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1. Introduction

This spec describes the Visual C++ calling convention methodology for the “Sledgehammer”, AMD’s 64-bit extension to the x86 architecture.  Essentially, the two biggest modifications to the architecture are the 64-bit addressing capability and a flat set of 16 64-bit registers for general use.  Given the expanded register set, it makes much more sense to use a FASTCALL methodology of calling convention and a RISC-based exception-handling model.  The FASTCALL model calls for the first 4 arguments being in registers and use of the stack frame to pass the other parameters.

1.1 Scenarios

· Sammy Sixty-four has determined that his application has run out of the conventional 32-bit addressing space due to his large data set of weather data.  He chooses the AMD64 architecture due to its ability to still run his previous 32-bit application as well as his 64-bit one.  Since his code is already 64-bit compatible, he merely needs to recompile his code to have a running application.

· Dirty Darla is a bit-twiddler.  She writes several pieces of code in assembly and wants to move the AMD64 architecture.  She knows that she must consider the calling conventions of the architecture so that she can put the arguments in the correct registers/stack so that she can call to/from her ‘C’ routines.

1.2 Requirements

This convention is necessary before any real work begins.  The idea is that the pieces of code written in assembly be made aware of new, stable calling conventions so that the assembly portions of code can be ported without a working compiler (which is currently the status).  We want to flesh this out as quickly as possible so that we have a full view of what we want to do at an early stage.  This will allow us to keep from modifying code once it has been ported.

1.3 Justification

We are shifting the AMD64 away from the x86 model and towards more of a RISC-based schema.  One of the major changes is in the calling convention for the VC++ compiler.  Whereas on the x86 model we had three modes of conventions (STDCALL, FASTCALL, and CDECL), we would like to consolidate those into one convention.  

The below chart represents argument count frequency data generated by analyzing 2210 x86 executables from Windows 2000, 71 x86 executables from Office 2000, and one executable from SQL server comprising a total of 51,522,924 instructions. The y-axis is the number of arguments and x-axis is the number of calls. The chart represents a total of 3,730,514 calls (the number of arguments for 945,112 calls could not be determined because of indirection). 92% of the calls require 4 parameters or less (96% require 5 parameters or less).

[image: image1.wmf]Argument Count Frequency

0

200000

400000

600000

800000

1000000

1200000

1400000

0

2

4

6

8

10


In addition, instrumented compiles of the WinCE Operating System revealed that with 4 parameters, 90% of all calls were passed in registers:
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2. Feature Description 

This section describes the proposed calling convention, caller/callee saving strategy, SEH, types, alignment, and storage.

2.1 Types and Storage

This section describes the enumeration and storage of data types for the Sledgehammer.

2.1.1 Scalar Types

Although the access of data can stem from any alignment, it is recommended that data be aligned on its natural boundary to avoid performance loss (or a multiple thereof).  Enums are constant integers and are treated as 32-bit integers.  The following table describes the type definition and recommended storage for it as it pertains to alignment using the following alignment values:

· Byte – 8 bits

· Word – 16 bits

· Double Word – 32 bits

· Quad Word – 64 bits

· Octa Word – 128 bits

	Scalar Type
	C Data Type
	Storage Size (in bytes)
	Recommended Alignment

	INT8
	char
	1
	Byte

	UINT8
	unsigned char
	1
	Byte

	INT16
	short
	2
	Word

	UINT16
	unsigned short
	2
	Word

	INT32
	int, long
	4
	Doubleword

	UINT32
	unsigned int, unsigned long
	4
	Doubleword

	INT64
	__int64
	8
	Quadword

	UINT64
	unsigned __int64
	8
	Quadword

	FP32 (single precision)
	float
	4
	Doubleword

	FP64 (double precision)
	double
	8
	Quadword

	POINTER
	*
	8
	Quadword

	__m64
	struct __m64
	8
	Quadword

	__m128
	struct __m128
	16
	Octaword


2.1.2 Aggregates and Unions

Other types such as arrays, structs, and unions have stricter alignment requirements.  These must be followed to ensure consistent aggregate and union storage and data retrieval.  Here are the definitions for array, structure, and union:

Array – contains an ordered group of adjacent data objects.  Each object is called an element.  All elements within an array have the same size and data type.

Structure – Contains an ordered group of data objects.  Unlike the elements of an array, the data objects within a structure can have different data types and sizes.  Each data object in a structure is called a member.

Union – An object that holds any one of a set of named members.  The members of the named set can be of any type.  The storage allocated for a union is equal to the storage required for the largest member of that union, plus any padding required for alignment.

The following table shows the strongly suggested alignment for the scalar members of unions and structures. 

	Scalar Type
	C Data Type
	Required Alignment

	INT8
	char
	Byte

	UINT8
	unsigned char
	Byte

	INT16
	short
	Word

	UINT16
	unsigned short
	Word

	INT32
	int, long
	Doubleword

	UINT32
	unsigned int, unsigned long
	Doubleword

	INT64
	__int64
	Quadword

	UINT64
	unsigned __int64
	Quadword

	FP32 (single precision)
	float
	Doubleword

	FP64 (double precision)
	double
	Quadword

	POINTER
	*
	Quadword

	__m64
	struct __m64
	Quadword

	__m128
	struct __m128
	Octaword


The following aggregate alignment rules apply:

· The alignment of an array is the same as the alignment of one of the individual’s type.

· The alignment of the beginning of a structure or a union is the maximum alignment of any individual member.  Each member within the structure or union must be placed at its proper alignment as defined in the above table, which may require implicit internal padding, depending on the previous member.

· Structure size must be an integral multiple of its alignment, which may require padding after the last member.  Since structures and unions can be grouped in arrays, each array element of a structure or union must begin and end at the proper alignment previously determined.

· It is possible to align data in such a way as to be greater than the alignment requirements as long as the previous rules are maintained.

· An individual compiler may adjust the packing of a structure for size reasons.  For example the Microsoft Visual C++ compiler allows the /Zp switch for adjusting the packing of structures.
2.1.3 Examples

The following represent a set of examples showing structure requirements.

Example 1

struct  S1 {

  short a;


//size = 2 bytes, alignment = 2 bytes;

}

	a


0            1

Example 2

struct {




// size = 24 bytes, alignment = Quadword

  int a;

  double b;

  short c;

};

	a
	padding
	b


0  
  1
      2

3
  4
    5
   6  
  7
  8

9
   10
 11
   12
  13 
14   15

	c
	padding


16
   17
18
   19
 20    21    22     23

Example 3

struct {


// size = 12 bytes, alignment = Doubleword

  char a;

  short b;

  char c;

  int d;

};

	a
	padding
	b
	c
	padding
	d


0
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Example 4

union {


// size = 8 bytes; alignment = Quadword

  char *p;

  short s;

  long l;

};

	p

	s
	padding

	l


0

1
      2         3          4         5          6          7

2.1.4 Bitfields

Structure bit fields are limited to 64 bits and can be of type signed int, unsigned int, int64, or unsigned int64.  Bit fields that cross the type boundary will skip bits in order to align the bitfield to the next type alignment.  For example, integer bitfields may not cross a 32-bit boundry.
2.2 Register Usage
2.2.1 
The Sledgehammer architecture provides for 16 general purpose registers (hereafter referred to as integer registers) as well as 16 XMM registers available for floating point use.  Volatile registers are scratch registers presumed by the caller to be destroyed across a call.  Non-volatile registers are required to retain their values across a function call and must be saved by the callee if used.  The following table describes how each register is used across function calls:

	Register
	Status
	Use

	RAX
	Volatile
	Return value register

	RCX
	Volatile
	First integer argument

	RDX
	Volatile
	Second integer argument

	R8
	Volatile
	Third integer argument

	R9
	Volatile
	Fourth integer argument

	R10:R11
	Volatile
	Must be preserved as needed by caller; used in syscall/sysret instructions

	R12:R15
	Non-volatile
	Must be preserved by callee

	RDI
	Non-volatile
	Must be preserved by callee

	RSI
	Non-volatile
	Must be preserved by callee

	RBX
	Non-volatile
	Must be preserved by callee

	RBP
	Non-volatile
	May be used as a frame pointer; Must be preserved by callee

	RSP
	Non-volatile
	Stack Pointer

	XMM0
	Volatile
	First FP argument

	XMM1
	Volatile
	Second FP argument

	XMM2
	Volatile
	Third FP argument

	XMM3
	Volatile
	Fourth FP argument

	XMM4:XMM5
	Volatile
	Must be preserved as needed by caller

	XMM6:XMM15 (low 64-bits)
	Non-volatile
	Must be preserved by callee. 

	XMM6:XMM15 (high 64-bits)
	Volatile
	Must be preserved by as needed caller. 


In the case of the non-volatile XMM registers, only the lower 64-bits need to be preserved by the callee. 128-bit values stored in the XMM register should not be enregistered across calls.
2.3 Calling Convention
The following sections describes the process that one function (caller) makes call into another function (callee).  For prototyped functions, all arguments are converted to the expected callee types before passing.


2.3.1 Parameter Passing

The first four integer arguments will be passed in registers.  Integer values will be passed (in order left to right) in RCX, RDX, R8, and R9.  Arguments 5 and above will passed onto the stack.  All arguments are right justified in the register they are passed in.  This is done so the callee can ignore the upper bits of the register if need be and can access only the portion of the register necessary.  
Floating point and double precision arguments are passed in XMM0 – XMM3 (up to 4) with the integer slot (RCX, RDX, R8, and R9) that would normally be used for that cardinal slot being ignored (see example) and vice versa.

__m128 and __m64 types, arrays and strings are never passed by immediate value but rather a pointer will be passed to memory allocated by the caller.  Structs/unions of size 8, 16, 32, or 64 bits will be passed as if they were integers of the same size.  Structs/unions other than these sizes will be passed as a pointer to memory allocated by the caller.  For these aggregate types passed as a pointer (including __m128 and __m64 types), the caller-allocated temporary memory will be 16-byte aligned.  
Intrinsic functions that do not allocate stack space and do not call other functions can use other volatile registers to pass additional register arguments since there is a tight binding between the compiler and the intrinsic function implementation. This is a further opportunity for improving performance.

The callee has the responsibility of dumping the register parameters into their shadow space if needed.  The following tables summarizes how parameters are passed:

	Parameter type
	How passed

	Floating point
	First 4 parameters – XMM0 through XMM3.  Others passed on stack.

	Integer
	First 4 parameters – RCX, RDX, R8, R9.  Others passed on stack.

	Aggregates (8, 16, 32, or 64 bits)
	First 4 parameters – RCX, RDX, R8, R9.  Others passed on stack.

	Aggregates (other)
	By pointer.  First 4 parameters passed as pointers in RCX, RDX, R8, and R9

	__m64
	By pointer.  First 4 parameters passed as pointers in RCX, RDX, R8, and R9

	__m128
	By pointer.  First 4 parameters passed as pointers in RCX, RDX, R8, and R9


Example of argument passing 1 – all integers

func1(int a, int b, int c, int d, int e);  // a in RCX, b in RDX, c in R8, d in R9, e pushed on stack

Example of argument passing 2 – all floats

func2(float a, double b, float c, double d, float e);  // a in XMM0, b in XMM1, c in XMM2, d in XMM3, e pushed on stack

Example of argument passing 3 – mixed ints and floats

func3(int a, double b, int c, float d);  // a in RCX, b in XMM1, c in R8, d in XMM3

Example of argument passing 4 –__m64, __m128, and aggregates

func4(__m64 a, _m128 b, struct c, float d);  // ptr to a in RCX, ptr to b in RDX, ptr to c in R8, d in XMM3

2.3.2 Varargs

If the parameters are passed via varargs (i.e. ellipsis arguments), then essentially the normal parameter passing applies including spilling the 5th and subsequent arguments.  It is again the callee’s responsibility to dump arguments that have their address taken.  For floating point values only, both the integer and the floating point register will contain the float value in case the callee expects the value in the integer registers.
2.3.3 Unprototyped functions

For functions not fully prototyped, the caller will pass integer values as integers and floating point values as double precision.  For floating point values only, both the integer register and the floating point register will contain the float value in case the callee expects the value in the integer registers.

Examples:
func1();

func2()




// RCX = 2, RDX = XMM1 = 1.0, and R8 = 7

{

  func1(2, 1.0, 7);

}

2.3.4 Return Values

Return values that can fit into 64-bits are returned via RAX (including __m64 types), except for __m128, __m128i, __m128d, floats and doubles, which are returned in XMM0, and __m64 which is returned in mm0.  If the return value does not fit within 64 bits, then the caller assumes the responsibility of allocating and passing a pointer for the return value as the first argument.  Subsequent arguments are then shifted one argument to the right.  User defined types to be returned must be 1, 2, 4, 8, 16, 32, or 64 bits in length.






	
	

	
	

	
	

	
	

	
	

	
	


2.3.5 Caller/Callee Saved Registers
The registers RAX, RCX, RDX, R8, R9, R10, R11 are considered volatile and must be considered destroyed on function calls (unless otherwise safety-provable by analysis such as Whole Program Optimization).

The registers RBX, RBP, RDI, RSI, R12, R13, R14, and R15 are considered nonvolatile and must be saved and restored by a function that uses them.

2.3.6 Function Pointers
Function pointers are simply pointers to the label of the respective function.  There are no TOC requirements for function pointers.

2.3.7 Legacy floating point support
MMX and floating point stack registers (MM0-MM7/ST0-ST7) are considered volatile.  The legacy status word and control word are not considered volatile in that they must be saved and restored on context switches, but the callee may modify the values.  The callee is assumed to have left a valid value in the control word if the callee modified it.  The state of the legacy floating point will be such that it is appropriately saved and restored on context switches.  This means that the MMX and floating point stack registers will not be saved if it can be determined that they are volatile.  

2.3.8 MxCsr
The register state should also include MxCsr.  This register will be volatile in the same sense that the legacy floating point control word and status registers are.  The callee may modify the register and it will be assumed that the callee has left a valid value in the register.  This register is saved on entry to the system (a user mode to kernel mode transition) and reinitialized with the value expected for system code.  The system code uses floating point and has its own control/status value.  On exit from the system (a kernel mode to user mode translation) the user’s MxCsr is reloaded.

2.3.9 setjmp/longjump
TBD
































2.4 Stack Usage

2.4.1 Stack Allocation

A function’s prolog is responsible for allocating stack space for local variables, saved registers, stack parameters and register parameters.
The parameter area is always at the bottom of the stack (even if alloca is used), so that it will always be adjacent to the return address during any function call. It contains enough space to hold all the parameters needed by any function that may be called. Note that space is always allocated for the register parameters, even if the parameters themselves are never homed to the stack; a callee is guaranteed that space has been allocated for all its parameters. Home addresses are required for the register arguments so a contiguous area is available in case the called function needs to take the address of the argument list (va_list) or an individual argument. This area also provides a convenient place to save register arguments during thunk execution and as a debugging option (e.g., it makes the arguments easy to find during debugging if they are stored at their home addresses in the prolog code).
If space is dynamically allocated (alloca) in a function, then a nonvolatile register must be used as a frame pointer to mark the base of the fixed part of the stack and that register must be saved and initialized in the prolog. Note that when alloca is used, calls to the same callee from the same caller may have different home addresses for their register parameters.
The stack will always be maintained 16-byte aligned, except within the prolog (e.g. after the return address is pushed), and except where indicated in Section 2.4.3 for a certain class of frame functions.
The following is an example of the stack layout where function “A” calls a non-leaf function “B”. Function “A”’s prolog has already allocated space for all the register and stack parameters required by “B” at the bottom of the stack. The call pushes the return address and “B”’’s prolog allocates space for its local variables, non-volatile registers as well as the space needed for it to call functions. If “B” uses alloca, the space is allocated between the local variable/non-volatile register save area and the parameter stack area. 

[image: image3]











When the function “B” calls another function, the return address is pushed just below the home address for RCX.
2.4.2 DYNAMIC PARAMETER STACK AREA CONSTRUCTION

2.4.3 If a frame pointer is used, the option exists to dynamically create the parameter stack area. This is not currently done in the x86-64 compiler, so its discussion is deferred to section 11.1.1.

2.4.4 FUNCTION TYPES

There are basically two types of functions. A function that requires a stack frame is called a frame function. A function that does not require a stack frame is called a leaf function.

A leaf function is one that does not require a function table entry.  It cannot call any functions, allocate space, or save any nonvolatile registers.  It is allowed to leave the stack unaligned while it executes.

A frame function is a function that allocates stack space, calls other functions, saves nonvolatile registers, or uses exception handling. It also requires a function table entry.  A frame function requires a prolog and an epilog. A frame function can dynamically allocate stack space and can employ a frame pointer. A frame function has the full capabilities of this calling standard at its disposal.
If a frame function does NOT call another function then it is not required to align the stack (referenced in Section 2.4.1).
2.4.5 malloc alignment

Malloc is required to return memory on a 16-byte boundary.

2.4.6 alloca

TBD.

2.5 Prolog and Epilog

Every function that allocates stack space, calls other functions, saves nonvolatile registers, or uses exception handling must have a prolog whose address limits are described in the unwind data associated with the respective function table entry (see exception handling below). The prolog saves argument registers in their home addresses if required, pushes nonvolatile registers on the stack, allocates the fixed part of the stack for locals and temporaries, and optionally establishes a frame pointer. The associated unwind data must describe the action of the prolog and must provide the information necessary to undo the effect of the prolog code.

If the fixed allocation in the stack is more than one page (i.e., greater than 4096 bytes), then it is possible that the stack allocation could span more than one virtual memory page and, therefore, the allocation must be checked before it is actually allocated. A special routine that is callable from the prolog and which does not destroy any of the argument registers is provided for this purpose.

The preferred method for saving nonvolatile registers is to move them onto the stack before the fixed stack allocation. If the fixed stack allocation were performed before the nonvolatile registers were saved, then most probably a 32-bit displacement would be required to address the saved register area (according to AMD pushes of registers are just as fast as moves and will remain so for the foreseeable future in spite of the implied dependency between pushes). Nonvolatile registers can be saved in any order, however, the first use of a nonvolatile register in the prolog must be to save it.

The code for a typical prolog might be:

mov
 
[RSP + 8], RCX

push
R15

push
R14

push
R13

sub

RSP, fixed-allocation-size

lea

R13, 128[RSP]

...

This prolog stores the argument register RCX in its home location, saves nonvolatile registers R13-R15, allocates the fixed part of the stack frame, and establishes a frame pointer which points 128 bytes into the fixed allocation area (using an offset allows more of the fixed allocation area to be addressed with one byte offsets).

If the fixed allocation size is greater than or equal to one page of memory, then a helper function must be called before modifying RSP.  This helper, __chkstk, is responsible for probing the to-be-allocated stack range, to ensure that the stack is extended properly.  In that case, the prolog example above would instead be:

mov
 
[RSP + 8], RCX

push
R15

push
R14

push
R13

mov

RAX,  fixed-allocation-size

call
__chkstk

sub

RSP, RAX

lea

R13, 128[RSP]

...

The __chkstk helper will not modify any registers other than R10, R11, and the condition codes.  In particular, it will return RAX unchanged, and leave all non-volatile registers and argument-passing registers unmodified.

Epilog code exists at each exit to a function. Whereas there is normally only one prolog there can be many epilogs. Epilog code trims the stack to its fixed allocation size if necessary, deallocates the fixed stack allocation, restores nonvolatile registers by popping their saved values from the stack, and returns.

The epilog code must follow a strict set of rules in order for the unwind code to reliably unwind through exceptions and interrupts.  This reduces the amount of unwind data required, as no extra data is needed to describe each epilog.  Instead, the unwind code can determine that an epilog is being executed by scanning forward through a code stream to identify an epilog.

If no frame pointer is used in the function, then the epilog must first deallocate the fixed part of the stack, the nonvolatile registers are popped, and control is returned to the calling function.  For instance,

add

RSP, fixed-allocation-size

pop

R13

pop

R14

pop

R15

ret

If a frame pointer is used in the function, then the stack must be trimmed to its fixed allocation prior to the execution of the epilog.   This is technically not part of the epilog.  For instance, the following epilog could be used to undo the prolog used above:

lea

RSP, -128[R13]

; epilogue proper starts here

add

RSP, fixed-allocation-size

pop

R13

pop

R14

pop

R15

ret

In practice, when a frame pointer is used, there is no good reason to adjust RSP in two steps, so the following epilog would be used instead:

lea

RSP, fixed-allocation-size – 128[R13]

pop

R13

pop

R14

pop

R15

ret

These are the only legal forms for an epilog.  It must consist of either an “add RSP,constant” or “lea RSP,constant[FPReg]”, followed by a series of zero or more 8-byte register pops and a return.  No other code may appear.  In particular, nothing can be scheduled within an epilog, including loading of a return value.

Note that, when a frame pointer is not used, the epilog must use “add RSP,constant” to deallocate the fixed part of the stack.  It may not use “lea RSP,constant[RSP]” instead.  This restriction exists so the unwind code has fewer patterns to recognize when searching for epilogs.


Following these rules allows the unwind code to determine that an epilog is currently being executed, and to simulate execution of the remainder of the epilog to allow recreating the context of the calling function.

2.6 Exception Handling

2.6.1 Unwind data for exception handling, debugger support

2.6.1.1 struct RUNTIME_FUNCTION:

Table based exception handling requires a function table entry for all functions that allocate stack space or call another function (i.e. non-leaf functions).  Function table entries have the format:

	ULONG
	Function start address

	ULONG
	Function end address

	ULONG
	Unwind info address


The RUNTIME_FUNCTION structure must be DWORD aligned in memory.  All addresses are image relative, i.e., they are 32-bit offsets from the starting address of the image that contains the function table entry. 

2.6.1.2 struct UNWIND_INFO:

The unwind data info structure is used to record the effects a function has on the stack pointer, and where the non-volatile registers are saved on the stack:

	UBYTE: 3
	Version

	UBYTE: 5
	Flags

	UBYTE
	Size of prolog

	UBYTE
	Count of unwind codes

	UBYTE: 4
	Frame Register

	UBYTE: 4
	Frame Register offset (scaled)

	USHORT * n
	Unwind codes array

	ULONG
	Address of exception handler or chained unwind info (optional)

	variable
	Language-specific handler data (optional)


The UNWIND_INFO structure must be DWORD aligned in memory.  The meaning of each field is as follows:
Version: version number of the unwind data, currently 1.

Flags:  three flags are currently defined:

UNW_FLAG_EHANDLER

The function has an exception handler that should be called when looking for functions that need to examine exceptions.

UNW_FLAG_UHANDLER

The function has a termination handler that should be called when unwinding an exception.

UNW_FLAG_CHAININFO

This unwind info structure is not the primary one for the procedure.  Instead, the chained unwind info entry is the image-relative address of a previous RUNTIME_FUNCTION entry.  See below for an explanation of chained unwind info structures.  If this flag is set, then the UNW_FLAG_EHANDLER and UNW_FLAG_UHANDLER flags must be cleared.  Also, the frame register and fixed stack allocation fields must have the same values as in the primary unwind info.

Size of prolog: length of the function prolog in bytes.

Count of unwind codes: this is the number of slots in the unwind codes array.  Note that some unwind codes (e.g. UWOP_SAVE_NONVOL) require more than one slot in the array.

Frame register: if nonzero, then the function uses a frame pointer, and this field is the number of the nonvolatile register used as the frame pointer, using the same encoding described below for the operation info field of UNWIND_CODE nodes.

Frame register offset (scaled): if the frame register field is nonzero, then this is the scaled offset from RSP that is applied to the FP reg when it is established.  The actual FP reg is set to RSP + 16 * this number, allowing offsets from 0 to 240.  This permits pointing the FP reg into the middle of the local stack allocation for dynamic stack frames, allowing better code density through shorter instructions (more instructions can use the 8 bit signed offset form).

Unwind codes array: this is an array of items that explains the effect of the prolog on the non-volatile registers and RSP.  See the section on UNWIND_CODE for the meanings of individual items.  For alignment purposes, this array will always have an even number of entries, with the final entry potentially unused (in which case the array will be one longer than indicated by the count of unwind codes field).

Address of exception handler or chained unwind info: this is an image-relative pointer to either the function’s language-specific exception/termination handler (if flag UNW_FLAG_CHAININFO is clear and one of the flags UNW_FLAG_EHANDLER or UNW_FLAG_UHANDLER is set) or the chained unwind info (if flag UNW_FLAG_CHAININFO is set).

Language-specific handler data: this is the function’s language-specific exception handler data.  The format of this data is unspecified and completely determined by the specific exception handler in use.

2.6.1.3 struct UNWIND_CODE:

The unwind code array is used to record the sequence of operations in the prolog that affect the non-volatile registers and RSP.  Each code item has the following format:

	UBYTE
	Offset in prolog

	UBYTE: 4
	Unwind operation code

	UBYTE: 4
	Operation info


The array is sorted by descending order of offset in the prolog.

Offset in prolog: offset from the beginning of the prolog of the end of the instruction that performs this operation, plus 1 (i.e., the offset of the start of the next instruction).

Unwind operation code: 

Note: certain operation codes require an unsigned offset to a value in the local stack frame.  This offset is from the start (lowest address) of the fixed stack allocation.  If the Frame Register field in the UNWIND_INFO is zero, this offset is from RSP.  If the Frame Register field is nonzero, this is the offset from where RSP was located when the FP reg was established.  This equals the FP reg minus the FP reg offset (16 * the scaled frame register offset in the UNWIND_INFO).  If an FP reg is used, then any unwind code taking an offset must only be used after the FP reg is established in the prolog. 

For all opcodes except UWOP_SAVE_XMM128 and UWOP_SAVE_XMM128_FAR, the offset will always be a multiple of 8, since all stack values of interest are stored on 8 byte boundaries (the stack itself is always 16-byte aligned).  For operation codes that take a short offset (less than 512K), the final USHORT in the nodes for this code holds the offset divided by 8.  For operation codes that take a long offset (512K <= offset < 4GB), the final two USHORT nodes for this code hold the offset (in little-endian format).
For the opcodes UWOP_SAVE_XMM128 and UWOP_SAVE_XMM128_FAR, the offset will always be a multiple of 16, since all 128-bit XMM operations must occur on 16-byte aligned memory.  Therefore, a scale factor of 16 is used for UWOP_SAVE_XMM128, permitting offsets of less than 1M.
The unwind operation code is one of the following:

UWOP_PUSH_NONVOL (0)
1 node

Push a non-volatile integer register, decrementing RSP by 8.  The operation info is the number of the register.  Note that, due to the constraints on epilogs, UWOP_PUSH_NONVOL unwind codes must appear first in the prolog and correspondingly, last in the unwind code array.  This relative ordering applies to all other unwind codes except UWOP_PUSH_MACHFRAME.

UWOP_ALLOC_LARGE (1)
2 or 3 nodes

Allocate a large-sized area on the stack.  There are two forms.  If the operation info equals 0, then the size of the allocation divided by 8 is recorded in the next slot, allowing an allocation up to 512K – 8.  If the operation info equals 1, then the unscaled size of the allocation is recorded in the next two slots in little-endian format, allowing allocations up to 4GB – 8.

UWOP_ALLOC_SMALL (2)
1 node

Allocate a small-sized area on the stack.  The size of the allocation is the operation info field * 8 + 8, allowing allocations from 8 to 128 bytes. 

The unwind code for a stack allocation should always use the shortest possible encoding:

	Allocation Size
	Unwind Code

	8 to 128 bytes
	UWOP_ALLOC_SMALL

	136 to 512K-8 bytes
	UWOP_ALLOC_LARGE, operation info = 0

	512K to 4G–8 bytes
	UWOP_ALLOC_LARGE, operation info = 1


UWOP_SET_FPREG (3)
1 node

Establish the frame pointer register by setting the register to some offset of the current RSP.  The offset is equal to the Frame Register offset (scaled) field in the UNWIND_INFO * 16, allowing offsets from 0 to 240.  The use of an offset permits establishing a frame pointer which points to the middle of the fixed stack allocation, helping code density by allowing more accesses to use short instruction forms. Note that the operation info field is reserved and should not be used.
UWOP_SAVE_NONVOL (4)
2 nodes

Save a non-volatile integer register on the stack using a MOV instead of a PUSH.  This is primarily used for shrink-wrapping, where a non-volatile register is saved to the stack in a position that was previously allocated.  The operation info is the number of the register.  The scaled-by-8 stack offset is recorded in the next unwind operation code slot, as described in the note above.

UWOP_SAVE_NONVOL_FAR (5)
3 nodes

Save a non-volatile integer register on the stack with a long offset, using a MOV instead of a PUSH.  This is primarily used for shrink-wrapping, where a non-volatile register is saved to the stack in a position that was previously allocated.  The operation info is the number of the register.  The unscaled stack offset is recorded in the next two unwind operation code slots, as described in the note above.

UWOP_SAVE_XMM (6)
2 nodes

Save the low 64 bits of a non-volatile XMM register on the stack.  The operation info is the number of the register.  The scaled-by-8 stack offset is recorded in the next slot.

UWOP_SAVE_XMM_FAR (7)
3 nodes

Save the low 64 bits of a non-volatile XMM register on the stack with a long offset.  The operation info is the number of the register.  The unscaled stack offset is recorded in the next two slots.

UWOP_SAVE_XMM128 (8)
2 nodes

Save all 128 bits of a non-volatile XMM register on the stack.  The operation info is the number of the register.  The scaled-by-16 stack offset is recorded in the next slot.

UWOP_SAVE_XMM128_FAR (9)
3 nodes

Save all 128 bits of a non-volatile XMM register on the stack with a long offset.  The operation info is the number of the register.  The unscaled stack offset is recorded in the next two slots.

UWOP_PUSH_MACHFRAME (10)
1 node

Push a “machine frame.”  This is used to record the effect of a hardware interrupt or exception.  There are two forms.  If the operation info equals 0, the following has been pushed on the stack:

	RSP+32
	SS

	RSP+24
	Old RSP

	RSP+16
	EFLAGS

	RSP+8
	CS

	RSP
	RIP


If the operation info equals 1, then the following has instead been pushed:

	RSP+40
	SS

	RSP+32
	Old RSP

	RSP+24
	EFLAGS

	RSP+16
	CS

	RSP+8
	RIP

	RSP
	Error Code


This unwind code will always appear in a dummy prolog, which is never actually executed but instead appears before the real entrypoint of an interrupt routine, and exists only to provide a place to simulate the push of a machine frame.  UWOP_PUSH_MACHFRAME records that simulation, which indicates the machine has conceptually done the following:

Pop RIP return address from top of stack into Temp
Push SS

Push old RSP

Push EFLAGS

Push CS

Push Temp
Push Error Code (if op info equals 1)

The simulated UWOP_PUSH_MACHFRAME operation decrements RSP by 40 (op info equals 0) or 48 (op info equals 1).

Operation info: the meaning of these 4 bits depends upon the operation code.  To encode a General Purpose (integer) Register, the following mapping is used:

	0
	RAX

	1
	RCX

	2
	RDX

	3
	RBX

	4
	RSP

	5
	RBP

	6
	RSI

	7
	RDI

	8 to 15
	R8 to R15


2.6.1.4 Chained unwind info structures:

If the UNW_FLAG_CHAININFO flag is set, then an unwind info structure is a secondary one, and contains an image-relative pointer in the shared exception handler/chained info address field which points to the RUNTIME_FUNCTION entry pointing to the primary unwind info.


Chained info is useful in two situations.  First, it can be used for noncontiguous code segments, like those produced by BBT.  Using chained info can reduce the size of the necessary unwind info, since there is no need to duplicate the unwind codes array from the primary unwind info.
Chained info can also be used to handle shrink-wrapping of volatile register saves.  The compiler may choose to delay saving some volatile registers until outside of the function entry prolog.  This can be recorded by having primary unwind info for the portion of the function before the shrink-wrapped code, then setting up chained info with a non-zero size of prolog, where the unwind codes in the chained info reflect saves of the non-volatile registers.  In that case, the unwind codes will all be instances of UWOP_SAVE_NONVOL.  We will not support shrink-wrapping that saves non-volatile registers using a PUSH, nor shrink-wrapping that modifies RSP with an additional fixed stack allocation.

It is possible for an UNWIND_INFO item with UNW_FLAG_CHAININFO set to point to a RUNTIME_FUNCTION entry whose UNWIND_INFO item also has UNW_FLAG_CHAININFO set (multiple shrink-wrapping).  Eventually, following the chained unwind info pointers will arrive at an UNWIND_INFO item with UNW_FLAG_CHAININFO cleared, which is the primary UNWIND_INFO item pointing to the actual procedure entrypoint.

2.6.2 The unwind procedure:

The unwind code array is sorted into descending order.  When an exception occurs, the complete context is stored by the operating system in a context record.  The exception dispatch logic is then invoked, which repeatedly executes the following steps to find an exception handler.

1. Use the current RIP stored in the context record to search for a RUNTIME_FUNCTION table entry that describes the current function (or function portion, in the case of chained UNWIND_INFO entries).

2. If no function table entry is found, then we’re in a leaf function, and RSP will directly address the return pointer.  The return pointer at [RSP] is stored in the updated context, the simulated RSP is incremented by 8, and step 1 is repeated.

3. If a function table entry is found, RIP can lie within three regions a) in an epilog, b) in the prolog, or c) in code that may be covered by an exception handler.

4. Case a) If the RIP is within an epilog, then control is leaving the function, there can be no exception handler associated with this exception for this function, and the effects of the epilog must be continued to compute the context of the caller function.  To determine if the RIP is within an epilog, the code stream from RIP on is examined.  If that code stream can be matched to the trailing portion of a legitimate epilog, as described in section 2.5, then we are in an epilog, and the remaining portion of the epilog is simulated, with the context record updated as each instruction is processed.  After this, step 1 is repeated.

5. Case b) If the RIP lies within the prologue, then control has not entered the function, there can be no exception handler associated with this exception for this function, and the effects of the prolog must be undone to compute the context of the caller function.  The RIP is within the prolog if the distance from the function start to the RIP is less than or equal to the prolog size encoded in the unwind info.  The effects of the prolog are unwound by scanning forward through the unwind codes array for the first entry with an offset less than or equal to the offset of the RIP from the function start, then undoing the effect of all remaining items in the unwind code array.  Step 1 is then repeated.

6. Case c) If the RIP is not within a prolog or epilog and the function has an exception handler (UNW_FLAG_EHANDLER is set), then the language specific handler is called.  The handler scans its data and calls filter functions as appropriate.  The language specific handler can return that the exception was handled or that the search is to be continued.  It can also initiate an unwind directly.

7. If the language specific handler returns a handled status, then execution is continued using the original context record.

8. If there is no language specific handler or the handler returns a “continue search” status, then the context record must be unwound to the state of the caller.  This is accomplished by processing all of the unwind code array elements, undoing the effect of each.  Step 1 is then repeated. 

When chained unwind info is involved, these basic steps are still followed.  The only difference is that, while walking the unwind code array to unwind a prolog’s effects, once the end of the array is reached, we then link to the parent unwind info and walk the entire unwind code array found there.  This linking continues until we arrive at an unwind info without the UNW_CHAINED_INFO flag and finish walking its unwind code array.

The smallest set of unwind data is 8 bytes.  This would represent a function that only allocated 128 bytes of stack or less, and possibly saved one non-volatile register.  This is also the size of a chained unwind info structure for a zero-length prolog with no unwind codes.

2.6.3 The Language Specific Handler

The relative address of the language specific handler is present in the UNWIND_INFO whenever flags UNW_FLAG_EHANDLER or UNW_FLAG_UHANDLER are set.  As described in the previous section, the language specific handler is called as part of the search for an exception handler or as part of an unwind.  It has the following prototype:

typedef EXCEPTION_DISPOSITION (*PEXCEPTION_ROUTINE) (
    IN PEXCEPTION_RECORD ExceptionRecord,
    IN ULONG64 EstablisherFrame,
    IN OUT PCONTEXT ContextRecord,
    IN OUT PDISPATCHER_CONTEXT DispatcherContext
);

ExceptionRecord supplies a pointer to an exception record, which has the standard Win64 definition.

EstablisherFrame is the address of the base of the fixed stack allocation for this function.


ContextRecord points to the exception context at the time the exception was raised (in the exception handler case) or the current “unwind” context (in the termination handler case).

DispatcherContext points to the dispatcher context for this function.  It has the following definition:

typedef struct _DISPATCHER_CONTEXT {
    ULONG64 ControlPc;
    ULONG64 ImageBase;
    PRUNTIME_FUNCTION FunctionEntry;
    ULONG64 EstablisherFrame;
    ULONG64 TargetIp;
    PCONTEXT ContextRecord;
    PEXCEPTION_ROUTINE LanguageHandler;
    PVOID HandlerData;
} DISPATCHER_CONTEXT, *PDISPATCHER_CONTEXT;

ControlPc is the value of RIP within this function.  This is either an exception address or the address at which control left the establishing function.  This is the RIP that will be used to determine if control is within some guarded construct within this function (e.g. a __try block for __try/__except or __try/__finally).

ImageBase is the image base (load address) of the module containing this function, to be added to the 32-bit offsets used in the function entry and unwind info to record relative addresses.
FunctionEntry supplies a pointer to the RUNTIME_FUNCTION function entry holding the function and unwind info image-base relative addresses for this function.
EstablisherFrame is the address of the base of the fixed stack allocation for this function.
TargetIp TBD
ContextRecord points to the exception context, for use by the system exception dispatch/unwind code. 
LanguageHandler points to the language-specific language handler routine being called.

HandlerData points to the language-specific handler data for this function.

2.6.4 Unwind Data Definitions in C

The following is a C description of the unwind data:

typedef enum _UNWIND_OP_CODES {

    UWOP_PUSH_NONVOL = 0, /* info == register number */

    UWOP_ALLOC_LARGE,     /* no info, alloc size in next 2 slots */

    UWOP_ALLOC_SMALL,     /* info == size of allocation / 8 - 1 */

    UWOP_SET_FPREG,       /* no info, FP = RSP + UNWIND_INFO.FPRegOffset*16 */

    UWOP_SAVE_NONVOL,     /* info == register number, offset in next slot */

    UWOP_SAVE_NONVOL_FAR, /* info == register number, offset in next 2 slots */

    UWOP_SAVE_XMM,        /* info == XMM reg number, offset in next slot */

    UWOP_SAVE_XMM_FAR,    /* info == XMM reg number, offset in next 2 slots */

    UWOP_SAVE_XMM128,     /* info == XMM reg number, offset in next slot */

    UWOP_SAVE_XMM128_FAR, /* info == XMM reg number, offset in next 2 slots */

    UWOP_PUSH_MACHFRAME   /* info == 0: no error-code, 1: error-code */

} UNWIND_CODE_OPS;

typedef union _UNWIND_CODE {
    struct {
        UBYTE CodeOffset;

        UBYTE UnwindOp : 4;

        UBYTE OpInfo   : 4;
    };

    USHORT FrameOffset;
} UNWIND_CODE, *PUNWIND_CODE;

#define UNW_FLAG_EHANDLER  0x01
#define UNW_FLAG_UHANDLER  0x02
#define UNW_FLAG_CHAININFO 0x04
typedef struct _UNWIND_INFO {

    UBYTE Version       : 3;

    UBYTE Flags         : 5;

    UBYTE SizeOfProlog;

    UBYTE CountOfCodes;

    UBYTE FrameRegister : 4;

    UBYTE FrameOffset   : 4;

    UNWIND_CODE UnwindCode[1];

/*  UNWIND_CODE MoreUnwindCode[((CountOfCodes + 1) & ~1) - 1];

*   union {

*       OPTIONAL ULONG ExceptionHandler;

*       OPTIONAL ULONG FunctionEntry;

*   };

*   OPTIONAL ULONG ExceptionData[]; */

} UNWIND_INFO, *PUNWIND_INFO;

typedef struct _RUNTIME_FUNCTION {

    ULONG BeginAddress;

    ULONG EndAddress;

    ULONG UnwindData;

} RUNTIME_FUNCTION, *PRUNTIME_FUNCTION;
#define GetUnwindCodeEntry(info, index) \

    ((info)->UnwindCode[index])

#define GetLanguageSpecificDataPtr(info) \

    ((PVOID)&GetUnwindCodeEntry((info),((info)->CountOfCodes + 1) & ~1))

#define GetExceptionHandler(base, info) \

    ((PEXCEPTION_HANDLER)((base) + *(PULONG)GetLanguageSpecificDataPtr(info)))

#define GetChainedFunctionEntry(base, info) \

    ((PRUNTIME_FUNCTION)((base) + *(PULONG)GetLanguageSpecificDataPtr(info)))

#define GetExceptionDataPtr(info) \

2.7     ((PVOID)((PULONG)GetLanguageSpecificData(info) + 1)






2.8 Intrinsics and Inline Assembly
One of the constraints for the AMD64 compiler is to have no inline assembler support. This means that functions that cannot be written in C or C++ will either have to be written as subroutines or as intrinsic functions supported by the compiler. Certain functions are performance sensitive while others are not. Performance sensitive functions should be implemented as intrinsic functions. In general, this will be the same list of intrinsic functions implemented for ALPHA and the IA64, but will include AMD64 specific functions as well.

The intrinsics supported by the compiler are described in “Microsoft Visual C++ for x86-64”.
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2.10 Image Format

The executable image format is PE32+. Executable images (both dll’s and exe’s) are restricted to a maximum size of 2 gigabytes so relative addressing with a 32-bit displacement can be used to address static image data. This data includes the Import Address Table, string constants, static global data, etc.

2.11 Required Compiler and Assembler Features

2.11.1 Compiler

The AMD64 compiler will require pointer decorations to specify that the pointer only requires 32-bits of storage when it is in memory. When it is used as an actual pointer to access data, it is sign extended to 64-bit before being used. Having this feature is required in the AMD64 compiler so we can boot the 64-bit system using the 32-bit x86 loader.

2.11.2 Assembler

The AMD64 assembler must have the capability to declare and use exception handling
 along with epilog/prolog support, which is described in “x86-64 MASM”.
2.11.2.1 
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3. Compatibility

For the AMD64 schema, we have decided that there will be no 64/32 bit interaction support.  We will also not support inline assembly.

4. International Specifics

N/A

5. Dependencies 

N/A

6. Accessibility Specifics

N/A

7. Performance/Capacity Requirements

N/A

8. Testing Requirements

TBD

9. U.E. Requirements

TBD

10. Usability Testing Requirements

TBD
11. Features Reserved for Future Versions

11.1.1 DYNAMIC PARAMETER STACK AREA CONSTRUCTION

If (and only if) a frame pointer is used, the option exists to build the parameter stack areas dynamically instead of pre-allocating the maximum parameter stack area size as described above. If the stack parameter area is constructed dynamically, it is done so in the following manner:

· If the number of argument is greater than 4 and odd, 8 must be subtracted from RSP in order to maintain 16-byte alignment at the call instruction.

· If there are more than 4 arguments 5 to n are pushed onto the stack. RSP is 16 byte aligned after this.

· 4*8 is subtracted from RSP in order to form the Register Parameter Stack area.
· When the called function returns, the stack is pointer is cleaned up and made 16-byte aligned.
The stack is always 16-byte aligned when a call instruction is executed. When the call instruction pushes the return address of the, the stack is 8 mod 16 aligned. The prolog of the called function will re-align the stack as normal. Note that callee is completely insulated from the fact of whether the parameter area was constructed statically or dynamically by the caller.
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