File Transfer

Between Terminal Sessions

Using Clipboard Copy-and-Paste

31.
Introduction

32.
Process structure

32.1.
File transfer DLL (FXFR.DLL)

32.2.
Server changes

32.3.
Client changes

33.
Initialization

34.
Assumptions

45.
Design

45.1.
Copy-and-paste operation

45.2.
Incompatibility in Formats between Win16 and Win 2k

45.3.
ANSI and UNICODE handling

55.4.
UNICODE data on Win 98

55.5.
Creation of temp directories on the remote machine

55.6.
Deletion of files

55.6.1.
Temp files

55.6.2.
Original files

65.7.
Cancellation of paste operation

65.7.1.
User Cancellation

65.7.2.
Cancellation due to errors

65.8.
Error Response

65.9.
Write Queue

65.10.
Recursive transfer of directory

65.11.
State of shared Clipboard during file transfer

75.12.
Timeouts

75.13.
Disconnected

75.14.
Reconnected

75.15.
State machine on Local clip

85.16.
State machine on remote clip

86.
Issues

1. Introduction

A user should be able to copy-and-paste files between a terminal session and client console session. It should be possible to copy-and-past multiple files and directories. It should be usable on Win 16 clients.

2. Process structure

2.1. File transfer DLL (FXFR.DLL)

There will be one File transfer DLL (FXFR.DLL) that will support the file transfer. There will be two versions of this DLL, one for Win 16 and another for Win32. Both server and client will use same copy of FXFR.DLL. Clients on Win 2k and Win 98 will also share the same DLL. The reasoning behind the same DLL is to minimize confusion and to have same code base as far as possible. This DLL is not thread safe and multiple threads should be avoided in DLL at a time.

2.2. Server changes

On server side, one existing EXE, RDPCLIP.EXE will be modified. These changes will be hookups for FXFR.DLL. A new thread will be started in RDPCLIP.EXE that will deal with File transfer virtual channel. This new thread will talk with parent thread using events and Windows messages. It will also simulate Asynchronous writes required by FXFR.DLL using Semaphores.

2.3. Client changes

On client side, an existing DLL, RDPDR.DLL will be modified. These changes will basically be the hookups for FXFR.DLL. So whenever RDPDR.DLL wants to transfer files, it will call FXFR.DLL. On Win32, Semaphores will be used to make sure that only one thread enters FXFR.DLL at time.

3. Initialization

During initialization, server will connect with client on a new Virtual channel called “FileXfr”. Server will then send a TS_CB_FXRF_PDU_HELLO packet to client. Client will respond with TS_CB_FXFR_PDU_HELLO_RESP packet. A state machine (called SM2 in this document) will control the interaction on this channel. After a Hello is exchanged, both server and client will set the state of SM2 to be TS_CB_FXFR_STATE_INIT.

4. Assumptions

· No data conversion between little endian and big endian.

· Default File attributes and permission will apply. No explicit checking of permissions will be done.

· Files can be transferred using CF_HDROP or CF_FILENAMEW or CF_FILENAME format only. If an application uses any other format then the files may not be transferred. Embedded objects containing files are not supported.

· The file transfer may take a lot of time. For this time the clipboard operations will be blocked.

5. Design

The actual operation of the protocol is symmetric at the client and server. Hence in the following descriptions this document refers to ‘Local’ and ‘Remote’ systems. ‘Remote’ system here means the system where user “pasted” the file. ‘Local’ system means the system where user did a “copy-or-cut” of file. “Local clip” refers to the shared clipboard code on the local system. Similarly “Remote Clip” refers to shared clipboard code on remote system.

5.1. Copy-and-paste operation

When a “Copy” of a file is done on clipboard, then a number of formats including CF_HDROP, “Preferred Dropped” and CF_FILENAMEW are copied on the clipboard. Local clip will send the formats (CF_HDROP, “Preferred Dropped” and CF_FILENAMEW) to remote clip. Remote clip will put these formats in its clipboard. Actual file is not transferred at this time.

When an application wants a file then remote clip will send a TS_CB_FORMAT_DATA_REQUEST packet to the local clip. Local clip on receiving the packet will know that a file is to be transferred. It will then get the clipboard data, which is the name of the file to be transferred. Then it will start SM2 to transfer this file to server. No response is sent to remote clip at this time. SM2 will start transferring the files to the remote system. When SM2 finishes, a response will be sent on “Shared clipboard” Virtual Channel to remote system. The response might be a success or failure, depending on success of SM2. If it is success then the response will contain the temp file name that was created by SM2. Remote clip will then copy this name on clipboard.

5.2. Incompatibility in Formats between Win16 and Win 2k

When a file is copied on clipboard from a Win16 client, then file is copied using FILENAME format. When a file is pasted on Win 2000 using FILENAME format, then Win2k makes a “scrap object” out of the file. Due to this files cannot be copied from Win 16 to Win 2k in an easy manner. To copy the files properly, whenever “Shared clip” puts a format FILENAME on clipboard it also puts CF_HDROP on the clipboard. Due to this Win 2k asks data in CF_HDROP format. At this time Data for FILENAME is requested from the Win 16 client and then converted to CF_HDROP format and pasted on the clipboard. This ensures that Win 16 files are copied correctly on the Win 2k system.

5.3. ANSI and UNICODE handling

A typical server might be connected from a variety of clients. Like, Win 2K, Win NT, Win 95, Win 98, Win 3.1 etc.. Win NT and Win 2k, support UNICODE completely but Win 98, Win 95 and Win 3.1 do not support UNICODE functions. Due to this File transfer DLL should be capable of supporting both ANSI and UNICODE data transfer at runtime. So some of the functions, which deal with file names, in FXFR.DLL will be compiled in ANSI and UNICODE both. At the start of file transfer local and remote will negotiate as to whether they want to transfer files using UNICODE or ANSI and after that this will be used as transfer mode. NT will talk on UNICODE with another NT and will talk on ANSI with Win 98 and Win 3.1

5.4. UNICODE data on Win 98

Some applications on Win 98 like MS WordPad request data in FILENAMEW format. Now Win 98 does not support UNICODE functions but still response for FILENAMEW has to be given in UNICODE only. To solve this Response has been decoupled from the talking mode, so it is possible to transfer files in ANSI format and send filenames in UNICODE.

5.5. Creation of temp directories on the remote machine

For every copy-paste operation, remote clip will make a unique directory in the Windows TEMP directory. This directory will be unique for every transfer. Every file after this will be transferred relative to this directory. This will ensure that the “name” of the file is transferred correctly. This will also ensure that there is no conflict between two separate file transfers.

To create unique temp directory, first Window temp path is obtained by using GetTempPath. Then it will create a sub-directory called “FXFR” in this path. This will ensure that FXFR does not mess with anybodies else files. Then it will request Process ID using GetCurrentProcessID. Now a subdirectory with the same name as process ID will be created. This will ensure that two instances of fxfr.dll will not conflict. These directories will be created at system startup time.

After this, for every file transfer, a new directory will be created inside this directory using an integer. After creating a directory this integer will be incremented and thus ensuring uniqueness.

5.6. Deletion of files

5.6.1. Temp files

At the system shutdown time, all the temp directories created by this FXFR.DLL will be deleted.

5.6.2. Original files

“Cut” of files is not supported right now.

5.7. Cancellation of paste operation

5.7.1. User Cancellation

User should be given an option to cancel the paste operation. To do this local clip will get the handle to the requesting application. It will then display a dialog box with a cancel button in the requesting application’s window. This will be done during the time data is getting transferred from local clip to remote clip. The WM messages to this dialog box will be processed by local clip. If user enters a cancel button, then the file transfer will be cancelled. A TS_CB_FXFR_PDU_HELLO packet will be sent to local clip to cancel file transfer. The local clip will send the TS_CB_FXFR_PDU_HELLO_RESP packet in response. Any temp directories or files created will be deleted and an ERROR response will be sent back on original Virtual channel.

5.7.2. Cancellation due to errors

Either (remote or local) system can send TS_CB_FXFR_PDU_HELLO packet anytime during the file transfer protocol. This will signify an error and will thus lead to cancellation of file transfer.

5.8. Error Response

In case an Error response has to be sent to the remote, then an SUCCESS response with filename “ “ will be sent. This will be same as an error because “ “ is an invalid file name. This hack is essential because if an ERROR response is sent back, then Windows Explorer asks for data 7-8 times. This leads to 7-8 unsuccessful tries, which are very wasteful.

5.9. Write Queue

The write operation of FXFR.DLL is asynchronous. That means that one data packet can be sent and some other work can also be done simultaneously. In case there is a need to send another data packet, when one data packet is already being sent, then this new data packet will be queued. When the first packet has been successfully sent then this packet will be sent.

5.10. Recursive transfer of directory

When a user copy-and-paste a directory, then all the files in the directory including all the subdirectories will be transferred. This will be done by enumerating all the files and then keeping them on a stack. They will then be transferred to remote clip one after another. The stack will be internally maintained as a link list, thus giving it unlimited depth. This is required as there is no limit on the depth of tree. The directory tree will be traversed in a depth first traversal.

5.11. State of shared Clipboard during file transfer

When the file transfer is happening clipboards will not be available. This is because as remote clipboard is waiting for a RENDERFORMAT response, therefore cannot be opened again and hence is unusable. Local remote will also be kept open until a response is sent back, making it unusable too.

5.12. Timeouts

Every time a response is expected from the remote side, a timer will be started. When a response is received this timer will be cancelled. So if at any time this timer goes off that means that no response has been received from the other side for specified amount of time. In this case, File transfer will be cancelled.

5.13. Disconnected

In case the session is disconnected, server will cancel the current operation and will cleanup the state machine.

5.14. Reconnected

When the session is reconnected, at that time a TS_CB_FXFR_PFU_HELLO will be exchanged. This will initialize the state machine at both server and client.

5.15. State machine on Local clip

1. It will first ensure that the channel is in TS_CB_FXFR_STATE_INIT state. If it is not, then it will inform the local clip that there is an error and an error response will be sent to remote clip.

2. Send a TS_CB_FXFR_PDU_MAKEROOT packet. This packet will contain a proposed mode of UNICODE or ANSI. This will be dependent on whether Clipboard data is ANSI or UNICODE.

3. Change the state to TS_CB_FXFR_STATE_MAKEROOT

4. Remote Clip will respond with TS_CB_FXFR_PDU_MAKEROOT_RESP packet. This will contain:

· ANSI or UNICODE for this transfer. This might be different than what local clip proposed, and Local will have to accept this value and transfer data in this format only.

· The full path of the directory created at the remote system for this transfer. All the file names from now on will be relative to this directory.

5. Set the state to TS_CB_FXFR_STATE_DATA_SEND

6. Send a TS_CB_FXFR_PDU_FILEINFO to remote. This will contain following information:

· Whether we are transferring file or directory

· File name

· Size of file. In case of directory this will be 0.

7. Remote will respond with TS_CB_FXFR_PDU_DATA_RESP. After this response is received then start sending data packets.

8. Local clip will then send one TS_CB_FXFR_PDU_DATA packet. Again wait for TS_CB_FXFR_PDU_DATA_RESP packet.

9. Remote will send TS_CB_FXFR_PDU_DATA_RESP packet. If all the data packets have been sent then GOTO step 10 else GOTO step 8.

10. When it is finished, Local clip will send TS_CB_FXFR_PDU_DATAFINISH packet. It will also set the state of machine to TS_CB_FXFR_STATE_DATAFINISH

11. If remote clip was unable to copy the file completely or some other error happens, then it will send TS_CB_FXFR_PDU_DATA_FINISH_RESP packet. The packet will contain an error value. On getting an error response local clip will send an error response back to remote clip

12. If remote clip was able to copy the file completely, then it will send a TS_CB_FXFR_PDU_DATA_FINISH_RESP with a success value back.

13. If all the files have not been transferred, then SM2 will go to step 6 and begin transferring more files.

14. If the file transfer is over, then client will send TS_CB_FXFR_PDU_FINISH packet to server. Then it will change state to TS_CB_FXFR_STATE_INIT. Then a response packet for original request will be sent to remote that will include the full path of the temp directory at the remote received in step 4.

5.16. State machine on remote clip

1. When remote clip receives TS_CB_FXFR_PDU_MAKEROOT packet, it will:

· See the proposed ANSI or UNICODE value. If remote is Win 2K, then it will accept whatever has been proposed. Other wise it will default to ANSI.

· Make a new unique directory in the Windows TEMP directory.

· It will then send full path of the temp directory and value of ANSI or UNICODE to the client in a TS_CB_FXFR_PDU_MAKEROOT_RESP packet.

2. Set the state to TS_CB_FXFR_STATE_MAKEROOT_RESP

3. When remote receives TS_CB_FXFR_PDU_FILEINFO packet, then it will pick the file name from the packet, and create the file in the ROOT directory. If a directory name is received, then a directory will be created.

4. It will send a TS_CB_FXFR_PDU_DATA_RESP packet to local.

5. Change state to TS_CB_FXFR_STATE_DATA_RECV.

6. Remote will then receive TS_CB_FXFR_PDU_DATA packet. It will place the data on the file and send a TS_CB_FXFR_PDU_DATA_RESP packet back.

7. When remote receives TS_CB_FXFR_PDU_DATA_FINISH packet, it will check that number of bytes received are same as the size of file. Then depending on success it will either send a SUCCESS response or an error response. The response will be sent in a TS_CB_FXFR_PDU_DATA_FINISH_RESP packet.

8. When it receives TS_CB_FXFR_PDU_FINISH then it will set the state of the SM2 to TS_CB_FXFR_STATE_INIT.

6. Issues

· Deletion of temp files and directories.

When the end application has copied the temp files, then we will need to delete the temp directory created for this transfer. Right now they are not deleted directly after the transfer is over.

· “cut” of files is not supported because there is no way to know whether the file has been correctly copied at the remote or not.

· File can be pasted on apps like MS Word, MS PowerPoint but files cannot be copied from these apps. This is because these apps copy data in formats other than FILENAME, FILENAMEW, CF_HDROP.

