Overview of Module Loading and Hooking

In order to debug a process, the process must be created on a thread of its own with the DEBUG_PROCESS flag. Once created, our thread blocks on a call to WaitForDebugEvent() which wakes to process certain debug events and then loops back into a wait again. These events tell us things like a module was loaded or an exception occurred.

Our goal is to hook every module that loads and trap calls from those modules to LoadLibraryA, LoadLibraryW, LoadLibraryExA, LoadLibraryExW, and GetProcAddress. In order to hook the modules, we must inject some code into the remote process so we have a place to send the process when a call to one of those functions is made.

We really need to hook the modules before any code has a chance to run. Fortunately, Windows helps us out quite a bit with this. Once the main process and all implicit modules have been loaded, a breakpoint exception is generated. This breakpoint occurs before any code is executed, including the DllMain's of any loaded DLLs. We use this breakpoint as an opportunity to inject a DLL into the process.

To inject our DLL, we start by saving a page of memory from the remote process and then temporarily writing a block of code to that remote page that calls LoadLibrary to load our injection DLL. We then set the instruction pointer of the remote process to our block of code and set it loose. At the end of our code block we have a breakpoint. When this breakpoint is hit, we know we are done with our code, so we restore original page of memory and the thread context, and then let the process run from the beginning.

Once the hooked module is loaded, we scan its export table to locate the entrypoints for our hooked functions. Then, we go back and hook the import tables with our new entrypoints for all the modules that loaded prior to our injection module being loaded. We also modify the import tables of any future modules that load to point into our injection DLL as well.

OS Quirks

Windows 9x and Windows NT do not behave the same throughout our injection procedure. NT has a problem passing the process name and first loaded DLL name to our application via the debug events. This is a major pain in the ass and causes us to have to do some hacking to get it to work. On NT, the first DLL should always be NTDLL.DLL. We do a check for this, but we pretty much assume it to be true. For the process name, we have our injection DLL call GetModuleFileName during its DllMain's DLL_PROCESS_ATTACH message, and then send us the result via a call to OutputDebugString() which we intercept. Windows 9x does not have this problem.

Next quirk: Windows 9x has a concept of shared modules. Anything loaded at 0x80000000 or above is shared amongst all processes on the system. These are mostly system modules like KERNEL32.DLL. Since Windows 9x does not support copy-on-write, any damage we do to those modules effects all processes. So, if we hook one of those shared modules to call into our injection DLL, we will cause other processes on the system to crash if they attempt to access one of the functions we hook. This is because we only inject our DLL into the processes we are debugging. Other processes who call a hooked function in a shared module will be sent off to some bogus address since they don't have our DLL code in their address space. Our current solution is to just not hook shared modules on Windows 9x. NT does not have this problem.

Threading in Dependency Walker

Threads, especially in an MFC application, often complicate the code and can lead to many unexpected problems. The only reason we use threads is because the debugging APIs require us to us them. Instead of having a bunch of critical sections and thread synchronization to protect data access, we have designed the threading code in such a way that data protection is not necessary. Our thread essentially just calls CreateProcess then enters a WaitForDebugEvent / ContinueDebugEvent loop. Every time an event is received, we pass it to our main thread to be processed and block until the main thread is complete. This allows the main thread to do all the processing, heap management, and UI updates. If multiple debug threads receive events at the same time, they will just queue up on the main thread until it is free to service them one at a time.

Alternative Hooking Strategies Considered

There are 6 ways to hook APIs in a process that I know of...

1. Write a fake DLL that has the same exports as a DLL you want to hook. Implement the functions you want to hook and forward the rest to the real DLL using a DEF file. Then, modify the import table of the modules you want to hook so that they load your fake DLL instead of the real DLL. This method is Ok for simple hacking, but is impractical for robust hooking since it would require that you physically modify all the files (on the disk) you want to hook before you even loading the process. You would then have to go back and restore the files when done. This technique can also break since each version (even patches) of the OS export different sets of functions from system DLLs. To be complete, you would have to have a separate fake DLL that mimics every version of the DLL you want to hook that has ever been released.

2. Use SetWindowsHook() to inject a DLL into another process. Once your DLL is in the remote process, you can enumerate all the modules in that address space and hook their import tables to redirect functions to a place in your code where you intercept the calls. The main downside to the approach is that there isn't a good SetWindowsHook() type that allows your module to get in the remote process before it begins execution. In fact, there really isn't any one SetWindowsHook() type that can even guarantee that your module will get loaded at all, so you might have to set multiple hook types. This technique also has to deal with detecting future modules as they dynamically load in the process. This is close to impossible to do perfectly from within the process itself. There is also the problem of battling with other threads in the process. They may call functions before you have a chance to hook them, or you may be in the middle of modifying an import table when the module gets freed by another thread. Many of these latter problems can be resolved by using a combination of SetWindowsHook() hooks and a parent application who is acting as a debugger to the process.

3. Physically inject a DLL into a process before it has a chance to run. This solution is just like number 2, but is more robust and requires a parent application to act as a debugger. The OS always generates a breakpoint in a process once all implicit modules have been loaded for that process, but before any code in the module has executed including DllMain()'s. As a debugger, you can use this opportunity to swap out a page of memory in the remote process with a new page of code that calls LoadLibrary() on your injection DLL, and then raises another breakpoint. Some tweaks to the process' thread context and you let it run your code which brings in your DLL and then hits your breakpoint. At that point you can restore the page and thread context their original states and let the process run. Since the debugger gets notified every time the remote process loads a module, you have the perfect opportunity to hook each module as it loads. The debugger even freezes the process so you don't have to worry about threads. The downside to this technique is that you must have a separate process debugging the process you want to hook. This technique is also CPU dependent since it requires some assembly code.

4. Force the application to generate an exception when it calls a function you would like to hook. This is similar to number 3, but does not require you to inject any code into the remote process. You just launch the application under your debugger application, and hook each module as it loads. The difference is that instead of redirecting the functions to code you have injected, you redirect them to invalid memory addresses like 0x00000010. You should use a different invalid address for each function you want to hook and don’t use 0x00000000. When the process makes a call to a function that you have hooked, it will cause an access violation to occur, which will be caught by your debugger application. Based on the address that the exception occurred at, you can determine what function the process tried to call. While in the debugger, you can also do things like examine the stack frame, arguments, return address, etc. To resume execution, set the instruction pointer to the real function address and let it run. If you would like to intercept the return value on the way back out of the function you are hooking, you can set the return address to an invalid location during the first exception and catch the access violation as it tries to return back to the caller. During that exception, you can just set the instruction pointer to the original return address and resume execution. This technique is less invasive then number 3, but is more for simple call logging. Since you don’t have any code in the remote process, it doesn’t give you the opportunity to do much with the call other than to make a note that it was called and maybe store what the arguments and return value were.

5. Windows NT/2000/XP supports a function named CreateRemoteThread, which will create a thread in a remote process.  The entry-point for a thread is prototyped as DWORD WINAPI Thread(LPVOID pvData), which is essentially the same as the LoadLibrary function.  So, you can store the name of the DLL you want to load in the remote process somewhere, and then call CreateRemoteThread with LoadLibrary as your entry-point and the DLL name as the thread parameter.  The result is that LoadLibrary will get called in the remote process to load your DLL and when it returns, the thread will exit.  The downside to this technique is that it does not work on Windows 9x/Me.  The upside is that it is very similar to technique number 3, but does not require any assembly code and therefore is CPU independent.  It also does not require the parent application to be a debugger.  You can simply call CreateProcess(CREATE_SUSPENDED), create the remote thread, then call ResumeThread on the main thread to start the process.
6. Write some system code that tracks calls from user mode to kernel mode. Using a Windows 9x VXD, or a Windows NT driver, you can intercept all calls to system functions by all processes. This is the most work since you have to write completely different interception modules for Windows 9x and Windows NT. This requires both DDKs and different compilers. Also, the hook is system wide, so you have to do filtering to isolate the process you wish to hook. The SysInternals people have some great samples with source code for both Windows 9x and NT. Take a look at RegMon and FileMon at http://www.sysinternals.com.

One final note: Windows 9x has a concept of shared modules. These include any modules that are loaded at an address of 0x80000000 or above. Since Windows 9x does not support copy-on-write, you should not touch these modules since you will be modifying them system wide. Their memory pages should be marked as read-only, but this is not always the case. It is important that you do not attempt to hook the import tables (or any tables for that matter) of shared modules on Windows 9x. This can cause other processes to crash if they call a function that you have hooked in a shared module and they are sent to a bogus address in their address space. The only exception would be if you injected your code in all processes to handle the system wide hook, but I would advise against this since it is extremely hard to guarantee that your code is loaded everywhere. This problem only effects method number 2, 3, and 4 from above.

Dependency Walker uses number 3 since it provides the best solution. Method 1 and 2 are no good for us. Method number 4 is a close second to number 3, but we have essential code in our injection DLL for getting the process name, search path, current directory, and command line. Method 5 does not work on Windows 9x/Me.  Method 6 might be a good solution, but is a great deal more work and a little sketchy. However, it would probably fix the shared module hooking problem on Windows 9x.

