Windows 2000 Symbol Server Technology

Authors: Pat Styles, Barb Kess
Table of Contents

3The Problem

3Implementation

3The Server DLL

4Notes

4Using the Windows 2000 Symbol Server

5Capabilities

5Setting the symbol path

6How symsrv.dll locates files

6Setting up a store

6Server administration

7Symbol storage format

9Examples of adding products to a symbols server

9Limitations

9Leveraging SymStore

The Problem

Locating correct symbol information for debugging is currently a complicated problem for our customers, both internal and external. For example, when debugging NT, symbols need to be stored for each revision according to release or build number. This means that in order to find correct symbols for debugging, the user must know all of the names and releases of the products on his/her system. The user must also know the respective locations for each set of symbol files. A symbol path can potentially have several entries in it, one for the original product, and one for each service pack that has been applied. Because of this complexity, much time is wasted trying to find the correct symbols using the current system for storing and retrieving symbol files. This slows down the process of debugging the real problem.

In an effort to provide seamless debugging, the Windows 2000 Debugging Tools package provides a feature set that enables the debuggers to automatically retrieve the correct symbol file with no prior information about product name and release or build number. The package contains a tool to build a repository of symbols. . Using symbol server technology, the debuggers can locate symbol files automatically, finding each file according to unique parameters that are independent of the product name and release or build number. This system can be used to debug any product that uses symbolic information as generated by the VC compilers, regardless of it’s source.

Implementation

The symbol server is engaged by adding an entry to the value in ​the _NT_SYMBOL_PATH or _NT_ALTERNATE_SYMBOL_PATH environment variables. The value is added between semicolons just as any other path might be added, or conversely it could take up the entire variable, if it is wished that only the server be used for the location of symbols. Furthermore, multiple entries can be added that indicate the server look in multiple locations. These entries can be placed in any order within the symbol path, allowing the debugger to first look in some path location, and then check a symbol server, or whatever order is desired. The syntax for server entry in these variables is as follows. 2 asterisks are used to parse the parameters. Trailing asterisks are ignored and passed to the server DLL as part of the last node.

SYMSRV*FOO.DLL*DATA

SYMSRV
is a literal text string that indicates to dbghelp to call a symbol server.

FOO.DLL
is the name of the server DLL to load.

DATA
is server-specific information that tells the server where or how to look for symbols. It will be passed

to the DLL when called.

The symbol server can be installed through an installation that copies the required DLL, sets the environment values, and whatever else it requires, or it might be installed by the user from instructions in a text file. This is to be determined by the server developer.

Another aspect of installation is not covered in this document. That is the server-specific installation of the symbol server data. This may or may not be of any significance, depending upon the technology being used by the server.

The Server DLL

This central portion of the server is the code that should communicate with dbghelp to find the symbols. The implementation concept is simple. Every time dbghelp tries to load symbols for a newly loaded module, it will call the symbol server DLL with a certain set of variables to help the server to find the appropriate files. The server will return a validated path to the requested file. To implement this, the server must export the following API.

BOOL

SymbolServer(

 IN PCSTR params,

 IN PCSTR filename,

 IN DWORD one,

 IN DWORD two,

 IN DWORD three,

 OUT PSTR path

)

params
a text string in which server-specific information is passed. It is meant to identify to the server, which

store to use in the location of symbols.

filename
the name of the symbol file to return.

one
the first of three identifying parameters (see below).

two
the second of three identifying parameters (see below).

three
the third of three identifying parameters (see below).

path
a text buffer allocated to a size of _MAX_PATH in which the symbol server is to copy the fully

qualified path to the returned symbol file.

The generic parameters are filled in as follows…

· If dbghelp is looking for a DBG file, parameter one will contain the TimeDateStamp of the original image as found in it’s PE header. Parameter two will contain the SizeOfImage field, also extracted from the PE header. Parameter three is unused and will be zero.

· If dbghelp is looking for a PDB file, parameter one will contain the PDB signature as found in the codeview debug directory of the original image. Parameter two will contain the PDB age. Parameter three will be zero.
· If dbghelp is looking for any other type of image, such as an actual executable file, it is probably being called through it’s FindFileInSearchPath() API. In this case, the parameters are opaque to dbghelp. However, if this API is being used to retrieve an executable file, it is expected that the parameters will be filled in as for a DBG file, using timedatestamp and size of image as parameters.

If the server locates a valid symbol file, it is to return TRUE, otherwise it is to return FALSE and set the LastError value to indicate why the symbol file was not returned.

Furthermore, dbghelp will call the following function, if exported by the server…

BOOL

SymbolServerClose()

This function will be called on the server every time the SymCleanup API in dbghelp is called. The server can return TRUE or FALSE and set the LastError value to indicate an error.

Notes

Dbghelp will support the use of only one server DLL at a time, although it will be possible to switch to another by changing the symbol path. Note that this does not limit the server from obtaining its symbol information from a single source. That is a server-specific issue. The server can support multiple source instances through the parameters passed to it when it is called. Furthermore, it can use its own syntax within the parameters to indicate the use of different technologies such as file system UNC paths, SQL database identifiers, or internet specifications.

Dbghelp code stores the name of a symbol file in multiple locations. Therefore, it is required that the server returns a file of the same name as that passed when a symbol is requested. While it may be desirable to enhance this logic within dbghelp so that this is no longer an issue, the current view is that it is not worth the effort and possibility of destabilization. Furthermore, programmers are used to some sort of loose filename matching so that they can see what is happening when analyzing the loading of symbols.

Using the Windows 2000 Symbol Server

The files necessary to administrate and use the symbols server are included with the Windows 2000 Debugging Tools. This is shipped on the Windows 2000 Customer Support Diagnostics CD, DDK, SDK and the SDK web site. The Windows 2000 debuggers use symsrv.dll to retrieve symbols or pointers to symbols from a symbols server. Symstore.exe is the companion administrative tool that administrators can use to add and delete files from the symbols server.

Capabilities

Symsrv.dll can deliver symbols from a centralized filesystem-based location that combines symbols from disparate sources. It can also get symbols directly from said disparate sources, when the symbol store uses pointers (explained later). It has been used as a single source for storage of both x86 and alpha symbols for kernel debugging. It is currently used by ntstress to provide symbols when triaging stress failures. It can also be used to prune from a larger store, a smaller subset of symbols that might be more appropriate to a more specialized debugging task. Lastly, the DLL is capable of obtaining symbols from an FTP source, using the logon information provided by the operating system. It can be used to obtain symbols from outside the MS corporate net.

Setting the symbol path

In order to use the symbols server, symsrv.dll must be installed in the same directory as i386kd.exe and windbg.exe. The symbol path needs to be set as follows:

set _NT_SYMBOL_PATH= symsrv*server_dll*\\server\share

The first key word symsrv tells the debugger to look for symbols on a symbols server. The next parameter is the name of the DLL that contains the symbol server code, symsrv.dll in this case. The third parameter is defined by the symbol server DLL. This document describes usage for symsrv.dll that is distributed with the Windows 2000 Debugging Tools. It expects one of the following for the third parameter:

\\server\share
The debugger will load the symbols from \\server\share

local_dir*\\server\share
The debugger will first look in the local_dir and if the symbol isn't there, it will download the symbol file from \\server\share into the same symbol server directory structure under local_dir. Both items can be any legal UNC or local path. \\server\share can also be replaced with an ftp or http/https site.

For example, to set the symbol path to use symsrv.dll and the symbols server on \\ntstress\symsrv set the symbol path as follows:

set _NT_SYMBOL_PATH= symsrv*symsrv.dll*\\ntstress\symsrv

To set the symbol path so that the debugger will copy symbols from a symbol store \\ntstress\symsrv to your local c:\symsrv directory set the symbol path as follows:

set _NT_SYMBOL_PATH=symsrv*symsrv.dll*c:\symsrv*\\ntstress\symsrv

To set the symbol file to be copied from an ftp site ftp.microsoft.com/symbols to your local c:\symsrv use

set _NT_SYMBOL_PATH=symsrv*symsrv.dll*c:\symsrv*ftp://ftp.microsoft.com/symbols

To set the symbol file to be copied from an http site support.microsoft.com/symbols to your local c:\symsrv use

set _NT_SYMBOL_PATH=symsrv*symsrv.dll*c:\symsrv*http://support.microsoft.com/symbols

To set the symbol file to be copied from an https site support..microsoft.com/private_symbols to your local c:\symsrv use

set _NT_SYMBOL_PATH=symsrv*symsrv.dll*c:\symsrv*https://support.microsoft.com/private_symbols

Also, the symbol path may contain several paths separated by a ; with one or more of the paths being an entry for the symbols server. For example, if you know you are debugging Windows 2000 build 2148 you can set the symbol path as follows:

set _NT_SYMBOL_PATH=symsrv*symsrv.dll*\\ntstress\symsrv;\\ntbuilds\release\usa\1948\x86\fre.wks\symbols\retail

With the above path the debugger will first look on the symbols server. If it doesn't find it, then it will look on \\ntbuilds\release. This may provide more symbols than only entering the symbols server in the symbol path. The reason is that if a binary has a mismatched symbol, the debugger will not find it on the symbols server because it only checks for the exact parameters. If the binary happens to have a mismatched symbol, the debugger may find a symbol with the correct name in the traditional symbol path on \\ntbuilds\release and load it anyway. Even though the symbol is technically not the correct symbol it may be close enough to give some useful information.

How symsrv.dll locates files

Symsrv.dll creates a fully qualified UNC path to the desired symbol file by starting with the path to the symbol store as passed in from the _NT_SYMBOL_PATH environment variable. Reading it’s input to the SymbolServer API, it then appends the name of the desired file as a directory name. Appended to that is another directory name created by concatenating the hexadecimal text string equivalents of the parameters one, two, and three described above. If any of the values is zero, it is skipped. Lastly, it looks in this directory for the file or a pointer to it (described later). If the search is successful, the path is passed to the caller and TRUE is returned. If the file is not found, FALSE is returned.

Setting up a store

The following instructions can be used to set up a symbols server to support the symsrv.dll implementation described above.

Symstore.exe is the utility that builds a symbols store. It stores DBG and PDB symbols in a format which enables the debugger to look up the symbols based on the timedatestamp and size of the image (DBGs), or signature and age (PDBs). It also can store executable images using the same keys as used for DBG files. Traditionally, symbols have been stored on a per product basis with one directory for each executable extension (DLL, EXE, etc.). The advantage of the symbol server over the traditional symbol storage format is that all symbols can be stored or referenced on the same server and retrieved by the debugger without any prior knowledge of which product contains the desired symbol. Note, public and private PDB symbol files cannot be stored on the same server because they each contain the same signature and age.

Server administration

Server administration is done by adding and deleting transactions. Every call to symstore is recorded as a transaction. There are two types of transactions: add and del. When the symbols server is created, a directory under the root of the server is created called "000admin". The 000admin directory contains a file called "server.txt", "history.txt", and one file for each transaction. The file server.txt contains a list of all the transactions that are currently on the server. The file history.txt contains a chronological history of all the add and delete transactions.

Each time that symstore is called, a new transaction number is created. Then a file is created in "000admin" whose name is this transaction number. This file contains a list of all the files or pointers that have been added to the symbols server during this transaction. If a transaction is deleted, symstore will read through its transaction file to know which files and pointers it should delete.

When a transaction is added, several items of information are added to server.txt and history.txt for future lookup abilities. The following is an example of a line in server.txt and history.txt for an add transaction:

0000000096,add,ptr,10/09/99,00:08:32,Windows NT 4.0 SP 4,x86 fre 1.156c-RTM-2,Added from \\ntbuilds\release,

This is a comma-separated line. The fields are as follows:

0000000096
Transaction ID number - created by symstore

add
Type of transaction - values are either "add" or "del"

ptr
Whether files or pointers were added - values are either "file" or "ptr"

10/09/99
Date transaction occurred

00:08:32
Time transaction started

Windows NT
Product - entered from the command line with /t option

x86 fre
Version - entered from the command line with /v option (optional)

Added from
Comment - entered from the command line with /c option (optional)

Unused
Final field in the record - reserved for later use

Following are example lines from the transaction file 0000000096. Each line records the directory and the location of the file or pointer that was added to the directory.

canon800.dbg\35d9fd51b000,\\ntbuilds\release\usa\svcpack\sp4\1.156c-RTM-2\support\debug\i386\symbols\dll\canon800.dbg

canonlbp.dbg\35d9fd521c000,\\ntbuilds\release\usa\svcpack\sp4\1.156c-RTM-2\support\debug\i386\symbols\dll\canonlbp.dbg

certadm.dbg\352bf2f48000,\\ntbuilds\release\usa\svcpack\sp4\1.156c-RTM-2\support\debug\i386\symbols\dll\certadm.dbg

certcli.dbg\352bf2f1b000,\\ntbuilds\release\usa\svcpack\sp4\1.156c-RTM-2\support\debug\i386\symbols\dll\certcli.dbg

certcrpt.dbg\352bf04911000,\\ntbuilds\release\usa\svcpack\sp4\1.156c-RTM-2\support\debug\i386\symbols\dll\certcrpt.dbg

certenc.dbg\352bf2f7f000,\\ntbuilds\release\usa\svcpack\sp4\1.156c-RTM-2\support\debug\i386\symbols\dll\certenc.dbg
If this transaction is deleted it will be removed from server.txt and the following line will be added to history.txt:

0000000105,del,0000000096

The fields for the del transaction are described as follows:

0000000105
Transaction ID number - created by symstore

del
Type of transaction

0000000096
Transaction that was deleted

Symbol storage format

The symbols server uses the file system as a database. For the first directory level under the root, a subdirectory is created for each unique file name. For example, f:\symsrv\foo.dbg, f:\symsrv\foo.pdb. The second subdirectory is the timedatestamp followed by the image size for DBGs and the signature followed by the age for PDBs. For example, after several different ACPI.DBGs have been added to the server, the directories could look like this:

Directory of \\ntstress\symsrv\acpi.dbg

10/06/1999 05:46p <DIR> .

10/06/1999 05:46p <DIR> ..

10/04/1999 01:54p <DIR> 37cdb03962040

10/04/1999 01:49p <DIR> 37cdb04027740

10/04/1999 12:56p <DIR> 37e3eb1c62060

10/04/1999 12:51p <DIR> 37e3ebcc27760

10/04/1999 12:45p <DIR> 37ed151662060

10/04/1999 12:39p <DIR> 37ed15dd27760

10/04/1999 11:33a <DIR> 37f03ce962020

10/04/1999 11:21a <DIR> 37f03cf7277c0

10/06/1999 05:38p <DIR> 37fa7f00277e0

10/06/1999 05:46p <DIR> 37fa7f01620a0

Thus, the lookup path for the ACPI.DBG with timedatestamp of 37cdb0396 and image size of 2040 is \\ntstress\symsrv\acpi.dbg\37cdb03962040. Three files may exist inside the lookup directory. First, if the file was stored, then "ACPI.DBG" will exist there. Second, if a pointer was stored, then a file called "file.ptr" will exist and contain the path to the file. Third, a file called "refs.ptr" contains a list of all the current locations for ACPI.DBG with this timedatestamp and image size that are currently added to the symbols server.

Doing a directory of \\ntstress\symsrv\acpi.dbg\37cdb03962040 gives the following:

10/04/1999 01:54p 52 file.ptr

10/04/1999 01:54p 67 refs.ptr

The contents of file.ptr is the text string \\ntstress\symbols\x86\2128.chk\symbols\sys\acpi.dbg. Since there is no file called "ACPI.DBG" in this directory. The debugger will try to find the file at \\ntstress\symbols\x86\2128.chk\symbols\sys\acpi.dbg.

The contents of refs.ptr is used only by symstore, not the debugger. Its contents are

0000000026,ptr,\\ntstress\symbols\x86\2128.chk\symbols\sys\acpi.dbg

This shows that a ptr to \\ntstress\symbols\x86\2128.chk\symbols\sys\acpi.dbg was added with transaction "0000000026".

Some symbol files stay constant through various products or builds or a particular product. One example of this is msvcrt.pdb. Doing a directory of \\ntstress\symsrv\msvcrt.pdb shows only two versions of msvcrt.pdb have been added to the symbols server:

Directory of \\ntstress\symsrv\msvcrt.pdb

10/06/1999 05:37p <DIR> .

10/06/1999 05:37p <DIR> ..

10/04/1999 11:19a <DIR> 37a8f40e2

10/06/1999 05:37p <DIR> 37f2c2272

However, doing a directory of \\ntstress\symsrv\msvcrt.pdb\37a8f40e2 shows that refs.ptr has several pointers in it.

Directory of \\ntstress\symsrv\msvcrt.pdb\37a8f40e2

10/05/1999 02:50p
 54 file.ptr

10/05/1999 02:50p
2,039 refs.ptr

The contents of \\ntstress\symsrv\msvcrt.pdb\37a8f40e2\refs.ptr is the following:

0000000001,ptr,\\ntstress\symbols\x86\2137\symbols\dll\msvcrt.pdb

0000000002,ptr,\\ntstress\symbols\x86\2137.chk\symbols\dll\msvcrt.pdb

0000000003,ptr,\\ntstress\symbols\x86\2138\symbols\dll\msvcrt.pdb

0000000004,ptr,\\ntstress\symbols\x86\2138.chk\symbols\dll\msvcrt.pdb

0000000005,ptr,\\ntstress\symbols\x86\2139\symbols\dll\msvcrt.pdb

0000000006,ptr,\\ntstress\symbols\x86\2139.chk\symbols\dll\msvcrt.pdb

0000000007,ptr,\\ntstress\symbols\x86\2140\symbols\dll\msvcrt.pdb

0000000008,ptr,\\ntstress\symbols\x86\2140.chk\symbols\dll\msvcrt.pdb

0000000009,ptr,\\ntstress\symbols\x86\2136\symbols\dll\msvcrt.pdb

0000000010,ptr,\\ntstress\symbols\x86\2136.chk\symbols\dll\msvcrt.pdb

0000000011,ptr,\\ntstress\symbols\x86\2135\symbols\dll\msvcrt.pdb

0000000012,ptr,\\ntstress\symbols\x86\2135.chk\symbols\dll\msvcrt.pdb

0000000013,ptr,\\ntstress\symbols\x86\2134\symbols\dll\msvcrt.pdb

0000000014,ptr,\\ntstress\symbols\x86\2134.chk\symbols\dll\msvcrt.pdb

0000000015,ptr,\\ntstress\symbols\x86\2133\symbols\dll\msvcrt.pdb

0000000016,ptr,\\ntstress\symbols\x86\2133.chk\symbols\dll\msvcrt.pdb

0000000017,ptr,\\ntstress\symbols\x86\2132\symbols\dll\msvcrt.pdb

0000000018,ptr,\\ntstress\symbols\x86\2132.chk\symbols\dll\msvcrt.pdb

0000000019,ptr,\\ntstress\symbols\x86\2131\symbols\dll\msvcrt.pdb

0000000020,ptr,\\ntstress\symbols\x86\2131.chk\symbols\dll\msvcrt.pdb

0000000021,ptr,\\ntstress\symbols\x86\2130\symbols\dll\msvcrt.pdb

0000000022,ptr,\\ntstress\symbols\x86\2130.chk\symbols\dll\msvcrt.pdb

0000000023,ptr,\\ntstress\symbols\x86\2129\symbols\dll\msvcrt.pdb

0000000024,ptr,\\ntstress\symbols\x86\2129.chk\symbols\dll\msvcrt.pdb

0000000025,ptr,\\ntstress\symbols\x86\2128\symbols\dll\msvcrt.pdb

0000000026,ptr,\\ntstress\symbols\x86\2128.chk\symbols\dll\msvcrt.pdb

0000000027,ptr,\\ntstress\symbols\x86\2141\symbols\dll\msvcrt.pdb

0000000028,ptr,\\ntstress\symbols\x86\2141.chk\symbols\dll\msvcrt.pdb

0000000029,ptr,\\ntstress\symbols\x86\2142\symbols\dll\msvcrt.pdb

0000000030,ptr,\\ntstress\symbols\x86\2142.chk\symbols\dll\msvcrt.pdb

This shows that the same msvcrt.pdb was used for multiple builds of symbols for Windows 2000 stored on \\ntstress\symsrv.

Here is an example of a directory that contains a mixture of file and pointer additions:

Directory of E:\symsrv\dbghelp.dbg\38039ff439000

10/12/1999 01:54p 141,232 dbghelp.dbg

10/13/1999 04:57p 49 file.ptr

10/13/1999 04:57p 306 refs.ptr

In this case refs.ptr has the following contents:

0000000043,file,e:\binaries\symbols\retail\dll\dbghelp.dbg

0000000044,file,f:\binaries\symbols\retail\dll\dbghelp.dbg

0000000045,file,g:\binaries\symbols\retail\dll\dbghelp.dbg

0000000046,ptr,\\foo\bin\symbols\retail\dll\dbghelp.dbg

0000000047,ptr,\\foo2\bin\symbols\retail\dll\dbghelp.dbg

Thus, transaction 43,44,45 added the same file to the server, and transaction 46,47 added pointers. If transaction 43,44,45 are deleted, then the file dbghelp.dbg is deleted from the directory. The directory will have the following contents:

Directory of e:\symsrv\dbghelp.dbg\38039ff439000

10/13/1999 05:01p 49 file.ptr

10/13/1999 05:01p 130 refs.ptr

File.ptr now contains \\foo2\bin\symbols\retail\dll\dbghelp.dbg, and refs.ptr now contains

0000000046,ptr,\\foo\bin\symbols\retail\dll\dbghelp.dbg

0000000047,ptr,\\foo2\bin\symbols\retail\dll\dbghelp.dbg

When symstore is deleting a pointer from a directory, and the last entry in refs.ptr is a file, then it deletes "file.ptr". If the last entry was a pointer, then it copies the last pointer into file.ptr. If symstore is deleting a file from a directory, the file is deleted if no previous entries added the file. If the last entry added was a pointer, then the pointer is copied into file.ptr.

Examples of adding products to a symbols server

The following are examples of adding symbol pointers for build 1948 of Windows 2000 to \\foo\symsrv

symstore add /r /p /f \\ntbuilds\release\usa\1948\x86\fre.wks\symbols\retail*.* /s \\foo\symsrv /t "Windows 2000" /v "Build 1948 x86 fre" /c "Sample add"

symstore add /r /p /f \\ntbuilds\release\usa\1948\x86\chk.wks\symbols\retail*.* /s \\foo\symsrv /t "Windows 2000" /v "Build 1948 x86 chk" /c "Sample add"

The following example adds the actual symbol files for an application project in \\largeapp\bins to \\foo\symsrv

symstore add /r /f \\largeapp\bins*.* /s \\foo\symsrv /t "An Application" /v "Build 432" /c "Sample add"

Limitations

The symbols server is designed for only one process to be adding and deleting symbols at any given time. One user should be designated as the administrator and should process add and del commands in a sequential order.

Leveraging SymStore

While symstore.exe is the officially maintained program for creating a symbol store, this does not prevent the user from writing one’s own version. Still, such a task is not recommended since symstore.exe is updated in sync with symsrv.dll. All transactions created with symstore are logged to text files in CSV format. Consequently, it is possible for the information to be imported into any form of database and analyzed with any UI the user chooses to develop.

Microsoft Confidential

5

