AppParse
Michael Krause

8/4/00
Contents

1.0 Abstract

2.0 Capabilities and Limitations

3.0 Common Code (AppParse.cpp)

3.1 Public Functions

3.2 Private Classes

3.3 Private Functions

3.4 Overview of Parsing

3.5 XML Output

3.6 Future Improvements

4.0 Command-Line AppParse

4.1 Overview

4.2 Building Command Line AppParse.

4.3 Future Improvements

5.0 Web-based AppParse

5.1 The IAppParse Interface

5.2 The AppParse Database

5.3 Overview of Parsing

5.4 Overview of Querying

5.5 Building Web-based AppParse

5.6 Future Improvements

6.0 References

1.0 Abstract

AppParse profiles executable images and determines which DLL’s an image is linking to, and which functions the image is importing from those DLL’s. AppParse can profile either a single executable or all executables in a directory and its subdirectories. AppParse will create a list of all functions being imported and from which DLL’s, and will recursively profile non-system DLL’s to determine their imports.

AppParse is actually two different tools. One is a command line driven console application. The other is embedded in an ActiveX control for distribution on a website. They both share some common code.

2.0 Capabilities and Limitations

AppParse has the following capabilities:

· Get information on all implicitly imported functions, including imports by name or ordinal, bound imports, and delayed imports.

· Profile an entire directory and its subdirectories for all executable images.

· Recursively profile non-system DLL’s.

· Resolve ordinal imports to their true name by inspecting the export section of the DLL.

· Produce output as a structured XML file.

AppParse has the following limitations:

· It cannot determine explicitly imported functions (functions that are imported via LoadLibrary() and GetProcAddress().) This is impossible to determine from the static image.

· It cannot profile images that are not in the Win32 Portable Executable format. This includes 16-bit and 64-bit applications.

· It cannot determine which COM object methods an image uses (since this is determined at run-time.)

· It does not parse system DLL’s. This was by design, since it would result in an unwieldy amount of information (for example, every application links to the system DLL kernel32.dll and kernel32.dll imports several hundred functions from ntdll.dll.)

· It will not display information on unnamed imports (functions which are exported by ordinal only.) This was by design, as an ordinal number gives very little useful information.

3.0 Common Code (AppParse.cpp)

AppParse.cpp contains the core parsing engine.

3.1 Public Functions

AppParse.cpp exposes a single public function:

DWORD __stdcall AppParse(

char* szAppName,

FILE* pFile,

bool fRaw,

bool fAPILogging,

bool fRecurse,

bool fVerbose,

char* szSearchKey,

int iPtolemyID,

HANDLE hEvent = 0)

	SzAppName
	A null-terminated string containing a valid path to either an executable file or a directory. If it is a directory, all executables in the directory will be profiled.

	PFile
	A standard C file pointer, all output is directed to it.

	FRaw
	If true, no XML tags will be written.

	FAPILogging
	If true, no DLL information is recorded, only function imports.

	FVerbose
	If true, extended info is provided.

	SzSearchKey
	If non-NULL, specifies a search key to match functions against. * and ? wildcard characters are accepted.

	LPtolemyID
	A unique identifier for this application.

	HEvent
	If non-NULL, contains an event to check. If it is ever signaled, profiling is terminated.

3.2 Private Classes

CModuleParseStack

CModuleParseStack prevents AppParse from going into an infinite recursive loop in the event of a circular DLL dependency.

Methods

	void PushName(char* szName)
	Add szName to the list of parsed modules.

	void Pop()
	Remove the top node off the stack.

	bool CheckModuleParsed(char* szName)
	Returns true if the module was already parsed, false otherwise.

	bool IsEmpty()
	Returns true if list is empty.

	void ClearParseHistory()
	Removes all nodes from the stack.

CFunction

CFunction contains all info describing a named function import.

Members

	m_szName

	The name of this function. This is determined either directly from the import table in the module, or by doing a lookup on the ordinal number in the export table of the DLL it is being imported from.

	m_szForwardName
	The name of the function this is being forwarded to, or NULL if not a forwarded function.

	m_iOrdinal
	Ordinal number, if this was an ordinal import, -1 otherwise.

	m_iHint
	Hint if this was a import by name, -1 otherwise.

	m_dwAddress
	Address if this function is bound, 0xFFFFFFFF otherwise.

	m_fDelayed
	True if this import is delayed, false otherwise.

	m_pNext
	The next function in the function list.

Methods

	CFunction
	Construct a new CFunction object, either from a list of parameters describing the function, or from another function.

	~CFunction
	Removes all resources associated with the function.

	CFunction* Next()
	Returns a pointer to the next function in the list.

	char* Name()
	Return the name of this function.

	void SetForwardName(char* szForward)
	Set the forward name member.

	void WriteHeader(int iIndentLevel, FILE* pFile);
	Write out header information for each function member, only used in raw output mode.

	void WriteFunction(int iIndentLevel, FILE* pFile)
	Write all information related to this function to the file.

COrdinalImport

COrdinalImport contains all info describing a function import by ordinal. Eventually, all CordinalImport’s are resolved to CFunction, or deleted.

Members

	m_iOrdinal

	Ordinal number for this import.

	m_fDelayed
	True if this import is delayed, false otherwise.

	m_pNext
	The next ordinal import in the list.

Methods

	COrdinalImport
	Construct a new COrdinalImport object.

	int GetOrdinal()
	Return the ordinal number for this import.

	COrdinalImport* Next()
	Returns a pointer to the next ordinal import in the list.

	void SetNext(COrdinalImport* pNext)
	Sets the next ordinal import in the list.

CModule

CModule represents an executable image (either an EXE or DLL.)

Members

	m_szName

	The name of this module (such as kernel32.dll.)

	m_szFullName
	Name of module relative to the starting path.

	m_pvImageBase
	Pointer to the base of the module in memory.

	m_pImportedDLLs
	All DLL’s this module is linking to.

	m_pFunctions
	All functions being imported by name from this module by its parent.

	m_pOrdinals
	All functions being imported by ordinal from this module by its parent.

	m_pioh, m_pish, m_pifh
	File headers for PE’s.

	m_pNext
	Next module in list

	m_szError
	Description of last error that occurred.

	m_fSystem
	True if this is a system DLL, false otherwise. (A DLL is considered to be a system DLL if it is protected under System File Protection

	m_wDosDate, m_wDosTime
	DOS date and time stamp of module

	m_nAttrCount, m_szAttrValues, m_szAttrNames
	File information, retrieved using ACFileAttr.dll

Methods

	bool WalkImportTable()
	Parse the import address table for all functions imported by this module. Skips any functions that don’t match the search string.

	bool WalkDelayImportTable();
	Parse the delay import address table for all functions delay-loaded by this module. Skips any functions that don’t match the search string.

	void InsertFunctionSorted(CFunction* pFunc, CFunction** ppList)
	Insert the function pFunc into the list ppList, sorted alphabetically by name.

	bool ResolveForwardedFunctionsAndOrdinals()
	Parse the export tables of DLL’s to get forwarded function names and resolve ordinals to their name value. Ordinals resolved to a name are inserted into the function list.

	bool ParseImportTables()
	Walk the import table and the delay-load import table.

	void InsertOrdinal(int iOrdinal, bool fDelayed)
	Insert a new ordinal into the ordinal list.

	CModule* FindChild(char* szName)
	Return a reference to the child module matching szName.

	bool Empty()
	Return true if no functions are imported from this module, or any of its child modules.

	void GetAllFunctions(CFunction** ppFunctionList)
	Add all functions in the module to the list, ppFunctionList.

	void* RVAToPtr(const void* pAddr)

void* RVAToPtr(DWORD dwRVA)
	Convert a relative virtual address (RVA) in the image to a normal pointer that can be used.

	void GetFileVerInfo(HANDLE hFile, char* szFileName)
	Get all file version information from the resource section of the module.

	CModule()
	Construct an empty module.

	~CModule()
	Release all resources used by the module.

	bool ParseModule(HANDLE hEvent)
	Parse module for imports and parse all child modules. Return if hEvent becomes signaled.

	void InsertChildSorted(CModule* pcm)
	Insert the new child module, sorted alphabetically.

	void WriteModule(bool fTopLevel, int iIndentLevel, FILE* pFile)
	Write all module information to pFile.

CGlobalModuleList

CGlobalModuleList contains all top level modules.

Members

	m_pModules

	A list of all top-level modules.

Methods

	CGlobalModuleList()
	Create an empty module list.

	void Clear()
	Remove all modules in the list.

	void InsertModuleSorted(CModule* pcm)
	Insert a new module into the list, sorted alphabetically.

	void Write(FILE* pFile, char* szProjectName, int iPtolemyID)
	Write output to file pFile.

3.3 Private Functions

	bool IsSytemDLL(const char* szFileName)
	Returns true if szFileName is a system DLL.

	void LinkName2Name(char* szLinkName, char* szName)
	Takes a mangled name, szLinkName, and converts to a readable name in szName. Unmangles C++ functions, cdecl, stdcall, and fastcall functions.

	void ParseHighLevelModule(char* szName, HANDLE hEvent)
	Parse a top level .EXE, terminate early if hEvent becomes signaled.

	void Indent(int iLevel, FILE* pFile)
	Repeatedly tab for an indent, improve readability.

	void WriteXMLOKString(char* szString, FILE* pFile)
	Write the string to the file, but replace illegal characters in XML with legal sequences (like > to >)

	void WriteXMLHeader(FILE* pFile)
	Write the header for the XML output.

	bool MatchFunction(const char* szFunc)
	Return true if szFunc matches

	void ProfileDirectory(char* szDirectory, HANDLE hEvent)
	Profile an entire directory, terminate early if hEvent becomes signaled.

	void* __cdecl operator new(size_t size)

void __cdecl operator delete(void* pVal)
	Overload memory allocation, terminate cleanly if memory runs out (currently only an issue for absurdly large profiles.)

3.4 Overview of Parsing

The following table describes each type of import AppParse recognizes:

	Name Import
	This is the most common type of import. The imported function is referenced by name, and the loader does a binary search through the export table of the import module looking for a match. A “hint” is provided in the name import descriptor, which indicates where the search should start.

	Ordinal Import
	An ordinal import is an older-style import. The import is referenced by a number (an ordinal), which indicates exactly which entry in the export table matches.

	Bound Import
	A bound import has the address of the function already determined, so the loader does not have to patch the executable image. A timestamp is checked against the DLL containing the function to see if the binding information is valid. Name and ordinal imports can be bound.

	Delayed Import
	Delayed imports are contained in DLL’s that are not loaded until the function is used. Delayed imports can be imported by name or ordinal, but cannot be bound.

Microsoft Office 2000 uses all of these import types, and is a good test of AppParse.

All parsing begins in ParseHighLevelModule(). This is called by AppParse() if the path passed in is an EXE, or by ProfileDirectory() as it searches the directory path for EXE’s.

ParseHighLevelModule():

1. Create a new module.

2. Clear the parse stack.

3. Call CModule::ParseModule() to collect information.

4. Add the module to the global module list.

CModule::ParseModule():

1. Open the module file.

2. Get file version info using CModule::GetFileVerInfo()

3. Map the file into memory. This eases working with the module, since most information in the module is accessed through relative virtual addresses. Also, the entire block where the module is accessed is protected in a try{} block, so an invalid image with erroneous RVA’s can easily be detected via the memory violations caused.

4. Confirm it is a valid Win32 image.

5. If this is a child module to another module, call ResolveForwardedFunctionsAndOrdinals().

6. Terminate early if the module is a system DLL or exists in the parse stack.

7. Push the module into the parse stack.

8. Call ParseImportTables(), which calls WalkImportTable() and WalkDelayImportTable(). This adds child modules to this module, and fills those child modules with imported functions.

9. Recursively call ParseModule() on each child module.

10. Clean-up all allocated resources, release file mappings, etc.

11. Pop the module off of the parse stack.

CModule::WalkImportTable():

1. Locate the image import entry directory section in the file. This is done by looking at the DataDirectory member of the image optional header. If the section is not present, return early.

2. Get the first import descriptor, which is at the start of the import section.

3. If there are no more import descriptors (the descriptor contains zero thunk information) return.

4. Get a pointer to the function array. Where the function array exists either in Original First Thunk or First Thunk, depending on whether it is a Microsoft or Borland module. Also, if the image descriptor has a timestamp, the functions are bound and the bound address array is also retrieved.

5. If the thunk data descriptor retrieved is zero, move to the next import descriptor and go to 3.

6. Check if it is an ordinal or name import. If it is a name import, fetch the import by name descriptor and, and retrieve the name and hint information and check if it matches the search string. Otherwise, retrieve the ordinal import. Insert the new ordinal or function into the module’s list.

7. Move to the next function in the function array, and go to 5.

CModule::WalkDelayImportTable():

WalkDelayImportTable() is very similar to WalkImportTable(), except for the following differences:

· Delayed import module descriptors have a slightly different structure than normal import module descriptors.

· Different versions of Visual Studio produce different delay descriptors. Some have RVA’s for the name table and function table relative to the image base, other’s have normal RVA’s.

· All name and ordinal imports have the fDelayed flag set to true.

CModule::ResolveForwardedFunctionsAndOrdinals():

1. Get a pointer to the export table for the image.

2. From the export table descriptor, retrieve the names, ordinals, and addresses arrays.

3. Get a pointer to the function name.

4. Get the function’s ordinal.

5. Get the address to the function.

6. If the function has been forwarded to another DLL, the address is within the same section, and points to the forward name.

7. Check if the ordinal matches an ordinal import. If so, insert a new function with the correct name.

8. If no matching ordinal import, check normal imports. If an import is found that matches this function’s name, and if the function has a forwarded string, set the forward name of the function.

9. Move to the next entry in the arrays and go to 3.

3.5 XML Output
After parsing, AppParse calls the Write() method, which walks all modules and prints their information to a structured XML file. The XML file has the following format:

<?xml version=”1.0” ?>

<!--

AppParse Datafile

Generated: Date Time
-->

<APPPARSERESULTS>

<PROJECT NAME=”Project Name” ID=”Ptolemy ID”>

<EXE NAME=”Executable Name”>

<INFO>

Executable Specific Info returned by the ACFileAttr library

</INFO>

<SYSTEMMODULE VALUE= “0”/>

<DLL NAME = “First imported DLL”>

<INFO>

DLL Specific Info returned by the ACFileAttr library

</INFO>

<SYSTEMMODULE=”0 if system module, 1 otherwise”/>

<FUNCTION NAME = “First Imported Function” Various attributes, depending on import type. />

Other functions

</DLL>

Other DLL’s.

</EXE>

</PROJECT>

</APPPARSERESULTS>

The <DLL> tag can also appear subordinate to another DLL. This occurs with non-system DLL’s.

If “verbose” mode is not selected, system module and info blocks are omitted. The following are valid attributes for the function tag. Which ones are present depends on the import type of the function. These are omitted in non-verbose mode.

	ADDRESS
	Address, if bound.

	HINT
	Lookup hint, if name import.

	ORDINAL
	Ordinal number, if ordinal import.

	FORWARD_TO
	Function forwarded to.

	DELAYED
	Whether or not this module is delayed.

3.6 Future Improvements

· Modify to support 64-bit EXE’s.

· Currently exit() is called when memory allocation fails. While this is acceptable for a console application, it is not acceptable for the ActiveX control (since it results in the termination of the container process.) This should probably be changed to throwing an exception.

4.0 Command-Line AppParse

4.1 Overview

Command-line AppParse is a simple console application wrapper for AppParse. The console interface is defined in AppParseCUI.cpp.

AppParseCUI.cpp parses the command line, creates the output file, and calls the core AppParse code.

Usage

APPPARSE target [outputfile][/C] [/R] [/S] [/A] [/V] [/K:func]

	Target
	Specifies the target filename or directory to be profiled. A valid directory or binary file must be specified.

In the case of:

DIRECTORY:

All binary files in the directory will be profiled.

FILENAME:

The file and its dependencies will be profiled.

	Outputfile
	Specifies output file name. Default is [targetfile].XML.

	/C
	 Ignore output file, and send output to console.

	/R
	Raw format. (No XML tags, default for non-XML output file.)

	/S
	Profile subfolders. Only valid when target is a directory.

	/A
	API logging only.

	/V
	Verbose

	/K:func
	Only return those functions matching the key func (case insensitive

, wildcards)

All of these command line arguments are passed as flags to the AppParse() function.

Example Usage: appparse "C:\Program Files\foo” /V /K:Create*

4.2 Building Command-Line AppParse

Command line AppParse is in the build tree at sdktools\AppParse and can be built straight from the command line.

4.3 Future Improvements

5.0 Web-based AppParse

Web-based AppParse encapsulates the core parsing code in an ActiveX object, which can be embedded and used from a web page. The ATL AppWizard in Visual Studio generated the bulk of the code.

5.1 The IAppParse Interface

IAppParse is the AppParse interface, implemented in the class CAppParse

Methods

	Browse()
	Display a dialog box, and allow the user to select a path to parse.

	Parse()
	Parse the selected path, and write results to the AppParse database.

	QueryDB()
	Query the database and display output in the parent HTML file.

Properties

Properties of the AppParse control are accessed like a normal member variable using just their name under Javascript and Visual Basic (x = object.property, object.property = x.) Under C++, properties are accessed using get_ and put_ methods that return standard HRESULT’s (object->get_property(&x), object->put_property(&x))

	ConnectionString
	The connection string used to connect to the AppParse database.

	PtolemyID
	A unique identifier for this project.

	Path
	The path to be profiled.

5.2 The AppParse Database

The AppParse Database currently is a Microsoft Access 2000 database, on a public file share. It is accessed using ActiveX Data Objects, which provide a wrapper for OLEDB. There is an OLEDB driver for Access databases, SQL Server, and others. ADO provides a uniform interface to the underlying database driver, so the database store can be moved to another, more efficient format (such as a SQL Server) and only the ConnectionString property would have to be changed (at least in theory.) A sample connection string is:

Provider=MSDASQL;Driver={Microsoft Access Driver(*.mdb)};DBQ=\\mkrause\shared\appparse.mdb

This connects to a MS Access database driver used as an ODBC OLEDB provider to the database located on \\mkrause\shared.

The IADORecordBinding interface is used, which allows us to associate a record set with a C++ structure. This is done with the SProjectRecord, SModuleRecord, and SFunctionRecord defined in AppParseWrapper.h.

All database objects are wrapped in ADO smart pointer templates. These templates throw exceptions on errors, so all code that touches the database must be wrapped in a try/catch block.

The following describes each table in the AppParse database:

Projects

The Projects table is the top-level table, and contains basic information about each project.

	Type
	Field Name
	Description

	Integer
	PtolemyID
	A unique identifier for this project.

	Text
	Name
	The name of this project.

Modules

The modules table contains all the modules (EXE and DLL) used by the Projects Table

	Type
	Field Name
	Description

	Autonumber
	ModuleID
	Unique identifier for this module.

	Integer
	PtolemyID
	Parent ID, if this is a top-level module. Can be null.

	Integer
	ParentID
	Parent module. Can be null.

	Text
	Name
	The name of this module.

	Yes/No
	System Module
	Whether or not this is a system DLL.

	Date/Time
	Date
	The file date. Can be null.

	Integer
	Size
	The size of the module, as retrieved from version resources. Can be null.

	Text
	Binary File Version
	The binary file version of the module, as retrieved from version resources. Can be null.

	Text
	Binary Product Version
	The binary product version of the module, as retrieved from version resources. Can be null.

	Number
	Checksum
	The checksum of the module, as retrieved from version resources. Can be null.

	Text
	Company Name
	The company name that built the module, as retrieved from version resources. Can be null.

	Text
	Product Version
	The product version of the module, as retrieved from version resources. Can be null.

	Text
	Product Name
	The product name of the module, as retrieved from version resources. Can be null.

	Text
	File Description
	The description of the module, as retrieved from version resources. Can be null.

Functions

The functions table contains all the functions used by the modules in the modules table.

	Type
	Field Name
	Description

	Autonumber
	FunctionID
	Unique identifier for this function.

	Integer
	ModuleID
	Parent module for this function.

	Text
	Name
	Name of this function.

	Integer
	Address
	Address of function, if bound. Can be null.

	Integer
	Ordinal
	Ordinal number, if an ordinal import. Can be null.

	Integer
	Hint
	Hint, if a name import. Can be null.

	Text
	Forwarded To
	Function forwarded to. Can be null.

	Yes/No
	Delayed
	Whether or not this function is a delayed import.

5.3 Overview of Parsing

Parsing consists of two stages. The first involves calling AppParse to generate an XML file containing the profiling data, and then parsing that XML file and sending the information to the AppParse database.

Since parsing can take a fairly long time, an Event object is created, and a dialog is shown. If the user clicks “cancel” in the dialog, the event is signaled, and parsing is terminated prematurely. At several instances in the code, the event is checked, and the function is ended prematurely.

All parsing methods and functions are defined in AppParseWrapper.h.

CAppParse::Parse():
1. Check if path and Ptolemy values have been set. If not, display a message box.

2. Reset the cancellation event, and start the cancel dialog.

3. Create a temporary file, using a GUID for a name to guarantee uniqueness.

4. Call AppParse()

5. Call ParseXMLWriteDB.

6. Delete the temporary file.

ParseXMLWriteDB():

1. Create all ADO objects needed. This includes a connection, a project record set, a module record set, and a function record set.

2. Connect to the database.

3. Begin an ADO transaction.

4. Open all record sets.

5. Open the XML output file using the Internet Explorer XML Parser.

6. Traverse the tree until we find a “Project” node.

7. Call GetProjectInfo() on that node.

8. Batch update all record sets.

9. If user did not cancel, commit the transaction. If ADOConnection::CommitTrans() is never called, the database is not updated.

10. Close all ADO objects, release all COM interfaces.

GetProjectInfo():
1. Get all attributes of the node (Ptolemy ID and name) and store in the ProjectRecord structure.

2. Add a new project record to the database.

3. Traverse all child nodes, and if an EXE call GetModuleInfo()

GetModuleInfo():
1. Store appropriate parent ID.

2. Get all attributes of the node (Name) and store in ModuleRecord structure.

3. Walk child nodes, looking for INFO block and SYSTEMMODULE tag.

4. Call GetImageInfo(), which copies all relevant information into the SImageInfo structure of the ModuleRecord.

5. When SystemModule is found, update the member of ModuleRecord.

6. Add a new module record to the database.

7. Get the auto-numbered ModuleID.

8. Walk all child nodes, and call GetFunctionInfo for functions and GetModuleInfo again for modules.

GetFunctionInfo():
1. Walk all attributes, and store appropriate info in the FunctionRecord structure.

2. Add a new Function record to the database.

5.4 Overview of Querying

Querying capabilities were added to IAppParse because MS Access has trouble representing the relationships in the database (e.g. a module can be related to another set of modules and functions.) The querying capabilities rely on AppParse being present in an HTML document to hold the generated report. This means that QueryDB() should not be invoked within another application, or within the ActiveX test container.

QueryDB() takes two parameters, a function search string and a Ptolemy ID. At least one must be present.

Like Parse(), a cancellation dialog is shown, and the query is terminated prematurely if cancel is selected.

Querying maintains some global state (via static member variables of a class.) This means if you have multiple AppParse objects active in a single process, they will all share this state. Simultaneous queries may have unexpected results. (Note: Multiple Internet Explorer windows are still only a single process.)

The report generated uses nested Div’s to represent the import hierarchy of the project in the database. Each Div contains a single table. Each Div is initially not shown. Associated with each table is a button, which when clicked changes the Div to either a shown or not shown state. This relies on some Javascript functionality in the HTML page (See QueryDB.html.)

QueryDB() and associated functions are defined in QueryDB.cpp.

Querying Functions

	bool MatchName(char* szString, char*szSearchIn)
	Returns true if szString matches the szSearchIn string.

	void BuildFunctions(long lParentID CTreeNode* pParent, _ConnectionPtr pConn)
	Gets all functions in module with ID lParentID, and inserts into tree at pParent.

	void BuildModules(long lParentID, CTreeNode* pParent, bool fTopLevel, _ConnectionPtr pConn, HANDLE hEvent)
	Gets all modules with parent of lParentID, and inserts into tree at pParent.

	void BuildProjects(long PtolemyID, char* szFunc, _ConnectionPtr pConn, HANDLE hEvent)
	Gets all projects that have specified Ptolemy ID, and inserts into tree at root.

	long GetModulePtolemy(long lModuleID, _ConnectionPtr pConn)
	Returns the Ptolemy ID of project that contains specified module.

	long GetFuncPtolemy(SFunctionRecord fr, _ConnectionPtr pConn)
	Return Ptolemy ID of project that contains specified function.

	void BuildProjectsFromFunction(char* szFunc, _ConnectionPtr pConn, HANDLE hEvent)
	Gets all projects that contain a function that matches szFunc.

Querying Classes

CTreeNode

CTreeNode represents a node in the tree, which contains all AppParse information from the search. A global tree root node, g_InfoTreeRoot is maintained.

Methods

	bool ContainsFunction(char* szFuncName)
	If this module or one of its children contains a function matching this name, return true, otherwise false.

	void WriteHTML()
	Add this node’s HTML to the HTML string. Recursively calls WriteHTML() for all children.

	CTreeNode()
	Construct a root node if no argument, otherwise a project, module, or function node based on argument.

	~CTreeNode()
	Free all resources associated with this node.

	bool Prune(char* szFunc)
	Remove all children that don’t match the search string. If this should be removed afterwards, return true, otherwise false.

	char* GetHTML()
	Return a string containing the HTML representation of this tree. Only to be called on the root.

	void RemoveChildren()
	Delete all children from this node.

	void InsertChild(CTreeNode* pNew)
	Insert a new child into the tree.

Members

	m_eType
	Type of this node.

	m_nChildren, m_ppChildren
	Children of this node.

	m_ProjectInfo, m_ModuleInfo, m_FunctionInfo
	Information contained in this node from query.

	m_iCurrDiv, m_iCurrTab
	Identifiers to entities in the HTML.

	m_iAllocSize, m_szHTML, m_szCurrHTML, m_szFencePost
	HTML generation members, current amount allocated, the HTML generated, current position in HTML, and a note of where we should reallocate more memory for HTML.

CAppParse::QueryDB():

1. Show cancellation dialog.

2. Connect to the database.

3. If the PtolemyID search parameter is valid, call BuildProjects() otherwise call BuildProjectsFromFunction().

4. Close the connection.

5. If user cancelled operation, return.

6. Get the HTML Document that contains this ActiveX control.

7. Get the element “Results.”

8. Call CtreeNode::GetHTML() to generate an HTML string.

9. Set the inner HTML of “Results” to the HTML string.

BuildProjectsFromFunction():
1. Get a function record set.

2. Find a function matching the search string, using the Find() method of an ADO record set.

3. For each found function, call GetFuncPtolemy(), which in turn calls GetModulePtolemy() to determine the PtolemyID of the parent project, and call BuildProjects().

BuildProjects():

1. Open an record set containing the project with matching PtolemyID.

2. Create a new tree node from the project record, and insert at the root.

3. Call BuildModules() with this Ptolemy ID as parent.

4. Call CTreeNode::Prune(), which trims results to contain only matches for the function search string, to conserve memory.

5. Move to the next record and go to 2, if present.

BuildModules():

1. Open a module record set whose PtolemyID or ParentID matches the ParentID passed in.

2. Create a new tree node from the module record, and insert into the tree.

3. Call BuildModules() and BuildFunctions() for this module.

4. Move to the next record and go to 2, if present.

BuildFunctions():

1. Open a function record set, whose module ID matches the ParentID passed in.

2. Create a new tree node from the function record, and insert into the tree.

3. Move to the next record and go to 2, if present.

5.5 Building Web-based AppParse

AppParse is built from the command line. After building, run “makecab –f appparse.ddf” This compresses the DLL into a cab file that can be distributed on a web page.

5.6 Future Improvements

· The ActiveX control is currently unsigned and not marked as safe for scripting. Adding these two elements would eliminate the need to relax security levels, and prevent numerous warning dialogs from appearing.
· The global HTML state used by QueryDB() should be removed, allowing multiple AppParse objects to be used simultaneously in a single session.
· The HTML generated is visually incorrect under IE 5.0 (but not 5.5.) A large gap may appear between elements. The HTML appears to be correct, this may be a bug in IE 5.0.

