The LUA layers

- Shims for LUA (Limited User Access) bugs

Revision history

	Date
	Alias
	Comments

	02/08/2001
	MaoniS
	Draft

	02/23/2001
	MaoniS
	Updated for v1

	04/10/2001
	MaoniS
	Updates

Contents

Problems

Solutions

Redirection shims

Security difference between W2K and Whistler – stripped down version of the redirection shims

Cleanup shims – cleanup the redirected copies

Tracking shims

Problems
Many applications that were designed to run on Win9x don’t have any concept of security. In a more secure environment when the app is running under a normal user account, they fail mainly because of:

1) Privilege checks: we don’t address this in the RUT shims

2) Registry ACL checks

3) File system ACL checks - only apply to NTFS

Since a normal user has only request read-only access to most things on the system, a well-designed application should write any user data to the user’s directory – on whistler this is drive:\Documents and Settings\user. But the poorly designed apps try to write things to places such as the directory they are installed to (usually Program Files, which a normal user doesn’t have write access to) or even, the system directory.

These poorly designed apps can be classified into 2 categories:

1) Apps that simply are requesting more control than they need to – certainly not a good practice but it works in a non-secure environment

2) Apps that request the correct level of control but do so in the wrong way – e.g., writing files to a directory they should not be writing to

We have written some application specific shims to address the 1st issue by simply removing the control the app doesn’t need. Now we are looking for a general solution to address both of these issues.

Solutions
Solution #1

The first solution we came up with is to redirect apps to a place that they have access to when running under a normal user account. There 2 categories of redirection:

1) For registry operations, when the app needs to write to HKLM, we write the same key to HKCU instead; when the app needs to read a registry key, we check in HKCU first, if it doesn’t exist there, we then check in HKLM;

2) For file operations, when the app needs to write to a file it doesn’t have write access to, we copy the file to “%SystemDrive%\Documents and Settings\username\Local Settings\drive\filepath” and write to that alternate copy; when the app needs to read from a file we check in that alternate path first, if it doesn’t exist there, we then check in the original path;

Except if

for file operations:

· It’s a file on a partition without a secured file system.

· The app is trying to modify an SFP-ed DLL – in which case if the app is running under an admin account it would get reverted; if the app is running under a normal user account, we should simply return true and not create an alternate copy;

· The app is writing to the user’s directory. We shouldn’t redirect in this case – there’s no point to and it’ll only cause trouble because the user won’t be able to find the file (unless he looks really hard) – a normal case would be the use tries to save a file and he wants to save in his documents directory.

· It’s calling CreateFile on a non-file, for example, a console handle.

· It’s a file on a remote location (we don’t deal with this in V1 - we might in the future – so far I haven’t seen any situation where we need to consider this).

for registry operations:

· It’s opening the HKCU key or a key under HKCU (since in the implementation of registry redirection we keep a list of open keys we still need to add these keys to the list so we know where a key was originated from).

The goal is to make the app seem like it’s running under an administrator account withOUT changing any security attributes of any system objects (right now these mean files and registry keys). Of course, there are complications, see below “Special cases” section.

Solution #2

We could also relax the ACLs on the directories and the registry keys. We could write a shim that tells us which directories and registry keys the app tries to access and show them to an administrator who can decide to relax the permission on them accordingly.

Redirection shims
Which APIs to hook

File APIs currently hooked
CreateFileA

CreateFileW

CopyFileA

CopyFileW

OpenFile

_lopen

_lcreat

CreateDirectoryA

CreateDirectoryW

GetFileAttributesA

GetFileAttributesW

SetFileAttributesA

SetFileAttributesW

FindFirstFileA

FindFirstFileW

FindNextFileA

FindNextFileW

FindClose

DeleteFileA

DeleteFileW

MoveFileA

MoveFileW

RemoveDirectoryA

RemoveDirectoryW

GetTempFileNameA

GetTempFileNameW

GetPrivateProfileStringA

GetPrivateProfileStringW

WritePrivateProfileStringA

WritePrivateProfileStringW

GetPrivateProfileSectionA

GetPrivateProfileSectionW

WritePrivateProfileSectionA

WritePrivateProfileSectionW

GetPrivateProfileIntA

GetPrivateProfileIntW

GetPrivateProfileSectionNamesA

GetPrivateProfileSectionNamesW

GetPrivateProfileStructA

GetPrivateProfileStructW

WritePrivateProfileStructA

WritePrivateProfileStructW

Registry APIs currently hooked
RegOpenKeyA

RegOpenKeyW

RegOpenKeyExA

RegOpenKeyExW

RegCreateKeyA

RegCreateKeyW

RegCreateKeyExA

RegCreateKeyExW

RegCloseKey

RegQueryValueA

RegQueryValueW

RegQueryValueExA

RegQueryValueExW

RegSetValueA

RegSetValueW

RegSetValueExA

RegSetValueExW

RegEnumValueA

RegEnumValueW

RegEnumKeyA

RegEnumKeyW

RegEnumKeyExA

RegEnumKeyExW

RegDeleteKeyA

RegDeleteKeyW

Long file-path/name

Previously in our shims we limited the filename with a full path to MAX_PATH chars. When we use redirection this can become very problematic – the original path for the app executable can easily push that limit, now we are adding something like

C:\Documents and Settings\Steve\Local Settings\ to it, that’s 47 chars. In the LUA shims we use the \\?\ notation to increase the limit (and save the trouble of trying to convert it to a short path which is problematic). Then we call the Unicode version of the APIs.

What’s this solution not good for

This solution is generally not good for installation purposes – it would install everything in the user’s directory, which would mean each user has his own copy of the application – not something desirable. The installation should generally be done by an admin user therefore is available to all users (which is reasonable).

Note that some apps create a directory under the root directory (e.g. Disney Apps). By default a normal user can create new directories/files under the root directory. So the installation will actually succeed (and using our solution, it will get installed to the directory it wants). So it seems there’s no need to apply the shims. But the shims are useful when the app also needs to write some files to directories it doesn’t have write access to (like the %windir%) – then we can either return success in case of SFP-ed DLLs or create an app specific copy otherwise. So the shims could be used for this installation scenario.

When to and not to apply this solution

1) When the user is an administrator or a power user, we don’t need to apply these shims;

2) When the user has no read access, we can’t apply these shims;

3) When the failure is not due to security reasons, we shouldn’t apply these shims;

4) The rest of the cases, we apply these shims

Elaboration for case 1)

The only case the shims will be applied is when the user is a member of Users group and not a member of either Administrators or Power Users group. We don’t shim it when the user is a Guest. The built-in Guest account profile doesn’t persist, and that’s where we store our redirected files so there’s no point to shim it.

Note: this means Test should stop using the built-in Guest account to test the LUA stuff!

Elaboration for case 3)

When you call CreateFile, MoveFile and etc, it could return ACCESS_DENIED because of non-security related reasons, for example, if you are trying to write to a read-only file or pass a directory name with a trailing slash to CreateFile, you’ll get ACCESS_DENIED. The best solution would be to check the ACL to see if this user has the permission it’s requesting to this object.

Note in V1 we are not using this methology – I found that it’s a lot more complicated than just excluding those special cases. For example, if the file doesn’t exist, we’d have to check if the app has permission to create new files in that directory.

Pseudo code to check to see what kind of access rights the user has – error checking omitted

// Get the user SID.

HANDLE hToken;

BOOL bRes;

DWORD cbBuffer = 0;

DWORD cbRequired;

PTOKEN_USER pUserInfo;

PSID pUserSid;

OpenProcessToken(GetCurrentProcess(),

TOKEN_QUERY,

&hToken);

if (!GetTokenInformation(

 hToken,

TokenUser,

NULL,

cbBuffer,

&cbRequired) &&

 GetLastError() == ERROR_INSUFFICIENT_BUFFER)

{

 cbBuffer = cbRequired;

 pUserInfo = (PTOKEN_USER) HeapAlloc(GetProcessHeap(), 0, cbBuffer);

 GetTokenInformation(

 hToken,

 TokenUser,

 pUserInfo,

 cbBuffer,

 &cbRequired);

 cbBuffer = GetLengthSid(pUserInfo->User.Sid);

 pUserSid = (PSID) HeapAlloc(GetProcessHeap(), 0, cbBuffer);

 CopySid(cbBuffer, pUserSid, pUserInfo->User.Sid);

 HeapFree(GetProcessHeap(), 0, pUserInfo);

}

// Get the object DACL.

PACL pdacl = NULL;

SECURITY_DESCRIPTOR sd;

PSECURITY_DESCRIPTOR psd = &sd;

GetNamedSecurityInfo(

 szFile,

 SE_FILE_OBJECT,

 DACL_SECURITY_INFORMATION,

 NULL,

 NULL,

 &pdacl,

 NULL,

 &psd);

// Get the access rights of the user to this object.

TRUSTEE te = {NULL, NO_MULTIPLE_TRUSTEE, TRUSTEE_IS_SID, TRUSTEE_IS_USER, (char*)psidUser};

ACCESS_MASK am;

GetEffectiveRightsFromAcl(pdacl, &te, &am);

LocalFree(psd);

HeapFree(GetProcessHeap(), 0, psidUser);
Implementation

(very) Pseudo code:

When requesting write access or writing to a file:

if (the file should be dealt with)

{

lRet = WriteTo(AlternateLocation);

if (lRet == FILE_NOT_FOUND)

{

lRet = WriteTo(OriginalLocation);

if (lRet == ACCESS_DENIED)

{

if (FailedDueToInsufficientPriviledge())

{

lRet = CopyTo(AlternateLocation);

if (SUCCESS(lRet))

{

return WriteTo(AlternateLocation);

}

}

}

}

return lRet;

}

else

{

return WriteTo(OriginalLocation);

}

When reading from a file:

if (the file should be dealt with)

{

if (ReadFrom(AlternateLocation) == FILE_NOT_FOUND)

{

return ReadFrom(OriginalLocation);

}

}

else

{

return ReadFrom(OriginalLocation);

}

When requesting write access or writing to a reg key:

FindInOpenKeys(hKey);

if (hKey is HKCU or was originated from HKCU)

{

lRet = WriteTo(OriginalLocation);

}

else

{

lRet = WriteTo(AlternateLocation);

if (lRet == FILE_NOT_FOUND)

{

lRet = WriteTo(OriginalLocation);

if (lRet == ACCESS_DENIED)

{

if (FailedDueToInsufficientPriviledge())

{

lRet = CopyTo(AlternateLocation);

if (SUCCESS(lRet))

{

return WriteTo(AlternateLocation);

}

}

}

}

}

if (lRet == ERROR_SUCCESS)

{

AddResultingKeyToOpenKeyList();

}

return lRet;

When reading from a reg key:

FindInOpenKeys(hKey);

if (hKey is HKCU or was originated from HKCU)

{

lRet = ReadFrom(OriginalLocation);

}

else

{

if (ReadFrom(AlternateLocation) == FILE_NOT_FOUND)

{

return ReadFrom(OriginalLocation);

}

}

Special case #1 – Enuming APIs

Notice we hook not just FindFirstFile but also FindNextFile and FindClose. The reason for this is we need to merge the files in the redirected directory and the original directory. So we keep a list of files in the redirected directory and exclude those when enumerating the files in the original directory.

Same applies to RegEnumKey* and RegEnumValue. This is currently not implemented – it’s much more rare for apps to change something under one registry key and then try to enumerate the subkeys under it.

Special case #2 – Deletion APIs

When a Deletion API is called, such as DeleteFile and RemoveDirectory, if we don’t have permission to delete it, currently we simply return TRUE and not do anything. This is not accurate, of course. But it works for all the apps we’ve seen so far. Apps usually call DeleteFile(A) then MoveFile(B, A) so it relies on DeleteFile returning TRUE. As a result we have to special case CopyFile and MoveFile accordingly.

But of course there are many more apps out there that we haven’t looked at, so to be more accurate we should persist the info about deleted files and registry keys. We could persist this in the registry.

Special case #3 – RegOpenKey* and RegCreateKey*

We only create a redirect registry key in one of the following 2 situations:

1) RegCreateKey* is called and the key doesn’t exist at the original location;

2) RegSetValue* is called and the key doesn’t exist.

This way we can avoid creating excess keys which will not be removed by the uninstaller (I’ll explain this in the Cleanup shims section).

Optimization

We can cache the directories/files/reg keys that we already look for access rights for the current user. But do we need to consider the case during the running of the app, the admin could change these objects and/or this user’s security attributes?

Special Cases

Case 1

If we want to make the user look like an admin, it means the same result should happen when an admin and the user do the same things. But it can get tricky when there are mixed operations from an admin and a normal user. Say the user deletes a file, which is really the copy in the alternate path, the file should be considered non-existing. What happens if an admin creates that file again? Should we fail the subsequent CreateFile calls to open the file because to us the file is not there, or should we go down the redirection path, find the file in the original path and return success?

Scenario 1 – home user

1. User A creates a new game then saves it

2. App calls CreateFile on C:\Program Files\LameApp\Saved\saved.01

3. We create a copy C:\Documents and Settings\A\Local Settings\C\Program Files\LameApp\Saved\saved.01

4. User A decides to delete this game

5. App calls DeleteFile on C:\Program Files\LameApp\Saved\saved.01

6. We delete C:\Documents and Settings\A\Local Settings\C\Program Files\LameApp\Saved\saved.01

7. Admin B (A’s brother) creates a new game then saves it

8. App calls CreateFile on C:\Program Files\LameApp\Saved\saved.01

9. C:\Program Files\LameApp\Saved\saved.01 created

10. User A loads saved games

Should he see the game in saved.01? Seems unreasonable if he sees it.

Scenario 2 – cooperate user

1. User C opens a doc D:\Program Files\LameApp\doc\doc.01

2. App calls CreateFile on D:\Program Files\LameApp\doc\doc.01

3. We create a copy D:\Documents and Settings\C\Local Settings\D\Program Files\LameApp\doc\doc.01

4. User C adds stuff to this document then closes it

5. Manager opens the same doc, modifies it then closes it

6. User C opens it again

Should he get the update from his manager or should he keep working on his own copy? I think he should.

Case 2

It’s also interesting when a normal user installs the app to a top-level directory (because he has permission to do so) and there are mixed operations from this user (A) and another normal user (B). For this case I think the shims can handle it better – by default user B has the same rights to the installed files, it can create new files but not modified the files created by user A. So it would create an alternate copy and operate on that. But if user A installs an update, user B might not be aware (if it’s one of the files it modified) of it. It would possibly create undesired effects.

Security difference between W2K and Whistler – stripped down version of the redirection shims
On W2K if you create a immediate subdirectory under the root as an administrator, by default, even a limited user has full control of it – in fact, Everyone does. And Everyone has full control over everything in this directory too. On Whistler it’s very different – if you create a directory under the root, limited users can only read the contents and create new files and directories:

BUILTIN\Administrators:(OI)(CI)F

NT AUTHORITY\SYSTEM:(OI)(CI)F

MAONIS2462\Administrator:F

CREATOR OWNER:(OI)(CI)(IO)F

BUILTIN\Users:(OI)(CI)R

BUILTIN\Users:(CI)(special access:)

 FILE_APPEND_DATA

BUILTIN\Users:(CI)(special access:)

 FILE_WRITE_DATA

So in other words, it can’t change the existing files. Some apps create a directory under the root and install itself there so it can make a difference when running them on w2k and whistler. For example, an app has a sample file and you can use it as your own and save your modified version over it – you can do this on w2k but it will fail with ERROR_ACCESS_DENIED on whistler.

We could strip down the redirection shims and make a special version for differences like this.

Cleanup shims – cleanup the redirected copies
What apps usually do in their uninstaller is they keep a record of the files, directories and registry keys they created, and call DeleteFile, RemoveDirectory and RegDeleteKey on them. The way they check if a file/directory exists is usually FindFirstFile and CreateFile; for registry keys they use RegEnumKey*. So there aren’t that many APIs we need to hook for the cleanup shims.

Hooked APIs:

File APIs currently hooked
FindFirstFileA

FindFirstFileW

GetFileAttributesA

GetFileAttributesW

CreateFileA

CreateFileW

DeleteFileA

DeleteFileW

RemoveDirectoryA

RemoveDirectoryW

Registry APIs currently hooked
RegOpenKeyA

RegOpenKeyW

RegOpenKeyExA

RegOpenKeyExW

RegEnumKeyA

RegEnumKeyW

RegEnumKeyExA

RegEnumKeyExW

RegCloseKey

RegDeleteKeyA

RegDeleteKeyW

Tracking shims
The tracking shims hook pretty much the same APIs as the redirection shims but they simply record which locations the apps try to access, then log them into a file. We’ll use a UI to display this info to an administrator who can then decide if he’s willing to relax the ACLs on these directories and registry keys to let limited users have enough access to be able to run the app.

