2

Systrack – A System Resource Tracking Tool

Silviu Calinoiu – Kernel Base Team

Overview

Here it is a tool, systrack, that can be used to detect leaks. It complements very well the existing tools available in Windows 2000: perfmon, pmon, poolmon, taskmgr, etc. The tool is able to track system wide variables (available pages, committed pages, etc.), process wide variables (process working set, process handle count, process pagefile usage, etc.) and kernel pools variables (paged/non paged pool memory used by a tag). For every such value the program keeps a history with a size controllable by the sampling frequency and based on this history and delta criteria specified by the user tries to find leak candidates. With some experience in knowing the expected behavior of the system under test the real leaks can be distinguished from heavy usage of a resource.

Table of contents

3Quick Start

Introduction
4
Getting System Information
4
systrack
4
systrack /system
5
systrack /performance
5
systrack /stack
5
systrack /pool
6
systrack /all
7
Tracking System Wide Variables
7
systrack /trackavailablepages PERIOD DELTA
7
systrack /trackcommittedpages PERIOD DELTA
7
systrack /trackcommitlimit PERIOD DELTA
7
systrack /trackpagefaultcount PERIOD DELTA
8
systrack /tracksystemcalls PERIOD DELTA
8
systrack /tracktotalsystemdriverpages PERIOD DELTA
8
systrack /tracktotalsystemcodepages PERIOD DELTA
9
Tracking Processes
9
systrack /trackprocess PERIOD HANDLE THREAD WSET VSIZE PFILE
9
systrack /trackprocessid PERIOD ID HANDLE THREAD WSET VSIZE PFILE
10
Tracking Kernel Pool Usage
11
systrack /trackpool PERIOD DELTA
11
systrack /trackpooltag PERIOD PATTERN DELTA
12
Future Improvements
12

Quick Start

This section presents a few tracking possibilities. Its main purpose is to allure the reader to continue with the next sections that give all the details. We will present a few possible scenarios. The present documents can be found in:

\\nttest\ntct\slm\src\plans\ntbaset\basebase\systrack.doc
The sources for the program are in:

\\kinglet\rats\src\rats\testsrc\kernel\stress\systrack
Up to date binaries can be found in:

\\ntiosrv\iostress\i386\systrack.exe

\\ntiosrv\iostress\alpha\systrack.exe
Here are a few situations in which you might need systrack.

To obtain a snapshot of the processes currently running on the system:

Systrack

To obtain a snapshot of the kernel pools for the system:

Systrack /pool

Tot track any decrease in available pages on the system by more than 2000:

Systrack /trackavailablepages 60000 2000

To track any increase in pages used by drivers by more than 48:

Systrack /tracktotalsystemdriverpages 60000 48

To track any increase of the handle count of the process by more than 100:

Systrack /trackprocess 60000 100 100 10000000 10000000 10000000

To track any increase of the working set by more than 1Mb for csrss.exe (process id 132 on my system):

Systrack /trackprocessid 60000 132 100 100 1000000 10000000 10000000

To track any increase in kernel pool usage for a tag by more than 10000 bytes:

Systrack /trackpool 60000 10000

To track any increase in kernel pool usage for Fat allocations by more than 10000 bytes:

Systrack /trackpooltag 60000 “Fat*” 10000

Introduction

There is no general solution to the leak detection problem. For particular cases usually system designers can come up with leak detection schemes based on the fact that they know very well the expected behavior of the system. In simple terms the main difficulty is to differentiate between leaks and heavy usage. If the particular process or system is heavily used there might be a legitimate explanation for the big number of handles opened in the process or the amount of page file used. What we can do though is to design tools that might help an experienced software engineer to decide if we have leaks or heavy usage. Systrack is one such tool. In Windows2000 world we have a family of tools that can be used for the same purposes: pmon, poolmoon, perfmon, etc. All these tools complement each other and none should be ignored. However systrack adds something new and this is the automated way to provide leak candidates. There can be many false positives but if you learn how to read the logs and set the right parameters it will be pretty easy for you to spot leaks.

We should emphasize that the leaks problem comprises two aspects: detection and debugging. After you have detected that you have a leak you still have a long way to go before pinpointing the code that produces the leak. However, you at least know you are ill and must go to the doctor.

By the way, when you start working on leaks you should better define heavy usage. For example, when will you say that a process is trashing? One thousands page faults per minute is big? The point is that before doing leak detection you should try to figure out how does the system/process behave on a light system where there is not much activity going on.

The idea behind systrack is pretty simple. The program deals with counters. All sorts of them: process specific (e.g. handles per process), system specific (e.g. total page fault counts) or pool specific (e.g. bytes allocated for a specific tag). For every counter the program keeps a history buffer. The depth of the history buffer and the sampling rate (for /trackxxx options the sampling rate in msecs is always a parameter) define the time interval for which the program keeps the values of the specific counter. During every sampling cycle the program compares the current value for the counter with the oldest value in the history. If the difference between these values is greater than a delta criteria (this is another compulsory command line parameter) a message about this condition will be printed to standard output and to the debugger if one is connected. Immediately after reporting such a condition the whole history is filled with the last value. This is done in order to avoid a flurry of messages in case the counter continues to increase. These messages do not add value and will just clutter the output and the debugger session. The current version of the program has a hard coded size for the history buffer of 60 entries.

Getting System Information

The systrack program has several options that will print snapshots of various system information. Below we present the command line syntax and a sample output.

systrack

This command prints various information about the running processes. It is very similar with pmon. A sample output is presented below:

- -

Process Id Sess Pri Thrds Faults Handles Utime Ktime Wset Vsize Pfile I/O

 % % pages Mb Mb x1000

- -

Idle 0 0 0 1 1 0 0 100 4 0 0 0

System 8 0 8 29 4041 181 0 100 53 1 0 17

smss.exe 100 0 11 6 2877 37 20 80 92 4 0 0

csrss.exe 132 0 13 10 14846 341 7 93 1323 27 7 83

winlogon.exe 152 0 13 16 6998 349 30 70 1871 45 5 37

services.exe 180 0 9 29 4307 460 30 70 1570 37 5 36

lsass.exe 192 0 9 19 16531 386 38 62 205 40 5 36

svchost.exe 320 0 8 9 1133 247 56 44 769 27 1 1

spoolsv.exe 356 0 8 10 8525 143 77 23 1329 37 2 4

covermon.exe 416 0 8 5 572 53 33 67 307 42 12 0

svchost.exe 440 0 8 4 707 61 20 80 708 19 0 0

ntmssvc.exe 480 0 8 5 11475 158 25 75 73 33 2 2

scesrv.exe 584 0 8 3 3905 45 25 75 703 19 1 5

mstask.exe 600 0 8 6 1438 104 50 50 1136 32 1 1

explorer.exe 700 0 8 9 50235 519 21 79 754 49 3 156

systray.exe 484 0 8 4 815 58 30 70 739 23 1 0

svchost.exe 796 0 8 7 1279 115 40 60 862 35 2 0

FINDFAST.EXE 812 0 8 2 87209 1220 66 34 984 37 1 693

OSA.EXE 844 0 8 2 860 56 50 50 585 30 0 0
systrack /system

This command prints general system information. This data is displayed by several other tools (pmon, perfmon, etc.).

PageSize 00001000 (4096)

NumberOfPhysicalPages 00007F8E (32654)

LowestPhysicalPageNumber 00000001 (1)

HighestPhysicalPageNumber 00007FFF (32767)

AllocationGranularity 00010000 (65536)

MinimumUserModeAddress 00010000 (65536)

MaximumUserModeAddress 7FFEFFFF (2147418111)

ActiveProcessorsAffinityMask 00000001 (1)

NumberOfProcessors 00000001 (1)

systrack /performance

This command prints general performance information. This data is displayed by several other tools (pmon, perfmon, etc.). The sample output has been shortened to make it more appropriate for the purpose of this document.

IdleProcessTime 45360EDE4C (297259687500)

IoReadTransferCount 148E9A51 (344889937)

IoWriteTransferCount 476DD0A (74898698)

IoOtherTransferCount B995548A10 (797074295312)

IoReadOperationCount 00067110 (422160)

IoWriteOperationCount 00011274 (70260)

IoOtherOperationCount 00122DA1 (1191329)

AvailablePages 00000BDF (3039)

CommittedPages 00007A62 (31330)

CommitLimit 00013107 (78087)

PeakCommitment 00009AA2 (39586)

PageFaultCount 003B3D56 (3882326)

CopyOnWriteCount 00007CF3 (31987)

TransitionCount 0020AFDB (2142171)

CacheTransitionCount 00000000 (0)

DemandZeroCount 0018E7D6 (1632214)

PageReadCount 0001DEDD (122589)

PageReadIoCount 0000FFA8 (65448)

CacheReadCount 00000000 (0)

CacheIoCount 00000000 (0)

DirtyPagesWriteCount 000021D0 (8656)

DirtyWriteIoCount 0000021D (541)

MappedPagesWriteCount 00000163 (355)

MappedWriteIoCount 0000009F (159)

PagedPoolPages 00001364 (4964)

NonPagedPoolPages 0000056D (1389)

PagedPoolAllocs 0008C461 (574561)

PagedPoolFrees 00086610 (550416)

NonPagedPoolAllocs 0024F466 (2421862)

NonPagedPoolFrees 0024A7A9 (2402217)
systrack /stack

This command prints a snapshot of the user mode stack usage. There is no other tool to display this information. The total stack column gives a grand total of committed memory that is used in all threads of the respective process for user-mode stacks. The max stack gives the largest stack (committed memory) among the threads in the process. A typical output looks like below:

- -

Process stack information

- -

 Total Max

Process Id Sess Pri Thrds Faults Handles stack stack Wset Vsize Pfile I/O

 Kb Kb pages Mb Mb x1000

- -

Idle 0 0 0 1 1 0 0 0 4 0 0 0

System 8 0 8 35 89568 205 0 0 58 1 0 445

smss.exe 140 0 11 6 596 37 48 8 83 4 0 3

csrss.exe 168 0 13 11 225340 423 0 0 802 40 6 699

winlogon.exe 188 0 13 18 61797 457 256 36 999 44 10 229

services.exe 220 0 9 31 1763636 526 468 40 1215 54 4 2965

lsass.exe 232 0 13 18 236380 614 404 40 936 52 4 952

svchost.exe 372 0 8 8 2263 308 112 44 499 21 2 4

spoolsv.exe 420 0 8 13 79280 151 372 68 691 31 2 143

msdtc.exe 460 0 8 19 1251 165 192 44 495 29 2 0

svchost.exe 580 0 8 13 9465 387 132 16 733 27 2 17

llssrv.exe 596 0 9 10 219851 105 124 20 722 21 2 682

mstask.exe 488 0 8 6 479 79 60 16 463 15 0 0

tlntsvr.exe 700 0 8 16 850 112 164 16 516 28 1 0

inetinfo.exe 768 0 8 28 2466 554 304 40 497 48 4 2

dfssvc.exe 884 0 8 4 296 34 36 12 295 9 0 0

explorer.exe 1088 0 8 13 189404 475 208 32 1035 49 5 289

scardsvr.exe 1128 0 8 3 329 48 36 12 311 10 1 0

cmd.exe 1056 0 8 1 238 20 28 28 223 8 0 0

netdde.exe 1276 0 8 10 444 54 128 32 427 14 0 0

clipsrv.exe 1320 0 8 2 218 27 24 12 221 7 0 0

MAPISP32.EXE 1468 0 8 7 2220 131 68 16 462 37 1 174

hh.exe 1660 0 8 4 25662 180 180 148 294 130 6 14

OUTLOOK.EXE 1776 0 8 14 88137 391 176 56 1564 105 7 214

ntpinit.exe 1260 0 8 1 109 19 12 12 110 5 0 37421

cmd.exe 1912 0 8 1 219 26 16 16 215 10 0 0

ntpinit.exe 1012 0 8 1 109 19 12 12 110 5 0 36810

cmd.exe 1604 0 8 1 219 26 16 16 215 10 0 0

msiexec.exe 1712 0 8 3 20675 128 44 20 413 27 1 428

CNFNOT32.EXE 1820 0 8 3 666 83 32 16 660 26 0 0

EXCEL.EXE 1408 0 8 5 4563 119 80 44 765 48 3 1

cmd.exe 1608 0 8 1 991 31 36 36 604 22 0 0

WINWORD.EXE 1944 0 8 2 4902 124 48 40 2240 49 3 5

systrack.exe 1480 0 8 1 408 9 12 12 411 5 1 0

systrack /pool

This command prints a snapshot of the kernel pools. This data is displayed also by poolmon. The sample output has been shortened to make it more appropriate for the purpose of this document. This option works only if pooltags are enabled on the system. To enable pool tags use the gflags IDW tool.

- -

Tag NP used P used NP alloc NP free P alloc P free

 x bytes x bytes x ops x ops x ops x ops

- -

Nbtk 0 0 182 182 0 0

CNSB 0 0 0 0 142 142

LSss 0 0 0 0 8 8

IrpS 96 0 1 0 0 0

TCPA 12480 0 746 716 0 0

Gump 0 416 0 0 61 59

FatF 352 1760 2 1 11 6

L2T4 4032 0 1 0 0 0

UsdE 0 0 0 0 6 6

IoFc 0 0 0 0 125 125

Icp 128 0 2 0 0 0

TCiZ 0 0 1 1 0 0

Nbt2 0 0 3001 3001 0 0

Nb05 1920 0 12 0 0 0

Ppdd 0 0 0 0 139 139

Qppt 256 0 1 0 0 0

Nb11 0 0 1 1 0 0

Gfil 0 0 0 0 3 3

Ksec 96 0 82 79 0 0

TC1R 128 0 1 0 0 0

Ppsu 0 13952 0 0 5074 4903

Nbtw 1888 0 8 0 0 0

HT06 0 0 0 0 16 16

NDw1 10080 0 7 0 0 0

ScB4 384 0 4 0 0 0

SWre 0 0 38 38 0 0

ObHd 0 2144 0 0 1700 1653

WDMA 17408 9984 4561 4449 1809 1742

LBan 0 0 0 0 2 2

CcWq 96 0 3 0 0 0

NBSc 96 0 1 0 0 0

AgpR 0 0 0 0 1 1

TCIk 0 0 1 1 0 0

SeLS 0 96 0 0 1 0

KSce 0 800 0 0 1819 1794

SeSd 0 43680 38 38 23369 23079

TunP 0 3392 0 0 1309 1291

Gpft 0 512 0 0 2 0

CMkb 0 65664 0 0 39773 38747

Strg 0 9024 14 14 4787 4685
systrack /all

This command combines all the options presented above. It will dump process, system, performance and kernel pool information.

Tracking System Wide Variables

The systrack program can be used to track a few global variables that characterize the whole system. These are maintained by the kernel and can be obtained using NT native APIs. For all the command presented in this section the sampling rate is specified by the PERIOD parameter in msecs and DELTA is a positive value that specifies the amount of increase within the sampling window that will trigger an alert. The only exception is the availablepages counter that has a reversed logic and the alert happens if the value decreases below the delta criteria.

All command variants will log both to standard output and to the debugger if one is attached. The output looks slightly different in these two. An example of standard output is:

/trackavailablepages: 805 -13

/trackavailablepages: 791 -14

/trackavailablepages: 777 -14

/trackavailablepages: 765 -12

/trackavailablepages: 736 -29

And output to the debugger looks like:

systrack: /trackavailablepages: 818 -19

systrack: /trackavailablepages: 805 -13

systrack: /trackavailablepages: 791 -14

systrack: /trackavailablepages: 777 -14

systrack: /trackavailablepages: 765 -12

systrack /trackavailablepages PERIOD DELTA

This command will track the current available pages in the system. It is among the few counters that have a reversed logic that is systrack will print an alert message if the value decreases below the delta criteria. A useful example is:

Systrack /trackavailablepages 60000 2000

The command will print an alert message if in within one hour interval the available pages counter decreases by more than 2000 (approx 8Mb on x86 machines).

systrack /trackcommittedpages PERIOD DELTA

This command will track the total committed pages on the system. Every allocation of memory using (MEM_COMMIT) translates in an increase in this counter. It covers both physical pages (from memory) and pages that temporarily reside in the system pagefile. An interesting example is:

systrack /trackcommittedpages 60000 1000

The command will print an alert message if within one hour interval the number of committed pages increases by more than 1000 which means approximately 4Mb on an x86 machine.

systrack /trackcommitlimit PERIOD DELTA

This command will track the total commit limit for the system. This is the variable that controls if a memory commitment will fail or not. If the limit is reached the system might try to increase the limit by extending the pagefiles or to increase the available pages by trimming process working sets. An interesting example is:

systrack /trackcommitlimit 60000 2000

The command will print an alert message if within an one hour interval the commit limit increases by more than 2000 pages (approx. 8Mb on an x86 machine).

systrack /trackpagefaultcount PERIOD DELTA

This command will track the page fault count. The command can be useful to determine if the system is trashing, that is it spends most of the time paging. But in order to determine that you have to figure out what is the normal fault rate on the tested system. A useful example is:

systrack /trackpagefaultcount 60000 1000000

The command will print an alert message if within one hour interval the page fault count increases by more than one million.

systrack /tracksystemcalls PERIOD DELTA

This command will track the number of system calls executed on the system. It is useful if for efficiency reasons it is wanted to avoid system calls because they involve expensive user/kernel context switches. A useful example is:

systrack /tracksystemcalls 60000 1000000

This will print an alert message if within one hour interval there are more then one million system calls executed. As for the page fault count first it should be figured out what represents a normal value for this counter on an unused system.

systrack /tracktotalsystemdriverpages PERIOD DELTA

This command will track the amount of pages used for all the drivers in the systems. These are pages used to map the driver images. They do not include any allocations that the driver might perform. The example in this case is particularly interesting because we have found a Hydra bug by looking at systrack output.

systrack /tracktotalsystemdriverpages 1000 48
This command will print a message if within a one minute interval the pages counter increases by more than 48. Watch the output from a real Hydra system that was executing some logon/logoff scenarios.

1:/tracktotalsystemdriverpages: 19549 +412

0:/tracktotalsystemdriverpages: 19619 +70

0:WinStationNotifyLogonWorker: Consuming a per seat license

1:EnumerateMatchingUsers: UserName xxx, Domain SILVIUC-INT

1:ConnectDlgProc: ConnectDlgInit failed

0:EXECSERVERSYSTEM: Starting ExecServerThread

1:systrack: csrss.exe (1604): Hndl: 92 +91, Thrd: 11 +10, Wset: 1765376 +1712128

1:systrack: winlogon.exe (1400): Hndl: 156 +135, Thrd: 14 +12, Wset: 565248 +4293947392

1:systrack: winlogon.exe (1400): Hndl: 156 +135, Thrd: 14 +0, Wset: 565248 +4293947392

1:TERMSRV: SmStopCsr on CSRSS for Session=3 returned Status=0

0:/tracktotalsystemdriverpages: 20101 +482

0:WinStationNotifyLogonWorker: Consuming a per seat license

1:EnumerateMatchingUsers: UserName xxx, Domain SILVIUC-INT

1:ConnectDlgProc: ConnectDlgInit failed

1:EXECSERVERSYSTEM: Starting ExecServerThread

0:systrack: winlogon.exe (420): Hndl: 152 +131, Thrd: 13 +11, Wset: 5799936 +4214784

1:systrack: winlogon.exe (420): Hndl: 152 +131, Thrd: 13 +0, Wset: 5799936 +4214784

1:TERMSRV: SmStopCsr on CSRSS for Session=1 returned Status=0

0:/tracktotalsystemdriverpages: 20583 +482

1:WinStationNotifyLogonWorker: Consuming a per seat license

0:EnumerateMatchingUsers: UserName xxx, Domain SILVIUC-INT

0:ConnectDlgProc: ConnectDlgInit failed

1:EXECSERVERSYSTEM: Starting ExecServerThread

0:TERMSRV: SmStopCsr on CSRSS for Session=2 returned Status=0

0:/tracktotalsystemdriverpages: 21065 +482

1:systrack: winlogon.exe (1492): Hndl: 82 +61, Thrd: 6 +4, Wset: 3919872 +2334720

1:WinStationNotifyLogonWorker: Consuming a per seat license

0:EnumerateMatchingUsers: UserName xxx, Domain SILVIUC-INT

0:ConnectDlgProc: ConnectDlgInit failed

1:EXECSERVERSYSTEM: Starting ExecServerThread

1:TERMSRV: SmStopCsr on CSRSS for Session=3 returned Status=0

0:/tracktotalsystemdriverpages: 21547 +482

0:WinStationNotifyLogonWorker: Consuming a per seat license

1:EnumerateMatchingUsers: UserName xxx, Domain SILVIUC-INT

1:ConnectDlgProc: ConnectDlgInit failed

It looks like we have found a leak and indeed this was the case.

systrack /tracktotalsystemcodepages PERIOD DELTA

This command will track the amount of pages used for mapping the kernel into memory. This is not a very useful counter because presumably this will stay constant while the system is up.

Tracking Processes

Systrack can be used totrack various counters that are process specific. Before showing the exact commands we will give brief descriptions for all the pieces of information that appears in the output generated by systrack.

Id – The unique process id assigned by the system.

Handles – The number handles to kernel objects that the process has opened. This number does not include GDI objects that are managed in a different way.

Threads – The number of threads in the process.

Wset(Mb) – The size of the working set of the process in Mb. The working set represents the amount of physical memory that is used by the process.

Vsize(Mb) – The virtual size of the process in Mb. This value represents the amount of virtual space associated to the process that is used. As an example when an allocation with MEM_RESERVE is performed this will increase the virtual size counter.

Pfile(Mb) – The pagefile usage in Mb. This value gives a fair idea about how much pagefile the process uses.

The program logs alert messages both to the standard output and the debugger if one is attached. The debugger output is very useful if it is needed to track machines remotely. When running stress special care should be taken to avoid too much debug output. This can be done by increase the sampling period (e.g. 300000 – five minutes) and choosing carefully the delta criteria. A value that is too small will force alert messages often.

systrack /trackprocess PERIOD HANDLE THREAD WSET VSIZE PFILE

This command will track all the processes in the system. The PERIOD parameter gives the sampling period in msecs. The other five parameters are delta values. If for any of them there is an increase in the corresponding counter above them an alert message will be printed. The WSET, VSIZE, PFILE parameters are specified in bytes. An useful example is:

systrack /trackprocess 60000 10 10 1000000 1000000 1000000

This command will sample the processes every one minute. If within an hour (size of the history window) the handle count increases by more than 10 or thread count by more than 10 or working set by more than 1Mb or virtual size by more than 1Mb or pagefile usage by more than 1Mb than an alert message will be printed both to the standard output and the debugger. The output to the standard output looks like below:

- -

Process Id Handles Threads WSet(Mb) Vsize(Mb) Pfile(Mb)

 -

csrss.exe 168 329 318 11 11 2 2 15 15 2 2

svchost.exe 596 141 103 12 10 3 2 26 23 2 1

svchost.exe 596 141 141 12 10 3 2 26 23 2 1

IEXPLORE.EXE 1404 84 47 3 1 5 3 28 25 1 0

IEXPLORE.EXE 1404 84 84 3 1 5 3 28 25 1 0

IEXPLORE.EXE 1404 84 84 3 1 5 5 28 25 1 0

And the output to the debugger looks like below:

0:systrack: csrss.exe (168): Hndl: 329 +11, Thrd: 11 +0, Wset: 2 +0, Vsize: 15 +0, Pfile: 2 +0

0:systrack: svchost.exe (596): Hndl: 141 +38, Thrd: 12 +2, Wset: 3 +0, Vsize: 26 +2, Pfile: 2 +0

0:systrack: svchost.exe (596): Hndl: 141 +0, Thrd: 12 +2, Wset: 3 +0, Vsize: 26 +2, Pfile: 2 +0

0:systrack: IEXPLORE.EXE (1404): Hndl: 84 +37, Thrd: 3 +2, Wset: 5 +1, Vsize: 28 +2, Pfile: 1 +0

0:systrack: IEXPLORE.EXE (1404): Hndl: 84 +0, Thrd: 3 +2, Wset: 5 +1, Vsize: 28 +2, Pfile: 1 +0

0:systrack: IEXPLORE.EXE (1404): Hndl: 84 +0, Thrd: 3 +2, Wset: 5 +0, Vsize: 28 +2, Pfile: 1 +0

To see how a leak looks like here it is an interesting example. This happened on an unused system that was just running systrack. The command used was:

systrack /trackprocess 1000 10 10 1000000 1000000 1000000

As you can see from the output below the findfast program is definitely leaking handles or it uses a pretty contorted indexing algorithm.

- -

Process Id Handles Threads WSet(Mb) Vsize(Mb) Pfile(Mb)

 -

System 8 216 201 29 29 0 0 1 1 0 0

System 8 212 201 29 29 0 0 1 1 0 0

System 8 212 201 29 29 0 0 1 1 0 0

FINDFAST.EXE 812 1513 1507 2 2 3 3 40 37 1 1

FINDFAST.EXE 1600 49 54 1 6 3 2 25 21 0 1

FINDFAST.EXE 1600 72 54 2 6 4 2 40 25 1 1

FINDFAST.EXE 1600 72 72 2 6 4 2 40 25 1 1

FINDFAST.EXE 1600 72 72 2 6 4 4 40 25 1 1

FINDFAST.EXE 812 1519 1507 2 2 3 3 41 40 1 1

System 8 214 201 29 29 0 0 1 1 0 0

FINDFAST.EXE 812 1537 1519 2 2 3 3 41 40 1 1

FINDFAST.EXE 812 1539 1537 2 2 3 3 41 40 1 1

FINDFAST.EXE 812 1543 1537 2 2 3 3 42 41 2 1

FINDFAST.EXE 812 1554 1543 2 2 3 3 42 42 2 2

FINDFAST.EXE 812 1607 1554 2 2 3 3 42 43 2 2

mstsc.exe 1352 56 31 6 4 2 2 21 17 1 1

mstsc.exe 1352 56 56 6 4 2 2 21 17 1 1

FINDFAST.EXE 812 1676 1609 2 2 3 3 43 42 2 2

FINDFAST.EXE 1600 77 72 3 2 4 4 41 40 1 1

FINDFAST.EXE 812 1683 1676 2 2 8 3 58 42 17 2

FINDFAST.EXE 812 1683 1676 2 2 8 8 58 42 17 2

FINDFAST.EXE 812 1683 1676 2 2 8 8 58 58 17 2

FINDFAST.EXE 812 1709 1676 2 2 9 8 58 58 17 17

FINDFAST.EXE 812 1730 1709 2 2 9 8 58 58 17 17

FINDFAST.EXE 1584 72 54 2 6 4 2 40 21 1 1

FINDFAST.EXE 1584 72 72 2 6 4 2 40 21 1 1

FINDFAST.EXE 1584 72 72 2 6 4 4 40 21 1 1

FINDFAST.EXE 812 1743 1730 2 2 3 8 41 58 1 17

FINDFAST.EXE 812 1759 1743 2 2 3 8 42 58 2 17

System 8 232 207 29 29 0 0 1 1 0 0

FINDFAST.EXE 812 1782 1759 2 2 3 8 42 58 2 17

FINDFAST.EXE 812 1801 1782 2 2 3 8 42 58 2 17

mstsc.exe 800 56 39 6 4 2 2 21 21 1 1

mstsc.exe 1552 54 15 6 1 2 1 21 11 1 0
systrack /trackprocessid PERIOD ID HANDLE THREAD WSET VSIZE PFILE

There are situations when we know exactly what process we want to track. We can define the delta criteria for that particular process and then use systrack to investigate the behavior of the tested process. The only additional parameter needed is the process id. One problem encountered when using this command is that if the process is not started the id is not known. One simple solution for this is to start the process under debugger (e.g. ntsd notepad.exe). The debugger will break before starting the process. At that moment the process is already created and the id can be found by using several commands, systrack among them. If you just type systrack without parameters this will dump all the processes in the system with their ids. You can then get the id of the test process from the output. A useful example is:

systrack /trackprocess 60000 536 10 10 1000000 1000000 1000000

This command will sample the process with id 536 every one minute. If within an hour (size of the history window) the handle count increases by more than 10 or thread count by more than 10 or working set by more than 1Mb or virtual size by more than 1Mb or pagefile usage by more than 1Mb than an alert message will be printed both to the standard output and the debugger. The output to the standard output looks like below:

- -

Process Id Handles Threads WSet(Mb) Vsize(Mb) Pfile(Mb)

 -

csrss.exe 132 381 369 10 10 3 3 35 35 8 8

csrss.exe 132 401 381 10 10 3 3 35 35 8 8

The output above has been obtained for the command:

systrack /trackprocessid 1000 132 10 10 1000000 1000000 1000000

where 132 is the process id for csrss.exe.

Tracking Kernel Pool Usage

Systrack can track kernel pools. This is one area where the program can do things that none of the other tools can. The similar program, poolmon, shows the pool changes but does not perform any comparisons and does not try to highlight leak candidates. As for all trackxxx commands the first parameter is the sampling period with which the program operates. It is expressed in msecs. The pool tracking features work only if pool tags are enabled on the tested machine. Pool tags can be enabled using the gflags tool.

systrack /trackpool PERIOD DELTA

This command will print any tag for which the memory used in nonpaged pool or paged pool increases by more than DELTA. An useful example is:

systrack /trackpool 10000 10000

The output for what happens when we launch iexplore.exe is shown below.

- -

Tag NP pool P pool

 -

Gh 5 0 0 627232 610848

Thre 192736 185440 0 0

Even 330624 326272 0 0

Gla5 128 128 159328 152256

Toke 0 0 89824 84832

Port 4960 4608 61824 57088

Gla: 128 128 140800 129920

Gh 8 0 0 33760 23680

Vad 143616 135552 0 0

Gh 5 0 0 763712 627232

CcSc 90560 83200 0 0

Gh 5 0 0 866112 763712

The debugger output is slightly different. For a similar scenario the debugger output is:

systrack: pool: Gh 5: NP: 0 +0, P: 641184 +16384

systrack: pool: Thre: NP: 192736 +4864, P: 0 +0

systrack: pool: Even: NP: 334144 +4288, P: 0 +0

systrack: pool: Gla5: NP: 128 +0, P: 156416 +14560

systrack: pool: Ntf9: NP: 20480 +20480, P: 0 +0

systrack: pool: Gla:: NP: 128 +0, P: 133760 +5760

systrack: pool: Gh 8: NP: 0 +0, P: 30400 +6720

systrack: pool: Vad : NP: 147264 +5696, P: 0 +0

systrack: pool: Gh 5: NP: 0 +0, P: 647328 +6144

systrack /trackpooltag PERIOD PATTERN DELTA

This command can be used to track classes of tags. The pattern is a regular expression with a simplified syntax. The question mark (?) matches one character and the asterisk (*) matches zero or more characters. If the regular expression contains characters after the asterisk they will be ignored, that is pattern G* is equivalent with G*ab. In order to use this command the target tag has to be known. This can be done by identifying the tested component and then looking in:

\\kernel\razzle1\src\ntos\inc\pooltag.txt
to identify the tags used by the component. Sometimes the tag determination is not very easy. For example third party drivers. One useful example is:

systrack /trackpooltag 10000 “G*” 10000

This will sample the kernel pools every ten seconds and for every tag that starts with G if the memory used increased by more than 10000 bytes an alert message will be printed. The output obtained on one machine by running this command is presented below.

- -

Tag NP pool P pool

 -

Gla1 128 128 399360 316416

Gla5 128 128 158080 114400

Gla4 128 128 64512 50496

Gla: 128 128 120960 99840

Gh 8 0 0 39360 23680

Gh 5 0 0 749920 571168

Future Improvements

· Make the size of the sampling window dynamic.

· Compare snapshots taken at different moments and detect possible leak candidates.

· Add other interesting counters.

· Print the session id for every process tracked.

Copyright © Microsoft Corporation, 1998.

