FSP API Test Specification

Page 1 of 13

FSP API Test Specification

Revision 0.2

1 Goal

Test the Comet Fax Service’s invocation of and reaction to FSP APIs.

2 Objectives

· Test Comet Fax Service distinction between legacy FSPs and EFSPs.

· Test Comet Fax Service reactions to illegal behavior of FSPs (AV in FSP, missing APIs, illegal error values, etc.).

· Test correct and timely invocation of optional EFSP APIs (such as delivery information, job context reestablishment, etc.) according to the EFSP’s reported capabilities.

· Test that Comet Fax Service correctly responds to events generated and messages sent by EFSPs.

· Test Comet Fax Service with many different FSPs installed at once.

· Emulate FOIP EFSP behavior and check that all likely user scenarios for FOIP are doable with EFSPI.

3 Approach

· Implement different FSPs and EFSPs, targeting the different test areas.

· Use the Comet Fax Service Client APIs to implement test cases.

4 Revision Information

Revision
Date
Author
Description

0.1
5-Jan-99
Sigalit Bar
· Initial version

0.2
4-Oct-99
Sigalit Bar
· FaxDevGetDeliveryInfo() was removed from API and accordingly all references to it were removed from this spec.

· Added a note regarding FaxRegisterServiceProvider() and FaxRegisterServiceProviderEx() at clause 5.

· Replaced references to FaxSendDocumentForBroadcast() with FaxSendDocumentEx().

· Removed any references to FaxDevStartJob() as part of the EFSP sending process, because FaxDevSendEx() now includes this functionality.

MS Fax Service Test Areas

Note – At this point in time it is unclear whether FaxRegisterServiceProvider() and FaxRegisterServiceProviderEx() will be implemented. In case these APIs are not implemented the FSPs/EFSPs will create the appropriate registry entries themselves. That is to say, that the test cases will not require any changes, only the FSPs’ DllRegisterServer() implementation may change.

4.1 FSPs/EFSPs that do not export all required APIs –

A DLL, which registered using the FaxRegisterServiceProvider Client API, must export all FSP APIs (and is allowed to export other functions as well).
A DLL, which registered using the FaxRegisterServiceProviderEx Client API, must export all EFSP mandatory APIs (and is allowed to export other functions as well).
A DLL, which does not meet the above conditions, must not be allowed to register. It should be immediately unloaded by the service. The service should log a warning describing the problem with the APIs exported by the DLL and state that this FSP/EFSP is considered invalid.

Registration via FaxRegisterServiceProvider –

· An FSP exporting all FSP APIs - the FaxDevInitialize API.

· An FSP exporting all FSP APIs - the FaxDevAbortOperation API.

· An FSP exporting all FSP APIs - the FaxDevEndJob API.

· An FSP exporting all FSP APIs - the FaxDevStartJob API.

· An FSP exporting all FSP APIs - FaxDevSend API.

· An FSP exporting all FSP APIs - the FaxDevReceive API.

· An FSP exporting all FSP APIs - the FaxDevReportStatus API.

· An FSP exporting all FSP APIs - the FaxDevInitialize API + the FaxDevInitializeEx API.

· An FSP exporting all FSP APIs - the FaxDevSend API + the FaxDevSendEx API.

· An FSP exporting all FSP APIs - the FaxDevSend API + the FaxDevSendEx API + the FaxDevInitializeEx API.

· An EFSP exporting all mandatory EFSP APIs.

· An EFSP exporting all mandatory EFSP APIs + the FaxDevInitialize API.

· An EFSP exporting all mandatory EFSP APIs + the FaxDevSend API.

Registration via FaxRegisterServiceProviderEx –

· An EFSP exporting all mandatory EFSP APIs - the FaxDevInitializeEx API.

· An EFSP exporting all mandatory EFSP APIs - the FaxDevInitializeEx API + the FaxDevInitialize API.

· An EFSP exporting all mandatory EFSP APIs - the FaxDevSendEx API.

· An EFSP exporting all mandatory EFSP APIs - the FaxDevSendEx API + all optional EFSP APIs.

· An EFSP exporting all mandatory EFSP APIs - the FaxDevShutdown API.

· An FSP exporting all FSP APIs.

· An FSP exporting all FSP APIs + the FaxDevInitializeEx API.

· An FSP exporting all FSP APIs + the FaxDevInitializeEx API + all other non-mandatory EFSP APIs.

· An FSP exporting all FSP APIs + the FaxDevInitializeEx API + the FaxDevSendEx API + all other non-mandatory EFSP APIs.

4.2 FSPs/EFSPs that export more than the required APIs –

A DLL, which registered using the FaxRegisterServiceProvider Client API, must export all FSP APIs (and is allowed to export other functions as well).

A DLL, which registered using the FaxRegisterServiceProviderEx Client API, must export all EFSP mandatory APIs (and is allowed to export other functions as well).

A DLL, which exports a mingle of FSP and EFSP APIs that meets the above conditions, must be allowed to register. The service should treat the DLL according to the Client API with which it registered and the version number with which it registers.

Registration via FaxRegisterServiceProvider –

· An FSP exporting all FSP APIs + the FaxDevInitializeEx API.

· An FSP exporting all FSP APIs + the FaxDevInitializeEx API + all other non-mandatory EFSP APIs.

· An FSP exporting all FSP APIs + the FaxDevInitializeEx API + the FaxDevSendEx API + all other non-mandatory EFSP APIs.

· An FSP exporting all FSP APIs + the FaxDevInitializeEx API + the FaxDevSendEx API + the FaxDevShutdown API + all other non-mandatory EFSP APIs.

Registration via FaxRegisterServiceProviderEx –

· An EFSP exporting all mandatory EFSP APIs + the FaxDevInitialize API.

· An EFSP exporting all mandatory EFSP APIs + the FaxDevSend API.

· An EFSP exporting all mandatory EFSP APIs + the FaxDevInitialize API + the FaxDevSend API.

4.3 EFSP which export optional APIs –

Valid –

The service should invoke these APIs as required.

· An EFSP which does not export optional APIs.

· An EFSP which exports the FaxDevGetLogData API.

· An EFSP which exports the FaxDevReestablishJobContext API.

· An EFSP which exports the FaxDevEnumerateDevices API.

· An EFSP which exports the FaxDevGetLogData and the FaxDevReestablishJobContext APIs.

· An EFSP which exports all optional APIs.

Invalid –

Such DLLs should be immediately unloaded by the service. The service should log a warning describing the problem with the APIs exported by the DLL and state that this FSP is considered invalid.

· An EFSP which does not export the FaxDevGetLogData API but registered with a
non-empty FSPI_LogInfo structure.

Discrepancies (between exported APIs and capabilities) –

The service should, at least, log that there exists a discrepancy between the exported APIs and the capabilities with which the FSP DLL was registered.
These APIs should never be invoked.

· An EFSP which exports the FaxDevGetLogData API but registered with an empty FSPI_LogInfo structure.

4.4 Illegal FSP/EFSP behavior –

When an FSP behaves illegally we expect the service to unload the FSP DLL at the first opportunity. The service will not invoke any API of that FSP until the DLL is reloaded. The service will log a warning describing the illegal behavior of the FSP and the action taken by the service.

· AV at different points in FSP/EFSP.

· EFSP sends illegal messages.

· FSP/EFSP post illegal packets to completion port.

· FSPs and EFSPs return illegal error values.

· APIs that allocate return TRUE but pointer to allocation is NULL.

· APIs that set information set it illegally.

· FSP that calls FaxServiceCallbackEx with legal device messages.

· FSP that calls FaxServiceCallback.
 (?) Should service keep track of whoever calls FaxServiceCallback and unload it?
Or do we just want to check that service doesn’t start to misbehave after such a call?

· EFSP that calls FaxServiceCallback (and not FaxServiceCallbackEx).

4.5 Legal FSP/EFSP behavior –

The service should correctly respond to such behavior.

· An FSP where all APIs always succeed (FSP that successfully does nothing).

· An FSP where all APIs always fail (FSP that fails to do nothing).

· An FSP where all APIs sometimes fail.

· An FSP where APIs always succeed, but FaxDevInitialize always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevStartJob always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevEndJob always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevVirtualDeviceCreation always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevReportStatus always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevSend always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevReceive always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevAbortOperation always/sometimes fails.

· An FSP where APIs always succeed, but FaxDevSend, FaxDevReceive, and FaxDevAbortOperation always/sometimes fail.

· An EFSP where all APIs always succeed (EFSP that successfully does nothing).

· An EFSP where all APIs always fail (EFSP that fails to do nothing).

· An EFSP where all APIs sometimes fail.

· An EFSP where APIs always succeed, but FaxDevSendEx always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevReceive always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevAbortOperation always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevInitializeEx always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevShutdown always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevGetLogData always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevReestablishJobContext always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevGetEnumerateDevices always/sometimes fails.

· An EFSP where APIs always succeed, but FaxDevSendEx, FaxDevReceive, and FaxDevAbortOperation always/sometimes fail.

4.6 New/Changed Functions in MS Fax Service -

· FaxServiceCallbackEx
(FaxServiceCallback is [fax\service\server\faxdev.c]FaxDeviceProviderCallback)

· Code Review function

· Parameter check

· Error value check

· Correct handling of all message types

· Make sure that legal messages that EFSP (with handle hFSP) does not have capability for are treated as error.

· FaxRenderCoverPage.

· Code Review function

· Parameter check (pointers are Null, fields are Null, string fields are “”)

· Correct rendering of cover page

· Empty cover page (lpCoverPageInfo points to all empty fields, lpRecipientProfile points to all empty fields, lpRSenderProfile points to all empty fields).

4.7 Broadcasting -

· Using a legacy FSP device for sending, call the Fax Service Client API FaxSendDocumentEx (3 different recipients); make sure job is broken up into 3 single recipient jobs and a parent job. FaxDevSend should be called 3 times, once for each recipient.

· Using a legacy FSP device for sending, call the Fax Service Client API FaxSendDocumentEx (3 * same recipient); make sure job is broken up into 3 single recipient jobs.
FaxDevSend should be called 3 times, once for each recipient.

· Using a legacy FSP device for sending, call the Fax Service Client API FaxSendDocumentEx (300 different recipients); make sure job is broken up into 300 single recipient jobs and a parent job.
FaxDevSend should be called 300 times, once for each recipient.

· Using a legacy FSP device for sending, call the Fax Service Client API FaxSendDocumentEx (300 * same recipient); make sure job is broken up into 300 single recipient jobs and a parent job.
FaxDevSend should be called 300 times, once for each recipient.

· Using a legacy FSP device for sending, call the Fax Service Client API FaxSendDocumentEx (single recipient); make sure a single job is queued (treated like FaxSendDocument).
FaxDevSend should be called once.

· Using an EFSP device without FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (1 recipient); make sure that FaxDevSendEx is called once and a single job is created (treated like FaxSendDocument).

· Using an EFSP device without FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (3 different recipients); make sure job is broken up into 3 single recipient jobs and a parent job.
FaxDevSendEx should be called 3 times, once for each recipient.

· Using an EFSP device without FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (3 * same recipient); make sure job is broken up into 3 single recipient jobs and a parent job.
FaxDevSendEx should be called 3 times, once for each recipient.

· Using an EFSP device without FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (300 different recipients); make sure job is broken up into 300 single recipient jobs and a parent job.
FaxDevSendEx should be called 300 times, once for each recipient.

· Using an EFSP device without FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (300 * same recipient); make sure job is broken up into 300 single recipient jobs and a parent job.
FaxDevSendEx should be called 300 times, once for each recipient.

· Using an EFSP device with FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (3 different recipients). Make sure that 3 child jobs and a parent job are created.
FaxDevSendEx should be called just once.

· Using an EFSP device with FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (3 * same recipient). Make sure that 3 child jobs and a parent job are created.
FaxDevSendEx should be called just once.

· Using an EFSP device with FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (300 different recipients). Make sure that 300 child jobs and a parent job are created.
FaxDevSendEx should be called just once.

· Using an EFSP device with FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (300 * same recipient). Make sure that 300 child jobs and a parent job are created.
FaxDevSendEx should be called just once.

· Using an EFSP device with FSPI_CAP_BROADCAST for sending, call the Fax Service Client API FaxSendDocumentEx (1 recipient); make sure that FaxDevSendEx is called once and a single job is created.

· Using an EFSP device with FSPI_CAP_BROADCAST, and with the FSPI_CAP_ABORT_PARENT and the FSPI_CAP_ABORT_RECIPIENT capabilities for sending, call the Fax Service Client API FaxSendDocumentEx (5 recipients) then call Fax Service Client API FaxAbort for a child job. Make sure FaxDevAbortOperation is called with the child job handle. Then call FaxAbort for the parent job; make sure that FaxDevAbortOperation is called only once with the parent job handle.

· Using an EFSP device with FSPI_CAP_BROADCAST, and with the FSPI_CAP_ABORT_PARENT and the FSPI_CAP_ABORT_RECIPIENT capabilities for sending, call the Fax Service Client API FaxSendDocumentEx (many/single recipients) then call Fax Service Client API FaxAbort for every one of the child jobs. Make sure that each FaxAbort call invokes FaxDevAbortOperation with the appropriate child job handle. Make sure that after the last child job is aborted, the parent job ends (is considered completed with an aborted status).

· Using an EFSP device with FSPI_CAP_BROADCAST, and with the FSPI_CAP_ABORT_PARENT and the FSPI_CAP_ABORT_RECIPIENT capabilities for sending, call the Fax Service Client API FaxSendDocumentEx (many recipients). Create a situation where at least one child job is with status sending/paused/pending, then abort that child job. Make sure that FaxDevAbortOperation is called once and only that child job is aborted.

· Using an EFSP device with FSPI_CAP_BROADCAST, and with the FSPI_CAP_ABORT_PARENT and the FSPI_CAP_ABORT_RECIPIENT capabilities for sending, call the Fax Service Client API FaxSendDocumentEx (many recipients). Create a situation where all child jobs are with status sending/paused/pending, then abort the parent job. Make sure that FaxDevAbortOperation is called once and that all child jobs (+ parent job) are aborted.

· Using an EFSP device with FSPI_CAP_BROADCAST, and with the FSPI_CAP_ABORT_PARENT and the FSPI_CAP_ABORT_RECIPIENT capabilities for sending, call the Fax Service Client API FaxSendDocumentEx (many recipients). Create a situation where the child jobs have different statuses (some are sending, others pending, and others paused), then abort the parent job. Make sure that FaxDevAbortOperation is called once and that all child jobs (+ parent job) are aborted.

· Use an EFSP device with FSPI_CAP_BROADCAST, without the FSPI_CAP_ABORT_PARENT capability but with the FSPI_CAP_ABORT_RECIPIENT capability for sending. Call the Fax Service Client API FaxSendDocumentEx (with a single recipient). Make sure a single (ordinary) job is created and is treated as if a call to FaxSendDocument created it.

· Use an EFSP device with FSPI_CAP_BROADCAST, without the FSPI_CAP_ABORT_PARENT capability but with the FSPI_CAP_ABORT_RECIPIENT capability for sending. Call the Fax Service Client API FaxSendDocumentEx (many recipients) then call Fax Service Client API FaxAbort for a child job; make sure FaxDevAbortOperation is called with the child job handle. Then call FaxAbort for the parent job; make sure that FaxDevAbortOperation is called (many times) with each of the remaining child job handles and then with the parent job handle.

· Use an EFSP device with FSPI_CAP_BROADCAST, without the FSPI_CAP_ABORT_PARENT capability but with the FSPI_CAP_ABORT_RECIPIENT capability for sending. Call the Fax Service Client API FaxSendDocumentEx (many/single recipients) then call Fax Service Client API FaxAbort for each of the child jobs. Make sure that each FaxAbort call invokes FaxDevAbortOperation with the appropriate child job handle. Make sure that after the last child job is aborted, the parent job ends (is considered completed with an aborted status).

· Using an EFSP device with FSPI_CAP_BROADCAST, without the FSPI_CAP_ABORT_PARENT capability but with the FSPI_CAP_ABORT_RECIPIENT capability for sending. Call the Fax Service Client API FaxSendDocumentEx (many recipients). Create a situation where at least one child job is with status sending/paused/pending, and then abort that child job. Make sure that FaxDevAbortOperation is called once and only that child job is aborted.

· Using an EFSP device with FSPI_CAP_BROADCAST, without the FSPI_CAP_ABORT_PARENT capability but with the FSPI_CAP_ABORT_RECIPIENT capability for sending. Call the Fax Service Client API FaxSendDocumentEx (many recipients). Create a situation where all child jobs are with status sending/paused/pending, then abort the parent job. Make sure that FaxDevAbortOperation is called many times and that all child jobs (+ parent job) are aborted.

· Using an EFSP device with FSPI_CAP_BROADCAST, without the FSPI_CAP_ABORT_PARENT capability but with the FSPI_CAP_ABORT_RECIPIENT capability for sending. Call the Fax Service Client API FaxSendDocumentEx (many recipients). Create a situation where the child jobs have different statuses (some are sending, others pending, and others paused), then abort the parent job. Make sure that FaxDevAbortOperation is called many times and that all child jobs (+ parent job) are aborted.

· Check correct visualization of child and parent jobs (queue should correctly show X child jobs under their parent job, parent job type should be Broadcast etc.).
No child job should be removed from queue until the parent job completes (all child jobs have completed).
Parent job should be removed from queue if and only if all child jobs completed successfully.

· Q: Pausing/resuming of child/parent job.
Before FaxDevSendEx is called, any pause should succeed.
What happens to a broadcast after one of the child jobs is successfully paused? For an EFSP with broadcast capability, what do we give FaxDevSendEx? => Do not allow pausing of a child job. Only a parent job can be paused (before FaxDevSendEx is called).
What is service response when cannot pause (what error value is returned)?

· Check pausing/resuming of child job.

· Check pausing/resuming of parent job (when 2 out of 5 completed at time of pause, when 2 out of 5 were sending, etc.).

· Q: Logging of broadcast parent and child jobs. Log each child job separately (like ordinary jobs), plus an entry for the broadcast job (when all child jobs complete).

· Check logging information of a successful parent job (many/single/same recipients).
Log should state that broadcast to such-and-such recipients has succeeded.

· Check logging information of a successful child job (from a broadcast with many different/same recipients).

· Check logging information of a failed (no_answer/busy/retrying) child job (from a broadcast with many different/same recipients).

· Check logging information of an aborted/aborting child job (from a broadcast with many different/same recipients).

· Check logging information of canceled parent job (when 2 transmissions out of 5 completed and only 3 were actually canceled).

· Check retries of parent job => each child job should be retried X times in correct order. Make sure that parent job itself is not also retried (and thus child jobs will be retried X*X times).

· Q: When FaxDevAbortOperation of a parent job fails, should server attempt to abort every child job (+ parent job) separately?
At least the child jobs that were actually successfully aborted should appear as such (in queue and log), the other child jobs should continue and the parent job status should indicate all this.

· Q: How is FaxDevEndJob invoked for a broadcast?
FaxDevEndJob is called whenever a child job posts completed to the completion port.
Check what happens when a “bad” EFSP posts completed for the parent job before all the children have completed.

· Q: Can an EFSP register with Job Capabilities Null? That is without FSPI_CAP_ABORT_RECIPIENT and without FSPI_CAP_ABORT_PARENT?

· Q: When an EFSP registers with only FSPI_CAP_ABORT_PARENT what happens when you attempt to cancel a child job? What error values should FaxDevAbortOperation return in such a case?

4.8 Multi-send -

· Using an EFSP device with FSPI_CAP_MULTISEND send a very long fax. While that fax is still sending, send another fax. Make sure that after 2nd send job is queued Fax Service calls FaxDevSendEx immediately.

· Using an EFSP device with FSPI_CAP_MULTISEND and with FSPI_CAP_BROADCAST send a broadcast to many recipients. Make sure that Fax Service calls FaxDevSendEx immediately (just once).

· Using an EFSP device with FSPI_CAP_MULTISEND and with FSPI_CAP_BROADCAST send a broadcast to many recipients. Make sure that Fax Service calls FaxDevSendEx immediately (just once). Then quickly send many non-broadcast faxes and make sure FaxDevSendEx are immediately called for each such job.

· Using an EFSP device with FSPI_CAP_MULTISEND and with FSPI_CAP_BROADCAST send a broadcast to many recipients and many other non-broadcast faxes. Make sure that APIs are invoked immediately. Then abort some of the jobs at different states. Make sure correct jobs (and only they) are aborted.

· Using an EFSP device with FSPI_CAP_MULTISEND and with FSPI_CAP_BROADCAST send a broadcast to many recipients and many other non-broadcast faxes. Make sure that APIs are invoked immediately. Then abort some of the jobs at different states. While these jobs are being aborted (and before FaxDevAbortOperation returned) send another fax. Make sure that FaxDevSendEx is immediately called for new job (service must not wait for abort to finish).

· Using an EFSP device with FSPI_CAP_MULTISEND and without FSPI_CAP_BROADCAST send a broadcast to many recipients. Make sure that Fax Service calls FaxDevSendEx for each of the child jobs (+ the parent job) immediately without first waiting for previous child jobs to finish.

· Using an EFSP device without FSPI_CAP_MULTISEND send a very long fax. While that fax is still sending, send another fax. Make sure that after 2nd send job is queued Fax Service calls does not call FaxDevSendEx (for 2nd job) until 1st job completes.

· Q: Order of job execution on a multi-send device. OP vs. a fax board with 3 outgoing lines?

4.9 FSP scheduling -

· Using an EFSP device with FSPI_CAP_SCHEDULING send a fax at a specific time. The Fax Service should call FaxDevSendEx immediately (specifying the correct scheduling time).

· Using an EFSP device without FSPI_CAP_SCHEDULING send a fax at a specific time. The Fax Service should delay calling FaxDevSendEx until the specified time.

· Q: what about an EFSP that has FSPI_CAP_SCHEDULING but no FSPI_CAP_MULTISEND?
Fax Service will call FaxDevSendEx with a job scheduled for tomorrow and EFSP will report its status FS_FSP_PENDING. But since this job has not yet ended the Fax Service will not send any other jobs to this EFSP device.

4.10 Logging -

· Use an EFSP, which registered (using FaxRegisterServiceProviderEx) with a non-empty FSPI_LogInfo, to send a fax. Make sure that Fax Service calls FaxDevGetLogData when job completes (successfully/aborted/failed).

· Use an EFSP, which registered (using FaxRegisterServiceProviderEx) with a non-empty FSPI_LogInfo, to receive a fax. Make sure that Fax Service calls FaxDevGetLogData when job completes (successfully/aborted/failed).

· Q: Should FaxDevGetLogData be called when job fails? Only 2 out of 3 pages are successfully sent/received? YES.

· Make sure that after FaxDevGetLogData returns with legal log data, Fax Service logs it correctly in the correct log.

· Make sure that if FaxDevGetLogData returns with illegal log data (too many columns, too few columns, null), Fax Service can handle it and some indication of this is logged.

4.11 Virtual FSP recognition -

· If a legacy FSP exports FaxDevVirtualDeviceCreation the Fax Service recognizes it as a Virtual Device. Thus the Fax Service will first call FaxDevVirtualDeviceCreation and only then FaxDevInitialize.

· If an EFSP exports the optional FaxDevEnumerateDevices function the Fax Service recognizes it as a Virtual Device. Thus the Fax Service will call FaxDevInitializeEx but will then call FaxDevEnumerateDevices.

· Write EFSP + FaxDevEnumerateDevices + FaxDevVirtualDeviceCreation and make sure that FaxDevEnumerateDevices in invoked while FaxDevVirtualDeviceCreation is never invoked.

· Q: For a virtual FSP/EFSP the FAX_LINECALLBACK function should never be invoked?
=> for every virtual FSP/EFSP we write, the implementation of this function will be like
{ ::lgLogError(LOG_SEV_1, “VFSP should never get here”); return; }

4.12 Job Context Reestablishment -

· Use an EFSP device, which exports FaxDevReestablishJobContext and whose FaxDevSendEx returns message ids, to send many faxes. While jobs are on queue bring down the service (net stop, kill process, boot). Make sure that FaxDevReestablishJobContext is called for every job. Make sure these jobs are correctly handled by service.

· Use an EFSP device, which exports FaxDevReestablishJobContext and whose FaxDevSendEx returns message ids, to send many faxes. Set retries to 5. Make some jobs fail and thus be retried. While “retrying” jobs are on queue bring down the service (net stop, kill process, boot). Make sure that jobs are retried exactly 5 times overall (and not 5 times since service came up again).

· Use an EFSP device, which exports FaxDevReestablishJobContext and whose FaxDevSendEx returns message ids, to send a fax. Bring down the service (net stop, kill, and boot) at different times during job life (sending, just before completion, pending, paused, initializing, failed, aborting), make sure all jobs (and only they) are reestablished.

· Use an EFSP device, which exports FaxDevReestablishJobContext and whose FaxDevSendEx returns message ids, to send a fax. Bring down the service (net stop, kill, and boot). Bring service up again and when it calls FaxDevReestablishJobContext (before call returns), bring service down again. Make sure that job is correctly reestablished (when service comes up again).

· Use an EFSP device, which exports FaxDevReestablishJobContext and whose FaxDevSendEx returns message ids, to receive a fax. Bring down the service (net stop, kill, and boot) at different times during job life (sending, just before completion, pending, paused, initializing, failed, aborting), make sure all jobs (and only they) are reestablished when service comes up again.

· Use an EFSP device, which exports FaxDevReestablishJobContext and whose FaxDevSendEx returns message ids, to send a fax. While job is sending, take down the Fax Service. Make sure that when Fax Service comes up again it first calls FaxDevStartJob and then calls FaxDevReestablishJobContext with the new job handle and the previous job’s message id (from the call to FaxDevSendEx before Fax Service went down).

· Use an EFSP device, which exports FaxDevReestablishJobContext, with a FaxDevSendEx that returns message ids and supports broadcast, to send a broadcast to many recipients. While job is sending, take down the Fax Service. Make sure that when Fax Service comes up again it calls FaxDevStartJob and FaxDevReestablishJobContext for the parent job and then for each of the child jobs.

· Use an EFSP device, which exports FaxDevReestablishJobContext but whose FaxDevSendEx does not return message ids, to send a fax. While job is sending, take down the Fax Service. Make sure that when Fax Service comes up again the EFSP is recognized as not supporting reestablishment and the Fax Service will restart the job from scratch.

· Use an EFSP device, which does not export FaxDevReestablishJobContext but whose FaxDevSendEx returns message ids, to send a fax. While job is sending, take down the Fax Service. Make sure that when Fax Service comes up again the EFSP is recognized as not supporting reestablishment and the Fax Service will restart the job from scratch.

· Q: What should the Fax Service do when a call to FaxDevReestablishJobContext fails?
Should it re-start the job from scratch? What about an FSPI_E_NETWORK error value? Should it retry to establish job context?

· Make sure service responds correctly to error values when FaxDevReestablishJobContext fails.

4.13 New Status Notification Mechanism -

· Write an EFSP that does not use the new mechanism.

· Write an EFSP that uses the new mechanism (calls FaxServiceCallbackEx).

4.14 Shutdown -

· Make sure that for every EFSP loaded, Fax Service calls FaxDevShutdown before DLL is unloaded.

4.15 Regression -

· Make sure that T.30 FSP is not impaired because of changes in Fax Service (especially the code added to distinguish FSP-EFSP, logging and EFSP capabilities).

4.16 Outbound routing –

· Where many different FSPs/EFSPs are installed, enable all devices as send enabled. Call FaxSendDocumentEx with 3 different recipients.
Check that outbound routing is according to policy.

· Where many different FSPs/EFSPs are installed, enable all devices as send enabled. Call FaxSendDocumentEx with 300 different recipients so that according to outbound routing policy all calls should use same device.
Check that outbound routing is according to policy.

· Where many different FSPs/EFSPs are installed, enable all devices as send enabled. Call FaxSendDocumentEx with 300 different recipients so that according to outbound routing policy calls should use many different devices (FSPs).
Check that outbound routing is according to policy.

· Where many different FSPs/EFSPs are installed, enable all devices as send enabled. Call FaxSendDocumentEx with 300 * same recipient.
Check that outbound routing is according to policy.
Note: if policy is “SendPriority” based then many different FSPs will be used, however, if policy is phone-number based, same device will be used.

· Q: What to do when according to policy a job should go to FSP1 but all devices of FSP1 are send disabled? At least notify.

· Problem: while for a configuration of many FSPs the “SendPriority” outbound routing is still plausible, this is no longer so for a configuration of many EFSPs (especially where they export different capabilities).
In any case this feature is planned to change. Outbound routing will be based on the dialed number area code (see “Preliminary Features Specification” clause 8).

4.17 Stress -

· Many devices of same FSP.

· Many devices of same EFSP, each device with different device capabilities.
Note that device capabilities (DWORD) is yet TBD.

· Many FSPs and EFSPs with many devices each.

MS Confidential

Sigalit Bar (sigalitb), 4-Oct-99

