SHChangeNotify family of apis

This group of APIs is used internally to insure that objects get updated when other related objects change. This insures that when an object changes (added/deleted/modified), the change will be reflected in all containers that host the object.

WARNING: the original Win95 implementation went through some significant rewrite for use in NT4, and those changes are apparent in todays (IE4/IE5) code. In Win95, all of the state data for the notification code was kept in variables that were global across all processes. While this simplified the implementation of the notifications, it was unacceptable for NT due to stability and security issues. Notification management is now handled by only the desktop process, and memory is allocated shared between processes instead of global. In order to support legacy clients we must sometimes create proxy windows in the client process to translate the shared notification data in pseudo global data. All current clients should use the new way and register themselves with the SCNRF_NewDelivery flag.

SHChangeNotifyRegister

Is used to register a client that needs to hear shell namespace notifications.

STDAPI_(ULONG) SHChangeNotifyRegister(

HWND hwnd,

 int fSources,

LONG fEvents,

UINT wMsg,

int cEntries,

SHChangeNotifyEntry *pfsne
);

Parameters

hwnd

the target hwnd to receive the notifications.

fSources

flags that indicate which sources of notifications the client is interested in. the choices are made of the the SCNRF_* flags in shlobj.w. Of special interest is the SCNRF_NewDelivery flag which separates clients that were designed in the NT4/IE4 timeframe from clients that were designed in the win95 timeframe. All currently implemented clients in IE4/IE5/Shell5 should all use this flag.

fEvents

flags that indicate which types of events the client is interested in. the choices are made up of the SCNE_* flags in shlobj.w. There are a couple of useful masks like SHCNE_DISKEVENTS that cover the most common usage scenarios.

uMsg

the message that should be sent to the client window when an event is generated.

cEntries

the count of entries in the pfsne array.

pfsne

an array of SHChangeNotifyEntry. Each entry is made up of a pidl and a recursive flag that indicates whether it wants copies of its children’s notifications.

Return Values

A ULONG that identifies the client, so that it may be deregistered properly. If this is zero the registration failed.

Implementation

If the SCNRF_NewDelivery bit is set, SHChangeNotifyRegister() will allocate a special block of shared memory describing the registration, then pass this off to the shell’s desktop window which will actually add it to the list of clients requesting notifications.

If the NewDelivery bit is NOT set, it must first create a window that will serve as the proxy window. This window will be registered to receive the NewDelivery notifications, then it will translate the new notifies into legacy notifies.

SHChangeNotifyDeregister

This is to remove a client that has been registered with SHChangeNotifyRegister().

STDAPI_(BOOL) SHChangeNotifyDeregister(ULONG ulID);

Parameters

ulID

this was the id that was returned from the call to SHChangeNotifyRegister();

Return Values

Returns TRUE if the ulID was located and removed from the client list, FALSE otherwise.

Implementation

It will allocate a special block of shared memory describing the deregistration, then pass this off to the shell’s desktop window which will remove it from the list of clients requesting notifications.

SHChangeNotify

This call is used to actually notify other parts of the shell when an object changes, although not all notifications have to originate with this call.

void WINAPI SHChangeNotify(

LONG lEvent,

UINT uFlags,

const void * dwItem1,

const void * dwItem2
);

Parameters

lEvent

The type of event generated. This is one of the SCNE_* flags, and should not be one of the masks.

uFlags

This is the type of data that is stored in dwItem1 and dwItem2. These flags are from SCNF_* in shlobj.w. SCNF_FLUSH and SCNF_FLUSHNOWAIT do not indicate the types but indicate that the Notification queues should be flushed, and in the case of NOWAIT, that it should be done asynchronously with the call.

dwItem1

This is the primary data object and will typically contain the name of the object in question.

dwItem2

this secondary object will have some sort of information related to dwItem1.

Implementation

SHChangeNotify() packages the information passed in into a standard form of all pidls, and then passes it on to SHChangeNotifyTransmit(). Transmit checks to see if it is in the shell process. If it is then it sends the notify directly to SHChangeNotifyReceive(), otherwise it creates shared object to pass to the desktop window so that Receive() is only called in the shell process. Then the event is added to the queue of any of the clients who might be interested, and if a flush is requested, it also will be processed from here.

Other Interesting Bits

Interrupt Events

Events that come from the file system are called InterruptEvents, and must be specifically registered for by using the SCNRF_InterruptLevel flag in fSources. If the same event is generated by at ShellLevel and InterruptLevel, then it will remove the duplicate event from the interrupt queue, during SHChangeNotifyReceive().

SCNRegisterInternal()

SCNRegister()

Client Thread

Desktop Thread

SHChangeNotify()

SCN Client

Reg Data

Client

Queues

SCNReceive()

SCN

Event

Q4

Q3

Q2

Q1

Notification window

Creates Q

