Control ACLs

Introduction

Control ACLS (CACLS) is an NT command line program that displays and modifies Access Control Lists (ACLs) on NTFS volumes. The ACL on a file controls who has access to the file. CACLS is partially modeled after LANMANs NET ACCESS, with enhancements to support NT’s more powerful security system.

EXAMPLES (display):

d:> cacls file1.dat(the filename can include wildcards)

file1.dat \Everyone:F (this means that ‘everyone’ has all access to this file)

d:> cacls \tmp*.* /tree(without the *.* we would only get the ACL for directory \tmp)

\tmp\file2.dat Everyone:F

\tmp\file3.dat Everyone:F

\tmp\deepdir Everyone:(OI)(CI)R

 bandon\homer:(OI)(CI)F

\tmp\deepdir\file4.dat Everyone:R

EXAMPLES (modify):

d:> cacls file1.dat /edit /grant bandon\homer:F /deny abingdon\peter

(using cacls to display the results of the command)

d:>cacls file1.dat

file1.dat abingdon\peter:N

 Everyone:F

 bandon\homer:F

d:> cacls file1.dat /grant \Everyone:R(without the /edit option this command replaces the ACL)

(using cacls to display the results of the command)

d:>cacls file1.dat

file1.dat \Everyone:R

Cacls command syntax

Purpose�The cacls (Control ACLs) command displays or modifies object access permission control on file systems with user-level security. This command works both locally and remotely.

��Syntax�cacls object [/edit] [/replace name:permission[...]] [/grant name:permission[...]] [/revoke name[..]] [/deny name[...]]] [/tree] [/continue]

���where:

���/Edit

Edits (modifies) the existing access control permissions on an object. If the edit qualifier is not present all permissions on the object are removed, and the name:permissions specified in the command are applied.���/rePlace

Replaces (or adds) the specified access control permission(s) on an object for the specified user(s) or group(s) following the /replace option, prior to the next / option.���/Grant

Ensures that the user has at least the specified access control permissions on an object for each user or group & permission pair. If the user or group already has a higher level of access control permission, the access control permission will not be changed.���/Revoke

Removes access control permissions from an object for a user(s) or group(s). The user(s) or group(s) will have no access to the object.���/Deny

replaces (or adds) an explicit deny access control permission on an object for the specified user(s) or group(s). This is the same as /replace name:N.���/Tree

Executes the command on all objects in all subdirectories. This command will only have an affect if object is a directory.

���/Continue

Continue on access denied error. If the user (of the command) is denied access to a sub-directory, the sub-directory is skipped and processing continues on the next object.

���object

is a disk, directory, or file for which accesses permissions are to be viewed or assigned.

���name

a user name or system\user name combination.���name:permission

applies one or more permissions(RCAN) for an existing username or groupname to object. Do not use a delimiter when typing permissions. Separate multiple name:permission entries with spaces. A description of each permission follows. The permission defines what a user or group can do with an object (for example R allows a user to read a file). If a user has C (Change) permission to an object, the user can change the object.

�����permission�(R) Read

Allows a user to read the object(s).���(C) Change

Allows a user to change (write to) the object(s).���(F) Full control

Allows a user to read, write, execute and delete an object(s).���(N) No Access

The user will not be able to read, write, delete or modify an object(s) in any way. If the user has read permission to the objects container (directory), the user will be able to see that an object(s) exists (name, size, modify time).��

EXAMPLES:

cacls *.* /EDIT /G dave:C

ensures the user DAVE has Change access control permission to all the files in the current directory.

cacls *.* /EDIT /P rob:R /T

replaces all access control entries for user ROB with READ access control entries for user ROB to all files and directories below the current directory, including the files in the current directory.

cacls d:\test /EDIT /R bill

removes all access control entries for user BILL from directory (or file) d:\test

cacls d:\test.c /P everyone:F /T

replaces all access control entries for all users with full access control entries for user EVERYONE to all files and directories below d:\ called test.c (ie. you need *.* to cover all files and directories).

�

ALGORITHMS:

Permissions are added in the order they are on the command line, which is then the order the security system processes them. Deny permissions are applied at the front of the ACL, before existing permissions and override allowed permissions. Allowed permissions are added at the end of the ACL.

Without the /edit option the user:permissions from the command line will replace any existing permissions on the file(s).

/edit /revoke name

All permissions for name are removed, and name will not be able to access the object(s), unless name is part of another group that does have permissions to access the object(s).

example: cacls /edit /revoke Issac

BEFORE:��AFTER:��Anne:NONE��Anne:NONE��admin:FULL CONTROL��admin:FULL CONTROL��finance:READ��finance:READ��Issac:READ��Roger:CHANGE��Roger:CHANGE����

/edit /grant name:permission

Name is giving the specified permissions to the object. If Name already has a greater permission Names permission is not changed.

example: cacls /edit /grant Roger:READ

BEFORE:��AFTER:��Anne:NONE��Anne:NONE��admin: FULL CONTROL��admin: FULL CONTROL��finance:READ��finance:READ��Issac:READ��Issac:READ��Roger:CHANGE��Roger:CHANGE��(note that Roger retains his CHANGE access permission)

/replace name:permission

all occurrences of permissions for name are removed, and the specified permission is added to the object(s).

example: cacls /edit /replace Roger:READ

BEFORE:��AFTER:��Anne:NONE��Anne:NONE��admin: FULL CONTROL��admin: FULL CONTROL��finance:READ��finance:READ��Issac:READ��Issac:READ��Roger:CHANGE��Roger:READ��

Iteration through files completes when the last file is found, or an error other then ERROR_NO_MORE_FILES or ERROR_FILE_NOT_FOUND is encountered.

Without the /tree option:

all objects are processed

e.g., if object is:

c:\tmp where tmp is a directory, only c:\tmp is processed

c:*.dat then all matching objects are processed.

c:\tmp*.* all objects in tmp are processed

With the /tree option

If object is a directory and contains no wildcards, then object and all objects below object are processed. e.g., if object is:

c:\tmp where tmp is a directory, then c:\tmp is processed, and c:\tmp*.* down is processed

c:\tmp*.* then c:\tmp*.* down is processed.

If object is not a directory and/or contains wildcards, then all matching objects, and all matching objects below are processed. e.g., if object is:

c:\tmp.* then all objects that match c:\tmp.* are processed, and if any c:\tmp.*‘s are directories, any of there contents that match tmp.* are processed, continuing on down.

�CACLS

loop thru name:permissions, get sids & create new aces, compute size

loop thru files

if old aces exist

 loop thru new aces

 if new ace option is GRANT

 loop thru old aces

 if new ace SID equals old ace SID

 do inheritance check

 found = true

 if old ace type is ALLOWED

 or new ace mask into old ace mask

 else

 and not new ace mask into old ace mask

 endloop

 if not found

 add size of new ace

 else

 new ace mask = 0

 else

 add size of new ace

 endloop

 loop thru old aces

 loop thru new aces

 if new ace option is one of DENY, REPLACE, REVOKE

 if new ace SID equals old ace SID

 found = true

 break

 endloop

 if not found

 add size of old ace

 else

 old ace mask = 0

 endloop

else

 for new aces

 add size of new ace

 create new security descriptor (reference old owner, group, sacl)

loop thru new aces

 if new ace option equals DENY

 add new ace

if old aces

 loop thru old aces

 if old ace mask != 0

 add old ace

 loop thru new aces

 if new ace option is not DENY

 if new ace mask is not equal to 0

 add new ace

else

 loop thru new aces

 if new ace option is not DENY

 add new ace

set security on file

endloop

RESULTING ACL:

ACL header���new access denied ACEs

���old access denied ACEs

���old access allowed ACEs

���new access allowed ACEs

���inheritance

These Inheritance rules only apply to directories. CACLS adds permissions to a directory such that the permissons a file created in the directory, a sub-directory created in the directory, and on the directory itself. (ie. CACLS adds an ACE with OBJECT_INHERIT and CONTAINER_INHERIT flags set.)

When CACLS is granting permissions on a directory, as long as an ACE is found to apply permissions on the directory, on file created within the directory, and on directories created within the directory, CACLS will grant the permissions. Otherwise CACLS will return an error, and the replace option must be used.

� PAGE �4�

�PAGE �

