Shim Documentation

Page 5


Swapping Stacks (StackSwap.DLL)

Lindsay Steventon

Created:
05/04/2000 

Last Modified:
05/04/2000 

Windows 2000 / Whistler Shim Document 

Copyright 2000 by Microsoft Corporation. All rights reserved.

Microsoft Confidential

This document is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.


Table of Contents

2Table of Contents

Overview
3
Usage
4
Comments
5



Overview

Stack usage on Windows NT is different than on Win9x for architectural reasons. 

On Win9x, many APIs thunk or use less stack space than on NT. This should not normally be a problem, except under the following conditions:

1. There is insufficient stack space to support the increased demand

2. Some API uses more stack than on win9x and therefore a subsequent function gets non-zero locals – this manifests itself as an unitialized variable which can have unpredictable results

3. Some API uses more stack and subsequently overwrites sensitive game data

4. App bug whereby old variables on the stack are expected to contain a particular value – similar to (2)

In order to fix this, this shim hooks particular APIs and changes their stack usage by providing a separate stack. In addition, it has the capability to fill old stack with particular values.

Usage

The command line can be used to direct the behaviour of StackSwap to hook specified APIs. By default, no APIs are hooked.

The command lines takes the form of a semi-colon (;) delimited list of modules and function names. 

In addition, parameters can be passed.

0 Fill old stack with zeroes

1 Fill old stack with pointers

2 Fill old stack with pointers to pointers

The default is that no stack is used.

A star (*) wildcard can also be used in the function name part of the expression.

For example:

// Does nothing

<DLL NAME="StackSwap.dll"/>

// Make _fsopen and CreateFileA use no stack

<DLL NAME="StackSwap.dll" 

COMMAND_LINE="MSVCRT.DLL!_fsopen; KERNEL32.DLL!CreateFileA"/>

// Fill old stack with zeroes

<DLL NAME="StackSwap.dll" COMMAND_LINE="USER32.DLL!GetDC:0"/>

// Fill old stack with pointers to pointers

<DLL NAME="StackSwap.dll" 

COMMAND_LINE="KERNEL32.DLL!GetPrivateProfileIntA:2"/>

// Fill old stack with 1024 zero dwords 

<DLL NAME="StackSwap.dll" 

COMMAND_LINE="KERNEL32.DLL!GetPrivateProfileIntA:0(1024)"/>

// Fill old stack for wildcarded APIs in Kernel, GDI and USER

<DLL NAME="StackSwap.dll" 

COMMAND_LINE="KERNEL32.DLL!*; GDI32.DLL!*:0; USER32.DLL!Get*:1"/>

// Force no stack usage for KERNEL, USER, GDI, WINMM

<DLL NAME="StackSwap.dll" 

COMMAND_LINE="*"/>

Comments

This shim can be used whenever a problem is traced to a stack usage issue and the problem API is known. It should never cause regressions.

Additionally, it is thread safe and re-entrant. As in the example above, MSVCRT!fsopen calls CreateFileA, but the shim detects that the stack has been swapped by fsopen and does not swap it again for the CreateFile.

It is defined in the XML to have no exclusion list.







Copyright 2000 by Microsoft Corporation. All rights reserved.
Microsoft Confidential


