Comet Fax Service Testing
Page 1 of 13

Comet Fax Service Testing

Preface:

This is a draft document.

This document contains ideas and thoughts regarding testing of the NT5 and Comet Fax Service products, some of which we may decide not to implement.

The following test case list is not prioritized and is in no way complete.

Test guide lines:

· Look for any implicit assumptions that developers might have made when implementing both the client and the server on same machine.

· Check everything in both local and remote server configurations.

· Bare in mind that Comet is an array. An array has many Fax servers and we have no idea which one we will connect to when connecting to Fax of the array.

APIs:

· API test guide lines

· Test every parameter with valid and invalid values.

· For every data type test maximum and minimum valid values.

· Check that correct error values are returned

· For every parameter that is a pointer, check NULL
· For every parameter that is a pointer to a structure also check valid and invalid values for structure fields.

· For every parameter that is a string, check both pointer is NULL and empty string (pointer pointing to NULL).

· Implement FSP Extension APIs and Routing Extension APIs that cause exceptions, so that we can make sure the server calls Extension functions inside a try – except.

· FaxAbort API.

[TBD]

· FaxAccessCheck API.

[TBD]

· FaxClose API.

[TBD]

· FaxCompleteJobParams API.

[TBD]

· FaxConnectFaxServer API.

[TBD]

· FaxEnableRoutingMethod API.

[TBD]

· FaxEnumGlobalRoutingInfo API.

[TBD]

· FaxEnumJobs API.

[TBD]

· FaxEnumPorts API.

[TBD]

· FaxEnumRoutingMethods API.

[TBD]

· FaxFreeBuffer API.

[TBD]

· FaxGetConfiguration API.

[TBD]

· FaxGetDeviceStatus API.

[TBD]

· FaxGetJob API.

[TBD]

· FaxGetLoggingCategories API.

[TBD]

· FaxGetPageData API.

[TBD]

· FaxGetPort API.

[TBD]

· FaxGetRoutingInfo API.

[TBD]

· FaxInitializeEventQueue API.
(when already initialized)

[TBD]

· FaxOpenPort API.

[TBD]

· FaxPrintCoverPage API.

[TBD]

· FaxRegisterRoutingExtension API.

[TBD]

· FaxRegisterServiceProvider API.

[TBD]

· FaxSendDocument API.

· Responses to level one parameters.

1. Call API using an non-initialized service HANDLE. That is call FaxSendDocument without first calling FaxConnectFaxService.

2. Call API using INVALID_HANDLE_VALUE service HANDLE.

3. Call API using a random number as an illegal service HANDLE.

4. Call API using a valid port HANDLE as the service HANDLE.

5. Call API using a valid non-fax HANDLE as the service HANDLE.

6. Call API using a service HANDLE that has just been closed as the service HANDLE.

7. Have a process get a valid service HANDLE (using FaxConnectFaxService), have it start two threads (each having a copy of the HANDLE), while the first thread is in “mid-execution” of the FaxSendDocument API (with the HANDLE) have the other thread gain the CPU and close the HANDLE. Check that the Fax service can recover.

8. Call API with NULL parameters. That is, call the API when one of the parameters is NULL and all others are valid, for each of the parameters.

9. Call API with existent \ non-existent document file (with full path \ without path \ network path).

10. Call API with existent document file that can not be opened (insufficient permissions)

11. File name longer than MAX_PATH. The first MAX_PATH characters should compose an existent file name. We do not want to allow using part of the file’s name string (chars 0..MAX_PATH) but receive an ERROR indicating an illegal file name.

12. Call API with filename “* +;:`file@%&*” (a filename with invalid characters).

13. Call API with empty string (valid LPTSTR pointing to NULL).

14. Call API with valid filename that has spaces.

15. Call API with valid filename and a path that has spaces.

16. Call API with valid filename and valid relative path (“..\..\myfile.tif”)

17. Call API with valid filename and non-existent valid relative path (“..\..\..\..\myfile.tif” when current directory is D:\MyFiles).

18. Check that every string (representing a path & filename) that CreateFile considers to be legal, FaxSendDocument also treats as legal.

19. Valid file formats for this API are valid *.tif => Call API with valid and invalid *.tif files.

20. Rename a valid tif format file to <filename>.doc, make sure that FaxSendDocument succeeds.

21. Call API with *.txt, expecting SUCCESS (the Fax service converts it to tif - \fax\tiff\src\tiflib.c in function ConvertTiffFileToValidFaxFormat).

22. Call API with *.doc (when Word installed on machine), activate Word and sends.

23. Call API with *.doc (when Word not installed on machine), expecting ERROR.

24. Call API with *.xls (when Excel installed on machine), activate Excel and sends.

25. Call API with *.xls (when Excel not installed on machine), expecting ERROR.

· Responses to level two parameters (FAX_JOB_PARAM and FAX_COVERPAGE_INFO).

26. Call API with NULLed FAX_JOB_PARAM structure.

27. Call API with FAX_JOB_PARAM structure with empty strings in string fields.

28. Call API with NULLed FAX_COVERPAGE_INFO structure.

29. Call API with minimum information required for FAX_JOB_PARAM structure.

30. Call API with maximum information required for FAX_JOB_PARAM structure.

31. Call API with minimum information required for FAX_COVERPAGE_INFO structure.

32. Call API with maximum information required for FAX_COVERPAGE_INFO structure.

33. Call API with illegitimate FAX_JOB_PARAM structure (e.g. FAX_JOB_PARAM->SizeOfStruct=0, FAX_JOB_PARAM->Reserved[0..2]!=0).

34. Call API with illegitimate FAX_COVERPAGE_INFO structure (e.g. FAX_COVERPAGE_INFO ->SizeOfStruct=0).
35. FAX_JOB_PARAM structure contains LPTSTR fields, DWORD fields, SYSTEMTIME field and an HCALL field.
For each data type give a very large value (long string), smallest value, and illegal value.

36. FAX_COVERPAGE_INFO structure contains LPTSTR fields, DWORD fields, SYSTEMTIME field and a BOOL field. For each data type give a very large value (long string), smallest value, and illegal value.

37. Call API with SYSTEMTIME of FAX_JOB_PARAM and FAX_COVERPAGE_INFO with 1-Jan-2000 00:00:00 and
31-Dec-1999 23:59:59.
38. Call API with FAX_COVERPAGE_INFO->Subject and FAX_COVERPAGE_INFO->Note each longer than a page.

39. Call API with incorrect FAX_COVERPAGE_INFO->PageCount and FAX_COVERPAGE_INFO->TimeSent. Make sure that these fields are overwritten correctly by the server.

40. FAX_JOB_PARAM and FAX_COVERPAGE_INFO have a number of identical fields. These fields (if their values differ) should be overwritten in FAX_COVERPAGE_INFO by the values of FAX_JOB_PARAM. =>
Call API with different values of these fields in FAX_COVERPAGE_INFO and FAX_JOB_PARAM.
41. Because of the above clause and the fact that some of the fields described above are LPTSTR, we need to make sure that the memory we allocated for them before we called the API is freed by the server.
42. Call API with FAX_JOB_PARAM->ScheduleAction equaling JSA_NOW and
FAX_JOB_PARAM->ScheduleTime equaling a legitimate time in the future, make sure fax is sent NOW.

43. Call API with FAX_JOB_PARAM->ScheduleAction equaling JSA_DISCOUNT_PERIOD and
FAX_JOB_PARAM->ScheduleTime equaling a legitimate time in the future that is not during the discount rates, make sure fax is sent during discount rates.

Logic of API semantically connects between FAX_COVERPAGE_INFO->ServerCoverPage (BOOL) and FAX_COVERPAGE_INFO->CoverPageName (LPTSTR). A {TRUE, <file name>} indicates to search for filename on local machine (client) and {FALSE, <filename>} indicates to search for filename on server machine =>

44. Call API with FAX_COVERPAGE_INFO->CoverPageName equaling an UNC path existent file name and
FAX_COVERPAGE_INFO->ServerCoverPage equaling TRUE (use server file).

45. Call API with FAX_COVERPAGE_INFO->CoverPageName equaling an UNC path existent file name and
FAX_COVERPAGE_INFO->ServerCoverPage equaling FALSE (use local file).

When remote client server configuration will be possible –
Have machine#1 with Fax client & server installed and machine#2 with only a server installed. Both machines have the server cover page directory with files by the same names. Change one of the files (its content) so we could tell which one of the cover page files was used.

46. From machine#1 connect to machine#2 Fax server and call API with {TRUE, <filename>}, machine#2 server cover page file should be used.

47. From machine#1 connect to machine#2 Fax server and call API with {FALSE, <filename>}, machine#1 cover page file should be used (if no path is given then current directory of machine#1 will be searched, so make sure the C.P. file is there).

48. From machine#1 connect to machine#1 Fax server and call API with {TRUE, <filename>}, machine#1 server cover page file should be used.

49. From machine#1 connect to machine#1 Fax server and call API with {FALSE, <filename>}, machine#1 local cover page file should be used (if no path is given then current directory of machine#1 will be searched, so make sure the C.P. file is there).

50. Call API with FAX_COVERPAGE_INFO->CoverPageName equaling a network path existent file name and
FAX_COVERPAGE_INFO->ServerCoverPage equaling FALSE (use file from network).

51. Call API with FAX_COVERPAGE_INFO->CoverPageName equaling a network path existent file name and
FAX_COVERPAGE_INFO->ServerCoverPage equaling TRUE (use file from network).

52. Create sub directories in the server cover page directory with cover page files in them. Call API with FAX_COVERPAGE_INFO->ServerCoverPage equaling TRUE (use server file) and a filename in one of the sub directories (filename with partial path).
E.g.
Server C.P. directory is \WINNT\Profiles\All Users\Application Data\Microsoft\MSFax\coverpg\, create sub directory “HighGraphicsCPs” with cover page file “HighCP1.cov”.
Call API with {TRUE, “HighGraphicsCPs\HighCP1.cov”}, expecting fax to use above file.

53. Call API with existent \ non-existent cover page file shortcut (*.lnk) with full path \ without path \ network path. Check both server and local cover page (FAX_COVERPAGE_INFO->ServerCoverPage = {TRUE | FALSE}).
· FaxSendDocumentForBroadcastAPI.

· Responses to level one parameters.

54. Call API using an non-initialized service HANDLE.

55. Call API using INVALID_HANDLE_VALUE service HANDLE.

56. Call API using a random number as the service HANDLE.

57. Call API with NULL parameters. That is, call the API when one of the parameters is NULL and all others are valid, for each of the parameters.

58. Call API with existent \ non-existent document file (with full path \ without path \ network path).

59. Call API with existent document file that can not be opened (insufficient permissions)

60. File name longer than MAX_PATH. The first MAX_PATH characters should compose an existent file name. We do not want to allow using part of the file’s name string (chars 0..MAX_PATH) but receive an ERROR indicating an illegal file name.

61. Call API with filename “* +;:`file@*”.

62. Call API with valid filename that has spaces.

63. Call API with valid filename and a path that has spaces.

64. Call API with valid filename and valid relative path (“..\..\myfile.tif”)

65. Call API with valid filename and non-existent valid relative path (“..\..\..\..\myfile.tif” when current directory is D:\MyFiles).

66. Check that every string (representing a path & filename) that CreateFile considers to be legal, FaxSendDocument also treats as legal.

67. Valid file formats for this API are valid *.tif => Call API with valid and invalid *.tif files.

68. Rename a valid tif format file to <filename>.doc, make sure that FaxSendDocument succeeds.

69. Call API with *.txt, expecting SUCCESS (the Fax service converts it to tif - \fax\tiff\src\tiflib.c in function ConvertTiffFileToValidFaxFormat).

70. Call API with *.doc (when Word installed on machine), activate Word and sends.

71. Call API with *.doc (when Word not installed on machine), expecting ERROR.

72. Call API with *.xls (when Excel installed on machine), activate Excel and sends.

73. Call API with *.xls (when Excel not installed on machine), expecting ERROR.

· Responses to level two parameters (FAX_RECIPIENT_CALLBACK and Context).

74. Implement a FAX_RECIPIENT_CALLBACK that simply returns TRUE. Call API with a pointer to this callback and with Context parameter equaling NULL (all other parameters should be correct).

75. Implement a FAX_RECIPIENT_CALLBACK that simply returns FALSE. Call API with a pointer to this callback and with Context parameter equaling NULL (all other parameters should be correct).

76. A single job id is returned from the API for the entire broadcast. What happens if there are 123 recipients and send 1..121 succeed but send 122 fails? Does entire broadcast stay queued? All recipients retried? Do we attempt to send 123 and then retry 122 until we succeed?

· Documentation (check this information exists and is correct)

77. Documentation on above issues.

78. Which file types are valid for use with this API, what error values are returned for invalid types.

· Consistency with FaxSendDocument API

79. FaxJobId (LPDWORD) OUT parameter of API is similar to FaxSendDocument FaxJobId (LPDWORD) OUT parameter, however, while in FaxSendDocument this parameter is allowed to be NULL (indicating that the FaxJobId should not be returned to API caller), FaxSendDocumentForBroadcast returns ERROR_INVALID_PARAMETER if FaxJobId is NULL. =>
FaxSendDocumentForBroadcast should return successfully when FaxJobId is NULL.

80. FaxSendDocumentForBroadcast returns an ERROR_FILE_NOT_FOUND when the fax server cannot locate the file indicated by the FileName parameter, while FaxSendDocument will return ERROR_INVALID_PARAMETER in such a case. Make sure they both return the same (should be ERROR_FILE_NOT_FOUND) =>
The test case is to call both FaxSendDocument and FaxSendDocumentForBroadcast with a non-existent file name and make sure that they both return the same error (not necessarily ERROR_FILE_NOT_FOUND).
Separating this test case from the error value validation of both APIs will allow us to test that new versions maintain consistency of error values (even if error values were changed or added).

81. Similarly this can be done for every test case described for FaxSendDocument. That is, create the same situation and parameters (again), then call the FaxSendDocumentForBroadcast, and finally compare the values returned from the two API calls (they should be the same).

· Dependency upon implementation of Routing Extension’s FAX_RECIPIENT_CALLBACK API

82. Interaction via FAX_RECIPIENT_CALLBACK dictates that FaxSendDocumentForBroadcast allocate the FAX_JOB_PARAM and FAX_COVERPAGE_INFO structures we must make sure that FaxSendDocumentForBroadcast eventually frees all allocated memory.

83. Since FaxSendDocumentForBroadcast calls FAX_RECIPIENT_CALLBACK to fill in these structures several time consecutively (for each recipient in the broadcast) it must either -
i. allocate the structures, call the callback, free the memory and so on
or
ii. reuse the same memory but clear all fields of the structures before recalling the callback.
This is due to the fact that the server cannot relay on the implementation of FAX_RECIPIENT_CALLBACK (to clear the structures before it uses them).

· FaxSetConfiguration API.

[TBD]

· FaxSetGlobalRoutingInfo API.

[TBD]

· FaxSetJob API.

[TBD]

· FaxSetLoggingCategories API.

[TBD]

· FaxSetPort API.

[TBD]

· FaxSetRoutingInfo API.

[TBD]

· FaxStartPrintJob API.

[TBD]

· Consistency throughout APIs.
This class of test cases exists in its own right and should be separate from test cases checking specific error values returned. Doing this will allow us to check consistency in upcoming versions of the product even if error values are changed or added.

· Return values

84. Return values of all APIs are of the same type (BOOL).

85. Boolean policy throughout APIs is TRUE on success and FALSE on failure.

· Error values

86. Return values of all APIs are of the same type (BOOL).

· FAX_RECIPIENT_CALLBACK Routing Extension API.

[TBD]

· FAX_ROUTING_INSTALLATION_CALLBACK Routing Extension API.

[TBD]

Send related:

· Fax service Send functionality (via all possible tools – SendWizard, FaxQueue, Outlook, Printer, etc)

· Sending of different files

Speak with Kodak or Wang and ask for their file test suite.

87. Valid tif formats.

88. Any format (Word, Excel, Ppt, Outlook, Exchange, plain text, image files, etc)

89. Foul-up a tif file (make its format illegitimate) and send it.

90. Number of pages

91. Percentage of image on page (empty lines, empty pages, etc)

92. Paper size (does Fax Service resize?)

· Devices state while sending

93. No device is send enabled.

94. All send enabled devices are busy receiving.

95. All send enabled devices are busy sending.

96. Send enabled device is busy receiving but another send-enabled device exists.

97. Send enabled device is busy sending but another send-enabled device exists.

98. While sending, device “send” is disabled.

99. While sending, device “receive” is enabled \ disabled.

100. While sending, change CSID and TSID of device.

101. Uninstall a modem while it is sending.

· Queue state (pause, order of jobs) while sending

102. Send a fax while queue is paused.

103. Is there any way to have the service up but its queue thread still down and then send a fax?

104. Pause queue, send many faxes, resume queue, while there are still jobs in queue pause queue again, add more sends while queue is paused, resume queue.

105. Send three faxes and make sure they are queued in correct order.

106. Send enough faxes so that queue overflows (pause queue and then send 999…9 faxes).

107. Send a single fax, pause the queue while it is sending, maintain queue in paused state until receiver side will time out, resume queue.

· Service state while sending

108. Send when service is down \ up (obtain a HANDLE to service while it is up, stop service and then use HANDLE to send a fax).

109. Send when service is going up \ down.

· RPC service state while sending

110. Send when RPC service is down \ up (obtain a HANDLE to service while it is up, stop service and then use HANDLE to send a fax).

· State of files being sent

111. Send an existent file (by dragging it over to the printer icon), while Fax is sending, delete the file.

112. Delete the \WINNT\Profiles\All Users\Application Data\Microsoft\Windows NT\MSFax\queue directory (while sending, before sending).

113. Change properties of above directory to “read only” (while sending, before sending).

114. Rename (delete) the \WINNT\Profiles\All Users\Application Data\Microsoft\Windows NT\MSFax\coverpg directory (while or before) sending a fax using a server cover page.

115. Delete the cover page file from above directory while sending a fax with that cover page.

116. “Archive outgoing faxes directory” of sending device is set to a non-existent directory before send.

117. While sending, device “archive outgoing faxes directory” is changed (deleted).

118. User defined receive directory of receiving device is “read” only.

119. User defined “archive outgoing faxes directory” is “read” only.

· Retries Settings

120. Send a fax that will fail, with retries set to 0, to max.

121. Send a fax that will succeed, with retries set to 0, to max.

122. Send a fax that will fail, with “time between retries” set to 0, to max.

123. Send a fax that will succeed, with “time between retries” set to 0, to max.

· Days an unsent fax is kept (in archive or on queue?)

124. Send a fax that will fail, with “days kept” set to 0, to max.

125. Send a fax that will succeed, with “days kept” set to 0, to max.

126. Send a fax that will fail, with “days kept” set to 1, “retries” set to max and “time between retries” also set to max (days kept run out before retries are exceeded).

· Using the Fax Send Wizard to send a fax

Fax Scheduling (discount rates, now, specific time)–

127. Set discount rates to some time in the future, queue a fax to be sent when discount rates apply, change discount rates (check when is fax sent).

128. Set discount rates to a range of 5 minutes, set number of retries to max, set time between retries to 15 minutes, queue a fax (that will fail) to be sent when discount rates apply. Thus creating a situation where the first retry is scheduled to occur when discount rates no longer apply.
Fax should at least be retried the following day when discount rates apply.

129. Set discount rates to a range of 2 minutes, queue a fax (of a hundred text filled pages) to be sent when discount rates apply. Thus creating a situation where the actual sending of the fax lasts longer than the discount rate time range.

130. Queue a fax to be sent “Now” (while there are no other jobs on queue, while there are other “Now” jobs on queue, while there are “Now” and “Specific time” jobs on queue).

131. Queue a fax to be set “Now”, while there are no send-enabled device. Wait a few minutes and then send-enable a device (fax should be immediately sent).

132. Queue a fax (that will succeed) to be sent on specific time (see it is sent then).

133. Queue a fax (that will fail) to be sent on specific time. Make sure it is retried according to “retries” settings (and not retried the same time tomorrow)

134. Change system Date & Time settings while “specific time” send jobs are queued – change but don’t click “Apply” of dialog box, change and click “Apply”, change and click “OK”.

135. Change system Date & Time settings while in “Scheduling” screen of Send Wizard – change but don’t click “Apply” of dialog box, change and click “Apply”, change and click “OK”.

Fax Recipients –

136. Send to single recipient (click “Add” before going to next wizard screen \ don’t click “Add” before going to next wizard screen)

137. Try to send to a single recipient without filling in all essential information fields.

138. Send to multiple recipients (“Add” all recipients to recipient list box \ do not click “Add” for the last recipient”.

139. Try to send to a multiple recipients without filling in all essential information fields of at least one (click “Add” for last recipient \ do not click “Add” for last recipient).

140. Send to as many multiple recipients as possible.

141. Sending to an internal recipient phone number (dial exactly as entered).

142. Sending to an outside line (automatically use 9 prefix).

143. Sending to same local area code.

144. Sending to an international number.

145. Invalid phone number (too short, empty, too long, alpha characters, etc)

General –

146. Check that wizard information is correctly maintained when moving among its screens (“Next” and “Back” buttons).

· Printing to the Fax printer from other applications

147. Print an Outlook mail message which has attached files (with “print attachments” enabled).

148. Print to file.

149. Print several copies.

150. Print settings (collate pages, etc).

· Sending a fax from Outlook

151. To a contact with a Fax number.

152. To [FAX:<recipient>@<number>].

153. To several fax recipients and mail recipients.

154. To fax recipient with CC to mail recipient.

155. CC to fax recipients.

· Sending fax from Exchange

156. Use Exchange to fax and print to Fax printer.

· Sending a fax by dragging files to the Fax printer icon

157. Single file.

158. Several files (make sure they are separate faxes).

159. Several file, of which at least one (in the middle) is non-faxable.

· Printing to Fax printer from command line

160. While Fax printer is default using “print <document name>”

161. While another printer is the default printer using “print /d <device name> <document name>”

162. Set device name of Fax printer (permanent or not).

163. Net print from command line (from machine#1 net print to machine#2 that has a shared Fax printer installed).

· Receiving End

164. Is an operational Fax device that will receive successfully.

165. Is an operational Fax device that will run out of paper (or ink).

166. Is an operational Fax device that will suddenly go off line (be powered off).

167. Is an operational Fax device whose phone line will suddenly disconnect.

168. Is an operational Fax device that will suddenly be paused.

169. Is a voice line (human answers the phone).

170. Is a data only line.

171. Line is busy \ no answer.

172. Is a computer (with fax software) that will suddenly reboot \ hang.

173. Is a computer with an erroneous implementation of t30 protocol.

174. Is a computer that will suddenly uninstall the receiving modem.

175. Is a Fax service that will suddenly change device settings (receive \ CSID \ TSID).

176. Is a Fax service that suddenly pauses its queue.

177. Is a Fax service that suddenly Pauses \ Aborts \ Resumes the receiving job.

· Use of multiple “Send” enabled devices on the server:

· Use all “send” devices to send several faxes at once.

178. Enable “send” on all devices on server and queue as many jobs (as devices).
All jobs should be sent at once.

179. Disable “send” of all devices. Queue as many “send” jobs as devices. Then start enabling “send” on devices. After each enable another job should start sending.

· Correct use of “send” device priority.

180. Pause server. Enable “send” on all devices on server and queue as many jobs (as devices).
Pause every job on queue. Resume server. Resume a job. Check that priority 1 device starts to send that job. While priority 1 device is still busy, resume another job and check priority 2 device is used, and so on. Use VERY long files for sending, to make sure that a device doesn’t finish a send until test is over.

181. Similar to test 180, but use FaxAbort() or shorter faxes, to create situation where a high priority device is free to handle a job, and make sure it handles it.
E.g. “busy” devices priority 1 to priority 4 and leave lower priority devices “free”, make sure that priority 2 device is “freed” first. Resume next job (while priority 2 and priority 5 are both free), make sure that priority 2 device handles job.

Receive related:

· Fax service Receive functionality (via all possible tools)

· Different images

· Paper sizes – check paper size and image proportions are maintained

182. Take an A4 paper, mark its edges in black and write A4 in middle. Send this paper from an actual fax machine to the Fax Service.

183. Similarly with Letter.

184. Similarly with Legal.

185. Similarly with 15” long.

186. Similarly with wide (landscape) paper.

187. Similarly with small paper size.

· Devices

188. No device is receive-enabled.

189. Receive enabled device is busy receiving but another receive enabled device exists.

190. Receive enabled device is busy sending but another receive enabled device exists.

191. While receiving, device “receive” is enabled \ disabled.

192. While receiving, device “send” is disabled.

193. While receiving, device “incoming faxes directory” is changed.

194. While receiving, change CSID and TSID of device.

195. While an incoming call is ringing change the device “rings before answer” setting.

196. Uninstall a modem while it is receiving.

· Files.

197. While receiving a fax, delete the file that Fax creates.

198. Delete the \WINNT\Profiles\All Users\Application Data\Microsoft\Windows NT\MSFax\faxrecieve directory (while receiving, before receiving).

· Queue state.

199. Pause queue and then receive a fax (fax should be received even when queue is paused)

· Received Fax Verification

· Cover page

200. The CP sent is the one received with all fields correctly set.

201. The image is correctly received.

202. The exact number of pages sent is received.

203. Page size matches sent page size.

204. Banner (if sent) is correct.

· Inbound Routing of a received fax.
· Routing priorities.

205. Cause all but last priority routing to fail (play with order of methods on different devices).

· Route to local printer, route to network printer

· Run out of paper while receiving a fax to be routed to a printer

· Printer is offline while receiving a fax to be routed to a printer

· Printer is online but goes offline in midst of receiving

· No such printer

· Printer is removed from local computer while something is being routed to it

· Implementation of Inbound Routing Extensions.
· A routing extension with no methods, looking to see if user is somehow notified.

· Implementation of FAX_ROUTING_INSTALLATION_CALLBACK
206. Does not perform minimal initialization required (CALLBACK structure).

· Receiving multiple jobs at same time on several devices.
Maintaining state:

Device configuration, Logging configuration, Queue state (paused or not), jobs on queue, Fax service Registry, Fax service application directories.

· Through service stop and start

· Through system crash (computer is powered off)

· Through modem crash (power off, disconnect)

· Through kill process (any of related process, such as TAPI, Fax, Queue)

Job related:

· Abort the only job on queue while it is sending

· Abort the only job on queue while it is idle (between retries)

· Abort the active job while all other jobs on queue are inactive

· Abort an active job while there are other active jobs on queue

· Abort a job while queue is paused

· Abort a receiving job (should not abort?)

· Job Id is represented as four digits on Fax Queue GUI, check what Id is shown for jobs number 9999, 10000 and 10001. Moreover, do this while job #1 is still on queue (paused).

Security related:

· Queue a few jobs of user#1 and a few jobs of user#2. Have user#1 abort jobs of user#2

207. When his permissions are “Submit” and “Query” only.

208. When his permissions are “Manage”.

Platform related:

· X86 computers.

· Alpha computers.

· Use all kinds of modems for sending and receiving (computer to computer faxing).

· Receive from common Fax devices (fax device to computer faxing).

· Send to common Fax devices (computer to fax device faxing).

· Use common kinds of multiple ports for send \ receive.

· Use different Microsoft Office versions to send or print faxes.

209. Service packs.

210. Languages.

Several Servers:

· Make sure it is possible to connect to several different (local and non-local) servers at same time.

· Make sure that while connected to several servers, I/O completion ports can be opened and initialized for every such server, and that events are posted correctly.

Logging:

· NT5.0 Fax events logged in EventLogger.
[TBD]

· Comet logging.
[TBD]

Array related (Comet feature):

· CRM policy is across array.
· A specific server in the array.

· Connection to a server.
· A specific server in the array. (not implemented)

· Any server in the array. (not implemented)

· All servers in the array (under one handle). – Client Local Fax Printer that will function opposite all Fax Servers on array, will balance loads and see all fax devices in array.

· Incoming.
· See all incoming jobs that I am supposed to see on queue.
All incoming on array.

· Outgoing Devices.
· Utilization of all Fax enabled devices (under policy restriction) across array.
There cannot be a situation where I want to send a fax, I connect to the array, I get a Fax Server handle of a server that all devices configured on it are “send” disabled.

211. Have several servers in an array, have all devices configured as Fax enabled and “send” enabled. Pause the Client Local Fax queue. Queue as many (very long) jobs as there are devices in array. Resume Client Fax Local printer. Make sure all jobs handled at once.

212. Use “send” enabled devices according to cross array priority.

· See all outgoing jobs that I am supposed to see on queue.
All outgoing on array or all outgoing on servers that I queued jobs to.

CRM related (Comet feature):

· Fax Server receives only fax calls from CRM.
[TBD]

· Fax Server answers all incoming calls that CRM handoff to it.
[TBD]

· CRM outbound allocation policy is maintained.
[TBD]

Broadcast (Comet feature):

· Cover page field rendering
[TBD]

· Job state (correct progress indication)
[TBD]

· Pause / resume / cancel
· Entire broadcast job

· A specific recipient

· Notifications – which recipients received / failed
[TBD]

· Re-send
· To selected recipients

213. To single “failed” recipient.

214. To single “waiting” recipient.

215. To single “sent” recipient.

216. To single “sending” recipient.

217. To several (not all recipients in broadcast) “failed” recipients.

218. To several (not all recipients in broadcast) “failed” and non-failed recipients.

219. Select all recipients of broadcast after all have failed.

220. Select all recipients of broadcast after some have failed.

221. Select all recipients of broadcast when none have failed.

· To Busy

· To All

· Timing – re-send option should be made available as soon as one recipient fails.

222. Re-send before any recipient has failed. =>
10 recipients, 5 devices. While first 5 recipients are in the midst of their “first try”. Re-send not possible since there is nothing to re-send yet.

223. Re-send before all recipients’ “first try” have started.
A re-send should not starve recipients whose “first attempt” has not yet started. =>
10 recipients, 5 devices. Out of first 5 recipients 1 failed and four are still “sending”. Thus one device is now free, 1 recipient is “failed”, 4 are “sending” and 5 are “waiting”. Re-send should be possible but carried out only after the 5 “waiting” job have started their “first attempt”.

224. Re-send after all recipients’ “first try” have started.
“Failed” jobs should be resent as soon as possible. =>
10 recipients, 5 devices. 4 recipients completed successfully, 1 failed, 5 others are now “sending”. One of the “sending” jobs fails and the device is now “free”. User clicks “Re-send”. Since all recipients’ “first attempt” jobs have started (4 are yet unconcluded) the device should be immediately used to re-send “failed” job. We must not wait for the 4 jobs to finish.

· Automatic Retries
· Failed recipients only.

· Retry failed only after all recipients are handled.

225. When a “retry” and a “first attempt” of the same broadcast are competing for a device, the “first attempt” should receive device. =>
Set retry time to zero. Broadcast to 10 recipients when there are 5 devices on server. Make sure that the first job fails. When that job “frees” the device recipient #6 should take device (it should not be used for the first job retry).

226. Retry as soon as possible, and not after all “first attempts” end. =>
Broadcast (something VERY long) to 5 recipients when there are 5 devices on server. Fail one job. Make sure that other devices are still sending when it is time for that failed job to retry. It should be retried, since all other jobs are being handled.

· Device use
· Use all free devices at once

· Use devices according to device priority

· Removing recipients from a queued broadcast job
· Remove one / several / all recipients

· Remove a recipient while it is sending / paused

Area Code Based Outbound Call Routing (Comet feature):
[TBD]

Thoughts:
· A client should connect to the Fax service and successfully receive a HANDLE to it. Before this client uses its HANDLE, the service is stopped. While the service is down the client attempts to use the HANDLE in any way possible.

· Fax Printer.

· Make sure that Fax service can do everything a printer does => be a default printer, be the only printer, be shared, print from command line, print to file, set ports (?), set page preferences, etc.

· Make sure Fax server exports the Printer APIs and maintains whatever other Printer standards there are in its interaction with the OS, applications using printers and other components.

· Remove the Fax Printer port (from Hardware manager or command line). Make sure that Fax service either prevents this or at least notifies user (when?).

· After the Fax Printer port is removed, make sure there is some way to reinstall it using either printer tools or Fax tools. The user should not be forced to reinstall the Fax service all over.

· Stopping Fax service.

· Stop service at “every” possible situation, see that nothing hangs and that when a “call” to the service is initiated an appropriate response is generated (either “service is down” or better service restarts.

· Connect to server (or “call” it for some service) while service is going down (up).

· Fax service documentation.

· Online help.

· Product documentation (how to setup, configure, use etc.).

· API documentation (which last error is returned, consistency).

· General documentation and implementation documentation of test cycle and test cases.

· Fax service queue (try to make it overflow, show incorrect state, hang etc).

· Fax service registry (try to register incorrectly, empty, register through service, register directly to registry, etc).

· Send a document.

· Any thinkable kind.

· Any thinkable length.

· Through any tool (Word, Exchange, Outlook, SendWiz etc) both as “print” to MSFAX printer and as a Fax (if there is any way to specifically fax, like in Outlook).

· To any recipient (name length, invalid phone number, outside line, international line, no one etc).

· To many recipients (same recipient many times, as many as possible, none etc)

· To a line owned by server (internal Fax).

· Abort\Resume\Restart send.

· Scheduling.
Specific time => change system time&date while job already queued.
Discount rates => discount rates period of length zero (length zero is taken as all day by MSFax); after job is queued change d.r. to include current time; after job is queued change d.r. to earlier than current time; etc.

· Send many documents.

· Try to explode queue.

· Send to same recipient.

· Send to same (many) recipients.

· Send Broadcast.

· To single recipient.

· To as many recipients as possible.

· All recipients on same line.

· Recipients on different lines.

· Abort\Resume\Restart broadcast.

· One of many recipients is invalid (name, line, whatever), make sure user is notified and other recipients receive.

· Modems.

· Number of modems installed (none, two, more than two).
Fax is now limited to 2 devices.

· When more than 2 modems installed (prior to setup), which 2 are chosen?
Can user select? How?

· Can a modem be installed on NT but specifically NOT on Fax? It should.

· Adding and removing modems (while Fax\Modem are online\offline\transmitting).

· Compatibility (use any thinkable modem for send and receive).

· Priorities (correctly updated upon install and remove).

· Priorities (if send via priority 1 device fails do we attempt to send via device 2?)

· Installation.

· Clean NT 5.0 installation (with prior modems, without).

· Upgrade from NT 4.0 (important!), windows’95 (with At Work Fax and without), windows’98. Check with modems installed prior to upgrade and after upgrade. Check Office’97 installed prior to upgrade and after, Exchange and anything else that can fax.

· During Fax installation can we recognize “useful” information from other (already installed) applications? Such as cover pages, address books, dialing information etc.

· Check that if any OS components, that Fax is dependent upon, are removed or not installed Fax will not be installed and proper notification is issued.

· Uninstall Fax (all components are removed cleanly).

· Reinstall (NT or just Fax). Recognize whatever personalized setting that it is possible to recognize and reinstate them (e.g. find user defined cover pages on machine).

· Can we reinstall a specific component of Fax (say, just the send wizard or just the printer port)?

· Can we uninstall a specific Fax component (such as the Fax job queue or monitor)? Will the Fax service still function? Will it prevent removal of essential components (that is, allow removal of send wizard but prevent removal of queue)?

· If a Fax component is removed (not via uninstall Fax) will service function? Will service notify user?
e.g. the Fax printer port is removed via the “Device Manager”
 (ControlPannel->System->Hardware tab->DeviceManager->Devices->Ports)

· Are cover page files read only by default? Should they be? What about server cover pages, who has permissions to edit them (on workstation installation, on client-server installation)?

· What is the current default installation when installing NT 5.0 (server, workstation, or what)?

· During installation (clean\upgrade) what part does faxsvc.exe play. Is it started? What for? When? What other processes interact with it during installation?

· Cover Page Editor.

· Since we enable to open and edit windows’95 cover pages, shouldn’t we also enable saving them in windows’95 (not NT 5.0 Fax) format?

· Hardware Profiles. Make sure that when using hardware profiles
(ControlPannel->System->Hardware tab->HardwareProfiles), where one profile has modems installed and another does not, the first profile has Fax enabled and the second does not.

· While a Fax call is in progress end it using “End Fax Call” button on Fax Monitor dialog box (while dialing, connecting, sending, and completing).

· Check what happens when configuration attributes (such as those in ControlPannel->Fax and in FaxServiceManagement->Devices or ControlPannel->Modems) are changed while a modem is sending\receiving.

· Documents sent.

· Verify received document is as sent.

· Cover page (with without, short, long, empty etc).

· All sorts of “good\bad format” documents – may be found at \\sigalitb0\roote\FaxTestEnlist\wangtest\auttest\filesafe\ \\sigalitb0\roote\FaxTestEnlist\faxapi\PrintApi\
\\sigalitb0\roote\FaxTestEnlist\faxapi\JobsApi\
\\sigalitb0\roote\FaxTestEnlist\old\testfile\
\\sigalitb0\roote\Nt\private\FaxTest\testfile\
\\sigalitb0\roote\Nt\private\fax\tiff\test\ccitt\

· User permissions. Check that every action that is limited to users with certain permissions is correctly limited. Check that only allowed users could change permissions.

· User settings and configurations. The service should retain different user settings and configurations for many users. Administrator may effect all users.
Check that Administrator effects all users while users effect themselves only.
Check 3 users with different settings, then admin changes all, then users change again.

· Multiple MSFax services (printers) installed on same machine.

· Applies actions to the specific instance only (send, config, stop etc).

· Usage of modems. Which MSFax instance uses which modems, make sure they don’t interrupt each other.

· Settings and configurations are retained per instance.

· Fax – RAS interaction. When fax receives data call it hands it off to RAS.

· Fax – CRM interaction.

· Fax retries and days kept.
Do we keep on retrying to send for up to “retries” or up to “days kept”?
Is fax kept on queue even though it will not be retried again?
 What is the relationship between retries and days kept? Fax is kept on queue for “kept days” starting at the last retry or first try? Or for which ever takes longer? What about “retries” zero, is fax kept?
What happens if someone changes date&time (to next year) and immediately changes it back, are faxes discarded, can they be reproduced?

· Send time. Check what happens when “Fax Printer Preferences” settings of scheduled time conflict with settings entered at SendWiz for a specific job?
To open the “Fax Printer Preferences”: in the Printers window select the Fax printer, right click to select “Printer preferences”. The “Fax Printing Preferences” window appears.

· Inbound Routing. Check that each of the default (MS supplied) routing methods function correctly.

· Outbound Routing. Correct choosing of sending device (priorities of devices, send\receive devices etc.). Check if priority 1 device is send+receive and is now receiving that device with priority 2 is used to send and not waiting for device 1.

· Registry. Mainly what happens if faxsvc.exe tries to read from a field that was just removed from registry or while it is being removed.

· Multiple select should be enabled for all Fax related dialogs.
E.g.

· In job queue, several jobs may be selected and collectively canceled.

· In fax monitor (assuming it will eventually show the state of all service active devices), several devices may be selected and all their calls terminated.

· In the Fax MMC, several devices may be selected and send enabled for them all.

· In the Fax MMC, several logging categories may be selected and the logging level for them all set to Medium.

· Read\Write properties on related files (such as CPs, directories of Fax application, user’s receive dir and sent archive dir, etc).

· Implementation (White box).

· Memory allocation and de-allocation.

· Resource allocation and de-allocation (HANDLEs, files, critical sections, etc)

· Logic flow. All possibilities are covered.

· Error handling.
All function calls are checked for return value.
All possible errors are covered.
Every exception that may be raised will be caught (on the correct level).

· Data flow.
Integrity of data structures is maintained.
What is logically constant is maintained as such.
Data flow is kept at minimum.
Data is copied (rather than referenced) only with good reason.
No dangling references.

· Documentation in module, file, function and algorithm level is helpful and concise.

· Integration with TAPI devices and software.

· DialLogic

· Configuration after installation.

· Aborts.

· Abort job –1. (I have to try and “catch” it as one of the devices is ringing)

· Abort at different T30 stages.
send job – wait 1msec then abort, another send job – wait 2msec then abort, …
receive job – similarly.
Routing job – similarly.

· Abort non-existent job.

· Abort while service down, going down, going up.

· Abort while queue paused.

· Abort a paused job, aborting job, job that is being queued.

· Service running under user account.

· Password change.

· The user account permissions.

· IVR also use a user account so check what they’re doing.

Microsoft Confidential
Sigalit Bar, 4-Jan-99

