PDMCS API for Hydra 1.0

Revision 9 – 9/24/1997 – Erik Mavrinac

© 1997 Microsoft Corp.

General design notes:

· Maximum MCS PDU size (including all MCS header bytes but not including X.224 header bytes) is negotiated at the X.224 layer. For the default RFC1006 X.224 class 0 negotiation, where a maximum TPDU size is not explicitly negotiated with a TPDU_SIZE extension attribute on the X.224 Connection-Request TPDU, maximum size is (65535 – 7 = 65528) bytes. An MCSSendData header for a SendData of this size is (8 bytes at beginning plus one 2-byte ASN.1 leftover segmentation marker in middle of data = 10) bytes, so that the maximum amount of user data which can be packed into a SendData is (65528 – 10 = 65518) bytes. The send-data request and indication will continue to have a segmentation flags field exposed to the caller/receiver, but, assuming X.224 defaults to the 64K size, sending less than the max size should mean the flags will always be (SEGMENTATION_BEGIN | SEGMENTATION_END).

Attach-User Request – same for kernel and user modes

· Description: Initiates creation of a path to send and receive data on MCS channels. A user attachment is part of one particular domain; a new user attachment must be made for other domains. Once attached, a program can send data immediately on MCS ChannelIDs using MCSSendDataRequest(). To receive data on a channel, use MCSChannelJoinRequest() to join the user attachment to the channel.

· Prototype:

MCSError APIENTRY MCSAttachUserRequest(

DomainHandle
hDomain,

MCSUserCallback
UserCallback,

void

*UserDefined,

UserHandle

*phUser,

unsigned

*pMaxSendSize,

BOOLEAN

*pbCompleted);

· hDomain: Received in one of two methods. For kernel mode, hDomain comes from a call to MCSInitialize(). For user mode, the hDomain comes from a call to MCSConnectProviderRequest() or a MCS_CONNECT_PROVIDER_INDICATION callback.

· UserCallback: The user attachment callback entry point.

· UserDefined: Passed into the user callback with each call, allows the callee to store pertinent data (e.g. a pointer to instance data).

· phUser: The returned UserHandle. This handle is used in fiture calls to MCS user attachment-related functions. Note that a UserHandle is not the same as a UserID. A UserID is an MCS channel number assigned to the user; a UserHandle is an opaque pointer to local data. If you need to retrieve the UserID, use the MCS API function MCSGetUserIDFromHandle() defined below.

· pMaxSendSize: The maximum size allowed for a block of data sent to MCS. This limit is the lower of the X.224 negotiated block size minus headers, or the MCS negotiated maximum PDU size minus headers.

· pbCompleted: Set to nonzero if the call has completed immediately. If the call has completed there will be no callback issued to the user entry point, and the hUser is valid for immediate use. A call completes immediately when the local node is the MCS domain Top Provider.

· Asynchronous callback: MCS_ATTACH_USER_CONFIRM (see below).

· MCSError return values:

· MCS_NO_ERROR: No error.

· MCS_NO_SUCH_DOMAIN: The domain handle used is invalid, or the domain is no longer valid. May indicate a dropped connection or an internal MCS error.

· MCS_TOO_MANY_USERS: The domain-negotiated limit on users has been reached, attach request was denied.

· MCS_ALLOCATION_FAILURE: There was a problem allocating memory or, if calling from user mode, also means that there might have been a problem calling the kernel mode portion of MCS.

· MCS_TOO_MANY_CHANNELS: Could not create a UserID because of domain-negotiated restrictions on the number of channels, or an internal error creating a channel.

Attach-User Confirm – same for user and kernel modes

· Description: Callback sent to a user attachment callback function as a result of a call to MCSAttachUserRequest() which did not complete immediately.

· MCSUserCallback parameters received:

· hUser: The hUser to which this call applies.

· Message: MCS_ATTACH_USER_CONFIRM

· Param: This is a MCSError code, with the same possible values as given in the description above for MCSAttachUserRequest().

· UserDefined: The value as passed into MCSAttachUserRequest().

UserID from UserHandle – same for user and kernel modes

· Description: Allows a UserHandle value to be used to get the MCS channel number of the user.

· Prototype:

UserID APIENTRY MCSGetUserIDFromHandle(UserHandle hUser);

· hUser: User attachment handle from previous call to MCSAttachUserRequest().

· Return value: The UserID (MCS channel number) of the user attachment.

Detach-User Request – same for user and kernel modes

· Description: Used to detach a previously attached user attachment. There is no callback or reply from this API call; if it succeeds, the user is detached, and the attachment UserHandle is invalid and cannot be used further. No more callbacks will occur on the attachment callback entry point.

· Prototype:

MCSError APIENTRY MCSDetachUserRequest(UserHandle hUser);

· hUser: The user handle returned from a previous call to MCSAttachUserRequest().

· Asynchronous callback: None

· MCSError return values:

· MCS_NO_ERROR: Call succeeded, the hUser is now invalid for further use and no more callbacks will occur on the user attachment callback.

· MCS_NO_SUCH_USER: The user handle received was not a valid user attachment handle, or an internal error occurred finding the attachment.

· MCS_ALLOCATION_FAILURE: A problem occurred allocating resources to complete the call. The attachment is not detached.

Detach-User Indication – same for user and kernel modes

· Description: Signals that a user attachment has detached. The attachment can come from an actual detachment by another user attachment, or can be an indication that receiving user was detached because the domain is being destroyed.

· MCSUserCallback parameters received:

· hUser: The hUser to which this call applies.

· Message: MCS_DETACH_USER_INDICATION

· Param: This is a pointer to a DetachUserIndication struct with the following members:

· UserID: The UserID (MCS channel number) of the user detaching. Comparing this UserID to the local attachment’s UserID can determine whether the receiving attachment is being forced to detach. Conversely, the next parameter can also be used.

· bSelf: Nonzero if the receiving user attachment is being detached, zero if another attachment is detaching. The reason for the detachment is given in the next parameter.

· Reason: An MCS reason code, one of the following:

· REASON_USER_REQUESTED: This code should only be received when bSelf is FALSE. Indicates that the detaching user requested the action.

· REASON_DOMAIN_DISCONNECTED: The domain is being destroyed. This code should be received when bSelf is nonzero, indicating the receiver is being forcefully detached. Should not be received otherwise.

· UserDefined: The value as passed into MCSAttachUserRequest().

Channel-Join Request – same for user and kernel modes

· Description: Requests that a user attachment be joined to an MCS channel. Once joined, the attachment will receive data callbacks for data sent on the channel. A user attachment does not need to be joined to a channel to send data on it.

· Prototype:

MCSError APIENTRY MCSChannelJoinRequest(

UserHandle

hUser,

ChannelID

ChannelID,

ChannelHandle
*phChannel,

BOOLEAN

*pbCompleted);

· hUser: A user attachment handle received from a previous call to MCSAttachUserRequest().

· ChannelID: The MCS channel number to join. There are several special cases here. Channels 1..1001 are known as static channels, which can be joined by any attachment. Usually a static channel will be agreed upon as part of a protocol. For instance, Generic Conference Control (GCC) reserves static channel 1 as its main broadcast channel. Other channels are reserved by GCC and other parts of the T.120 suite of protocol standards. Channels from 1002..65535 are known as dynamic channels. UserIDs are dynamic channels to which only the original user attachment an join. An assigned channel is a dynamic channel that has been allocated at run-time; a new assigned channel can be requested by specifying a ChannelID of 0. Token Ids are dynamic channels to which no one can join. Other, unused dynamic channels cannot be joined by any user.

· phChannel: Receives a handle to the joined channel. This handle can be used with MCSSendDataRequest() to send data on the channel. If the ChannelID needs to be known, use the MCS API function MCSGetChannelIDFromHandle(), described below.

· pbCompleted: Receives a completion indicator. If nonzero, the channel request completed immediately and no MCS_CHANNEL_JOIN_CONFIRM callback will be issued. If zero (FALSE), the callback will be issued at a later time.

· Asynchronous callback: MCS_CHANEL_JOIN_CONFIRM (see below).

· MCSError return values:

· MCS_NO_ERROR: The call completed successfully. If bCompleted was nonzero, the hChannel is valid and may be used for sending data, and callbacks for received data will be issued to the user attachment callback entry point.

· MCS_ALLOCATION_FAILURE: A resource allocation problem occurred during processing of the call. The channel was not joined.

· MCS_CANT_JOIN_OTHER_USER_CHANNEL: The requested channel number is a UserID not belonging to the calling attachment.

· MCS_NO_SUCH_CHANNEL: The requested channel number is a dynamic channel that is unassigned.

· MCS_TOO_MANY_CHANNELS: The domain-negotiated limit on the number of active channels has been reached, or an internal error occurred getting a new channel number.

Channel-Join Confirm – same for user and kernel modes
· Description: Callback issued to indicate the results of a previous MCSChannelJoinRequest() that did not complete immediately.

· MCSUserCallback parameters received:

· hUser: The hUser to which this call applies.

· Message: MCS_CHANNEL_JOIN_CONFIRM

· Param: This is a pointer to a ChannelJoinConfim struct with the following members:

· hChannel: The handle to the channel to which this confirm applies.

· ErrResult: MCSError code, one of those listed for MCSChannelJoinRequest() above.

· UserDefined: The value as passed into MCSAttachUserRequest().

ChannelID from ChannelHandle – same for user and kernel modes

· Description: Retrieves the MCS channel number for a channel specified by its channel handle.

· Prototype:

ChannelID APIENTRY MCSGetChannelIDFromHandle(ChannelHandle

hChannel);

· hChannel: Handle to a channel from a previous call to MCSChannelJoinRequest().

· Return value: The MCS channel number (ChannelID) of the channel.

Channel-Leave Request – same for user and kernel modes

· Description: Leaves a previously-joined channel. Upon successful return the channel has been left. Once left, the user attachment does not receive any more data sent on the channel.

· Prototype:

MCSError APIENTRY MCSChannelLeaveRequest(

UserHandle

hUser,

ChannelHandle
hChannel);

· hUser: A user handle from a previous call to MCSAttachUserRequest().

· hChannel: A channel handle from a previous call to MCSChannelJoinRequest().

· Asynchronous callback: None.

· MCSError return values:

· MCS_NO_ERROR: The call completed successfully. The channel has been left.

· MCS_NO_SUCH_CHANNEL: The channel handle used is not valid.

· MCS_ALLOCATION_FAILURE: A resource allocation failure occurred during the call. The channel has not been left.

(Uniform-)Send-Data Request – different for user and kernel modes

· Description: Sends data on a particular channel. The channel need not have been joined in order to send data on it. Uniform data send forwards the data to the top provider where is distributed to the downward attachments; the idea is to try and synchronize the reception of data. Uniform sends are only generally used by MCS itself, or node controller attachments, but may be used by other user attachments.

· Prototype (user mode):

MCSError APIENTRY MCSSendDataRequest(

UserHandle

hUser,

DataRequestType
RequestType,

ChannelHandle
hChannel,

ChannelID

ChannelID,

MCSPriority

Priority,

Segmentation
Segmentation,

BYTE

*pData,

unsigned

DataLength);

Prototype (kernel mode):

MCSError APIENTRY MCSSendDataRequest(

UserHandle

hUser,

DataRequestType
RequestType,

ChannelHandle
hChannel,

ChannelID

ChannelID,

MCSPriority

Priority,

Segmentation
Segmentation,

POUTBUF

pOutBuf);
· hUser: A user attachment handle from a previous call to MCSAttachUserRequest().

· DataRequestType: NORMAL_SEND_DATA or UNIFORM_SEND_DATA.

· hChannel: A channel handle from a previous call to MCSChannelJoinRequest(). This parameter may be NULL if the ChannelID is going to be used.

· ChannelID: The MCS channel number of the channel to send to. This should ONLY be used for the case where a channel needs to be sent to that has not been joined by the user; otherwise use the hChannel returned from the join request. To use this parameter hChannel must be set to NULL.

· Priority: Specifies the MCS priority of the data to be sent, one of MCS_TOP_PRIORITY, MCS_HIGH_PRIORITY, MCS_NORMAL_PRIORITY, MCS_LOW_PRIORITY. Top priority is reserved for node controllers and MCS itself. High priority should be used for important data that must be sent ahead of queued data on lower priorities.

· Segmentation: Specifies segmentation flags for the block of data being passed in. The flags are SEGMENTATION_BEGIN and SEGMENTATION_END. If the block being passed in is a complete block of data, set both begin and end flags. For a block of data in the middle of a set, Segmentation should be zero.

· pData (user mode only): Points to the data. The buffer the data was placed in should have been created with the MCS API function MCSGetBufferRequest(). Once passed into this function the block becomes invalid for further use; MCS will deallocate the buffer as necessary.

· DataLength (user mode only): Specifies the length of the data pointed to by pData.

· pOutBuf (kernel mode only): Points to an ICA OutBuf containing the data. After the call the OutBuf passed in is no longer valid and will be freed by the lower drivers. For efficiency reasons the OutBuf must have been created with several constraints:

· The OutBuf should have been allocated for the size of the user’s data plus the constant values (SendDataReqPrefixBytes + SendDataReqSuffixBytes).

· SendDataReqPrefixBytes must be left as an empty space before the start of the user data.

· pOutBuf->pBuffer should point to the start of the user’s data.

· pOutBuf->ByteCount should contain the length of the user’s data.

The OutBuf will always be automatically freed even if an error is returned. This creates a potential problem in that the calling code has to be prepared to lose a block of data on error, even if the error is recoverable.

· Asynchronous callback: None.

· MCSError return values:

· MCS_NO_ERROR: The call completed successfully. The data was sent.

· MCS_NO_SUCH_CHANNEL: The channel handle used is not valid.

· MCS_SEND_SIZE_TOO_LARGE: The block of data passed in exceeded the maximum send limit as returned from the MCSAttachUserRequest() call.

· MCS_ALLOCATION_FAILURE: A resource allocation failure occurred during the call. The data was not sent.

· MCS_NETWORK_ERROR: A problem occurred sending data to the network driver.

(Uniform-)Send-Data Indication – same for user and kernel modes
· Description: Callback issued to indicate that data was received on a channel to which the receiving user has joined.

· MCSUserCallback parameters received:

· hUser: The hUser to which this call applies.

· Message: MCS_SEND_DATA_INDICATION or MCS_UNIFORM_SEND_DATA_INDICATION

· Param: This is a pointer to a SendData struct with the following members:

· hChannel: The handle to the channel to which this indication applies.

· Priority: MCS priority at which the data was sent. See the priority description for MCSSendDataRequest() above.

· SenderID: The UserID of the sender.

· Segmentation: Segmentation flags for this block of data. See the segmentation flag description in MCSSendDataRequest() above.

· pData: a pointer to the start of user data. This data is only valid for the duration of the callback; after the user callback function returns the data is inaccessible. Processing for the data contents should be done during the callback, or the data should be copied if it needs to be used outside the callback.

· DataLength: The length of the data pointed to by pData.

· UserDefined: The value as passed into MCSAttachUserRequest().

