FSP Test Cases

Page 2 of 16

FSP Initial Test Cases

Revision 0.2

1 Preface

This is a draft document.

2 About This Document

For all test cases, unless stated otherwise, one functioning device is installed on the machine and the Fax Service is installed with the MS T.30 FSP and the MS Routing Extension.

Unless stated otherwise, all send operations are scheduled to begin execution immediately (scheduled for “now”).

The CometFax root registry key is HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CometFax and is referred to as “…\CometFax” in this document.

3 Revision Information

Revision
Date
Author
Description

0.1
5-Jan-99
Sigalit Bar
· Initial version

0.2
4-Oct-99
Sigalit Bar
· Minor formatting changes.

· Replaced references to Fax registry key with CometFax.

· Replaced any references to an EFSP reporting statuses via a completion port, with the appropriate description of posting a status via FaxServiceCallbackEx().

· Replaced any references to FaxSendDocumentForBroadcast() with FaxSendDocumentEx().

· Removed any references to FaxDevGetDeliveryInfo(), because this API was discarded.

Test Cases

3.1 Illegal FSP/EFSP behavior –

AV Test Cases:

Call FaxSendDocumentEx to send a fax (using the VFSP in question).

Test Cases:

1. A VFSP causing an AV (after a random amount of time) at the FaxDevStartJob API.

Verify that:

· FaxSendDocumentEx returned FALSE.

· FaxSendDocumentEx returned last error TBD (E_FATAL_ERROR?).

· Job was not added to service queue.

· A notification indicating that an outbound call has failed, because VFSP could not initialize job, was added to log.

2. A VFSP causing an AV (before initializing, before sending, before completed) at the FaxDevSend API.

3. An EFSP causing an AV (before initializing, before sending, before completed) at the FaxDevSendEx API.

4. A VFSP causing an AV (before answered, before receiving, before completed) at the FaxDevReceive API.

5. A VFSP causing an AV (after a random amount of time) at the FaxDevEndJob API.

For each test case verify that:

· FaxSendDocumentEx returned TRUE.

· Job was added to service queue.

· A notification indicating that an outbound/inbound call has failed, because VFSP could not send/receive/end job, was added to log.

· Call is retried according to service retries setting.

Register the VFSP/EFSP in question using FaxRegisterServiceProvider/FaxRegisterServiceProviderEx and restart the Fax Service.

Test Cases:

6. A VFSP causing an AV (after a random amount of time) at the FaxDevInitialize API.

7. An EFSP causing an AV (after a random amount of time) at the FaxDevInitializeEx API.

Verify that:

· FaxRegisterServiceProvider/FaxRegisterServiceProvider returned TRUE.

· The FriendlyName (3rd) parameter given to FaxRegisterServiceProvider/FaxRegisterServiceProvider was used to add a registry key under the “...\CometFax\Device Providers” registry key.

· Under the above key, three string entries (FriendlyName, ImageName and ProviderName) were added with data corresponding to the (3rd, 4th and 2nd) parameters given to FaxRegisterServiceProvider/FaxRegisterServiceProvider.

· After service restart FaxDevInitialize/FaxDevInitializeEx is invoked.

· A proper notification stating that VFSP/EFSP has AV’ed is logged.

· At very least the DLL is re-loaded and only then retried.

Register the EFSP in question using FaxRegisterServiceProviderEx, restart the Fax Service and then stop the service (using “net stop”).

Test Cases:

8. An EFSP causing an AV (after a random amount of time) at the FaxDevShutdown API.

Verify that:

· Fax Service stops.

· A notification stating that the EFSP failed to shutdown cleanly is logged.

Illegal packet Test Cases:

Call FaxSendDocumentEx to send a fax using the VFSP/EFSP in question.

Test Cases:

9. A VFSP where FaxDevSend posts a packet with an illegal dwStatusId to the completion port (first status packet is illegal, after legal initializing status packet, after legal sending status packet, after legal completed packet).

10. An EFSP where FaxDevSendEx posts an illegal dwStatusId in a call to FaxServiceCallbackEx (first status packet is illegal, after legal initializing status packet, after legal sending status packet, after legal completed packet).

Verify that:

· The Fax Service considers this a fatal error and aborts the job.

· A notification stating that an outbound call failed due to unspecified VFSP/EFSP fatal error is logged.

Cause an inbound call on a device of the VFSP/EFSP in question.

Test Cases:

11. A VFSP where FaxDevReceive posts a packet with an illegal dwStatusId to the completion port (first status packet is illegal, after legal answered status packet, after legal receiving status packet, after legal completed packet).

Verify that:

· The Fax Service considers this a fatal error and aborts the job.

· A notification stating that an inbound call failed due to unspecified VFSP/EFSP fatal error is logged.

Use the VFSP’s completion port and key for ring events (the ones given by the service to FaxDevVirtualDeviceCreate).

Test Cases:

12. Instead of generating a legal “ring” event, post an illegal packet to the above port.

Verify that:

· The Fax Service does not treat the packet as if it was a legal “ring”.

· A notification stating that an inbound call failed due to unspecified VFSP fatal error is logged.

Illegal message Test Cases:

Use the FaxServiceCallbackEx function (provided by the service to the EFSP) to inform the service of status changes in the EFSP.

Test Cases:

13. The EFSP will invoke FaxServiceCallbackEx with an illegal message type.

14. The EFSP will invoke FaxServiceCallbackEx with a legal message type but illegal message parameters.

Verify that:

· The Fax Service does not treat the message as if it was legal.

· A notification stating that an unspecified EFSP device error occurred is logged.

Legal FSP/EFSP behavior –

API failure and success Test Cases:

Call FaxSendDocumentEx to send a fax (using the VFSP/EFSP in question).

Test Cases:

15. A VFSP where FaxDevSend, FaxDevReceive and FaxDevAbortOperation (sometimes) fail (with a legal error value).

16. An EFSP where FaxDevSendEx, FaxDevReceive and FaxDevAbortOperation (sometimes) fail (with a legal error value).

Verify that:

· FaxSendDocumentEx returns TRUE.

· Job is added to service queue.

· When API fails, a notification indicating that the operation (outbound call, inbound call or abort call) has failed, because VFSP function failed, is logged.
When API succeeds a success notification is logged.

· When FaxDevSend/FaxDevSendEx fails, call is retried according to service retries setting.

API sleep Test Cases:

Register the VFSP/EFSP in question and restart the Fax Service.

Test Cases:

17. A VFSP/EFSP where FaxDevInitialize/FaxDevInitializeEx sleeps for a very long time.

18. A VFSP/EFSP where FaxDevVirtualDeviceCreation/FaxDevEnumerateDevices sleeps for a very long time.

Verify that:

· The VFSP/EFSP is successfully registered.

· During service restart FaxDevInitialize/FaxDevInitializeEx is called.

· After a sensible amount of time (~ a couple of minutes) service will give up on the VFSP/EFSP and will start without it.

Register the EFSP in question and restart the Fax Service. After service comes up, stop the service again.

Test Cases:

19. An EFSP where FaxDevShutdown sleeps for a very long time.

Verify that:

· The VFSP/EFSP is successfully registered.

· After service restart the EFSP successfully initializes.

· During service stop FaxDevShutdown is called.

· After a sensible amount of time (~ a couple of minutes) service will give up on the EFSP’s FaxDevShutdown and will stop even though it did not complete.

· A notification stating that the EFSP failed to shutdown correctly is logged.

Call FaxSendDocumentEx to send a fax (using the VFSP/EFSP in question).

Test Cases:

20. A VFSP/EFSP where FaxDevSend/FaxDevSendEx sleeps for a very long time.

Verify that:

· FaxSendDocumentEx returns TRUE.

· Job is added to service queue.

· FaxDevSend/FaxDevSendEx is called for the appropriate device.

· After a sensible amount of time (~10-20 minutes) service will give up on the VFSP’s/EFSP’s FaxDevSend/FaxDevSendEx and will consider it a failure, even though it did not complete.

· A notification stating that the send operation failed on timeout is logged.

Call FaxSendDocumentEx to send a fax (using the VFSP/EFSP in question), while device is sending call FaxAbort for that job.

Test Cases:

21. A VFSP/EFSP where FaxDevAbortOperation sleeps for a very long time.

Verify that:

· FaxSendDocumentEx returns TRUE.

· Job is added to service queue.

· FaxDevSend/FaxDevSendEx is called for the appropriate device.

· Job status changes to “sending”. After FaxAbort is called, the service invokes FaxDevAbortOperation for the appropriate job.

· After a sensible amount of time (~10-20 minutes) service will give up on the VFSP’s/EFSP’s FaxDevAbortOperation and will consider it a failure, even though it did not complete.

· A notification stating that the abort operation failed on timeout is logged.

· The service removes the send job from the queue (job will not be retried).

Receive a fax (using the VFSP/EFSP in question).

Test Cases:

22. A VFSP/EFSP where FaxDevReceive sleeps for a very long time.

Verify that:

· Receive job is added to service queue.

· FaxDevReceive is called for the appropriate device.

· After a sensible amount of time (~10-20 minutes) service will give up on the VFSP’s/EFSP’s FaxDevReceive and will consider it a failure, even though it did not complete.

· A notification stating that the receive operation failed on timeout is logged.

Multi Send Capabilities –

Make sure that any faxes would be sent via a single EFSP that registered with the FSPI_CAP_MULTISEND capability.

Test Cases:

23. Call FaxSendDocumentEx to send a single fax.

Verify that:

· FaxSendDocumentEx returns TRUE.

· Job is added to service queue and begins execution.

· Fax is successfully sent.

Test Cases:

24. Call FaxSendDocumentEx to send a (long enough) fax, while that job is in state pending/initializing/sending call FaxSendDocumentEx again to send another fax.

Verify that:

· FaxSendDocumentEx returns TRUE both times.

· 1st Job is added to service queue and begins execution.

· 2nd Job is added to service queue and begins execution immediately (service does not wait for the 1st job to complete).
=>FaxDevSendEx (for 2nd job) is called before FaxDevEndJob (for 1st job) is called.

25. Pause the Fax Service queue. Call FaxSendDocumentEx to send many (300) faxes. Resume queue.

Verify that:

· FaxSendDocumentEx returns TRUE every time.

· All jobs are added to service queue but do not begin execution until queue is resumed.

· When queue is resumed all jobs begin executing at once.
=>FaxDevSendEx is called for each job, before FaxDevEndJob is ever called.

26. Call FaxSendDocumentEx to send a fax (1st job), while that job is in state pending/initializing/sending call FaxAbort (for that 1st job). Before FaxDevAbortOperation (for 1st job) returns, call FaxSendDocumentEx again to send another fax (2nd job).

Verify that:

· FaxSendDocumentEx returns TRUE both times.

· 1st Job is added to service queue and begins execution.

· After FaxAbort (for 1st job) is called, service invokes FaxDevAbortOperation (for 1st job).

· 2nd Job is added to service queue and begins execution immediately (service does not wait for the 1st job to complete).
=>FaxDevSendEx (for 2nd job) is called before FaxDevEndJob (for 1st job) is called.

· The idea here is to verify that FaxDevAbortOperation (on a multi-send device) isn’t blocking.

Make sure that any faxes would be sent via a single EFSP that registered with the FSPI_CAP_MULTISEND and with the FSPI_CAP_BROADCAST capabilities.

Test Cases:

27. Call FaxSendDocumentEx to send a fax to many (15) different recipients.

Verify that:

· FaxSendDocumentEx returns TRUE.

· All (15) child jobs and a parent job are added to service queue.

· All child jobs begin execution at once.

· All child jobs and parent job complete successfully.

28. Call FaxSendDocumentEx to send a fax to many (15) different recipients, twice.

Verify that:

· FaxSendDocumentEx returns TRUE both times.

· All (15) child jobs and a parent job (of 1st broadcast) are added to service queue.

· All (15) child jobs and a parent job (of 2nd broadcast) are added to service queue.

· All child jobs (of 1st and 2nd broadcasts) begin execution at once.

· All child jobs and parent jobs (of both broadcasts) complete successfully.

29. Call FaxSendDocumentEx to send a fax (1st job), while that job is in state pending/initializing/sending call FaxSendDocumentEx to send a fax to many (15) different recipients.

Verify that:

· FaxSendDocumentEx returns TRUE both times.

· 1st Job is added to service queue and begins execution.

· All the (15) broadcast child jobs and the parent job, are added to service queue and begin execution immediately (service does not wait for the 1st job to complete).
=>FaxDevSendEx (for broadcast job) is called before FaxDevEndJob (for 1st job) is called.

30. Call FaxSendDocumentEx to send a fax to many (15) different recipients, while the child jobs are in states pending/initializing/sending call FaxSendDocumentEx to send another fax (2nd job).

Verify that:

· FaxSendDocumentEx returns TRUE both times.

· All the (15) broadcast child jobs and the parent job, are added to service queue and begin execution at once.

· 2nd job is added to service queue and begins execution immediately.
=>FaxDevSendEx (for 2nd job) is called before FaxDevEndJob (for broadcast job) is called.

31. Pause the Fax Service queue. Call FaxSendDocumentEx to send many (20) separate faxes. Call FaxSendDocumentEx to send a fax to many (30) different recipients. Call FaxSendDocumentEx to send 20 more separate faxes. Call FaxSendDocumentEx to send another broadcast fax to more (30) different recipients. Resume queue.

Verify that:

· FaxSendDocumentEx returns TRUE every time.

· All jobs (40 single recipients, 30 recipient broadcast and another 30 recipient broadcast) are added to service queue but do not begin execution until queue is resumed.

· When queue is resumed all jobs begin executing at once.
=>FaxDevSendEx is called for each job (40 regular and 2 broadcast), before FaxDevEndJob is ever called.

Make sure that any faxes would be sent via a single EFSP that registered with the FSPI_CAP_MULTISEND and without the FSPI_CAP_BROADCAST capabilities.

32. Pause the Fax Service queue. Call FaxSendDocumentEx to send many (20) separate faxes. Call FaxSendDocumentEx to send a broadcast fax to many (30) different recipients. Call FaxSendDocumentEx to send more (20) separate faxes. Call FaxSendDocumentEx to send another broadcast fax to more (30) different recipients. Resume queue.

Verify that:

· FaxSendDocumentEx returns TRUE every time.

· All jobs (40 single recipients, 30 recipient broadcast and another 30 recipient broadcast) are added to service queue but do not begin execution until queue is resumed.

· When queue is resumed all jobs begin executing at once.
=>FaxDevSendEx is called for each job (40 regular and 60 broken-up from the 2 broadcasts), before FaxDevEndJob is ever called.

Make sure that any faxes would be sent via a single EFSP that registered without the FSPI_CAP_MULTISEND capability.

Test Cases:

33. Call FaxSendDocumentEx to send a fax, while that job is in state pending/initializing/sending call FaxSendDocumentEx again to send another fax.

34. Pause the Fax Service queue. Call FaxSendDocumentEx to send many (300) faxes. Resume queue.

35. Call FaxSendDocumentEx to send a fax (1st job), while that job is in state pending/initializing/sending call FaxAbort (for that 1st job). Before FaxDevAbortOperation (for 1st job) returns, call FaxSendDocumentEx again to send another fax (2nd job).

For every test case verify that:

· FaxSendDocumentEx returns TRUE every time.

· Job execution is one at a time.
=> FaxDevSendEx (for job j+1) is always called after FaxDevEndJob (for job j) has been called.

Make sure that any faxes would be sent via a single EFSP that registered without the FSPI_CAP_MULTISEND and with the FSPI_CAP_BROADCAST capabilities.

Test Cases:

36. Call FaxSendDocumentEx to send a fax to many (15) different recipients.

37. Call FaxSendDocumentEx to send a fax to a single recipient (1st job), while that job is in state pending/initializing/sending call FaxSendDocumentEx to send a fax to many (15) different recipients.

38. Call FaxSendDocumentEx to send a fax to many (15) different recipients, while the child jobs are in states pending/initializing/sending call FaxSendDocumentEx to send another fax (2nd job).

39. Pause the Fax Service queue. Call FaxSendDocumentEx to send many (20) separate faxes. Call FaxSendDocumentEx to send a broadcast fax to many (30) different recipients. Call FaxSendDocumentEx to send more (20) separate faxes. Call FaxSendDocumentEx to send another broadcast fax to more (30) different recipients. Resume queue.

For every test case verify that:

· FaxSendDocumentEx returns TRUE every time.

· Job execution is one at a time.
=> FaxDevSendEx (for job j+1) is always called after FaxDevEndJob (for job j) has been called.
Note- since EFSP has broadcast capability FaxDevSendEx is called once per broadcast.

Make sure that any faxes would be sent via a single EFSP that registered without the FSPI_CAP_MULTISEND and without the FSPI_CAP_BROADCAST capabilities.

40. Pause the Fax Service queue. Call FaxSendDocumentEx to send many (20) separate faxes. Call FaxSendDocumentEx to send a broadcast fax to many (30) different recipients. Call FaxSendDocumentEx to send more (20) separate faxes. Call FaxSendDocumentEx to send another broadcast fax to more (30) different recipients. Resume queue.

Verify that:

· FaxSendDocumentEx returns TRUE every time.

· Job execution is one at a time.
=> FaxDevSendEx (for job j+1) is always called after FaxDevEndJob (for job j) has been called.
Note- since EFSP has no broadcast capability FaxDevSendEx is called for each recipient in a broadcast. In this case a total of 100 times (20+30+20+30).

Where both an EFSP that registered with the FSPI_CAP_MULTISEND capability and with the FSPI_CAP_BROADCAST capability and a legacy FSP are registered. Make sure that 1st broadcast is “handled” by EFSP and 2nd broadcast is “handled” by legacy FSP

41. Pause Fax Service queue. Call FaxSendDocumentEx to send a broadcast fax to many (30) different recipients, twice. Resume queue.
Make sure that all faxes are successfully sent.

Verify that:

· FaxSendDocumentEx returns TRUE both times.

· 1st call to FaxSendDocumentEx adds one parent job and all (30) child jobs to queue.

· 2nd call to FaxSendDocumentEx adds one parent job and all (30) child jobs to queue.

· The EFSP’s FaxDevSendEx is called only once.

· On the legacy FSP job execution is one at a time.
FaxDevSend (for job j+1) will be invoked after FaxDevEnd (for job j) has been invoked.

· On the EFSP all jobs begin execution at once.

Stress Test Cases:

Make sure that any faxes would be sent via a single EFSP that registered with the FSPI_CAP_MULTISEND and with the FSPI_CAP_BROADCAST capabilities.

42. Run many (100) iterations of the following.
Randomly pick a number n (n<31). Use n to either call FaxSendDocumentEx n times with a single recipient or call FaxSendDocumentEx a single time with all n (different) recipients.
Use fax images that will take a long time to transmit.

Verify that:

· FaxSendDocumentEx returns TRUE every time.

· All jobs (regular, child and parent) are added to service queue and begin execution immediately.

· As soon as a job is added to queue it begins execution, even if other jobs have not yet completed.

Broadcast Capabilities –

Make sure that any faxes would be sent via a single legacy FSP that registered via the FaxRegisterServiceProvider Client API.

Test Cases:

43. Call FaxSendDocumentEx to send many (300) separate faxes to different recipients.
Make sure that all faxes are successfully sent.

Verify that:

· FaxSendDocumentEx returns TRUE every time.

· 300 separate (regular) jobs are added to service queue.

· FaxDevStart is called for every job (a total of 300 times).

· FaxDevSend is called for every job (a total of 300 times).

· FaxDevEnd is called for every job (a total of 300 times) after that job completes.

· Job execution is one at a time.
FaxDevSend (for job j+1) will be invoked after FaxDevEnd (for job j) has been invoked.

44. Call FaxSendDocumentEx to send a fax to a single recipient.
Make sure that fax is successfully sent.

Verify that:

· FaxSendDocumentEx returns TRUE.

· A single broadcast job with a single recipient is added to service queue.

· FaxDevStart, FaxDevSend and then FaxDevEnd are called for this job.

· For all intents and purposes this job is treated as if it was created by a call to the legacy FaxSendDocument API.

Make sure that any faxes would be sent via a single EFSP that registered with the FSPI_CAP_BROADCAST capability.

Test Cases:

45. Call FaxSendDocumentEx to send a broadcast fax to a few (3) different recipients.
Make sure that all faxes are successfully sent.

46. Call FaxSendDocumentEx to send a broadcast fax to many (3000) different recipients.
Make sure that all faxes are successfully sent.

47. Call FaxSendDocumentEx to send a broadcast fax to many (3000) recipients. Where all recipients are identical (same details and phone numbers).
Make sure that all faxes are successfully sent.

Verify that:

· FaxSendDocumentEx returns TRUE.

· One parent job and all (3 or 3000) child jobs are added to service queue.

· FaxDevSendEx is called only once.

· When a child job completes, FaxDevEndJob is invoked with the corresponding child job handle.

· FaxDevEndJob with the parent job handle is called (only) after FaxDevEndJob was called for all (3 or 3000) child jobs.

Make sure that any faxes would be sent via a single EFSP that registered with the FSPI_CAP_BROADCAST capability and different combinations of FSPI_CAP_ABORT_PARENT and FSPI_CAP_ABORT_RECIPIENT capabilities.

Test Cases:

48. Abortion of child/parent job.

Make sure that any faxes would be sent via a single EFSP that registered with the FSPI_CAP_BROADCAST capability.

Test Cases:

49. Pause and resume of child/parent job.

Where both an EFSP that registered with the FSPI_CAP_BROADCAST capability and a legacy FSP are registered. Make sure that 1st broadcast is “handled” by EFSP and 2nd broadcast is “handled” by legacy FSP.

Test Cases:

50. Pause Fax Service queue. Call FaxSendDocumentEx to send a broadcast fax to many (30) different recipients, twice. Resume queue.
Make sure that all faxes are successfully sent.

Verify that:

· FaxSendDocumentEx returns TRUE both times.

· 1st call to FaxSendDocumentEx adds one parent job and all (30) child jobs to queue.

· 2nd call to FaxSendDocumentEx adds one parent job and all (30) child jobs to queue.

· The EFSP’s FaxDevSendEx is called only once.

· On the legacy FSP job execution is one at a time.
FaxDevSend (for job j+1) will be invoked after FaxDevEnd (for job j) has been invoked.

· On the EFSP job execution is one at a time (not multi-send).
Only one child job is executing at any given time.

Job Context Reestablishment –

Make sure that any faxes would be sent via a single EFSP that exports the optional FaxDevReestablishJobContext API and whose FaxDevSendEx returns message ids.

Test Cases:

51. Call FaxSendDocumentEx to send a fax. While job is pending/initializing/sending, stop the fax service. Restart the fax service immediately.

52. Call FaxSendDocumentEx to send a fax. While job is pending/initializing/sending, kill the fax service process. Restart the fax service immediately.

53. Call FaxSendDocumentEx to send a fax. While job is pending/initializing/sending, reboot the machine immediately.

For each test case verify that:

· After service restarts, FaxDevReestablishJobContext is called with the initial message ids and returns new job handles associated with the jobs that were queued before the service was stopped.

· A job is added to fax queue and its state matches the state before service went down.

Make sure that any faxes would be sent via a single EFSP that exports the optional FaxDevReestablishJobContext API and whose FaxDevSendEx returns message ids.

Test Cases:

54. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_FAILED.
55. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_INVALID_JOB_HANDLE.
56. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_INVALID_MESSAGE_ID.
For each test case verify that:

· After service restarts, FaxDevReestablishJobContext is called with the initial message ids.

· Since the attempt to reestablish job context has failed the service will restart the job from scratch. => FaxDevSendEx is called.

57. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_NETWORK when called for the 1st time. When called again it will return successfully.

Verify that:

· After service restarts, FaxDevReestablishJobContext is called with the initial message ids.

· Since the attempt to reestablish job context has failed with FSPI_E_NETWORK the service will attempt to reestablish job context again. => Fax Service “waits” a while and then calls FaxDevReestablishJobContext with the same job handle and the same message id.

· A job is added to fax queue and its state matches the state before service went down.

58. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will always return with FSPI_E_NETWORK.

Verify that:

· After service restarts, FaxDevReestablishJobContext is called with the initial message ids.

· Since the attempt to reestablish job context has failed with FSPI_E_NETWORK the service will attempt to reestablish job context again. => Fax Service “waits” a while and then calls FaxDevReestablishJobContext with the same job handle and the same message id.

· After several such tries the service “gives-up” and restarts the job from scratch. => FaxDevSendEx is called.

Make sure that any faxes would be sent via a single EFSP that exports the optional FaxDevReestablishJobContext API, whose FaxDevSendEx returns message ids, and has registered with the FSPI_CAP_BROADCAST capability.

Test Cases:

59. Call FaxSendDocumentEx to send a broadcast fax to many (15) recipients. While some of the child jobs have completed, others are pending and one is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will always return successfully.
Verify that:

· After service restarts, FaxDevReestablishJobContext is called with the initial message ids (parent message id and all child message ids)

Test Cases:

60. Call FaxSendDocumentEx to send a broadcast fax to many (15) recipients. While some of the child jobs have completed, others are pending and one is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_FAILED.
61. Call FaxSendDocumentEx to send a broadcast fax to many (15) recipients. While some of the child jobs have completed, others are pending and one is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_FAILED.

62. Call FaxSendDocumentEx to send a broadcast fax to many (15) recipients. While some of the child jobs have completed, others are pending and one is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_INVALID_JOB_HANDLE.
63. Call FaxSendDocumentEx to send a broadcast fax to many (15) recipients. While some of the child jobs have completed, others are pending and one is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_INVALID_JOB_HANDLE.

64. Call FaxSendDocumentEx to send a broadcast fax to many (15) recipients. While some of the child jobs have completed, others are pending and one is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_INVALID_MESSAGE_ID.
65. Call FaxSendDocumentEx to send a broadcast fax to many (15) recipients. While some of the child jobs have completed, others are pending and one is sending, stop the fax service. Restart the fax service immediately.
Make sure that FaxDevReestablishJobContext will return with FSPI_E_INVALID_MESSAGE_ID.

For each test case verify that:

· After service restarts, FaxDevReestablishJobContext is called with the initial message ids.

· When an attempt to reestablish job context fails the service will discard all the new job handles it has obtained and will restart the broadcast from scratch. => FaxDevSendEx is called.

Make sure that any faxes would be sent via a single EFSP that exports the optional FaxDevReestablishJobContext API but whose FaxDevSendEx does not return message ids.

Test Cases:

66. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.

Verify that:

· Job is restarted from scratch => FaxDevSendEx is called.

Make sure that any faxes would be sent via an EFSP that does not export the optional FaxDevReestablishJobContext API but whose FaxDevSendEx does return message ids.

Test Cases:

67. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.

Verify that:

· Job is restarted from scratch => FaxDevSendEx is called.

Make sure that any faxes would be sent via a legacy FSP.

Test Cases:

68. Call FaxSendDocumentEx to send a fax. While job is sending, stop the fax service. Restart the fax service immediately.

Verify that:

· After service restarts, job is restarted from scratch => FaxDevStartJob is called to obtain a new handle and then FaxDevSend is called with that handle.

Where both a legacy FSP and an EFSP that exports FaxDevReestablishJobContext and whose FaxDevSendEx returns message ids, are registered. Make sure that 1st fax is “handled” by legacy FSP and 2nd fax is “handled” by EFSP.

Test Cases:

69. Call FaxSendDocumentEx to send a fax, twice. While both jobs are sending, stop the fax service. Restart the fax service immediately.

Verify that:

· After service restarts, the 1st job is restarted from scratch => the legacy FSP’s FaxDevStartJob is called to obtain a new handle and then FaxDevSend is called with that handle.

· 2nd job is reestablished => the EFSP’s FaxDevReestablishJobContext is called with the 2nd job’s message ids.

FSPs/EFSPs that do not export all required APIs –

Registration via FaxRegisterServiceProvider

Register a DLL using the FaxRegisterServiceProvider API.

Test Cases:

70. A VFSP DLL exporting all FSP APIs - the FaxDevReceive API.

71. A VFSP DLL exporting all FSP APIs - the FaxDevSend API + the FaxDevSendEx API + the FaxDevInitializeEx API.

72. An EFSP DLL exporting all mandatory EFSP APIs + the FaxDevSend API (missing the FaxDevInitialize API).

For each test case verify that:

· FaxRegisterServiceProvider returned FALSE.

· FaxRegisterServiceProvider returned last error TBD (E_ILLEGAL_IMAGE?).

· No VFSP registry entries were added under “…\CometFax\Device Providers” key (or anywhere else).

· A call to Fax Service Client API FaxEnumPorts before and after registration returns exactly the same information (no new VFSP devices are enumerated).

· Restart the Fax Service and call FaxEnumPorts yet again, make sure same information is returned.

· Send and receive a fax using the MS T.30 FSP.

Registration via FaxRegisterServiceProviderEx

Register a DLL using the FaxRegisterServiceProviderEx API.

Test Cases:

73. An EFSP DLL exporting all mandatory EFSP APIs – the FaxDevSendEx API.

74. A VFSP DLL exporting all FSP APIs + the FaxDevInitializeEx API + the FaxDevSendEx API + all optional EFSP APIs (missing the mandatory FaxDevShutdown EFSP API).

For each test case verify that:

· FaxRegisterServiceProviderEx returned FALSE.

· FaxRegisterServiceProviderEx returned last error TBD (E_ILLEGAL_IMAGE?).

· No VFSP registry entries were added under “…\CometFax\Device Providers” key (or anywhere else).

· A call to Fax Service Client API FaxEnumPorts before and after registration returns exactly the same information (no new EFSP devices are enumerated).

· Restart the Fax Service and call FaxEnumPorts yet again, make sure same information is returned.

· Send and receive a fax using the MS T.30 FSP.

3.2 FSPs/EFSPs that export more than the required APIs –

Registration via FaxRegisterServiceProvider

Register a DLL using the FaxRegisterServiceProvider API.

Test Cases:

75. An FSP DLL exporting all the FSP APIs + the FaxDevInitializeEx API + the FaxDevSendEx API + the FaxDevShutdown API + all other optional EFSP APIs.

For each test case verify that:

· FaxRegisterServiceProvider returned TRUE.

· The FriendlyName (3rd) parameter given to FaxRegisterServiceProvider was used to add a registry key under the “...\CometFax\Device Providers” registry key.

· Under the above key, three string entries (FriendlyName, ImageName and ProviderName) were added with data corresponding to the (3rd, 4th and 2nd) parameters given to FaxRegisterServiceProvider.

· As service is stopping (e.g. due to “net stop fax”) FaxDevShutdown is not invoked.

· After service restart, FaxDevInitialize is invoked (and not FaxDevInitializeEx).

· After service restart, a call to FaxSendDocumentEx (which will use this VFSP) invokes FaxDevSend (and not FaxDevSendEx).

· A call to Fax Service Client API FaxEnumPorts after registration (and after service restart) enumerates the new VFSP devices.
Note that service can succeed to enumerate the devices only if the VFSP’s FaxDevVirtualDeviceCreation and FaxDevInitialize behave legally and succeed.

Registration via FaxRegisterServiceProviderEx

Register a DLL using the FaxRegisterServiceProviderEx API.

Test Cases:

76. An EFSP DLL exporting all mandatory EFSP APIs + the FaxDevInitialize API + the FaxDevSend API.

For each test case verify that:

· FaxRegisterServiceProviderEx returned TRUE.

· The FriendlyName (3rd) parameter given to FaxRegisterServiceProviderEx was used to add a registry key under the “...\CometFax\Device Providers” registry key.

· Under the above key, three string entries (FriendlyName, ImageName and ProviderName) were added with data corresponding to the (3rd, 4th and 2nd) parameters given to FaxRegisterServiceProvider.

· As service is stopping (e.g. due to “net stop fax”) FaxDevShutdown is invoked.

· After service restart, FaxDevInitializeEx is invoked (and not FaxDevInitialize).

· After service restart, a call to FaxSendDocumentEx (which will use this EFSP) invokes FaxDevSendEx (and not FaxDevSend).

· A call to Fax Service Client API FaxEnumPorts after registration (and after service restart) enumerates the new EFSP devices.
Note that service can succeed to enumerate the devices only if the EFSP’s FaxDevInitializeEx behaves legally and succeeds.

3.3 EFSP which export optional APIs –

Valid

Register a DLL using the FaxRegisterServiceProviderEx API.

Test Cases:

77. An EFSP DLL exporting all mandatory EFSP and none of the optional APIs.

78. An EFSP DLL exporting all mandatory EFSP and all of the optional APIs.

For each test case verify that:

· FaxRegisterServiceProviderEx returned TRUE.

· The FriendlyName (3rd) parameter given to FaxRegisterServiceProviderEx was used to add a registry key under the “...\CometFax\Device Providers” registry key.

· Under the above key, three string entries (FriendlyName, ImageName and ProviderName) were added with data corresponding to the (3rd, 4th and 2nd) parameters given to FaxRegisterServiceProvider.

· A call to Fax Service Client API FaxEnumPorts after registration (and after service restart) enumerates the new EFSP devices.
Note that service can succeed to enumerate the devices only if the EFSP’s FaxDevInitializeEx behaves legally and succeeds.

· A call to FaxSendDocumentEx (which will use this new EFSP device) will invoke FaxDevSendEx and FaxDevEndJob.
Note that the EFSP should implement these functions to behave legally and succeed.

MS Confidential

Sigalit Bar (sigalitb), 4-Oct-99

