Fax Server Test Plan

Table of Contents
I. INTRODUCTION
4

A. Document Purpose
4

B. Document Summary
4

C. Document History/Revision
5

II. BACKGROUND
5

A. Product Vision and Goals
5

B. Contacts
6

C. Location of Pertinent Information
6

III. QUALITY OBJECTIVE
6

IV. RESPONSIBLE FOR DELIVERABLES
7

A. Functional Group Responsibilities
7

V. TESTING METHODOLOGY
7

A. Overall Strategy
7

B. Scope
8

VI. TESTING APPROACH
8

A. Milestone Process Project Level
8

B. Test Documentation
9

C. Test Release Procedures
11

D. Post-Code Complete (Stabilization)Testing
11

E. Automation Strategy
12

F. Integration Testing Strategy
13

G. API Testing Strategy
13

H. Content Testing
14

I. Performance (Benchmark) Testing
14

J. Out-Of-Memory and Low Memory Testing
14

K. Setup Testing Strategy
15

L. Configuration Testing
15

M. Compatibility Testing - Hardware
16

P. Ad Hoc Testing Strategies
16

Q. Localization Test Strategy
16

R. DBCS Test Strategy
16

S. Post Ship Strategy
16

T. Beta Strategy
16

V. Crippled Version Strategy
16

VII. THIRD PARTY DEPENDENCIES
16

A. List of Dependencies
16

B. Negotiating With A Third Party
17

VIII. SCHEDULE
17

IX. PERSONNEL/TEST AREAS
17

A. Team Structure
17

B. Area Breakdown
17

C. Interns/Contractors
18

X. RESOURCE REQUIREMENTS
18

A. Training Requirements
18

B. Hardware Requirements
18

C. Software Requirements
18

D. Office Space Requirements
18

XI. BUG PROCESS
18

A. Database Administration
18

B. Bug Life Cycle
18

C. Remote Sites
18

XII. METRICS
18

A. Essential Standard Metrics
18

B. Optional Metrics
18

C. Reports
18

XIII. RISKS
18

A. Risk Areas
Error! Bookmark not defined.

XIV. SHIPPING THE PRODUCT
19

A. Ship Criteria
19

B. Building Golden Masters And Golden Verification
19

C. Versions
19

D. Sign Off Requirements
19

XV. ARCHIVING
19

XVI. GLOSSARY
19

INTRODUCTION

A. Document location

This document is located on \\haifaslm\SLMCOMET\src\fax\faxtest\docs\FaxServerTestPlan.doc.

B. Document Purpose

A test plan describes the high level strategies and methodologies used to plan, organize and manage testing of a software project at Microsoft. This document contains sufficient detail to be informative for members of the core test team. In addition, the structure is such that any reader can grasp fundamental ideas and processes by skimming the first few pages. Since many sections cannot be written without some discussion and agreement with other functional leads on the project, a test plan often constitutes “the project plan” in the absence of any other. However, the test plan does not describe implementation details of test cases nor technical details of how product features should work.

C. Document Summary

The Comet fax server test plan is based on the NT5 fax test plan, but it enhances it a lot with new Comet features and better coverage.

Test strategies:

· Validation. Each operation should be validated by a test. For example all sent faxes are received correctly, and routed accordingly.

· Massive system and stress tests.

· Self-host.
Traditional – users will send faxes from their workstations, and faxes will be received via our fax server.
As printer – people will send faxes to the hard-copy printer via our fax server.

· Integration with Comet (CRM, admin, logging etc.).

· API (module) testing.

· Hardware coverage (server side modems & fax-boards, other side fax devices).

· Ad hoc testing.

NT5 fax test plan (as opposed to Comet fax test plan): \\nttest\ntct\slm\src\ntfax\specs\testplan.doc .

Most of the NT5 fax test specs need revisions and enhancements.

Common test areas to NT5 fax and Comet fax server:

· Fax Send Wizard. (Item 4.12 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\faxsend.doc)

· Fax client API. (Item 4.12 in NT5 test plan: TBD)

· Fax client COM interface.

· MAPI fax extension. (Item 4.14 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\mapi.doc)

· Image viewer.

· MSFAX TIFF tags. (Item 4.16 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\tifftag.doc)

· Control Panel. (Item 4.10 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\control.doc).

· Routing. (Item 4.9 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\routing.doc).

· Printers preferences. (Item 4.11 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\printer.doc).

· Status monitor. (Item 4.13 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\faxstat.doc).

· Performance counters. (Item 4.15 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\faxperf.doc).

· Cover page editor. (Item 4.17 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\cpe.doc).

Test areas that need enhancements from the NT5 fax test plan:

· Support for fax boards (FSP interface). NT5 fax is a standalone application that supports up to 2 fax devices, so fax board vendors have no opportunity there. The Comet fax server is a server application that should support dozens of fax devices and is a very good opportunity for fax board vendors. There’s an important role for program management here, in getting the important fax board vendors to write FSP’s for the Comet fax server. We, in turn, need to test these FSPs in order to verify that their quality is good.
TBD: Will we write an acceptance test for 3rd party FSPs?

· SDK. All clients, server – public interfaces.

· Security. We also support remote clients, and of different OS’s. (Item 4.6 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\security.doc).

· Inbound routing extensions. In a large organization, managing incoming faxes with smart inbound routing can save a lot of work. (Item 4.9 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\routing.doc).
TBD: will we write an inbound router to test the fax server? Will we have API test for inbound routers?

· Setup. Comet has it’s own setup, including clients, and must consider the existence of previous MSFAX installations. (Item 4.1 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\setup.doc).

· Modem compatibility. (Item 4.2 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\modem.doc and \\nttest\ntct\slm\src\ntfax\specs\faxwhql.doc and \\nttest\ntct\slm\src\ntfax\specs\faxvrfy.doc).
This is an important issue, since not all MS-certified fax-modems are tested with MSFax, and those that do get tested are tested very superficially.

· MMC. Comet has a different admin model. (Item 4.6 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\mmc.doc).

· Queue. Again, client issues. (Item 4.2 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\queue.doc).

· Logging. Comet logging model. (Item 4.9 in NT5 test plan: \\nttest\ntct\slm\src\ntfax\specs\routing.doc).

· Media detection. If Media detection is moved to the CRM, this item will be removed.

· Performance.

· Modem CoClass installer.

· Ad-hoc.

Here’s a list of new test areas for the Comet fax server:

· Co-existence with existing fax software, especially on the clients.

· Scale.

· Reliability.

· Fax client queue management.

· Fax client logging.

· Least cost routing. Is there an LCR feature?

· Clients. The Comet fax clients may be Win95, Win98, NT4 and NT5.
TBD: which flavors do we test? Which SP?

· Array. The Comet servers may be in an array configuration.

· Command line (print.exe).

· Help files.

· Y2K.

· Integration with CRM.

· IP fax (T.37 & T.38).

· Open Port’s proprietary Internet FSP.

D. Document History/Revision

Micky Snir (MickyS) – 7/4/98 – 1st version. Draft*1 Topic should be addressed in each project test plan

E. Product Vision and Goals

Goals: provide a very stable/reliable fax server, reduce PSS calls (compared with SBS) and integrate into Comet.
Vision (short term) - Provide a simple Fax Server solution for small/medium organization and branch offices.

Vision (long term) - Provide a comprehensive Fax Server solution that can meet most of the requirements that LORGs have.

F. Contacts

*1 Topic should be addressed in each project test plan

Functional Group
Lead

Development
Boaz Feldbaum (BoazF)

Localization
TBD

Marketing
TBD

Product Support
TBD

Program Management
Or Ben-Natan (OrBen)

Testing
Micky Snir (MickyS)

User Education
TBD

G. Location of Pertinent Information

*1 Topic should be addressed in each project test plan

1. Raid server

\\haifaslm\slmcomet, fax project.

2. Product servers

TBD.

3. Product specification server

TBD.

4. Test case server

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

\\haifaslm\slmcomet, fax project, faxtest subdirectory.

5. Tools server

TBD.

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

II. QUALITY OBJECTIVE

Quality for Comet fax server will be composed of the following attributes listed in order of priority.

· Schedule - The product ships on time. The current target date is NT5 RTM +60 days.

· Reliability.
– Users should never run into a GPF, especially in the fax server. They still may crash due to circumstances outside our control, such as bugs in client applications that use our API. This will be measured by counting the percentage of PSS calls that involve a GPF.
– Users should never lose data. All sent faxes will reach their destination and in any case the user will be notified (of success and of failure). All received faxes will reach their destination according to inbound routing.

· Integration.
The fax server must be well integrated into Comet. The main areas are admin and CRM.

· Usability.
The fax server and its client components must be easy to use. The server part is in the integration bullet above. The client side is the seamless operation of the fax printer, and the robustness of the client side fax API and utilities.

· Hardware compatibility.
– Fax server’s compatibility with fax-modems from the NT5 HCT.
– Sending & receiving faxes to & from the most common fax devices (in the remote location).
– Fax server’s compatibility with fax-boards.

· Performance.
Client side – sending a fax is like printing to a fax printer. Therefor, sending a fax to the fax server’s queue should take as long as it takes to send the document to a printer’s queue.
Server side – fax should be sent as fast as possible. This means using the most appropriate FSP, with the least unneeded retries.

III. RESPONSIBLE FOR DELIVERABLES

*1 Topic should be addressed in each project test plan

A. Functional Group Responsibilities

Task
PM
DEV
TEST
UE
MKT
PSS

Write vision statement for product
x

x

Create daily builds

x

Write setup

x

Test templates

x

Test code from external groups

x

Master project schedule

x
x

Help Testing

x
x

Build golden masters

x

Manage the beta
x
x
x

Wish List
x
x
x

x

Disk Building

x

Disk QA

x

Create Benchmarks

x

Run benchmark tests

x

BVT

x

Localization?

TBD

Create test release documents (TRD)

x

Creating Contracts
x

Archiving
x
x
x

IV. TESTING METHODOLOGY

A. Overall Strategy

Comet fax uses the code base of NT5 fax. NT5 fax is after beta 2 so it is already code complete and tested by the NT5 fax test team.

At 1st we apply the NT5 test plan. We will and add new tests for Comet-fax features and enhance the NT5 test-plan were needed.

There will be no Comet-fax build at least until the Comet preliminary release, so until the Comet preliminary release we will enhance the NT5 fax test plan.

As soon as we will have Comet-fax builds, test and dev will work together on new features, so that each new feature is tested as soon as it is code complete. Each and every Dev checkin will be code-reviewed by a member of the test team.

We will try to automate each test, and the test cycle as well.

Tests will include as much verification as possible, e.g. each sent fax will be compared to the corresponding received fax, not only API return values are checked but when possible the API’s action is verified too, etc.

We will strive for a common code base for all platforms (NT4 (& x86, NT5 (& x86, Win95, Win98).

We will strive to have a full test cycle per build, and therefor automation is important. In any case, the emphasis will be on the most recent checkins, the buggiest components and the most risky components.

The last build of each milestone will have a full test cycle.

We will start with a weekly build, and move to more frequent builds as needed.

System and stress tests to verify the reliability and stability of the fax server are the most important.

Self-host will be used as a system test as well.

B. Scope

The Comet fax test team will test all aspects of the Comet fax server and clients except:

· The FSP interface. TBD – we may write:
– FSP test suite as an acceptance test for FSPs. Testing virtual FSPs is easier, since there’s no TAPI code involved.
– An FSP stub to test the fax server.
The reason besides lack of HR and that OpenPort will write 3 FSPs for us, and each fax-board vendors will write one too. So testing those FSPs indirectly tests the FSP interface.

· OpenPort FSPs. We will conduct acceptance tests, but they will not be a part of our test cycle.
OpenPort is responsible for testing their FSPs. We will review their test-plan, and perform only sanity checks.

· Win95 and Win98 clients. Contractors develop those.
TBD - I do not know yet the extent of testing that they do, and therefor what we should do.

· International support and Localization. For each component (server, clients) we will have a machine with a foreign language (German or French) and maybe a Japanese one. We will not test content, only functionality.

· TBD – outbound & inbound routing.

· TBD: upgrade of SBS to Comet.

V. Testing Approach
A. Milestone Process Project Level

Before every milestone we will brainstorm for new test cases.

I consider this very important since usually after we have a test plan ready, we dive into implementing it and we tend to forget that we must always look for new test cases.

1. Development phase

The goal for Testing during this period is to thoroughly test the new features implemented in the milestone and their interaction with previous areas of the product.

Many features already exist and are testable, since the Comet fax server is based on the NT5 fax, which is code complete and after beta 2.

Bugs that must be fixed at this phase will be marked as “test blockers”. It is recommended the all priority 1 bugs will also be fixed during this phase.

Each and every bug must have a repro that is a part of the test cycle, preferably an automated repro.

We will have a bug meeting every 1 or 2 weeks in order to evaluate the dev and test efforts. Participants – dev and test leads. Optional participants – AviN (Comet dev lead), NirM (Comet test lead) and fax team members.

2. Stabilization phase

During this stage we will run full test cycles on the product.

We will have bug meetings once a week or as needed in order to prioritize bugs, set test focus and evaluate the quality of the product.

We must review all our test cases again. We must refresh our thoughts and clear any fixations we have about testing. We have gained a better knowledge of the product, and we must take advantage of it and make sure that no important scenario has escaped us.

At least 1 machine of each (server, clients) will not get upgraded each build, in order to test stress over time. This machine will be upgraded every 3 weeks, or sooner if builds are not stable enough.

B. Test Documentation

1. Test specifications

TBD – a test spec for each of the following areas:

· SDK. All client OSs, including COM interface.

· Fax Send Wizard. Based on: \\nttest\ntct\slm\src\ntfax\specs\faxsend.doc.

· Fax client queue management.

· Fax client logging. Based on: \\nttest\ntct\slm\src\ntfax\specs\routing.doc.

· Fax server queue management. Based on: \\nttest\ntct\slm\src\ntfax\specs\queue.doc.

· Fax server logging. Based on: \\nttest\ntct\slm\src\ntfax\specs\queue.doc.

· Exchange connector. Based on: \\nttest\ntct\slm\src\ntfax\specs\mapi.doc.

· Cover page editor. Based on: \\nttest\ntct\slm\src\ntfax\specs\cpe.doc.

· Image viewer.

· FSP interface – TBD:will we test it? Will testing OpenPort and board FSPs suffice?

· Routing. Based on: \\nttest\ntct\slm\src\ntfax\specs\routing.doc.

· Printers preferences. Based on: \\nttest\ntct\slm\src\ntfax\specs\printer.doc.

· Status monitor. Based on: \\nttest\ntct\slm\src\ntfax\specs\faxstat.doc.

· Performance counters. Based on: \\nttest\ntct\slm\src\ntfax\specs\faxperf.doc.

· Setup. Comet has it’s own setup, including clients, and must consider the existence of previous MSFAX installations. Based on: \\nttest\ntct\slm\src\ntfax\specs\setup.doc.

· LCR.

· Help files.

· Admin COM object.

· Scale.

· Security. Based on: \\nttest\ntct\slm\src\ntfax\specs\security.doc.

· Least cost routing.

· NT5 client.

· NT4 client. TBD – which SP?

· Win98 client.

· Win95 client TBD – which flavor?

· Arrays.

· Integrated with CRM.

· Y2K.

· Control Panel. Based on: \\nttest\ntct\slm\src\ntfax\specs\control.doc.

· MSFAX TIFF tags. Based on: \\nttest\ntct\slm\src\ntfax\specs\tifftag.doc.

· OpenPort’s IP fax FSP.

· OpenPort’s proprietary Internet FSP.

· T30 protocol (UNIMODEM FSP).

· Media detection.

· Migration to NT5 DS (registry / DS abstraction layer).

· Command line Print.exe.

· Performance.

· Guerilla testing.

· Miscellaneous.
Stopping the fax service in the middle of actions (while sending a fax, while fax MMC is open and then close it, etc.).

· Properties persistence.
Verify that if a property is changed, the change is persistent. Stop the service, or reboot, and verify that the property persists.
Several properties can be changed via different controls. Verify that these ways are equivalent.

2. Test specification reviews

The object if the spec review is to prioritize
*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

the test cases and preferably to find new ones.

During each milestone, a test specification review will be conducted in coordination with development of each testable unit. Spec reviews should occur early enough during development to allow revisions to the spec. Each test spec will be reviewed for completeness by the tester author, the developer, a program manager (optional), and at least one additional tester. Test cases, on the other hand, may be reviewed on an as needed basis (suggested for very complex features and/or for inexperienced testers). Each tester will be responsible for getting their specs/cases completed and reviewed in a timely manner.

At the beginning of each milestone the test lead should determine what testable units are going to be spec'ed and cased in the up coming milestone. A preliminary schedule of spec reviews for each person on the team should be ready at the beginning of the milestone. The first spec review for each tester should be scheduled. A test spec for a testable unit should be brought to high stability during the development phase of that testable unit.

3. Test cases

Do:

· Have one "Verify" statement (or its equivalent) per case.

· Give a list of equivalence classes for each "Verify" statement.

· Write each case to be run standalone. It shouldn't depend on previous cases.

· Use shared cases where appropriate

· Be specific enough to be understood, but vague enough to accommodate minor program changes.

· Look for areas of functionality that can be put into common documents

· Think "reusable code."

Don’t:

· Don’t use “correctly”, “as it should”, or “ as speced” in a case - define what correct is.

· Don't have cases rely on other cases being run.

· Don't use test files unless clearly helpful. Try to have the creation of the test file be part of the case.

· Don't give steps to repro, unless non-obvious.

· Don't list permutations of items that are independent of each other.

· Each single issue in the test spec should translate to a single case.

All cases should conform to the following model:

Abstract:
Verify this issue:

() EquivalenceClassA description

() EquivalenceClassB description

() EquivalenceClassC description

Specific Example:
Verify that documents can be removed from the queue:

() before dialing.

() while dialing.

() while sending.

() while other jobs are put on the Queue.

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

C. Test Release Procedures

*1 Topic should be addressed in each project test plan

1. Build acceptance criteria

Summary:

· BVT

· Starting test cycle.

· Closing bugs.

· Finishing test cycle.

· Keep developing new tests and automation

Test team will prepare a simple automated test for the Dev team to run before they checkin their code. Each component will have its own pre-checkin tests. Complex or buggy components’ pre-checkin tests will evolve as needed.

The test cycle will start with a BVT. A build will be released for testing only if it passes the BVT. A BVT should not last more than an hour.

The BVT will be updated as the product evolves in order to include as many features as possible. Frequent regression bugs will be a part of the BVT.

We will strive to run a full test cycle on each build. This requires full automation, since the time between builds may shorten as we get near the release.

Most test cycles will be on the debug version of the product. Once every few builds (3-5) we will run a test cycle on the release version. After the last milestone (before the release) we will test only release versions.

Stress will run on the debug version. We will switch to the release version if no bugs are found in the debug version, or after the last milestone (before the release).

During each test cycle we will test a single build. We may not have overlapping test cycles. The only exception is stress testing.

A full test cycle should eventually take at most a week.

Stress acceptance is at least 3 weeks of continuous stress.

2. Release schedule

We will have a new build once a week.

The first builds may be farther apart, according to dev progress, but we should strive for 1 build per week.

Before milestones, we may have 2 builds a week, and even a daily build.

We should try as hard as we can to avoid patches of builds. A test cycle will always be on a whole new build.

D. Post-Code Complete (Stabilization)Testing

*1 Topic should be addressed in each project test plan

1. Stabilization phase summary

· At least 1 full test cycle after the RC, on both debug and retail versions.

· At least 1 test cycle will run concurrently with the rest of the Comet components using the same machines (clients and servers).

· Once every few builds we must setup fresh machines and test with them (server & clients). This is done to ensure that we use the latest fax build, and that fax does not rely on components that do not exist on a freshly installed machine.

· Upgrade the RC over the last beta.

· Areas that had checkins will go under intense testing. Risky checkins must be reviewed buy at least 2 people. Areas that had no checkins will get less attention.

· Test cycles focus will shift from debug versions to retail versions. Last cycles before the release will be on retail builds only.

· Bug bash.

· Self host.

· Benchmark & performance test every 3-4 builds.

· Full test cycle done by a non trained person (or switch parts). Someone that will catch bugs that we are used to seeing and therefor ignore.

· Brainstorm for new scenarios.

· Guerilla testing – hard reboots, disconnect network etc.

· Final 2 weeks - Ad Hoc (Goal - maximize coverage - breadth prioritized over depth).

· Risky areas get new attention. Based on buggy areas and complicated code.

· Almost daily bug meetings.

· Stomp Test (We don't Stomp existing MS Apps)

· Stomp Test (We aren't Stomped by other MS Apps)

· Fax print from any possible application, including 16bit.

· Give to PSS to play.

· Verify that important (P1, P2) bugs that were not automated are tested for regression.

E. Automation Strategy

The goals of automation are:

· Reduce the time of the test cycle.

· Reduce the time test-developers invest in test cycles, and thus give them more time to think up new test cases and to implement them.

· Increase the reliability of the test cycle – long lasting manual tests may lead testers to dangerous numbness.

· Increase testers’ motivation – it may be very discouraging for software design engineers to perform manual testing.

Automation will be measured by a combination of several factors:

· Reducing the time it takes to run a full test cycle.

· Broadening the coverage of the test cycle.

· Finding regression bugs with automation.

· Finding new bugs with automation.

The goal is full test cycle automation – a one click test cycle.

However, achieving this goal is not always cost effective, since the development time may take too long, and we may have more important goals for achieving meanwhile.

Therefor the practical goal is to optimize automation for maximum coverage.

The most important automation is in API testing, system testing and stress testing.

Automating GUI testing is very important, but we will automate only areas that are less likely to change. We will not invest in automation of areas that are likely to change.

We will perform ad hoc GUI tests even to automated areas since GUI automation is likely to miss bugs that a human eye / mind can catch.

After code complete we will reevaluate the need for automating manual GUI tests.

Automation will require the development of several tools, such as a TIFF comparison tool, that will compare the sent and received faxes.

Admin automation will be based on a tool developed by the Proxy team. However, due to the limited number of property pages, we will start with manual testing, and will move to automated testing as the admin modem will stabilize and the automation tool will prove itself useful by the proxy team.

We do not plan to develop any new automation tools. We will use existing distributed and remote test managers (DCOM DTM, DTM, RTERM etc.).

We will not conduct code coverage tests, branch coverage tests, or function coverage tests.

F. Integration Testing Strategy

*1 Topic should be addressed in each project test plan

TBD.

Integration is one of the key goals of Comet, and therefor fax as a part of Comet must be well integrated into Comet and other components.

Server side:

· Integration with CRM.
I consider this a risk area, since the NT5 fax manages its own fax devices, and now all of this will be done in the CRM. We have many issues here, for example modem CoClass installer notified the fax server of added / removed modems, and now CRM is responsible for it.
CRM is also a dependency factor – fax will work only with a functioning CRM.

· Integration with other Comet components.
Besides running Comet system tests, and running each component’s tests using the same server(s), we will test special Comet-integration scenarios, such as fax server sending an IP fax via a proxy with a modem connection.

· Is the admin modem similar to other Comet components? Same look and feel?

Client side:

· MAPI extention. Sending faxes from exchange clients. Coexisting with Symantec fax on Win9X.

· Fax as a printer.

Misc:

· Are the help files self-containing, or do they include pointer to other Comet components?

· Does the client side help contain server side help? Vice versa? Is it always clear if the help refers to client or server side?

G. API Testing Strategy

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

There are 4 groups of public interfaces, listed in priority order:

1. Client API (WinFax.dll).

2. Client COM interface (FaxCom.dll).

3. Fax service provider API (FSP).

4. Fax service routing API.

Most of the API testing will be on the client side. We should remember that we support Win9X and NTX clients.

The FSP will receive less attention, since OpenPort will provide us 3 FSPs, and thus will indirectly test out FSP interface. Also, fax board vendors that will write FSPs for their fax boards before the release will test our FSP interface as well.

We may develop an API test for the FSP interface, although it currently looks that we will not have the time.

The routing API: if we’ll have time we will write a test routing extension that will emulate a routing extension.

API testing methodology:

· Each API will be tested, in ANSI and UNICODE versions.

· Verify that each relevant property can be set, without affecting other properties. We are especially interested in the cases where the set operation fails, in order to verify rollback.

· Return values are always verified.

· Try to extract every possible error code.

· Verify results if possible. Return values are usually not enough!
Example: abort a fax job. Verify on the server that the job actually gets aborted.
Example: set retries to 3. Verify that after 3 retries the fax stops retrying. Cause 2 retries and succeed on the 3rd.

· Illegal parameters. Only one illegal parameter at a time. Combinations of illegal parameters will be tested only if they make sense – there are too many possibilities.

· Legal parameters – equivalence classes.

· States – call an API at several states. This calls for defining scenarios of API calls.

· Aborting and closing while actions are performed. Experience shows that this finds many bugs.

· Multi threading.

· Multi process. Many processes may use the client APIs.

· Low memory. Hog memory, and then call an API. Call asynchronous APIs and then hog memory.

· Low disk space.

· Low CPU resources (hog the CPU).

We will not test:

· Branch coverage

· Function coverage.

· Private interfaces.

H. Content Testing

Help files will be manually tested.

Wizards will have automation, as well as manual ad hoc tests.

Issues:

· Are the help files self-containing, or do they include pointer to other Comet components?

· Does the client side help contain server side help? Vice versa? Is it always clear if the help refers to client or server side?

I. Performance (Benchmark) Testing

Client side:

· Printing to a fax printer should take about as long as it takes to print to a network printer, or as much as it takes other vendor’s fax software to send.
We should find the bottleneck.

Server side:

· Unimodem and fax board FSPs should send and receive at certain baud rates. Will be measured against other fax software.

· Other FSPs (IP, OpenPort): TBD.

Scale: the above actions should be benchmarked for hundreds of users, and tens of fax devices per server.

We will try to automate the benchmarks, but if not we will use a stopwatch.

J. Out-Of-Memory and Low Memory Testing

TBD.

This section is very important – our customers reach out of memory conditions much more than we do!

All tests should be able to handle out of memory conditions as well as to test them (i.e. GUI tests should expect the “System is running low on memory” pop up.

Manual tests will run with / without a memory hogging tool.

Automated tests are tricky, since the test itself may fail to perform due to no memory.

API tests will include low memory tests.

Low memory tests should run many times, since we cannot guarantee that a specific allocation will fail within the tested component.

Low GDI and low USER memory as well as GLOBAL memory.

Before each milestone, we will perform at least 1 test cycle that will focus on low memory conditions.

It is too late in the project to write a layer that will emulate out of memory conditions.

Page heap.

Bounds-Checker.

Code review.

Stress.exe.

Low memory machines – 32M for NT, 16M for Win9X.*1 Topic should be addressed in each project test plan

K. Self-host

The fax server is a classic component for self-hosting.

· The entire Haifa site will use the fax server to send and receive faxes.

· We will try to convince Microsoft to use the fax server. ITG?

· Same for the Herzlia MS center.

· Non classic usage: replace network-printers with fax-servers – people will print to the fax server instead to the network printer. The phone number will choose the actual network printer.
This is great for stress and quality tests! Each fax is manually inspected!
Pitfalls:
– Not all printer settings can be set as in the network printer.
– Slow, but we can broaden the baud bottleneck if we use more fax-modems, so that many concurrent jobs can be performed.

L. Setup Testing Strategy

*1 Topic should be addressed in each project test plan

TBD.

· Upgrading from previous Beta (server & clients).

· Upgrade from SBS (server & clients).
This is a very risky issue since SBS fax components do not work well with Comet components. We must be very careful regarding what the users might get when upgrading. For example, do we allow an upgrade of a client to a Comet client, if the server was not upgraded to a Comet server yet?

· Upgrading a machine with existing MS-fax software.

· Upgrading a machine with existing non MS-fax software.

· Do we install system files?

· Out of disk-space.

· Will setup check for enough memory?

· Will setup check for the correct OS? Correct SP?

M. Configuration Testing

*1 Topic should be addressed in each project test plan

Issues to consider:

· Hardware platform (X86 Intel & Alpha DEC)

· OS (Win95, Win98, NT4, NT5)

· NT5 DS / registry.

· Network (10 / 100 MHZ)

· The following will not be tested, but we will try to have a sample of these in our labs:
Mouse driver (8.0, 9.0, 10.0, LogiTech,)
Keyboard drivers (MS Natural Kbd, std, programmable, Dvorak, language layouts, ...)
Video (CGA, EGA, SVGA, ...)
Sound (speaker driver, Windows Sound System, SoundBlaster)

N. Compatibility Testing - Hardware

· Fax modems - the fax server should support all fax capable modems from the NT5 HCT. However, we can not buy all of them, and some of them may not be available in Israel. We will try to test the modem that take the highest market percentage. Those that are not suited for Israel will be tested in Redmond.

· Fax boards – fax board vendors must write a TSP and an FSP (or only an FSP in the case of a virtual FSP) in order to work with MS-fax. There’s no list that we should support, but we should test every fax board that the vendors will lend us.

· Multiport serials – in order to use more than 2 modems, multiport serial adapters are needed. We will support HW that we borrow from the following HW vendors: Digi, Equinox, Stallion, Moxa, TurboCom etc.

· The fax server should send-to and receive-from faxes / fax-modems that are not on any HCT. For this reason we will buy a special card+software that will emulate the most common 79 fax-modems in the market, and we will sent them faxes and receive faxes from them.

O. Ad Hoc Testing Strategies

Ad hoc testing is very important.

It is a reminder that we may never stop looking for new scenarios.

This will usually be done after brainstorming for new test cases (before each milstone).

Have testers list random ideas about ways to use an area, or things to try during ad hoc testing that you might not want to case. Then, when it’s time to run cases, each tester has a list of ideas with which to experiment.

All the bugs that are found will enter the test cycle, and preferably get automated.

Bug bash. Bug bash guidelines doc. Rewards? Replace intra-Comet groups for bug bashing.

Once in a while a test cycle will get ad hoc priority. This may be due to a risky checkin, a risky area, or a crucial component.

P. Localization Test Strategy

*3 Topic is optional for any project test plan

TBD.

Q. DBCS Test Strategy

*3 Topic is optional for any project test plan

TBD.

R. Post Ship Strategy

*1 Topic should be addressed in each project test plan

TBD.

S. Beta Strategy

*1 Topic should be addressed in each project test plan

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

T. Crippled Version Strategy

TBD.

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

VI. Third Party Dependencies
A. List of Dependencies

· NT5 fax. Our sources are based on the NT5 fax. Should the NT5 fax be unstable, we are unstable with it.

· CRM (depends on TAPI3). All the devices management will move into the CRM.

· Ship date depends on NT5 ship date.

· MMC. Fax admin is via MMC.

· OpenPort IP FSP and proprietary FSP. We have a contract with them, and we do / approve acceptance testing. we also should not block them by not having the FSP interface well documented and stable.

· Setup? TBD.

B. Negotiating With A Third Party

TBD.

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

VII. SCHEDULE

TBD.

Date

Milestone 1

Milestone X

Code Complete

Test Pass 1

Test Pass X

Config Pass

Beta

RTM

VIII. PERSONNEL/TEST AREAS

A. Team Structure

Test lead – Micky Snir (MickyS).

FT tester – Sigalit Bar (SigalitB).

Contractor – TBH.

Contractor – TBH.

My estimation is that 1 FT and 2 contractors are the minimal requirements. The reasons for that are that the NT5 fax test team has 1 FT and 2 contractors, but we have more coverage to do:

1. Support Win95, Win98, NT4 and NT5 clients (NT5 fax supports only NT5 fax).

2. Be a real fax server (NT5 fax is a standalone).

3. Integration with CRM.

4. Array support. The Fax server may be an array. Use the DS / registry abstraction layer.

5. Support fax boards. Irrelevant for NT5 as a standalone application.

6. Support OpenPort FSPs.

7. Admin model is changing to the Comet admin model.

8. Setup is changing to the Comet setup.

9. Doubts about the quality of the NT5 fax.

The reason why 1 FT and 2 contractors may be enough:

· The NT5 test team has already done some testing and the NT5 fax is already tested to some extent and NT5 Beta 2 has already shipped.

B. Area Breakdown

TBD.

Team Member
Team Member x
Contractor X
Intern Y

Area x

Area y

Etc.

C. Interns/Contractors

TBD.
IX. RESOURCE REQUIREMENTS

A. Training Requirements

TBD. *3 Topic is optional for any project test plan

B. Hardware Requirements

TBD. *3 Topic is optional for any project test plan

C. Software Requirements

TBD. *3 Topic is optional for any project test plan

D. Office Space Requirements

TBD. *3 Topic is optional for any project test plan

X. BUG PROCESS

A. Database Administration

TBD. *1 Topic should be addressed in each project test plan

B. Bug Life Cycle

TBD. *1 Topic should be addressed in each project test plan

C. Remote Sites

TBD. *2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

XI. METRICS

TBD.

A. Essential Standard Metrics

*1 Topic should be addressed in each project test plan

B. Optional Metrics

*2 Topic should optionally be addressed in a project test plan. Justification for why this topic is omitted should be noted here.

C. Reports

*1 Topic should be addressed in each project test plan

XII. RISKS

TBD.

A. Modem support.

*1 Topic should be addressed in each project test plan

XIII. SHIPPING THE PRODUCT

TBD.

A. Ship Criteria

*1 Topic should be addressed in each project test plan

B. Building Golden Masters And Golden Verification

*1 Topic should be addressed in each project test plan

C. Versions

*1 Topic should be addressed in each project test plan

D. Sign Off Requirements

*1 Topic should be addressed in each project test plan

XIV. ARCHIVING

*1 Topic should be addressed in each project test plan

XV. Glossary
*2 Glossary items should optionally be addressed in a project test plan.

Definitions to technical terms contained in this document are provided below. They are intended as sample definitions. For the author of a test plan, the key is to obtain agreement to specific definitions within your product group early in the planning phase.

Acceptance - Acceptance tests are designed to set a minimum threshold over which a newly coded feature must pass. The intention is to find blocking bugs that could impede the test effort of one tester or for the entire test team. A build of the product that can pass acceptance is ready for more stringent tests. If a build fails acceptance, fewer testing resources were wasted discovering the blocking problem(s).

Archives - The organization within Microsoft that retains records, artifacts, and memorabilia considered to have long-term value to the business or institution

Benchmarks - Timed measures of various actions within a product. They consist of establishing a timed baseline and comparing the duration of these same actions after a set of features is code complete or potomized.

Beta Release - A release of the product intended for beta testing with no known active severity 1 or 2 bugs. Special last minute QA tests, like those performed on “Golden Master” disks, should be conducted on a Beta release before sending to Beta sites.

Build Verification Test (BVT) - A quick, automated test run by Development on every daily build. The purpose of this script is to catch major breaks in the product executable.

Code Complete- An exit criteria for the last testable unit in the Development Phase of each milestone. For the final milestone, all features and sub-features have been coded. No known coding should remain except performance swap tuning. Multimedia products may need a different definition.
Crippled Version - A stripped down version of your product. Much of the functionality of the product is available for the customer to use, but some critical features might be disabled. A crippled version of Publisher might not allow you to print your work. A crippled version of Chip’s Challenge may only have the first 10 levels. A crippled version of a multimedia title may include only 5% of the content.

Daily Build - Each day during product development, each developer routinely checks in their work by a predetermined time. That entire set of work is compiled into a daily build.

Demo Version- Generally contains no code from your product. May be a MacroMind Director movie, or some other program that shows pictures of, or somehow describes the features of your product.

Disk Building - The process by which the entire set of files created for a project are copied to sets of disks. There are a variety of quality assurance checks that must be addressed in this process. Often this process is automated.

Disk Quality Assurance (QA) - Numerous quality checks that must be applied to the golden master disks in order to ensure that the contents are what you expect and work as expected.

Golden Masters - The final sets of disks that are sent to Product Release Services for manufacturing.

Localization Test Kit (LTK) - A kit provided to localizers (esp. vendors), telling testers exactly what needs to be tested in a localized build and how this should be accomplished. Among its contents may be manual tests, automated test scripts, test files, and test tools.

Master Project Schedule - The big picture schedule the includes major milestones and review points of a project from start of finish. This schedule must be reconciled with activities across each functional group.

Milestone Certification - During this stage, Testing runs all cases against the testable units delivered in the milestone. At the same time, Development continues to fix bugs to reach the goal of zero active bugs. Certification of the milestone depends on a final build that includes all bug fixes and no reactivated bugs.

PILOT version (Partially-Internationally LOcalized Testing version) - A pseudo-localized version of the product used by testing to find as many localization bugs as possible before the product is actually localized. Using this version testers create scenarios like "expand all the strings by 50%," then observe the behavior of the product under these scenarios. This PILOT version can touch areas of the product that the average tester cannot, e.g., strings in dialogs, headers, defaults, etc.

Release Candidate (RCx) - A build released to Testing with no known show stopper bugs. The goal is to release the build to Manufacturing.

Release To Manufacturing (RTM) - The date on which the completed set of product disks are sent to manufacturing. All disk QA work is complete and functional group leads sign off on a product release document.

Resource Editor - In the context of localization, an editor that localizers should use to take a given resource (e.g., a dialog) and translate it, then make necessary changes (e.g., sizing changes). In the best scenario, the editor also prevents casual errors (e.g., sizing a dialog larger than a VGA screen).

Test Release Procedures - Process by which Testing takes a daily build from Development and the requirements or checks that need to be done before a build is accepted.
Testable Unit - Comprised of one or more “Work Items“ and refers to any piece of the software package that is testable.

Vision Statement - A vision document defines the broad scope and goals for the product. It should include analysis of market and competition; target audience; external product positioning; internal product vision and design goals for domestic and international versions; analysis of users, activities, and prioritization of activities; timing and version requirements. The vision should be obtained from Marketing and Program Management. By having the vision in the test plan you insure that all testers are aware of the project objectives.

Wish List - There are two types of wish lists. One, obtained from Product Support, highlights features that are requested by customers for inclusion in a new release of the product. The other is obtained from Program Management and Marketing during product design. This list generally includes desirable but lower priority features. If there is room in the development schedule, wish listed items may be added to the official development feature list.

Work Item- A scheduled task representing the lowest level granularity of work by development.

Zero Bug Release (ZBR) - A product build where there are no active bugs in the list older than (e.g., 36) hours and no blocking bugs in the list less than (e.g., 36) hours old.

Microsoft Confidential

FaxServerTestPlan
Page 36 of 1
11/8/98

