	

	Defining Spooler Components

	Author
	Printing Team
	Created
	5/19/2000 11:35 AM

	Revision
	1.0
	Updated
	11/11/2000 12:09 AM

	Location
	

11.
Introduction

11.1
Summary and Goals

21.2
Scenarios

21.3
Feature and Process Details

21.4
Dependencies and Owners

22.
Design Overview

22.1
High Level Design

32.2
Public Interfaces

33.
Development Plan

33.1
Usability Issues

33.2
Development Schedule

33.3
Testing

33.4
Dependencies

33.5
Release

34.
Design Review

34.1
Localization

34.2
Extensibility

44.3
Application Compatibility

44.4
Setup and Administration

45.
Detailed Design

45.1
Modules

45.1.1
Local Printing

45.1.2
Server Printing

55.1.3
Client Printing

55.1.4
MS Inbox Printer Drivers

65.1.5
Port Monitors and Language Mointors

75.1.6
Print Processors

75.2
Implementation Detail

85.3
Futures

86.
Issues

87.
History

1. Introduction

1.1 Summary and Goals

We want to enable printing for the Whistler Embedded project in an efficient way, so that Engineers creating a Whistler Embedded image can have exactly the level of printing they need, without having to waste space on functions they are not going to use. Full support of Win32 API, small footprint both in memory and on disk, and no binary changes from whistler are primary goals for Whistler Embedded. For more information, see the Whistler Embedded Website (http://nte/w2ke/).

1.2 Scenarios

A designer can build a Whistler image, which will allow no printing, or printing to a locally defined printer, or printing to a Whistler server, which has two parts: a client and a server.

1.3 Feature and Process Details

The Embedded team has a tool called “iCat” which can be used to design components. We will use this tool, and design printing components for the following scenarios:

· No Printing

· Support Printing

· Local Printing

· LPT (1284), COM, File, IR

· USB, 1394, PPDT, dot4

· Server Printing

· LPT (1284), COM, File, IR

· USB, 1394, PPDT, dot4

· TCP

· LPD

· Internet HTTP Printer Connection

· Intranet RPC Printer Connection

· CIFS/SMB (Win9x) Printing Support

· Client Printing

- RPC Printer Connection

· MS Inbox Printer Drivers

· Core PostScript Driver

· Core UniDrv Driver

· Core Plotter Driver

· Mini Drivers

Local Printing component basically is printing without a server, while server printing is printing with the help of a printing server through either a RPC printer connection or a HTTP connection. Client printing component is a thin client that is cable of enabling Server Printing through Point and Print. MS Inbox drivers will consist of inbox drivers shipped in Whistler.

1.4 Dependencies and Owners

There should be no changes in any of our or other components for this item.

2. Design Overview

2.1 High Level Design

The iCat Tool writes out a XML specification for each component. Using Target Designer, A system designer can select components based on component definitions and uses these specifications to design a functional subset of Whistler. Printer installation is supported only through Plug and Play manager and a tool inf2sld can help to generate small components from an INF file such as ntprint.inf.

2.2 Public Interfaces

None

3. Development Plan

3.1 Usability Issues

None

3.2 Development Schedule

Designing the components using iCat to create them. 2 week

Testing to make sure all dependencies are taken care of. 1 week

Designing embedded images, and making sure they work with each of the printing

scenarios. 2 week

3.3 Testing

There are two ways to test a component definition; one is to use Component Verifier (CV). What CV can do is to run a test harness/scenarios, and during this process CV can create a log and this log is collected by Mantis team and analyzed and dependency is verified against the component definition. When CV is installed, all events of registry access, LoadLibrary and CreateProcess are logged based a technology called “Shim”. With the log generated by CV, it is possible to find out all the resources a component needs provided all relevant code path are touched by the test hardness. Another limitation CV has is that it can only log events created in user mode. Another way to test the component definition is to use prefix tools. Mantis team has the ability to run query prefix database and find out what resources a particular module needs. The latter sounds like a better level of existing technology.

3.4 Dependencies

There is no dependency on other components.

3.5 Release

The Whistler Embedded team will release it, and the target goal is to release it one month after Whistler’s release schedule.

4. Design Review

4.1 Localization

It is uncertain whether there is some special localization needs for Whistler Embedded systems

4.2 Extensibility

We will provide driver components, which would enable a designer to design a functional print system, with drivers. He could create a print system that supports a printer of selected model thus creates a functional subset of printing system in Whistler.

4.3 Application Compatibility

Since this uses the standard Whistler binaries and supports all APIs, there should be no compatibility problems. We just need to make sure applications can correctly print in all scenarios.

4.4 Setup and Administration

Printer driver is installed through Plug and Play manager. Out of 2100 printer drivers in US build, there are only 470 that are plug and play compatible, 390 of them are GPD based Unidrv drivers and 60 of them are PPD based PostScript driver. All 13 printers over dot4 port use GPD based Unidrv driver.

5. Detailed Design

5.1 Modules

5.1.1 Local Printing

This component will include core spooler spoolsv and the router plus local spooler print provider. We attempted to remove printui from this component, but because ntprint.dll is used local spooler for driver installation and update, and ntprint uses printui’s PnpInterface and PrintUIEntry which makes it hard to be separated from printui, we found that it was not feasible to split printui from this component yet support all print provider APIs. Plug and Play manager installs any printer driver we have in Whistler Embedded. We need to the inf file and catalog file to enable plug and play installation. These are the necessary components:

· spoolsv.exe
· spoolss.dll
· localspl.dll
· winspool.drv
· ntprint.dll
· printui.dll
· usbmon.dll
· localui.dll
· printupg.inf
· printupg.inf
· ntprint.inf
· usbprint.inf
· dot4prt.inf
· genprint.inf
· ntprint.cat

In essence, Local Printing covers printing over locally attached printers.

5.1.2 Server Printing

In addition to having all components in Local Printing, Server Printing allows printing to a server, and it supports Internet printing, printing to a printer queue exposed by LPD protocol (RFC 1179), and printing to a TCP/IP connection. These are the necessary components.

· spoolsv.exe
· spoolss.dll
· localspl.dll
· winspool.drv
· usbmon.dll
· localui.dll
· ntprint.dll
· printui.dll
· inetpp.dll
· inetppui.dll
· msw3prt.dll
· tcpmon.dll
· tcpmib.dll
· tcpmonui.dll
· win32spl.dll
· spnpinst.exe
· oleprn.dll
· printupg.inf
· ntprint.inf
· ntprint.cat
For simplicity, the additional ASP and gif files needed by Internet printing are not listed because the large number of files.

5.1.3 Client Printing

The Client Printing component is a thin client that can print to a printer server through a RPC printer connection. This component may be the most useful component because an embedded system does not necessarily have the CPU power to render a printer job. Client Printing supports RPC printer connection only and this is because we do not have local driver cab or additional drivers in this component. A printer queue can be installed through Point and Print or added by APW in the remote printer folder. These are the necessary components.

· spoolsv.exe
· spoolss.dll
· localspl.dll
· winspool.drv
· win32spl.dll
· ntprint.dll
· printui.dll
· printupg.inf
Local spooler is necessary in this component because win32spl is a partial print provider.

5.1.4 MS Inbox Printer Drivers

Currently we have around 2100 printer drivers in US build alone, around 1300 of them are GPD based UniDrv printers, around 800 of them are PPD based PostScript printers, and 30 of them are PCD based plotter drivers. Driver file driver.cab is of size 50 Mbytes, and it is mandatory to break this file into small components. 50MB is a large hit for an embedded product just to be able to add a single driver
First, let us analyze several characteristics of printer drivers. A working driver is consist of either one of the following:

1) Core PostScript driver + mini driver PPD file + plugins (dll and ini files, etc). We do not know any PostScript uses Language monitors so far.

2) Core Unidrv driver + mini driver GPD file + plugins (dll and ini files) + resouce dlls + language monitors (pjlmon or cnbjmon or others).

Obviously there are files such as postscript driver that is shared by hundreds of drivers. In addition, we have around 40 inbox OEM dlls that are used by thousands of drivers.

In order to divide the inbox printer driver into proper functional subset, what we should the following components:

· Core PostScript driver

· Core UniDrv driver

· MiniDrvers.

A printer queue is installed by plug & play manager, which invokes class installer ntprint. This installation process expects that all necessary driver files are copied in the driver cache directory, driver signing information ntprint.cat is in the CatRoot directory, and all necessary inf files are in the inf directory.

5.1.5 Port Monitors and Language Monitors

A printer queue consists of a set of drivers and a port. In this session we shall examine all ports supported in Whistler and discuss what port should we support in each component. Finally we shall briefly mention all the language monitors supported

5.1.5.1 Local Ports

LPT (1284), COM, FILE, and IR ports are considered local ports. These ports are linked into localspl in Whistler. Since one of the goals of Whistler embedded is to use Whistler binaries, we should not try to separate these components from local spooler. Localui.dll is the UI for local ports. Local Ports are supported in Local Printing and Server Printing.

5.1.5.2 USB, dot4, FireWire (1394), and PPDT (1394.3) Ports

These ports are supported currently by usbmon.dll and are part in both Local Printing and Server Printing components.

5.1.5.3 LPR/LPD Ports

We support LPR/LPD by our TCPMon. TCPMon can talk LPD to printers if printers support LPD. LPRMon is only recommended to use with Unix servers. These ports are supported only in Server Printing.
5.1.5.4 TCP Ports

This component supports TCP ports and among the component files are tcpmon.dll and tcpmib.dll. The UI component for TCP port is tcpmonui.dll. This component is also capable of handling LPD protocol. Only Server Printing supports TCP ports.

5.1.5.5 Language Monitors

None of the postscript drivers uses language monitors where job control is encapsulated in PPD mini-drivers. There are two language monitors used by inbox drivers mainly UniDrv drivers, and these are canon bubble jet language monitor (cnbjmon.dll) and printer job language monitor (pjlmon.dll). These language monitors are part of the printer driver components where they are needed and are not separated components and are not associated with any spooler components.

5.1.6 Print Processors

Drivers may rely on print processor to do certain things that is otherwise impossible. For example, in Whistler, PostScript drivers rely on print processor to enable reverse printing and collation; Unidrv drivers rely on printing processor to enable N-Up printing. What role does Print Processor play in Whistler embedded? Currently, there is only one print processor we are aware of, and that is winprint. Winprint is linked into localspl and since Whistler embedded uses only whistler binaries, we should not try to have print processors as separate components.

5.2 Implementation Detail

In this session, we first present the challenges we faced, and then we show how we solve these problems we had.

There are thousands of driver components; a well-defined component definition should specify all the component dependency. Let’s say a dynamical linking library poscript5.dll uses a library msvcrt.dll, any component that has pscript5.dll should specify msvcrt.dll as one of dependent files. We have a large number of driver components, it is error prone to pick up this dependency manually and it would also be a maintenance nightmare if one single change in PostScript core driver would require thousands of SLDs to be manually updated. In addition to core drivers, we have 30-40 OEM dynamical linking libraries; we need those dependencies created by these dynamical linking libraries to be picked up automatically for exactly the same reason. How can we do it?

In addition, if USB printing is enabled, we need the USB stack in order to be functional. How do we express such dependency? How about dot4/fire wire devices? These dependency cannot be identified by what library files or what registry the spooler component uses.

We solve these problems by roughly three mechanisms: customization scripts, inheritance, and dependency groups.

Whistler embedded team has a powerful scripting engine that can parse a SLD file and if it sees a file such as pscript5.dll, it can automatically specify that the postscript core component is needed. So if we define a PostScript core driver component, with this scripting engine, the dependency on postscript drivers can be picked up automatically. This mechanism is immensely powerful and extremely flexible but requires us to code the logic in some scripts such as VB or Java scripts etc. Alternatively, we can also use a mechanism that Mantis team called “inheritance”. Basically what that means is that in Whistler embedded target designer, there is a text based file that can map a component to have a dependency on another a component definition in a fashion similar to inheritance in C++. But unlike C++, at this time Whistler Embedded Target Designer does not support multiple inheritance, meaning it cannot map multiple components, so if a driver uses both core PostScript driver and a plug-in, only one of these dependency can be automatically picked up. Using either of these methods, whenever appropriate, we should be able to solve our driver dependency problems.

To solve our dependency on USB stack etc, there is another mechanism in Whistler embedded called “dependency group” where we can specify a place holder let’s say, “USB”, and this would be automatically redirected to a component definition that defines all the dependency that is needed to enable USB printing at the time the image is created. This way, by setting a placeholder first and binding to a component later, gives us additional advantage that we can select all we needed and no more that what we needed.

5.3 Futures

The future working items are UI separations and further subcomponent breaking down.

Within current implementation, it is hard to separate printer UI from spooler. Whistler Embedded needs full Win32 API support, and for example localspl function SplAddPrinterDriver loads ntprint.dll to parser printupg.inf. As we all know that it is not easy to separate ntprint.dll from printui, this chain of dependency causes printui and all its dependency in separable from local spooler. We, however, do see a possibility that local spooler can parse printupg.inf itself or use Setup API to do that instead of using ntprint, thus avoid the dependency from ntprint.dll and subsequently those of printui.

In addition, it is possible to further break down the printing sub-system; for example, we can have 3 or 4 print monitor components and 2 or more Language components. I have two reasons why we should not try to do so at current time frame. First, we are given limited time and no test resource, separating further without testing support is considered to have high risk. Second, we consider breaking driver cab as a big success, and break down this components should have satisfied all the customer needs and we do not receive any request from Mantis team for further breaking down of printing subsystem. But these can be one of our feature goals with no doubt.

When UI can be separated from core components, it shall make sense to break the subsystem further to components that have no UI and corresponding UI components.

Bidispl and bidipjlmon.dll should be included in the future to support rich job status and bi-directional communications between host and printers.

MFP devices are another part that are not addressed and should be addressed in the future

6. Issues

7. History
	Date
	Changes made
	Author

	05/18/00
	Created
	BryanKil

	11/08/00
	Updated
	Lzhu

Microsoft Confidential

Page 8 of 1

