Shim Documentation

Page 5


Ignoring Unhandled Exceptions (IgnoreException.DLL)

Lindsay Steventon

Created:
04/20/2000 

Last Modified:
10/20/2000 

Windows 2000 / Whistler Shim Document 

Copyright 2000 by Microsoft Corporation. All rights reserved.

Microsoft Confidential

This document is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.


Table of Contents

2Table of Contents

Overview
3
Usage
4
Comments
6



Overview

Many applications generate exceptions for a wide variety of reasons. Some of these are by their design, others are caused by differences between the Win9x and NT architecture. Often, these exceptions point to a more significant problem, such as an API failure, but occasionally the exception can simply be ignored.

The most common cause for exceptions that can be safely ignored are priviliged mode instructions, such as:


cli

; Clear Interrupts 

sti

; Restore Interrupts

However, some applications include more exotic instructions like:

mov eax, CR4
; CR4 is a priviliged register

Or:

in al, dx
; Direct port read

out dx, al 
; Direct port write

Of course, simply ignoring these instructions may not give the desired result. For example, USNF 97 uses cli and sti instructions to synchronize video playback. In these cases, you’ll need to write a specific shim to emulate the expected behavior.

There are legitimate cases where other exceptions can be ignored as well, although these are rare and should be treated with caution. This is because ignoring failures is seldom harmless and may cause unpredictable behavior. However, I’ve encountered at least one case where ignoring access violations was appropriate: Deer Hunter II’s 3D algorithm occasionally produces a lookup value orders of magnitude away from an allocation – in unmapped memory. Since the value that’s read has no effect on the game (it’s random even on Win9x), we can safely ignore this read access violations. 

For completeness, the implementation is such that any exception can be specified to be ignored.

The way the ignoring actually happens is that the instruction that caused the exception is parsed and it’s length (in bytes) is determined. Then the handler simply moves the instruction pointer to the next instruction and reports that the exception has been handled – at which time execution continues.

For more information on exceptions, see MSDN Article ID: Q105675.
Usage

The command line can be used to direct the behavior of IgnoreException to ignore specified exceptions. By default, only priviliged mode instructions are ignored.

The command lines takes the form of a semi-colon (;) delimited list of exception names. The name of the exceptions can be found in MSDN under EXCEPTION_RECORD.

Note that you can specify how exceptions are to be handled by putting a ‘:N’ after the exception name. N is an integer in the range 0..2 with the following meanings:

0 Leave this exception active

1 Ignore 1st chance exceptions

2 Ignore 2nd chance exceptions

3 ExitProcess(0) on 2nd chance exceptions

If you don’t specify N, it’s assumed value is 2.

For example:

// Ignore 1st chance priviliged mode instructions like cli/sti

<DLL NAME="IgnoreExceptions.dll"/>

// Ignore 2nd chance read access violations 

<DLL NAME="IgnoreExceptions.dll" 

COMMAND_LINE="ACCESS_VIOLATION_READ"/>

// Ignore 2nd chance access violations and first chance divide by zero exceptions

<DLL NAME="IgnoreExceptions.dll" COMMAND_LINE="ACCESS_VIOLATION_READ; ACCESS_VIOLATION_WRITE;INT_DIVIDE_BY_ZERO:1"/>

// Ignore 1st chance access violations and allow (don’t ignore) priviliged mode

// instruction exceptions 

<DLL NAME="IgnoreExceptions.dll" 

COMMAND_LINE="ACCESS_VIOLATION_WRITE:1;PRIV_INSTRUCTION:0"/>

// Close the application on second chance write Access Violations

<DLL NAME="IgnoreExceptions.dll" 

COMMAND_LINE="ACCESS_VIOLATION_WRITE:3"/>

// Ignore all first chance exceptions

<DLL NAME="IgnoreExceptions.dll" 

COMMAND_LINE="*"/>

Other exceptions:

	Name
	Meaning

	ACCESS_VIOLATION_READ
	The thread tried to read from a virtual address for which it does not have the appropriate access.

	ACCESS_VIOLATION_WRITE
	The thread tried to write to a virtual address for which it does not have the appropriate access.

	ARRAY_BOUNDS_EXCEEDED
	The thread tried to access an array element that is out of bounds and the underlying hardware supports bounds checking.

	BREAKPOINT
	A breakpoint was encountered.

	DATATYPE_MISALIGNMENT
	The thread tried to read or write data that is misaligned on hardware that does not provide alignment. For example, 16-bit values must be aligned on 2-byte boundaries; 32-bit values on 4-byte boundaries, and so on.

	FLT_DENORMAL_OPERAND
	One of the operands in a floating-point operation is denormal. A denormal value is one that is too small to represent as a standard floating-point value.

	FLT_DIVIDE_BY_ZERO
	The thread tried to divide a floating-point value by a floating-point divisor of zero.

	FLT_INEXACT_RESULT
	The result of a floating-point operation cannot be represented exactly as a decimal fraction.

	FLT_INVALID_OPERATION
	This exception represents any floating-point exception not included in this list.

	FLT_OVERFLOW
	The exponent of a floating-point operation is greater than the magnitude allowed by the corresponding type.

	FLT_STACK_CHECK
	The stack overflowed or underflowed as the result of a floating-point operation.

	FLT_UNDERFLOW
	The exponent of a floating-point operation is less than the magnitude allowed by the corresponding type.

	ILLEGAL_INSTRUCTION
	The thread tried to execute an invalid instruction.

	IN_PAGE_ERROR
	The thread tried to access a page that was not present, and the system was unable to load the page. For example, this exception might occur if a network connection is lost while running a program over the network.

	INT_DIVIDE_BY_ZERO
	The thread tried to divide an integer value by an integer divisor of zero.

	INT_OVERFLOW
	The result of an integer operation caused a carry out of the most significant bit of the result.

	INVALID_DISPOSITION
	An exception handler returned an invalid disposition to the exception dispatcher. Programmers using a high-level language such as C should never encounter this exception.

	NONCONTINUABLE_EXCEPTION
	The thread tried to continue execution after a noncontinuable exception occurred.

	PRIV_INSTRUCTION
	The thread tried to execute an instruction whose operation is not allowed in the current machine mode.

	SINGLE_STEP
	A trace trap or other single-instruction mechanism signaled that one instruction has been executed.

	STACK_OVERFLOW
	The thread used up its stack.

	INVALID_HANDLE
	Invalid handle.


Comments

When to use

If you hit a priviliged mode instruction while debugging an application, by all means, give this a try. If it works with no side-effects, the chances are that the application developers used these instructions with no good reason.

If there is an access violation and you notice that nothing useful was read or written to the address in question, then there is a chance that this will work. But generally try and understand why this worked on Win9x and apply a more appropriate shim like PadHeapAllocations. 

If an application dies on exit, because it’s using freed memory for example, specifying ACCESS_VIOLATION_READ:3 is an acceptable way to close the application cleanly.

When not to use

By default, the only exceptions that are ignored by this shim are priviliged mode instructions. The reason is that ignoring every bad exception could conceivably cause the application to execute code that is untested. In addition, be wary of ignoring 1st chance access violations. Many applications are designed to handle access violations of some kind.

Windows 2000 and Whistler

Recent changes to the Whistler code base allow any exception to be hooked, in an unchainable manner. This means that we are guarenteed to be called even if a C++ exception handler is active. In addition, this shim will be called first, i.e. ahead of any other exception handler.

However, on Windows 2000, the only means of doing this is using the SetUnhandledExceptionFilter API, which will NOT be called when a C++ exception handler is active. In addition, this filter will only be called when the exception has already reached 2nd chance status.







Copyright 2000 by Microsoft Corporation. All rights reserved.
Microsoft Confidential


