GDI synchronization interface

Internal GDI code now has an interface that matches the DDI semaphore interface (EngXXXSemaphore).

Two types of synchronization object are supported – semaphores and ‘fast mutexes’. Semaphores are re-entrant (that is, code which holds a semaphore may call functions which reacquire the same semaphore, without deadlock), while fast mutexes are not.

This interface is for GDI’s internal use only.

Semaphores

A semaphore is represented with a handle of type HSEMAPHORE. Usually, the following 4 functions should be used for manipulating semaphores.
HSEMAPHORE GreCreateSemaphore()

Creates a semaphore and returns a handle to it, or NULL on error.

VOID GreAcquireSemaphore(HSEMAPHORE)

Acquires the given semaphore.

VOID GreReleaseSemaphore(HSEMAPHORE)

Releases the given semaphore.

VOID GreDeleteSemaphore(HSEMAPHORE)

Deletes the given semaphore.

As a convenience, two functions are provided for acquiring and releasing the handle manager semaphore (ghsemHmgr).

VOID GreAcquireHmgrSemaphore()

Acquires the handle manager semaphore.

VOID GreReleaseHmgrSemaphore()

Releases the handle manager semaphore.

In certain builds, GreCreateSemaphore and GreDeleteSemaphore use invoke pool-tracking and semaphore-tracking code (used for Hydra cleanup). The pool-tracking and semaphore-tracking code both use semaphores in their implementation. Two alternative functions are provided for creating and deleting these semaphores.

HSEMAPHORE GreCreateSemaphoreNonTracked()

Creates a semaphore and returns a handle to it, or NULL on error. Does not invoke pool-tracking or semaphore-tracking code.

VOID GreDeleteSemaphoreNonTracked(HSEMAPHORE)

Deletes the given semaphore. Does not invoke pool-tracking or semaphore-tracking code.

Some GDI code, mostly debug code, used to poke around in the internals of the semaphore to read its state. Two functions have been provided to encapsulate this behavior.

BOOL GreIsSemaphoreOwned(HSEMAPHORE)

Returns TRUE if the semaphore is held by some thread.

BOOL GreIsSemaphoreOwnedByCurrentThread(HSEMAPHORE)

Returns TRUE if the semaphore is held by the calling thread.

Finally, class SEMOBJ is defined in engine.hxx. It does not encapsulate a semaphore as an object; instead it is a convenience class which allows code to release a semaphore implicitly. The constructor SEMOBJ::SEMOBJ(HSEMAPHORE) acquires the semaphore, and the destructor releases it.

Fast mutexes

The use of fast mutexes is analogous to the use of semaphores. Note that code which holds a fast mutex should never call functions which may at some point try to acquire the same fast mutex; deadlock would result.

HFASTMUTEX GreCreateFastMutex()

Creates a fast mutex and returns a handle to it, or NULL on error.

VOID GreAcquireFastMutex(HFASTMUTEX)

Acquires the given fast mutex.

VOID GreReleaseFastMutex(HFASTMUTEX)

Releases the given fast mutex.

VOID GreDeleteFastMutex(HFASTMUTEX)

Deletes the given fast mutex.

