FSP acceptance tests

Page 2 of 1

FSP Acceptance Tests

Revision 0.2

1 Preface

The goal of this document is to formulate an acceptance test specification for 3rd party FSPs and EFSPs.

This document only lists the major test areas that require testing, and will be expanded in further detail in the future.

2 Test Strategy

The concept is to provide 3rd party FSP \ EFSP implementers with information and tools that will enable them to perform quality testing of their product.

First, we will compose a detailed FSP Acceptance specification document, which will layout exact test cases and the expected behavior. The 3rd parties will be responsible for carrying out these tests, which will serve as the minimum criteria for shipping with CometFax.

This detailed specification document will be based on test categories listed in this document.

Second, we will provide the 3rd parties with testing tools which they can use to carry out the test cases detailed in the FSP Acceptance specification document. This will include:

· Implementing a simple low-cost EFSP API driver to check API return values and invalid parameters. The driver will be designed in a way that will allow expending it in the future. For now we plan to give it the minimal functionality which will enable us to perform API calls and return value verification.

· Implementing an executable (based on our existing tools), which will use the Fax Service Client APIs to perform fax operations.
This will cause the Fax Service to invoke the FSP/EFSP APIs and we will test their behavior.

3 Test Objectives

· To test correct implementation of the required FSP/EFSP APIs (parameters, error values, etc.)

· To test correct behavior of FSP \ EFSP under user scenarios (sending, receiving, aborting, broadcast, multi-send, etc.)

· Specific tests for specific FSP \ EFSP implementations.

4 Revision Information

Revision
Date
Author
Description

0.1
5-Jan-99
Sigalit Bar
· Initial version

0.2
5-Oct-99
Sigalit Bar
· Minor formatting changes.

· Changed E_SUCCESS to FSPI_S_OK.

· Replaced references to FaxSendDocumentForBroadcast() with FaxSendDocumentEx()

· Removed references to FaxDevGetDeliveryInfo(), since this API was canceled.

· Added a “FSP \ EFSP administration” test area (section 5.12).

· Added a “General” test area (section 5.13).

 FSP/EFSP Acceptance Test Areas

4.1 Correct Implementation of Required APIs -

· Every API returns FSPI_S_OK upon success.

· Every API returns the correct error return value upon failure.

· For an EFSP, which successfully registered with certain capabilities, API return values match those capabilities.
E.g. for an EFSP that registered with FSPI_CAP_BROADCAST but without FSPI_CAP_ABORT_PARENT, a call to FaxDevAbortOperation with a parent job will return error (FALSE).

4.2 Broadcasting -

· An EFSP device with FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx; make sure that the EFSP’s FaxDevSendEx function is called and a parent job plus all children jobs handles are correctly returned.

· Using an EFSP device with FSPI_CAP_BROADCAST and FSPI_CAP_ABORT_PARENT for sending, call the Fax Service Client API FaxSendDocumentEx with a broadcast job.

· Call Fax Service Client API FaxAbort for a child job.
Verify that FaxDevAbortOperation is called with the child job handle, that API returns FALSE and child job is not aborted.

· Then call FaxAbort for the parent job.
Verify that FaxDevAbortOperation is called only once with the parent job handle and FSP aborts parent job and all child jobs.

· Using an EFSP device with FSPI_CAP_BROADCAST and FSPI_CAP_ABORT_RECIPIENT for sending, call the Fax Service Client API FaxSendDocumentEx with a broadcast job.

· Call Fax Service Client API FaxAbort for the parent job.
Verify that FaxDevAbortOperation is called with the parent job handle, that API returns FALSE and no job is aborted.

· Then call FaxAbort for the child job.
Verify that FaxDevAbortOperation is called with the child job handle and FSP aborts the correct child job.

· Using an EFSP device with FSPI_CAP_BROADCAST, FSPI_CAP_ABORT_RECIPIENT and FSPI_CAP_ABORT_PARENT for sending, call the Fax Service Client API FaxSendDocumentEx with a broadcast job with at least 3 recipients.

· Call Fax Service Client API FaxAbort for a child job.
Verify that FaxDevAbortOperation is called with the child job handle, that API returns TRUE and the correct child job is aborted.

· Then call FaxAbort for the parent job.
Verify that FaxDevAbortOperation is called only once with the parent job handle and FSP aborts parent job and all remaining child jobs.

4.3 Multi-send -

· Using an EFSP device with FSPI_CAP_MULTISEND create many send jobs for that device, make sure they are all executed together.
That is check that FaxDevSendEx is re-entrant.

· Using an EFSP device with FSPI_CAP_MULTISEND create “too” many send jobs for that device. That is stress FaxDevSendEx, hopefully stressing EFSPs heap and other resources.
It may even be worth writing a separate driver for this to really stress re-entering at all possible points.

· Using an EFSP device without FSPI_CAP_MULTISEND create many send jobs for that device, make sure they are executed sequentially.

· Using an EFSP device with FSPI_CAP_MULTISEND send many non-broadcast faxes. Service should invoke FaxDevSendEx APIs immediately. Then abort some of the jobs at different states. While these jobs are being aborted (and before FaxDevAbortOperation returned) send another fax. Service should call FaxDevSendEx immediately for new job, make sure that FaxDevSendEx succeeds (immediately) regardless of FaxDevAbortOperation.

4.4 FSP scheduling -

· Using an EFSP device with FSPI_CAP_SCHEDULING send a fax at a specific time. The Fax Service should call FaxDevSendEx immediately (specifying the correct scheduling time) and the EFSP must perform the send on schedule.

· Using an EFSP device with FSPI_CAP_SCHEDULING send a fax at Y2K prone dates.

· Using an EFSP device with FSPI_CAP_SCHEDULING send a fax scheduled for a specific time in the past.

· Using an EFSP device which does not support FSPI_CAP_SCHEDULING send a fax at a specific time in the future, verify that the fax is sent as soon as possible.

4.5 Logging -

· For an EFSP, which registered (using FaxRegisterServiceProviderEx), with a non-empty FSPI_LogInfo, make sure that FaxDevGetLogData returns correct information for a completed single (non-broadcast) send job.

· For an EFSP, which registered (using FaxRegisterServiceProviderEx), with a non-empty FSPI_LogInfo, make sure that FaxDevGetLogData returns correct information for a complete broadcast (parent) job.

· For an EFSP, which registered (using FaxRegisterServiceProviderEx), with a non-empty FSPI_LogInfo, make sure that FaxDevGetLogData returns correct information for a completed receive job.

· Q: What should FaxDevGetLogData return when called with failed job? With job where only 2 out of 3 pages were successfully sent/received?

4.6 Job Context Reestablishment -

· For an EFSP device, which exports FaxDevReestablishJobContext, take down the Fax Service while a single recipient job was pending/sending/aborting wait until job status (in remote application/server) has changed and bring up Fax Service again. Make sure that after call to FaxDevReestablishJobContext the job’s handle maintains the updated state of that job.

· For an EFSP device, which exports FaxDevReestablishJobContext, take down the Fax Service while a multi-recipient broadcast job was active/pending wait until job status (in remote application/server) has changed and bring up Fax Service again.
Call FaxDevReestablishJobContext with parent job handle and all child handles. Make sure that all job handles (of parent and child jobs) are updated correctly.

· We might use a driver for this. Simply calling this function after EFSP posts a status change.
Call FaxDevSendEx, when we see a packet indicating status change for that job handle, call FaxDevGetStatus for that job (for reference). Then call FaxDevStartJob with new handle and test that a call to FaxDevReestablishJobContext with the message id returns a FAX_DEV_STATUS equal to the reference.

· Abort a job while it is being reestablished.

· Reestablish a job while it is being aborted.

· For an EFSP device, which exports FaxDevReestablishJobContext, call FaxDevReestablishJobContext while a job is in progress (without first stopping the CometFax service).

· For an EFSP device, which exports FaxDevReestablishJobContext, call FaxDevReestablishJobContext subsequently several times while a job is in progress (without first stopping the CometFax service).

4.7 Status Notification -

· Make sure that any call to FaxDevSendEx reports a legitimate sequence of legal statuses.

· Every proprietary status id reported also has a resource string id and the resource can be loaded successfully.

· Q: Should we make sure that an EFSP invokes FaxServiceCallback or posts to completion port, but does not use both?

4.8 Shutdown -

· Make sure that after FaxDevShutdown is called EFSP has performed cleanup.
We will talk with EFSP implementers to determine which resources are used by their EFSP and verify cleanup (e.g. all DLLs loaded by EFSP are unloaded, network connections are closed etc.)

4.9 Callbacks -

· Make sure that EFSP responds correctly when FAX_SEND_CALLBACK returns FALSE (does not crash).

· Make sure that FSP never invokes FaxServiceCallback

· Make sure that EFSP never invokes FaxServiceCallback (only FaxServiceCallbackEx).

4.10 EFSP APIs receiving a job handle -

· Call all such EFSP APIs with a broadcast parent job handle and check that they react correctly (some such APIs may not support => must return relevant error value).

4.11 Invalid parameters -

· Null pointers (specifically for OUT params).

· Illegal values according to every parameter type.
I.e. for an API that receives date send 30-Feb-99.

· For structures with dwSizeOfStruct, supply an inappropriate value.

4.12 FSP \ EFSP administration and configuration

FSPs \ EFSPs will write administration property pages that the CometFax service will bring up as part of its Admin MMC.

· Activate these property pages from the CometFax MMC and verify the UI functions correctly and changes the FSP configuration appropriately.

4.13 General

· Low memory \ disk \ registry conditions.

· Stress and scale.

· Fault injection.

4.14 Tests for specific FSP\EFSP implementations –

Open Port EFSP

· Assuming OP EFSP registers with FSPI_CAP_SCHEDULING.
Break Internet connection and send scheduled faxes using OP EFSP. Wait until some of the jobs should have already been executed. Reconnect to Internet. Make sure all jobs are immediately sent to OP server and that their actual execution is on schedule.

· Test dependency on network connectivity between OP EFSP and OP Server.
Check behavior with an intermittent connection, connection via proxy, LAN \ WAN etc.

· Receiving a fax via OP EFSP?

MS Confidential

Sigalit Bar (sigalitb), 14-Oct-99

