The True and Unedited Tales of CorrectFilePaths

Or

How Do I make the Files End Up Over There.

CorrectFilePaths.dll is the largest and most complicated shim ever created.
 Currently it hooks over 60 routines covering a wide range of categories, all accepting a file path as an argument. The original intent of CorrectFilePaths was to convert paths from Win9x locations to Win2000 locations, but eventually became a shim capable of changing any portion of a path string with another string.

All string comparisons are case insensitive.

All new paths are returned as short paths.

All

CorrectFilePaths does not treat the data as a file path that needs to be corrected, but rather a string to be searched for possible replacements. The string substitution occurs in order; later entries in the list will modify the changes of earlier entries. All path corrections submitted from the command line are inserted at the end of the substitution list. This may be advantageous, or cause problems. It is important to understand this to know how to correctly change bad paths.

Special Note: If CorrectFilePaths.dll is applied to an install program, CorrectFilePathsUninstall.dll MUST be applied to the corresponding installation program. Since CorrectFilePaths redirects the locations of files without the knowledge of the installation program, the uninstall program looks for the files in the original location. This results in files, directories and links being left behind after the application is uninstalled.

Predefined Variables

CorrectFilePaths defines several variables, used to make it easy to define a path. These are not true environment variables. When a path is added, either internally, through the command line, by calling AddCommandLine () or AddPathChange(), all occurrences of these variables are replaced with their value. Both the old and new paths are searched for these variables.

Table 1: Predefined Variables

	Variable
	Typical Value

	%WinDir%
	C:\windows

	%SystemRoot%
	C:\windows

	%SystemDrive%
	C:

	%SystemDir%
	C:\windows\system32

	%Username%
	robkenny

	%ProgramFiles%
	C:\Program Files

	%UserStartMenu%
	C:\Documents and Settings\robkenny\Start Menu

	%AllStartMenu%
	C:\Documents and Settings\All Users\Start Menu

	%UserDesktop%
	C:\Documents and Settings\robkenny\Desktop

	%AllDesktop%
	C:\Documents and Settings\All Users\Desktop

	%UserFavorites%
	C:\Documents and Settings\robkenny\Favorites

	%AllFavorites%
	C:\Documents and Settings\All Users\Favorites

	%AllProfile%
	C:\Documents and Settings\All Users

	%UserProfile%
	C:\Documents and Settings\robkenny

	%AllAppData%
	C:\Documents and Settings\All Users\Application Data

	%UserAppData%
	C:\Documents and Settings\robkenny\Application Data

Default path corrections

There are many built-in path changes; several were added to address specific applications before the command line option was available.

The last entry is used to force “<username>\Start Menu” to “All Users\Start Menu”. This change was only implemented because some install programs were creating the “All User\Start Menu\Programs\My App” directory and attempting to create the links in “<username>\Start Menu\Programs\My App”. The change was not done to force the install programs to place their links into the All User directory. This behavior can be removed by using the –u switch (see Table 4: Command Line Switches)

Table 2: Default Path Corrections lists the default path corrections. These corrections as well as any OLD_PATH;NEW_PATH corrections added on the command line are processed slightly before adding to the internal mechanism. First both strings have any predefined variables replaced with their actual values as described in Predefined Variables. Next, the NEW_PATH is converted to its short path version. Then, the OLD_PATH is also converted to its short path version. Finally, two entries are added to the internal mechanism: The OLD_PATH /short filename version of NEW_PATH and the short filename version of OLD_PATH / short filename version of NEW_PATH. Caveat: this is not as beneficial as it might seem, since most of the OLD_PATH entries do not exist; a short filename version of the entry cannot be generated and therefore cannot be added to the list.
Path corrections are implemented as a series of sequential string search and replace operations; default corrections are processed first--command line supplied corrections are processed last. This can effect how command line options are supplied. For example if %WinDir% is C:\Winnt, the command line entry: C:\Windows\BadApp.exe;%windir%\GoodApp.exe would not work, since the first default correction would replace C:\Windows\BadApp.exe with C:\WinNt\GoodApp.exe and when the command line entry is finally reached, the search will fail since the path not match C:\Windows\BadApp.exe.
All new paths are replaced with their short version; there is no method to disable this feature. This was done to ease the correction of paths of the Create Process routines. If a short version of a path does not exist, then the string is inserted literally.
The –b command line switch will remove all default path corrections, the –u switch includes all but the shaded section of Table 2: Default Path Corrections.

Table 2: Default Path Corrections

	Old Path
	New Path

	C:\windows
	%WinDir%

	%WinDir%\rundll32.exe
	%SystemDir%\rundll32.exe

	%WinDir%\rundll.exe
	%SystemDir%\rundll32.exe

	%WinDir%\write.exe
	%SystemDir%\write.exe

	%WinDir%\wordpad.exe
	%ProgramFiles%\Windows NT\Accessories\wordpad.exe

	%ProgramFiles%\Accessories\wordpad.exe
	%ProgramFiles%\Windows NT\Accessories\wordpad.exe

	%WinDir%\dxdiag.exe
	%SystemDir%\dxdiag.exe

	%WinDir%\Start Menu
	%UserStartMenu%

	%WinDir%\Desktop
	%UserDesktop%

	%WinDir%\Favorites
	%UserFavorites%

	%WinDir%\Profiles\%Username%\Start Menu
	%UserStartMenu%

	%WinDir%\Profiles\%Username%\Desktop
	%UserDesktop%

	%WinDir%\Profiles\%Username%\Favorites
	%UserFavorites%

	%WinDir%\Profiles\All Users\Start Menu
	%AllStartMenu%

	%WinDir%\Profiles\All Users\Desktop
	%AllDesktop%

	%WinDir%\Profiles\All Users\Favorites
	%UserFavorites%

	Ddhelp.exe
	Ddraw.dll

	Ddraw16.dll
	Ddraw.dll

	Dsound.vxd
	Ddraw.dll

	%UserStartMenu%
	%AllStartMenu%

Routine Catagories

The path correcting routines have been placed into five categories, Create Process, File, GetPrivateProfile, IshellLink and Registry. The different categories may be disabled via the command line (Table 4: Command Line Switches); there is no other use for categories. The columns in gray are disabled by default.
Table 3: Routine Categories

	Create Process
	File
	GetPrivateProfile
	IShellLink
	GetCommandLine
	Registry

	CreateProcessA
	CopyFileA
	GetPrivateProfileIntA
	IShellLinkA::SetPath
	GetCommandLineA
	RegSetValueA

	CreateProcessW
	CopyFileW
	GetPrivateProfileIntW
	IShellLinkW::SetPath
	GetCommandLineW
	RegSetValueW

	WinExec
	CopyFileExA
	GetPrivateProfileSectionA
	IPersistFile::Save
	
	RegSetValueExA

	ShellExecuteA
	CopyFileExW
	GetPrivateProfileSectionW
	IShellLinkA::SetArguments
	
	RegSetValueExW

	ShellExecuteW
	CreateDirectoryA
	GetPrivateProfileSectionNamesA
	IShellLinkW::SetArguments
	
	

	ShellExecuteExA
	CreateDirectoryW
	GetPrivateProfileSectionNamesW
	IShellLinkA::SetIconLocation
	
	

	ShellExecuteExW
	CreateDirectoryExA
	GetPrivateProfileStringA
	IShellLinkW::SetIconLocation
	
	

	
	CreateDirectoryExW
	GetPrivateProfileStringW
	
	
	

	
	DeleteFileA
	GetPrivateProfileStructA
	
	
	

	
	DeleteFileW
	GetPrivateProfileStructW
	
	
	

	
	CreateFileA
	WritePrivateProfileSectionA
	
	
	

	
	CreateFileW
	WritePrivateProfileSectionW
	
	
	

	
	FindFirstFileA
	WritePrivateProfileStringA
	
	
	

	
	FindFirstFileW
	WritePrivateProfileStringW
	
	
	

	
	FindFirstFileExA
	WritePrivateProfileStructA
	
	
	

	
	FindFirstFileExW
	WritePrivateProfileStructW
	
	
	

	
	GetBinaryTypeA
	
	
	
	

	
	GetBinaryTypeW
	
	
	
	

	
	GetFileAttributesA
	
	
	
	

	
	GetFileAttributesExA
	
	
	
	

	
	GetFileAttributesW
	
	
	
	

	
	GetFileAttributesExW
	
	
	
	

	
	MoveFileA
	
	
	
	

	
	MoveFileW
	
	
	
	

	
	MoveFileExA
	
	
	
	

	
	MoveFileExW
	
	
	
	

	
	MoveFileWithProgressA
	
	
	
	

	
	MoveFileWithProgressW
	
	
	
	

	
	RemoveDirectoryA
	
	
	
	

	
	RemoveDirectoryW
	
	
	
	

	
	SetCurrentDirectoryA
	
	
	
	

	
	SetCurrentDirectoryW
	
	
	
	

	
	OpenFile
	
	
	
	

	
	_lopen
	
	
	
	

	
	_lcreat
	
	
	
	

Command line options

The command line may be used to alter the default behavior of CorrectFilePaths. There are nine switches: four disable certain categories of routines, and two modify the default path correction list, and three. See Table 3: Routine Categories for a description of routine categories. Note that switches that start with a minus subtracts from the default functionality, switches starting with a plus add to the default functionality. All switches must be at the beginning of the command line string.

Table 4: Command Line Switches

	Switch
	Meaning

	-c
	Do not shim Create process routines

	-f
	Do not shim File routines

	-p
	Do not shim GetPrivateProfile routines

	-s
	Do not shim IShellLink routines

	-b
	Bare: No built-in path changes.

	-u
	User: Do not force Start Menu links from <username> to All Users

	+GetCommandLine
	Shim GetCommandLineA/W

	+RegSetValue
	Shim the RegSetValueA/W and RegSetValueExA/W routines

	+Win9xPath
	Apply Win9x path specific fixes (see Win9x Path corrections)

	-Profiles
	Disable user profiles; same as –u.

 In addition to the switches, additional path corrections may be specified on the command line in this form OLD_PATH;NEW_PATH. Multiple path corrections are separated by spaces. If one of the paths contains a space then the entire OLD_PATH;NEW_PATH correction is surrounded by double quotes; separate corrections may need to be surrounded by quotes. Quotes are special characters in XML, to insert a quote use: “"”

Here are some examples as entered in XML:

Example 1: Additional path correction
// Apply default path corrections.

// Replace all occurrences of setup.exe with setupapp.exe, no matter where in the path it appears.

<DLL NAME="CorrectFilePaths.dll"

COMMAND_LINE="setup.exe;setupapp.exe"/>

Example 2: Additional path correction with spaces
// Apply default path corrections

// Replace mplayer with a full path to mplayer2, notice the quotes

<DLL NAME="CorrectFilePaths.dll"

COMMAND_LINE=""mplayer ;%ProgramFiles%\Windows Media Player\mplayer2 ""/>

Example 3: Removing all default path corrections
// Combination of switches and path changes

// Do not apply default path corrections

// only change setup.exe with setupapp.exe

<DLL NAME="CorrectFilePaths.dll"

COMMAND_LINE="-b setup.exe;setupapp.exe"/>

Example 4: Only correct CreateProcess routines
// Combination of switches and path changes

// Do not apply default path corrections

// only change setup.exe with setupapp.exe to Create Process routines

<DLL NAME="CorrectFilePaths.dll"

COMMAND_LINE="-f –p –s -b setup.exe;setupapp.exe"/>

Example 5: Two additional path changes
// Apply default path corrections.

// Apply these two path corrections.

// Note: only one of the corrections is surrounded by quotes.

<DLL NAME="CorrectFilePaths.dll"

COMMAND_LINE="setup.exe;setupapp.exe "Bad Place;Correct Location""/>

Example 6: Cumulative path corrections
// Apply default path corrections.

// Example of problems with cumulative path corrections

// This app would attempt to open wordpad.exe with no path, then attempt to open

// .\wordpad.exe. .\wordpad.exe was being converted to .\C:\Winnt\System32\wordpad.exe

// the second path change entry would convert the new bad path to a good path.

<DLL NAME="CorrectFilePaths.dll"

COMMAND_LINE="wordpad.exe;%SystemDir%\wordpad.exe .\%SystemDir%;%SystemDir%"/>

Example 7: Creating a command line that contains quotes

// Apologies are given for the inconvenient syntax of the command line.
// First write out the command line as desired.
// In this example we wish to use the Win9xPath fixes and to change all paths

// from c:\Program Files\abc to d:\Program Files\Somewhere else\def

COMMAND_LINE="+Win9xPath c:\Program Files\abc;d:\Program Files\Somewhere else\def”/>
// Since the OLD_PATH;NEW_PATH pair contains spaces we must place quotes around

// the entire OLD_PATH;NEW_PATH pair

COMMAND_LINE="+Win9xPath “c:\Program Files\abc;d:\Program Files\Somewhere else\def””/>

// Now, since the quotes are inside of an already quoted string (XML’s COMMAND_LINE=”” bit)

// we must escape the quotes that were just added by replacing them with "
COMMAND_LINE="+Win9xPath "c:\Program Files\abc;d:\Program Files\Somewhere else\def"”/>

Win9x Path corrections

Win9x has some weird views when is comes to spaces embedded in a pathname; a special command line option (+Win9xPath) has been added to notify CorrectFilePaths to perform additional Win9x path specific fixes. These fixes apply to only to pathname; APIs that do not explicitly accept a pathname will not attempt to apply the Win9x specific fixes. Table 5: Command Line APIs is a list of hooked APIs that do not perform the Win9xPath corrections.

These corrections are applied before all other path corrections. If you are attempting to modify, via the command line, a path at the same time using the +Win9xPath, you will need to determine how the Win9xPath correction first modifies the path, and then apply your correction to the resulting string.

Table 5: Command Line APIs

	API Name

	CreateProcessA

	CreateProcessW

	WinExec

	GetCommandLineA

	GetCommandLineW

	RegSetValueA

	RegSetValueW

	RegSetValueExA

	RegSetValueExW

	IShellLinkA::SetArguments

	IShellLinkW::SetArguments

� I dare you to disprove me.

[image: image1.jpg]

