Test Plan for RCML

By: 
Paul de Goede 

Date: 
Tuesday, July 06, 1999

	Component
	Time
	Developed by:

	Functionality

· Basic

· Extensive (additional)
	6 weeks

4 weeks
	TBD

	Visual Conformance

· Basic

· Extensive (additional)
	4 weeks

2 weeks
	TBD

	RC to RCML dump utility
	3 weeks
	7/19/99

	BVTs
	1 week
	TBD

	Interoperability
	2 weeks
	TBD

	Accessibility
	2 weeks
	TBD

	Downlevel Testing
	3 weeks
	TBD

	International Issues
	2 weeks
	TBD

	Leak Testing
	2 weeks
	TBD

	Code Coverage
	3 weeks
	TBD

	Stress

· Framework

· Stress Test
	4 weeks

2 weeks
	TBD

	RCML Language Testing
	3 weeks
	TBD

	
	
	

	High Priority Testing
	29 weeks
	TBD

	Post-Beta Testing
	14 weeks
	TBD


	Milestone
	Test Signoff

	M0
	8/16/99

	M1 (Alpha)
	TBD

	M2
	TBD

	Beta
	TBD


Testing Axes:

1. Functionality

· Basic Controls & Dialogs – take a representative sample of controls and dialogs and test that they are functional (the buttons work, text entry is correct, DialogProc is functioning correctly).

· Extended Flags and Non-standard configurations – test dialogs with controls created with extended flags, 

· Property Sheet and Wizard Support – test that property sheets and wizards are correctly created and functionally correct. Create a number of representative wizards and property sheets and determine whether they can be used correctly and interact with the DialogProc(s) correctly.

· Dialog Resizing & Positioning Testing – since this is a new aspect of dialogs it is the area with a potential for a number of bugs.  Create a number of control and dialog configurations and test that they perform correctly when resized and the positioning flags are functioning.

· Extended functionality – JPG, GIF & AVI support, Font and Color additions, etc. This requires creating a number of dialogs with these different media options and verifying that they are created and function correctly.

· This needs a testing suite which does interactive testing, i.e. simulating user interaction with the dialogs. The current plan is to implement a Visual Test and C/C++ application which interact to automatically determine whether the dialog is functioning correctly.

2. Visual Conformance

· Need to ensure that new dialogs match old style and appearance. We provide backward compatibility in terms of appearance. 

· This includes a large number of test cases: all the controls and their associated styles, resize effects, color and font changes.

· Write test application to do bit-wise correctness tests on a number of dialogs and perform regression tests with this set of images to determine that the appearance of the dialogs is consistent across different versions of the software.

3. RC to RCML dump utility

· This utility provided by RCML Dev. allows dialogs from existing dialogs to be dumped to RCML style files. This needs to be tested significantly since it will aid migration from existing RC dialogs to RCML. In addition providing test coverage for this component will cover a portion of the visual verification needed for RCML.

· Develop a tool to drive the RCML dumper utility

· Setup the tool to run regression tests.

4. BVTs

· Select a set of minimal functionality tests to be used as BVTs.

· Organize & optimize the BVTs to run as stand-alone tests.

5. Interoperability

· Ensure correct functioning of RCML Dialogs when interacting with standard Win32 apps and vice versa. 

· This requires creating sets of test applications which ensure that windows messages and other mechanisms still function correctly when dealing with RCML dialogs.

6. Accessibility

· Ensure that the dialog generation code produces dialogs which do not exhibit accessibility problems. 

· This requires creating a set of dialogs which cover the gamut of accessibility features and ensure that the XMLDialogProc and the dialog generation do not limit any of these features.

7. Downlevel Testing

· Ensure all code is downlevel compatible

· Perform regression runs on downlevel platforms.

8. International Issues

· RTL, Unicode & DBCS Issues.

· Develop Specific Tests for Far East character sets – specifically, what is required are a number of FE dialogs which have FE text and are also RTL enabled.

· Run regular regressions on FE builds

· Ensure RTL Conformance. This will take the form of regression runs which are done on RTL enabled systems. It will require a degree of test tweaking to visual conformance will need to have a separate result set for RTL.

9. Leak Testing

· Do Leak testing runs of regression tests periodically

· Develop a set of tests specifically targeted to illicit leaks.

10. Code Coverage

· Run code coverage analysis on the RCML code for regression runs

· Write and adjust tests to ensure maximum code coverage 

11. Stress 

· Framework for automating easy generation of RCML programmatically.

· Place hooks in the framework for automating interactive with random dialogs

· Develop a stress test engine to that uses the framework and hooks to drive stress runs.

12. RCML Language Testing

· Parser correctness and robustness

· XML Conformance Testing

· Bad “parameter” testing – invalid RCML input.

Testing Schedule:

The below tables reflects an estimated testing schedule based on full-time work.

The sections in bold are high priority and essential. The other testing components will be post-Beta considerations based on available resources and time. 

	Component
	Time

	Functionality

· Basic

· Extensive (additional)
	6 weeks

4 weeks

	Visual Conformance

· Basic

· Extensive (additional)
	4 weeks

2 weeks

	RC to RCML dump utility
	3 weeks

	BVTs
	1 week

	Interoperability
	2 weeks

	Accessibility
	2 weeks

	Downlevel Testing
	3 weeks

	International Issues
	2 weeks

	Leak Testing
	2 weeks

	Code Coverage
	3 weeks

	Stress

· Framework

· Stress Test
	4 weeks

2 weeks

	RCML Language Testing
	3 weeks

	
	

	High Priority Testing
	29 weeks

	Post-Beta Testing
	14 weeks


Testing Resources:

Currently there is one tester from the User & GDI Test group working on this project. 

Testing Status:

	Gain familiarity with RCML and XML
	Completed

	Initial Guerilla Testing
	Completed

	RC to RCML dump utility test
	Partially Completed


