Shim Documentation

Page 19

Debugging Tricks

Lindsay Steventon

Created:
08/10/2000

Last Modified:
08/10/2000

Windows 2000 / Whistler Document

Copyright 2000 by Microsoft Corporation. All rights reserved.

Microsoft Confidential

This document is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

DirectX

DirectDraw

Turning on debug spew

Install a checked ddraw.dll

1. Edit the file %windir%\win.ini

2. Create the following entry:

[DirectX]

DDrawDebug=0
0 is the output filter level ranging from 0->9. Almost all the information above level 0 (error) is useless from the point of view of debugging an app. In addition to the number, there are other characters that can be used to get additional info. The full list of characters (from multimedia\directx\dxg\misc\newdpf.c):

!
Break on asserts

^
Print TID of calling thread

#
Print PID of calling process

>
Indent on message detail levels

&
Print the topic and detail level of each message

=
Print function name

+
Print all topics, including topic-less

-
Do not allow topic-less messages

$
Print source filename and line number of DPF

Examples:

// Output only errors

DDrawDebug=0

// Output errors and API calls

DDrawDebug=-2A

// Output errors, API calls and the contents of certain structures

DDrawDebug=-23A

// Output errors and API calls and the thread on which they were called

DDrawDebug=-2A^

As I mentioned there are 9 levels, most of which cannot be easily differentiated from each other. –2A is the most useful if you want to see what DirectDraw is doing – like Blting or Flipping etc.

Brief architectural overview

DirectDraw is written entirely in C making it much easier to debug. There are 4 objects of interest:

1. IDirectDraw: functions start “DD_”, eg: DD_SetCooperativeLevel

2. IDirectDrawSurface: functions start “DD_Surface_”, eg: DD_Surface_Lock

3. IDirectDrawPalette: functions start “DD_Palette_”, eg: DD_Palette_SetEntries

4. IDirectDrawClipper: functions start “DD_Clipper_”, eg: DD_Clipper_SetHWnd

Objects 2, 3 and 4 are all created by the DirectDraw object by calling IDirectDraw::CreateSurface etc. This base object is usually created by a call to DirectDrawCreate, but can also be created by DirectDrawCreateEx or CoCreateInstance.

The DirectDraw object is responsible for managing all the surface, palette and clipper objects as well exclusive mode arbitration. Exclusive mode is full-screen mode that only one application can have at a time – system wide. When active, DirectDraw subclasses the application windowproc and manages activation (alt+tab) and some other basic things. I.e. on de-activate, it’s DirectDraw that changes the display mode and minimizes the window.

The Surface object encapsulates most of DirectDraw’s core functionality. To find out more about surfaces, read MSDN or look at SDK samples.

The Palette object follows completely different code paths on Win9x and NT. On win9x, it sets the palette directly, without GDIs knowledge – but on NT, it uses the documented palette APIs like AnimatePalette and RealizePalette.

The Clipper object is hardly used for fullscreen applications and can usually be ignored.

Setting Breakpoints

To set reasonable breakpoints, you’ll need symbols – specifically because COM methods are not exported.

As mentioned above, all methods are prefixed by “DD_” and object types are appended. Eg: Surface functions are called DD_Surface_X. So to set a breakpoint on the surface lock call:

bp DD_Surface_Lock

Note that DirectDraw contains several interfaces all of which are contained with ddraw.dll. Some methods have updated versions which will be used only if a particular interface is used, eg: DD_Surface_Unlock4

Building DirectDraw to find problems

DirectDraw can be built from multimedia\directx\dxg\dd\ddraw.

DirectDraw is riddled with DPF statements for almost every case imaginable. What this means is that you can easily tune the debug output to your requirements. For example, if you want to see the pointer returned whenever a surface is locked, you can go to ddsacc.c and change the debug level of the appropriate DPF to 0.

Some examples of useful things to change:

1. main\ddsacc.c, line ~1776

Change the DPF_STRUCT(3,A,…) to DPF_STRUCT(0,…)

This will output the lock structure, including pointer after every call to IDirectDrawSurface::Lock

2. main\ddraw.c, line ~1032

Change the DPF(2,A,”ENTERAPI: DD_S…”) to DPF(0,”ENTERAPI: DD_S…”);

This will output when the co-operative level changes

Known Problems

This is the list of known differences between win9x and NT regarding DirectDraw:

1. Palettes

Win9x: palette set directly, NT uses GDI

On Win9x there is no USER/GDI interaction which can interfere with DirectDraw changing the palette and GDI doesn’t know about any of these changes. So if the palette is set using DirectDraw and then a call to GDI32!GetSystemPaletteEntries is made, the system will return the last entries realized via GDI. However, on NT, since we’re using GDI to set our palette in the first place, GDI and DirectDraw palettes will always be the same. Try the shim ForceDefaultSystemPaletteEntries if you’re hitting this.

Palettes not restored through a mode change

On Win9x if a mode change occurred from one palettized mode to another, all system palette state is maintained. On NT, not only is the palette restored to the default, but also the system palette use (see MSDN SetSystemPaletteUse). This manifests itself as a corrupt palette – 1st 10 and last 10 colors will be the system default. The shim PaletteRestore fixes this.

Driver interactions
DirectDraw drivers have no effect on palette corruption issues – since the driver does not see these calls.

2. Alt+Tab Issues

Win9x: video memory surfaces are based at the same address after mode changes, not so on NT

On Win9x, after a mode change, the video memory is mapped to exactly the same memory address. If the application locks the primary and caches this pointer, when it tries to write to that address after resuming, it will Access Violate. We have no good solution to this as yet, other than patching the correct pointer directly into the application memory – or using the shim IgnoreAltTab.

Win9x: possible to block Alt+Tab by removing the key messages from the message queue

Doing this on NT requires a low-level keyboard hook. If an application prevents Alt+Tab on Win9x, apply the shim IgnoreAltTab.

Win9x: window is minimized and de-activated, only minimized on NT

On Win9x, when an application is minimized, DirectDraw makes another window active. On NT, the original window may still have the focus, even though it’s minimized. Some applications determine if they are maximized by checking if their window is active, rather than using the DirectDraw API (TestCooperativeLevel) or checking for the minimized window style. This manifests itself as the application still playing sound, even though it’s minimized etc. Working on a fix.

Display artifacts on NT

Since the video memory is mapped at the same base address and if surfaces are restored in exactly the same order, it is more likely that a surface will contain the same data it originally had after restoration. It may also be that driver writers on win9x have tried to ensure this in order to get bad apps to work correctly. There is nothing we can do here, apply the shim IgnoreAltTab.

3. Device Contexts

DC implementation differs from Win9x to NT

On the DirectDraw 1 surface interface on Win9x, it was possible to regain access to a surface that was implicitly locked via GetDC by calling Unlock. This behavior cannot be supported on NT. This hole was closed in all subsequent DirectDraw interfaces. Try the shim CheckDirectDrawDCUsage.

4. Exclusive Mode

Win9x: exclusive mode is managed per-process, but on NT it’s per thread

Applications that try to release exclusive mode – either explicitly via SetCooperativeLevel or implicity by releasing the owning DirectDraw object, must do so on the same thread that originally acquired exclusive mode. This is because DirectDraw manages exclusive mode using a MuteX which is a per-thread object. We are working on a general fix for this.

5. Display modes & refresh rates

Mode table size

IDirectDraw::EnumDisplayModes is used by DirectX applications to enumerate all available display modes - although some still use the GDI API EnumDisplaySettings. In NT, the mode list is large and contains every supported combination of mode and refresh rate, whereas Win9x has a much smaller set of modes and does not contain refresh rates. This can cause problems if the application has a fixed array for modes or depends on a particular mode appearing in the first n modes or allows the user choose a mode that is not supported. The shim that fixes this is HideDisplayModes.

GDIEntry13

This is an undocumented export from GDI which DirectDraw uses to quickly determine if the display mode has changed – it’s a uniqueness number which gets incremented at every call to ChangeDisplaySettings. Unfortunately, if the application changes the mode to exactly the existing mode, this uniqueness value is still updated – and DirectDraw will invalidate all it’s surfaces, even although no change actually happened. The shim to fix this is IgnoreNoModeChange.

Recognizing driver bugs

Since different display cards have different features, it’s not necessarily true that if an app works on one card and not on another then there is a driver bug. However, most of the time this is the case – especially when there are display artifacts like incorrectly drawn triangles or missing textures.

As mentioned above, palette corruption is almost certainly not a driver bug. Palette corruption only happens in palettized (256 colour) display modes. Otherwise it’s a driver bug.

Direct3D

Turning on the debug spew

Install a checked d3dim.dll (<DX6.1) or d3dim700.dll (DX7 only)

3. Edit the file %windir%\win.ini

4. Create the following entry:

[Direct3D]

Debug=0
0 is the output filter level ranging from 0->9. Almost all the information above level 0 (error) is useless from the point of view of debugging an app.

Brief architectural overview

Direct3D up until 8 is bolted onto the side of DirectDraw. In order to use it, an application must first instantiate a DirectDraw object and then QueryInterface to get a 3D Device.

There are very few problems with Direct3d that are not driver related because there is almost no separation between the Win9x and NT source code. In addition, since Direct3D is tied so closely to DirectDraw (render targets are DirectDraw surfaces), debugging Direct3D will usually not be useful.

USER

(from Gerardo Bermudez)
USER (AKA the Window Manager) consists of two main binaries: WIN32K.SYS (AKA USERK) and USER32.DLL. The corresponding debugging extensions are USERKDX.DLL (usually in %windir%\mstools) and USEREXTS.DLL (usually in %windir%\system32). Most of the "interesting stuff" happens in WIN32K.SYS, which runs in the kernel and it's loaded once in the system (for single user NT). Some things happen in USER32.DLL, which is loaded in each client process. So you need KD to debug WIN32K.SYS and NTSD to debug USER32.DLL. Some debugging commands work the same in NTSD and KD; others are for KD only.
Getting debugging extensions help: run "![userkdx/userexts].help <command>"
Dumping a window: run "!dw -v <hwnd/pwnd>". hwnd is the handle returned to applications; pwnd is the internal pointer. -v is for verbose.
0: kd> !dw -v a03d38a8

 et 0x8083d380 t 0xe19a1ec8 q 0xe1a8ade0 i 2c0.104 Explorer.exe

pwnd = a03d38a8

 pti @0xe19a1ec8

 handle 0x00020028

 spwndNext @0xa03d3d38 "<null>"

 spwndParent @0xa03d3620 "<null>"

 spwndChild @0xa03d3958 "7:01 PM"

 spwndOwner @0x00000000 ""

 rcWindow (920,744)-(1022,766) 102x22

 rcClient (921,745)-(1021,765) 100x20

<More>

The first output line (KD only) shows you the owner of the window. The "et" value (0x8083d380) is the ETHREAD pointer; run "!thread <ethread>" to see the thread's info and stack. The "t" value (0xe19a1ec8) is USER's THREADINFO structure, or pti. The "q" value (0xe1a8ade0) is the thread's message queue.

Dumping all top level windows in the current destkop: "!dw". Note that this command fails unless one thread is executing in WIN32K.SYS. An easy way to get there is to set a bp at win32k!xxxInternalGetMessage.
0: kd> !dw

pwndDesktop = a0a50628

pwndParent = a0a50628

 et 0x80a67900 t 0xe20f34e8 q 0xe199c7c0 i 2118.2100 ithaca.exe

pwnd = a0a51360

title = "TrackMouse Worker 4"

wndproc = 59005f00 (ANSI) Class:"TrackMouseWorker"

 et 0x807ca740 t 0xe11d1008 q 0xe1a88d00 i 80.378 csrss.exe

pwnd = a0a51b48

title = "System Process - Virtual Memory Minimum Too Low"

wndproc = 69e35b40 (Unicode) Class:"0x8002"

<More>

Dumping the window tree. "!dw -r <pwnd/hwnd>". Use this to see the child windows; for a message box, this will show you the contents, which includes the message text.
0: kd> !dw -r

pwndDesktop = a0a50628

pwndParent = a0a50628

a0a51360 [TrackMouse Worker 4|TrackMouseWorker]

a0a51b48 [WC_DIALOG|TrackMouseWorker]

a0a51e10 [OK|Button]

a0a52008 [<null>|Static]

a0a52248 [Your system is running low on virtual memory.|Static]

a0a51580 [WC_DIALOG|Static]

a0a516d8 [Pause|Button]

<More>

The value on the left is the window pointer. You can use !dw to dump those.

Determining if a Window Manager handle/pointer is valid. !dhe <Handle/Pointer>
0: kd> !dhe 0x20028

 et 0x8083d380 t 0xe19a1ec8 q 0xe1a8ade0 i 2c0.104 Explorer.exe

a0280280 phe 00000003 cLockObj

00000002 wUniq 00020028 handle

a03d38a8 phead e19a1ec8 pOwner

00000001 bType - Window

00000000 bFlags - 0

If bFlags include HANDLEF_DESTROYED or HANDLEF_INDESTROY, the pointer is valid but the handle is considered invalid. phead is the pointer to the object; to double check, you can try dumping the object:
0: kd> !dw a03d38a8
 et 0x8083d380 t 0xe19a1ec8 q 0xe1a8ade0 i 2c0.104 Explorer.exe

pwnd = a03d38a8

title = "<null>"

wndproc = 00408f30 (Unicode) Class:"TrayNotifyWnd"

Dumping a bad value will look something like this:
0: kd> !dhe ff

WARNING: dumping 0xff even though is not a valid pointer or handle!

ff is not a USER handle manager object.

dhe failed.

<More>

Dumping all windows owned by a thread: !dw -t <pti>. pti is the THREADINFO or Win32Thread pointer (as shown in !thread).
1: kd> !dw -t 0xe132b108

 et 0x80879dc0 t 0xe132b108 q 0xe1525dc0 i 2d8.16c Explorer.exe

pwnd = a03db810

title = "Program Manager"

wndproc = 77caa270 (Unicode) Class:"Progman"

 et 0x80879dc0 t 0xe132b108 q 0xe1525dc0 i 2d8.16c Explorer.exe

pwnd = a03dbaf0

title = "<null>"

wndproc = 77a031a7 (Unicode) Class:"tooltips_class32"

<...More...>
Dumping the current GUI thread.
1: kd> !dt -c

Current Thread: et 0x8087e020 t 0xe1567228 q 0xe129f3a0 i 2d8.330 Explorer.exe

Note: If the current thread is not GUI or it's not executing in WIN32K.SYS, then you'll see something like this:
0: kd> !dt -c

Current Thread: et 0x8045eed0 t 0x???????? q 0x???????? i 0.0 <unknown name>

Dumping all GUI threads. Whenever a thread makes its first USER or GDI call, it gets converted to GUI. The first thread of a process loading USER32/GDI32 is always converted to GUI. These threads have a not NULL Win32Thread pointer as shown by !threads.
1: kd> !dt -g

**** NT ACTIVE WIN32 THREADINFO DUMP ****

 et 0x80973dc0 t 0xe126ee48 q 0xe127f320 i 8c.90 csrss.exe

 et 0x809729e0 t 0xe12737c8 q 0xe1276e80 i 8c.94 csrss.exe

 et 0x80970a80 t 0xe127ede8 q 0xe1269020 i 8c.a4 csrss.exe

 et 0x8096eba0 t 0xe1295ce8 q 0xe1298de0 i 8c.a8 WinSta0_RIT

 et 0x8096e580 t 0xe1298c88 q 0xe12886a0 i 8c.ac IO_DT

 et 0x80965020 t 0xe12cd888 q 0xe12cff00 i 8c.cc NOIO_DT

<More>

Dumping the current process.
0: kd> !dp -c

Current Process:sid 0 ep 0x8086e4a0 p 0xe13371e8 f 0x0004e0b0 i 2d8 Explorer.exe

Dumping all GUI processes. A GUI process contains at least one GUI thread.
1: kd> !dp

**** NT ACTIVE WIN32 PROCESSINFO DUMP ****

sid 0 ep 0x80978690 p 0xe1247c08 f 0x0004e032 i 8c csrss.exe

sid 0 ep 0x80971020 p 0xe127a688 f 0x0004e0b2 i a0 winlogon.exe

sid 0 ep 0x8096c600 p 0xe12c2ac8 f 0x0008e0b6 i bc services.exe

sid 0 ep 0x8096b340 p 0xe12c5ea8 f 0x0000e0b2 i c8 lsass.exe

<More>

The "ep" value is the EPROCESS pointer. run "!process <EPROCESS> to see the process' info. The p value is USER's PROCESSINFO.
Dumping all threads in a GUI process. !dp -pt <ppi>:
1: kd> !dp -pt 0xe13371e8

sid 0 ep 0x8086e4a0 p 0xe13371e8 f 0x0004e0b0 i 2d8 Explorer.exe

 et 0x80879dc0 t 0xe132b108 q 0xe1525dc0 i 2d8.16c Explorer.exe

 et 0x80a60ba0 t 0xe1f95de8 q 0xe1349ae0 i 2d8.2b0 Explorer.exe

 et 0x8087e020 t 0xe1567228 q 0xe129f3a0 i 2d8.330 Explorer.exe

 et 0x80892840 t 0xe125bcc8 q 0xe14955c0 i 2d8.320 Explorer.exe

 et 0x8088a440 t 0xe1f9a808 q 0xe12a13a0 i 2d8.3cc Explorer.exe

 et 0x8088ec00 t 0xe131b4e8 q 0xe151ce80 i 2d8.208 Explorer.exe

Dumping all USER handles in use by a process. !dhe -op <ppi>. ("!dhe" dumps all handles).
1: kd> !dhe -op 0xe13371e8

Dumping handles owned by 0xe13371e8 or any thread on this process

Phe Handle phead pOwner cLockObj Type Flags

0xa0280220 0x00070022 0xa03e0588 0xe132b108 0x00000002 Window 0

0xa02802c0 0x0005002c 0xa03d3498 0xe1567228 0x00000014 Window 0

0xa02802e0 0x0005002e 0xa03d5ce8 0xe132b108 0x00000002 Window 0

0xa0280300 0x00060030 0xa03d5b90 0xe132b108 0x00000002 Window 0

<More>

phead is the object pointer. So you can do something like
1: kd> !dw 0xa03e0588
 et 0x80879dc0 t 0xe132b108 q 0xe1525dc0 i 2d8.16c Explorer.exe

pwnd = a03e0588

title = "OleMainThreadWndName"

wndproc = 77b43bed (Unicode) Class:"OleMainThreadWndClass"

Determining who owns the USERK (WIN32K.SYS) lock. Almost always, USER holds a critical section while executing in WIN32K.SYS. To determine what thread owns it, do this:
1: kd> dd win32k!gpresUser l 1

a02111a8 8098d428
1: kd> !locks 8098d428
Resource @ 0x8098d428 Exclusively owned

 Contention Count = 14066

 Threads: 8087e020-01

1 total locks, 1 locks currently held

1: kd> !thread 8087e020
THREAD 8087e020 Cid 2d8.330 Teb: 7ffdc000 Win32Thread: e1567228 RUNNING

Not impersonating

Owning Process 8086e4a0

WaitTime (seconds) 1271215

Context Switch Count 1539 LargeStack

UserTime 0:00:00.0390

KernelTime 0:00:01.0203

Start Address 0x77f29b20

Win32 Start Address 0x77949344

Stack Init f7656000 Current f7655cd0 Base f7656000 Limit f7652000 Call 0

Priority 13 BasePriority 9 PriorityDecrement 0 DecrementCount 0

ChildEBP RetAddr Args to Child

f7655cdc a00f7d51 f7655d0c 00000000 00000000 win32k!xxxInternalGetMessage

f7655d48 80457cd9 00deff80 00000000 00000000 win32k!NtUserPeekMessage+0x8c

f7655d48 69e56e3f 00deff80 00000000 00000000 ntkrnlmp!KiSystemService+0xc9

00deff38 69e135e1 00deff80 00000000 00000000 +0x69e56e3f

Determining what a GUI thread is waiting for. Idle GUI threads call win32k!xxxSleepThread. If this function doesn't show in the stack, then the thread is not stuck in the Window Manager. To determine what the thread is waiting for, find the Win32Thread pointer (pti) and use !dti to dump the thread's info:
1: kd> !thread 8087e020

THREAD 8087e020 Cid 2d8.330 Teb: 7ffdc000 Win32Thread: e1567228 RUNNING

Not impersonating

Owning Process 8086e4a0

WaitTime (seconds) 1271215

Context Switch Count 1539 LargeStack

<...More...>

0: kd> !dti e1567228
 et 0x8087e020 t 0xe1567228 q 0xe129f3a0 i 2d8.330 Explorer.exe

PTHREADINFO @ 0xe1567228

<...More....>

 fsWakeBits 0

 fsWakeMask QS_EVENT | QS_HOTKEY | QS_KEY | QS_MOUSEBUTTON | QS_MOUSEMOVE | QS_PAINT | QS_POSTMESSAGE | QS_SENDMESSAGE | QS_TIMER

<...More....>

fsWakeBits are the GUI events currently available; this is usually zero for GUI idle threads. fsWakeMask are the events the thread is waiting on. This is usually zero for non-idle GUI threads. The thread shown above is simply "waiting for any event ". At this point you want to use "!dw -t <pti>" to find out the windows owned by the thread; this will probably tell you what UI the app is showing.
If fsWakeMask is 0 AND the thread is in xxxSleepThread, contact NTUSER. This thread will never wake up.
A thread stuck in SendMessage. A thread waiting for a sent message to be processed we'll call win32k!xxxInterSendMsgEx and win32k!xxxSleepThread. The first parameter to xxxInterSendMsgEx is the pwnd the message is being sent to; !dw will give the thread that owns that window. Then you can use !thread to find out what that thread is doing:
kd>!THREAD 83df6dc0

THREAD 827a2b60 Cid 2024.20e4 Teb: 7ffdd000 Win32Thread: e302d168 RUNNING

<Thread info>

ChildEBP RetAddr Args to Child

f744215c a006a50e 00000200 00000000 00000000 win32k!xxxSleepThread+0x1d9

f74421fc a0061625 a03dfba0 00000046 00000000 win32k!xxxInterSendMsgEx+0x81d

f7442250 a006ce40 e2afd328 00000046 00000000 win32k!xxxSendMessageTimeout+0x130

f7442274 a007a845 a03dfba0 00000046 00000000 win32k!xxxSendMessage+0x19

f7442340 a007a1a0 a03d0628 f74423bc 00000000 win32k!xxxCalcValidRects+0x123

f74423cc a007a5cc a03d0628 00000000 a03d3620 win32k!xxxEndDeferWindowPosEx+0x160

<More>

(Note: The wake mask will probably look like this:
0: kd> !dti e2afd328
 et 0x83df6dc0 t 0xe2afd328 q 0xe305eae0 i 1f3c.2150 wmstress.exe

PTHREADINFO @ 0xe2afd328

<More>
 fsChangeBits 0

 fsChangeBitsRemovd 0

 fsWakeBits 0

 fsWakeMask QS_SENDMESSAGE | QS_SMSREPLY

<More>)
Dump the window the message is being sent to:
0: kd> !dw a03dfba0
 et 0x827a2440 t 0xe327e6c8 q 0xe123c1e0 i 1f3c.2134 wmstress.exe

pwnd = a03dfba0

title = "j"

wndproc = 010020ba (ANSI) Class:"j"

Dump the thread that owns the window
0: kd> !thread 0x827a2440
THREAD 827a2440 Cid 1f3c.2134 Teb: 7ffdc000 Win32Thread: e327e6c8 READY

<More Thread info>

ChildEBP RetAddr Args to Child

f74c27ec 80427e39 00000000 808e01c8 00000000 ntkrnlmp!KiSwapThread+0x1b1

f74c280c 80411735 827a2528 00000000 00000000 ntkrnlmp!KeWaitForSingleObject+0x1ab

f74c2848 80410d15 808e01c8 808e01c8 f74c286c ntkrnlmp!ExpWaitForResource+0x2d

f74c2858 80410d69 f74c28d8 00000000 a03dfae8 ntkrnlmp!ExpAcquireResourceExclusiveLite+0x7b

f74c286c a005f4c8 808e01fc 00000001 f74c28d8 ntkrnlmp!ExAcquireResourceExclusiveLite+0x45

<More>

Dumping USER structures. You can use !dso to dump most of USER structures (plus many other base structs). "!dso struct [field] [pointer]"
0: kd> !dso threadinfo e302d168

Structure THREADINFO 0xe302d168 - Size: 0x138

(000) 827a2b60 W32THREAD (014) 00000000 ptl

(018) 00000000 ptlPool (01c) e347ac08 ppi

(020) e426e900 pq (024) e1365400 spklActive

(028) a1053630 pcti (02c) 807e10b8 rpdesk

(030) a1050588 pDeskInfo (034) 7ffdd6cc pClientInfo

<More>

Controling debug output. When running a CHK build, the !df commands allows you to control what information is displayed, when the debugger will prompt, etc.
0: kd> !userkdx.help df

df [flags] | [-p pid] - Displays or sets debug flags

 df - display debug flags

 df [flags] - enter new flags in format <Detail><Print><Prompt>

 <Detail> = [0-3] Print File/Line = 1, Hide PID/Component = 2

 <Print> = [0-7] Errors = 1, Warnings = 2, Verbose = 4

 <Prompt> = [0-7] Errors = 1, Warnings = 2, Verbose = 4

 The default is 031

 df -p pid - shows rips only for this pid or 0 for all

Get Last Error client-side debugging only (ntsdexts.dll), displays the last SetLastError() and LastStatusValue in human-readable form.
!gle

LastErrorValue: (Win32) 0x578 (1400) - Invalid window handle.

LastStatusValue: (NTSTATUS) 0 - STATUS_WAIT_0

Finding out if a thread is stuck in USER: !dt -ps Win32Thread tells you if a thread is waiting in USER. (Win32Thread is displayed by !Thread):
kd> !dt -ps e1b44268

 et 0xffb5ab20 t 0xe1b44268 q 0xe19fc908 i b8.19c services.exe

 Waiting on thread 0xe1ace868 to reply to this SendMessage:

 pwnd:0xa033a030 message:0x219 wParam:0x17 lParam:0

kd> !dt -ps 0xe1ace868

 et 0xffae8dc0 t 0xe1ace868 q 0xe1ab36e8 i 2e4.2d4 explorer.exe

 Not waiting for USER input events.

kd> !dt -ps 0xe1b99a80

 et 0xfe34f320 t 0xe1b99a80 q 0xe1a8cea8 i 2bc.2fc ddhelp.exe

 Waiting for any USER input event (== in GetMessage).

GFlags

If you ever need to know if different gflags are turned on/off, here are the flags (from sdk\inc\ntexapi.h):

FLG_STOP_ON_EXCEPTION 0x00000001 // user and kernel mode

FLG_SHOW_LDR_SNAPS 0x00000002 // user and kernel mode

FLG_DEBUG_INITIAL_COMMAND 0x00000004 // kernel mode only up until WINLOGON started

FLG_STOP_ON_HUNG_GUI 0x00000008 // kernel mode only while running

FLG_HEAP_ENABLE_TAIL_CHECK 0x00000010 // user mode only

FLG_HEAP_ENABLE_FREE_CHECK 0x00000020 // user mode only

FLG_HEAP_VALIDATE_PARAMETERS 0x00000040 // user mode only

FLG_HEAP_VALIDATE_ALL 0x00000080 // user mode only

FLG_POOL_ENABLE_TAIL_CHECK 0x00000100 // kernel mode only

FLG_POOL_ENABLE_FREE_CHECK 0x00000200 // kernel mode only

FLG_POOL_ENABLE_TAGGING 0x00000400 // kernel mode only

FLG_HEAP_ENABLE_TAGGING 0x00000800 // user mode only

FLG_USER_STACK_TRACE_DB 0x00001000 // x86 user mode only

FLG_KERNEL_STACK_TRACE_DB 0x00002000 // x86 kernel mode only at boot time

FLG_MAINTAIN_OBJECT_TYPELIST 0x00004000 // kernel mode only at boot time

FLG_HEAP_ENABLE_TAG_BY_DLL 0x00008000 // user mode only

FLG_ENABLE_CSRDEBUG 0x00020000 // kernel mode only at boot time

FLG_ENABLE_KDEBUG_SYMBOL_LOAD 0x00040000 // kernel mode only

FLG_DISABLE_PAGE_KERNEL_STACKS 0x00080000 // kernel mode only at boot time

FLG_HEAP_DISABLE_COALESCING 0x00200000 // user mode only

FLG_ENABLE_CLOSE_EXCEPTIONS 0x00400000 // kernel mode only

FLG_ENABLE_EXCEPTION_LOGGING 0x00800000 // kernel mode only

FLG_ENABLE_HANDLE_TYPE_TAGGING 0x01000000 // kernel mode only

FLG_HEAP_PAGE_ALLOCS 0x02000000 // user mode only

FLG_DEBUG_INITIAL_COMMAND_EX 0x04000000 // kernel mode only up until WINLOGON started

FLG_DISABLE_DBGPRINT 0x08000000 // kernel mode only

Win9x Sources

(from Pierre-Yves Santerre)

All sources are on \\muroc\slm (which can be access via \\muroc\slmro to make sure you are doing real-only access). Contact "buildlab" to get accesss CCing me.

The Millenium project is a set of multiple SLM enlistments, a lot like the projects of W2K sources were before they got moved to source depot.

So someone first enlist in -s \\muroc\slm -p root to get the root project. This includes the dev tree (global headers and compilers) which includes the important dev\slmproj.cfg file (the correspondent to projects.cmd). This file is thus at \\muroc\slmro\src\root\dev\slmproj.cfg.

Then someone can enlist in any specific project listed in slmproj.cfg. The enlistment will be done at a leaf of the root project. For instance, INF files sources would be described by the \\muroc\slm\proj\setup,inf,setup\inf line in slmproj.cfg. This lines means that the sources are to be found on \\muroc\slm\proj\setup \ src/diff/etc \ inf and that this directory should be under {root}\setup\inf of the enlistement of the root project (since you probably won't enlist you probably won't care about that last part). In general, most projects are under \\muroc\slmro\proj\...

One important project is the tools project. It is used by the builders to drop the built binaries. the slmproj.cfg says that this project is \\muroc\slm,tools,tools, ie the sources are in \\muroc\slm \ src/diff/etc \ tools (one of the few projects to not be under proj). One very important file is \\muroc\slmro\src\tools\drop\millen\all.csv. This file state where every binary comes from.

For instance, if you want to find the sources of retail kernel32.dll, search for it in that file: you will find:

win\core\win32\kernel\retail,kernel32.dll,,psgret line.

This means that kernel32.dll gets built from {root}\win\core\win32\kernel\retail.

Reading slmproj.cfg, this directory belongs to the win project: \\muroc\slm\proj\win,core,win\core. So the sources are in \\muroc\slmro\proj\win \ src/diff/etc \ core\kernel

Here are a few important pointers:

16-bit GDI/USER/KERNEL:

\\muroc\slmro\proj\win\ src/diff/etc \ core \ user/kernel/gdi

32-bit GDI/USER/KERNEL:

\\muroc\slmro\proj\win\ src/diff/etc \ core\win32 \ user/kernel/gdi

VMM (ring 0 thread management/memory management/dpmi provider)

\\muroc\slmro\proj\dos\ src/diff/etc \ dos386\vmm:

threading is under sched subdirectory

memory management is under mmnew subdirectory

dpmi is in int31.asm

IFSMGR (ring 0 file access):

\\muroc\slmro\proj\dos\ src/diff/etc ifsmgr\src

Debugging Scenarios

Divergence

This section is designed to provide some hints when all else fails. All else is verifying there are no obvious differences between the API calls and results between win9x and NT.

The problem of finding the failure in any application can be divided into two parts:

a. Finding the place where Win9x and NT diverge

b. Recognizing the divergence as significant and not just noise

1. Finding the point of divergence

As we’ve seen on numerous occasions, an API failure is just one way an application can break – in fact, a failure is just a special case of a behavioral difference. So the question is, how to go about finding these differences – especially the subtle ones.

The first thing to do is set up machines to run the app simultaneously on both Win9x and NT. i.e. to compare execution paths.

Once both machines are configured and you’re able to run the app on both, try and find a known good state before things start going wrong. Sometimes this can be tricky, but here are some techniques:

a. Put a breakpoint in the application WindowProc that dumps out all the messages:

bp <winproc> “dd (esp+4) l4;g”

You can obtain the WindowProc address in a number of ways:

1. Break on USER32!InternalCallWinproc and see what it calls – symbols for user32.dll required.

2. Break on RegisterClassA and look at the WNDCLASS structure which contains a pointer to the winproc. Note: you may also need to break on SetWindowLong(hWnd, GWL_WNDPROC, X) in case the app changes it.

b. Use a conditional breakpoint for a particular message:

bp <winproc> “j (dwo (esp+8)==201) ‘k;’g;”

This will break on WM_LBUTTONDOWN (left mouse button press). You can get a full list of the messages from %_NTROOT%\public\sdk\inc\winuser.h. MSDN also documents their meanings well.
c. Use the logger output to find a nearby API:

Logviewer also dumps out the return address so it’s easy to pinpoint. Try and pick an API that isn’t hit too often – something like CreateFile is good, whereas GetTickCount is bad.

d. If the application uses DirectDraw:

DirectDraw is a special component because the application state is often reflected using calls like IDirectDrawSurface::Blt. A Blt with certain Src or Dst rectangles can be isolated (see DirectDraw section above).

Occasionally a bug will read – screen goes black and app exits or stops responding. If this is the case, ChangeDisplaySettingsExA is a good place to start.

e. If the application uses DirectInput to get mouse state:

The application will use IDirectInputDevice::GetDeviceState and/or IDirectInputDevice::GetDeviceData. For GetDeviceState, you can determine what kind of device they’re looking at by checking the cbData parameter (mouse is 0x10). Then conditionally break when the rgbButtons field changes.

f. Find a known bad state and back trace until you get to a good state:

This is an iterative approach whereby you first wait for the failure to occur and then set breakpoints on both platforms until you reach an address that gets hit on both before the problem has occurred.

This works well for the more deterministic problems – like when a dialog is popped up.

2. Recognising significant divergence

Divergence itself is very often not interesting. This seems counter-intuitive, but the fact is that applications are enormous state machines and it’s often the case that even if the state looks identical, it may not be.

…work in progress

Copyright 2000 by Microsoft Corporation. All rights reserved.
Microsoft Confidential

