GpGifCodec code documentation

If you are reading this then for some reason you need to work with the imaging gif decoder. This will be an introduction document on how it works and what you need to know to add to the code. A good place to start is the gif format itself. The structures to contain the headers are in the file giffile.h. A gif file has a series of 'chunks', some required and some not. Each is a distinct element in the gif. The grammar for the chunk organization, taken directly from the gif89 spec is listed below:

<GIF Data Stream> ::= Header <Logical Screen> <Data>* Trailer

<Logical Screen> ::= Logical Screen Descriptor [Global Color Table]

<Data> ::= <Graphic Block> |

 <Special-Purpose Block>

<Graphic Block> ::= [Graphic Control Extension] <Graphic-Rendering Block>

<Graphic-Rendering Block> ::= <Table-Based Image> |

 Plain Text Extension

<Table-Based Image> ::= Image Descriptor [Local Color Table] Image Data

<Special-Purpose Block> ::= Application Extension |

 Comment Extension

After looking through the data structures, proceed to gifcodec.hpp. This is the header for both the functions that implement the COM interfaces and also for the private functions and member variables needed to do the actual work. These functions are defined in gifcodec.cpp, gifdecoder.cpp, gifencoder.cpp and gifproc.cpp. As the encoder is rather straight forward I am going to mainly talk about the decoder. When a gif file is being read, the first decoder operation is InitDecoder which just initializes some variables. The following call is usually to GetImageInfo which fills out an ImageInfo structure containing the basic info (width, height) of the image being decoder. It also sets up an internal GifFileHeader structure for later use. If the gif client understands animation then the next functions that would be called would be SelectActiveFrame probably followed by GetProperties but as this is relatively easy to understand if you follow the rest of the code, I'm going to skip over it to more complex matters.

The next decoder function called is BeginDecode. It is another initialization function like InitDecoder but it is called once per frame. Decode is called next which calls DoDecode which does the brunt of the work (I will get to that in a second) and then next is EndDecode which just cleans things up after the frame is done.

The first thing that DoDecode does is read in the gif header if it has not been read in yet by GetImageInfo. Next, if the sink hasn’t been started it does that and initialized the GifFrameCache for animation. Then the actual gif reading starts. Chunks are read in and processed one at a time by the main loop. When the terminator chunk is found or if an error is encountered then the loop completes.

To read in a chunk, a single byte is read in. If that byte specifies an image chunk then it is decoded and if it is a terminator chunk then the loop exits. If an extension chunk is read then another byte is read to figure out which application chunk was read and then the correct application extension is processed is processed.

If the identifier specifies an image chunk then ProcessImageChunk (located in gifproc.cpp) is called. When trying to understand ProcessImageChunk, first read the comment block at the top of the file to understand the variable ‘gifstate’. Then go down to the main function and start from there. The first thing that happens is that the decoder reads in the image descriptor. This gives info about how the frame relates to the entire gif image. One thing that the descriptor specifies is whether the image has a palette of its own. If it does then the palette immediately follows and is read in, processed and sent to the cache. The current palette, whether it is the global one or a local palette is sent to the sink.

The byte specifying the code size is read next and given to the constructor of LZWDecompressor which was taken from MSO9 (without any changes) and is located in the lzwlib subdirectory. The way that the LZWDecompressor works is that it has 6 public members to do the buffer management. The LZWDecompressor client (us) allocates an input and an output buffer and sets m_pbIn to the input buffer address and m_pbOut to the output buffer address. m_cbIn and m_cbOut are set to the two buffers’ sizes, respectively. Then, we call Process() on the decoder and when it returns, either the file will be completely decompressed and the data located in the output buffer or m_fNeedInput or m_fNeedOutput will be true. If m_fNeedInput is true then m_pbIn is pointing to the end of the input buffer and m_cbIn is 0. m_cbOut will be equal to the number of free bytes left in the output buffer and m_pbOut will point to the next free byte in the buffer. We then need to unload the input buffer and give the decompressor a clean one. The respective opposite goes if m_fNeedOutput is true with one exception: if m_fNeedOutput is true, m_cbOut does not necessarily need to be 0. Since the decompressor does not respect scan lines, it is possible to run out of output buffer space while having an incomplete scan line and just needing a few more bytes to complete it. In this case, we have an overflow buffer (Overflow, defined in overflow.hpp) that we give to the decompressor to write into. When the decompressor writes enough data to finish off the scan line that we are trying to complete then we copy that data to the scan line and give it to the sink. The extra overflow in the overflow buffer beyond the data needed to finish the scan line is copied into the output buffer to be used in the next scan line. Anytime a scan line is completed then it is given to the sink if gifstate is 1 or 2, or it is held in the GifBuffer (gifbuffer.hpp, gifbuffer.cpp) until the end of the frame when GifBuffer.FinishFrame() is called. In these cases the whole image is sent to the sink at once.

This concludes my introduction to the GpGifCodec code. I hope that it is useful for you to read to understand my code. I apologize for any bad or inconvenient coding that I may have done while writing the codec. If you find something done strangely, please do me the favor and look at it twice before you decide that was done poorly because I tried to sacrifice code cleanliness for efficiency on several occasions, especially to avoid making extra copies of the image data. Thank you for reading this. Feel free to email me at alieberm@uiuc.edu if you have any questions.

-Aaron Lieberman

