Description of ntshrui.dll


Last Updated: � TIME \@ "MMMM d, yyyy" �May 31, 1996�


This document describes the purpose and code structure of ntshrui.dll, the shell code to support network sharing. This document will live with the code at \nt\private\windows\shell\lmui\ntshrui\ntshrui.doc.


Shell Sharing


The ntshrui.dll provides many sharing-related services, including the “Sharing” property page on all local folders. It also provides the IsPathSharedA/W API that the shell uses to determine whether a little sharing “hand” should appear when it draws a folder. In addition, there are APIs used by the link tracking code and the FAX team, namely (1) SharingDialogA/W, for displaying a “Create share” dialog, and creating a share, and (2) GetNetResourceFromLocalPath and GetLocalPathFromNetResource, used so links to shared local directories can be used when the link is copied to another machine.


The code is in \nt\private\windows\shell\lmui\ntshrui (ntshrui.dll). Win9x code that served as a (loose) template is the msshrui.dll code, found somewhere in the wnet project on \\trango\slm.


This is currently stable with no bugs.


Possible work items


A decision was made to only allow share configuration on local directories. However, there has been quite a small uproar that we should do it remotely as well. We should reconsider our decision in light of whatever our post-NT 4.0 plans are.


Code structure


Files


acl.cxx, acl.hxx	-- Code to interface with the ACL editor


api.cxx	-- Most exported APIs live here


app.def	-- standard .def file


app.rc	-- resource file, eaten by VC++


app.rc2	-- 2nd resource file, for things VC++ shouldn’t see


cache.cxx, cache.hxx	-- A C++ class that implements the share cache


copyhook.cxx, copyhook.hxx	-- The shell copy hook, to handle delete/rename/move of directories that are shared or that have children that are shared.


critsec.hxx	-- helper C++ class to implement automatic critical section acquire/release


dlgbase.cxx, dlgbase.hxx	-- base class for all dialogs. This is in common with other code I’ve written, so I’m just reusing it here.


dlgnew.cxx, dlgnew.hxx	-- the “New Share” dialog that appears from the “Sharing” property page.


dlink.hxx	-- a doubly-linked list implementation


dllmain.cxx, dllmain.hxx	-- the dll entrypoint. There is lots of code here to detect whether or not the server is running.


guids.h	-- GUIDs used by the OLE code. In particular, the shell extension interface uses OLE.


headers.hxx	-- the global pre-compiled header file


helpids.h	-- all help identifiers


makefile, makefile.inc, sources	-- standard NT build process stuff


messages.mc	-- most user-visible messages (some are in the .rc file)


ntshrui.reg	-- the “regini” file that is necessary for this stuff to run. This is just for documentation, as these entries are merged into the default hives.


ole.cxx, ole.hxx	-- all basic OLE code (AddRef/Release/QueryInterface, and class factories) is here


resource.h	-- all resource ids


share.cxx, share.hxx	-- shell property sheet and context menu extension class.


shrinfo.cxx, shrinfo.hxx	-- a class implementing an abstraction over lan man shares, level 502. This class inherits the linked-list class, so it is “linked-list ready”. It is used for a list of share objects in the Sharing property page.


shrpage.cxx, shrpage.hxx	-- the Sharing property page dialog.


strhash.cxx, strhash.hxx	-- a hash table of string pointers. This is used to (hopefully) accelerate lookup of shares by directory, to speed up the shell display of a directory.


util.cxx, util.hxx	-- various utility functions.


Description


There are two main uses of this code. One is to provide a cache of shares for the shell, so it can call back asking whether to put a “sharing hand” on a directory. It does this by calling IsPathShared for each directory it displays. Since this is likely to be quite a few, this call must be very fast. It also must be thread-safe. The second use is to allow the sharing or un-sharing of any directory, by providing a Sharing property page.


When the DLL loads, it first tries to initialize its cache of shares, by calling NetShareEnum with level 502. Note that this call requires both the server to be running and the user to have administrative priviledge on the machine. If the call fails, we spin off a thread to determine if the server isn’t running now but might be running soon. This points out a current inefficiency: if the cache failed to fill because the user doesn’t have administrative priviledge, we still spin off the thread and do this extra work. Anyway, we check the service controller, asking whether the server is started. If not, we ask if it is even configured to start, and if a start is pending. If it is configured to start, we wait to see if it begins starting. If a start is pending, we continue asking whether the start is complete, just like the “Services” control panel applet does. We give up after a while.


If we can’t initialize the cache for any reason, then no indication of sharing will be shown in the shell, and there will be no sharing configuration for directories.


When initializing the cache, we get the SHARE_INFO_502 information and put it into a hash table where the hash key is the directory that is shared. Note that all access to the share cache is protected by a critical section.


The Sharing property sheet is somewhat more complex than you might imagine at first glance. When initially sharing a directory, the “Share name” field is an edit control. When viewing the Sharing tab on a directory that is already shared, however, it is a drop-down list box. The information displayed and editable then relates to the currently selected element in the list box. When a directory is shared only once, the “New Share…” button appears. When a directory is shared two or more times, the “Remove Share” button appears (which applies to the selected share). Note that no changes are committed until either the “OK” or “Apply” button is pressed. To handle this, we maintain a list of CShareInfo objects, each one representing a share. Each object has a state flag indicating it should be deleted, added, modified, or no change should be made when the shares are committed. It is somewhat complex to handle the two distinct cases of “no shares yet” and “at least one share at the start”, and changing between them at apply time. There is one more complication: this same dialog, and dialog procedure, is used to put up a standalone dialog (not a property sheet) when the SharingDialog API is called. That is why, for instance, the dialog template includes OK and Cancel buttons.


Issues


There are several issues that could be addressed if necessary:


The DLL currently only handles local sharing. It might be useful/necessary/nice to handle remote sharing as well.


The DLL only handles NT Lan Manager sharing. This is somewhat inherited from Win95, and we didn’t change it. In Win95, there is a “Sharing handler” DLL for each server. Since only one server can be running at a time, you just swap in the “Sharing handler” DLL for the particular server you are running. However, in NT you can run multiple servers at the same time. Unfortunately, we didn’t update the sharing architecture to allow multiple servers to display th
