient job handle. And that * lphParentJob!=NULL and contains a valid parent job handle.
Note that the EFSP must return a valid parent job handle even if it does not have a use for it.

6.3.2.3 Test Case – EFSP FaxDevSendEx correctly handles FAT and NTFS files

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to set successfully send FAT and NTFS based tif files.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcwstrBodyFileName indicates a full path to a valid tif file that resides on a FAT partition, and lpcCoverPageInfo.lpwstrCoverPageFileName indicates a valid cover page file that resides on a FAT partition.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
And that the fax is successfully sent.

3. Invoke FaxDevSendEx, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcwstrBodyFileName indicates a full path to a valid tif file that resides on a NTFS partition, and lpcCoverPageInfo.lpwstrCoverPageFileName indicates a valid cover page file that resides on a NTFS partition.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_S_OK.
And that the fax is successfully sent.

6.3.2.4 Test Case – EFSP FaxDevReportStatusEx correctly sets out parameters

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReportStatusEx to set out parameters to valid values.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.

3. Invoke FaxDevReportStatusEx, as follows:
HRESULT hr2 = FaxDevReportStatusEx(hJob, NULL, 0, lpdwRequiredStatusSize);
Where, hJob=lphRecipientJobs[0].
And where, lpdwRequiredStatusSize is a valid pointer to a DWORD and *lpdwRequiredStatusSize=0.
4. Verify that FaxDevReportStatusEx sets the above hr2 to FSPI_S_OK.
Also verify that *lpdwRequiredStatusSize!=0 and is set to the required size for the status buffer.

5. Invoke FaxDevReportStatusEx, as follows:
HRESULT hr3 = FaxDevReportStatusEx(hJob, lpStatus, dwStatusSize, lpdwRequiredStatusSize2);
Where, lpdwRequiredStatusSize2 is a valid pointer to a DWORD and *lpdwRequiredStatusSize2=0.
Where, dwStatusSize=*lpdwRequiredStatusSize.
And where, hJob is from the previous call to FaxDevReportStatusEx.
6. Verify that FaxDevReportStatusEx sets the above hr3 to FSPI_S_OK.
Also verify that after the call *lpdwRequiredStatusSize2=0 and lpStatus indicates the current status of job hJob.

6.3.2.5 Test Case – Virtual EFSP FaxDevEnumerateDevices correctly sets out parameters

This test case verifies that a Virtual Extended Fax Service Provider DLL has implemented FaxDevEnumerateDevices to set out parameters to valid values.

Scenario –

1. Invoke FaxDevEnumerateDevices, as follows:
HRESULT hr1 = FaxDevEnumerateDevices(dwDeviceIdBase, lpdwDeviceCount, NULL);
Where, lpdwDeviceCount is a valid pointer to a DWORD and * lpdwDeviceCount=0.
2. Verify that FaxDevEnumerateDevices sets the above hr1 to FSPI_S_OK.
Also verify that * lpdwDeviceCount>0 and * lpdwDeviceCount<=EFSPI_MAX_DEVICE_COUNT and that it is set to indicate the correct number of devices that the EFSP exports.

3. Invoke FaxDevEnumerateDevices, as follows:
HRESULT hr2 = FaxDevEnumerateDevices(dwDeviceIdBase, lpdwDeviceCount, lpDevices);
Where, lpdwDeviceCount is the variable from the previous call.
And where, lpDevices is a valid pointer to an array of *lpdwDeviceCount FSPI_DEVICE_INFO structures where every lpDevices[i].szFriendlyName contains all zeroes and every lpDevices[i].dwId=0.
4. Verify that FaxDevEnumerateDevices sets the above hr2 to FSPI_S_OK.
Also verify that the lpDevices array has been filled with correct information of all lpdwDeviceCount EFSP devices.
Specifically verify that every lpDevices[i].szFriendlyName is shorter than FSPI_MAX_FRIENDLY_NAME characters, and that every lpDevices[i].dwId is between dwDeviceIdBase and dwDeviceIdBase+ EFSPI_MAX_DEVICE_COUNT-1.

6.3.2.6 Test Case – EFSP FaxDevGetLogData correctly sets out parameters

[TBD] FaxDevGetLogData is not supported in this release.
6.3.3 Common APIs – Valid Parameters

6.3.3.1 Test Case – FaxDevStartJob correctly sets out parameters

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevStartJob to set out parameters to valid values.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the other parameters of FaxDevStartJob are valid as documented the NT5 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal to TRUE.
Also verify that FaxHandle is a valid job handle that can be used in other API calls that receive a job handle.
For an FSP specifically verify that the handle can be used in subsequent calls to – FaxDevSend, FaxDevAbortOperation, FaxDevEndJob and FaxDevReportStatus.
For an EFSP specifically verify that the handle can be used in subsequent calls to – FaxDevReceive, FaxDevAbortOperation, FaxDevEndJob, FaxDevReportStatusEx and FaxDevGetLogData.
Note that FaxDevGetLogData is not supported in this release.

6.3.3.2 Test Case – FaxDevReceive correctly sets out parameters

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevReceive to set out parameters to valid values.

Scenario –

1. Invoke FaxDevReceive, as follows:
BOOL fRetVal1 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, all the other parameters of FaxDevReceive are valid as documented the NT5 Fax SDK.

2. Verify that FaxDevReceive sets the above hr1 to FSPI_S_OK.
Also verify that FaxReceive->ReceiverNumber and FaxReceive->ReceiverName are set correctly.
Specifically verify that the combined size of the strings FaxReceive->FileName,
FaxReceive->ReceiverNumber and FaxReceive->ReceiverName is less than FAXDEVRECEIVE_SIZE.

6.3.3.3 Test Case – FaxDevReceive correctly handles FAT and NTFS files

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevReceive to successfully receive the fax into FAT or NTFS based files.

Scenario –

1. Invoke FaxDevReceive, as follows:
BOOL fRetVal1 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, FaxReceive.FileName indicates a valid file that resides on a FAT partition.
And where, all the other parameters of FaxDevReceive are valid as documented the NT5 Fax SDK.

2. Verify that FaxDevReceive sets the above fRetVal1 to TRUE.
And that the fax is successfully received.

3. Invoke FaxDevReceive, as follows:
BOOL fRetVal2 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, FaxReceive.FileName indicates a valid file that resides on a NTFS partition.
And where, all the other parameters of FaxDevReceive are valid as documented the NT5 Fax SDK.

4. Verify that FaxDevReceive sets the above fRetVal2 to TRUE.
And that the fax is successfully received.

6.4 Service Callbacks

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL implementation of the required APIs correctly invokes service callbacks.

Section 6.4.1 lays out the tests for a Fax Service Provider and section 6.4.2 does so for an Extended Fax Service Provider.

6.4.1 FSP properly invokes Service Callbacks

6.4.1.1 Test Case – FSP never invokes FaxServiceCallback

This test case verifies that a Fax Service Provider DLL never invokes the FaxServiceCallback function that it receives via the FaxDevInitialize API.

Scenario –

1. Invoke FaxDevInitialize, as follows:
BOOL fRetVal = FaxDevInitialize(LineAppHandle, HeapHandle, LineCallbackFunction, FaxServiceCallback);
Where, all the parameters of FaxDevInitialize are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevInitialize sets the above fRetVal to TRUE.

3. Verify that Fax Service Provider code never uses the FaxServiceCallback function pointer it received above.

6.4.1.2 Test Case – FaxDevSend of Non-Virtual FSP correctly invokes FaxSendCallback

This test case verifies that a Non-Virtual Fax Service Provider DLL has implemented FaxDevSend to correctly invoke the FaxSendCallback function that it receives.

Scenario –

1. Invoke FaxDevSend, as follows:
BOOL fRetVal1 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, all the parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

2. Verify that during the execution of FaxDevSend it invokes the FaxSendCallback function, as follows:
BOOL fRetVal2 = FaxSendCallback(FaxHandle, CallHandle, 0 , 0);
Where, FaxHandle is the job handle that the Fax Service Provider received in the above FaxDevSend call, and CallHandle is the call handle that TAPI 2.x assigned for this outgoing call.

6.4.1.3 Test Case – FaxDevSend of Non-Virtual FSP correctly behaves according to return value of FaxSendCallback

This test case verifies that a Non-Virtual Fax Service Provider DLL has implemented FaxDevSend to correctly behave according to the return value of the FaxSendCallback function.

Scenario –

1. Invoke FaxDevSend, as follows:
BOOL fRetVal1 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback1);
Where, FaxSendCallback1 is a function that will always return TRUE.
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

2. Verify that during the execution of FaxDevSend it invokes the FaxSendCallback1 function, as follows:
BOOL fRetVal2 = FaxSendCallback1(FaxHandle, CallHandle, 0 , 0);
Where, FaxHandle is the job handle that the Fax Service Provider received in the above FaxDevSend call, and CallHandle is the call handle that TAPI 2.x assigned for this outgoing call.

3. Verify that FaxSendCallback1 sets the above fRetVal2 to TRUE.
Also verify that the execution of FaxDevSend continues (the outgoing call is performed).

4. Invoke FaxDevSend, as follows:
BOOL fRetVal3 = FaxDevSend(FaxHandle2, FaxSend2, FaxSendCallback2);
Where, FaxSendCallback2 is a function that will always return FALSE.
And where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK.

5. Verify that during the execution of FaxDevSend it invokes the FaxSendCallback2 function, as follows:
BOOL fRetVal4 = FaxSendCallback(FaxHandle2, CallHandle2, 0 , 0);
Where, FaxHandle2 is the job handle that the Fax Service Provider received in the above FaxDevSend call, and CallHandle2 is the call handle that TAPI 2.x assigned for this outgoing call.

6. Verify that FaxSendCallback2 sets the above fRetVal4 to FALSE.
Also verify that the execution of FaxDevSend is stopped (the outgoing call is not performed), and that FaxDevSend sets the above fRetVal3 to FALSE.

6.4.2 EFSP properly invokes Service Callbacks

6.4.2.1 Test Case – EFSP FaxDevSendEx correctly invokes FaxServiceCallbackEx

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to correctly invoke the FaxSeerviceCallbackEx function.

Scenario –

1. Invoke FaxDevInitializeEx, as follows:
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the parameters of FaxDevInitializeEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

3. Invoke FaxDevSendEx, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_S_OK.

5. Verify that as the Extended Fax Service Provider DLL is executing the send job it reports all job status changes by invoking the FaxServiceCallbackEx function (that it received from FaxDevInitializeEx above), as follows:
HRESULT hr3 = FaxServiceCallbackEx(hFSP, dwMsgType, Param1, Param2, 0);
Where, hFSP is the handle the Extended Fax Service Provider was given via FaxDevInitializeEx above.
Where, dwMsgType=FSPI_MSG_JOB_STATUS, Param1 is the recipient job handle of the job for which the status is reported (one of lphRecipientJobs[i]), and Param2 is a pointer to a valid FSPI_JOB_STATUS structure that contains the reported job status information.

6.4.2.2 Test Case – EFSP FaxDevSendEx correctly handles return values of FaxServiceCallbackEx

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to correctly handle return values of the FaxServiceCallbackEx function.
Run the following scenario for each one of the following FaxServiceCallbackEx implementations:

a. FaxServiceCallbackEx returns FSPI_E_INVALID_EFSP.

b. FaxServiceCallbackEx returns FSPI_E_INVALID_MSG.

c. FaxServiceCallbackEx returns FSPI_E_INVALID_PARAM1.

d. FaxServiceCallbackEx returns FSPI_E_INVALID_PARAM2.

e. FaxServiceCallbackEx returns FSPI_E_INVALID_PARAM3.

f. FaxServiceCallbackEx returns FSPI_E_NOMEM.

g. FaxServiceCallbackEx returns FSPI_E_FAILED.

Scenario –

1. Invoke FaxDevInitializeEx, as follows:
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the parameters of FaxDevInitializeEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

3. Invoke FaxDevSendEx, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_S_OK.

5. Verify that as the Extended Fax Service Provider DLL is executing the send job it reports all job status changes by invoking the FaxServiceCallbackEx function (that it received from FaxDevInitializeEx above), as follows:
HRESULT hr3 = FaxServiceCallbackEx(hFSP, dwMsgType, Param1, Param2, 0);
Where, hFSP is the handle the Extended Fax Service Provider was given via FaxDevInitializeEx above.
Where, dwMsgType=FSPI_MSG_JOB_STATUS, Param1 is the recipient job handle of the job for which the status is reported (one of lphRecipientJobs[i]), and Param2 is a pointer to a valid FSPI_JOB_STATUS structure that contains the reported job status information.

6. Verify that hr3 is set according to FaxServiceCallbackEx implementation a through g above.

7. For case f above (FSPI_E_NOMEM) -
verify that the Extended Fax Service Provider waits a while and then retries calling FaxServiceCallbackEx, several more times. Attempting to overcome a temporary low memory condition.
For all the other cases (a, b, c, d, e, and g) -
the Extended Fax Service Provider should continue with the job’s execution as usual.

The Extended Fax Service Provider should not (under any circumstances) free any memory related to a job untill the Comet Fax Service explicitly invokes the Provider’s FaxDevEndJob API. All job handles and their related job information should remain valid untill FaxDevEndJob is called.

6.4.2.3 Test Case – EFSP FaxDevReceive correctly invokes FaxServiceCallbackEx

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReceive to correctly invoke the FaxSeerviceCallbackEx function.

Scenario –

1. Invoke FaxDevInitializeEx, as follows:
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the parameters of FaxDevInitializeEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

3. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevStartJob sets the above fRetVal1to TRUE.

5. Invoke FaxDevReceive, as follows:
 BOOL fRetVal2 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, FaxHandle is the job handle from the above call to FaxDevStartJob.
And where, all the other parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

6. Verify that FaxDevReceive sets the above fRetVal2 to TRUE.

7. Verify that as the Extended Fax Service Provider DLL is executing the receive job it reports all job status changes by invoking the FaxServiceCallbackEx function (that it received from FaxDevInitializeEx above), as follows:
HRESULT hr3 = FaxServiceCallbackEx(hFSP, dwMsgType, Param1, Param2, 0);
Where, hFSP is the handle the Extended Fax Service Provider was given via FaxDevInitializeEx above.
Where, dwMsgType=FSPI_MSG_JOB_STATUS, Param1 is the receive job handle of the job, and Param2 is a pointer to a valid FSPI_JOB_STATUS structure that contains the reported job status information.

6.4.2.4 Test Case – EFSP FaxDevReceive correctly handles return values of FaxServiceCallbackEx

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReceive to correctly handle return values of the FaxServiceCallbackEx function.
Run the following scenario for each one of the following FaxServiceCallbackEx implementations:

a. FaxServiceCallbackEx returns FSPI_E_INVALID_EFSP.

b. FaxServiceCallbackEx returns FSPI_E_INVALID_MSG.

c. FaxServiceCallbackEx returns FSPI_E_INVALID_PARAM1.

d. FaxServiceCallbackEx returns FSPI_E_INVALID_PARAM2.

e. FaxServiceCallbackEx returns FSPI_E_INVALID_PARAM3.

f. FaxServiceCallbackEx returns FSPI_E_NOMEM.

g. FaxServiceCallbackEx returns FSPI_E_FAILED.

Scenario –

1. Invoke FaxDevInitializeEx, as follows:
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the parameters of FaxDevInitializeEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

3. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevStartJob sets the above fRetVal1to TRUE.

5. Invoke FaxDevReceive, as follows:
 BOOL fRetVal2 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, FaxHandle is the job handle from the above call to FaxDevStartJob.
And where, all the other parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

6. Verify that FaxDevReceive sets the above fRetVal2 to TRUE.

7. Verify that as the Extended Fax Service Provider DLL is executing the receive job it reports all job status changes by invoking the FaxServiceCallbackEx function (that it received from FaxDevInitializeEx above), as follows:
HRESULT hr3 = FaxServiceCallbackEx(hFSP, dwMsgType, Param1, Param2, 0);
Where, hFSP is the handle the Extended Fax Service Provider was given via FaxDevInitializeEx above.
Where, dwMsgType=FSPI_MSG_JOB_STATUS, Param1 is the receive job handle of the job, and Param2 is a pointer to a valid FSPI_JOB_STATUS structure that contains the reported job status information.

8. Verify that hr3 is set according to FaxServiceCallbackEx implementation a through g above.

9. For case f above (FSPI_E_NOMEM) -
verify that the Extended Fax Service Provider waits a while and then retries calling FaxServiceCallbackEx, several more times. Attempting to overcome a temporary low memory condition.
For all the other cases (a, b, c, d, e, and g) -
the Extended Fax Service Provider should continue with the job’s execution as usual.

The Extended Fax Service Provider should not (under any circumstances) free any memory related to a job untill the Comet Fax Service explicitly invokes the Provider’s FaxDevEndJob API. All job handles and their related job information should remain valid untill FaxDevEndJob is called.

6.4.3 FSP \ EFSP properly invoke FaxExt Service Callbacks

6.4.3.1 Test Case – return values of FaxExtGetExtensionData are handled correctly

This test case verifies that Fax Service Provider DLL or Extended Fax Service Provider DLL code that invokes FaxExtGetExtensionData correctly handles all possible return values.Scenario –

Scenario –

1. Verify that any FSP \ EFSP code invoking the FaxExtGetExtensionData service callback correctly handles the following error scenarios:

a. FaxExtGetExtensionData service callback returns ERROR_NOT_FOUND.

b. FaxExtGetExtensionData service callback returns ERROR_INVALID_PARAMETER.

c. FaxExtGetExtensionData service callback returns ERROR_BAD_UNIT.

d. FaxExtGetExtensionData service callback returns ERROR_WMI_GUID_NOT_FOUND.

e. FaxExtGetExtensionData service callback returns ERROR_NOT_ENOUGH_MEMORY.

f. FaxExtGetExtensionData service callback returns ERROR_BAD_DB.

g. FaxExtGetExtensionData service callback returns ERROR_FILE_NOT_FOUND.

h. FaxExtGetExtensionData service callback returns ERROR_GEN_FAILURE.

2. Verify that if the FSP \ EFSP code invoking the above FaxExtGetExtensionData service callback cannot proceed due to the callbacks failure, the code returns a relevant error and fails gracefully (performing any necessary cleanup).

3. Verify that any FSP \ EFSP code invoking the FaxExtGetExtensionData service callback correctly handles the following successful scenario:

a. FaxExtGetExtensionData service callback returns ERROR_SUCCESS.

4. Verify that the FSP \ EFSP code invoking the above FaxExtGetExtensionData service callback completes successfully.

6.4.3.2 Test Case – return values of FaxExtSetExtensionData are handled correctly

This test case verifies that Fax Service Provider DLL or Extended Fax Service Provider DLL code that invokes FaxExtRegisterForExtensionEvents correctly handles all possible return values.Scenario –

1. Verify that any FSP \ EFSP code invoking the FaxExtSetExtensionData service callback correctly handles the following error scenarios:

a. FaxExtSetExtensionData service callback returns ERROR_NOT_FOUND.

b. FaxExtSetExtensionData service callback returns ERROR_INVALID_PARAMETER.

c. FaxExtSetExtensionData service callback returns ERROR_BAD_UNIT.

d. FaxExtSetExtensionData service callback returns ERROR_WMI_GUID_NOT_FOUND.

e. FaxExtSetExtensionData service callback returns ERROR_NOT_ENOUGH_MEMORY.

f. FaxExtSetExtensionData service callback returns ERROR_FILE_NOT_FOUND.

g. FaxExtSetExtensionData service callback returns ERROR_GEN_FAILURE.

2. Verify that if the FSP \ EFSP code invoking the above FaxExtSetExtensionData service callback cannot proceed due to the callbacks failure, the code returns a relevant error and fails gracefully (performing any necessary cleanup).

3. Verify that any FSP \ EFSP code invoking the FaxExtSetExtensionData service callback correctly handles the following successful scenario:

a. FaxExtSetExtensionData service callback returns ERROR_SUCCESS.

4. Verify that the FSP \ EFSP code invoking the above FaxExtSetExtensionData service callback completes successfully.

6.4.3.3 Test Case – return values of FaxExtRegisterForExtensionEvents are handled correctly

This test case verifies that Fax Service Provider DLL or Extended Fax Service Provider DLL code that invokes FaxExtRegisterForExtensionEvents correctly handles all possible return values.

Scenario –

1. Verify that any FSP \ EFSP code invoking the FaxExtRegisterForExtensionEvents service callback correctly handles the following error scenarios:

a. FaxExtRegisterForExtensionEvents service callback returns ERROR_NOT_FOUND.

b. FaxExtRegisterForExtensionEvents service callback returns ERROR_INVALID_PARAMETER.

c. FaxExtRegisterForExtensionEvents service callback returns ERROR_BUSY.

d. FaxExtRegisterForExtensionEvents service callback returns ERROR_ALREADY_ASSIGNED.

e. FaxExtRegisterForExtensionEvents service callback returns ERROR_WMI_GUID_NOT_FOUND.

f. FaxExtRegisterForExtensionEvents service callback returns ERROR_NOT_ENOUGH_MEMORY.

g. FaxExtRegisterForExtensionEvents service callback returns ERROR_GEN_FAILURE.

2. Verify that if the FSP \ EFSP code invoking the above FaxExtRegisterForExtensionEvents service callback cannot proceed due to the callbacks failure, the code returns a relevant error and fails gracefully (performing any necessary cleanup).

3. Verify that any FSP \ EFSP code invoking the FaxExtRegisterForExtensionEvents service callback correctly handles the following successful scenario:

a. FaxExtRegisterForExtensionEvents service callback returns ERROR_SUCCESS.

4. Verify that the FSP \ EFSP code invoking the above FaxExtRegisterForExtensionEvents service callback completes successfully.

6.4.3.4 Test Case – return values of FaxExtUnregisterForExtensionEvents are handled correctly

This test case verifies that Fax Service Provider DLL or Extended Fax Service Provider DLL code that invokes FaxExtUnregisterForExtensionEvents correctly handles all possible return values.

Scenario –

1. Verify that any FSP \ EFSP code invoking the FaxExtUnregisterForExtensionEvents service callback correctly handles the following error scenarios:

a. FaxExtRegisterForExtensionEvents service callback returns ERROR_NOT_FOUND.

b. FaxExtRegisterForExtensionEvents service callback returns ERROR_INVALID_PARAMETER.

c. FaxExtRegisterForExtensionEvents service callback returns ERROR_NOT_ENOUGH_MEMORY.

d. FaxExtRegisterForExtensionEvents service callback returns ERROR_GEN_FAILURE.

2. Verify that if the FSP \ EFSP code invoking the above FaxExtUnregisterForExtensionEvents service callback cannot proceed due to the callbacks failure, the code returns a relevant error and fails gracefully (performing any necessary cleanup).

3. Verify that any FSP \ EFSP code invoking the FaxExtUnregisterForExtensionEvents service callback correctly handles the following successful scenario:

a. FaxExtUnregisterForExtensionEvents service callback returns ERROR_SUCCESS.

4. Verify that the FSP \ EFSP code invoking the above FaxExtUnregisterForExtensionEvents service callback completes successfully.

6.5 EFSP Implementation According to Capabilities

The following tests strive to verify that an Extended Fax Service Provider DLL has implemented the APIs according to the capabilities it reported during registration.

The following sections are divided according to the different capability areas – Broadcasting, Multi-Send, Simultaneous-Send-Receive, Scheduling, Abort and Auto-Retry.
The last section deals with Job Context Reestablishment for which the Extended Fax Service Provider indicates support by reporting a non-zero maximum message id size in FaxDevInitializeEx.
Please note that each section describes test cases for both Extended Fax Service Providers that do and Extended Fax Service Providers that do not support the specific capability.

6.5.1 Broadcast

6.5.1.1 Test Case – FaxDevSendEx of an EFSP that supports FSPI_CAP_BROADCAST correctly handles a multi-recipient broadcast job.

This test case verifies that an Extended Fax Service Provider DLL that registered with the FSPI_CAP_BROADCAST capability has implemented FaxDevSendEx to correctly handle a multiple recipient broadcast job.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, dwNumRecipients=5 and lpcRecipientProfiles points to an array of 5 different and valid FSPI_PERSONAL_PROFILE structures.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr to FSPI_S_OK.

3. Verify that the Extended Fax Service Provider DLL executes all the 5 recipient send jobs.

6.5.1.2 Test Case – FaxDevSendEx of an EFSP that does not support FSPI_CAP_BROADCAST correctly fails a multi-recipient broadcast job.

This test case verifies that an Extended Fax Service Provider DLL that registered without the FSPI_CAP_BROADCAST capability has implemented FaxDevSendEx to fail when invoked with a multiple recipient broadcast job.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, dwNumRecipients=5 and lpcRecipientProfiles points to an array of 5 different and valid FSPI_PERSONAL_PROFILE structures.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr to FSPI_E_FAILED.

6.5.1.3 Test Case – EFSP FaxDevReportStatusEx correctly handles parent job handle.

This test case verifies that an Extended Fax Service Provider DLL that registered with or without the FSPI_CAP_BROADCAST capability has implemented FaxDevReportStatusEx to fail when invoked with a parent job handle.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, &hParentJob);
Where, dwNumRecipients=5 and lpcRecipientProfiles points to an array of 5 different and valid FSPI_PERSONAL_PROFILE structures.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.

3. Invoke FaxDevReportStatusEx, as follows:
HRESULT hr2 = FaxDevReportStatusEx(hParentJob, lpStatus, dwStatusSize, lpdwRequiredStatusSize);
Where, hParentJob is the parent job handle returned from the above call to FaxDevSendEx.
And where, all the other parameters of FaxDevReportStatusEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevReportStatusEx sets the above hr2 to FSPI_E_INVALID_JOB_HANDLE.

6.5.1.4 Test Case – EFSP FaxDevGetLogData correctly handles parent job handle.

[TBD] FaxDevGetLogData is not supported in this release.
6.5.2 Multi-Send

6.5.2.1 Test Case – FaxDevSendEx of an EFSP that supports FSPI_CAP_MULTISEND correctly handles concurrent send jobs.

This test case verifies that an Extended Fax Service Provider DLL that registered with the FSPI_CAP_MULTISEND capability has implemented FaxDevSendEx to successfully handle concurrent send jobs.
Scenario –

1. Simultaneously perform two invocations of FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName1, lpcCoverPageInfo1, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients1, lpcRecipientProfiles1, lpRecipientMessageIds1, lphRecipientJobs1, lpParentMessageId1, lphParentJob1);
and
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName2, lpcCoverPageInfo2, bAddBranding, tmSchedule, lpcSenderProfile2, dwNumRecipients2, lpcRecipientProfiles2, lpRecipientMessageIds2, lphRecipientJobs2, lpParentMessageId2, lphParentJob2);
Where, tmSchedule=0 (indicating “now), and both above invocation use the same hTapiLine and dwDeviceId.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that both simultaneous calls to FaxDevSendEx set the above hr1 and hr2 to FSPI_S_OK.
Also verify that both calls are carried out and completed successfully.

3. Invoke FaxDevSendEx, as follows:
HRESULT hr3 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName1, lpcCoverPageInfo1, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients1, lpcRecipientProfiles1, lpRecipientMessageIds1, lphRecipientJobs1, lpParentMessageId1, lphParentJob1);
Where, tmSchedule=0 (indicating “now”).
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr3 to FSPI_S_OK.
5. Immediately (before the above call completes), invoke FaxDevSendEx again, as follows:
HRESULT hr4 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName2, lpcCoverPageInfo2, bAddBranding, tmSchedule, lpcSenderProfile2, dwNumRecipients2, lpcRecipientProfiles2, lpRecipientMessageIds2, lphRecipientJobs2, lpParentMessageId2, lphParentJob2);
Where, tmSchedule=0 (indicating “now”), and both above invocation use the same hTapiLine and dwDeviceId.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

6. Verify that FaxDevSendEx sets the above hr4 to FSPI_S_OK.
Also verify that both above calls are carried out and completed successfully.

6.5.2.2 Test Case – FaxDevSendEx of an EFSP that does not support FSPI_CAP_MULTISEND correctly handles concurrent send jobs.

This test case verifies that an Extended Fax Service Provider DLL that registered without the FSPI_CAP_MULTISEND capability has implemented FaxDevSendEx to fail if invoked while another send job is already in progress on the same device.
Scenario –

1. Simultaneously perform two invocations of FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName1, lpcCoverPageInfo1, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients1, lpcRecipientProfiles1, lpRecipientMessageIds1, lphRecipientJobs1, lpParentMessageId1, lphParentJob1);
and
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName2, lpcCoverPageInfo2, bAddBranding, tmSchedule, lpcSenderProfile2, dwNumRecipients2, lpcRecipientProfiles2, lpRecipientMessageIds2, lphRecipientJobs2, lpParentMessageId2, lphParentJob2);
Where, tmSchedule=0 (indicating “now), and both above invocation use the same hTapiLine and dwDeviceId.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that one of the above calls to FaxDevSendEx returns FSPI_S_OK and the other returns FSPI_E_FAILED.
Also verify that only the call (for which FaxDevSendEx returned FSPI_S_OK) is carried out and completed successfully.

3. Invoke FaxDevSendEx, as follows:
HRESULT hr3 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName1, lpcCoverPageInfo1, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients1, lpcRecipientProfiles1, lpRecipientMessageIds1, lphRecipientJobs1, lpParentMessageId1, lphParentJob1);
Where, tmSchedule=0 (indicating “now”).
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr3 to FSPI_S_OK.
5. Immediately (before the above call completes), invoke FaxDevSendEx again, as follows:
HRESULT hr4 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName2, lpcCoverPageInfo2, bAddBranding, tmSchedule, lpcSenderProfile2, dwNumRecipients2, lpcRecipientProfiles2, lpRecipientMessageIds2, lphRecipientJobs2, lpParentMessageId2, lphParentJob2);
Where, tmSchedule=0 (indicating “now”), and both above invocation use the same hTapiLine and dwDeviceId.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

6. Verify that FaxDevSendEx sets the above hr4 to FSPI_E_FAILED.
Also verify that only the call from clause 3 is carried out and completed successfully.

6.5.3 Scheduling

[TBD] Scheduling is not supported in this release.

6.5.4 Abort

6.5.4.1 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_RECIPIENT correctly handles a valid recipient job hFaxHandle.

This test case verifies that an Extended Fax Service Provider DLL that registered with the FSPI_CAP_ABORT_RECIPIENT capability has implemented FaxDevAbortOperation to correctly handle the abortion of a valid recipient job.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, tmSchedule=0 indicating “now”.
And where, all the parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the above call begins execution.

3. When the Extended Fax Service Provider reports a “sending” status for recipient job lphRecipientJobs[0], invoke FaxDevAbortOperation, as follows:
BOOL fRetVal = FaxDevAbortOperation(lphRecipientJobs[0]);
4. Verify that FaxDevAbortOperation sets the above fRetVal to TRUE.
5. Verify that immediately after FaxDevAbortOperation returns, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a FSPI_JS_ABORTING status for job lphRecipientJobs[0].
Also verify that when the job is aborted successfully the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a job status of FSPI_JS_ABORTED for job lphRecipientJobs[0].

6.5.4.2 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_RECIPIENT correctly handles a valid recipient job hFaxHandle already in FSPI_JS_ABORTING status.

This test case verifies that an Extended Fax Service Provider DLL that registered with the FSPI_CAP_ABORT_RECIPIENT capability has implemented FaxDevAbortOperation to correctly handle the abortion of a valid recipient job that is already in FSPI_JS_ABORTING status.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, tmSchedule=0 indicating “now”.
And where, all the parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the above call begins execution.

3. When the Extended Fax Service Provider reports a “sending” status for recipient job lphRecipientJobs[0], invoke FaxDevAbortOperation, as follows:
BOOL fRetVal1 = FaxDevAbortOperation(lphRecipientJobs[0]);
4. Verify that FaxDevAbortOperation sets the above fRetVal1 to TRUE.
5. Verify that immediately after FaxDevAbortOperation returns, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a FSPI_JS_ABORTING status for job lphRecipientJobs[0].

6. While status of job lphRecipientJobs[0] is still FSPI_JS_ABORTING, invoke FaxDevAbortOperation again, as follows:
BOOL fRetVal2 = FaxDevAbortOperation(lphRecipientJobs[0]);
7. Verify that FaxDevAbortOperation sets the above fRetVal2 to TRUE.
8. Verify that when the job is aborted successfully the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a job status of FSPI_JS_ABORTED for job lphRecipientJobs[0].

6.5.4.3 Test Case – FaxDevAbortOperation of an EFSP that does not support FSPI_CAP_ABORT_RECIPIENT correctly handles a valid recipient job hFaxHandle.

This test case verifies that an Extended Fax Service Provider DLL that registered without the FSPI_CAP_ABORT_RECIPIENT capability has implemented FaxDevAbortOperation to fail when invoked with a recipient job handle.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, tmSchedule=0 indicating “now”.
And where, all the parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the above call begins execution.

3. When the Extended Fax Service Provider reports a “sending” status for recipient job lphRecipientJobs[0], invoke FaxDevAbortOperation, as follows:
BOOL fRetVal = FaxDevAbortOperation(lphRecipientJobs[0]);
4. Verify that FaxDevAbortOperation sets the above fRetVal to FALSE.
Also verify that the call is not aborted.

6.5.4.4 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_PARENT correctly handles a valid parent job hFaxHandle.

This test case verifies that an Extended Fax Service Provider DLL that registered with the FSPI_CAP_ABORT_PARENT capability has implemented FaxDevAbortOperation to correctly handle the abortion of a valid parent job.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, &hParentJob);
Where, dwNumRecipients=5 and accordingly lpcRecipientProfiles points to an array of 5 valid personal profile structures.
Where, tmSchedule=0 indicating “now”.
And where, all the parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the above call begins execution.

3. When the Extended Fax Service Provider reports a “sending” status for some of the recipient jobs in lphRecipientJobs, invoke FaxDevAbortOperation, as follows:
BOOL fRetVal = FaxDevAbortOperation(hParentJob);
Where, hParentJob is the parent job handle from the above call to FaxDevSendEx.

4. Verify that FaxDevAbortOperation sets the above fRetVal to TRUE.
5. Verify that immediately after FaxDevAbortOperation returns, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a FSPI_JS_ABORTING status for each one of the 5 recipient jobs in lphRecipientJobs.
Also verify that when each of the 5 recipient jobs is aborted successfully, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a job status of FSPI_JS_ABORTED for that recipient job.

6.5.4.5 Test Case – FaxDevAbortOperation of an EFSP that supports FSPI_CAP_ABORT_PARENT correctly handles a valid parent job hFaxHandle already in FSPI_JS_ABORTING status.

This test case verifies that an Extended Fax Service Provider DLL that registered with the FSPI_CAP_ABORT_PARENT capability has implemented FaxDevAbortOperation to correctly handle the abortion of a valid parent job that is already in FSPI_JS_ABORTING status.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, &hParentJob);
Where, dwNumRecipients=5 and accordingly lpcRecipientProfiles points to an array of 5 valid personal profile structures.
Where, tmSchedule=0 indicating “now”.
And where, all the parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the above call begins execution.

3. When the Extended Fax Service Provider reports a “sending” status for some of the recipient jobs in lphRecipientJobs, invoke FaxDevAbortOperation, as follows:
BOOL fRetVa1l = FaxDevAbortOperation(hParentJob);
Where, hParentJob is the parent job handle from the above call to FaxDevSendEx.

4. Verify that FaxDevAbortOperation sets the above fRetVal1 to TRUE.
5. Verify that immediately after FaxDevAbortOperation returns, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a FSPI_JS_ABORTING status for each one of the 5 recipient jobs in lphRecipientJobs.

6. While status of some of the jobs in lphRecipientJobs is still FSPI_JS_ABORTING, invoke FaxDevAbortOperation again, as follows:
BOOL fRetVal2 = FaxDevAbortOperation(hParentJob);
7. Verify that FaxDevAbortOperation sets the above fRetVal2 to TRUE.
8. Verify that when each of the 5 recipient jobs is aborted successfully, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a job status of FSPI_JS_ABORTED for that recipient job.

6.5.4.6 Test Case – FaxDevAbortOperation of an EFSP that does not support FSPI_CAP_ABORT_PARENT correctly handles a valid parent job hFaxHandle.

This test case verifies that an Extended Fax Service Provider DLL that registered without the FSPI_CAP_ABORT_PARENT capability has implemented FaxDevAbortOperation to fail when invoked with a parent job handle.
Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, &hParentJob);
Where, dwNumRecipients=5 and accordingly lpcRecipientProfiles points to an array of 5 valid personal profile structures.
Where, tmSchedule=0 indicating “now”.
And where, all the parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the above call begins execution.

3. When the Extended Fax Service Provider reports a “sending” status for some of the recipient jobs in the above lphRecipientJobs, invoke FaxDevAbortOperation, as follows:
BOOL fRetVal = FaxDevAbortOperation(hParentJob);
4. Verify that FaxDevAbortOperation sets the above fRetVal to FALSE.
Also verify that the call is not aborted.

6.5.5 Auto-Retry

6.5.5.1 Test Case – FaxDevSendEx of an EFSP that supports FSPI_CAP_AUTO_RETRY correctly retries a recipient job.

This test case verifies that an Extended Fax Service Provider DLL that registered with the FSPI_CAP_AUTO_RETRY capability has implemented FaxDevSendEx to correctly retry a recipient job.
Scenario –

1. Configure the Extended Fax Service Provider to retry each job 3 times.

2. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpcRecipientProfiles[0].lpwstrFaxNumber indicates a phone number which will not be answered when called (i.e. the call will fail with a “no answer” status).
And where, all the parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the above call begins execution.

4. Verify that at some point later, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a FSPI_JS_RETRY status and a FSPI_ES_NO_ANSWER extended status for job lphRecipientJobs[0].
5. Verify that the Extended Fax Service Provider retries the job 3 more times (according to its settings).
Specifically verify –

a. For the first two retries, some time after the call begins execution, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a FSPI_JS_RETRY status and a FSPI_ES_NO_ANSWER extended status for job lphRecipientJobs[0].
b. For the 3rd (and last) retry, some time after the call begins execution, the Extended Fax Service Provider invokes FaxServiceCallbackEx to report a FSPI_JS_FAILED status and a FSPI_ES_NO_ANSWER extended status for job lphRecipientJobs[0].
c. For an Extended Fax Service Provider that has a setting configuring the time interval between retries, the retries are conducted according to settings.

6.5.6 Job Context Reestablishment

6.5.6.1 Test Case – FaxDevInitializeEx of an EFSP that supports job context reestablishment correctly sets the lpdwMaxMessageIdSize out parameter

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment has implemented FaxDevInitializeEx to set the lpdwMaxMessageIdSize out parameter to a valid value.

Scenario –

1. Invoke FaxDevInitializeEx, as follows:
HRESULT hr = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, lpdwMaxMessageIdSize is a valid pointer to a DWORD variable and *lpdwMaxMessageIdSize=0.
And where, all the other parameters of FaxDevInitializeEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitializeEx sets the above hr to FSPI_S_OK.
Also verify that after the call * lpdwMaxMessageIdSize!=0 and indicates the maximum message id size that the EFSP will require.

6.5.6.2 Test Case – FaxDevInitializeEx of an EFSP that does not support job context reestablishment correctly sets the lpdwMaxMessageIdSize out parameter

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment has implemented FaxDevInitializeEx to set the lpdwMaxMessageIdSize out parameter to zero.

Scenario –

1. Invoke FaxDevInitializeEx, as follows:
HRESULT hr = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, lpdwMaxMessageIdSize is a valid pointer to a DWORD variable and *lpdwMaxMessageIdSize=256.
And where, all the other parameters of FaxDevInitializeEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitializeEx sets the above hr to FSPI_S_OK.
Also verify that after the call * lpdwMaxMessageIdSize==0 indicating that the Extended Fax Service Provider does not support Job Context Reestablishment.

6.5.6.3 Test Case – FaxDevSendEx of an EFSP that supports job context reestablishment correctly sets message id out parameters

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment has implemented FaxDevSendEx to set message id out parameters to valid values.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpRecipientMessageIds is a valid pointer to an array of dwNumRecipients FSPI_MESSAGE_IDs and every lpRecipientMessageIds[i]=NULL.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that after the call every lpRecipientMessageIds[i]!=NULL and contains a valid recipient message id.

If the EFSP requires permanent message ids at the parent job level then also –

3. Invoke FaxDevSendEx, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, lpParentMessageId is a valid pointer to a FSPI_MESSAGE_ID and *lpParentMessageId=NULL.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevSendEx sets the above hr2 to FSPI_S_OK.
Also verify that after the call *lpParentMessageId!=NULL and contains a valid parent message id.

6.5.6.4 Test Case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment correctly sets out parameters

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment has implemented FaxDevReestablishJobContext to set message id out parameters to valid values.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that after the call every lpRecipientMessageIds[i]!=NULL and contains a valid recipient message id.
And that after the call *lpParentMessageId!=NULL and contains a valid parent message id

3. Invoke FaxDevReestablishJobContext, as follows:
HRESULT hr2 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob2, dwNumRecipients, lpcRecipientMessageIds, lphRecipientJobs2);
Where, lpRecipientMessageIds, lpcParentMessageId, hTapiLine, dwNumRecipients and dwDeviceId are from above call to FaxDevSendEx.
Where, lphRecipientJobs2 is a valid pointer to an array of dwNumRecipients HANDLEs and every lphRecipientJobs2[i]=NULL.
Where lphParentJob2 is a valid pointer to a HANDLE and * lphParentJob2=NULL.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevReestablishJobContext sets the above hr2 to FSPI_S_OK.
Also verify that after the call every lphRecipientJobs2[i]!=NULL and every lphRecipientJobs2[i]==lphRecipientJobs[i].
Similarly verify that * lphParentJob2!=NULL and * lphParentJob2==* lphParentJob.

6.5.7 Branding

6.5.7.1 Test Case – FaxDevSendEx of an EFSP that supports branding correctlly renders the fax

This test case verifies that an Extended Fax Service Provider DLL that supports branding has implemented FaxDevSendEx to correctlly render the fax.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, TRUE, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.

3. Verify that the rendered fax has the correct branding on the rendered cover page and on every page of the document body.

4. Invoke FaxDevSendEx, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, FALSE, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

5. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.

6. Verify that the rendered fax does not contain branding (not on the cover page and not on the document body).

6.5.7.2 Test Case – FaxDevSendEx of an EFSP that does not support branding correctlly renders the fax

This test case verifies that an Extended Fax Service Provider DLL that does not support branding has implemented FaxDevSendEx to correctlly render the fax.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, TRUE, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.

3. Verify that the rendered fax has the correct branding on the rendered cover page only and that the document body is unchanged.

4. Invoke FaxDevSendEx, as follows:
HRESULT hr2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, FALSE, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

5. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.

6. Verify that the rendered fax does not contain branding (not on the cover page and not on the document body).

6.6 API Sequence

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented the APIs according to their cross-dependencies as documented in NT5 Fax SDK and in “Comet Fax Service – Extended Fax Service Provider Interface”. The tests also attempt to reveal any implicit inter-dependencies wrongfully imposed by the implementation.

6.6.1 EFSP Initialization Sequence

6.6.1.1 Test case – FaxDevEnumerateDevices may be invoked again any time after a successful initialization sequence

[TBD]
FSPI_MSG_VIRTUAL_DEVICE_LIST_CHANGED is not supported in this release.
That is, FaxDevEnumerateDevices will be invoked only once during service start.

6.6.2 Send \ Receive Sequence (FSP and EFSP)

6.6.2.1 Test case – FaxDevEndJob of job in non-final state should succeed.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevEndJob to succeed when invoked on a job which is in a non-final state.

Scenario –

1. For an EFSP –
Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.
For an FSP –
Invoke FaxDevStartJob and FaxDevSend, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, all the parameters of FaxDevStartJob and FaxDevSend are valid as documented in the “NT5 Fax SDK”.

2. For an EFSP –
Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the send job begins execution and that the job is in a non-final state.
For an FSP –
Verify that FaxDevStartJob sets the above fRetVal1to TRUE and that FaxDevSend begins execution.
Also verify that the send job is in a non-final state.

3. While the send job is still executing, invoke FaxDevEndJob, as follows:
BOOL fRetVal3 = FaxDevEndJob(FaxHandle);
Where, for an FSP FaxHandle is the handle received from FaxDevStartJob above,
and for an EFSP FaxHandle = lphRecipientJobs[0] from the above FaxDevSendEx.

4. Verify that FaxDevEndJob sets the above fRetVal3 to TRUE.
When the Comet Fax Service calls the FaxDevEndJob API for a job that is in a non-finite state, the Comet Fax Service is indicating that it is no longer interested in the job and that the Fax Service Provider or Extended Fax Service Provider should dealocate all resources related to this job.
Specifically, the Fax Service Provider or Extended Fax Service Provider should no longer report anything relating to this job to the Comet Fax Service.

6.6.2.2 Test case – FaxDevAbortOperation of job in final state should fail.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevAbortOperation to fail when invoked on a job which is in a final state.

Scenario –

1. For an EFSP –
Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.
For an FSP –
Invoke FaxDevStartJob and FaxDevSend, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, all the parameters of FaxDevStartJob and FaxDevSend are valid as documented in the “NT5 Fax SDK”.

2. For an EFSP –
Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that the send job begins execution, completes successfully and that the job is in a final state (FSPI_JS_COMPLETED).
For an FSP –
Verify that FaxDevStartJob sets the above fRetVal1to TRUE and that FaxDevSend sets the above fRetVal2 to TRUE.
Also verify that the send job has completed successfully and that the job is in a final state (FS_COMPLETED).

3. Invoke FaxDevAbortOperation, as follows:
BOOL fRetVal3 = FaxDevAbortOperation(FaxHandle);
Where, for an FSP FaxHandle is the handle received from FaxDevStartJob above,
and for an EFSP FaxHandle = lphRecipientJobs[0] from the above FaxDevSendEx.

4. Verify that FaxDevAbortOperation sets the above fRetVal3 to FALSE.

6.7 API Concurrency

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented the APIs in a manner that enables invoking them concurrently as documented in the NT5 Fax SDK and in the “Comet Fax Service – Extended Fax Service Provider Interface”.

6.7.1 Common APIs

6.7.1.1 Test case – concurrent calls to FaxDevAbortOperation with same job handle, all calls should succeed.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevAbortOperation to function correctly when invoked concurrently with the same job handle.

Scenario –

1. For an EFSP –
Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.
For an FSP –
Invoke FaxDevStartJob and FaxDevSend, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, all the parameters of FaxDevStartJob and FaxDevSend are valid as documented in the “NT5 Fax SDK”.

2. For an EFSP –
Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
For an FSP –
Verify that FaxDevStartJob sets the above fRetVal1to TRUE and that FaxDevSend begins execution.

3. While the above send job is in progress, concurrently invoke 5 instances of FaxDevAbortOperation, as follows:
BOOL fRetVal2 = FaxDevAbortOperation(FaxHandle); //instance 1
BOOL fRetVal3 = FaxDevAbortOperation(FaxHandle); //instance 2
BOOL fRetVal4 = FaxDevAbortOperation(FaxHandle); //instance 3
BOOL fRetVal5 = FaxDevAbortOperation(FaxHandle); //instance 4
BOOL fRetVal6 = FaxDevAbortOperation(FaxHandle); //instance 5
Where, for an FSP FaxHandle is the handle received from FaxDevStartJob above,
and for an EFSP FaxHandle = lphRecipientJobs[0] from the above FaxDevSendEx.

4. Verify that all of fRetVal2 to fRetVal6 are set to TRUE.
Also verify that the above send job is aborted.

6.7.1.2 Test case – call to FaxDevAbortOperation before FaxDevReceive of same job handle starts execution, should succeed.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevAbortOperation to function correctly when invoked before FaxDevReceive for the same job handle has been called.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets the above fRetVal1to TRUE.

3. Invoke FaxDevAbortOperation, as follows:
BOOL fRetVal2 = FaxDevAbortOperation(FaxHandle);
Where, FaxHandle is the handle received from FaxDevStartJob above.

4. Verify that fRetVal2 is set to TRUE and that the above receive job is aborted.

6.7.1.3 Test case – call to FaxDevAbortOperation while FaxDevReceive of same job handle is executing should succeed.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevAbortOperation to function correctly when invoked while FaxDevReceive with the same job handle is executing.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets the above fRetVal1to TRUE.

3. Invoke FaxDevReceive, as follows:
 BOOL fRetVal2 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, FaxHandle is the job handle from the above call to FaxDevStartJob.
And where, all the other parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevReceive begins execution.

5. While the above receive job is in progress, concurrently invoke 5 instances of FaxDevAbortOperation, as follows:
BOOL fRetVal2 = FaxDevAbortOperation(FaxHandle); //instance 1
BOOL fRetVal3 = FaxDevAbortOperation(FaxHandle); //instance 2
BOOL fRetVal4 = FaxDevAbortOperation(FaxHandle); //instance 3
BOOL fRetVal5 = FaxDevAbortOperation(FaxHandle); //instance 4
BOOL fRetVal6 = FaxDevAbortOperation(FaxHandle); //instance 5
Where, FaxHandle is the handle received from FaxDevStartJob above.

6. Verify that only one of fRetVal2 to fRetVal6 are set to TRUE and all the others are set to FALSE.
Also verify that the above receive job is aborted.

6.7.1.4 Test case – call to FaxDevAbortOperation while FaxDevEndJob of same job handle is executing should fail.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevAbortOperation to function correctly when invoked while FaxDevEndJob with the same job handle is executing.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets the above fRetVal1to TRUE.

3. Invoke FaxDevReceive, as follows:
 BOOL fRetVal2 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, FaxHandle is the job handle from the above call to FaxDevStartJob.
And where, all the other parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevReceive completes successfully.

5. Invoke FaxDevEndJob, as follows:
BOOL fRetVal3 = FaxDevEndJob(FaxHandle);
Where, FaxHandle is the handle received from FaxDevStartJob above.

6. Verify that FaxDevEndJob begins execution.

7. Verify that fRetVal3 is set to TRUE and that the above receive job is aborted.

8. While FaxDevEndJob is executing, invoke FaxDevAbortOperation, as follows:
BOOL fRetVal4 = FaxDevAbortOperation(FaxHandle);
Where, FaxHandle is the handle received from FaxDevStartJob above.

9. Verify that above fRetVal4 is set to FALSE and that the above fRetVal3 is set to TRUE.
That is, the receive job completes successfully (it is not aborted).

6.7.1.5 Test case – concurrent calls to FaxDevStartJob on different devices, all calls should succeed.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevStartJob to function correctly when invoked concurrently on all devices.

Scenario –

1. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2= FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

6.7.1.6 Test case – concurrent calls to FaxDevReceive with different job handles on different devices, all calls should succeed.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevReceive to function correctly when invoked concurrently on all devices.

Scenario –

1. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2= FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

3. Concurrently invoke n instances of FaxDevReceive, as follows:
BOOL fRetVal_01 = FaxDevReceive(FaxHandle_1, CallHandle_1, FaxReceive_1); //instance 1
BOOL fRetVal_02 = FaxDevReceive(FaxHandle_2, CallHandle_2, FaxReceive_2); //instance 2
:
BOOL fRetVal_0n = FaxDevReceive(FaxHandle_n, CallHandle_n, FaxReceive_n); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevReceive sets all the above fRetVal_01 to fRetVal_0n to TRUE.
And that all faxes are successfully received.

6.7.1.7 Test case – concurrent calls to FaxDevEndJob with different job handles, all calls should succeed.

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxDevEndJob to function correctly when invoked concurrently on all devices.

Scenario –

1. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2= FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

3. Concurrently invoke n instances of FaxDevReceive, as follows:
BOOL fRetVal_01 = FaxDevReceive(FaxHandle_1, CallHandle_1, FaxReceive_1); //instance 1
BOOL fRetVal_02 = FaxDevReceive(FaxHandle_2, CallHandle_2, FaxReceive_2); //instance 2
:
BOOL fRetVal_0n = FaxDevReceive(FaxHandle_n, CallHandle_n, FaxReceive_n); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevReceive sets all the above fRetVal_01 to fRetVal_0n to TRUE.
And that all faxes are successfully received.

5. Concurrently invoke n instances of FaxDevReceive, as follows:
BOOL fRetVal_001 = FaxDevEndJob(FaxHandle_1);
//instance 1
BOOL fRetVal_002 = FaxDevEndJob(FaxHandle_2);
//instance 2
:
BOOL fRetVal_00n = FaxDevEndJob(FaxHandle_n);
//instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevEndJob are valid as documented in the “NT5 Fax SDK”.

6. Verify that FaxDevEndJob sets all the above fRetVal_001 to fRetVal_00n to TRUE.
And that all jobs are successfully ended.

6.7.1.8 Test case – For a Virtual FSP or Virtual EFSP, concurrent calls to LineCallbackFunction should succeed.

This test case verifies that a Virtual Fax Service Provider DLL or a Virtual Extended Fax Service Provider DLL has implemented FaxDevEndJob to function correctly when invoked concurrently on all devices.

Scenario –

1. Concurrently invoke n instances of LineCallbackFunction, as follows:
LineCallbackFunction(NULL, DeviceId_1, LINE_DEVSPECIFIC, 0, 1, 1, 0); //instance 1
LineCallbackFunction(NULL, DeviceId_2, LINE_DEVSPECIFIC, 0, 1, 1, 0); //instance 2
:
LineCallbackFunction(NULL, DeviceId_n, LINE_DEVSPECIFIC, 0, 1, 1, 0); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that all n instances of LineCallbackFunction successfully execute.
Also verify that all the devices of the Fax Service Provider or the Extended Fax Service Provider, are send and receive enabled.

3. Concurrently invoke n instances of LineCallbackFunction, as follows:
LineCallbackFunction(NULL, DeviceId_1, LINE_DEVSPECIFIC, 0, 0, 0, 0); //instance 1
LineCallbackFunction(NULL, DeviceId_2, LINE_DEVSPECIFIC, 0, 0, 0, 0); //instance 2
:
LineCallbackFunction(NULL, DeviceId_n, LINE_DEVSPECIFIC, 0, 0, 0, 0); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

4. Verify that all n instances of LineCallbackFunction successfully execute.
Also verify that all the devices of the Fax Service Provider or the Extended Fax Service Provider, are send and receive disabled.

5. Concurrently invoke n instances of LineCallbackFunction, as follows:
LineCallbackFunction(NULL, DeviceId_1, LINE_DEVSPECIFIC, 0, 1, 1, 0); //instance 1
LineCallbackFunction(NULL, DeviceId_2, LINE_DEVSPECIFIC, 0, 1, 1, 0); //instance 2
:
LineCallbackFunction(NULL, DeviceId_n, LINE_DEVSPECIFIC, 0, 1, 1, 0); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

6. Verify that all n instances of LineCallbackFunction successfully execute.
Also verify that all the devices of the Fax Service Provider or the Extended Fax Service Provider, are send and receive enabled.

6.7.2 FSP APIs

6.7.2.1 Test case – concurrent calls to FaxDevSend with different job handles on different devices, all calls should succeed.

This test case verifies that a Fax Service Provider DLL has implemented FaxDevSend to function correctly when invoked concurrently on all devices.

Scenario –

1. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2 = FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

3. Concurrently invoke n instances of FaxDevSend, as follows:
BOOL fRetVal_01 = FaxDevSend(FaxHandle_1, FaxSend_1, FaxSendCallback_1); //instance 1
BOOL fRetVal_02 = FaxDevSend(FaxHandle_2, FaxSend_2, FaxSendCallback_2); //instance 2
:
BOOL fRetVal_0n = FaxDevSend(FaxHandle_n, FaxSend_n, FaxSendCallback_n); //instance n
Where, n is the number of devices exported by the Fax Service Provider.
And where, all the parameters of FaxDevSendJob are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevSendJob sets all the above fRetVal_01 to fRetVal_0n to TRUE.
Also verify, that all the faxes are successfully sent.

6.7.2.2 Test case – concurrent calls to FaxDevReportStatus with different job handles, all calls should succeed.

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReportStatus to function correctly when invoked concurrently on different job handles.

Scenario –

1. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2 = FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

3. Concurrently invoke n instances of FaxDevSend, as follows:
BOOL fRetVal_01 = FaxDevSend(FaxHandle_1, FaxSend_1, FaxSendCallback_1); //instance 1
BOOL fRetVal_02 = FaxDevSend(FaxHandle_2, FaxSend_2, FaxSendCallback_2); //instance 2
:
BOOL fRetVal_0n = FaxDevSend(FaxHandle_n, FaxSend_n, FaxSendCallback_n); //instance n
Where, n is the number of devices exported by the Fax Service Provider.
And where, all the parameters of FaxDevSendJob are valid as documented in the “NT5 Fax SDK”.

4. Verify that all above calls to FaxDevSend begin execution.

5. While all above calls to FaxDevSend are still executing, concurrently invoke n instances of FaxDevReportStatus, as follows:
BOOL fRetVal_001 = FaxDevReportStatus(FaxHandle_1, FaxStatus_1, FaxStatusSize_1, FaxStatusSizeRequired_1);

//instance 1
BOOL fRetVal_002 = FaxDevReportStatus(FaxHandle_2, FaxStatus_2, FaxStatusSize_2, FaxStatusSizeRequired_2);

//instance 2
:
BOOL fRetVal_00n = FaxDevReportStatus(FaxHandle_n, FaxStatus_n, FaxStatusSize_n, FaxStatusSizeRequired_n);

//instance n
Where, n is the number of devices exported by the Fax Service Provider.
And where, all the parameters of FaxDevReportStatus are valid as documented in the “NT5 Fax SDK”.

6. Verify that FaxDevReportStatus sets all the above fRetVal_001 to fRetVal_00n to TRUE.
Also verify, that all the above calls return a valid FaxStatus.

7. Verify that all the faxes are successfully sent.

6.7.2.3 Test case – concurrent calls to FaxDevReportStatus with same job handle, all calls should succeed.

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReportStatus to function correctly when invoked concurrently with the same job handle.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

2. Verify that FaxDevStartJob sets the above fRetVal1 to TRUE.

3. Invoke FaxDevSend, as follows:
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallbac);
Where, FaxHandle is the job handle from the above call to FaxDevStartJob.
And where, all the other parameters of FaxDevSendJob are valid as documented in the “NT5 Fax SDK”.

4. Verify that the above call to FaxDevSend begins execution.

5. While the above call to FaxDevSend is still executing, concurrently invoke n instances of FaxDevReportStatus, as follows:
BOOL fRetVal_01 = FaxDevReportStatus(FaxHandle, FaxStatus_1, FaxStatusSize_1, FaxStatusSizeRequired_1);

//instance 1
BOOL fRetVal_02 = FaxDevReportStatus(FaxHandle, FaxStatus_2, FaxStatusSize_2, FaxStatusSizeRequired_2);

//instance 2
:
BOOL fRetVal_0n = FaxDevReportStatus(FaxHandle, FaxStatus_n, FaxStatusSize_n, FaxStatusSizeRequired_n);

//instance n
Where, n is the number of devices exported by the Fax Service Provider.
And where, all the parameters of FaxDevReportStatus are valid as documented in the “NT5 Fax SDK”.

6. Verify that FaxDevReportStatus sets all the above fRetVal_01 to fRetVal_0n to TRUE.
Also verify, that all the above calls return a valid FaxStatus.

7. Verify that all the faxes are successfully sent.

6.7.3 EFSP APIs

6.7.3.1 Test case – concurrent calls to FaxDevSendEx on different devices, all calls should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to function correctly when invoked concurrently on all exported devices.

1. Concurrently invoke n instances of FaxDevSendEx, as follows:
HRESULT hr_1 = FaxDevSendEx(hTapiLine_1, dwDeviceId_1, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_1, lphRecipientJobs_1, lpParentMessageId_1, lphParentJob_1); //instance 1
HRESULT hr_2 = FaxDevSendEx(hTapiLine_2, dwDeviceId_2, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_2, lphRecipientJobs_2, lpParentMessageId_2, lphParentJob_2); //instance 2
:
HRESULT hr_n = FaxDevSendEx(hTapiLine_n, dwDeviceId_n, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_n, lphRecipientJobs_n, lpParentMessageId_n, lphParentJob_n); //instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets all above hr_1 to hr_n to FSPI_S_OK.
Also verify that all faxes are successfully sent.

6.7.3.2 Test case – on EFSP that supports FSPI_CAP_MULTISEND, all concurrent calls to FaxDevSendEx on same device should succeed.

This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND has implemented FaxDevSendEx to function correctly when invoked concurrently on the same device.

1. Concurrently invoke 3 instances of FaxDevSendEx, as follows:
HRESULT hr_1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_1, lphRecipientJobs_1, lpParentMessageId_1, lphParentJob_1); //instance 1
HRESULT hr_2 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_2, lphRecipientJobs_2, lpParentMessageId_2, lphParentJob_2); //instance 2
HRESULT hr_3 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_3, lphRecipientJobs_3, lpParentMessageId_3, lphParentJob_3); //instance 3
Where all instances are invoked with the same hTapiLine and dwDeviceId values.
And where, all the parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets all above hr_1 to hr_n to FSPI_S_OK.
Also verify that all faxes are successfully sent.

6.7.3.3 Test case – concurrent calls to FaxDevReportStatusEx with different job handles, all calls should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReportStatusEx to function correctly when invoked concurrently with different job handles.

1. Concurrently invoke n instances of FaxDevSendEx, as follows:
HRESULT hr_1 = FaxDevSendEx(hTapiLine_1, dwDeviceId_1, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_1, lphRecipientJobs_1, lpParentMessageId_1, lphParentJob_1); //instance 1
HRESULT hr_2 = FaxDevSendEx(hTapiLine_2, dwDeviceId_2, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_2, lphRecipientJobs_2, lpParentMessageId_2, lphParentJob_2); //instance 2
:
HRESULT hr_n = FaxDevSendEx(hTapiLine_n, dwDeviceId_n, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_n, lphRecipientJobs_n, lpParentMessageId_n, lphParentJob_n); //instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets all above hr_1 to hr_n to FSPI_S_OK.

3. Concurrently invoke n instances of FaxDevReportStatusEx, as follows:
HRESULT hr_01 = FaxDevReportStatusEx(lphRecipientJobs_1[0], lpStatus_1, dwStatusSize, lpdwRequiredStatusSize);

//instance 1
HRESULT hr_02 = FaxDevReportStatusEx(lphRecipientJobs_2[0], lpStatus_2, dwStatusSize, lpdwRequiredStatusSize);

//instance 2
:
HRESULT hr_0n = FaxDevReportStatusEx(lphRecipientJobs_1[0], lpStatus_n, dwStatusSize, lpdwRequiredStatusSize);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, lphRecipientJobs_1[0] to lphRecipientJobs_n[0] are the job handles returned from the corresponding FaxDevSendEx calls above.
And where, all the other parameters of FaxDevReportStatusEx are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevReportStatusEx sets the above hr_01 to hr_0n to FSPI_S_OK.
Also verify that lpStatus_1 to lpStatus_n are all set to indicate valid statuses.

5. Verify that all the faxes are successfully sent.

6.7.3.4 Test case – concurrent calls to FaxDevReportStatusEx with same job handle, all calls should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReportStatusEx to function correctly when invoked concurrently with different job handles.

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets all above hr1 to FSPI_S_OK.

3. Concurrently invoke n instances of FaxDevReportStatusEx, as follows:
HRESULT hr_01 = FaxDevReportStatusEx(lphRecipientJobs[0], lpStatus_1, dwStatusSize, lpdwRequiredStatusSize);

//instance 1
HRESULT hr_02 = FaxDevReportStatusEx(lphRecipientJobs[0], lpStatus_2, dwStatusSize, lpdwRequiredStatusSize);

//instance 2
:
HRESULT hr_0n = FaxDevReportStatusEx(lphRecipientJobs[0], lpStatus_n, dwStatusSize, lpdwRequiredStatusSize);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, lphRecipientJobs[0] is the first recipient job handle returned from the above FaxDevSendEx call.
And where, all the other parameters of FaxDevReportStatusEx are valid as documented in the “NT5 Fax SDK”.

4. Verify that FaxDevReportStatusEx sets the above hr_01 to hr_0n to FSPI_S_OK.
Also verify that lpStatus_1 to lpStatus_n are all set to indicate valid statuses.

5. Verify that all the faxes are successfully sent.

6.7.3.5 Test case – concurrent calls to FaxDevReestablishJobContext with different message ids, all calls should succeed.

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment, has implemented FaxDevReestablishJobContext to function correctly when invoked concurrently with different message ids.

1. Concurrently invoke n instances of FaxDevSendEx, as follows:
HRESULT hr_1 = FaxDevSendEx(hTapiLine_1, dwDeviceId_1, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_1, lphRecipientJobs_1, lpParentMessageId_1, lphParentJob_1); //instance 1
HRESULT hr_2 = FaxDevSendEx(hTapiLine_2, dwDeviceId_2, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_2, lphRecipientJobs_2, lpParentMessageId_2, lphParentJob_2); //instance 2
:
HRESULT hr_n = FaxDevSendEx(hTapiLine_n, dwDeviceId_n, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_n, lphRecipientJobs_n, lpParentMessageId_n, lphParentJob_n); //instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets all above hr_1 to hr_n to FSPI_S_OK.
Also verify that after the call every lpRecipientMessageIds[i]!=NULL and contains a valid recipient message id. And that *lpParentMessageId!=NULL and contains a valid parent message id

3. Concurrently invoke n instances of FaxDevReestablishJobContext, as follows:
HRESULT hr_01 = FaxDevReestablishJobContext(hTapiLine_1, dwDeviceId_1, lpcParentMessageId_1, lphParentJob_01, dwNumRecipients, lpcRecipientMessageIds_1, lphRecipientJobs_01);

//instance 1
HRESULT hr_02 = FaxDevReestablishJobContext(hTapiLine_2, dwDeviceId_2, lpcParentMessageId_2, lphParentJob_02, dwNumRecipients, lpcRecipientMessageIds_2, lphRecipientJobs_02);

//instance 2
:
HRESULT hr_0n = FaxDevReestablishJobContext(hTapiLine_n, dwDeviceId_n, lpcParentMessageId_n, lphParentJob_0n, dwNumRecipients, lpcRecipientMessageIds_n, lphRecipientJobs_0n);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevReestablishJobContext sets hr_01 to hr_0n to FSPI_S_OK.
Also verify that it sets lphParentJob_01 to lphParentJob_0n to valid parent job handles, and lphRecipientJobs_01 to lphRecipientJobs_0n to valid arrays of dwNumRecipients valid recipient job handles.

5. Verfiy that all faxes are successfully sent.

6.7.3.6 Test case – concurrent calls to FaxDevGetLogData, all calls should succeed.

[TBD] FaxDevGetLogData is not supported in this release.
6.7.3.7 Test case – shutdown while FaxDevStartJob is executing should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevShutdown to function correctly when invoked while FaxDevStartJob is executing.
Note – after a call to FaxDevShutdown it should be safe to unload the EFSP DLL.

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2= FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

3. Verify that all above instances of FaxDevStartJob begin execution.

4. While all instances of FaxDevStartJob are still executing invoke FaxDevShutdown, as follows:
HRESULT hr1 = FaxDevShutdown();
5. Verify that FaxDevShutdown sets the above hr1 to FSPI_S_OK.
Also verify that all the above instances of FaxDevStartJob return before the call to FaxDevShutdown does.

6. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

7. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.7.3.8 Test case – shutdown while FaxDevReceive is executing should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevShutdown to function correctly when invoked while FaxDevReceive is executing.
Note – after a call to FaxDevShutdown it should be safe to unload the EFSP DLL.

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2= FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

3. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

4. Concurrently invoke n instances of FaxDevReceive, as follows:
BOOL fRetVal_01 = FaxDevReceive(FaxHandle_1, CallHandle_1, FaxReceive_1); //instance 1
BOOL fRetVal_02 = FaxDevReceive(FaxHandle_2, CallHandle_2, FaxReceive_2); //instance 2
:
BOOL fRetVal_0n = FaxDevReceive(FaxHandle_n, CallHandle_n, FaxReceive_n); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

5. Verify that all above instances of FaxDevReceive begin execution.

6. While all instances of FaxDevReceive are still executing invoke FaxDevShutdown, as follows:
HRESULT hr1 = FaxDevShutdown();
7. Verify that FaxDevShutdown sets the above hr1 to FSPI_S_OK.
Also verify that all the above instances of FaxDevReceive return before the call to FaxDevShutdown does.

8. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

9. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.7.3.9 Test case – shutdown while FaxDevEndJob is executing should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevShutdown to function correctly when invoked while FaxDevEndJob is executing.
Note – after a call to FaxDevShutdown it should be safe to unload the EFSP DLL.

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2= FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

3. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

4. Concurrently invoke n instances of FaxDevReceive, as follows:
BOOL fRetVal_01 = FaxDevReceive(FaxHandle_1, CallHandle_1, FaxReceive_1); //instance 1
BOOL fRetVal_02 = FaxDevReceive(FaxHandle_2, CallHandle_2, FaxReceive_2); //instance 2
:
BOOL fRetVal_0n = FaxDevReceive(FaxHandle_n, CallHandle_n, FaxReceive_n); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

5. Verify that FaxDevReceive sets all the above fRetVal_01 to fRetVal_0n to TRUE.

6. Concurrently invoke n instances of FaxDevEndJob, as follows:
BOOL fRetVal_01 = FaxDevEndJob(FaxHandle_1); //instance 1
BOOL fRetVal_02 = FaxDevEndJob(FaxHandle_2); //instance 2
:
BOOL fRetVal_0n = FaxDevEndJob(FaxHandle_n); //instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the parameters of FaxDevEndJob are valid as documented in the “NT5 Fax SDK”.

7. Verify that all above instances of FaxDevEndJob begin execution.

8. While all instances of FaxDevEndJob are still executing invoke FaxDevShutdown, as follows:
HRESULT hr1 = FaxDevShutdown();
9. Verify that FaxDevShutdown sets the above hr1 to FSPI_S_OK.
Also verify that all the above instances of FaxDevEndJob return before the call to FaxDevShutdown does.

10. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

11. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.7.3.10 Test case – shutdown while FaxDevReportStatusEx is executing should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevShutdown to function correctly when invoked while FaxDevEndJob is executing.
Note – after a call to FaxDevShutdown it should be safe to unload the EFSP DLL.

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Concurrently invoke n instances of FaxDevStartJob, as follows:
BOOL fRetVal_1 = FaxDevStartJob(LineHandle_1, DeviceId_1, FaxHandle_1, CompletionPortHandle_1, CompletionKey_1);

//instance 1
BOOL fRetVal_2= FaxDevStartJob(LineHandle_2, DeviceId_2, FaxHandle_2, CompletionPortHandle_2, CompletionKey_2);

//instance 2
:
BOOL fRetVal_n = FaxDevStartJob(LineHandle_n, DeviceId_n, FaxHandle_n, CompletionPortHandle_n, CompletionKey_n);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the parameters of FaxDevStartJob are valid as documented in the “NT5 Fax SDK”.

3. Verify that FaxDevStartJob sets all the above fRetVal_1 to fRetVal_n to TRUE.

4. Concurrently invoke n instances of FaxDevReceive, as follows:
BOOL fRetVal_01 = FaxDevReceive(FaxHandle_1, CallHandle_1, FaxReceive_1); //instance 1
BOOL fRetVal_02 = FaxDevReceive(FaxHandle_2, CallHandle_2, FaxReceive_2); //instance 2
:
BOOL fRetVal_0n = FaxDevReceive(FaxHandle_n, CallHandle_n, FaxReceive_n); //instance n
Where, n is the number of devices exported by the Fax Service Provider or the Extended Fax Service Provider.
And where, all the parameters of FaxDevReceive are valid as documented in the “NT5 Fax SDK”.

5. Verify that all above instances of FaxDevReceive begin execution.

6. While all instances of FaxDevReceive are still executing, concurrently invoke n instances of FaxDevReportStatusEx, as follows:
HRESULT hr_01 = FaxDevReportStatusEx(FaxHandle_1, lpStatus_1, dwStatusSize, lpdwRequiredStatusSize);

//instance 1
HRESULT hr_02 = FaxDevReportStatusEx(FaxHandle_2, lpStatus_2, dwStatusSize, lpdwRequiredStatusSize);

//instance 2
:
HRESULT hr_0n = FaxDevReportStatusEx(FaxHandle_n, lpStatus_n, dwStatusSize, lpdwRequiredStatusSize);

//instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the parameters of FaxDevReportStatusEx are valid as documented in the “NT5 Fax SDK”.

7. Verify that all above instances of FaxDevReportStatusEx begin execution.

8. While all instances of FaxDevReportStatusEx are still executing invoke FaxDevShutdown, as follows:
HRESULT hr1 = FaxDevShutdown();
9. Verify that FaxDevShutdown sets the above hr1 to FSPI_S_OK.
Also verify that all the above instances of FaxDevEndJob return before the call to FaxDevShutdown does.

10. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

11. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.7.3.11 Test case – shutdown while FaxDevSendEx is executing should succeed.

This test case verifies that an Extended Fax Service Provider has implemented FaxDevShutdown to function correctly when invoked while FaxDevSendEx is executing.
Note – after a call to FaxDevShutdown it should be safe to unload the EFSP DLL.

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Concurrently invoke n instances of FaxDevSendEx, as follows:
HRESULT hr_1 = FaxDevSendEx(hTapiLine_1, dwDeviceId_1, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_1, lphRecipientJobs_1, lpParentMessageId_1, lphParentJob_1); //instance 1
HRESULT hr_2 = FaxDevSendEx(hTapiLine_2, dwDeviceId_2, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_2, lphRecipientJobs_2, lpParentMessageId_2, lphParentJob_2); //instance 2
:
HRESULT hr_n = FaxDevSendEx(hTapiLine_n, dwDeviceId_n, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds_n, lphRecipientJobs_n, lpParentMessageId_n, lphParentJob_n); //instance n
Where, n is the number of devices exported by the Extended Fax Service Provider.
And where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Verify that all above instances of FaxDevSendEx begin execution.

4. While all instances of FaxDevSendEx are still executing invoke FaxDevShutdown, as follows:
HRESULT hr1 = FaxDevShutdown();
5. Verify that FaxDevShutdown sets the above hr1 to FSPI_S_OK.
Also verify that all the above instances of FaxDevSendEx return before the call to FaxDevShutdown does.

6. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

7. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.7.3.12 Test case – shutdown while FaxDevReestablishJobContext is executing should succeed.

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment, has implemented FaxDevShutdown to function correctly when invoked while FaxDevReestablishJobContext is executing.
Note – after a call to FaxDevShutdown it should be safe to unload the EFSP DLL.

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, all the other parameters of FaxDevSendEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.
Also verify that after the call every lpRecipientMessageIds[i]!=NULL and contains a valid recipient message id. And that *lpParentMessageId!=NULL and contains a valid parent message id

4. Concurrently invoke 5 instances of FaxDevReestablishJobContext, as follows:
HRESULT hr01 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob01, dwNumRecipients, lpcRecipientMessageIds, lphRecipientJobs01); //instance 1
HRESULT hr02 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob02, dwNumRecipients, lpcRecipientMessageIds, lphRecipientJobs02); //instance 2
HRESULT hr03 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob03, dwNumRecipients, lpcRecipientMessageIds, lphRecipientJobs03); //instance 3
HRESULT hr04 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob04, dwNumRecipients, lpcRecipientMessageIds, lphRecipientJobs04); //instance 4
HRESULT hr05 = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob05, dwNumRecipients, lpcRecipientMessageIds, lphRecipientJobs05); //instance 5
Where, lpRecipientMessageIds, lpcParentMessageId, dwNumRecipients and dwDeviceId are from above call to FaxDevSendEx.
And where, all the other parameters of FaxDevReestablishJobContext are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

5. Verify that all 5 instances of FaxDevReestablishJobContext begin execution.

6. While all instances of FaxDevReestablishJobContext are still executing invoke FaxDevShutdown, as follows:
HRESULT hr3 = FaxDevShutdown();
7. Verify that FaxDevShutdown sets the above hr3 to FSPI_S_OK.
Also verify that all the above instances of FaxDevReestablishJobContext return before the call to FaxDevShutdown does.

8. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

9. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.7.3.13 Test case – shutdown while FaxDevGetLogData is executing should succeed.

[TBD] FaxDevGetLogData is not supported in this release.
6.7.3.14 Test case – shutdown while FaxDevInitializeEx is executing should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevShutdown to function correctly when invoked while FaxDevInitializeEx is executing.

Scenario –

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Invoke FaxDevInitializeEx, as follows:
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the other parameters of FaxDevInitializeEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

3. While FaxDevInitializeEx is still executing, invoke FaxDevShutdown, as follows:
HRESULT hr2 = FaxDevShutdown();
4. Verify that FaxDevShutdown sets the above hr2 to FSPI_S_OK.
Also verify that all the above call to FaxDevInitializeEx returns before the call to FaxDevShutdown does.

5. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

6. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.7.3.15 Test case – shutdown while FaxDevEnumerateDevices is executing should succeed.

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevShutdown to function correctly when invoked while FaxDevEnumerateDevices is executing.

Scenario –

1. Your test application should load your EFSP DLL dynamically via a call to the LoadLibrary Win32 API, and retreive all exported functions via appropriate calls to the GetProcAddress Win32 API.
Do not statically link the test application with your EFSP DLL.

2. Invoke FaxDevInitializeEx, as follows:
HRESULT hr1 = FaxDevInitializeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the other parameters of FaxDevInitializeEx are valid as documented in “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Verify that FaxDevInitializeEx sets the above hr1 to FSPI_S_OK.

4. Invoke FaxDevEnumerateDevices, as follows:
HRESULT hr2 = FaxDevEnumerateDevices(dwDeviceIdBase, lpdwDeviceCount, NULL);
Where, lpdwDeviceCount is a valid pointer to a DWORD and * lpdwDeviceCount=0.
5. Verify that FaxDevEnumerateDevices sets the above hr2 to FSPI_S_OK.
Also verify that * lpdwDeviceCount>0 and * lpdwDeviceCount<=EFSPI_MAX_DEVICE_COUNT and that it is set to indicate the correct number of devices that the EFSP exports.

6. Invoke FaxDevEnumerateDevices, as follows:
HRESULT hr3 = FaxDevEnumerateDevices(dwDeviceIdBase, lpdwDeviceCount, lpDevices);
Where, lpdwDeviceCount is the variable from the previous call.
And where, lpDevices is a valid pointer to an array of *lpdwDeviceCount FSPI_DEVICE_INFO structures where every lpDevices[i].szFriendlyName contains all zeroes and every lpDevices[i].dwId=0.
7. While FaxDevEnumerateDevices is still executing, invoke FaxDevShutdown, as follows:
HRESULT hr4 = FaxDevShutdown();
8. Verify that FaxDevShutdown sets the above hr4 to FSPI_S_OK.
Also verify that all the above call to FaxDevEnumerateDevices returns before the call to FaxDevShutdown does.

9. Immediately after FaxDevShutdown returns, unload your EFSP DLL from the test application using the FreeLibrary Win32 API.

10. Verify that the above call to FreeLibrary returns TRUE and that the DLL is safely unloaded.

6.8 Low Memory Conditions

The following tests strive to verify that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented the APIs to function correctly in low memory conditions.
During low memory conditions any allocation request may fail, and thus any number of system calls may also fail. The Fax Service Provider or Extended Fax Service Provider must implement its APIs to detect these errors and handle them correctly. If the API cannot recover from the error it must fail gracefully returning and appropriate error value and setting the last error where required.

Please note that if the API’s implementation does not allocate any memory, and does not call any other functions, which allocate memory, then the API should not fail under low memory condition.
Furthermore, even under low memory conditions some memory allocations may succeed and thus a call to the Fax Service Provider or Extended Fax Service Provider may complete successfully.

The test cases below refer to the situations where at least one memory allocation has failed during the execution of an API. If this situation is not encountered when you perform the test case, please repeat the test case until it does.

6.8.1 FSP APIs function in Low Memory Conditions

6.8.1.1 Test case – FSP FaxDevInitalize functions correctly in low memory conditions

This test case verifies that a Fax Service Provider DLL has implemented FaxDevInitalize to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxDevInitalize, as follows:
BOOL fRetVal = FaxDevInitalize(LineAppHandle, HeapHandle, LineCallbackFunction, FaxServiceCallback);
Where, all the parameters of FaxDevInitalize are valid as documented in the NT5 Fax SDK

3. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC = GetLastError();
4. Deactivate the memory-hogging tool.

5. Verify that FaxDevInitalize sets the above fRetVal to FALSE and the last error dwEC to ERROR_NOT_ENOUGH_MEMORY.

6.8.1.2 Test case – Virtual-FSP FaxDevVirtualDeviceCreation functions correctly in low memory conditions

This test case verifies that a Virtual Fax Service Provider DLL has implemented FaxDevVirtualDeviceCreation to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxDevVirtualDeviceCreation, as follows:
BOOL fRetVal = FaxDevVirtualDeviceCreation(DeviceCount, DeviceNamePrefix, DeviceIdPrefix, CompletionPort, CompletionKey);
Where, all the parameters of FaxDevVirtualDeviceCreation are valid as documented in the NT5 Fax SDK

3. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC = GetLastError();
4. Deactivate the memory-hogging tool.

5. Verify that FaxDevVirtualDeviceCreation sets the above fRetVal to FALSE and the last error dwEC to ERROR_NOT_ENOUGH_MEMORY.

6.8.1.3 Test case – FSP FaxDevSend functions correctly in low memory conditions

This test case verifies that a Fax Service Provider DLL has implemented FaxDevSend to function correctly in low memory conditions.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, &FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal1 to TRUE.

3. Activate a memory-hogging tool.

4. Invoke FaxDevSend, as follows:
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, FaxHandle is the job handle from the above FaxDevStartJob call.
Where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK

5. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC = GetLastError();
6. Deactivate the memory-hogging tool.

7. Verify that FaxDevSend sets the above fRetVal2 to FALSE and the last error dwEC to ERROR_NOT_ENOUGH_MEMORY.

6.8.1.4 Test case – FSP FaxDevReportStatus functions correctly in low memory conditions

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReportStatus to function correctly in low memory conditions.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, &FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal1 to TRUE.

3. Invoke FaxDevSend, as follows:
BOOL fRetVal2 = FaxDevSend(FaxHandle, FaxSend, FaxSendCallback);
Where, FaxHandle is the job handle from the above FaxDevStartJob call.
Where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK

4. Verify that FaxDevSend sets the above fRetVal2 to TRUE.

5. Invoke FaxDevReportStatus, as follows:
BOOL fRetVal3 = FaxDevReportStatus(FaxHandle, NULL, NULL, &FaxStatusSizeRequired1);
Where, FaxHandle is the job handle from the above FaxDevSend call.
Where, all the other parameters of FaxDevReportStatus are valid as documented in the NT5 Fax SDK

6. Verify that FaxDevReportStatus sets the above fRetVal3 to TRUE.

7. Allocate a FAX_DEV_STATUS according to FaxStatusSizeRequired1 from above call to FaxDevReportStatus and set its fields according to the NT5 Fax SDK.

8. Activate a memory-hogging tool.

9. Invoke FaxDevReportStatus, as follows:
BOOL fRetVal4 = FaxDevReportStatus(FaxHandle, NULL, NULL, &FaxStatusSizeRequired2);
Where, FaxHandle is the job handle from the above FaxDevSend call.
Where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK

10. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC1 = GetLastError();
11. Invoke FaxDevReportStatus, as follows:
BOOL fRetVal5 = FaxDevReportStatus(FaxHandle, FaxStatus, FaxStatusSizeRequired1, &FaxStatusSizeRequired3);
Where, FaxHandle is the job handle from the above FaxDevSend call.
Where, FaxStatus is the FAX_DEV_STATUS structure you allocated in clause 7 and FaxStatusSizeRequired1 is its size.
Where, all the other parameters of FaxDevSend are valid as documented in the NT5 Fax SDK

12. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC2 = GetLastError();
13. Deactivate the memory-hogging tool.

14. Examine your FaxDevReportStatus implementation (memory allocations) to determine whether the above calls (at clause 9 and 11) should set the above fRetVal4 and fRetVal5 to FALSE and dwEC1 and dwEC2 to ERROR_NOT_ENOUGH_MEMORY, or if the calls should succeed and set fRetVal4 and fRetVal5 to TRUE.
6.8.2 EFSP APIs function in Low Memory Conditions

6.8.2.1 Test case – EFSP FaxDevInitalizeEx functions correctly in low memory conditions

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevInitalizeEx to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxDevInitalizeEx, as follows:
HRESULT hr = FaxDevInitalizeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the parameters of FaxDevInitalizeEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Deactivate the memory-hogging tool.

4. Verify that FaxDevInitalize sets the above hr to FSPI_E_NOMEM.

6.8.2.2 Test case – Virtual EFSP FaxDevEnumerateDevices functions correctly in low memory conditions

This test case verifies that a Virtual Extended Fax Service Provider DLL has implemented FaxDevEnumerateDevices to function correctly in low memory conditions.

Scenario –

1. Invoke FaxDevInitalizeEx, as follows:
HRESULT hr1 = FaxDevInitalizeEx(hFSP, LineAppHandle, LineCallbackFunction, FaxServiceCallbackEx, lpdwMaxMessageIdSize);
Where, all the parameters of FaxDevInitalizeEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevInitalize sets the above hr1 to FSPI_S_OK.

3. Activate a memory-hogging tool.

4. Invoke FaxDevEnumerateDevices, as follows:
HRESULT hr2 = FaxDevEnumerateDevices(dwDeviceIdBase, lpdwDeviceCount, lpDevices);
Where, all the parameters of FaxDevEnumerateDevices are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

5. Deactivate the memory-hogging tool.

6. Verify that FaxDevEnumerateDevices sets the above hr2 to FSPI_E_NOMEM.

6.8.2.3 Test case – EFSP FaxDevSendEx functions correctly in low memory conditions

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevSendEx to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxDevSendEx, as follows:
HRESULT hr = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, tmSchedule=0 indicating “now”.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Deactivate the memory-hogging tool.

4. Verify that FaxDevSendEx sets the above hr to FSPI_E_NOMEM.

6.8.2.4 Test case – EFSP FaxDevReportStatusEx functions correctly in low memory conditions

This test case verifies that an Extended Fax Service Provider DLL has implemented FaxDevReportStatusEx to function correctly in low memory conditions.

Scenario –

1. Invoke FaxDevSendEx, as follows:
HRESULT hr1 = FaxDevSendEx(hTapiLine, dwDeviceId, lpcwstrBodyFileName, lpcCoverPageInfo, bAddBranding, tmSchedule, lpcSenderProfile, dwNumRecipients, lpcRecipientProfiles, lpRecipientMessageIds, lphRecipientJobs, lpParentMessageId, lphParentJob);
Where, tmSchedule=0 indicating “now”.
And where, all the other parameters of FaxDevSendEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

2. Verify that FaxDevSendEx sets the above hr1 to FSPI_S_OK.

3. Invoke FaxDevReportStatusEx, as follows:
HRESULT hr2 = FaxDevReportStatusEx(hJob, NULL, NULL, &dwRequiredStatusSize1);
Where, hJob=lphRecipientJobs[0] the first recipient job handle from the above FaxDevSendEx call.
And where, all the other parameters of FaxDevReportStatusEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

4. Verify that FaxDevReportStatusEx sets the above hr2 to FSPI_S_OK.

5. Allocate a FSPI_JOB_STATUS according to dwRequiredStatusSize1 from above call to FaxDevReportStatusEx and set its fields according to the “Comet Fax Service – Extended Fax Service Provider Interface”.

6. Activate a memory-hogging tool.

7. Invoke FaxDevReportStatusEx, as follows:
HRESULT hr3 = FaxDevReportStatusEx(hJob, NULL, NULL, &dwRequiredStatusSize2);
Where, hJob=lphRecipientJobs[0] the first recipient job handle from the above FaxDevSendEx call.
And where, all the other parameters of FaxDevReportStatusEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

8. Invoke FaxDevReportStatusEx, as follows:
HRESULT hr4 = FaxDevReportStatusEx(hJob, Status, dwRequiredStatusSize1, &dwRequiredStatusSize2);
Where, hJob=lphRecipientJobs[0] the first recipient job handle from the above FaxDevSendEx call.
Where, Status is the FSPI_JOB_STATUS structure you allocated in clause 5 and dwRequiredStatusSize1 is its size.
And where, all the other parameters of FaxDevReportStatusEx are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

9. Deactivate the memory-hogging tool.

10. Examine your FaxDevReportStatusEx implementation (memory allocations) to determine whether the above calls (at clause 7 and 8) should set the above hr3 and hr4 to FSPI_E_NOMEM, or if the calls should succeed and set hr3 and hr4 to FSPI_S_OK.
6.8.2.5 Test case – FaxDevReestablishJobContext of an EFSP that supports job context reestablishment, functions correctly in low memory conditions

This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment has implemented FaxDevReestablishJobContext to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxDevReestablishJobContext, as follows:
HRESULT hr = FaxDevReestablishJobContext(hTapiLine, dwDeviceId, lpcParentMessageId, lphParentJob, dwRecipientCount, lpcRecipientMessageIds, lpRecipientJobs);
Where, all the parameters of FaxDevReestablishJobContext are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Deactivate the memory-hogging tool.

4. Verify that FaxDevReestablishJobContext sets the above hr2 to FSPI_E_NOMEM.

6.8.2.6 Test case – EFSP FaxDevGetLogData functions correctly in low memory conditions

[TBD] FaxDevGetLogData is not supported in this release.
This test case verifies that an Extended Fax Service Provider has implemented FaxDevGetLogData to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxDevGetLogData, as follows:
HRESULT hr = FaxDevGetLogData(hFaxHandle, lppLogData);
Where, all the parameters of FaxDevGetLogData are valid as documented in the “Comet Fax Service – Extended Fax Service Provider Interface”.

3. Deactivate the memory-hogging tool.

4. Verify that FaxDevGetLogData sets the above hr to FSPI_E_NOMEM.

6.8.3 Common APIs function in Low Memory Conditions

6.8.3.1 Test case – FSP FaxDevStartJob functions correctly in low memory conditions

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevStartJob to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the NT5 Fax SDK.

3. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC = GetLastError();
4. Deactivate the memory-hogging tool.

5. Verify that FaxDevStartJob sets the above fRetVal to FALSE and the last error dwEC to ERROR_NOT_ENOUGH_MEMORY.

6.8.3.2 Test case – FaxDevEndJob functions correctly in low memory conditions

This test case verifies that a Fax Service Provider or an Extended Fax Service Provider DLL has implemented FaxDevEndJob to function correctly in low memory conditions.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, &FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal1 to TRUE.

3. Invoke FaxDevReceive, as follows:
BOOL fRetVal2 = FaxDevReceive (FaxHandle, CallHandle, FaxReceive);
Where, FaxHandle is the job handle from the above FaxDevStartJob call.
Where, all the other parameters of FaxDevReceive are valid as documented in the NT5 Fax SDK

4. Verify that FaxDevReceive sets the above fRetVal2 to TRUE.

5. Activate a memory-hogging tool.

6. Invoke FaxDevEndJob, as follows:
BOOL fRetVal3 = FaxDevEndJob(FaxHandle);
Where, FaxHandle is the job handle from the above FaxDevReceive call.

7. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC = GetLastError();
8. Deactivate the memory-hogging tool.

9. Verify that FaxDevEndJob sets the above fRetVal3 to FALSE and the last error dwEC to ERROR_NOT_ENOUGH_MEMORY.
Note that if your FaxDevEndJob implementation does not allocate any memory (explicitly or implicitly) then instead of failing it should succeed and set the above fRetVal3 to TRUE.

6.8.3.3 Test case – FSP FaxDevAbortOperation functions correctly in low memory conditions

This test case verifies that a Fax Service Provider DLL has implemented FaxDevAbortOperation to function correctly in low memory conditions.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, &FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal1 to TRUE.

3. Invoke FaxDevReceive, as follows:
BOOL fRetVal2 = FaxDevReceive(FaxHandle, CallHandle, FaxReceive);
Where, FaxHandle is the job handle from the above FaxDevStartJob call.
Where, all the other parameters of FaxDevReceive are valid as documented in the NT5 Fax SDK

4. Verify that FaxDevSend sets the above fRetVal2 to TRUE.

Before FaxDevReceive returns –

5. Activate a memory-hogging tool.

While FaxDevReceive is still executing –

6. Invoke FaxDevAbortOperation, as follows:
BOOL fRetVal3 = FaxDevAbortOperation(FaxHandle);
Where, FaxHandle is the job handle from the above FaxDevReceive call.

7. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC = GetLastError();
8. Deactivate the memory-hogging tool.

9. Verify that FaxDevAbortOperation sets the above fRetVal3 to FALSE and the last error dwEC to ERROR_NOT_ENOUGH_MEMORY.
Note that if your FaxDevAbortOperation implementation does not allocate any memory (explicitly or implicitly) then instead of failing it should succeed and set the above fRetVal3 to TRUE.

6.8.3.4 Test case – FaxDevReceive functions correctly in low memory conditions

This test case verifies that a Fax Service Provider DLL has implemented FaxDevReceive to function correctly in low memory conditions.

Scenario –

1. Invoke FaxDevStartJob, as follows:
BOOL fRetVal1 = FaxDevStartJob(LineHandle, DeviceId, &FaxHandle, CompletionPortHandle, CompletionKey);
Where, all the parameters of FaxDevStartJob are valid as documented in the NT5 Fax SDK.

2. Verify that FaxDevStartJob sets the above fRetVal1 to TRUE.

3. Activate a memory-hogging tool.

4. Invoke FaxDevReceive, as follows:
BOOL fRetVal2 = FaxDevReceive (FaxHandle, CallHandle, FaxReceive);
Where, FaxHandle is the job handle from the above FaxDevStartJob call.
Where, all the other parameters of FaxDevReceive are valid as documented in the NT5 Fax SDK

5. Invoke the Win32 API GetLastError, as follows:
DWORD dwEC = GetLastError();
6. Deactivate the memory-hogging tool.

7. Verify that FaxDevReceive sets the above fRetVal2 to FALSE and the last error dwEC to ERROR_NOT_ENOUGH_MEMORY.

6.8.3.5 Test case – FaxExtInitializeConfig functions correctly in low memory conditions

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxExtInitializeConfig to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxExtInitializeConfig, as follows:
HRESULT hr1 = FaxExtInitializeConfig(pGetExtData, pSetExtData, pRegister, pUnregister, pFreeBuffer);
Where, all parameters of FaxExtInitializeConfig are valid as documented in the “Fax Server Extension Configuration Mechanism” document.

3. Deactivate the memory-hogging tool.

4. Verify that FaxExtInitializeConfig sets the above hr1 to E_OUTOFMEMORY.

Note - If the implementation of FaxExtInitializeConfig does not perform any allocations then FaxExtInitializeConfig should succeed, and set the above hr1 to NOERROR.

6.8.3.6 Test case – FaxExtConfigChange functions correctly in low memory conditions

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL has implemented FaxExtConfigChange to function correctly in low memory conditions.

Scenario –

1. Activate a memory-hogging tool.

2. Invoke FaxExtConfigChange, as follows:
HRESULT hr1 = FaxExtConfigChange (dwDeviceId,lpcwstrDataGUID, lpData, dwDataSize);
Where, all parameters of FaxExtConfigChange are valid as documented in the “Fax Server Extension Configuration Mechanism” document.

3. Deactivate the memory-hogging tool.

4. Verify that FaxExtConfigChange sets the above hr1 to E_OUTOFMEMORY.

Note - If the implementation of FaxExtConfigChange does not perform any allocations then FaxExtConfigChange should succeed, and set the above hr1 to NOERROR.

6.9 Driver Verifier

The following tests strive to verify the integrity of drivers that the Fax Service Provider or the Extended Fax Service use and that the Provider handles any possible failures of these drivers correctly.

Please note that activating the “Driver Verifier” will effect performance.

6.9.1 Third Party Drivers Integrity

For a Fax Service Provider or an Extended Fax Service that uses any third party drivers, the integrity of these drivers should be verified.
The “Driver Verifier” tool should be configured as described below, and all the tests in this document should be re-run while the verifier is active.

Configuration:

· Activate verifier.exe

· In the “Settings” tab select the “Verify selected drivers” radio button,
select the drivers you wish to enable verification for (all the 3rd party drivers your Provider uses), and click the “Verify” button.

· Also in the “Settings” tab check all the “Verification Type” check boxes, except “Low resources simulation”. Also select “I\O verification” Level 2.

· Reboot the machine.

· Activate verifier.exe

· In the “Settings” tab verify that for all the drivers you have previousely selected the “Verification Status” is now set to “Verify Enabled”.

· Run all the tests in this document.

6.9.2 Handling Third Party and System Drivers Failures

For a Fax Service Provider or an Extended Fax Service using any drivers (third party or system), the correct handling of any possible driver failure should be verified.
The “Driver Verifier” tool should be configured as described below, and all the tests in this document should be re-run while the verifier is active.

Configuration:

· Activate verifier.exe

· In the “Settings” tab select the “Verify selected drivers” radio button,
select the drivers you wish to enable verification for (all the drivers your Provider uses), and click the “Verify” button.

· Reboot the machine.

· Activate verifier.exe

· In the “Settings” tab verify that for all the drivers you have previousely selected the “Verification Status” is now set to “Verify Enabled”.

· In the “Volatile Settings” tab check the “Low resources simulation” check box, and click “Apply”.

· Run all the tests in this document.

As described above the “Driver Verifier” should be configured to enable verification for all the drivers your Provider uses, specific system driver candidates are:

· serial.sys (the modem driver)

· tdi.sys, tcpip.sys, ndis.sys and afd.sys (network related drivers).

7 Integration Tests

The following Integration Tests invoke the APIs from the Microsoft® Comet Fax Service context. The tests look at the Fax Service Provider or Extended Fax Service Provider as the Comet Fax Service uses it when the Comet Fax Service APIs and UI are activated.

7.1 Setup and Configuration

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully –

· Setup on the Comet Fax Service machine.

· Configured via the Comet Fax Service Administration Console.

7.1.1 Setup

7.1.1.1 Test case – FSP / EFSP setup on server machine fails if service is down

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL setup application fails if the Comet Fax Service is down, on the Comet Fax Service machine.

Scenario –

1. Stop the Comet Fax Service.
You can stop the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

2. Invoke the setup application for the Fax Service Provider DLL or the Extended Fax Service Provider DLL.

3. Verify that the setup application has fails indicating that the Comet Fax Service is down.

The Fax Service Provider or Extended Fax Service Provider setup application should not start or stop the Comet Fax Service. If the Comet Fax Service is down, the setup application should fail indicating that setup requires the Comet Fax Service be started.
The administrator can then start the Comet Fax Service and re-run setup, if he so chooses.

7.1.1.2 Test case – FSP / EFSP is successfully setup on server machine while service is up

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully loaded by the Comet Fax Service after running the DLL’s setup application, while the service was up, on the Comet Fax Service machine.

Scenario –

1. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

2. Invoke the setup application for the Fax Service Provider DLL or the Extended Fax Service Provider DLL.

3. Verify that the setup application has completed successfully and has indicated the the changes will come into affect only after the Comet Fax Service is re-started.

The Fax Service Provider or Extended Fax Service Provider setup application should not start or stop the Comet Fax Service. Since the current version of Comet Fax Service requires the service be restarted in order for the changes to take affect, the setup application should indicating this upon successful completion.
The administrator can than re-start the Comet Fax Service, if he so chooses.

4. Stop the Comet Fax Service.
You can stop the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

5. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

6. While the service is starting,
For an FSP – verify that the Fax Service Provider’s FaxDevInitialize API is invoked and completes successfully.
For a Virtual FSP – also verify that the Fax Service Provider’s FaxDevVirtualDeviceCreation API is also invoked and completes successfully.
For an EFSP – verify that the Extended Fax Service Provider’s FaxDevInitializeEx API is invoked and completes successfully.
For a Virtual EFSP – also verify that the Extended Fax Service Provider’s FaxDevEnumerateDevices API is invoked and completes successfully.

7. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

8. Active the Comet Fax Administration Tool.

9. Verify that the Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node, and that the specified details are correct.

10. Verify that all of the Fax Service Provider or the Extended Fax Service Provider devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that the specified details are correct.

7.1.1.3 Test case – FSP / EFSP is successfully uninstalled from server machine while service is down

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL is successfully uninstalled after running the DLL’s uninstall application, while the service was down, on the Comet Fax Service machine.

Scenario –

1. Stop the Comet Fax Service.
You can stop the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

2. Invoke the uninstall application for the Fax Service Provider DLL or the Extended Fax Service Provider DLL.

3. Verify that the uninstall application has completed successfully.

4. Verify that the Comet Fax Service is stopped.

5. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

6. While the service is starting, verify that the Comet Fax Service does not attempt to load the Provider DLL.
You can check the Event Viewer for events regarding Fax Service Provider initialization failures.

7. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

8. Active the Comet Fax Administration Tool.

9. Verify that the Fax Service Provider does not appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node.

10. Verify that all Fax Service Provider files, directories and any registry entries have been cleaned up by the uninstall application.

7.1.1.4 Test case – FSP / EFSP cannot be uninstalled from server machine while service is up

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL cannot be uninstalled while the service is up.

Scenario –

1. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.
And verify that your Fax Service Provider is successfully loaded.

2. Invoke the uninstall application for the Fax Service Provider DLL or the Extended Fax Service Provider DLL.

3. Verify that the uninstall application fails without performing any uninstall actions.
Also verify that an appropriate error message, indicating that it is not possible to uninstall the Fax Service Provider while the Comet Fax Service is running, is generated.

4. Verify that the Comet Fax Service is still started.

5. Active the Comet Fax Administration Tool.

6. Verify that the Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node.

7.1.2 Configuration

7.1.2.1 Test case – FSP / EFSP is successfully configured via the local Comet Fax Service Admin Console

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully configured via the local Comet Fax Service Admin Console on the Comet Fax Service machine.

Scenario –

1. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

2. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

3. Active the Comet Fax Administration Tool.

4. Verify that the Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node, and that the specified details are correct.

5. Verify that all of the Fax Service Provider or the Extended Fax Service Provider devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that the specified details are correct.

6. Invoke the Provider’s “Device Properties” MMC Snapin Extension by double clicking on a Provider’s device entry.

7. Verify that all of the device settings can be successfully configured.
Verify that the UI responds correctly and that the changes affect the behavior of the selected device.

8. Invoke the Provider’s “Provider Properties” MMC Snapin Extension by double clicking on the Provider entry.

9. Verify that all of the global Provider settings can be successfully configured.
Verify that the UI responds correctly and that the changes affect the behavior of Provider.

7.1.2.2 Test case – FSP / EFSP is successfully configured via a remote Comet Fax Service Admin Console

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully configured via a remote Comet Fax Service Admin Console (from a Comet Fax Service client machine).

Scenario –

1. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

2. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

3. On a Comet Fax Service client machine (of the above server) –
Active the (remote) Comet Fax Administration Tool.

4. Verify that the Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node, and that the specified details are correct.

5. Verify that all of the Fax Service Provider or the Extended Fax Service Provider devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that the specified details are correct.

6. Invoke the Provider’s “Device Properties” MMC Snapin Extension by double clicking on a Provider’s device entry.

7. Verify that all of the device settings can be successfully configured.
Verify that the UI responds correctly and that the changes affect the behavior of the selected device.

8. Invoke the Provider’s “Provider Properties” MMC Snapin Extension by double clicking on the Provider entry.

9. Verify that all of the global Provider settings can be successfully configured.
Verify that the UI responds correctly and that the changes affect the behavior of Provider.

7.2 Initialization

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully loaded and initialized by the Comet Fax Service.

Section 7.2.1 lays out the tests for a Fax Service Provider, while section 7.2.2 does so for an Extended Fax Service Provider.

7.2.1 FSP Initialization

7.2.1.1 Test case – FSP is successfully loaded and initialized when there are no modems installed on server machine

This test case verifies that a Fax Service Provider DLL is successfully loaded and initialized by the Comet Fax Service when there are no modem devices installed on the server machine.

Scenario –

1. Verify that there are no modems installed on the Comet Fax Service machine.

2. Setup and register the Fax Service Provider or Extended Fax Service Provider on the Comet Fax Service machine.

3. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

4. While the service is starting, verify that the Fax Service Provider’s FaxDevInitialize API is invoked and completes successfully.
For a Virtual Fax Service Provider verify that the Fax Service Provider’s FaxDevVirtualDeviceCreation API is also invoked and completes successfully.

5. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

6. Active the Comet Fax Administration Tool.

7. Verify that the Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node, and that the specified details are correct.

8. Verify that all of the Fax Service Provider devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that the specified details are correct.

7.2.1.2 Test case – FSP is successfully loaded and initialized when there are modems installed on server machine

This test case verifies that a Fax Service Provider DLL is successfully loaded and initialized by the Comet Fax Service when there are modem devices installed on the server machine.

Scenario –

1. Verify that there are modem devices installed on the Comet Fax Service machine.

2. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

3. While the service is starting, verify that the Fax Service Provider’s FaxDevInitialize API is invoked and completes successfully.
For a Virtual Fax Service Provider verify that the Fax Service Provider’s FaxDevVirtualDeviceCreation API is also invoked and completes successfully.

4. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

5. Active the Comet Fax Administration Tool.

6. Verify that the “Microsoft T30 Telephony Provider” appears under the “Microsoft SBS Fax Server”\Device and Providers”\”Device Providers” node.

7. Verify that all the installed modem devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that they are all using the “Microsoft T30 Telephony Provider”.

8. Stop the Comet Fax Service.

9. Setup and register the Fax Service Provider on the Comet Fax Service machine.

10. Start the Comet Fax Service.

11. Verify that the Comet Fax Service has successfully started.

12. Active the Comet Fax Administration Tool.

13. Verify that the Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node, and that the specified details are correct.

14. Verify that all of the Fax Service Provider devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that the specified details are correct.

15. Verify that the “Microsoft T30 Telephony Provider” and all its modem devices appear, as before, under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” and “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” nodes.

7.2.2 EFSP Initialization

7.2.2.1 Test case – EFSP is successfully loaded and initialized when there are no modems installed on server machine

This test case verifies that an Extended Fax Service Provider DLL is successfully loaded and initialized by the Comet Fax Service when there are no modem devices installed on the server machine.

Scenario –

1. Verify that there are no modems installed on the Comet Fax Service machine.

2. Setup and register the Extended Fax Service Provider or Extended Fax Service Provider on the Comet Fax Service machine.

3. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

4. While the service is starting, verify that the Extended Fax Service Provider’s FaxDevInitializeEx API is invoked and completes successfully.
For a Virtual Extended Fax Service Provider verify that the Extended Fax Service Provider’s FaxDevEnumerateDevices API is also invoked and completes successfully.

5. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

6. Active the Comet Fax Administration Tool.

7. Verify that the Extended Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node, and that the specified details are correct.

8. Verify that all of the Extended Fax Service Provider devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that the specified details are correct.

7.2.2.2 Test case – EFSP is successfully loaded and initialized when there are modems installed on server machine

This test case verifies that an Extended Fax Service Provider DLL is successfully loaded and initialized by the Comet Fax Service when there are modem devices installed on the server machine.

Scenario –

1. Verify that there are modem devices installed on the Comet Fax Service machine.

2. Start the Comet Fax Service.
You can start the service from the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

3. While the service is starting, verify that the Extended Fax Service Provider’s FaxDevInitializeEx API is invoked and completes successfully.
For a Virtual Extended Fax Service Provider verify that the Extended Fax Service Provider’s FaxDevEnumerateDevices API is also invoked and completes successfully.

4. Verify that the Comet Fax Service has successfully started.
You can see the service’s status at the “Computer Management” MMC, under the “Computer Management”\”Services and Applications”\”Services” node.

5. Active the Comet Fax Administration Tool.

6. Verify that the “Microsoft T30 Telephony Provider” appears under the “Microsoft SBS Fax Server”\Device and Providers”\”Device Providers” node.

7. Verify that all the installed modem devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that they are all using the “Microsoft T30 Telephony Provider”.

8. Stop the Comet Fax Service.

9. Setup and register the Extended Fax Service Provider on the Comet Fax Service machine.

10. Start the Comet Fax Service.

11. Verify that the Comet Fax Service has successfully started.

12. Active the Comet Fax Administration Tool.

13. Verify that the Extended Fax Service Provider appears under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” node, and that the specified details are correct.

14. Verify that all of the Extended Fax Service Provider devices appear under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” node, and that the specified details are correct.

15. Verify that the “Microsoft T30 Telephony Provider” and all its modem devices appear, as before, under the “Microsoft SBS Fax Server”\”Devices and Providers”\”Device Providers” and “Microsoft SBS Fax Server”\”Devices and Providers”\”Devices” nodes.

7.3 Sending

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully used by the Comet Fax Service to send faxes.

7.3.1 Fax Pages

7.3.1.1 Test case – Single Page Fax without a cover page is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a single page fax without a cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a single page fax (without a cover page) to a single recipient.

3. Verify that the single page fax is successfully sent and reaches its destination.

4. Verify that the original (sent) single page fax TIF image and the received TIF image are identical.

7.3.1.2 Test case – Single Page Fax with a cover page is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a single page fax with a cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a single page fax with a cover page to a single recipient.

3. Verify that the two-page fax (single page plus cover page) is successfully sent and reaches its destination.

4. Verify that the information on the sent cover page is correct.

5. Verify that the original (sent) two-page fax TIF image and the received TIF image are identical.

7.3.1.3 Test case – A Cover page fax is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a cover page fax (just a cover page without a body).

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a cover page fax (without a body file) to a single recipient.

3. Verify that the single page fax is successfully sent and reaches its destination.

4. Verify that the information on the sent cover page is correct.

5. Verify that the original (sent) single page fax TIF image and the received TIF image are identical.

7.3.1.4 Test case – A multiple page fax without a cover page is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a multiple page fax (without a cover page)

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a 7 page fax (without a cover page) to a single recipient.

3. Verify that the 7-page fax is successfully sent and reaches its destination.

4. Verify that the original (sent) 7-page fax TIF image and the received TIF image are identical.

5. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a 137-page fax (without a cover page) to a single recipient.

6. Verify that the 137-page fax is successfully sent and reaches its destination.

7. Verify that the original (sent) 137-page fax TIF image and the received TIF image are identical.

7.3.1.5 Test case – A multiple page fax with a cover page is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a multiple page fax with a cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a 7 page fax with a cover page to a single recipient.

3. Verify that the 8-page fax (7 pages plus cover page) is successfully sent and reaches its destination.

4. Verify that the original (sent) 8-page fax TIF image and the received TIF image are identical.

5. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a 137-page fax with a cover page to a single recipient.

6. Verify that the 138-page fax (137 pages plus cover page) is successfully sent and reaches its destination.

7. Verify that the original (sent) 138-page fax TIF image and the received TIF image are identical.

7.3.2 Fax Session

7.3.2.1 Test case – Sending a fax to a busy line

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to attempt to send a fax to a busy line. The attempt should fail indicating that the line was busy.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to attempt to send a fax to a single recipient. Where, the recipient phone number is a line that is always busy.

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the line was busy.

4. Verify that the call is retried according to retries settings.

5. Verify that all retries also fail indicating busy.

6. Verify that the call then reaches a “Maximum Retries Exceeded” status (and is not retried again).

7.3.2.2 Test case – Sending a fax to a no-answer line

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to attempt to send a fax to a no-answer line. The attempt should fail indicating that there was no answer.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to attempt to send a fax to a single recipient. Where, the recipient phone number is a line that will never answer the call.

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that there was no answer.

4. Verify that the call is retried according to retries settings.

5. Verify that all retries also fail indicating no answer.

6. Verify that the call then reaches a “Maximum Retries Exceeded” status (and is not retried again).

7.3.2.3 Test case – Sending a fax to a line that will disconnect in the middle of the fax session

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to send a fax to a line, which will disconnect in the middle of the fax session. The attempt should fail indicating that the line was disconnected.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to attempt to send a fax to a single recipient. Where, the recipient phone number is a line that will always disconnect in the middle of the fax session.

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the call has been disconnected.

4. Verify that the call is retried according to retries settings.

5. Verify that all retries also fail indicating disconnection.

6. Verify that the call then reaches a “Maximum Retries Exceeded” status (and is not retried again).

7.3.2.4 Test case – Sending a fax to a non-fax line that will answer and disconnect

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to attempt to send a fax to a non-fax line, which will answer and then disconnect. The attempt should fail indicating that the line was disconnected.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to attempt to send a fax to a single recipient. Where, the recipient phone number is a non-fax line that will always answer the call, wait a few seconds and then disconnect (as when a human answers a line and hears it’s a fax).

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the call has been disconnected.

4. Verify that the call is retried according to retries settings.

5. Verify that all retries also fail indicating disconnection.

6. Verify that the call then reaches a “Maximum Retries Exceeded” status (and is not retried again).

7.3.2.5 Test case – Sending a fax when there is no dial tone

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to attempt to send a fax on a phone line that has no dial tone. The attempt should fail indicating that the (sending device’s) line has no dial tone.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to attempt to send a fax to a single recipient. Where, the sending device’s line is unplugged (thus having no dial tone).

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the line has no dial tone.

4. Verify that the call is retried according to retries settings.

5. Verify that all retries also fail indicating disconnection.

6. Verify that the call then reaches a “Maximum Retries Exceeded” status (and is not retried again).

7.3.3 Concurrency

7.3.3.1 Test case – Send faxes concurrently on all FSP’s or EFSP’s devices

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that exports multiple devices, can be used by the Comet Fax Service to successfully send a multiple page fax with a cover page on all the exported devices simultaneously.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure all of the Fax Service Provider or Extended Fax Service Provider devices as send enabled.

3. Simultaneously send a 7 page fax with a cover page using each the Fax Service Provider’s or Extended Fax Service Provider’s devices. Send the faxes to a single recipient, where each fax is sent to a different phone number (to avoid getting a busy signal).

4. For each of the faxes sent, verify that the 8-page fax (7 pages plus cover page) is successfully sent and reaches its destination.

5. For each of the faxes sent, verify that the original (sent) 8-page fax TIF image and the received TIF image are identical.

7.3.3.2 Test case – Send faxes concurrently using a single EFSP device that supports FSPI_CAP_MULTISEND

This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully send many concurrent multi-page faxes on the same device.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure only one of the Extended Fax Service Provider devices as send enabled (disable send on all other devices).

3. Simultaneously send 5 faxes (each composed of 7 pages and a cover page) using the Extended Fax Service Provider’s single send enabled device. Send the faxes to a single recipient, where each fax is sent to a different phone number (to avoid getting a busy signal).

4. Verify that the Extended Fax Service Provider device handles all the faxes simultaneously.
That is, all the simultaneous calls to FaxDevSendEx complete successfully.
Note that the Extended Fax Service Provider is not obligated to actually perform the fax session concurrently.

5. For each of the faxes sent, verify that the 8-page fax (7 pages plus cover page) is successfully sent and reaches its destination.

6. For each of the faxes sent, verify that the original (sent) 8-page fax TIF image and the received TIF image are identical.

7.3.3.3 Test case – Send a fax on an already receiving device of an EFSP that supports FSPI_CAP_MULTISEND
This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully send a multiple page fax on a device, while the device is receiving.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as send and receive enabled.

3. Using a different device, send a 5-page fax to Device1above.

4. While Device1 is receiving, send a fax (composed of 7 pages and a cover page) using the Extended Fax Service Provider’s Device1 device.

5. Verify that the Extended Fax Service Provider Device1 device sends the fax while it is receiving.
That is, the device handles both the sending and the receiving simultaneously.

6. Verify that the 5-page fax sent to Device1 is successfully received.

7. Verify that the 8-page fax (7 pages plus cover page) is successfully sent and reaches its destination.

8. For each of the faxes, verify that the original (sent) TIF image and the received TIF image are identical.

7.4 Receiving

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully used by the Comet Fax Service to receive faxes.

7.4.1 Fax Pages

7.4.1.1 Test case – Single Page Fax is successfully received

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully receive a single page fax.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a single page fax.

3. Verify that the single page fax is successfully received.

4. Verify that the original (sent) single page fax TIF image and the received TIF image are identical.

7.4.1.2 Test case – A multiple page fax is successfully received

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully receive a multiple page fax.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a 7 page fax.

3. Verify that the 7-page fax is successfully received.

4. Verify that the original (sent) 7-page fax TIF image and the received TIF image are identical.

5. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a 137-page fax.

6. Verify that the 137-page fax is successfully received.

7. Verify that the original (sent) 137-page fax TIF image and the received TIF image are identical.

7.4.2 Fax Session

7.4.2.1 Test case – Receiving a fax from a line that will disconnect before the first page is received

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to receive a fax from a line, which will disconnect before the first page of the fax is received. The attempt should fail indicating that the line was disconnected.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a fax from a line that will always disconnect the call before the first page of the fax is received.

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the call has been disconnected.

7.4.2.2 Test case – Receiving a fax from a line that will disconnect after the first page is received

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to receive a fax from a line, which will disconnect after the first page of the fax is received. The attempt should fail indicating that the line was disconnected, but the information of the received page (or pages) should be preserved.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a fax from a line that will always disconnect the call after the first page of the fax is received.

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the call has been disconnected.

4. Verify that the received TIF file, as indicated by the receive job information in the Comet Fax Service inbound queue, exists and is in valid format.

7.4.2.3 Test case – Receiving a non-fax call

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to attempt to receive a non-fax call, where the caller will then disconnect. The attempt should fail indicating that the call was not a fax call.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to attempt to receive a non-fax call. Where, the caller will wait a few seconds and then disconnect (as when a human calls a line and hears it’s a fax).

3. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the call was not a fax call.

4. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to attempt to receive a data call.

5. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has failed with a status indicating that the call was not a fax call.

7.4.3 Concurrency

7.4.3.1 Test case – Receive faxes concurrently on all FSP’s or EFSP’s devices

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that exports multiple devices, can be used by the Comet Fax Service to successfully receive a multiple page faxes on all the exported devices simultaneously.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure all the Fax Service Provider or Extended Fax Service Provider devices as receive enabled.

3. Simultaneously send a 7 page fax to each of the Fax Service Provider’s or Extended Fax Service Provider’s devices.

4. For each of the faxes sent, verify that the 7-page fax is successfully received.

5. For each of the faxes sent, verify that the original (sent) 7-page fax TIF image and the received TIF image are identical.

7.4.3.2 Test case – Receive faxes concurrently using a single EFSP device that supports FSPI_CAP_MULTISEND

This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully receive concurrent multi-page faxes on the same device simultaneously.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices as receive enabled.

3. Simultaneously send 5 faxes (each composed of 7 pages and a cover page) to the Extended Fax Service Provider’s single receive enabled device.

4. Verify that the Extended Fax Service Provider device successfully receives all the faxes simultaneously.

5. For each of the faxes sent, verify that the 7-page fax is successfully received.

6. For each of the faxes sent, verify that the original (sent) 7-page fax TIF image and the received TIF image are identical.

7.4.3.3 Test case – Receive a fax on an already sending device of an EFSP that supports FSPI_CAP_MULTISEND
This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully receive a multiple page fax on a device, while the device is sending.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as send and receive enabled.

3. Using Device1above, send a 5-page fax to a single recipient.

4. While Device1 is sending, receive a fax (composed of 7 pages and a cover page) using the Extended Fax Service Provider’s Device1 device.

5. Verify that the Extended Fax Service Provider Device1 device receives the fax while it is sending.
That is, the device handles both the sending and the receiving simultaneously.

6. Verify that the 7-page fax sent to Device1 is successfully received.

7. Verify that the 5-page fax sent from Device1 is successfully sent and reaches its destination.

8. For each of the faxes, verify that the original (sent) TIF image and the received TIF image are identical.

7.5 Aborting

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully used by the Comet Fax Service to abort both outbound and inbound faxes.

7.5.1 Fax Pages

7.5.1.1 Test case – Aborting an inbound fax before the first page is received

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an inbound fax before the first page of the fax is received.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a multi-page fax.

3. Before the first page of the fax is received, abort the receive job.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

5. Verify that the receive TIF file used by the receive job is deleted.

7.5.1.2 Test case – Aborting an inbound fax after the first page is received

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an inbound fax after the first page of the fax is received.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a multi-page fax.

3. After the first page of the fax is received and before the call completes, abort the receive job.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

5. Verify that the receive TIF file used by the receive job is deleted.

7.5.1.3 Test case – Aborting an inbound fax after the 45th page is received

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an inbound fax after the 45th page of the fax is received.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to receive a 50-page fax.

3. Immediately after the 45th page of the fax is received, abort the receive job.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

5. Verify that the receive TIF file used by the receive job is deleted.

7.5.1.4 Test case – Aborting an inbound fax after N milliseconds

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an inbound fax after N milliseconds from start of call.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure only one of the Fax Service Provider or Extended Fax Service Provider devices as receive enabled. Configure another device as send enabled.

3. Use the “Abort Tool” (as described in the section 9 “Test Tools”) to send a fax to your Fax Service Provider or Extended Fax Service Provider receiving device, and abort the job after N milliseconds.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

5. Verify that the receive TIF file used by the receive job is deleted.

Use the “Abort Tool” to test aborting a 10-page inbound job with N=0 to 5*60*1000 ms.

7.5.1.5 Test case – Aborting an outbound fax before the first page is sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an outbound fax before the first page of the fax is sent.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a multi-page fax.

3. Before the first page of the fax is sent, abort the send job.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.1.6 Test case – Aborting an outbound fax after the first page is sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an outbound fax after the first page of the fax is sent.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a multi-page fax.

3. After the first page of the fax is sent and before the call completes, abort the send job.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.1.7 Test case – Aborting an outbound fax after the 45th page is sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an outbound fax after the 45th page of the fax is sent.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use one of the Fax Service Provider’s or Extended Fax Service Provider’s devices to send a 50-page fax.

3. Immediately after the 45th page of the fax is sent, abort the send job.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.1.8 Test case – Aborting an outbound fax after N milliseconds

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL will behave correctly when used by the Comet Fax Service to abort an outbound fax after N milliseconds from start of call.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure only one of the Fax Service Provider or Extended Fax Service Provider devices as send enabled. Configure another device as receive enabled.

3. Use the “Abort Tool” (as described in the section 9 “Test Tools”) to send a fax using your Fax Service Provider or Extended Fax Service Provider send enabled device, and abort the send job after N milliseconds.

4. Verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

Use the “Abort Tool” to test aborting a 10-page outbound job with N=0 to 5*60*1000 ms.

7.5.2 Concurrency

7.5.2.1 Test case – Abort multiple inbound jobs simultaneously on all FSP’s or EFSP’s devices

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that exports multiple devices, can be used by the Comet Fax Service to successfully abort incoming multiple page faxes on all the exported devices simultaneously.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure all the Fax Service Provider or Extended Fax Service Provider devices as receive enabled.

3. Simultaneously receive a 7 page fax on each of the Fax Service Provider’s or Extended Fax Service Provider’s devices.

4. While the devices are receiving, simultaneously abort all the inbound (receive) jobs of the Fax Service Provider’s or Extended Fax Service Provider’s devices.

5. For each of the incoming faxes, verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.2.2 Test case – Abort multiple inbound jobs simultaneously on a single EFSP device that supports FSPI_CAP_MULTISEND

This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully abort concurrent incoming multi-page faxes on the same device simultaneously.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices as receive enabled.

3. Simultaneously send 5 faxes (each composed of 7 pages and a cover page) to the Extended Fax Service Provider’s single receive enabled device.

4. Verify that the Extended Fax Service Provider device begins receiving all the faxes simultaneously.

5. While the device is receiving, simultaneously abort all the inbound (receive) jobs on the device.

6. For each of the incoming faxes, verify that the Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.2.3 Test case – Abort an inbound job on a sending and receiving device of an EFSP that supports FSPI_CAP_MULTISEND
This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully abort an incoming multiple page fax on a device, while the device is sending and receving.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as send and receive enabled.

3. Using Device1above, send a 5-page fax to a single recipient.

4. While Device1 is sending, receive a fax (composed of 7 pages and a cover page) using the Extended Fax Service Provider’s Device1 device.

5. Verify that the Extended Fax Service Provider Device1 device begins receiving the fax while it is sending. That is, the device is both sending and receiving simultaneously.

6. While the device is both sending and receiving, abort the inbound (receive) job on the device.

7. Verify that the Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.2.4 Test case – Abort multiple outbound jobs simultaneously on all FSP’s or EFSP’s devices

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that exports multiple devices, can be used by the Comet Fax Service to successfully abort outgoing multiple page faxes on all the exported devices simultaneously.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure all the Fax Service Provider or Extended Fax Service Provider devices as send enabled.

3. Simultaneously send a 7 page fax on each of the Fax Service Provider’s or Extended Fax Service Provider’s devices.

4. While the devices are sending, simultaneously abort all the outbound (send) jobs of the Fax Service Provider’s or Extended Fax Service Provider’s devices.

5. For each of the outgoing faxes, verify that the Fax Service Provider or Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.2.5 Test case – Abort multiple outbound jobs simultaneously on a single EFSP device that supports FSPI_CAP_MULTISEND

This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully abort concurrent outgoing multi-page faxes on the same device simultaneously.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices as send enabled.

3. Simultaneously send 5 faxes (each composed of 7 pages and a cover page) using the Extended Fax Service Provider’s single send enabled device.

4. Verify that the Extended Fax Service Provider device begins sending all the faxes simultaneously.

5. While the device is sending, simultaneously abort all the outbound (send) jobs on the device.

6. For each of the outgoing faxes, verify that the Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.5.2.6 Test case – Abort an inbound job on a sending and receiving device of an EFSP that supports FSPI_CAP_MULTISEND
This test case verifies that an Extended Fax Service Provider DLL that supports FSPI_CAP_MULTISEND can be used by the Comet Fax Service to successfully abort an outgoing multiple page fax on a device, while the device is sending and receving.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as send and receive enabled.

3. Using Device1above, send a 5-page fax to a single recipient.

4. While Device1 is sending, receive a fax (composed of 7 pages and a cover page) using the Extended Fax Service Provider’s Device1 device.

5. Verify that the Extended Fax Service Provider Device1 device begins receiving the fax while it is sending. That is, the device is both sending and receiving simultaneously.

6. While the device is both sending and receiving, abort the outound (send) job on the device.

7. Verify that the Extended Fax Service Provider reports that the call has been aborted, and discontinues the call.

7.6 Cover Pages

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be successfully used by the Comet Fax Service to send faxes that contain cover pages.

7.6.1 Default Server Cover Pages

7.6.1.1 Test case – Server Cover Page CONFDENT.COV is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using the CONFDENT.COV server cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

3. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the CONFDENT.COV server cover page and enter both a subject line and a note.
Send the fax.

4. Verify that the cover page fax is successfully sent.

5. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

6. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

7. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the CONFDENT.COV server cover page and enter both a subject line and a note.
Send the fax.

8. Verify that the cover page fax is successfully sent.

9. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

10. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the CONFDENT.COV server cover page and enter a subject line but no note.
Send the fax.

11. Verify that the cover page fax is successfully sent.

12. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields).

13. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the CONFDENT.COV server cover page and enter a note but no subject line.
Send the fax.

14. Verify that the cover page fax is successfully sent.

15. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

7.6.1.2 Test case – Server Cover Page FYI.COV is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using the FYI.COV server cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

3. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the FYI.COV server cover page and enter both a subject line and a note.
Send the fax.

4. Verify that the cover page fax is successfully sent.

5. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

6. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

7. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the FYI.COV server cover page and enter both a subject line and a note.
Send the fax.

8. Verify that the cover page fax is successfully sent.

9. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

10. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the FYI.COV server cover page and enter a subject line but no note.
Send the fax.

11. Verify that the cover page fax is successfully sent.

12. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields).

13. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the FYI.COV server cover page and enter a note but no subject line.
Send the fax.

14. Verify that the cover page fax is successfully sent.

15. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

7.6.1.3 Test case – Server Cover Page GENERIC.COV is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using the GENERIC.COV server cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

3. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the GENERIC.COV server cover page and enter both a subject line and a note.
Send the fax.

4. Verify that the cover page fax is successfully sent.

5. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

6. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

7. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the GENERIC.COV server cover page and enter both a subject line and a note.
Send the fax.

8. Verify that the cover page fax is successfully sent.

9. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

10. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the GENERIC.COV server cover page and enter a subject line but no note.
Send the fax.

11. Verify that the cover page fax is successfully sent.

12. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields).

13. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the GENERIC.COV server cover page and enter a note but no subject line.
Send the fax.

14. Verify that the cover page fax is successfully sent.

15. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

7.6.1.4 Test case – Server Cover Page URGENT.COV is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using the URGENT.COV server cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

3. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the URGENT.COV server cover page and enter both a subject line and a note.
Send the fax.

4. Verify that the cover page fax is successfully sent.

5. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

6. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

7. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the URGENT.COV server cover page and enter both a subject line and a note.
Send the fax.

8. Verify that the cover page fax is successfully sent.

9. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

10. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the URGENT.COV server cover page and enter a subject line but no note.
Send the fax.

11. Verify that the cover page fax is successfully sent.

12. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields).

13. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the URGENT.COV server cover page and enter a note but no subject line.
Send the fax.

14. Verify that the cover page fax is successfully sent.

15. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

7.6.2 Personal Cover Pages

7.6.2.1 Test case – Personal Cover Page containing all fields is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using a personal cover page that contains all possible information fields (ALLFIELDS.COV).
See section 9 “Test Tools” for a description of the ALLFIELDS.COV cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Client Console to add the ALLFIELDS.COV personal cover page that contains all possible information fields -
Activate the Comet Fax Service Client Console. Select the “Microsoft SBS Fax Client”\Personal cover pages” node. Right click and select “Add”\Existing cover page…”.
In the “Browse for Cover Pages” dialog that opens, type the full path to the ALLFIELDS.COV file, and click “Open”.
Verify that the ALLFIELDS.COV cover page now appears in the right pane.

3. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

4. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the ALLFIELDS.COV server cover page and enter both a subject line and a note.
Send the fax.

5. Verify that the cover page fax is successfully sent.

6. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

7. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

8. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the ALLFIELDS.COV server cover page and enter both a subject line and a note.
Send the fax.

9. Verify that the cover page fax is successfully sent.

10. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

11. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the ALLFIELDS.COV server cover page and enter a subject line but no note.
Send the fax.

12. Verify that the cover page fax is successfully sent.

13. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields).

14. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the ALLFIELDS.COV server cover page and enter a note but no subject line.
Send the fax.

15. Verify that the cover page fax is successfully sent.

16. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant user information fields, subject and note).

7.6.2.2 Test case – Personal Cover Page containing no fields is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using a personal cover page that contains no information fields (NOFIELDS.COV).
See section 9 “Test Tools” for a description of the NOFIELDS.COV cover page.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Client Console to add the NOFIELDS.COV personal cover page that contains all possible information fields -
Activate the Comet Fax Service Client Console. Select the “Microsoft SBS Fax Client”\Personal cover pages” node. Right click and select “Add”\Existing cover page…”.
In the “Browse for Cover Pages” dialog that opens, type the full path to the NOFIELDS.COV file, and click “Open”.
Verify that the NOFIELDS.COV cover page now appears in the right pane.

3. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

4. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NOFIELDS.COV server cover page and enter both a subject line and a note.
Send the fax.

5. Verify that the cover page fax is successfully sent.

6. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with no information fields).

7. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

8. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NOFIELDS.COV server cover page and enter both a subject line and a note.
Send the fax.

9. Verify that the cover page fax is successfully sent.

10. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with no information fields).

11. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NOFIELDS.COV server cover page and enter a subject line but no note.
Send the fax.

12. Verify that the cover page fax is successfully sent.

13. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with no information fields).

14. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NOFIELDS.COV server cover page and enter a note but no subject line.
Send the fax.

15. Verify that the cover page fax is successfully sent.

16. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with no information fields).

7.6.2.3 Test case – Personal Cover Page containing only a subject is successfully sent

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using a personal cover page that contains only a subject information field (SubjectOnly.COV).

Note that the Fax Send Wizard GUI may prevent entering a note if the selected cover page does not contain a note information field.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Client Console to add the SubjectOnly.COV personal cover page that contains all possible information fields -
Activate the Comet Fax Service Client Console. Select the “Microsoft SBS Fax Client”\Personal cover pages” node. Right click and select “Add”\Existing cover page…”.
In the “Browse for Cover Pages” dialog that opens, type the full path to the SubjectOnly.COV file, and click “Open”.
Verify that the SubjectOnly.COV cover page now appears in the right pane.

3. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

4. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the SubjectOnly.COV server cover page and enter both a subject line and a note.
Send the fax.

5. Verify that the cover page fax is successfully sent.

6. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the subject information field).

7. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

8. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the SubjectOnly.COV server cover page and enter both a subject line and a note.
Send the fax.

9. Verify that the cover page fax is successfully sent.

10. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the subject information field).

11. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the SubjectOnly.COV server cover page and enter a subject line but no note.
Send the fax.

12. Verify that the cover page fax is successfully sent.

13. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the subject information field).

14. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the SubjectOnly.COV server cover page and enter a note but no subject line.
Send the fax.

15. Verify that the cover page fax is successfully sent.

Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the subject information field).

7.6.2.4 Test case – Personal Cover Page containing only a note is successfully sent

 [This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to successfully send a fax using a personal cover page that contains only a note information field (NoteOnly.COV).

Note that the Fax Send Wizard GUI may prevent entering a subject if the selected cover page does not contain a subject information field.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Client Console to add the NoteOnly.COV personal cover page that contains all possible information fields -
Activate the Comet Fax Service Client Console. Select the “Microsoft SBS Fax Client”\Personal cover pages” node. Right click and select “Add”\Existing cover page…”.
In the “Browse for Cover Pages” dialog that opens, type the full path to the NoteOnly.COV file, and click “Open”.
Verify that the NoteOnly.COV cover page now appears in the right pane.

3. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are empty.

4. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NoteOnly.COV server cover page and enter both a subject line and a note.
Send the fax.

5. Verify that the cover page fax is successfully sent.

6. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the note information field).

7. Use the Comet Fax Administration Console to configure the Comet Fax User Information so that all user information fields are all non-empty.

8. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NoteOnly.COV server cover page and enter both a subject line and a note.
Send the fax.

9. Verify that the cover page fax is successfully sent.

10. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the note information field).

11. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NoteOnly.COV server cover page and enter a subject line but no note.
Send the fax.

12. Verify that the cover page fax is successfully sent.

13. Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the note information field).

14. Use the Fax Send Wizard utility (fxssend.exe) to send a cover page fax via one of the Fax Service Provider’s or Extended Fax Service Provider’s devices.
In the wizard choose the NoteOnly.COV server cover page and enter a note but no subject line.
Send the fax.

15. Verify that the cover page fax is successfully sent.

Verify that the original (sent) single page fax TIF image and the received TIF image are identical, and that the cover page was correctly rendered (with the relevant text in the note information field).

7.7 Shutdown

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can cleanly shutdown when the Comet Fax Service so requests.
An Extended Fax Service Provider must perform all necessary cleanup upon a call to its FaxDevShtdown API. A Fax Service Provider must perform all its cleanup in its DllMain function when invoked with dwReason = DLL_PROCESS_DETACH.

Section 7.7.1 decribes the test cases common to both Fax Service Providers and Extended Fax Service Providers, section 7.7.1.6 describes the test cases relevant for Extended Fax Service Providers and section 7.7.3 describes the test cases relevant for Fax Service Providers.

7.7.1 Common

7.7.1.1 Test case – FSP\EFSP successfully shutsdown while device is sending

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that is used by the Comet Fax Service to send a fax, can successfully shutdown while its device is sending.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as send enabled.

3. Using Device1 above, send a 5-page fax to a single recipient.

4. Verify that Device1 starts sending the fax.

5. While Device1 is still sending, stop the Comet Fax Service.

6. For EFSP only – verify that FaxDevShutdown is invoked and completes successfully.

7. Verify that the Comet Fax Service is stopped.

8. For FSP only – verify that Device1 terminates the send job.

9. Re-start the Comet Fax Service.

10. Using Device1 again, send a 5-page fax to a single recipient.

11. Verify that the fax is sent successfully.

7.7.1.2 Test case – FSP\EFSP successfully shutsdown while device is receiving

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that is used by the Comet Fax Service to receive a fax, can successfully shutdown while its device is receiving.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as receive enabled.

3. Using Device1 above, receive a 5-page fax.

4. Verify that Device1 starts receiving the fax.

5. While Device1 is still receiving, stop the Comet Fax Service.

6. For EFSP only – verify that FaxDevShutdown is invoked and completes successfully.

7. Verify that the Comet Fax Service is stopped and that Device1 terminates the receive job.

8. Re-start the Comet Fax Service.

9. Using Device1 again, receive a 5-page fax.

10. Verify that the fax is received successfully.

7.7.1.3 Test case – FSP\EFSP successfully shutsdown while aborting an outbound job

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that is used by the Comet Fax Service to send a fax, can successfully shutdown while its device is aborting the send job.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as send enabled.

3. Using Device1 above, send a 5-page fax to a single recipient.

4. Verify that Device1 starts sending the fax.

5. Abort the above send job.

6. Verify that Device1 starts aborting the fax.

7. While Device1 is still aborting, stop the Comet Fax Service.

8. For EFSP only – verify that FaxDevShutdown is invoked and completes successfully.

9. Verify that the Comet Fax Service is stopped.

10. For FSP only – verify that Device1 terminates the send job.

11. Re-start the Comet Fax Service.

12. Using Device1 again, send a 5-page fax to a single recipient.

13. Verify that the fax is sent successfully.

7.7.1.4 Test case – FSP\EFSP successfully shutsdown while aborting an inbound job

This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that is used by the Comet Fax Service to receive a fax, can successfully shutdown while its device is aborting the receive job.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as receive enabled.

3. Using Device1 above, receive a 5-page fax.

4. Verify that Device1 starts receiving the fax.

5. Abort the above receive job.

6. Verify that Device1 starts aborting the fax.

7. While Device1 is still aborting, stop the Comet Fax Service.

8. For EFSP only – verify that FaxDevShutdown is invoked and completes successfully.

9. Verify that the Comet Fax Service is stopped and that Device1 terminates the receive job.

10. Re-start the Comet Fax Service.

11. Using Device1 again, receive a 5-page fax.

12. Verify that the fax is received successfully.

7.7.1.5 Test case – FSP\EFSP successfully shutsdown while starting a job (FaxDevStartJob)
This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that is used by the Comet Fax Service to receive a fax, can successfully shutdown while FaxDevStartJob code is executing.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as receive enabled.

3. Receive a 5-page fax on Device1 above.

4. Verify that the FaxDevStartJob API of the Fax Service Provider or Extended Fax Service Provider is invoked.

5. While FaxDevStartJob is still executing, stop the Comet Fax Service.

6. For EFSP only – verify that FaxDevShutdown is invoked and completes successfully.

7. Verify that the Comet Fax Service is stopped and that Device1 terminates the receive job.

8. Re-start the Comet Fax Service.

9. Using Device1 again, receive a 5-page fax.

10. Verify that the fax is received successfully.

7.7.1.6 Test case – FSP\EFSP successfully shutsdown while ending a job (FaxDevEndJob)
This test case verifies that a Fax Service Provider DLL or an Extended Fax Service Provider DLL that is used by the Comet Fax Service to send a fax, can successfully shutdown while FaxDevEndJob code is executing.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider or Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as receive enabled.

3. Send a 5-page fax to Device1 above.

4. Verify that Device1 above successfully sends the fax.

5. Verify that the FaxDevEndJob API of the Fax Service Provider or Extended Fax Service Provider is invoked, once the above send job completes.

6. While FaxDevEndJob is still executing, stop the Comet Fax Service.

7. For EFSP only – verify that FaxDevShutdown is invoked and completes successfully.

8. Verify that the Comet Fax Service is stopped.

9. Re-start the Comet Fax Service.

10. Using Device1 again, send a 5-page fax.

11. Verify that the fax is sent successfully.

7.7.2 EFSP

7.7.2.1 Test case – EFSP successfully shutsdown while reporting status (FaxDevReportStatusEx)
This test case verifies that an Extended Fax Service Provider DLL that is used by the Comet Fax Service to receive a fax, can successfully shutdown while FaxDevReportStatusEx code is executing.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as receive enabled.

3. Receive a 5-page fax on Device1 above.

4. Verify that Device1 above successfully receives the fax.

5. Verify that the FaxDevReportStatusEx API of the Extended Fax Service Provider is invoked.

6. While FaxDevReportStatusEx is still executing, stop the Comet Fax Service.

7. Verify that FaxDevShutdown is invoked and completes successfully.

8. Verify that the Comet Fax Service is stopped.

9. Re-start the Comet Fax Service.

10. Using Device1 again, receive a 5-page fax.

11. Verify that the fax is received successfully.

7.7.2.2 Test case – EFSP that supports job context reestablishment successfully shutsdown while reestablishing job context (FaxDevReestablishJobContext)
This test case verifies that an Extended Fax Service Provider DLL that supports job context reestablishment and is used by the Comet Fax Service can successfully shutdown while its FaxDevReestablishJobContext code is executing.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Extended Fax Service Provider devices (Device1) as receive enabled.

3. Send a 5-page fax on Device1 above.

4. Verify that Device1 above starts sending the fax.

5. While the device is sending, stop the Comet Fax Service.

6. Verify that FaxDevShutdown is invoked and completes successfully.
Also verify that the Comet Fax Service is stopped.

7. Re-start the Comet Fax Service.

8. Verify that the FaxDevReestablishJobContext API of the Extended Fax Service Provider is invoked.

9. While FaxDevReestablishJobContext is still executing, stop the Comet Fax Service again.

10. Verify that FaxDevShutdown is invoked and completes successfully.

11. Verify that the Comet Fax Service is stopped.

12. Re-start the Comet Fax Service.

13. Verify that the FaxDevReestablishJobContext API of the Extended Fax Service Provider is invoked and completes successfully.

14. Verify that the above (5-page) send job is correctlly reestablished and completes successfully.

15. Using Device1 again, send another 4-page fax.

16. Verify that the fax is sent successfully.

7.7.2.3 Test case – EFSP successfully shutsdown while enumerating devices (FaxDevEnumerateDevices)
This test case verifies that an Extended Fax Service Provider DLL can successfully shutdown while FaxDevEnumerateDevices code is executing.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. While the Comet Fax Service is starting and FaxDevEnumerateDevices is executing, stop the Comet Fax Service.

3. Verify that FaxDevShutdown is invoked and completes successfully.

4. Verify that the Comet Fax Service is stopped.

5. Re-start the Comet Fax Service.

6. Send a fax using one of the Extended Fax Srevice Provider devices.

7. Verify that the fax is sent successfully.

7.7.2.4 Test case – EFSP successfully shutsdown while initializing (FaxDevInitializeEx)
This test case verifies that an Extended Fax Service Provider DLL can successfully shutdown while FaxDevInitializeEx code is executing.

Scenario –

1. Start the Comet Fax Service with the Extended Fax Service Provider installed and configured.

2. While the Comet Fax Service is starting and FaxDevInitializeEx is executing, stop the Comet Fax Service.

3. Verify that FaxDevShutdown is invoked and completes successfully.

4. Verify that the Comet Fax Service is stopped.

5. Re-start the Comet Fax Service.

6. Send a fax using one of the Extended Fax Srevice Provider devices.

7. Verify that the fax is sent successfully.

7.7.2.5 Test case – EFSP successfully shutsdown while getting log data (FaxDevGetLogData)
[TBD] FaxDevGetLogData is not supported in this release.

7.7.3 FSP

7.7.3.1 Test case – FSP successfully shutsdown while reporting status (FaxDevReportStatus)
This test case verifies that a Fax Service Provider DLL that is used by the Comet Fax Service to receive a fax, can successfully shutdown while FaxDevReportStatus code is executing.

Scenario –

1. Start the Comet Fax Service with the Fax Service Provider installed and configured.

2. Use the Comet Fax Administration Console to configure one of the Fax Service Provider devices (Device1) as receive enabled.

3. Receive a 5-page fax on Device1 above.

4. Verify that Device1 above successfully receives the fax.

5. Verify that the FaxDevReportStatus API of the Fax Service Provider is invoked.

6. While FaxDevReportStatus is still executing, stop the Comet Fax Service.

7. Verify that the Comet Fax Service is stopped.

8. Re-start the Comet Fax Service.

9. Using Device1 again, receive a 5-page fax.

10. Verify that the fax is received successfully.

7.8 Stress

The following tests strive to verify that a Fax Service Provider DLL or an Extended Fax Service Provider DLL can be used by the Comet Fax Service to send, receive and abort faxes under stress conditions.

7.8.1.1 Test case – Many sends receives and aborts on all FSP\EFSP devices simultaneously

Use the SendBroadcastFax and Abort tools (described in the Tools section) to perform many send, receive and abort operations simultaneously.

Note that you can write a short script that invokes the SendBroadcastFax tool, then sleeps for 2 seconds and then recalls itself. Such a script will allow you to continuously generate send operations.

Verify that all sent faxes are successfully sent.

Verify that all received faxes are successfully received.

Verify that all aborted jobs (whether incoming or outgoing) are successfully terminated.

8 Specific Tests

This section describes test areas that pertain to specific Fax Service Provider or Extended Fax Service Provider implementations. The listed test areas may not be relevant to all implementations, and naturally not every possible implementation or test area is covered.
The Fax Service Provider and Extended Fax Service Provider developers should recognize which of the test areas are relevant to their implementation. The developers should also invest time defining other specific test areas (not included here) that their implementation may require testing for, and perform any further testing.

The following sub-sections describe considerations in testing several specific Fax Service Provider and Extended Fax Service Provider implementations. Actual test cases are not detailed, as they are implementation dependent. The Fax Service Provider and Extended Fax Service Provider developers should define the specific test cases that their implementation requires.

8.1 Implementation of the T30 Protocol

This sub-section is relevant for any Fax Service Provider or Extended Fax Service Provider that implements the T30 Protocol. Any such Provider should test that its implementation of the T30 Protocol is correct and complete, precisely matching T30 specifications as documented by all T30 ITU-T documents.

Some examples of test areas are:

· Support for sending and receiving faxes via class 1, 2 and 2.0 modems.

· Correct implementation of all reported capabilities (in the DIS frame that the Provider sends), such as different transmission rates and schemes, 1D and 2D encoding, different paper length and width, resolution, minimum wait time, etc.

· Rejection of any attempt by the other side to communicate in a manner that does not match the Provider’s reported capabilities.

· Correct implementation of T30 ECM, if supported, or correctly rejecting any attempt for ECM by the other side, if not supported.

· Correct handling of carrier dropouts.
Note that carrier dropouts are quite common in satellite communications.

· Correct responses to any T30 violations that the other side may generate.

· ISDN support.

There exist some very helpful tools for testing T30 Protocol implementations, such as:

· FaxTrace® by Telegra
FaxTrace® uses scripts, to stress the device or network under test with well-defined normal, difficult to handle, and abnormal calls.
Website – http://www.telegra.com
· FaxLab® by Genoa Technology (now known as Quality Logic)
FaxLab® plays back the behavior of real-world devices.
Website – http://www.qualitylogic.com
8.2 Implementation using a Network

This sub-section is relevant for any Fax Service Provider or Extended Fax Service Provider implementation that uses a network. Any such Provider should test that its implementation takes into account any explicit and implicit network dependencies.

Some examples of test areas are:

· Correct behavior over different network platforms and configurations.

· Behavior under heavy network load.

· Correct handling of network timeouts.

· Maintaining network security.

· Temporary loss of network.

8.3 Implementation delegating work to another Server

This sub-section is relevant for any Fax Service Provider or Extended Fax Service Provider implementation that delegates work to another server. Any such Provider should test that its implementation takes into account any explicit and implicit dependencies on the other server state and configuration.

Some examples of test areas are:

· Correct behavior when the remote server (that work is delegated to) is down.

· Correct behavior when the remote service goes down in the middle of a session.

· Correct behavior when the remote server is up but the attempt to connect fails.
This may happen due to a bad password, network timeouts, server resources, etc.

· Support for receiving faxes from the remote server.

· Security issues on the remote server.
Most importantly fax content confidentiality.

· User account issues on the remote server.
Such as password control, quota, activity reports, cost reports, billing, etc.

· Remote server support of concurrent sessions.
How many concurrent sessions can exist between the Provider and the remote server?
How many concurrent sessions will hurt performance?

9 Test Tools

In an effort to aid 3rd parties test their Fax Service Provider or Extended Fax Service Provider, MS has made available the tools and files described in this section.
Each of the following sub-sections contains a general description of the specified tool, the location at which it can be found and the recommended context for its use.

Please note that MS is not obligated to provide any additional support for these tools and files.

9.1 FSP Tester

The FSP Tester (FspTester.exe) is a stand-alone tool that is independent of the Comet Fax Server product, the tool can be used for testing 3rd party FSPs prior to shipping of the final Fax Server product.

The tool invokes the FSPI functions simulating typical scenarios (for example sending a fax, receiving a fax, aborting active jobs, starting new jobs, getting reports on active / non active job status, ending jobs etc) and less-typical scenarios (such as API calls with invalid parameters).

This tool can be used for testing the FSPI interface only (and not the EFSPI interface) on Tapi FSPs only, the tool cannot be used for testing FSPs, which support virtual devices.
Location:

The tool and all accompanying files are located under the Tools\FspTester directory.

Use:

This tool is recommended for performing the Component tests detailed in section 6, on TAPI FSPs.
9.2 EFSP Tester

The EFSP Tester (EfspTester.exe) is a stand-alone tool that is independent of the Comet Fax Server product, the tool can be used for testing 3rd party EFSPs prior to shipping of the final Fax Server product.

The tool invokes the EFSPI functions simulating typical scenarios (for example sending a fax, receiving a fax, aborting active jobs, starting new jobs, getting reports on active / non active job status, ending jobs etc) and less-typical scenarios (such as API calls with invalid parameters).

This tool can be used for testing the EFSPI interface only (and not the FSPI interface) on Virtual EFSPs only, the tool cannot be used for testing TAPI EFSPs, which support non-virtual devices.
Location:

The tool and all accompanying files are located under the Tools\EfspTester directory.

Use:

This tool is recommended for performing the Component tests detailed in section 6, on Virtual EFSPs.

9.3 Hogger

The Hogger is a command line application that performs a resource-hogging algorithm to emulate a low resource situation.
Lack of resources is the most common reason for function failure. Thus the Hogger can be used to check that the code under test correctly handles failures of any functions that it invokes and that it performs correct cleanup when these functions fail.

Hogger algorithm –

The hogger can hog a specific resource from a predefined list.

The most important is memory, then GDI, disk and registry space.

The hogger hogs the resource until that resource is not available to the hogger process anymore, then the hogger sleeps for a predefined period, frees a predefined amount of resources, sleeps for another predefined period, and then starts the hogging process again.

This way other processes (including the process under test) will suffer from periodic lack of resources, and therefore API calls will fail at different places in the code under test.

Location:

The tool and all accompanying files are located under the Tools\Hogger directory.

Use:

This tool is recommended for performing the Low Memmory Conditions tests detailed in section 6.8.

9.4 Driver Verifier

The “Driver Verifier” (verifier.exe) is a tool for testing driver integrity, by applying directed pressure on selected drivers.

The tool can be used to:

· Allocate all of a driver’s pool allocations from special pool.

· Provide extreme memory pressure on a specific driver without affecting other drivers and regardless of system memory size.

· Perform automatic parameter validation on all spinlock, IRQL and pool allocation calls made by the driver.

· Inject failures into pool allocation requests.

· Examine all pools being freed to ensure no pending timers are inside the pool allocation.

· Detect pool leakage.

· Checking driver unload to catch drivers that unload forgetting to free resources.

Location:

The tool can be found in the NT5 system directory (%windir%\system32).

Use:

As described in section 6.9.

9.5 SendBroadcastFax

The SendBroadcastFax (SendBroadcastFax.exe) is a command line utility for sending a broadcast fax via the comet-fax service.

It also enables you to automate a variety of client operations invoked on recipients such as: randomly abort a recipient or abort the recipient after χ seconds from fax submission.

The test receives as input an ini file path that specifies its settings.

Location:

The tool and all accompanying files are located under the Tools\SendBroadcastFax directory.

Use:

This tool is recommended for performing the Integration Tests detailed in section 7.

9.6 Abort Tool

The Abort tool (AbortTest.exe) is a command line utility for testing the abortion of send and receive operations of the comet-fax service.
The tool queues a send job (according to the command line parameters) and then waits start_time ms before aborting either the send or the receive job. After sleeping for a minute, the tool queues another send job and waits satrt_time+delta ms before performing another abort. The tool continues to queue and abort at delta ms increments, untill it queues a send job and waits stop_time ms before aborting.
After every sanity number of jobs are queued and aborted, the tool performs a sanity check (sending a fax without aborting it).

The tool receives the following parameters:

server_name
A Comet Fax server name.

fax_number
A fax number to send faxes to.

document
The name of the document to send.

cover_page
The name of the fax cover page to send.

abort_receive_job
A flag indicating whether to abort the receive job.

start_time
The minimum time to wait before starting the abortion operation.

stop_time
The maximum time to wait before starting the abortion operation.

delta
The delta time increments from start_time to stop_time.

sanity
The number of aborts after which to perform a sanity check.
After every sanity aborts a complete fax send operation will be performed, as a sanity check.

Location:

The tool and all accompanying files are located under the Tools\AbortTest directory.

Use:

This tool is recommended for performing the Integration Tests that deal with aborting jobs as detailed in sections 7.5, 7.7.1.3, 7.7.1.4 and 7.8.

9.7 Cover Pages Arsenal

The Cover Page Arsenal is a collection of all sorts of cover pages, variying in paper size, text, fields, orientation etc.
The Cover Page Arsenal contains several classes of cover pages:

 Class 1 - Empty CP.

 Class 2 - CP with subject field only.

 Class 3 - CP with note field only.

 Class 4 - CP with a subject and a note filed.

 Class 5 - CP with all possible fields.

 Class 8 - CP with drawing objects only.

 Class 9 - CP with many different objects (fields, text, drawings, etc).

 Class 10 - CP with font that is not available on server.

 Class 11 - Landscape CPs in all paper sizes.

 Class 12 - Portrait CPs in all paper sizes.

The cover page filenames in the Cover Page Arsenal are in the form Cp_xx*.cov, where xx corresponds to the test classes above.

Additional cover pages in arsenal:

· ALLFIELDS.COV

· NOFIELDS.COV

· SubjectOnly.COV

· NoteOnly.COV

· SubNote.COV

Interesting Cover Pages not in arsenal:

· CP with 0 margins

· CP with very large margins

· CP with 0 top and bottom margins but large left and right margins.

· CP with large top and bottom margins but 0 left and right margins.

· CP with very small field size (i.e. every field has room for just 1 char)

· CP with very large field size (i.e. every field has room for 100 chars, note & subject even more).

· Existing “server side” SBS CPs.

· Server side CPs which are provided with CometFax.

· Personal CPs created on non-NT5 clients.

· Invalid CPs (e.g. rename a file.doc as file.cov and attempt to use it as a CP).

Location:

The Cover Page Arsenal is located under the Tools\CPArsenal directory.

Use:

This tool is recommended for performing the Integration Tests that deal with cover pages as detailed in section 7.6
�PAGE \# "'Page: '#'�'" �Page: 12��� Is this what we are calling it?

�PAGE \# "'Page: '#'�'" �Page: 107��� TO DO – if we aren’t ready with this yet, then “a drop of this tool ASAP”

�PAGE \# "'Page: '#'�'" �Page: 107��� TO DO – if we aren’t ready with this yet, then “a drop of this tool ASAP”

