IImagingFactory Interface

To start using the imaging library, the first thing a client application should do is to get the interface to an imaging factory object. This is done by calling CoCreateInstance with CLSID_ImagingFactory.

STDMETHOD(CreateImageFromStream)(

 IN IStream* stream,

 OUT IImage** image

);

STDMETHOD(CreateImageFromFile)(

 IN const WCHAR* filename,

 OUT IImage** image

);

STDMETHOD(CreateImageFromBuffer)(

 IN const VOID* buf,

 IN UINT size,

 IN BufferDisposalFlag disposalFlag,

 OUT IImage** image

);

These methods let the application create decoded image objects from external data sources: input stream, disk file, or resource data. When the decoded image object is created, it only keeps a reference to the external data source and doesn't immediately decode the image:

· If the data source is an input stream object, the decoded image object takes over the ownership of it and increment its refcount. The client application should Release the stream object after the CreateImageFromStream method successfully returns.

· If the data source is a disk file, the decoded image open it in read-only mode and allow shared-read access to it.

· If the data source is a memory buffer, then the client app can request the buffer to be automatically disposed when the decoded image object is released. disposalFlag parameter can be one of the following:

DISPOSAL_NONE – do nothing to the memory buffer when the image object is released

DISPOSAL_GLOBALFREE – release the memory buffer with GlobalFree

(buf parameter is an HGLOBAL in this case)

DISPOSAL_COTASKMEMFREE – release the memory buffer with CoTaskMemFree

DISPOSAL_UNMAPVIEW – release the memory buffer with UnmapViewOfFile

Note: If CreateImageFromResource fails, then the caller still has the ownership of the memory buffer no matter what disposalFlag is set to.

It's important to notice that decoded image objects are read-only. In particular, you can't modify the image data. But you can display it onto a destination graphics context or push its data into an image sink. Refer to the section on IImage interface for more details.

STDMETHOD(CreateNewBitmap)(

 IN UINT width,

 IN UINT height,

 IN PixelFormatID pixelFormat,

 OUT IBitmapImage** bitmap

);

This method lets the application create a new in-memory bitmap image object. Our bitmap image object supports the following interfaces:

IImage

IBitmapImage

IImageSink

Currently supported pixel formats are:

PIXFMT_1BPP_INDEXED - 1 bit-per-pixel indexed color bitmap

PIXFMT_4BPP_INDEXED - 4bpp indexed color

PIXFMT_8BPP_INDEXED - 8bpp indexed color

PIXFMT_16BPP_GRAYSCALE - 16bpp grayscale

PIXFMT_16BPP_RGB555 - 16bpp RGB 5-5-5 (blue in low-order bits)

PIXFMT_16BPP_RGB565 - 16bpp RGB 5-6-5

PIXFMT_16BPP_ARGB1555 - 16bpp ARGB 1-5-5-5

PIXFMT_24BPP_RGB - 24bpp RGB (blue in low-order byte)

PIXFMT_32BPP_RGB - 32bpp RGB (high order byte unused)

PIXFMT_32BPP_ARGB - 32bpp ARGB, non-premultiplied alpha

PIXFMT_32BPP_PARGB - 32bpp ARGB, premultiplied alpha

PIXFMT_48BPP_RGB - 48bpp RGB

PIXFMT_64BPP_ARGB - 64bpp ARGB, non-premultiplied alpha

PIXFMT_64BPP_PARGB - 64bpp ARGB, premultiplied alpha

Pixel formats that support 16-bit per color component are called extended formats. Two 32bpp ARGB (both premultiplied and non-premultiplied alpha) formats and two 64bpp ARGB formats are called canonical formats. Color values for extended pixel formats are interpreted in XsRGB linear space (exactly definition is pending). Color values for other pixel formats are interpreted in sRGB space. Alpha values are always interpreted in linear space.

STDMETHOD(CreateBitmapFromImage)(

 IN IImage* image,

 IN OPTIONAL UINT width,

 IN OPTIONAL UINT height,

 IN OPTIONAL PixelFormatID pixelFormat,

 IN InterpolationHint hints,

 OUT IBitmapImage** bitmap

);

This method creates an in-memory bitmap image object from another image object. Optional width and height parameters specify the desired bitmap image dimension in pixels. If they are 0, the the new bitmap image will have the same dimension as the source image. Optional pixelFormat parameter specifies the desired pixel format. If it's PIXFMT_DONTCARE, the new bitmap image will have the same pixel format as the source image.

If width and height parameters are specified, then we have a couple of cases to consider:

· The source image is scalable (e.g. a metafile): We simply ask the source image to scale its data to the specified pixel dimension.

· The source image is not scalable (e.g. a bitmap): We'll scale the source image ourselves to the specified dimension, using the built-in scaler. The hints parameter specifies which interpolation algorithm to use in this case.

This method can actually be quite handy, despite its innocent-looking name. For example, you can use it to convert a decoded image to an in-memory bitmap image (perhaps so that you can modify the image data). Or you can use it to convert a bitmap image object to another one in a different pixel format.

STDMETHOD(CreateBitmapFromBuffer)(

 IN BitmapData* bitmapData,

 OUT IBitmapImage** bitmap

);

This method creates a bitmap image object on top of an application memory buffer. The application is responsible for allocating and freeing the memory. And it must ensure the memory is valid throughout the lifetime of the bitmap image object. Maybe we should have a way to allow applications to give us the ownership of the memory so that we can free the memory when the bitmap image object is freed.
STDMETHOD(CreateImageDecoder)(

 IN IStream* stream,

 IN DecoderInitFlag flags,

 OUT IImageDecoder** decoder

);

This method creates and initializes an IImageDecoder object that can process the specified input data stream. We'll take care of locating the appropriate decoder based on the header bytes in the input data stream.

Flags parameter contains various flag bits to specify the options for creating the image decoder:

· DECODERINIT_NOBLOCK

If this bit is set and the decoder can support nonblocking behavior, then the decoder object will be initialize to have the nonblocking behavior.

· DECODERINIT_BUILTIN1ST

If this bit is set, then we’ll look for built-in decoders first (i.e. ones that are included inside imaging.dll) before searching for other plugin decoders.

NOTE: There is still some debate over whether IStream is the right thing for us to use here. An alternative is to have something like an IInputBuffer interface which would have the following methods:

Seek(offset) - provide random seek capability

GetDataPtr(N) - get a pointer to the next N bytes of input data, starting from the current offset

STDMETHOD(CreateMemoryPropertyStore)(

 IN OPTIONAL HGLOBAL hmem,

 OUT IPropertySetStorage** propSet

);

This is a convenience method intended to help image decoders. It allows you to create an object that implements IPropertySetStorage interface on top of a memory buffer. The optional hmem parameter must be a handle returned by GlobalAlloc. The handle must be allocated as movable and non-discardable. When this method returns successful, we have taken over the ownership of the memory handle. When propSet is Released, the memory will be automatically freed with GlobalFree. If hmem is NULL, then we’ll allocate the memory ourselves.

STDMETHOD(CreateImageEncoderToStream)(

 IN const CLSID* clsid,

 IN IStream* stream,

 OUT IImageEncoder** encoder

);

STDMETHOD(CreateImageEncoderToFile)(

 IN const CLSID* clsid,

 IN const WCHAR* filename,

 OUT IImageEncoder** encoder

);

This method creates and initializes an IImageEncoder object to output to a stream or a disk file. clsid parameter specifies the class ID for the encoder COM component.

STDMETHOD(GetInstalledDecoders)(

 OUT UINT* count,

 OUT ImageCodecInfo** decoders

);

STDMETHOD(GetInstalledEncoders)(

 OUT UINT* count,

 OUT ImageCodecInfo** encoders

);

These methods let the application get the list of installed encoders or decoders. The pointer returned in decoders or encoders parameters points to an array of ImageCodecInfo structures. When application is done with it, it should call CoTaskMemFree to free the memory.

typedef struct tagImageCodecInfo

{

 CLSID Clsid;

 GUID FormatID;

 const WCHAR* CodecName;

 const WCHAR* FormatDescription;

 const WCHAR* FilenameExtension;

 const WCHAR* MimeType;

 UINT Flags;

 UINT SigCount;

 UINT SigSize;

 const BYTE* SigPattern;

 const BYTE* SigMask;

} ImageCodecInfo;

Clsid - Class ID for the encoder / decoder COM component

FormatID - The file format ID that the encoder / decoder supports

CodecName - Name of the encoder / decoder

FormatDescription - Description string for the supported file format

This is intended to be used for the filter string in OPENFILENAME.lpstrFilter.

e.g. “Windows Bitmap”

FilenameExtension - Filename extensions for the file format

Multiple extensions are separated by semicolons.

e.g. “*.BMP;*.DIB”

MimeType - MIME type for the file format

e.g. “image/bmp”

Flags - Miscellaneous flags

IMGCODEC_ENCODER - whether the codec is an encoder

IMGCODEC_DECODER - whether the codec is a decoder, some codecs are both encoders and decoders

IMGCODEC_SUPPORT_BITMAP - whether the codec supports bitmap images

IMGCODEC_SUPPORT_VECTOR - whether the codec supports scalable images

IMGCODEC_SEEKABLE_ENCODE - whether the encoder requires seekable output stream

IMGCODEC_BLOCKING_DECODE - whether the decoder has blocking behavior during decode

IMGCODEC_BUILTIN - whether the codec is built into the imaging library

IMGCODEC_SYSTEM - whether the codec is available system-wide to all users

IMGCODEC_USER - whether the codec is only available to the current user

SigCount – Number of file header signatures

This is normally 1, but could be more for file formats that have multiple signatures. In the latter case, you should set SigSize to the largest of all file header signatures.

SigSize – Number of bytes for each file header signature

This is only required for decoders.

SigPattern - Expected file header signature pattern.

This array should contain sigCount*sigSize bytes – the first sigSize bytes is for the first signature, the second sigSize bytes is for the second signature, and so on.

SigMask - Mask applied to the file header bytes before they're compared to the header pattern

Again, this array should contain sigCount*sigSize bytes.

STDMETHOD(InstallImageCodec)(

 IN const ImageCodecInfo* codecInfo

);

STDMETHOD(UninstallImageCodec)(

 IN const WCHAR* codecName,

 IN UINT flags

);

These methods are mostly intended for third-party codec developers. To install an external codec DLL, you should perform the regular COM component registration stuff on your DLL. Then call InstallImageCodec method to complete the installation. To uninstall a codec DLL, you should reverse the steps: call UninstallImageCodec and then do the regular COM component deregistration.

Information about installed codecs are kept under the registry key ROOT\Software\Microsoft\Imaging\Codecs where ROOT is:

HKEY_CURRENT_USER: codecs are only available to the current user.

HKEY_LOCAL_MACHINE: codecs are available to all users on the system.

Under the top level key, each subkey corresponds to one installed codec. The name of the subkey is the same as ImageCodecInfo.codecName. Values under the subkey and their types are listed below. Each value correspond to a field in ImageCodecInfo structure.

CLSID: REG_BINARY

Format ID: REG_BINARY

File Type Description: REG_SZ

Filename Extension: REG_SZ

MIME Type: REG_SZ

Flags: REG_DWORD

Signature Count: REG_DWORD

Signature Size: REG_DWORD

Signature Pattern: REG_BINARY

Signature Mask: REG_BINARY

IImage Interface

This is the basic interface to an image object. It allows applications to display the image onto a destination graphics context, push image data into an image sink, and to access image properties and metadata. Our decoded image objects and in-memory bitmap image objects support IImage interface.

STDMETHOD(GetPhysicalDimension)(

 OUT SIZE* size

);

This method returns the image dimension in a device-independent unit – the Windows himetric unit, 0.01mm. We cannot return pixel unit here because the image could be scalable such as a metafile.

STDMETHOD(GetImageInfo)(

 OUT ImageInfo* imageInfo

);

This method returns some basic information about the image object. See the section on IImageSink interface for more details about ImageInfo structure.

For ImageInfo.rawDataFormat field, we’ll have a list of predefined IDs for well-known file formats (see IMGFMT_* constants). The special ID IMGFMT_MEMORYBMP means the image is an in-memory bitmap image.

ImageInfo.flags field is divided into two halves: The bottom half contains non-modifiable information about the image object. The top half are various hints associated with the image.

STDMETHOD(SetImageFlags)(

 IN UINT flags

);

These methods let application set various image flags. Only the top half of the image flag is settable.

IMGFLAG_READONLY – whether image is read-only
IMGFLAG_CACHING – whether caching is enabled

This is a hint. Image object has the final say in deciding whether or how the image is cached.

STDMETHOD(Draw)(

 IN HDC hdc,

 IN const RECT* dstRect,

 IN OPTIONAL const RECT* srcRect

);

This method displays the image onto the specified area of a destination graphics context. srcRect parameter is optional and is specified in 0.01mm units. If it’s NULL, the entire image is displayed.

The destination graphics context is currently specified as an HDC. But we’ll eventually use an interface instead – something like an IGraphics interface from which you can get HDC, DirectDraw surface, GDI+ graphics context, etc.

STDMETHOD(PushIntoSink)(

 IN IImageSink* sink

);
This method tells the image object to push its data into an image sink. For details on how the data transfer occurs between the image object and the image sink, see the section on IImageSink interface.

STDMETHOD(GetThumbnail)(

 IN OPTIONAL UINT thumbWidth,

 IN OPTIONAL UINT thumbHeight,

 OUT IImage** thumbImage

);

This method returns a thumbnail image for the current image object. If the image object contains thumbnail data, then a thumbnail image is created from that. Otherwise, we’ll generate a thumbnail image from the image itself on-the-fly.

Optional thumbWidth and thumbHeight parameters specify the desired thumbnail size (in pixel units). If they are both 0, then the thumbnail size will be determined by the image object.

STDMETHOD(GetProperties)(

IN DWORD mode,

 OUT IPropertySetStorage** propSet

);
This method retrieves the metadata / properties associated with the image object. mode Parameter specifies the desired access mode, which can be: STGM_READ, STGM_WRITE, or STGM_READWRITE.

After this method successfully returns, the client application can use the methods in IPropertySetStorage interface to access individual property set and the methods in IPropertyStorage interface to access individual property. After the app is done using the property data, it should call Release on the returned IPropertySetStorage object.

The return value from this method is computed as follows:

1. if (the image object doesn’t support properties)

*propSet = NULL;

return E_NOTIMPL;

2. else if (mode == STGM_READ)

if (there are currently no image property sets)

*propSet = NULL;

else

*propSet = current image property sets

return S_OK;

3. else

if (there are currently no image property sets)

*propSet = create new empty image property sets

else

*propSet = current image property sets

return S_OK;

Standard property sets and properties – TBD

IBitmapImage Interface

This interface allows applications to access pixel data of a bitmap image object. It’s implemented by our in-memory bitmap image object.

STDMETHOD(GetSize)(

 OUT SIZE* size

);

This method returns the bitmap image dimension in pixels.

STDMETHOD(GetPixelFormatID)(

 OUT PixelFormatID* pixelFormat

);

This method returns the pixel data format of the bitmap image object. The format is one of the predefined PIXFMT_* constants.

STDMETHOD(LockBits)(

 IN const RECT* rect,

 IN UINT flags,

 IN PixelFormatID pixelFormat,

 IN OUT BitmapData* lockedBitmapData

);

This method lets applications lock an area of a bitmap image object.

flags parameter can be a combination of the following constants. Either IMGLOCK_READ or IMGLOCK_WRITE must be present.

IMGLOCK_READ – lock image data for reading

IMGLOCK_WRITE – lock image data for writing

IMGLOCK_USERINPUTBUF – application is supplying the memory buffer for the pixel data

pixelFormat parameter specifies which pixel format the application wants. If it’s PIXFMT_DONTCARE, then the current pixel format of the bitmap image object is used. Bitmap image objects don’t have to support all pixel formats. But they’re required to support the canonical pixel formats.

If IMGLOCK_USERINPUTBUF bit of flags parameter is set, then lockedBitmapData->Scan0 and lockedBitmapData->Stride fields must contain valid values on input.

Upon successful return from this method, lockedBitmapData will contain information about locked pixel data. The application must call UnlockBits method when it’s done using the pixel data. Concurrent locks are not allowed on the same bitmap image object.

typedef struct tagBitmapData

{

 UINT Width;

 UINT Height;

 INT Stride;

 PixelFormatID PixelFormat;

 VOID* Scan0;

 UINT_PTR Reserved;

} BitmapData;

This structure contains information to describe pixel data for a rectangular area of bitmap images.

Width – width of the bitmap image area

Height – height of the bitmap image area

Stride – number of bytes from one scanline of the bitmap area to the next

This can be a negative value for bottom-up bitmap images.

PixelFormat – pixel data format

Scan0 – points to the beginning of the first scanline

Reserved – reserved: application should sets it to 0 before calling LockBits and shouldn’t touch it afterwards

STDMETHOD(UnlockBits)(

 IN const BitmapData* lockedBitmapData

);

This method unlocks an area of the bitmap image object locked by a previous LockBits call.

STDMETHOD(GetPalette)(

 OUT ColorPalette** palette

);

STDMETHOD(SetPalette)(

 IN const ColorPalette* palette

);

These methods let applications get/set color palettes associated with a bitmap image object. For SetPalette call, a copy of the input color palette is made and attached to the bitmap image. For GetPalette call, a copy of the bitmap image’s current palette is returned. Application is responsible for freeing the pointer to the returned color palette via CoTaskMemFree.

For bitmap images in indexed color pixel format:

PIXFMT_1BPP_INDEXED

PIXFMT_4BPP_INDEXED

PIXFMT_8BPP_INDEXED

a color palette is required. If none is specified, we’ll use an appropriate default color palette.

For bitmap images in other pixel formats, a color palette is optional. If one is supplied, we may use it when the bitmap image is displayed onto a indexed color graphics context or when the image is converted to an indexed color pixel format.

typedef struct tagColorPalette

{

 UINT Flags;

 UINT Count;

 ARGB Entries[1];

} ColorPalette;

Flags – Miscellaneous flag bits

PALFLAG_HASALPHA – palette contains transparency

PALFLAG_GRAYSCALE – palette contains only grayscale colors

PALFLAG_HALFTONE – palette is used for halftoning

Count – Number of palette entries

Entries – Color values for palette entries

IImageDecoder Interface

This is the lower level interface to image decoder objects. Many of the simpler applications don’t have to work with decoder objects directly and can work with the higher level decoded image objects instead. More sophisticated applications may want to use the IImageDecoder interface to have finer control over the interaction with the decoder objects.

STDMETHOD(InitDecoder)(

 IN IStream* stream,

 IN DecoderInitFlag flags

);

This method initializes the image decoder object with an input data stream. The decoder can assume the input stream is always seekable. Once the decoder object is initialized with a stream, it's associated with that stream until TerminateDecoder method is called.

flags parameter specifies how the decoder should be initialized.

· DECODERINIT_NOBLOCK

 If this bit is set, the decoders should have the non-blocking behavior: i.e. when they run out of input data, they should return E_PENDING from the following methods:

Decode

GetImageInfo

GetProperties

Other methods???

Notice that this flag is has no effect on blocking decoders, i.e. the ones with IMGCODEC_BLOCKING_DECODE bit set in their ImageCodecInfo.Flags.

See the notes in IImagingFactory::CreateImageDecoder section about whether to use IStream or not.

STDMETHOD(TerminateDecoder)();

This method is called to unassociate the image decoder object with its input data stream. After calling this method, applications could call InitDecoder again to associate another stream with the decoder object.

STDMETHOD(BeginDecode)(

 IN IImageSink* sink,

 IN OPTIONAL IpropertySetStorage** newPropSet

);

This method is called to start decoding the currently selected frame. The sink parameter specifies the image sink object that will receives the image data. See the section on IImageSink interface for more details.

newPropSet is optional. If it’s not NULL, the image decoder should use the specified image property sets instead of its own image property sets when calling sink->PushProperties method.

STDMETHOD(Decode)();

This method tells the decoder object to continue decoding the current frame. A non-blocking decoder (one that doesn't have IMGCODEC_BLOCKING_DECODE flag set) should return E_PENDING when it runs out of input data. Here is what an application might do to decode an image frame:

IImageDecoder* decoder;

IImageSink* sink;

HRESULT hr;

hr = decoder->BeginDecode(sink, NULL);

if (FAILED(hr)) handle error;

for (;;)

{

 hr = decoder->Decode();

 if (hr == E_PENDING)

 do something else;

 else if (FAILED(hr))

 handle error, break;

 else

 decoding successful, break;

}

decoder->EndDecode(hr);

STDMETHOD(EndDecode)(

 IN HRESULT statusCode

);

This method tells the decoder object to stop decoding the current frame. The return value from EndDecode method should be computed as follows:

if (decoder detected new error in EndDecode)

return the new error code

else

return the statusCode that was passed in

STDMETHOD(QueryFrameDimensions)(

 OUT UINT* count,

 OUT GUID** dimensionIDs

);

STDMETHOD(GetFrameCount)(

 IN const GUID* dimensionID,

 OUT UINT* count

);

STDMETHOD(SelectActiveFrame)(

 IN const GUID* dimensionID,

 IN UINT frameIndex

);

These methods are intended for working with multi-frame images. Multi-frame images are accessed via multi-dimensional indices. Our interface can support arbitrary number of dimensions in non-rectangular arrangements. For example, in the following picture:

We have a 3-page image and the second page has two representations in different resolution. In real-life, most apps probably will only have to deal with one-dimensional indices. There are a set of predefined dimensions:

FRAMEDIM_TIME - time dimension

FRAMEDIM_RESOLUTION - multi-res dimension

FRAMEDIM_PAGE - multi-page dimension

QueryFrameDimensions method returns the total number of frame dimensions. The most significant dimension comes first followed by less significant dimensions. GetFrameCount method returns the number of frames in the specified dimension. SelectActiveFrame method is used to select an active image frame.

Here is what an application might do do select Frame2.2 in the example above:

call QueryFrameDimension method

returns 2 dimensions: FRAMEDIM_PAGE followed by FRAMEDIM_RESOLUTION

call GetFrameCount(FRAMEDIM_PAGE)

returns 3

call SelectActiveFrame(FRAMEDIM_PAGE, 1)

frame index is zero-based

call GetFrameCount(FRAMEDIM_RESOLUTION)

returns 2

call SelectActiveFrame(FRAMEDIM_RESOLUTION, 1)

selects Frame2.2

STDMETHOD(GetImageInfo)(

 OUT ImageInfo* imageInfo

);

This method asks the decoder to return basic information about the image. The information returned in the imageInfo should be the same as what the decoder object would pass to IImageSink::BeginSink. See the section on IImageSink for more details.

STDMETHOD(GetThumbnail)(

 IN OPTIONAL UINT thumbWidth,

 IN OPTIONAL UINT thumbHeight,

 OUT IImage** thumbImage

);

This method asks the decoder for a thumbnail image. If the image doesn’t contain thumbnail data, the decoder should return an error code. Optional thumbWidth and thumbHeight parameters specify the desired thumbnail size (in pixel units). If they are both 0, then the decoder is free to choose the thumbnail size. Note that the decoder is not required to return a thumbnail image that has the exact size as what’s requested. The requested thumbnail size is used only as a hint.

STDMETHOD(GetProperties)(

 OUT IPropertySetStorage** propSet

);

This method asks the decoder to return the metadata / properties associated with the image. After the method successfully returns, the calling application owns the returned IPropertySetStorage object.

The return value from this method should be computed as follows:

1. if (the decoder doesn’t support properties)

*propSet = NULL;

return E_NOTIMPL;

2. else if (the image doesn’t have any properties)

*propSet = NULL;

return S_OK;

4. else

*propSet = create image property sets from image data

return statusCode;

3. IImageSink Interface

This interface allows an image source (e.g. an image decoder) and an image sink to exchange data. The most important interaction happens during BeginSink method, where the source and the sink negotiates various data transfer parameters.

STDMETHOD(BeginSink)(

 IN OUT ImageInfo* imageInfo,

 OUT OPTIONAL RECT* subarea

);

The image source calls this method when it's about to start pushing image data to the sink. Begin the call, the source should fill out the ImageInfo structure as follows:

typedef struct tagImageInfo

{

 GUID RawDataFormat;

 PixelFormatID PixelFormat;

 UINT Width, Height;

 UINT TileWidth, TileHeight;

 double Xdpi, Ydpi;

 UINT Flags;

} ImageInfo;

RawDataFormat - file format ID for the native image data

e.g. IMGFMT_JPEG, IMGFMT_PNG, etc.

use IMGFMT_MEMORYBMP for in-memory bitmap image source

PixelFormat - natural pixel format for the source

use PIXFMT_DONTCARE if source doesn't have a preference

Width, Height - source dimension

Xdpi, Ydpi - source image resolution

TileWidth, TileHeight - preferred tile size for the source

Flags - Miscellaneous flags about the image source

SINKFLAG_SCALABLE - whether source image is fully scalable

SINKFLAG_PARTIALLY_SCALABLE – whether source image is partially scalable

SINKFLAG_HASALPHA - whether source image contains transparency
SINKFLAG_TOPDOWN - whether source prefers to supply image data in top-down order

SINKFLAG_BOTTOMUP - whether source prefers to supply data in bottom-up order

SINKFLAG_FULLWIDTH - whether source prefer to supply data in bands (in fully scanlines)

SINKFLAG_MULTIPASS - whether source wants to supply data in multi-passes

SINKFLAG_COMPOSITE - whether source wants to composite over existing image data in the sink

Upon successful return from this method, the sink should fill out the ImageInfo structure as follows:

RawDataFormat - The file format ID requested by the source if the sink can take raw image data in that format

or IMGFMT_MEMORYBMP if the sink refuses to take the raw image data from the source.

In the former case, the source should then call PushRawData method to pass raw image data to the sink.

In the latter case, the source should call PushPixelData or Get/ReleasePixelData buffer.

PixelFormat - The pixel format preferred by the sink.

This may be the same format as what's requested by the source. But that's not required to be the case.

The source can either supply pixel data in the format requested by the sink.

Or it can supplied pixel data in one of the canonical pixel formats (which all sinks are required to support).

Width, Height -

Xdpi, Ydpi -

These are normally left unchanged by the sink. But if the source has set SINKFLAG_SCALABLE flag, then

the sink can modify Width and Height values to request the source to scale the source image to a new dimension. If the sink changes width and height values, it should change Xdpi and Ydpi values accordingly.

If the source has set SINKFLAG_PARTIALLY_SCALABLE, then the sink can modify the Width and Height values to tell the source the ideal width and height for the sink. The source will then call BeginSink again with the closest width and height the source can supply. When BeginSink is called for the second time, the SINKFLAG_PARTIALLY_SCALABLE flag will be clear. If the sink doesn’t want to have its BeginSink called twice, it should leave the Width and Height values unchanged and also clear the SINKFLAG_PARTIALLY_SCALABLE flag.

TileWidth, TileHeight - Preferred tile sink by the sink.

If SINKFLAG_FULLWIDTH flag is set, then TileWidth must be the same as the Width and TileHeight is the preferred band height. Notice that tile size information is used as hint for potential perf gain. The source is not required to use the exact tile size requested by the sink.

Flags -

SINKFLAG_SCALABLE - left unchanged

SINKFLAG_PARTIALLY_SCALABLE – see the paragraph above about Width and Height fields

SINKFLAG_HASALPHA - If set by the source, then the sink can clear it to indicate that the sink cannot support alpha. But even in that case, the source can still supply alpha to the sink. The sink is free to do whatever it chooses with the alpha information (e.g. simply discard it).
SINKFLAG_TOPDOWN - whether the sink wants the source to supply pixel data in top-down order

SINKFLAG_FULLWIDTH - whether the sink wants data in bands

All sources are required to support data transfer in top-down banding order, even if that's not their preferred order.

SINKFLAG_BOTTOMUP - left unchanged

SINKFLAG_MULTIPASS - If set by the source, the sink can clear it to indicate that it doesn't support multipass. In that case, the source is required to handle multi-pass on its own and give image data to the sink in a single pass. If the sink indicates it can support multipass but also requires top-down order, then the source must supply data one entire pass after another and for each pass one band after another with no gaps in between.

SINKFLAG_COMPOSITE - left unchanged

If set by the source and the sink can't support compositing behavior, the sink should return failure from BeginSink method.

SINKFLAG_WANTPROPS – The sink can set this flag to indicate to the source that it’s interested in getting image metadata /properties (i.e. it wants to get the PushProperties call).

The optional subarea parameter is used for partial decoding if both the image source and sink can supported. If the image source can support partial image decoding, it will pass a non-NULL subarea parameter. In that case, the image sink must fill in the RECT to tell the source which portion of the image to decode. If the sink doesn’t want partial image, it would fill in the RECT to include the entire source image.

STDMETHOD(EndSink)(

 IN HRESULT statusCode

);

This method is called when the image source is done interacting with the sink. The return value from EndSink method should be computed as follows:

if (new error is detected in EndSink)

return new error code

else

return the statusCode that was passed in

STDMETHOD(SetPalette)(

 IN const ColorPalette* palette

);

The source calls this method to pass color palette information to the sink. This method must be called before any image data transfer takes place.

STDMETHOD(PushProperties)(

 IN IPropertySetStorage* propSet

);

The source calls this method to pass image properties to the sink. This should only happen when the sink indicates that it wants property data during BeginSink negotiation. If the sink doesn’t want property data but PushProperties is called anyway, then the sink should handle it gracefully (e.g. ignore the property data and return success).

The sink should treat the property data as read-only. It can assume the lifetime of the IPropertySetStorage object will last until EndSink is called.

STDMETHOD(PushRawData)(

 IN const VOID* buffer,

 IN UINT bufsize

);

The source calls this method to pass raw image data to the sink. It should be called if and only if the negotiation in BeginSink resulted in an agreement to do raw image data transfer.

STDMETHOD(PushPixelData)(

 IN const RECT* rect,

 IN const BitmapData* bitmapData,

 IN BOOL lastPass

);

STDMETHOD(GetPixelDataBuffer)(

 IN const RECT* rect,

 IN PixelFormatID pixelFormat,

 IN BOOL lastPass,

 OUT BitmapData* bitmapData

);

STDMETHOD(ReleasePixelDataBuffer)(

 IN const BitmapData* bitmapData

);

The source calls these methods to pass image pixel data to the sink. They should be called if and only if the negotiated format in BeginSink was IMGFMT_MEMORYBMP.

The source already has the pixel data in memory in the correct pixel format, then it can just call PushPixelData to pass a pointer to the pixel data directly to the sink.

Otherwise, the source calls GetPixelDataBuffer method to ask the sink to allocate memory for the data transfer. Then it fills the buffer with the pixel values. Finally it calls ReleasePixelDataBuffer to tell the sink to take the pixel data.

lastPass parameter tells the sink this is the last pass over the specified image area.

IImageEncoder Interface

This interface is used for encoding images.

STDMETHOD(InitEncoder)(

 IN IStream* stream

);

This method initializes an image encoder object and associates it with an output stream. If the encoder requires a seekable stream (IMGCODEC_SEEKABLE_ENCODE flag is set) and the stream is not seekable, then the encoder should fail this call.

STDMETHOD(TerminateEncoder)();

Unattach the encoder object from an output stream. After calling this method, applications may call InitEncoder again with a different output stream.

STDMETHOD(GetEncodeSink)(

 OUT IImageSink** sink

);

This method asks the encoder object to return an IImageSink interface that can be used to encode the next image frame. After getting the image sink interface, application can then use it to push image data to the encoder. After the frame is encoded, application should call sink->Release.

STDMETHOD(SetFrameDimension)(

 IN const GUID* dimensionID

);

This method is used for encoding multi-frame images. To output the multi-frame image used as example in IImageDecoder section, an application might use the following sequence:

encoder->SetFrameDimension(FRAMEDIM_PAGE);

encode page 1

encoder->SetFrameDimension(FRAMEDIM_RESOLUTION)

encode page 2.1

encode page 2.2

encoder->SetFrameDimension(FRAMEDIM_PAGE);

encode page 3

STDMETHOD(QueryEncoderParam)(

 OUT EncoderParams** ppParams

);
This method is used for querying the capability of the current encoder.

Here “EncoderParams” is defined as:

typedef struct tagEncoderParams

{

 UINT Count;

 EncoderParam Params[1];

} EncoderParams;

where Count is the number of EncoderParam structure.

ppParams is a pointer points to “Count” EncoderParam structures.

typedef struct tagEncoderParam

{

 GUID paramGuid;

 Char* Value;

} EncoderParam;
paramGuid is one of the predefined GUIDs. Here are some predefined values:

ENCODER_COMPRESSION-----Compression method

ENCODER_COLORDEPTH------Color depth

ENCODER_SCANMETHOD-----Interlaced or non-interlaced

ENCODER_VERSION-------------Version of image format

ENCODER_RENDERMETHOD--Progressive or non-progressive.

ENCODER_QUALITY-------------The encoder compression quality.

A 3rd party who implements its own codec can add its own defines if the new codec needs it.

Value is a string which lists all the values it supports under this GUID category. Each value is separated by a “:” and the whole string is NULL terminated.

For example, an EncoderParam could look like:

{

ENCODER_COMPRESSION

“LZW:PACKBITS:JPEG:NOCompress”

}

An example for querying TIFF codec could return something like:

Count = 2

Params[0] = { ENCODER_COMPRESSION, “CCITT3:Huffman:LZW:Packbits:JPEG:NoCompress”}

Params[1] = { ENCODER_COLORDEPTH, “1:2:4:8:24:32”}

The caller is responsible for calling CoTaskMemFree() to free the memory pointed by “ppParams” and Value under each EncoderParam structure.
STDMETHOD(SetEncoderParam)(

 IN EncoderParams* Param

);

This method is used for setting encoder parameters. It must be called before GetEncodeSink.

EncoderParams is defined as above.

Use the example above, the caller can call this function for a TIFF encoder like:

EncoderParams
myEncoderParams;

MyEncoderParams.Count = 1;

MyEncoderParams.Params[0].paramGuid = ENCODER_COMPRESSION;

MyEncoderParams.Params[0].Value = “LZW”;

SetEncoderParam(&myEncoderParams);

If the encoder doesn’t support the combination of the encoding parameters, it should ignore the call and return S_FALSE. All the encoder should define a default set of encoder parameters in case the caller doesn’t call this function or calls the function with the wrong parameters.

By default, the encoder should save the image in the same color depth if it can support it. If not, then the encoder should define the closest color depth for the source.

IBasicBitmapOps Interface

This interface is used to perform some basic operations on bitmap images. Much of it is still quite tentative at this point. You can QI an IBitmap object to find out if it supports IBasicBitmapOps interface.

STDMETHOD(Clone)(

 IN OPTIONAL const RECT* rect,

 OUT IBitmapImage** outbmp

);

This method make a copy of the bitmap image object. If the optional rect parameter is specified (non-NULL), then only the specified area of the image is copied. The unit for the rect is pixel.

STDMETHOD(Flip)(

 IN BOOL flipX,

 IN BOOL flipY,

 OUT IBitmapImage** outbmp

);

Flip the bitmap image in x- and/or y-direction.

STDMETHOD(Resize)(

 IN UINT newWidth,

 IN UINT newHeight,

 IN PixelFormatID pixelFormat,

 IN InterpolationHint hints,

 OUT IBitmapImage** outbmp

);

Scale the bitmap image to a different size. hint parameter specifies which interpolation algorithm to use:

INTERP_DEFAULT – don’t care, use whatever default algorithm we pick

INTERP_NEAREST_NEIGHBOR – use point sampling

INTERP_BILINEAR – use bilinear interpolation

INTERP_AVERAGING – use area-averaging when scaling down, bilinear when scaling up

This is good for generating small thumbnail images.

INTERP_BICUBIC – use bicubic interpolation

STDMETHOD(Rotate)(

 IN FLOAT angle,

 IN InterpolationHint hints,

 OUT IBitmapImage** outbmp

);

Rotate the bitmap image. Currently we only support rotation in multiples of 90 degrees.

STDMETHOD(AdjustBrightness)(

 IN FLOAT percent

);

Adjust the brightness of a bitmap image. Assume the pixel intensity value is between 0 and 1. Then the operation is defined as:

New intensity = old intensity + percent

A positive value of percent parameter causes the image to become brighter and a negative value makes the image darker.

STDMETHOD(AdjustContrast)(

 IN FLOAT shadow,

 IN FLOAT highlight

);

Adjust the contrast of a bitmap image. Old pixel value 0 is mapped to new pixel value ‘shadow’ and old pixel value 1 is mapped to new pixel value of ‘highlight’. Mappings for other old pixel values is computed using the derived linear function.

STDMETHOD(AdjustGamma)(

 IN FLOAT gamma

);

Adjust the gamma of a bitmap image. The mapping function is:

New intensity value = old intensity valuegamma
A gamma value large than 1 will make the image darker and a value less than 1 will make the image brighter.

multi-res

multi-page

Frame2.2

Frame3

Frame2.1

Frame1

