
Last updated on Jul. 20, 2001 at 6:48 PM

Source Depot API Reference
Created by the Source Depot development team on 7/20/2001.

This documentation is preliminary, and may contain inaccurate information.

Contents:

3Overview

3Key Benefits

3Key Limitations

3SDAPI Object

4ISDClientApi

21ISDClientUtilities

23User Callback Interfaces

23ISDClientUser

26ISDActionUser

29ISDInputUser

31ISDResolveUser

33SDVars Object

33ISDVars

37ISDVars2

39ISDSpecForm

41SDVar Object

41ISDVar

43Structured Mode Reference

43branch (1.6)

44branches (1.6)

44change (1.6)

44changes (1.6)

44client (1.6)

45clients (1.6)

45depot (1.6)

45describe (1.6)

46diff (1.7)

46diff2 (1.7)

46dirs (1.6)

47filelog (1.6)

48files (1.6)

48fstat (all)

49group (1.6)

49have (1.6)

49job (1.6)

49jobs (1.6)

49jobspec (1.6)

50label (1.6)

50labels (1.6)

50opened (1.6)

50print (1.6)

51resolve (1.5)

51resolve3 (all)

51protect (1.6)

51triggers (1.6)

51user (1.6)

52users (1.6)

52where (1.6)

52Sample Code

52Interface Sample Implementations

52SDApiTest program

52LocStat program

53Hints and Tips

55Design Decisions

Overview

The Source Depot SD.EXE client program communicates with Source Depot servers. Scripts and programs can execute the client program and capture the output, but the output is essentially opaque text and frequently requires careful parsing in order to extract the desired data. The SDAPI offers an alternative using COM interfaces.

In its present form, the SDAPI does not expose an object model. It does expose a set of COM interfaces that allow a program to communicate with a Source Depot server, and works with all versions of the Source Depot server. The SDAPI object exposes the ISDClientApi interface that allows the caller to drive it essentially the same way one would drive the SD.EXE client program. Several callback interfaces process data from the server (ISDClientUser is required, the others are optional). The ISDVars collection interface is used to examine property bags optionally returned by the server. Eventually the SDAPI will expose an object model as well. See the section Design Decisions for a brief justification of these design choices.

Key Benefits

· Performance – the SD.EXE client program connects to a Source Depot server each time it runs a command. The connection and authentication phase often takes several seconds. The SDAPI allows the caller to connect to a server, and run multiple commands sequentially over the same connection. When running several short commands, this generally improves performance by one or more orders of magnitude.

· Interpreting Results – the callback interfaces differentiate between error messages, warning messages, informational messages, semi-structured tabular output (property bags), text, etc.

Key Limitations

· Interpreting Results – the server can return semi-structured data for many commands, but not all commands. Many commands still require parsing the output, although the ISDClientUser interface makes it a little easier than before. See the section Structured Mode Reference for information on specific commands that support structured output. More commands will support structured output in the future.

· Compatibility – using COM interfaces, backward compatibility is easier. However, the information returned by the server may differ between server versions, especially as new features are added which require or report additional information. Every attempt is made to minimize the impact on backward compatibility, but this is not always possible.

· No Object Model – there is not yet an object model usable from VB programs. A callback-less VB wrapper around the SDAPI COM interfaces is in development by another team at this time, but no ETA is available.

SDAPI Object

Todo: in the examples, error handling is omitted for clarity.

The SDAPI object manages the connection to a Source Depot server, and is controlled through the ISDClientApi interface. The SDAPI object communicates with the caller primarily through the ISDClientUser callback interface, but uses QueryInterface on the ISDClientUser pointer to check for and acquire other callback interfaces.

The SDAPI uses the same syntax for invoking commands as used by the SD.EXE client program. For example, the command sd.exe changes ...@-7, can be used to list the changes from the past 7 days affecting all files in the current directory and below. Using the SDAPI, this would be papi->Run("changes ...@-7,", &ui), where papi is a pointer to the ISDClientApi interface on the SDAPI object.

Many server commands also support a “structured” mode, where data is returned in a property bag object through the OutputStructured callback on the ISDClientUser interface. The data is presented through the ISDVars interface in a semi-structured format retrievable via the GetVar, GetVarX, GetVarXY, and GetVarByIndex methods. See the section Structured Mode Reference for more information.

Notes:

· The SDAPI object finds and reads the SD.INI file when the SDAPI object is created. It looks for the SD.INI file by starting from the current directory and walking up the parent chain (same as SD.EXE does). The settings it finds can be overridden later by calling LoadIniFile on ISDClientApi., or by calling the SetPort (etc) methods on ISDClientApi.

· The SDAPI DLL version and the Source Depot server version can be queried by calling GetVersion on ISDClientApi. If the SDAPI object is not connected to a Source Depot server, or is connected to a 1.0 or 1.5 server, then the server version information cannot be determined, and is set to 0.

· The SDAPI object can be used by any thread, however only one thread at a time should access the object. The SDAPI object protects itself from multithreaded concurrent access. However, some methods return out parameters that are pointers to volatile internal data, which could cause the caller to crash if one thread makes a call that updates internal data while another thread uses a pointer that pointed to the updated data. See the notes for individual methods, for details about the lifetimes of specific out parameters.

ISDClientApi

This interface enables the caller to connect to a Source Depot server and run commands. The caller can also query and override certain settings (such as the server port, the client name, the user name, etc).

The most commonly used methods are Init, SetArg, SetArgv, Run, and Final.

For sample code that uses the ISDClientApi interface, see the sdapitest.cpp file.

Methods on ISDClientApi:

	Init
	Connects to a Source Depot server and authenticates the user credentials.

	GetVersion
	Returns the SDAPI DLL version and the Source Depot server version.

	SetArg
	Adds an argument to a Source Depot command.

	SetArgv
	Adds an array of arguments to a Source Depot command.

	Run
	Runs a Source Depot command against a Source Depot server.

	Final
	Gracefully disconnects from the Source Depot server.

	IsDropped
	Check if the connection to the Source Depot server has been lost due to an error.

	GetErrorString
	Returns an error string corresponding to the most recent error returned by an ISDClientApi method on the SDAPI object.

	LoadIniFile
	Read settings from an .INI file, or searches for an SD.INI file and reads settings from that.

	SetPort
	Override the SDPORT setting.

	SetUser
	Override the SDUSER setting.

	SetPassword
	Override the SDPASSWD setting.

	SetClient
	Override the SDCLIENT setting.

	SetHost
	Override the SDHOST setting.

	SetAuth
	Override the SDAUTH setting.

	DefinePort
	Override the SDPORT setting, and also set it in the registry.

	DefineUser
	Override the SDUSER setting, and also set it in the registry.

	DefinePassword
	Override the SDPASSWD setting, and also set it in the registry.

	DefineClient
	Override the SDCLIENT setting, and also set it in the registry.

	DefineHost
	Override the SDHOST setting, and also set it in the registry.

	DefineAuth
	Override the SDAUTH setting, and also set it in the registry.

	GetPort
	Retrieves the SDPORT setting.

	GetUser
	Retrieves the SDUSER setting.

	GetPassword
	Retrieves the SDPASSWD setting.

	GetClient
	Retrieves the SDCLIENT setting.

	GetHost
	Retrieves the SDHOST setting.

	GetAuth
	Retrieves the SDAUTH setting.

	GetDiff
	Retrieves the SDDIFF or SDUDIFF setting.

	GetFileEditor
	Retrieves the SDEDITOR or SDUEDITOR setting.

	GetFormEditor
	Retrieves the SDFORMEDITOR setting.

	GetMerge
	Retrieves the SDMERGE setting.

	GetPager
	Retrieves the SDPAGER setting.

	Break
	Disconnects from the Source Depot server by terminating the socket connection. This is similar to using ^C or Ctrl-Break, but does not terminate the thread or process.

	Clone
	Creates a new SDAPI object, cloning the settings from this one.

enum {
SDTT_NONTEXT,
SDTT_TEXT,
SDTT_UNICODE };

Remarks

These values are used for the DWORD eTextual in/out parameters. SDTT_NONTEXT means the file type is non-textual (binary). SDTT_TEXT means the file type is 8-bit textual (all SBCS and DBCS text files fall under this category, including UTF-7 and UTF-8 files). SDTT_UNICODE means the file type is 16-bit textual (UTF-16).

HRESULT Init(
[in] ISDClientUser* pUI);

Connects to a Source Depot server and authenticates the user credentials.

The Init method should be called once per connection, and the connection should be closed with a matching Final call. If Init is called more than once, the connection should still be closed with a single Final call.

If the Run method is called and Init has not yet been called, the Run method will automatically call Init.

Parameters

pUI

[in] Pointer to an ISDClientUser interface. This cannot be NULL.

In particular, the Prompt method on ISDInputUser may be called to give an opportunity to enter a password. Errors are reported through OutputError on ISDClientUser.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE. S_FALSE means the SDAPI object is already connected to a Source Depot server, or some other non-fatal warning was encountered.

If the method command fails, the return value is the error code.

When the return code is anything other than S_OK, call GetErrorString to retrieve a text description of the error or warning. However, the error or warning messages may have already been reported through the callback methods on the ISDClientUser interface, and there may be no error string available.

Remarks

The SDAPI connects to the server indicated by the SDPORT setting. By default this is obtained from the registry, environment, or SD.INI file. It can be overridden using the SetPort method.

Run implicitly calls Init if the Init method has not yet been called.

Example

pUI = new MyClientUser;
papi->Init(pUI);

HRESULT GetVersion(
[in, out] SDVERINFO* pver);

Returns the SDAPI DLL version and the Source Depot server version.

If the SDAPI object is not connected to a Source Depot server, or is connected to a 1.0 or 1.5 server, then the server version information cannot be determined, and is set to 0.

Parameters

pver

[in, out] The dwSize member must be set to the size of the SDVERINFO structure before calling this method. If the method succeeds, pver is filled in with the version information. If the method fails, pver is not modified.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is the error code.

Notes

Although the major.minor version number is usually written as “1.5” or “1.6”, the actual values are 1.50 and 1.60. To find the full major.minor.build.dot version of a specific server, use the sd info command.

Example

SDVERINFO ver = {0};
ver.dwSize = sizeof(ver);
papi->GetVersion(&ver);
printf("API: %d.%d.%d.%d\n",
 ver.nApiMajor, ver.nApiMinor,
 ver.nApiBuild, ver.nApiDot);
printf("Server: %d.%d.%d.%d\n",
 ver.nSrvMajor, ver.nSrvMinor,
 ver.nSrvBuild, ver.nSrvDot);

HRESULT SetArg(
[in] const char* pszArg);

Adds an argument to a Source Depot command.

Parameters

pszArg

[in] Null-terminated argument string.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is the error code.

Remarks

To run a command against a Source Depot server, use SetArg and/or SetArgv to list the arguments for the command, then use Run to run the command.

SetArgv and SetArg can be called multiple times; arguments are appended to the end of the Source Depot command. These methods are useful when programmatically building an argument list. For constant argument lists, it is easier to pass the command line directly to the Run method.

If SetArg and/or SetArgv specify a total of more than 128 arguments, the arguments are separated into batches of 128 arguments, and the command is run once for each batch of 128 arguments. In this case, any arguments in the pszFunc string are considered to be “constant” and are inserted at the beginning of each batch of arguments.

Calling SetArg or SetArgv nested inside a Run call is not allowed. For example, calling SetArg from inside OutputStructured on ISDClientUser will return E_INVALIDARG.

Examples

One way to run the sd diff2 abc xyz command:

papi->SetArg("abc");
papi->SetArg("xyz");
papi->Run("diff2", pui, FALSE);

One way to run the sd changes -m 1 ...#have command:

papi->SetArg("-m1");
papi->SetArg("...#have");
papi->Run("opened", pui, FALSE);

HRESULT SetArgv(
[in] int cArgs,
[in] const char** ppArgv);

Adds an array of arguments to a Source Depot command.

Parameters

cArgs

[in] The number of arguments in the ppArgv array.

ppArgv

[in] Array of points to null-terminated argument strings.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is the error code.

Remarks

To run a command against a Source Depot server, use SetArg and/or SetArgv to list the arguments for the command, then use Run to run the command.

SetArgv and SetArg can be called multiple times; arguments are appended to the end of the Source Depot command. These methods are useful when programmatically building an argument list. For constant argument lists, it is easier to pass the command line directly to the Run method.

If SetArg and/or SetArgv specify a total of more than 128 arguments, the arguments are separated into batches of 128 arguments, and the command is run once for each batch of 128 arguments. In this case, any arguments in the pszFunc string are considered to be “constant” and are inserted at the beginning of each batch of arguments.

Calling SetArg or SetArgv nested inside a Run call is not allowed. For example, calling SetArg from inside OutputStructured on ISDClientUser will return E_INVALIDARG.

Examples

One way to run the sd opened -a command:

char *rgArgs[] = { "-a" };
papi->SetArgv(1, rgArgs);
papi->Run("opened", pui, FALSE);

One way to run the sd changes -m 1 ...#have command:

char *rgArgs[] = { "-m1", "...#have" };
papi->SetArgv(3, rgArgs);
papi->Run("changes", pui, FALSE);

HRESULT Run(
[in] const char* pszFunc,
[in] ISDClientUser* pUI,
[in] BOOL fStructured);

Runs a Source Depot command against a Source Depot server.

If the Run method is called and Init has not yet been called, the Run method will automatically call Init.

Parameters

pszFunc

[in] Null-terminated command string. The string must being with a Source Depot command name (see sd help commands for a list of commands), and can optionally list arguments separated by spaces. The string must not exceed 8192 characters, or E_INVALIDARG is returned.

pUI

[in] Pointer to an ISDClientUser interface. The results of the command are returned through the callback methods on pUI.

fStructured

[in] Requests that the results of the command are returned using the Structured Mode.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE. S_FALSE means that OutputWarning on ISDClientUser was called one or more times.

If the method fails, the return value is the error code. E_FAIL is ambiguous: either OutputError on ISDClientUser was called one or more times, or an internal function literally returned E_FAIL.

When the return code is anything other than S_OK, call GetErrorString to retrieve a text description of the error or warning. However, the error or warning messages may have already been reported through the callback methods on the ISDClientUser interface, and there may be no error string available.

Remarks

If pszFunc lists any arguments after the command name, the arguments are inserted at the beginning of the command line, before any arguments set by SetArg or SetArgv.

Nested Run calls are not allowed. For example, it is not possible to call Run from inside OutputStructured on ISDClientUser. A nested Run call will return E_INVALIDARG.

Not all commands support structured mode in the 1.6 server. If a command (or command flag) does not support structured mode, the fStructured parameter is ignored. Nevertheless, be sure to pass the appropriate value, so that your program will continue to work correctly with future server releases that may include expanded support for the structured mode.

The SDAPI connects to the server indicated by the SDPORT setting. By default this is obtained from the registry, environment, or SD.INI file. It can be overridden using the SetPort method.

Run implicitly calls Init if the Init method has not yet been called.

If SetArg and/or SetArgv specify a total of more than 128 arguments, the arguments are separated into batches of 128 arguments, and the command is run once for each batch of 128 arguments. In this case, any arguments in the pszFunc string are considered to be “constant” and are inserted at the beginning of each batch of arguments.

Examples

One way to run the sd opened -a command:

papi->Run("opened -a", pui, FALSE);

One way to run the sd changes -m 1 ...#have command:

papi->Run("changes -m1 ...#have", pui, FALSE);

HRESULT Final();

Gracefully disconnects from the Source Depot server.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is the error code.

Remarks

It is safe to call this method even if the object is not connected to a server.

The SDAPI object is reset so that it behaves as though Init has not yet been called.

Calling Final nested inside a Run call is not allowed. For example, calling Final from inside OutputStructured on ISDClientUser will return E_INVALIDARG.

Example

papi->Run("opened -a", pui, FALSE);
papi->Final();

HRESULT IsDropped(
[out] BOOL* pfDropped);

Check if the connection to the Source Depot server has been lost due to an error.

Parameters

pfDropped

[out] If the connection to the Source Depot server has been lost due to an error, pfDropped is set to TRUE. Otherwise pfDropped is set to FALSE.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is the error code.

HRESULT GetErrorString(
[out] const char** ppsz);

Returns an error string corresponding to the most recent error returned by an ISDClientApi method on the SDAPI object.

Parameters

ppsz

[out] If the method is successful, ppsz points to a null terminated string containing an error string describing the failure of the most recent ISDClientApi method other than GetErrorString.

Return Values

If ppsz is NULL or empty, no error string is available. Not all errors will have strings available. If a string is not available, considering calling the FormatMessage system function with the HRESULT error code returned by the previous call to an ISDClientApi method.

Remarks

The ppsz out parameter value is valid only until another ISDClientApi method is called other than GetErrorString. The caller must not try to free the ppsz pointer.

GetErrorString may not return a string – it only returns an error string if the error was not reported through OutputError on ISDClientUser. For example, if an invalid argument is passed to Run, the error is not reported through OutputError, but GetErrorString still returns an empty string – in this case, the caller should decide whether to use FormatMessage to acquire an error string. Or if Init is unable to connect to a server due to some network error or an invalid server address, GetErrorString will report the reason why. In general, if an error message from the SD.EXE client program has the header tag “Source Depot client error:” it is reported through GetErrorString rather than OutputError.

Example

hr = papi->Run("opened -a", pui, FALSE);
if (FAILED(hr))
{
 const char *psz = 0;
 papi->GetErrorString(&psz);
 if (psz)
 printf(psz);
 // any additional error handling needed...
}
hr = papi->Final();

HRESULT LoadIniFile(
[in] const char* pszPath,
[in] BOOL fReset);

Read settings from an .INI file, or searches for an SD.INI file and reads settings from that. Optionally restores the current settings to the global default values before reading from the .INI file.

Parameters

pszPath

[in] Null-terminated string that either specifies a directory that exists, or a filename that exists. If pszPath is NULL, the current directory is assumed.

When pszPath is a filename that exists, settings are read from the file.

When pszPath is a directory that exists, the directory is searched for an SD.INI file. If the file is not found, the parent directory is searched. This continues until either an SD.INI file is found, or there are no more parent directories. If an SD.INI file is found, settings are read from the file.

fReset

[in] When fReset is FALSE, settings read from the .INI file override only the corresponding current settings.

When fReset is TRUE, the current settings are reverted to the global defaults as defined by the environment variables, registry variables, etc. See sd help variables for more information.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE. S_FALSE is returned when pszPath is a directory that exists, but the SD.INI file could not be found or could not be read.

If the method command fails, the return value is the error code. Call GetErrorString to retrieve a text description of the error.

Remarks

When fReset is TRUE and pszPath is a valid directory, the settings are initialized to the same values as when running the SD.EXE client program and pszPath is the current directory.

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

Example

// disconnect from current server
papi->Final();
// restore global defaults and look for new SD.INI in d:\mysrc
papi->LoadIniFile("d:\\mysrc\\otherdir", TRUE);
// also load some settings from custom.ini
papi->LoadIniFile("d:\\somewhere\\custom.ini", FALSE);

HRESULT SetPort(
[in] const char* pszPort);

Override the SDPORT setting. The SDPORT variable determines the server and port to which the SDAPI will connect.

Parameters

pszPort

[in] Null-terminated string specifying a machine name or address, and a socket port number, separated by a colon.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

If the SDPORT variable is not set, no default value is used.

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

Using this method does not update other SDAPI objects in the system.

Examples

Machine name and port:

papi->SetPort("vw:1666");

IP address and port:

papi->SetPort("172.31.72.54:5555");

HRESULT SetUser(
[in] const char* pszUser);

Override the SDUSER setting.

Parameters

pszUser

[in] Null-terminated string specifying a user name.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

If the SDUSER variable is not set, the current user logon name is used by default.

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

Using this method does not update other SDAPI objects in the system.

Examples

papi->SetUser("REDMOND\joecool");

HRESULT SetPassword(
[in] const char* pszPassword);

Override the SDPASSWD setting.

Parameters

pszPassword

[in] Null-terminated string specifying the user password.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

The SDPASSWD variable is only used if the SDUSER variable is set. Otherwise the current user logon credentials are used.

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

Using this method does not update other SDAPI objects in the system.

Examples

papi->SetUser("REDMOND\joecool");
papi->SetPassword("no1willEverGuess!");

HRESULT SetClient(
[in] const char* pszClient);

Override the SDCLIENT setting.

Parameters

pszClient

[in] Null-terminated string specifying the client name.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

If the SDCLIENT variable is not set, the machine name is used by default.

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

Using this method does not update other SDAPI objects in the system.

Examples

papi->SetClient("myclient-main");

HRESULT SetHost(
[in] const char* pszHost);

Override the SDHOST setting.

Parameters

pszHost

[in] Null-terminated string specifying the host name.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

If the SDHOST variable is not set, the machine name is used by default.

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

Using this method does not update other SDAPI objects in the system.

Examples

papi->SetHost("mymachine");

HRESULT SetAuth(
[in] const char* pszAuth);

Override the SDAUTH setting.

Parameters

pszAuth

[in] Null-terminated string specifying the authentication packages by which the user credentials may be validated.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

If the SDAUTH variable is not set, it defaults to “negotiate ntlm md5domain”. The packages are tried in the order listed; if one package cannot authenticate the credentials, the next is tried, until all packages have been tried. The server skips unrecognized packages or packages that are not enabled by the SDAUTH setting on the server side of the connection.

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

Using this method does not update other SDAPI objects in the system.

Examples

papi->SetAuth("negotiate ntlm");

HRESULT DefinePort(
[in] const char* pszPort);

Override the SDPORT setting, and also set it in the registry. The SDPORT variable determines the server and port to which the SDAPI will connect.

Parameters

pszPort

[in] Null-terminated string specifying a machine name or address, and a socket port number, separated by a colon.

Return Values

If the method succeeds, the return value is S_OK.

If the method succeeds but encounters a warning, the return value is S_FALSE; use GetErrorString to get the text of the warning message.

If the method fails, the return value is an error code.

Remarks

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

See also the SetPort method.

Using this method does not update other SDAPI objects in the system.

Examples

Machine name and port:

papi->DefinePort("vw:1666");

IP address and port:

papi->DefinePort("172.31.72.54:5555");

HRESULT DefineUser(
[in] const char* pszUser);

Override the SDUSER setting, and also set it in the registry.

Parameters

pszUser

[in] Null-terminated string specifying the user name.

Return Values

If the method succeeds, the return value is S_OK.

If the method succeeds but encounters a warning, the return value is S_FALSE; use GetErrorString to get the text of the warning message.

If the method fails, the return value is an error code.

Remarks

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

See also the SetUser method.

Using this method does not update other SDAPI objects in the system.

Examples

papi->DefineUser("REDMOND\joecool");

HRESULT DefinePassword(
[in] const char* pszPassword);

Override the SDPASSWD setting, and also set it in the registry.

Parameters

pszPassword

[in] Null-terminated string specifying the password.

Return Values

If the method succeeds, the return value is S_OK.

If the method succeeds but encounters a warning, the return value is S_FALSE; use GetErrorString to get the text of the warning message.

If the method fails, the return value is an error code.

Remarks

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

See also the SetPassword method.

Using this method does not update other SDAPI objects in the system.

Examples

papi->DefinePassword("xyzzy");

HRESULT DefineClient(
[in] const char* pszClient);

Override the SDCLIENT setting, and also set it in the registry.

Parameters

pszClient

[in] Null-terminated string specifying the client name.

Return Values

If the method succeeds, the return value is S_OK.

If the method succeeds but encounters a warning, the return value is S_FALSE; use GetErrorString to get the text of the warning message.

If the method fails, the return value is an error code.

Remarks

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

See also the SetClient method.

Using this method does not update other SDAPI objects in the system.

Examples

papi->DefineClient("myclient-main");

HRESULT DefineHost(
[in] const char* pszHost);

Override the SDHOST setting, and also set it in the registry.

Parameters

pszHost

[in] Null-terminated string specifying the host name.

Return Values

If the method succeeds, the return value is S_OK.

If the method succeeds but encounters a warning, the return value is S_FALSE; use GetErrorString to get the text of the warning message.

If the method fails, the return value is an error code.

Remarks

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

See also the SetHost method.

Using this method does not update other SDAPI objects in the system.

Examples

papi->DefineHost("mymachine");

HRESULT DefineAuth(
[in] const char* pszAuth);

Override the SDAUTH setting, and also set it in the registry.

Parameters

pszAuth

[in] Null-terminated string specifying the authentication packages by which the user credentials may be validated.

Return Values

If the method succeeds, the return value is S_OK.

If the method succeeds but encounters a warning, the return value is S_FALSE; use GetErrorString to get the text of the warning message.

If the method fails, the return value is an error code.

Remarks

If called after Init and before Final, this will return E_FAIL because settings cannot be changed while connected to a server.

See sd help variables for more information about client settings.

See also the SetAuth method.

Using this method does not update other SDAPI objects in the system.

Examples

papi->DefineAuth("negotiate ntlm");

HRESULT GetPort(
[out] const char** ppszPort);

Retrieves the SDPORT setting.

Parameters

ppszPort

[out] If the method is successful, ppszPort points to a null terminated string containing the value of the SDPORT variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDPORT setting is empty, ppszPort is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszPort out parameter is valid until SetPort, DefinePort, or LoadIniFile is called. The caller must not try to free the ppszPort pointer.

See sd help variables for more information about client settings.

HRESULT GetUser(
[out] const char** ppszUser);

Retrieves the SDUSER setting.

Parameters

ppszUser

[out] If the method is successful, ppszUser points to a null terminated string containing the value of the SDUSER variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDUSER setting is empty, ppszUser is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszUser out parameter is valid until SetUser, DefineUser, or LoadIniFile is called. The caller must not try to free the ppszUser pointer.

See sd help variables for more information about client settings.

HRESULT GetPassword(
[out] const char** ppszPassword);

Retrieves the SDPASSWD setting.

Parameters

ppszPassword

[out] If the method is successful, ppszPassword points to a null terminated string containing the value of the SDPASSWD variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDPASSWD setting is empty, ppszPassword is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszPassword out parameter is valid until SetPassword, DefinePassword, or LoadIniFile is called. The caller must not try to free the ppszPassword pointer.

See sd help variables for more information about client settings.

HRESULT GetClient(
[out] const char** ppszClient);

Retrieves the SDCLIENT setting.

Parameters

ppszClient

[out] If the method is successful, ppszClient points to a null terminated string containing the value of the SDCLIENT variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDCLIENT setting is empty, ppszClient is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszClient out parameter is valid until SetClient, DefineClient, or LoadIniFile is called. The caller must not try to free the ppszClient pointer.

See sd help variables for more information about client settings.

HRESULT GetHost(
[out] const char** ppszHost);

Retrieves the SDHOST setting.

Parameters

ppszHost

[out] If the method is successful, ppszHost points to a null terminated string containing the value of the SDHOST variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDHOST setting is empty, ppszHost is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszHost out parameter is valid until SetHost, DefineHost, or LoadIniFile is called. The caller must not try to free the ppszHost pointer.

See sd help variables for more information about client settings.

HRESULT GetAuth(
[out] const char** ppszAuth);

Retrieves the SDAUTH setting.

Parameters

ppszAuth

[out] If the method is successful, ppszAuth points to a null terminated string containing the value of the SDAUTH variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDAUTH setting is empty, ppszAuth is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszAuth out parameter is valid until SetAuth, DefineAuth, or LoadIniFile is called. The caller must not try to free the ppszAuth pointer.

See sd help variables for more information about client settings.

HRESULT GetDiff(
[in] DWORD eTextual,
[out] const char** ppszDiffCmd);

Retrieves the SDDIFF or SDUDIFF setting.

Parameters

eTextual

[in] If eTextual is SDTT_NONTEXT or SDTT_TEXT, ppszDiffCmd returns the SDDIFF variable. If eTextual is SDTT_UNICODE, ppszDiffCmd returns the SDUDIFF variable.

ppszDiffCmd

[out] If the method is successful, ppszDiffCmd points to a null terminated string containing the value of the SDDIFF or SDUDIFF variable, depending on the eTextual parameter. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDDIFF or SDUDIFF setting is empty, ppszDiffCmd is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszDiffCmd out parameter is valid until LoadIniFile is called. The caller must not try to free the ppszDiffCmd pointer.

See sd help variables for more information about client settings.

HRESULT GetFileEditor(
[in] DWORD eTextual,
[out] const char** ppszEditorCmd);

Retrieves the SDEDITOR or SDUEDITOR setting.

Parameters

eTextual

[in] If eTextual is SDTT_NONTEXT or SDTT_TEXT, ppszEditorCmd returns the SDEDITOR variable. If eTextual is SDTT_UNICODE, ppszEditorCmd returns the SDUEDITOR variable.

ppszEditorCmd

[out] If the method is successful, ppszEditorCmd points to a null terminated string containing the value of the SDEDITOR or SDUEDITOR variable, depending on the eTextual parameter. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDEDITOR or SDUEDITOR setting is empty, ppszEditorCmd is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszEditorCmd out parameter is valid until LoadIniFile is called. The caller must not try to free the ppszEditorCmd pointer.

See sd help variables for more information about client settings.

HRESULT GetFormEditor(
[out] const char** ppszEditorCmd);

Retrieves the SDFORMEDITOR setting.

Parameters

ppszEditorCmd

[out] If the method is successful, ppszEditorCmd points to a null terminated string containing the value of the SDFORMEDITOR variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDFORMEDITOR setting is empty, ppszEditorCmd is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszEditorCmd out parameter is valid until LoadIniFile is called. The caller must not try to free the ppszEditorCmd pointer.

See sd help variables for more information about client settings.

HRESULT GetMerge(
[out] const char** ppszMergeCmd);

Retrieves the SDMERGE setting.

Parameters

ppszMergeCmd

[out] If the method is successful, ppszMergeCmd points to a null terminated string containing the value of the SDMERGE variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDMERGE setting is empty, ppszMergeCmd is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszMergeCmd out parameter is valid until LoadIniFile is called. The caller must not try to free the ppszMergeCmd pointer.

See sd help variables for more information about client settings.

HRESULT GetPager(
[out] const char** ppszPagerCmd);
Retrieves the SDPAGER setting.

Parameters

ppszPagerCmd

[out] If the method is successful, ppszPagerCmd points to a null terminated string containing the value of the SDPAGER variable. The caller must not try to free the pointer.

Return Values

If the method succeeds, the return value is S_OK. If the method succeeds but the SDPAGER setting is empty, ppszPagerCmd is NULL and the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The ppszPagerCmd out parameter is valid until LoadIniFile is called. The caller must not try to free the ppszPagerCmd pointer.

See sd help variables for more information about client settings.

HRESULT Break();

Disconnects from the Source Depot server by terminating the socket connection. This is similar to using ^C or Ctrl-Break, but does not terminate the thread or process.

This generally serves to abort the command that is currently running.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is the error code.

Remarks

Break may be called at any time.

Depending on what command was running when the connection is broken, the server may continue processing the command. For example: once the submit command has retrieved the file content from the client it no longer needs to communicate with the client, and breaking the connection after that point does not abort the submission. Breaking the connection prior to that point will abort the submission, and no part of the changelist is submitted.

The SDAPI object may be reused after calling Break to abort the current command. The connection will be automatically reestablished by the next Run call.

Calling Break does not mean that settings can be changed (SetPort, etc) – Final must be called before settings can be changed.

HRESULT Clone(
[in] REFIID iid
[out] void** ppvObject);
Creates a new SDAPI object, cloning the settings from this one.

Parameters

iid

[in] The identifier of the interface to request on the new object.

ppvObject

[out] On success, this is filled in with a pointer to the requested interface on the new object.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

Updating settings on the clone object does not affect the original object, or vice versa.

The new object does not connect to a server until the Init or Run method is called.

ISDClientUtilities

Use QueryInterface on the ISDClientApi interface to acquire an ISDClientUtilities interface. This interface includes some useful ancillary functions, which do not require a connection to an SD server.

Methods on ISDClientUtilities:

	CheckMarkers
	Can be called from within the AutoResolve and Resolve methods on ISDResolveUser to check whether the merged file is free of conflict markers.

	Resolve3
	Perform 3-way file resolution. This is equivalent to the sd resolve3 command.

	Diff
	Compare two files, and return the differences.

HRESULT CheckMarkers(
[in] ISDVars* pVars)

Can be called from within the AutoResolve and Resolve methods on ISDResolveUser to check whether the merged file is free of conflict markers.

Parameters

pVars

[in] Pointer to the ISDVars interface passed in the AutoResolve or Resolve call.

Remarks

The object behind the ISDVars interface contains information about the current resolution action. The information determines the local merged file and its file type. The file is scanned for the conflict markers the same way that the interactive sd resolve command normally does.

An interactive implementation of Resolve on ISDResolveUser should use CheckMarkers to verify the conflict markers have been removed, after the user has edited the file, and before accepting the merged file.

HRESULT Resolve3(
[in] ISDClientUser* pUI,
[in] const char* aflags,
[in] const char* dflags,
[in] const char* pszBase,
[in] const char* pszTheirs,
[in] const char* pszYours,
[in] const char* pszResult)

Performs 3-way file resolution. This is equivalent to the sd resolve3 command.

Parameters

Todo: fill this in.
Remarks

This does not require a connection to a server, and does not try to establish one.

Todo: fill this in, especially the variables.
See sd help resolve3 for more information.

HRESULT Diff(
[in] const char* pszLeft
[in] const char* pszRight
[in] const char* pszFlags
[in] DWORD eForceTextual
[out] ISDVars** ppVars)

Compares two files, and returns the differences in ppVars.

Parameters

pszLeft

[in] Filename to compare. When comparing an “older” file with a “newer” file, the left side should be the older file.

pszRight

[in] Filename to compare. When comparing an “older” file with a “newer” file, the right side should be the newer file.

pszFlags

[in] These flags are passed to the diff engine, to modify the output. See sd help diff for the list of supported flags.

eForceTextual

[in] When this is SDTT_NONTEXT (zero) the left and right files are scanned to automatically determine the appropriate file type to use. SDTT_TEXT and SDTT_UNICODE force the diff engine to compare the files as 8-bit text or 16-bit text (Unicode), respectively.

ppVars

[out] On success, this is filled with a pointer to an ISDVars interface on an object that contains the results of comparing the two files.

Remarks

Todo: fill this in, especially the variables.
User Callback Interfaces

ISDClientUser

Todo: describe the methods.
Todo: hints and tips on how to use the OutputXxx callbacks in an effective manner, and how to check for warnings/errors, etc.
HRESULT OutputText(
[in] const char* pszText,
[in] int cchText)

Called for text data, generally the result of print textfile or spec-command -o (where spec-command is branch, change, client, label, protect, user, etc).

Parameters

pszText

[in] Pointer to text data. The data is not null terminated, and may contain embedded null characters that are part of the data itself.

cchText

[in] Number of bytes in pszText.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

Remarks

The implementation of this method must translate '\n' in the pszText string to '\r\n' on Windows platforms to ensure correct line termination. This is particularly important when using print to download the contents of a file.

HRESULT OutputBinary(
[in] const unsigned char* pbData,
[in] int cbData)

Called for binary data, generally the result of print nontextfile or print unicodefile.

Parameters

pbData

[in] Pointer to string of bytes.

cbData

[in] Number of bytes in pbData.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

Remarks

The Source Depot server always sends a zero-length binary packet to end a stream of binary packets. This allows client programs to detect the end of a binary file that has been transmitted.

HRESULT OutputInfo(
[in] int cIndent,
[in] const char* pszInfo)

Called for tabular data, usually the results of commands that affect sets of files.

Some commands also support structured output; see Structured Mode Reference for more information.

Parameters

cIndent

[in] The indentation level (0, 1, or 2) for the information message. This loosely implies hierarchical relationship.

The SD.EXE client program normally handles 1 by prepending "... " to the string, and handles 2 by prepending "... ... " to the string.

pszInfo

[in] Pointer to a null terminated informational message string. The string does not include a linefeed at the end.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

HRESULT OutputWarning(
[in] int cIndent,
[in] const char* pszWarning,
[in] BOOL fEmptyReason)

Called for warning messages (any text normally displayed in yellow by the SD.EXE client program).

As of this writing, there is no list of the possible warning messages.

Parameters

cIndent

[in] The indentation level (0, 1, or 2) for the warning message. This loosely implies hierarchical relationship.

The SD.EXE client program normally handles 1 by prepending "... " to the string, and handles 2 by prepending "... ... " to the string.

pszWarning

[in] Pointer to a null terminated warning message string. The string includes a linefeed at the end, and may contain one or more linefeeds within the string.

fEmptyReason

[in] TRUE if the warning message is an “empty reason”, or FALSE otherwise.

“Empty reason” messages are the warning messages that are displayed when a command has an empty result set. For example, opened bogusfile would report “bogusfile - file(s) not opened on this client”.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

Remarks

Warnings are messages that indicate a qualified success or non-fatal error.

For instance, edit filename will call OutputWarning for each other client that already has the file checked out. This is a qualified success, because the user may not want to check out the file if someone else already has it checked out.

For instance, files //depot/path/somewhere/... will call OutputWarning with fEmptyReason set to TRUE if it cannot find any files under //depot/path/somewhere/... (either because no files exist there, or because the user does not have sufficient permission to see the files).

The fEmptyReason flag can be useful for reporting commands, to distinguish between normal warnings and warnings due to an empty result set. For example, if opened thisfile calls OutputWarning with fEmptyReason TRUE, then thisfile is not opened. This approach works for most reporting commands (such as changes, files, integrated, opened, etc), but does not work for action commands (such as edit, integrate, sync, submit, etc). However, for reporting commands that do not generate empty reason messages (such as clients, groups, labels, etc), instead you must test that none of OutputInfo, OutputWarning, or OutputError were called.

HRESULT OutputError(
[in] const char* pszError)

Called for error messages, failed commands (any text normally displayed in red by the SD.EXE client program).

As of this writing, there is no list of the possible error messages.

Parameters

pszError

[in] Pointer to a null terminated error message string. The string includes a linefeed at the end, and may contain one or more linefeeds within the string.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

Remarks

If this method is called, the command has failed. When ISDClientApi::Run returns, it will return E_FAIL.

HRESULT OutputStructured(
[in] ISDVars* pVars)

Called for tabular data if the fStructured parameter was TRUE for the ISDClientApi::Run call. Not all Source Depot commands support structured output. For any command that does not support structured output, the fStructured parameter is ignored.

See the Structured Mode Reference and ISDVars for more information about structured output.

Parameters

pVars

[in] Pointer to the ISDVars interface on an object containing the data. Retrieve the data using the ISDVars methods.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

Remarks

In particular, warnings and errors are never returned through structured output. The OutputWarning and OutputError methods are always used to report warnings or errors.

HRESULT Finished()

Called by ISDClientApi::Run when a command has finished. The command may or may not have completed successfully.

For example, this is where the SD.EXE client program displays the auto-summary; see the -Y option in sd -? for more information.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

ISDActionUser

The SDAPI object calls QueryInterface on ISDClientUser to ask for the ISDActionUser interface. This interface overrides the default behavior for various actions.

Methods on ISDActionUser:

	Diff
	Overrides how diffs are performed on the local machine (it does not apply to the diff2 command because in that case the diffs are performed on the server machine).

	EditForm
	Overrides how an external file editor is invoked for spec forms (such as for the client and change commands, etc).

	EditFile
	Overrides how an external file editor is invoked when the user enters e at the resolve prompt.

	Merge
	Overrides how an external merge program is invoked when the user enters m at the resolve prompt.

	Help
	Overrides how help text is displayed when the user enters ? at the resolve prompt.

Todo: hints and tips, etc.
enum {
SDTT_NONTEXT,
SDTT_TEXT,
SDTT_UNICODE };
Remarks

These values are used for the DWORD eTextual in/out parameters. SDTT_NONTEXT means the file type is non-textual (binary). SDTT_TEXT means the file type is 8-bit textual (all SBCS and DBCS text files fall under this category, including UTF-7 and UTF-8 files). SDTT_UNICODE means the file type is 16-bit textual (UTF-16).

HRESULT Diff(
[in] const char* pszDiffCmd,
[in] const char* pszLeft,
[in] const char* pszRight,
[in] DWORD eTextual,
[in] const char* pszFlags,
[in] const char* pszPaginateCmd)

Called by resolve when the user selects any of the d (diff) actions. Also called by diff.

In particular, this is not called by diff2 because the server computes the diff and sends the computed diff to the client.

Parameters

pszDiffCmd

[in] Pointer to a null terminated string containing the user-defined command to launch an external diff engine, as defined by the SDDIFF or SDUDIFF variables. This may be NULL. See sd help variables for more information.

pszLeft

[in] Pointer to a null terminated string containing the name of the Left file for the diff.

pszRight

[in] Pointer to a null terminated string containing the name of the Right file for the diff.

eTextual

[in] This indicates the lowest common denominator file type for the two input files (non-textual, text, or Unicode).

pszFlags

[in] Pointer to a null terminated string containing flags for the diff engine. This may be NULL. For more information, see sd help diff regarding the -dflags option.

pszPaginateCmd

[in] Pointer to a null terminated string containing the user-defined command through which to pipe the diff output, as defined by the SDPAGER variable. This may be NULL. See sd help variables for more information.

For example, "more.exe".

Return Values

Return S_OK to indicate the diff has been performed successfully.

Return E_NOTIMPL to allow the SDAPI to perform the default behavior, which is to launch an external diff engine (if SDDIFF/SDUDIFF is defined) or use the internal SD diff engine.

Return other error HRESULT codes to indicate an error has occurred.

HRESULT EditForm(
[in] const char* pszEditCmd,
[in] const char* pszFile)

Called by all commands that launch a user form (e.g. branch, change, client, etc).

Parameters

pszEditCmd

[in] Pointer to a null terminated string containing a user-defined command to launch an external editor, as defined by the SDFORMEDITOR variable. This may be NULL. See sd help variables for more information.

pszFile

[in] Pointer to a null terminated string containing the name of the file to edit.

Return Values

Return S_OK to indicate the user has finished editing the file.

Return E_NOTIMPL to allow the SDAPI to perform the default behavior, which is to launch an external editor engine (if defined) or to launch notepad.exe.

Return other error HRESULT codes to indicate an error has occurred.

Remarks

This callback is synchronous in nature; if your implementation launches an editor, your code must not return until the user has finished editing the file.

HRESULT EditFile(
[in] const char* pszEditCmd,
[in] const char* pszFile,
[in] DWORD eTextual)

Called by resolve when the user selects any of the e (edit) actions to edit a file.

Parameters

pszEditCmd

[in] Pointer to a null terminated string containing a user-defined command to launch an external editor, as defined by the SDEDITOR or SDUEDITOR variables. This may be NULL. See sd help variables for more information.

pszFile

[in] Pointer to a null terminated string containing the name of the file to edit.

eTextual

[in] This indicates the file type of the file to edit (non-textual, text, or Unicode).

Return Values

Return S_OK to indicate the user has finished editing the file.

Return E_NOTIMPL to allow the SDAPI to perform the default behavior, which is to launch an external editor engine (if defined) or to launch notepad.exe.

Return other error HRESULT codes to indicate an error has occurred.

Remarks

This callback is synchronous in nature; if your implementation launches an editor, your code must not return until the user has finished editing the file.

HRESULT Merge(
[in] const char* pszMergeCmd,
[in] const char* pszBase,
[in] const char* pszTheirs,
[in] const char* pszYours,
[in] const char* pszResult,
[in] DWORD eTextual)

Called by resolve when the user selects m (merge) to invoke an external merge program.

Parameters

pszMergeCmd

[in] Pointer to a null terminated string containing a user-defined command to launch an external merge program, as defined by the SDMERGE variable. This may be NULL. See sd help variables for more information.

pszBase

[in] Pointer to a null terminated string containing the name of the Base file for the 3-way file merge (the original file).

pszTheirs

[in] Pointer to a null terminated string containing the name of the Theirs file for the 3-way merge.

pszYours

[in] Pointer to a null terminated string containing the name of the Yours file for the 3-way merge.

pszResult

[in] Pointer to a null terminated string containing the name of the output file to store the result of the 3-way merge.

eTextual

[in] This indicates the lowest common denominator file type for the three input files and the desired file type for the output file (non-textual, text, or Unicode).

Return Values

Return S_OK to indicate the files were successfully merged.

Return E_NOTIMPL to allow the SDAPI to perform the default behavior, which is to launch an external merge engine (if defined).

Return other error HRESULT codes to indicate an error has occurred.

void Help(
[in] const char** prgszHelp)
Called by resolve when the user selects ? to display help information.

Parameters

prgszHelp

[in] Pointer to a null terminated array of pointers to null terminated strings that comprise the help text to display to the user.

ISDInputUser

The SDAPI object calls QueryInterface on ISDClientUser to ask for the ISDInputUser interface. This interface is responsible for providing various kinds of input.

Todo: describe the methods.
Todo: hints and tips, etc.
HRESULT InputData(
[in, out] VARIANT* pvarInput)

Called when the -i flag is used with commands such as branch, change, client, group, label, triggers, protect, etc. This method is responsible for providing the input to the command.

Parameters

pvarInput

[in, out] Pointer to an empty VARIANT, which must be filled in with a BSTR containing the input text.

Return Values

Return S_OK to indicate pvarInput has been filled in.

Return an error HRESULT code to indicate an error occurred.

Remarks

SD will convert the text returned in pvarInput to the OEM codepage (the codepage that SD and most console programs use).

HRESULT Prompt(
[in] const char* pszPrompt,
[in, out] VARIANT* pvarResponse,
[in] BOOL fPassword)

Called when prompting for a password, or when resolve prompts for a user action.

Parameters

pszPrompt

[in] Pointer to null-terminated prompt string to present to the user.

pvarResponse

[in, out] Pointer to an empty VARIANT, which must be filled in with a BSTR containing the input text.

fPassword

[in] When TRUE, the prompt is to enter a password, and the input text must not be echoed to the screen.

Return Values

Return S_OK to indicate pvarResponse has been filled in.

Do not return E_NOTIMPL or E_ABORT to skip the prompt. This can result in an infinite loop if the prompt is required, since the SDAPI will simply try to prompt again.

Return an error HRESULT code to indicate an error occurred.

Remarks

SD will convert the text returned in pvarResponse to the OEM codepage (the codepage that SD and most console programs use).

HRESULT PromptYesNo(
[in] const char* pszPrompt)

Called by resolve when it must prompt for confirmation. For example, “File is not textual. Are you sure you want to edit the file?” and “There are still change markers: confirm accept?” and etc.

Parameters

pszPrompt

[in] Pointer to null-terminated prompt string to present to the user.

Return Values

Return S_OK to indicate “Yes”.

Return S_FALSE or E_ABORT to indicate “No”.

Return E_NOTIMPL to allow the SDAPI to perform the default behavior, which is to call Prompt until y, Y, n, or N is entered.

Return other error HRESULT codes to indicate an error occurred.

HRESULT ErrorPause(
[in] const char* pszError)s

Called by commands such as branch, change, client, group, label, triggers, protect, etc. when the input form (see EditForm on ISDActionUser) cannot be accepted, for example due to a syntax error. This method is responsible for presenting an error message to the user. When the user dismisses the error message, EditForm is called again. If the input form remains unchanged, the command is cancelled.

Parameters

pszError

[in] Pointer to a null-terminated error string to present to the user.

Return Values

Return S_OK to continue.

Return an error HRESULT code to indicate an error occurred.

ISDResolveUser

Todo: this is acquired via QI off the ISDClientUser interface.
Todo: describe the methods.
Todo: hints and tips, etc.
enum {
MH_SKIP,
MH_ACCEPTTHEIRFILE,
MH_ACCEPTYOURFILE,
MH_ACCEPTMERGEDFILE }

Remarks

These values are used for the DWORD pdwMergeHint in/out parameters.

· MH_SKIP – no automatic resolve action can be performed.

· MH_ACCEPTTHEIRFILE – keep “their” copy of the file.

· MH_ACCEPTYOURFILE – keep “your” copy of the file.

· MH_ACCEPTMERGEDFILE – keep the merged file.

HRESULT AutoResolve(
[in] ISDVars* pVars
[in, out] DWORD* pdwMergeHint)

Todo: describe the purpose of the method.
Parameters

pVars

[in] ISDVars interface on an object containing data about the merge to be resolved.

pdwMergeHint

[in, out] The input value of pdwMergeHint indicates the recommended resolution action, from the enum containing the MH_ values. To select a different resolution action, change the value before returning from the function.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

Remarks

See Resolve on ISDResolveUser for more information, and for a list of variables that may exist in the pVars object.

HRESULT Resolve(
[in] ISDVars* pVars
[in, out] DWORD* pdwMergeHint,
[in] const char* pszDiffFlags)

Todo: describe the purpose of the method.
Parameters

pVars

[in] ISDVars interface on an object containing data about the merge to be resolved.

pdwMergeHint

[in, out] The input value of pdwMergeHint indicates the recommended resolution action, from the enum containing the MH_ values. To select a different resolution action, change the value before returning from the function.

pszDiffFlags

[in] Indicates any diff flags specified by -d<flags> on the command line. See sd help resolve and sd help diff for more information.

Return Values

The return value is ignored. For future compatibility, implementations should return E_NOTIMPL if the method is not implemented, and S_OK if it is implemented.

Remarks

The resolve action may involve a 3-way merge (textual files) or a 2-way “merge” (usually non-textual files). The 3-way merge involves a base file, the source (“theirs”) file, the target (“yours”) file, and the resulting merged file. The 2-way “merge” is not in fact a merge, as the only choices are to accept the “theirs” file verbatim, accept the “yours” file verbatim, or skip the resolve. Usually the 2-way merge applies only to non-textual files, but in certain rare cases a 2-way merge may apply to textual files.

A “diff chunk” is a set of contiguous lines that differs between two files. For example, if 5 lines differ between two files, but the 5 lines are contiguous, then there is only 1 diff chunk (which contains 5 lines).

A “merge conflict” is not the same as a “merge”. A “merge conflict” is specifically when the “theirs” file and “yours” file each differ from the base file in the same location (set of lines), but the 3 files each have unique content for that location. In this case, an automatic merge is not possible.

The following variables may exist in the pVars object:

	type
	String containing an integer indicating the file type. The values may be "0" for SDTT_NONTEXT, "1" for SDTT_TEXT, or "2" for SDTT_UNICODE.

	localBase
	When resolving a 3-way merge, this is the local filename of the temporary file containing the base file for the 3-way merge. Otherwise this variable does not exist.

	depotBase
	When resolving a 3-way merge, this is the depot pathname and revision of the base file for the 3-way merge. Otherwise this variable does not exist.

	localTheirs
	The local filename of the temporary file containing the “theirs” file.

	depotTheirs
	The depot pathname and revision of the “theirs” file.

	localYours
	The local filename of the temporary file containing the “yours” file.

	depotYours
	The depot pathname and revision of the “yours” file.

	localMerged
	When resolving a 3-way merge, this is the local filename of the temporary file containing the result of the 3-way merge.

	chunksTheirs
	When resolving a 3-way merge, this string indicates the number of chunks that differ between the base file and the “theirs” file. When resolving a 2-way merge, this string indicates the number of diff chunks between the “yours” file and the “theirs” file. Otherwise this variable does not exist.

	chunksYours
	When resolving a 3-way merge, this string indicates the number of diff chunks between the base file and the “yours” file. Otherwise this variable does not exist.

	chunksBoth
	When resolving a 3-way merge, this string indicates the number of diff chunks that are identical between chunksTheirs and chunksYours. Otherwise this variable does not exist.

	chunksConflict
	When resolving a 3-way merge, this string indicates the number of diff chunks that represent merge conflicts. Otherwise this variable does not exist.

SDVars Object

ISDVars

Todo: describe the methods.
Todo: this is passed through ISDClientUser::OutputStructured.
Todo: hints and tips, etc.
HRESULT GetVar(
[in] const char* pszVar,
[out] const char** ppszValue,
[out] ULONG* pcbValue
[out] BOOL* pfIsUnicode)

Retrieves the value of the named variable if it exists in the property bag object.

Parameters

pszVar

[in] Pointer to a null-terminated string containing the name of the variable to retrieve.

ppszValue

[out] If the method is successful, ppszValue is set with a pointer to a null terminated string containing the value of the variable named by pszVar. The caller must not try to free the pointer. Note, the pointer may in fact point to a Unicode string; see pfIsUnicode.

pcbValue

[out] If the method is successful, pcbValue is set to the number of bytes in the string pointed to by ppszValue. If the caller does not require this information, the caller may pass NULL (0) for pcbValue.

pfIsUnicode

[out] If the method is successful, pfIsUnicode is set to TRUE or FALSE indicating whether ppszValue is a Unicode string or not, respectively. If the caller does not require this information, the caller may pass NULL (0) for pfIsUnicode.

Return Values

If the method succeeds, the return value is S_OK and ppszValue points to a null terminated string (which may be Unicode, see pfIsUnicode). The string may be empty if the variable’s value was blank.

If the named variable is not found, the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The lifetime of the ppszValue out parameter is the same as the lifetime of the ISDVars object itself. The caller must not try to free the ppszValue pointer.

See also ISDVars2::GetVar.

Example

void MyClass::OutputStructured(ISDVars *pvars)
{
 const char *pszFile;
 const char *pszRev;
 const char *pszUser;
 // assuming the command was "opened",
 // output a subset of the data.
 pvars->GetVar("depotFile", &pszFile, 0, 0);
 pvars->GetVar("rev", &pszRev, 0, 0);
 pvars->GetVar("user", &pszUser, 0, 0);
 if (pszFile && pszRev && pszUser)
 printf("%s#%s - %s\n", pszFile, pszRev, pszUser);
}

HRESULT GetVarX(
[in] const char* pszVar,
[in] int x,
[out] const char** ppszValue,
[out] ULONG* pcbValue
[out] BOOL* pfIsUnicode)

Retrieves the value indexed by x of the named one-dimensional multi-value variable if it exists in the property bag object.

Parameters

pszVar

[in] Pointer to a null-terminated string containing the name of the multi-value variable to retrieve. Element number x is retrieved.

x

[in] Index into the one-dimensional variable array.

ppszValue

[out] If the method is successful, ppszValue is set with a pointer to a null terminated string containing the value of the variable named by pszVar and indexed by x. The caller must not try to free the pointer. Note, the pointer may in fact point to a Unicode string; see pfIsUnicode.

pcbValue

[out] If the method is successful, pcbValue is set to the number of bytes in the string pointed to by ppszValue. If the caller does not require this information, the caller may pass NULL (0) for pcbValue.

pfIsUnicode

[out] If the method is successful, pfIsUnicode is set to TRUE or FALSE indicating whether ppszValue is a Unicode string or not, respectively. If the caller does not require this information, the caller may pass NULL (0) for pfIsUnicode.

Return Values

If the method succeeds, the return value is S_OK and ppszValue points to a null terminated string (which may be Unicode, see pfIsUnicode). The string may be empty if the variable’s value was blank.

If the named variable or index is not found, the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The lifetime of the ppszValue out parameter is the same as the lifetime of the ISDVars object itself. The caller must not try to free the ppszValue pointer.

See also ISDVars2::GetVarX.

Example

void MyClass::OutputStructured(ISDVars *pvars)
{
 const char *pszChange;
 const char *pszUser;
 const char *pszTime;
 // assuming the command was "describe 1234",
 // output a subset of the data.
 pvars->GetVar("change", &pszChange, 0, 0);
 pvars->GetVar("user", &pszUser, 0, 0);
 pvars->GetVar("time", &pszTime, 0, 0);
 if (pszChange && pszUser && pszTime)
 {
 time_t t = atoi(pszTime);
 printf("Change %s submitted on %.24s by %s\n",
 pszChange, ctime(&t), pszUser);
 for (;;)
 {
 const char *pszFile;
 const char *pszRev;
 pvars->GetVarX("depotFile", &pszFile, 0, 0);
 pvars->GetVarX("rev", &pszRev, 0, 0);
 if (!pszFile || !pszRev)
 break;
 printf("... %s#%s\n", pszFile, psszRev);
 }
 }
}

HRESULT GetVarXY(
[in] const char* pszVar,
[in] int x,
[in] int y,
[out] const char** ppszValue,
[out] ULONG* pcbValue
[out] BOOL* pfIsUnicode)

Retrieves the value indexed by x and y of the named two-dimensional multi-value variable if it exists in the property bag object.

Parameters

pszVar

[in] Pointer to a null-terminated string containing the name of the variable to retrieve.

x

[in] Major index into the two-dimensional multi-value array.

y

[in] Minor index into the two-dimensional multi-value array.

ppszValue

[out] If the method is successful, ppszValue is set with a pointer to a null terminated string containing the value of the variable named by pszVar and indexed by x and y. The caller must not try to free the pointer. Note, the pointer may in fact point to a Unicode string; see pfIsUnicode.

pcbValue

[out] If the method is successful, pcbValue is set to the number of bytes in the string pointed to by ppszValue. If the caller does not require this information, the caller may pass NULL (0) for pcbValue.

pfIsUnicode

[out] If the method is successful, pfIsUnicode is set to TRUE or FALSE indicating whether ppszValue is a Unicode string or not, respectively. If the caller does not require this information, the caller may pass NULL (0) for pfIsUnicode.

Return Values

If the method succeeds, the return value is S_OK and ppszValue points to a null terminated string (which may be Unicode, see pfIsUnicode). The string may be empty if the variable’s value was blank.

If the named variable is not found, the return value is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The lifetime of the ppszValue out parameter is the same as the lifetime of the ISDVars object itself. The caller must not try to free the ppszValue pointer.

GetVarXY is only used in conjunction with the filelog command, since it is the only command that returns any two-dimensional variables.

See also ISDVars2::GetVarXY.

Example

void MyClass::OutputStructured(ISDVars *pvars)
{
 const char *pszFile;
 // assuming the command was "filelog file"
 // output a subset of the data.
 pvars->GetVar("depotFile", &pszFile, 0, 0);
 if (!pszFile)
 return;
 printf("%s\n", pszFile);
 for (int x = 0; ; x++)
 {
 const char *pszRev;
 const char *pszChange;
 const char *pszAction;
 const char *pszTime;
 pvars->GetVarX("rev", x, &pszRev, 0, 0);
 pvars->GetVarX("change", x, &pszChange, 0, 0);
 pvars->GetVarX("action", x, &pszAction, 0, 0);
 pvars->GetVarX("time", x, &pszTime, 0, 0);
 if (!pszRev || !pszChange || !pszAction || !pszTime)
 break;
 time_t t = atoi(pszTime);
 printf("... #%s change %s %s on %.24s\n",
 pszRev, pszChange, pszAction, ctime(&t));
 for (int y = 0; ; y++)
 {
 const char *pszFile;
 const char *pszHow;
 const char *pszSRev;
 const char *pszERev;
 pvars->GetVarXY("file", x, y, &pszFile, 0, 0);
 pvars->GetVarXY("how", &pszHow, 0, 0);
 pvars->GetVarXY("srev", &pszSRev, 0, 0);
 pvars->GetVarXY("erev", &pszERev, 0, 0);
 if (!pszFile || !pszHow || !pszSRev || !pszERev)
 break;
 printf("... ... %s %s#%s,%s\n",
 pszHow, pszFile, pszSRev, pszERev);
 }
 }
}

HRESULT GetVarByIndex(
[in] int i,
[out] const char** ppszVar,
[out] const char** ppszValue,
[out] ULONG* pcbValue
[out] BOOL* pfIsUnicode)

Retrieves the variable and value indexed by i from the property bag object.

Parameters

i

[in] Zero-based index of the variable in the property bag object.

ppszVar

[out] If the method is successful, ppszVar is set with a pointer to a null terminated string containing the name of the variable indexed by i. One or two dimensional multi-value variable names are represented by variableX,Y (for example “depotFile2” or “how1,5”). The caller must not try to free the pointer.

ppszValue

[out] If the method is successful, ppszValue is set with a pointer to a null terminated string containing the value of the variable indexed by i. The caller must not try to free the pointer. Note, the pointer may in fact point to a Unicode string; see pfIsUnicode.

pcbValue

[out] If the method is successful, pcbValue is set to the number of bytes in the string pointed to by ppszValue. If the caller does not require this information, the caller may pass NULL (0) for pcbValue.

pfIsUnicode

[out] If the method is successful, pfIsUnicode is set to TRUE or FALSE indicating whether ppszValue is a Unicode string or not, respectively. If the caller does not require this information, the caller may pass NULL (0) for pfIsUnicode.

Return Values

If the method succeeds, the return value is S_OK and ppszVar and ppszValue point to null terminated strings (ppszValue may be Unicode, see pfIsUnicode). A string may be empty if the variable’s name or value is blank.

If i is greater than or equal to the number of variables in the property bag object, the return variable is S_FALSE.

If the method fails, the return value is an error code.

Remarks

The lifetime of the ppszVar and ppszValue out parameters is the same as the lifetime of the ISDVars object itself. The caller must not try to free the ppszVar or ppszValue pointers.

See also ISDVars2::GetVarByIndex.

Example

void MyClass::OutputStructured(ISDVars *pvars)
{
 for (int i = 0; ; i++)
 {
 const char *pszVar;
 const char *pszValue;
 pvars->GetVarByIndex(i, &pszVar, &pszValue, 0, 0);
 if (!pszVar || !pszValue)
 break;
 // output the variable name and value
 printf("%s=%s\n", pszVar, pszValue);
 }
}

ISDVars2

Todo: describe the methods.
Todo: this can be queried off of ISDVars, and is more friendly for C# etc.
Todo: hints and tips, etc.
HRESULT GetVar(
[in] const char* pszVar,
[out] ISDVar** ppVar)

Retrieves the value of the named variable, if it exists in the property bag object.

Parameters

pszVar

[in] Pointer to a null-terminated string containing the name of the variable to retrieve.

ppVar

[out] Address of a pointer to be filled with the ISDVar interface pointer if the requested variable exists.

Return Values

If the method succeeds, the return value is S_OK and ppVar points to an object that can be queried for details about the requested variable.

If the requested variable is not found, the return value is S_FALSE and ppVar is NULL.

If the method fails, the return value is an error code.

Remarks

See also ISDVars::GetVar.

HRESULT GetVarX(
[in] const char* pszVar,
[in] int x,
[out] ISDVar** ppVar)

Retrieves the value, indexed by x, of the named one-dimensional multi-value variable, if it exists in the property bag object.

Parameters

pszVar

[in] Pointer to a null-terminated string containing the name of the multi-value variable to retrieve. Element number x is retrieved.

x

[in] Index into the one-dimensional variable array.

ppVar

[out] Address of a pointer to be filled with the ISDVar interface pointer if the requested variable exists.

Return Values

If the method succeeds, the return value is S_OK and ppVar points to an object that can be queried for details about the requested variable.

If the requested variable is not found, the return value is S_FALSE and ppVar is NULL.

If the method fails, the return value is an error code.

Remarks

See also ISDVars::GetVarX.

HRESULT GetVarXY(
[in] const char* pszVar,
[in] int x,
[in] int y,
[out] ISDVar** ppVar)

Retrieves the value, indexed by x and y, of the named two-dimensional multi-value variable, if it exists in the property bag object.

Parameters

pszVar

[in] Pointer to a null-terminated string containing the name of the variable to retrieve.

x

[in] Major index into the two-dimensional multi-value array.

y

[in] Minor index into the two-dimensional multi-value array.

ppVar

[out] Address of a pointer to be filled with the ISDVar interface pointer if the requested variable exists.

Return Values

If the method succeeds, the return value is S_OK and ppVar points to an object that can be queried for details about the requested variable.

If the requested variable is not found, the return value is S_FALSE and ppVar is NULL.

If the method fails, the return value is an error code.

Remarks

See also ISDVars::GetVarXY.

HRESULT GetVarByIndex(
[in] int i,
[out] ISDVar** ppVar)

Retrieves the value of the named variable, indexed by i, from the property bag object.

Parameters

i

[in] Zero-based index of the variable in the property bag object.

ppVar

[out] Address of a pointer to be filled with the ISDVar interface pointer if the requested variable exists.

Return Values

If the method succeeds, the return value is S_OK and ppVar points to an object that can be queried for details about the requested variable.

If the requested variable is not found, the return value is S_FALSE and ppVar is NULL.

If the method fails, the return value is an error code.

Remarks

See also ISDVars::GetVarByIndex.

ISDSpecForm

Todo: describe the methods.
Todo: this can be queried off of ISDVars, when structured mode is used for the various spec-command -o commands such as branch -o, client -o, change -o, etc.
Todo: hints and tips, etc.
HRESULT GetSchema(
[out] ISDVars** ppVars);

Todo: gets a description of the form’s schema, and returns it in the ppVars out parameter.
Todo: describe how the schema is reported.
HRESULT ParseSpec(
[in] VARIANT* pvarSpec);

Parses the spec form data from the pvarSpec argument, which must contain a BSTR.

Parameters

pvarSpec

[in] Points to a VARIANT containing the BSTR spec form data string to parse.
Return Values

If the spec form data is parsed successfully, the return value is S_OK.

Otherwise, the return value is an error code.

Remarks

When the ISDSpecForm interface is available on the SDVars object, it is pre-initialized with the spec form data, so ParseSpec doesn’t need to be called. The ParseSpec method is available in case the caller needs to re-parse spec form data, but should rarely be needed.
HRESULT FormatSpec(
[out] VARIANT* pvarSpec);

Formats the data into a spec form.

Parameters

pvarSpec
[out] Points to a VARIANT that will be filled with the formatted spec data.
Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

The formatted spec data is suitable to be returned from the ISDInputUser::InputData callback method.
HRESULT GetValue(
[in] const char* pszName,
[out] VARIANT* pvarValue);

Fills the VARIANT with the value of the named field.

Parameters

pszName

[in] Points to a null-terminated string that specifies the name of the field to query.

pvarValue

[out] Points to a VARIANT that will be filled with the data from the field.

Return Values

If the method succeeds, the return value is S_OK.

If the named field is not valid for this spec form, the return value is E_INVALIDARG.

If the method fails, the return value is an error code.

Remarks

For non-list field types (word, select, line, date, text, bulk), pvarValue will contain a BSTR.

For list field types (wlist, llist), pvarValue will a SAFEARRAY of BSTRs. If the SAFEARRAY contains 0 elements, this means the field contains no data. Each BSTR element in the SAFEARRAY corresponds to a line in the list, but does not include a newline character.

For wlist fields, each BSTR in the SAFEARRAY corresponds to a line of words. Words are separated by spaces. If the first character in a word is a double quote, the word ends at the next double quote.

See GetSchema for more information about field types.

HRESULT SetValue(
[in] const char* pszName,
[in] VARIANT* pvarValue);

Sets the named field with the indicated value.

Parameters

pszName

[in] Points to a null-terminated string that specifies the name of the field to set.

pvarValue

[in] Points to a VARIANT containing the new data for the field.

Return Values

If the method succeeds, the return value is S_OK.

If the named field is not valid for this spec form, the return value is E_INVALIDARG.

If the method fails, the return value is an error code.

Remarks

For all field types, if pvarValue is an empty VARIANT (VT_EMPTY), the field’s data is cleared.

For non-list field types (word, select, line, date, text, bulk), pvarValue must be a BSTR containing the new string value, or empty.

For list field types (wlist, llist), pvarValue should be a SAFEARRAY of BSTRs, where each element corresponds to one line in the list. If it is a BSTR, this is treated the same as a SAFEARRAY with 1 element. Each BSTR element in the SAFEARRAY corresponds to a line in the list, but should not include a newline character.

For wlist fields, each BSTR in the SAFEARRAY corresponds to a line of words. Words are separated by spaces. If the first character in a word is a double quote, the word ends at the next double quote.

See GetSchema for more information about field types.

SDVar Object

ISDVar

Todo: describe the methods.
Todo: this can be queried off of ISDVars, and is more friendly for C# etc.
Todo: hints and tips, etc.
HRESULT GetName(
[out] const char** ppszVar);

Retrieves the name of the variable.

Parameters

ppszVar

[out] If the method is successful, ppszVar is set with a pointer to a null terminated string containing the name of the variable.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

HRESULT GetByteString(
[out] const char** ppszValue);

Retrieves the value string, as raw bytes.

Parameters

ppszValue

[out] If the method is successful, ppszValue returns a pointer to the null-terminated value string for the variable.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Remarks

If the value string is not natively Unicode, ppszValue points to a null-terminated char* string. However if the value is natively Unicode, ppszValue points to the raw bytes for the Unicode string. Some programming languages, such as C and C++, are able to case the char* to WCHAR* easily. For those that cannot, use IsUnicode and GetUnicodeString instead.

HRESULT GetByteCount(
[out] ULONG* pcbValue);

Retrieves the count of bytes in the raw value string.

Parameters

pcbValue

[out] If the method is successful, pcbValue returns the number of bytes in the raw value string. If the string is natively Unicode, this is the number of bytes in the string, not the number of characters.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

HRESULT IsUnicode(
[out] BOOL* pfUnicode);

Queries whether the value string is natively Unicode.

Parameters

pfUnicode

[out] If the method is successful, pfUnicode returns whether the value string is natively Unicode.

When this is TRUE, the best way to retrieve the value string is through GetUnicodeString or GetVariant. The value string can also be retrieved through GetByteString and casting the ppszValue out parameter to WCHAR*.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

HRESULT GetUnicodeString(
[out] const WCHAR** ppwzValue);

Retrieves the Unicode value string, if it is natively Unicode.

Parameters

ppwzValue

[out] If the method is successful, ppwzValue returns a pointer to the null-terminated Unicode value string for the variable.

Return Values

If the method succeeds, the return value is S_OK.

If the value string is not natively Unicode, the return value is E_INVALIDARG.

If the method fails, the return value is an error code.

HRESULT GetVariant(
[out] VARIANT* pvarValue,
[in] DWORD dwCodepage);

Retrieves the value string as a BSTR VARIANT. If the value string is not natively Unicode, the value string is converted from dwCodepage to Unicode.

Parameters

pvarValue

[out] If the method is successful, pvarValue contains a BSTR with the value string for the variable.

dwCodepage

[in] This indicates the codepage from which to convert the value string to Unicode, if the value string is not natively Unicode. When the string is natively Unicode, the value of dwCodepage is ignored.

This parameter is required because Source Depot cannot know the codepage from which to convert the string to Unicode. For example, an 8-bit text file may contain strings from several different codepages (such as a resource file containing localized resource strings).

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value is an error code.

Structured Mode Reference

For most commands that return heterogeneous data, the server can send data in a property bag of named variables. This can significantly reduce the need for parsing. To request that a command use structured mode to return data, pass TRUE for the fStructured parameter to Run on ISDClientApi.

Following is a list of each command that currently supports structured mode, the server version required, the variable names returned and which ISDVars methods (or alternatively ISDVars2 and ISDVar) to access them through, and any important usage notes.

Todo: more explanation, etc.
Todo: if a command doesn’t support structured mode, it proceeds without using structured mode – no error is given.
Todo: quick coverage of the GetVar/X/Y methods.
Todo: quick coverage of the ISDVars, ISDVars2, and ISDVar.
Todo: maybe a better approach is to list all commands, and go into detail about how they work. That’s tantamount to writing a full-blown product manual, which is far beyond the intended scope of this document. This is a technical document describing key aspects unique to the SDAPI.
Todo: list universal points (e.g. date/time values being C time_t values in GMT, and any other universal points).
Notes:

· All date/time values are C time_t values in GMT, unless stated otherwise.

· All variable names are case sensitive.

· The 1.0 server supports structured output only for the fstat command. The 1.5 server supports structured output for the fstat and resolve commands. The resolve3 command does not contact a server, and is therefore independent of the server version.

branch (1.6)

GetVar:

	data
	The contents of the branch spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm interface from the ISDVars interface.

branches (1.6)

GetVar:

	Branch
	The name of the branch spec.

	Update
	The date and time the branch spec was last modified.

	Access
	The date and time the branch spec was last accessed. [when is this updated?]

	Owner
	The username of the owner of the branch spec.

	Host
	(always empty).

	Description
	The description for the branch spec.

	Root
	(always empty).

	Options
	The branch options; see sd help branch for details.

Notes:

Each branch spec is reported by a separate call to OutputStructured on ISDClientUser.

change (1.6)

GetVar:

	Data
	The contents of the change spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

changes (1.6)

GetVar:

	Change
	The change number.

	Time
	The date and time when the change was submitted.

	User
	The username of the user who submitted the change.

	Client
	The name of the client used to submit the change.

	Status
	Indicates whether the change is “submitted” or “pending”. Use the -s flag to control which kinds of changes are listed.

	Desc
	The description for the change.

Notes:

Each change is reported by a separate call to OutputStructured on ISDClientUser.

client (1.6)

GetVar:

	data
	The contents of the client spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

clients (1.6)

GetVar:

	Client
	The name of the client.

	Update
	The date and time the client spec was last modified.

	Access
	The date and time the client was last accessed. [when is this updated?]

	Owner
	The username of the owner of the client.

	Host
	The host name for the client; see sd help client for details.

	Description
	The description for the client.

	Root
	The local root path for the client.

	Options
	The client options; see sd help client for details.

Notes:

Each client is reported by a separate call to OutputStructured on ISDClientUser.

depot (1.6)

GetVar:

	Data
	The contents of the depot spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

describe (1.6)

GetVar:

	Change
	The change number.

	User
	The username of the user who submitted the change.

	Client
	The name of the client used to submit the change.

	Time
	The date and time when the change was submitted.

	Desc
	The description for the change.

	status
	Indicates whether the change is “submitted” or “pending”.

GetVarX:

	depotFile
	The full depot pathname of the file.

	Rev
	The revision number of the file.

	action
	The action performed when the file revision was submitted. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”.

	Type
	The file type of the file revision; see sd help filetypes for details.

Notes:

Neither the “jobs fixed” nor the “differences” sections are reported when using structured mode. Each of these can be requested separately using other commands.

diff (1.7)

GetVar:

	depotFile
	The full depot pathname of the server file against which the local file is being compared (e.g., //depot/tree/dir/foo.c).

	depotRev
	The revision number of the server file.

	depotType
	The file type of the server file revision; see sd help filetypes for details.

	purged
	The presence of this variable means that the file content for the server file has been purged, via the purgebin command, and is unavailable to diff against.

	localFile
	The full local pathname of the local file.

	How
	Indicates how the files differ. The possible values are “content” or “identical”.

	Type
	Indicates the type of diff. The possible values are “binary”, “text”, or “unicode”. The type variable is not present if the files cannot be compared (the depot file has been purged, or does not exist).

	Diff
	The diff data. When the type variable is “binary”, the diff variable is empty. You can tell if the content of the binary file revisions differ by checking the how variable for “content”.

Note: This variable may be a char string or a WCHAR string. See ISDVars, ISDVars2, and ISDVar for more information on determining which.

Notes:

Each file diff is reported by a separate call to OutputStructured on ISDClientUser.

diff2 (1.7)

GetVar:

	How
	Indicates how the files differ. The possible values are “content”, “types”, or “identical”. “types” means the files differ only by file type.

	Type
	Indicates the type of diff. The possible values are “binary”, “text”, or “unicode”. The type variable is not present if the files cannot be compared (either file has been purged, or does not exist).

	Diff
	The diff data. When the type variable is “binary”, the diff variable is empty. You can tell if the content of the binary file revisions differ by checking the how variable for “content”.

Note: This variable may be a char string or a WCHAR string. See ISDVars, ISDVars2, and ISDVar for more information on determining which.

GetVarX:

To access the variables for the left or right side file of the diff, use 0 (left side) or 1 (right side) for the x parameter to GetVarX.

	depotFile
	The full depot pathname of the file (e.g., //depot/tree/dir/foo.c).

	depotRev
	The revision number of the file.

	depotType
	The file type of file revision; see sd help filetypes for details.

	purged
	The presence of this variable means that the file content for this revision has been purged, via the purgebin command, and is unavailable to diff against.

Notes:

Each file diff is reported by a separate call to OutputStructured on ISDClientUser.

dirs (1.6)

GetVar:

	dir
	The directory name.

Notes:

Each directory is reported by a separate call to OutputStructured on ISDClientUser.

filelog (1.6)

GetVar:

	depotFile
	The full depot pathname of the file (e.g., //depot/tree/dir/foo.c). This indicates the file to which the filelog information corresponds. When the -i flag is specified, the presence of this variable also indicates that the file matches one of the specified file arguments (or wildcards).

Either the depotFile or branchFile variable will exist, but not both.

	branchFile
	The full depot pathname of the file. This variable is only present when the -i flag was specified and the filelog command is following the branch history for the file.

Either the depotFile or branchFile variable will exist, but not both.

GetVarX:

One set of these variables exists for each revision of the file. The x indices to use when calling GetVarX are 0 through the number of revisions returned. The easiest way to determine how many revisions have been reported is to loop until GetVarX says the specified index of the rev variable does not exist.

	rev
	The revision number of the file.

	change
	The change number under which the file revision was submitted.

	action
	The action performed when the file revision was submitted. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”.

	type
	The file type of the file revision; see sd help filetypes for details.

	time
	The date and time when the file revision was submitted.

	user
	The username of the user who submitted the change.

	client
	The name of the client used to submit the change.

GetVarXY (integration history for each rev):

	how
	Indicates what type of integration action was performed. The possible values are:

· “merge from” or “merge into”

· “branch from” or “branch into”

· “copy from” or “copy into”

· “ignored” or “ignored by” (note, unlike the other actions, these do not contain the words “from” or “into”)

· “delete from” or “delete into”

· “edit into” (note, no matching “from” action)

· “add into” (note, no matching “from” action)

	file
	The full depot pathname of the target file for the integration action. For the “into” actions, the target file was integrated into. For the “from” actions, the target file was integrated from.

	srev
	The starting revision number covered by the integration action.

	erev
	The ending revision number covered by the integration action.

Notes:

The history for each file is reported by a separate call to OutputStructured on ISDClientUser.

For performance reasons, the -d flag is ignored when using structured mode. The diffs can be requested separately using other commands.

files (1.6)

GetVar:

	depotFile
	The full depot pathname of the file (e.g., //depot/tree/dir/foo.c).

	depotRev
	The revision number of the file. If a revision range is specified, this is the highest revision matching the range.

	action
	The action performed when the file revision was submitted. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”.

	change
	The change number under which the file revision was submitted.

	type
	The file type of the file revision; see sd help filetypes for details.

	time
	The date and time when the file revision was submitted.

Notes:

Each file is reported by a separate call to OutputStructured on ISDClientUser.

fstat (all)

GetVar:

	depotFile
	The full depot pathname of the file (e.g., //depot/tree/dir/foo.c).

	clientFile
	If the file is mapped by the current client, this indicates the full local pathname of the file (e.g., c:\mysrc\dir\foo.c). If the -P flag is specified, this is the full client pathname of the file, instead (e.g., //yourclient/dir/foo.c). If the file is not mapped by the current client, the variable does not exist.

	haveRev
	If the client has the file, this indicates the file revision on the client. If the client does not have the file, this variable does not exist.

	action
	If the file is opened, this indicates the action for which the file is opened. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”. If the file is not opened, this variable does not exist.

	change
	If the file is opened, this indicates the change under which the file is opened, or “default”. If the file is not opened, this variable does not exist.

	unresolved
	If the file needs to be resolved, this variable exists.

	otherOpen
	Indicates how many other clients have the file opened. If no other clients have the file opened, this variable does not exist.

	otherLock
	If the file is locked by another client, this variable exists (note, it does not indicate which client has the file locked).

	ourLock
	If the file is locked by the current client, this variable exists.

The following variables are present only if the file revision exists in the depot (has been submitted):

	headRev
	The revision number of the file in the depot. If a revision range was specified, this is the highest revision matching the range.

	headAction
	The action performed when the file revision was submitted. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”.

	headType
	The file type of the file revision; see sd help filetypes for details.

	headTime
	The date and time when the file revision was submitted.

	headChange
	The change number under which the file revision was submitted.

	lbrFile
	The full depot pathname of the librarian source file, if the -L flag is specified; see sd help fstat for details. If the -L flag is not specified, this variable does not exist.

	lbrRev
	The librarian rev number, if the -L flag is specified; see sd help fstat for details. If the -L flag is not specified, this variable does not exist.

GetVarX:

	otherOpen
	Indicates a “username@client” that has the file opened.

	otherAction
	Indicates the action for which the file is opened. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”.

Notes:

Unlike most commands, fstat always uses structured mode, regardless of whether it was requested. This is the only command that supports structured output on 1.0 and 1.5 servers. Each file is reported by a separate call to OutputStructured on ISDClientUser.

group (1.6)

GetVar:

	data
	The contents of the group spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

have (1.6)

GetVar:

	depotFile
	The full depot pathname of the file that the client has (e.g., //depot/tree/dir/foo.c).

	haveRev
	The revision number of the file that the client has.

	clientFile
	The full client pathname of the file (e.g., //yourclient/dir/foo.c).

	Type
	The file type of the file revision that the client has; see sd help filetypes for details.

	localFile
	The full local pathname of the file (e.g., c:\mysrc\dir\foo.c).

Notes:

Each file is reported by a separate call to OutputStructured on ISDClientUser.

job (1.6)

GetVar:

	Data
	The contents of the job spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

jobs (1.6)

Todo: do we even want to document this?
jobspec (1.6)

Todo: do we even want to document this?
GetVar:

	Data
	The contents of the jobspec spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

label (1.6)

GetVar:

	Data
	The contents of the label spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

labels (1.6)

GetVar:

	Label
	The name of the label.

	Update
	The date and time the label spec was last modified.

	Access
	The date and time the label was last accessed. [when is this updated?]

	Owner
	The username of the owner of the label.

	Host
	(empty).

	Description
	The description for the label.

	Root
	(empty).

	Options
	The label options; see sd help label for details.

Notes:

Each label is reported by a separate call to OutputStructured on ISDClientUser.

opened (1.6)

GetVar:

	depotFile
	The full depot pathname of the file (e.g., //depot/tree/dir/foo.c).

	clientFile
	The full client pathname of the file (e.g., //yourclient/dir/foo.c).

	localFile
	The full local pathname of the file (e.g., c:\mysrc\dir\foo.c). This variable is only set when the -l flag is used.

	Rev
	The revision number of the file.

	Action
	The action for which the file is opened. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”.

	Change
	The change number under which the file is opened, or “default”.

	Type
	The file type of the opened file; see sd help filetypes for details.

	User
	The username of the user who opened the file.

	Client
	The name of the client that has the file opened.

	ourLock
	This variable exists only if the client has the file locked; see sd help lock for more information.

Notes:

Each file is reported by a separate call to OutputStructured on ISDClientUser.

print (1.6)

GetVar:

	depotFile
	The full depot pathname of the file.

	depotRev
	The revision number of the file. If a revision range is specified, this is the highest revision matching the range.

	Action
	The action performed when the file revision was submitted. The possible values are “add”, “edit”, “delete”, “branch”, “integrate”, or “import”.

	Change
	The change number under which the file revision was submitted.

	Type
	The file type of the file revision; see sd help filetypes for details.

	Time
	The date and time when the file revision was submitted.

Notes:

Each file is reported by a separate call to OutputStructured on ISDClientUser followed by zero or more calls to OutputText or OutputBinary on ISDClientUser, depending on the file type.

When the -o flag is used only one file can be downloaded and is written directly to the specified local file, without calling OutputText or OutputBinary.

When the -q flag is used, structured mode is never used.

resolve (1.5)

Notes:

The resolve command always ignores the fStructured argument to Run on ISDClientApi.

Structured mode is enabled automatically if QueryInterface on ISDClientUser supports IID_ISDResolveUser. The structured data is passed to the ISDResolveUser callback methods.

If ISDResolveUser is not implemented, or if the server version is less than 1.5, then the resolve command uses normal, non-structured mode.

resolve3 (all)

Notes:

The resolve3 command runs entirely on the client side, and does not require or initiate a connection with any server.

The resolve3 command always ignores the fStructured argument to Run on ISDClientApi.

Structured mode is enabled automatically if QueryInterface on ISDClientUser supports IID_ISDResolveUser. The structured data is passed to the ISDResolveUser callback methods.

If ISDResolveUser is not implemented, the resolve3 command uses normal, non-structured mode.

protect (1.6)

GetVar:

	Data
	The contents of the protection table.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

triggers (1.6)

GetVar:

	Data
	The contents of the triggers table.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

user (1.6)

GetVar:

	Data
	The contents of the user spec.

Notes:

Only the -o flag returns data through OutputStructured on ISDClientUser.

To work directly with the spec data, rather than as a single string, use QueryInterface to acquire the ISDSpecForm
 interface from the ISDVars interface.

users (1.6)

GetVar:

	User
	The username of the user.

	Update
	The date and time when the user information was last updated.

	Access
	The date and time when the user account was last accessed. [when is this updated?]

	FullName
	The full name of the user. By default this is the same value as the username, but users can update their information by running sd user.

	Email
	The email name of the user. By default this is “username@machine”, but users can update their information by running sd user.

Notes:

Each user is reported by a separate call to OutputStructured on ISDClientUser.

where (1.6)

GetVar:

	Unmap
	This variable exists only if the mapping is an exclusionary mapping.

	depotFile
	The full depot pathname of the file (e.g., //depot/tree/dir/foo.c).

	clientFile
	The full client pathname of the file (e.g., //yourclient/dir/foo.c).

	Path
	The full local pathname of the file (e.g., c:\mysrc\dir\foo.c).

Notes:

Each possible file location is reported by a separate call to OutputStructured on ISDClientUser.

Sample Code

Interface Sample Implementations

sdclientuser.cpp – Sample placeholder implementation of the ISDClientUser interface.

sdactionuser.cpp – Sample placeholder implementation of the ISDActionUser interface.

sdinputuser.cpp – Sample placeholder implementation of the ISDInputUser interface.

sdresolveuser.cpp – Sample placeholder implementation of the ISDResolveUser interface.

SDApiTest program

sdapitest.cpp – Sample program that loosely emulates the SD.EXE program, with various differences for illustrative purposes.

LocStat program

locstat.cpp – Sample program that recursively scans a directory looking for read-write files. Optionally filters out files that are already under source control.

Todo: more sample code?
Hints and Tips

Todo: for now this is a haphazard collection of hints, tips, observations, etc. Eventually it should be cleaned up and organized.
Is there an easy way to check if a file is opened, without needing to parse warning messages, etc?

The best way is to check the fEmptyReason argument to OutputWarning on ISDClientUser. If the opened file command encounters an fEmptyReason message, then the result set for the command was empty and therefore file is not open. See OutputWarning for more information.

class ClientUser : public ISDClientUser;

ClientUser ui;

HRESULT hr = papi->Run("opened filename", &ui, FALSE);

if (FAILED(hr))

{

// some error occurred; cannot determine the state of the file.

}

else if (S_FALSE == hr)

{

// warning message was received; reasonable to assume file is not opened.

// the only warning that can happen is if the file is not opened.

}

else

{

// ASSERTION: S_OK == hr

// the file is opened.

}

Or, a quick shortcut is to assume that the only warning that can occur is an “empty reason” warning (see OutputWarning on ISDClientUser). As of the SD 1.7 server, that assumption holds true, but there is no guarantee it won’t change someday.

Sample code for the quick shortcut approach:

class ClientUser : public ISDClientUser;

ClientUser ui;

HRESULT hr = papi->Run("opened filename", &ui, FALSE);

if (FAILED(hr))

{

// some error occurred; cannot determine the state of the file.

}

else if (S_FALSE == hr)

{

// warning message was received; assume file is not opened.

// this assumption may change in future server versions, and

// does not necessarily hold true for other commands.

}

else

{

// ASSERTION: S_OK == hr

// the file is opened.

}

What’s a good way for my ClientUser class to behave one way for some commands, and another way for other commands?

Try using an enum to indicate how the object should behave, and set the enum before calling Run. The callback methods can check the enum value and take the appropriate actions.

Or try “inverting the model”, so that the ClientUser class implements various RunFoo methods, which for example:

class ClientUser : public ISDClientUser

{

enum SDOperation { opNone, opChanges };

public:

ClientUser() : m_papi(NULL), m_cRef(1) {}

virtual ~ClientUser() { if(m_papi) m_papi->Release(); }

DeclareISDClientUserMembers(IMPL);

HRESULT Init();

HRESULT RunChanges(const char *pszFiles, BOOL fLong = FALSE);

private:

SDOperation m_op;

// the OutputXxx callbacks can cue off this

ISDClientApi m_papi;

ULONG m_cRef;

};

HRESULT ClientUser::Init()

{

HRESULT hr = CoCreateInstance(

CLSID_SDAPI,

NULL,

CLSCTX_INPROC_SERVER,

IID_ISDClientApi,

(void**)&m_papi);

if(SUCCEEDED(hr))

hr = m_papi->Init(this);

return hr;

}

HRESULT ClientUser::RunChanges(const char *pszFiles, BOOL fLong)

{

HRESULT hr = E_FAIL;

if(m_papi)

{

hr = m_papi->SetArg(pszFiles);

if(SUCCEEDED(hr))

{

m_op = opChanges;

hr = m_papi->Run(fLong ? "changes -l" : "changes", this, FALSE);

m_op = opNone;

}

}

return hr;

}

void MainSample()

{

ClientUser *pui = new ClientUser;

pui->Init();

pui->RunChanges("*");

pui->Release();

}

Design Decisions

Todo: explain certain implementation tradeoffs, since a lot of people seem to expect a rich object model with no callbacks, and/or a well-designed COM API.

Todo: explain why we use const char* instead of const WCHAR*.
Source Depot API Reference
page 40 of 55

