

Font Scaler Client Interface

Version 1.5

1/21/94

Microsoft Confidential

�(1989-1994 Microsoft Corporation and Apple Computer, Inc. All rights reserved.

Microsoft is a registered trademark of Microsoft Corporation. Apple, the Apple logo, Macintosh, MPW, and QuickDraw are registered trademarks of Apple Computer, Inc.

�

�Font Scaler Client Interface

About This Document	3

About the Font Scaler	3

About the Font Scaler Client Interface	3

Using the Font Scaler Client Interface	6

Font Scaler Data Structures	10

The fs_GlyphInputType record	10

The fs_GlyphInfoType record	23

The Graphics State	28

The fnt_LocalGraphicStateType Data Structure	28

The fnt_ElementType Data Structure	33

The fnt_GlobalGraphicStateType Data Structure	35

Font Scaler Routines	39

fs_OpenFonts	41

fs_Initialize	42

fs_NewSfnt	43

fs_NewTransformation	44

fs_NewGlyph	45

fs_GetAdvanceWidth	46

fs_GetScaledAdvanceWidths	47

fs_ContourGridFit	49

fs_ContourNoGridFit	50

fs_ContourGrayScan	51

fs_FindBitMapSize	52

fs_FindBandingSize	53

fs_FindGrayBandingSize	56

fs_FindGraySize	58

fs_SizeOfOutlines	60

fs_SaveOutlines	61

fs_RestoreOutlines	62

fs_ContourScan	63

fs_CloseFonts	64

Font Scaler Errors	65

Sample of a Routine That Uses the Client Interface	68

Summary of the Font Scaler Client Interface	75

Constants	75

Macros	75

Data Types	75

Functions	79

�About This Document

The client interface to the Font Scaler has been released for those engineers who are writing system software, designing outline fonts, and writing font editors.

About the Font Scaler

The Font Scaler scales the outline font definition for a glyph to a specific point size, and then converts the outline into a bitmap at a particular resolution. The conversion of an outline into a bitmap is referred to as scan conversion. Each glyph in an outline font has a mathematical description as a set of straight lines and second-degree B-splines.

Because the edges of the pixels (for a display screen) or dots (for a printer) might not correspond exactly to the lines and curves defining the glyph, a straight scan conversion of an outline into a bitmap is generally imperfect. This effect is most noticeable at low resolution, where there are relatively few pixels or dots per inch.

To correct for this problem, the description of each glyph can include a set of instructions that tell the Font Scaler how to modify the shape of the glyph before scan conversion for a particular point size and display resolution. The Font Scaler, therefore, includes an instruction interpreter in addition to a scan converter.

About the Font Scaler Client Interface

Routines that need to use the Font Scaler are referred to as Font Scaler clients. The client interface for the Font Scaler consists of 19 routines, as shown in Table 1. You can pass parameters to the Font Scaler through a data structure called the fs_GlyphInputType record and you can receive data from the Font Scaler through the fs_GlyphInfoType record. These records are described in the section “Font Scaler Data Structures,” later in this document. The Font Scaler routines are described in detail in the section “Font Scaler Routines,” later in this document.

One of the fields in the fs_GlyphInputType record is a pointer to a function—called the trace function—that the Font Scaler calls before it executes each instruction. The Font Scaler passes one parameter to the trace function: a pointer to the local graphics state. The local graphics state contains several fields that can affect the execution of instructions, plus a pointer to the global graphics state. The local and global graphics states are described in the section “The Graphics State,” later in this document.

You can define the trace function in any way you wish; the purpose of the function is to allow you to trace through the instructions as the Font Scaler executes them and to examine the graphics state before and after each instruction is executed. If you do not want to use the trace feature, set the traceFunc field of the fs_GlyphInputType record to NULL (0).

Table 1. Font Scaler Client Interface Routines

Routine�Use��fs_OpenFonts�Opens the Font Scaler. This routine is required.��fs_Initialize�Initializes the Font Scaler. This routine is required.��fs_NewSfnt�Specifies which sfnt data structure to use. You must call this routine each time you have a new sfnt data structure or change the contents of the maxProfile table in the sfnt.��fs_NewTransformation�Specifies the point size, the transformation matrix, the pixel diameter, and the resolution to be used by the Font Scaler; provides a pointer to the trace function. You must call this routine any time you have a new value for one of these parameters.��fs_NewGlyph�Causes the Font Scaler to compute the glyph index value from the character code. You must call this routine each time you want to display a new glyph.��fs_GetAdvancedWidth�Extracts information about the advance width of a glyph from the sfnt data structure. You can use this routine instead of fs_ContourGridFit or fs_ContourNoGridFit if you do not want to create an outline.��fs_GetScaledAdvanceWidths�Returns the hinted advance widths for the range of glyphs specified. The routine takes advantage of the hdmx and LTSH tables if they are present in the font file.��fs_ContourGridFit�Executes the instructions for a glyph and creates an outline with the point size, display resolution, pixel diameter, and transformation specified with the fs_NewTransformation routine. You should use this routine instead of fs_ContourNoGridFit if you want the Font Scaler to perform grid fitting when it creates the outline of the glyph.��fs_ContourNoGridFit�Creates an outline for a glyph at the point size specified with the fs_NewTransformation routine. You can use this routine instead of fs_ContourGridFit if you want to create an outline without executing the instructions for the glyph.��fs_ContourGrayScan�Converts an outline into a gray scale bitmap.��fs_FindBitMapSize�Calculates the amount of memory that the Font Scaler needs to create the glyph’s bitmap, and returns the left side bearing and advance width. You must call this routine if you want to prepare a bitmap for the glyph.��fs_FindBandingSize�Determines the amount of memory needed by the Font Scaler to scan convert a glyph bitmap using banding.��fs_FindGrayBandingSize�Determines the amount of memory needed to create a gray scale bitmap using banding.��fs_FindGraySize�Determines the amount of memory needed to create a gray scale bitmap.��fs_SizeOfOutlines�Calculates the amount of memory that the Font Scaler needs to cache the outline. This routine is optional.���Table 1 (continued). Font Scaler Client Interface Routines

Routine�Use��

fs_SaveOutlines�Stores the outline data in the outline cache. This routine is optional.��fs_RestoreOutlines�Recovers the outline data stored in the outline cache. This routine is optional.��fs_ContourScan�Converts the outline into a bitmap. You must call this routine if you want to prepare a bitmap for the glyph.��fs_CloseFonts�Closes the Font Scaler.��Using the Font Scaler Client Interface

Each of the routines for the client interface to the Font Scaler takes two parameters. The first parameter is a pointer to the fs_GlyphInputType record and the second is a pointer to the fs_GlyphInfoType record.

To use the Font Scaler to create a bitmap for a particular glyph, use the following procedure:

1.	Allocate memory for and pointers to the fs_GlyphInputType and fs_GlyphInfoType records.

2.	Set to 0 the fields flags, reserved0, platformID, ReleaseSfntFrag, and styleFunc in the fs_GlyphInputType record. The fields flags and reserved0 are reserved for future use; see the section “The fs_GlyphInputType record” for descriptions of the ReleaseSfntFrag, platformID, and styleFunc fields.

3.	Call the fs_OpenFonts routine. Each of the first three elements (elements 0, 1, and 2) of the memorySizes vector in the fs_GlyphInfoType record returns with a value that indicates an amount of memory in bytes.

4.	Allocate three blocks of memory with the sizes indicated by the first three elements of the memorySizes vector, and place pointers to these blocks in the first three elements of the memoryBases vector in the fs_GlyphInputType record.

Important: Any block of memory that you allocate must start at a longword boundary; that is, the starting address of the block must be an even multiple of 4.

5.	Call the fs_Initialize routine.

6.	Locate the font description. You could read in the entire data structure, but typically you obtain the handle to an ‘sfnt’ resource.

7.	Initialize the following fields in the fs_GlyphInputType record: clientID, ReleaseSfntFrag, GetSfntFragmentPtr, and set SfntDirectory to NULL. Set the platformID field to the appropriate platform. See the following section for a description of these fields.

8.	Call the fs_NewSfnt routine to pass this information to the Font Scaler. Elements 3 and 4 of the memorySizes vector in the fs_GlyphInfoType record return with values that indicate an amount of memory in bytes.

9.	Allocate two blocks of memory with the sizes indicated by elements 3 and 4 of the memorySizes vector, and place pointers to these blocks in elements 3 and 4 of the memoryBases vector in the fs_GlyphInputType record.

10.	Initialize the following fields in the fs_GlyphInputType record: xResolution, yResolution, pointsize, transformMatrix, pixelDiameter, and traceFunc. Set traceFunc to NULL if you do not want to activate the trace function.

11.	Call the fs_NewTransformation routine to pass this information to the Font Scaler.

12.	Initialize the characterCode field in the fs_GlyphInputType record. Call the fs_NewGlyph routine. The Font Scaler uses the charToIndexMap table in the sfnt data structure to find the glyph index that corresponds to the character code you specified.

13.	Call the fs_ContourGridFit routine. The Font Scaler executes the instructions in the glyph description and returns the data that defines the outline for the glyph in the following fields of the fs_GlyphInfoType record: xPtr, yPtr, startPtr, endPtr, onCurve, and numberOfContours.

14.	Call the fs_FindBitMapSize routine. The Font Scaler places a value in elements 5 and 6 of the memorySizes vector in the fs_GlyphInfoType record.

15.	Allocate the amount of memory indicated by elements 5, 6 and 7 of the memorySizes vector, and place pointers to that memory in elements 5, 6 and 7 of the memoryBases vector in the fs_GlyphInputType record. This memory is used by the Font Scaler when it is creating a bitmap.

	If there is insufficient memory available to process the entire bitmap, refer to the fs_FindBandingSize call notes.

	You then place a pointer to the amount of memory you have been able to allocate in memoryBases 5. It is important to understand that a memory request for memoryBase 5 is the only time you can partially fulfill a font scaler memory request. All other memory requests must be completely fulfilled. In short, if you are banding a glyph, you can provide a pointer to the amount of memory needed for the band (i.e. not all the memory requested by the scaler), but memoryBases 0, 1, 2, 3, 4, 6, and 7 must always point to enough memory to satisfy the scaler’s requests.

16.	Initialize the bottomClip and topClip fields in the fs_GlyphInputType record. To process the entire glyph, set bottomClip equal to bitMapInfo.bounds.top and topClip equal to bitMapInfo.bounds.bottom. (Note that the bounding box returned by fs_FindBitMapSize is different than one might expect. The bounding box is upside down with respect to the glyph.) Call the fs_ContourScan routine. The Font Scaler converts the outline into a bitmap of the point size and resolution you specified in the fs_GlyphInputType record. The Font Scaler places a pointer to the bitmap and the dimensions of the bitmap in the bitMapInfo field of the fs_GlyphInfoType record.

Each time you want to display a new character, you can change the characterCode field of the fs_GlyphInputType record and repeat steps 12 through 16. If you change the point size, transformation matrix, pixel diameter, or device resolution, you must return to step 10. If you change the font, you must return to step 6. If you have converted only a portion of the glyph into a bitmap, you can repeat step 16 with different values of bottomClip and topClip as many times as you like; be sure that you have allocated enough memory for the widest strip that you process.

Call the fs_CloseFonts routine when you are finished using the Font Scaler, before your program quits.

You can use the fs_ContourNoGridFit routine instead of the fs_ContourGridFit routine to see what a glyph looks like when the instructions for that glyph are not executed.

You can use the fs_GetAdvanceWidth routine instead of the fs_ContourGridFit or fs_ControurNoGridFit routines if you are only interested in character widths and do not want to calculate the outline of the character.

The fs_SizeOfOutlines, fs_SaveOutlines, and fs_RestoreOutlines routines make it possible to implement a font cache. These routines are primarily for use by the Font Manager, not for other clients of the Font Scaler. The Font Manager can cache the outlines of several glyphs and then display them more quickly than would otherwise be possible, for example. These routines are used between steps 14 and 15. To use the font cache routines, include the following step between steps 14 and 15 in the preceding procedure:

14.1	Call the fs_SizeofOutlines routine. The font scaler places a value in the outlineCacheSize field of the fs_GlyphInfoType record that indicates the amount of memory needed to cache the outline of the glyph.

14.2	Allocate the amount of memory indicated by the outlineCacheSize field and place a pointer to the memory in the outlineCache field of the fs_GlyphInputType record. If you cache another character before you recover this one, you will have to repeat this process. Therefore, you should store the pointers to the cached glyphs in your program’s own local memory.

14.3	Call the fs_SaveOutlines routine. The Font Scaler stores the outline of the glyph in the memory pointed to by the outlineCache field.

14.4	When you are ready to display the character, place the pointer to the memory cache for that character in the outlineCache field of the fs_GlyphInputType record and call the fs_RestoreOutlines routine. Then go on to step 15 as described earlier in this section.

Font Scaler Data Structures

The Font Scaler uses two data structures for exchanging information with your program: fs_GlyphInputType and fs_GlyphInfoType. These data structures are defined and described in this section. The Font Scaler also uses two data structures, referred to as the local graphics state and the global graphics state, that affect the way in which various instructions are interpreted. The Font Scaler passes a pointer to the local graphics state to your trace function, and the local graphics state includes a pointer to the global graphics state. The graphics state data structures are also described in this section.

The fs_GlyphInputType record

You place information needed by the Font Scaler in the fs_GlyphInputType record, which is defined as follows:

/* banding type constants */

#define FS_BANDINGOLD 0

#define FS_BANDINGSMALL 1

#define FS_BANDINGFAST 2

#define FS_BANDINGFASTER 3

/* Dropout control values are now defined as bit masks to retain compatability */

/* with the old definition, and to allow for current and future expansion */

#define SK_STUBS 0x0001 	/* leave stubs white */

#define SK_NODROPOUT 0x0002 	/* disable all dropout control */

#define SK_SMART			 0x0004 	/* symmetrical dropout, closest pixel */

/* Values used to decode curves */

#define ONCURVE 0x01

typedef signed char int8;

typedef unsigned char uint8;

typedef short int16;

typedef unsigned short uint16;

typedef long int32;

typedef unsigned long uint32;

typedef long Fixed;

#ifndef F26Dot6

#define F26Dot6 long

#endif

#ifndef boolean

#define boolean int

#endif

/* QuickDraw Types */

#ifndef _MacTypes_

#ifndef __TYPES__

 typedef struct Rect {

 int16 top;

 int16 left;

 int16 bottom;

 int16 right;

 } Rect;

#endif

#endif

typedef struct {

 Fixed transform[3][3];

} transMatrix;

typedef struct {

 Fixed x, y;

} vectorType;

typedef void (*voidFunc) ();

typedef void * voidPtr;

typedef void (FS_CALLBACK_PROTO *ReleaseSFNTFunc) (voidPtr);

typedef void * (FS_CALLBACK_PROTO *GetSFNTFunc) (int32, int32, int32);

#endif /* FSCDEFS_DEFINED */

/* QuickDraw Types */

#ifndef _Quickdraw_

#ifndef __QUICKDRAW__

	typedef struct BitMap {

		char* baseAddr;

		int16 rowBytes;

		Rect bounds;

	} BitMap;

#endif

#endif

#ifdef FSCFG_GRAY_SCALE

#define MEMORYFRAGMENTS 9 /* extra memory base for overscaled bitmap */

#else

#define MEMORYFRAGMENTS 8

#endif

typedef struct {

	vectorType advanceWidth, leftSideBearing;

	vectorType leftSideBearingLine, devLeftSideBearingLine;/* along AW line */

	vectorType devAdvanceWidth, devLeftSideBearing;

} metricsType;

#define FS_MEMORY_SIZE int32

/*

 * Output data structure to the Font Scaler.

 */

typedef struct {

	FS_MEMORY_SIZE memorySizes[MEMORYFRAGMENTS];

	uint16 glyphIndex;

	uint16 numberOfBytesTaken; /* from the character code */

	metricsType metricInfo;

	BitMap bitMapInfo;

	/* Spline Data */

	int32 outlineCacheSize;

	uint16 outlinesExist;

	uint16 numberOfContours;

	F26Dot6 *xPtr, *yPtr;

	int16 *startPtr;

	int16 *endPtr;

	uint8 *onCurve;

	/* End of spline data */

	/* Only of interest to editors */

	F26Dot6 *scaledCVT;

#ifdef FSCFG_GRAY_SCALE

	/* gray scale outline magnification */

	uint16 usOverScale;

#endif

} fs_GlyphInfoType;

/*

 * Input data structure to the Font Scaler.

 *

 * if styleFunc is set to non-zero it will be called just before the transformation

 * will be applied, but after the grid-fitting with a pointer to fs_GlyphInfoType.

 * so this is what styleFunc should be voidFunc StyleFunc (fs_GlyphInfoType *data);

 * For normal operation set this function pointer to zero.

*/

#ifndef UNNAMED_UNION

typedef struct {

	Fixed version;

	char* memoryBases[MEMORYFRAGMENTS];

	int32 *sfntDirectory; /* (sfnt_OffsetTable *) always needs to be set, when we have the sfnt */

	GetSFNTFunc GetSfntFragmentPtr; /* (clientID, offset, length) */

	ReleaseSFNTFunc ReleaseSfntFrag;

	int32 clientID; /* client private id/stamp (eg. handle for the sfnt) */

	union {

		struct {

			uint16 platformID;

			uint16 specificID;

		} newsfnt;

		struct {

			Fixed pointSize;

			int16 xResolution;

			int16 yResolution;

			Fixed pixelDiameter; /* compute engine char from this */

			transMatrix* transformMatrix;

			FntTraceFunc traceFunc;

		} newtrans;

		struct {

			uint16 characterCode;

			uint16 glyphIndex;

		} newglyph;

		struct {

			void (*styleFunc) (fs_GlyphInfoType*);

			FntTraceFunc traceFunc;

		} gridfit;

		struct { /* for fs_FindGraySize */

			uint16 usOverScale; /* outline magnification */

			boolean bMatchBBox; /* force bounding box match */

		} gray;

		int32* outlineCache;

		struct { /* for fs_FindBandingSize */

			uint16 usBandType; /* old, small or fast */

			uint16 usBandWidth; /* number of scanlines */

			int32* outlineCache; /* cacheing works with banding */

		} band;

		struct {

			int16 bottomClip;

			int16 topClip;

			int32* outlineCache;

		} scan;

	} param;

} fs_GlyphInputType;

#else

typedef struct {

	Fixed version;

	char* memoryBases[MEMORYFRAGMENTS];

	int32 *sfntDirectory; /* (sfnt_OffsetTable *) always needs to be set, when we have the sfnt */

	GetSFNTFunc GetSfntFragmentPtr; /* (clientID, offset, length) */

	ReleaseSFNTFunc ReleaseSfntFrag;

	int32 clientID; /* client private id/stamp (eg. handle for the sfnt) */

	union {

		struct {

			uint16 platformID;

			uint16 specificID;

		};

		struct {

			Fixed pointSize;

			int16 xResolution;

			int16 yResolution;

			Fixed pixelDiameter; /* compute engine char from this */

			transMatrix* transformMatrix;

			FntTraceFunc tracePreProgramFunc;

		};

		struct {

			uint16 characterCode;

			uint16 glyphIndex;

		};

		struct {

			void (*styleFunc) (fs_GlyphInfoType*);

			FntTraceFunc traceGridFitFunc;

		};

		struct { /* for fs_FindGraySize */

			uint16 usOverScale; /* outline magnification */

			boolean bMatchBBox; /* force bounding box match */

		};

		int32* outlineCache1;

		struct { /* for fs_FindBandingSize */

			uint16 usBandType; /* old, small or fast */

			uint16 usBandWidth; /* number of scanlines */

			int32* outlineCache3; /* cacheing works with banding */

		};

		struct {

			int16 bottomClip;

			int16 topClip;

			int32* outlineCache2;

		};

	};

} fs_GlyphInputType;

#endif /* unnamed union */

�The fields in the fs_GlyphInputType record have the following significance:

version�Set to 1 for now. If there should be future versions of the Input record we can use this field to distinguish the different versions.��*memoryBases�A vector of pointers to blocks of memory. When the Font Scaler needs memory, it puts the sizes of the blocks of memory it needs into the vector memorySizes in the fs_GlyphInfoType record. You must allocate the requested memory and pass pointers to the memory blocks back to the Font Scaler through the *memoryBases field before calling the next client interface routine. The pointer to a block of memory must be in the element of the memoryBases vector that corresponds to the element of the memorySizes vector that contained the memory request. ��*sfntDirectory�This field is no longer used by the rasterizer and should be set to NULL. ��GetSfntFragmentPtr�A pointer to a function that the Font Scaler calls when it needs to extract data from the sfnt data structure. You must define this function in your program. The Font Scaler passes three long-word parameters to this function: the client ID, the offset into the sfnt data structure, and the length of the data wanted. The function returns a pointer to the starting position in memory of the requested data. You must initialize this field before calling the fs_NewSfnt routine, and it must remain valid for all later calls to the Font Scaler.���Important: Your function must not move any memory blocks that you have allocated for the Font Scaler. Similarly, it must not move any data within those memory blocks. If you change the location in memory of any data needed by the Font Scaler while a Font Scaler routine is executing, the Font Scaler will crash.��ReleaseSfntFrag�A pointer to a function that the Font Scalar calls when memory for the sfnt data structure is no longer needed. The Font Scalar passes one longword parameter to this function: a pointer to the piece of the sfnt that was previously allocated with GetSfntFragmentPtr. This allows clients who only load in parts of the sfnt to reclaim that memory when the engine is through with it.��clientID�Any longword you want to use as an identifier. The Font Scaler passes the clientID field as a parameter to your GetSfntFragment function; the Font Scaler does not use this field for any purpose of its own. You might want to place the handle to the ‘sfnt’ resource in this field so that this handle is available to your GetSfntFragment function each time it is called by the Font Scaler. You must initialize this field before calling the fs_NewSfnt routine.��platformID�The subtable of the charToIndexMap table that you want the Font Converter to use. Set the platformID field to the Script code that describes the writing sytem the font was defined for (see description under Naming Table, pages 243-248 of TrueType specifications).

You must initialize this field before calling the fs_NewSfnt routine.��specific ID�Platform specific ID (see platformID for more information).��pointSize�The point size, at 72 points per inch, at which you want to display the glyph. You must initialize this field before calling the fs_NewTransformation routine.��xResolution�The horizontal resolution in dots per inch of the display device. You must initialize this field before calling the fs_NewTransformation routine.��yResolution�The vertical resolution in dots per inch of the display device. You must initialize this field before calling the fs_NewTransformation routine.��pixelDiameter�The pixel size of the display device. The pixel size is defined as D * R, where D is the average pixel diameter and R is the resolution of the display device. An ideal pixel is defined as a circle that will just touch the diagonally adjacent pixels (see the figure). An ideal pixel has a diameter of (2, because (2 is the diagonal of a unit square (a square with sides equal to 1).

�

Ideal pixels

���The Font Scaler uses the pixel diameter to determine how much overlap or how wide a gap to expect between pixels, so that it can compensate for these defects when generating the outline of the glyph.

In most cases, you can assume that a display screen has ideal pixels, so that the pixel diameter of a display screen is (2.

This value is expressed in 16.16 fixed point, so the value for (2 is 0x00016A0A.

You must initialize this field before calling the fs_NewTransformation routine.��transformMatrix�A 3x3 matrix that specifies any transformation of the glyph that you want the Font Scaler to perform. For example, you can stretch the glyph or rotate it.

The following transformation matrix stretches a glyph in the Y direction so that it is twice as tall as normal:

	1	0	0�	0	2	0�	0	0	1

The following transformation matrix skews a glyph to make an oblique character; a vertical line on the glyph is rotated by a degrees while the height of each point on the glyph remains constant:

	1	0	0�	tan a	1	0�	0	0	1

The following transformation matrix rotates a glyph by a degrees:

	cos a	sin a	0�	–sin a	cos a	0�	0	0	1

The transformation matrix is described by the struct transMatrix. The definition of a transMatrix struct is:

typedef struct {

	Fixed transform[HEIGHT][WIDTH]

}

Please note that although the third column of the matrix is defined as Fixed numbers you will actually need to use Fract numbers in that column. The higher resolution provided by Fracts is required to change the perspective of a glyph. Fracts are 2.30 fixed point numbers.���Transformations are discussed in the following books:�Principles of Interactive Computer Graphics, by Newman & Sproull, McGraw Hill, 2nd ed., 1979; Fundamentals of Interactive Computer Graphics, by Foley & Van Dam, Addison Wesley, 1984.��traceFunc�A pointer to a routine (called the trace function) that the Font Scaler calls before it executes each instruction. You must define the trace function yourself. The Font Scaler passes one parameter to the trace function: a pointer to the Font Scaler’s local graphics state. You must initialize this field before calling the fs_NewTransformation routine.

The purpose of this function is to allow you to trace through the instructions for a glyph one at a time, examing the graphics state before each instruction is executed, as an aid to debugging the instructions for the glyph. If you do not want to define a trace function, set the traceFunc pointer to NULL. The Font Scaler runs much faster when no trace function is defined.��characterCode�The character code for the glyph used in the charToIndexMap table in the sfnt data structure. The character codes for the Apple standard character set are shown in Figure 1 of the preliminary developer note titled “Macintosh System Software Release 7.0 Outline Fonts.” You must initialize this field before calling the fs_NewGlyph routine.

If you set the characterCode field to 0xFFFF, then the Font Scaler ignores the character code and uses the glyph index value that you specify in the glyphIndex field instead.��glyphIndex�The index value for the glyph as specified in the charToIndexMap table in the sfnt data structure.

If you specify 0xFFFF for the characterCode field and place a value in the glyphIndex field before you call the fs_NewGlyph routine, then the Font Scaler uses the glyph index value instead of the character code to find the glyph in the sfnt data structure. If you specify any other value for the characterCode field, then the glyphIndex field is ignored.

See also the description of the glyphIndex field in the fs_GlyphInfoType record.��styleFunc�Not supported in this version of the Font Scalar. Should be set to NULL.��traceFunc�Pointer to a routine called the trace function that the Font Scaler calls before it executes each instruction. You must define the trace function yourself. The Font Scaler passes one parameter to the trace function: a pointer to the FontScaler’s local graphics state. You must initialize this field before calling the fs_NewTransformation routine. The purpose of this function is to allow you to trace through the instructions for a glyph one at a time, examining the graphics state before each instruction is executed, as an aid to debugging the instructions for the glyph. If you do not want to define a trace function, set the traceFunc pointer to 0. The Font Scaler runs much faster when no trace function is defined.��*outlineCache�A pointer to a block of memory that you have allocated for an outline cache. When you execute the fs_SizeOfOutlines routine, the Font Scaler places the amount of memory it needs in the outlineCacheSize field of the fs_GlyphInfoType record. You must allocate the memory and place a pointer to it in the *outlineCache field before you call the fs_SaveOutlines routine.��bottomClip�The bottom of the band to be processed, where the baseline of the bitmap is 0, the bottom of the next row of pixels is 1, and so forth. The purpose of the bottomClip and topClip fields is to allow you to specify a horizontal strip of the glyph to be converted to a bitmap in the case that you cannot allocate sufficient memory to process the entire glyph. For example, to process the strip that includes the 9th through 16th pixels from the basline of the bitmap, set bottomClip to 8 and topClip to 16. (Note that the baseline of the bitmap is not necessarily the bottom of the character; a character with a descender, for example, has pixels below the baseline.)

You must initialize this field before calling the fs_ContourScan routine.

See also the discussion of steps 15 and 16 in the section “Using the Font Scaler Client Interface,” earlier in this document. ��topClip�The top of the band to be processed, where the top of the first row of pixels above the baseline is 1, the top of the second row is 2, and so forth. See the description of the bottomClip field for more information.��*outlineCache�A pointer to a block of memory that you have allocated for an outline cache. When you execute the fs_SizeOfOutlines routine, the Font Scaler places the amount of memory it needs in the outlineCacheSize field of the fs_GlyphInfoType record. You must allocate the memory and place a pointer to it in the *outlineCache field before you call the fs_SaveOutlines routine.���The fs_GlyphInfoType record

The Font Scaler places information in the fs_GlyphInfoType record, which is defined as follows:

typedef struct {

	Fixed	x, y;

} vectorType;

typedef struct {

	vectorType	advanceWidth, leftSideBearing;

	vectorType	devAdvanceWidth, devLeftSideBearing; /* experimental, do not use */

	vectorType	reserved3, reserved4;

} metricsType;

/*

 * Output data structure to the Font Scaler.

 */

#define int16 short

#define uint16 unsigned short

#define int32 int

#define uint32 unsigned long

#define F26Dot6 long

typedef uint8 *charPtr;

typedef long (*longFunc) ();

typedef int8 (*CharFunc) ();

typedef charPtr (*CharPtrFunc) ();

typedef void (*voidFunc) ();

typedef struct {

	int16	top;

	int16	left;

	int16	bottom;

	int16	right;

} Rect;

typedef struct {

	Ptr	baseAddr;

	int16	rowBytes;

	Rect	bounds;

} BitMap ;

typedef struct {

	int32		memorySizes[MEMORYFRAGMENTS];

	uint16		glyphIndex;

	uint16		numberOfBytesTaken; /* from the character code */

	metricsType	metricInfo;

	BitMap		bitMapInfo;

	/* Spline Data */

	int32		outlineCacheSize;

	uint16		outlinesExist;

	uint16		numberOfContours;

	F26Dot6	*xPtr, *yPtr;

	int16		*startPtr;

	int16		*endPtr;

	uint8		*onCurve;

	/* End of spline data */

	/* Only of interest to editors */

	F26Dot6	*scaledCVT;

	

	#ifdef FSCFG_GRAY_SCALE

	 uint16	usOverScale;

	#endif

} fs_GlyphInfoType;

�The fields in the fs_GlyphInfoType record have the following significance:

memorySizes�A vector listing the sizes of blocks of memory needed by the Font Scaler. When the Font Scaler needs memory, it puts the sizes of the blocks of memory it needs into the vector memorySizes in the fs_GlyphInfoType record. You must allocate the requested memory and pass pointers to the memory blocks back to the Font Scaler through the *memoryBases field before calling the next client interface routine. The pointer to a block of memory must be in the element of the memoryBases vector that corresponds to the element of the memorySizes vector that contained the memory request.���The Font Scaler uses the memorySizes field to request memory. It uses elements 0, 1, and 2 of this vector after you execute the fs_OpenFonts routine, elements 3 and 4 after you execute the fs_NewSfnt routine, and elements 5, 6 and 7 after you execute the fs_FindBitMapSize routine.��glyphIndex�The index value for the glyph returned by the fs_NewGlyph routine. If you specify 0xFFFF for the characterCode field in the fs_GlyphInfoType record and specify a value for the glyphIndex field in the fs_GlyphInfoType record, then that glyph index value is also returned in this field. ��numberOfBytesTaken�The number of bytes read by the Font Scaler for the character code. For certain character encoding schemes, the Font Scaler reads only 1 byte for some characters and reads 2 bytes for others. You can tell from this field how many bytes were taken by the Font Scaler. If only 1 byte was taken, you have to resend the second byte for the next character. If the character code was invalid, this field is set to 0. This field is returned by the fs_NewGlyph routine.��metricInfo�The first two elements of this structure contain the advance width and left side bearing. The advance width is returned by the fs_GetAdvanceWidth routine. Both the advance width and left side bearing are returned by the fs_ContourGridFit and fs_ContourNoGridFit routines. The other elements of this structure are reserved.

Note that both the advance width and left side bearing have x and y components. The advance width vector goes from the current character’s pen position to the next character’s pen position. The left side bearing goes from the current character’s pen position to the upper-left corner of the bitmap, no matter what transformation you are using. ��bitMapInfo�The bitmap returned by the fs_ContourScan routine. The bitmap structure consists of a pointer to the base address of the bitmap, a short integer that specifies the number of bytes of data per row of the bitmap, and four short integers that specify the corners of the bitmap in the following order: top, left, bottom, right.��outlineCacheSize�The amount of memory the Font Scaler needs for an outline cache. When you execute the fs_SizeOfOutlines routine, the Font Scaler places the amount of memory it needs in the outlineCacheSize field. You must allocate the memory and place a pointer to it in the *outlineCache field of the fs_GlyphInputType record before you call the fs_SaveOutlines routine.��outlinesExists�A Boolean value that indicates whether outlines exist for this glyph. If True (nonzero), outlines exist. If False (0), outlines do not exist. An example of a glyph for which no outlines exist is the space character. This field is returned by the fs_ContourGridFit and fs_ContourNoGridFit routines.��numberOfContours�The total number of contours that make up the outline of the glyph. This number is returned by the fs_ContourGridFit and fs_ContourNoGridFit routines.��*xPtr�A pointer to an array of fixed numbers that are in 26.6 format (that is, the first 26 bits represent the value before the decimal, and the last 6 bits represent the value after the decimal). These numbers are the x-coordinate values of the glyph’s outline as returned by the fs_ContourGridFit and fs_ContourNoGridFit routines.��*yPtr�A pointer to an array of fixed numbers that are in 26.6 format. These numbers are the y-coordinate values of the glyph’s outline as returned by the fs_ContourGridFit and fs_ContourNoGridFit routines.��*startPtr�A pointer to an array of short integers (16 bits) that identify the points that start the contours that make up the glyph outline. This data is returned by the fs_ContourGridFit and fs_ContourNoGridFit routines.��*endPtr�A pointer to an array of short integers (16 bits) that identify the points that end the contours that make up the glyph outline. This data is returned by the fs_ContourGridFit and fs_ContourNoGridFit routines.��*onCurve�A pointer to an array of unsigned characters (8 bits). The least significant bit of each character serves as a Boolean value. There are as many elements in this array as there are in the xPtr or yPtr arrays. If the least significant bit in a one-byte element in this array is 1, then the point specified by the corresponding elements in the xPtr and yPtr arrays lies on the curve. If a least significant bit is 0, then the corresponding point does not lie on the curve. The other bits in each byte are reserved. The *onCurve data is returned by the fs_ContourGridFit and fs_ContourNoGridFit routines.��*scaledCVT�A pointer to an array of fixed numbers that are in 26.6 format. The Font Scaler scales the values in the controlValue table in the sfnt data structure to the point size that you specify and returns the values in the scaledCVT array when you specify a trace function and execute the fs_NewTransformation routine.

If you have not specified a trace function (that is, if the traceFunc field in the fs_GlyphInputType record is 0), then the Font Scaler fs_NewTransformation routine does not fill in the scaledCVT array.��The Graphics State

The Font Scaler uses the local graphics state and the global graphics state to determine how to interpret certain instructions. The values of the variables defined in the local graphics state are valid only for the character with which they are associated; the variables defined in the global graphics state are valid for all characters in a font. The Font Scaler initializes the values in the local graphics state when it executes the fs_ContourGridFit routine. If you have specified a nonzero pointer to a trace function, the Font Scaler initializes the values in the global graphics state when it executes the fs_NewTransformation routine. If you have disabled the trace function, the Font Scaler initializes these values the first time it executes the fs_ContourGridFit routine after executing the fs_NewTransformation routine.

The fnt_LocalGraphicStateType Data Structure

The local graphics state is contained in the fnt_LocalGraphicStateType data strucure, which is defined as follows:

typedef struct fnt_LocalGraphicStateType {

	fnt_ElementType *CE0, *CE1, *CE2; /* The character element pointers */

	VECTOR proj; /* Projection Vector */

	VECTOR free; /* Freedom Vector */

	VECTOR oldProj; /* Old Projection Vector */

	F26Dot6 *stackPointer;

	uint8 *insPtr; /* Pointer to the instruction we are about to execute */

	fnt_ElementType *elements;

	fnt_GlobalGraphicStateType *globalGS;

		FntTraceFunc TraceFunc;

	int32 Pt0, Pt1, Pt2; /* The internal reference points */

	int16 roundToGrid;

	int32 loop; /* The loop variable */

	uint8 opCode; /* The instruction we are executing */

	uint8 padByte;

	int16 padWord;

	/* Above is exported to client in FontScaler.h */

	VECTORTYPE pfProj; /* = pvx * fvx + pvy * fvy */

	FntMoveFunc MovePoint;

	FntProject Project;

	FntProject OldProject;

	InterpreterFunc Interpreter;

#ifdef FSCFG_REENTRANT

		F26Dot6 (*GetCVTEntry) (struct fnt_LocalGraphicStateType*,int32);

		F26Dot6 (*GetSingleWidth) (struct fnt_LocalGraphicStateType*);

#else

		F26Dot6 (*GetCVTEntry) (int32 n);

		F26Dot6 (*GetSingleWidth) (void);

#endif

	FntMoveFunc ChangeCvt;

	Fixed cvtDiagonalStretch;

	int16 MIRPCode; /* for fast or slow MIRP's */

	ErrorCode ercReturn; /* NO_ERR unless illegal instruction */

	uint8 *pbyEndInst; /* one past last instruction */

} fnt_LocalGraphicStateType;

�The fields in the fnt_LocalGraphicStateType data strucure have the following significance:

*CE0, *CE1, *CE2�Pointers to character elements. There are two character elements, defined by the fnt_ElementType data structure shown at the beginning of this section. The fields in this data structure are described in the following section “The fnt_ElementType Data Structure.” The first character element (character element 0) contains points that are not included in the glyph definition, but that can be used by certain instructions for reference or for temporary storage. The second character element (character element 1) contains the points in the glyph definition. Each of the character element pointers (*CE0, *CE1, and *CE2) can point to either of the two character elements. Use the SCE0, SCE1, SCE2, and SCES instructions to set the character element pointers.

Every instruction that acts on points uses one or more of the character element pointers to determine whether the points are in character element 0 or character element 1.��proj�The x and y components of a unit vector that points in the direction of the projection vector. The value used by the interpreter for the distance between two points is actually the projection of that distance along the projection vector. For example, if the projection vector is parallel to the x axis and a point is moved a distance of 1 pixel in a direction 60_ to the x axis, the distance along the projection vector is 0.5 pixel. Use the SVTCA, SPVTCA, SPVTL, and WPV instructions to set the projection vector.��free�The x and y components of a unit vector that points in the direction of the freedom vector. Points are moved only in the direction of the freedom vector. Use the SVTCA, SFVTCA, SFVTL, SFVTPV, and WFV instructions to set the freedom vector.��oldProj�The x and y components of a unit vector that points in the direction of the old projection vector.��*stackPointer�The pointer to the next available location on the interpreter’s private stack. For example, if the last byte pushed on the stack is at location stackBase + 3, then the value of *stackPointer is stackBase + 4. Each element on the stack is a long word (32 bits).��*insPtr�Pointer to the next instruction to be executed.��*elements�Pointer to character element 0. You can use this field to determine to which character element *CE0, *CE1, or *CE2 is pointing. For example, if *CE1 is equal to *elements, then *CE1 is pointing to character element 0; if they are not equal, then *CE1 is pointing to character element 1.��*globalGS�Pointer to the global graphics state. The global graphics state is described in the section “The fnt_GlobalGraphicStateType Data Structure,” later in this document.���Pointer to a fnt_ParmeterBlock.��pfProj�Result of pvx*fvx+pvy*fvy.��MovePoint�Function that moves a point.��*Project�Function that returns F26Dot6 projection vector value.��*OldProject�Function that returns F26Dot6 projection vector value. Related to the old projection vector.��Interpreter�Interpreter function.��TraceFunc�TraceFunc.��*GetCVTEntry�Function that returns F26Dot6 CVTEntry value.��*GetSingleWidth�Function that returns F26Dot6 SingleWidth value.���Array of 12 int pointers.���Indicates which of the available rounding rules is to be used by the interpreter. Use the RTG, RDTG, RUTG, RTHG, RTDG, and ROFF instructions to set the rounding rule, as follows:��loop�The loop variable. Certain instructions automatically repeat the number of times specified by the loop variable. (If the loop variable is set to either 0 or 1, the instruction executes one time.) Use the LLOOP instruction to set the loop variable.��Pt0, Pt1, Pt2�Reference points used by certain instructions. The points referred to here are the sequence numbers of the points used in the sfnt data structure to define the glyph. The Pt0, Pt1, and Pt2 fields are used by some instructions to help determine the effect of the instruction. For example, the SHP instruction shifts a point by the same amount that one of the reference points has been shifted. Use the SRP0, SRP1, and SRP2 instructions to set reference points. Several other instructions change the values of the reference points. ��opCode�The instruction we are executing.��padByte���*changeCVT�A function to change the contents of a CVT.��cvtDiagonalStretch�Used for non-square aspect ratio handling of CVTs.��MIRPCode�Indicator for type of MIRP code to use.��ercReturn�Set to NO_ERR unless there has been an illegal instruction.��pbyEndInst�Used for error handling.��The fnt_ElementType Data Structure

The fnt_LocalGraphicStateType data structure contains pointers *CE0, *CE1, *CE2, and *elements, each of which points to one or another of two data structures known as character elements. A character element is of type fnt_ElementType, defined as follows:

typedef struct {

	F26Dot6 *x;	/* The Points the Interpreter modifies */

	F26Dot6 *y;	/* The Points the Interpreter modifies */

	F26Dot6 *ox;	/* Old Points */

	F26Dot6 *oy;	/* Old Points */

	F26Dot6 *oox;	/* Old Unscaled Points, really ints */

	F26Dot6 *ooy;	/* Old Unscaled Points, really ints */

	uint8 *onCurve;	/* indicates if a point is on or off the curve */

	int16 *sp;	/* Start points */

	int16 *ep;	/* End points */

	uint8 *f;	/* Internal flags, one byte for every point */

	int16 nc;	/* Number of contours */

} fnt_ElementType;

�The fields in the fnt_ElementType data structure have the following significance:

*x, *y�Pointers to arrays that contain the current x and y coordinates for the points that define the outline. These coordinates include scaling and the effects of all the instructions the interpreter has executed so far. ��*ox, *oy�Pointers to arrays that contain old x and y coordinates for the points that define the outline. These coordinates include scaling but do not include the effects of any instructions. ��*oox, *ooy�Pointers to arrays that contain the original x and y coordinates for the points that define the outline. These coordinates do not include scaling or the effects of any instructions. ��*onCurve�A pointer to an array of unsigned characters (that is, bytes). The least significant bit of each byte serves as a Boolean value. There are as many elements in this array as there are in the x or y arrays. If the least significant bit in a one-byte element in this array is 1, then the point specified by the corresponding elements in the x and y arrays lies on the curve. If a least significant bit is 0, then the corresponding point does not lie on the curve. The other bits in each byte are reserved. ��nc�The total number of contours that make up the outline of the glyph. ��*sp�A pointer to an array of short integers (16 bits) that identify the points that start the contours that make up the glyph outline.��*ep�A pointer to an array of short integers (16 bits) that identify the points that end the contours that make up the glyph outline. ��*f�A pointer to an array of unsigned characters (that is, bytes). The least significant bit of each byte (bit 0) is a flag that indicates whether a point has been touched in the x direction; the next-least significant bit (bit 1) indicates whether a point has been touched in the y direction. If the bit is 1, then the point with the corresponding position in the x and y arrays has been touched. (A point is said to have been touched if an instruction acted on that point, whether or not the point was actually moved by the instruction.) The other bits in each byte are reserved.

The IUP instruction acts only on untouched points, and only in the direction (x or y) specified by a Boolean parameter that you pass to the IUP instruction.��The fnt_GlobalGraphicStateType Data Structure

The global graphics state is contained in the fnt_GlobalGraphicStateType data structure, which is defined as follows:

typedef struct fnt_GlobalGraphicStateType {

	F26Dot6* stackBase;	/* the stack area */

	F26Dot6* store;	/* the storage area */

	F26Dot6* controlValueTable;	/* the control value table */

	

	uint16 pixelsPerEm;	/* number of pixels per em as an integer */

	uint16 pointSize;	/* the requested point size as an integer */

	Fixed fpem;	/* fractional pixels per em <3> */

	F26Dot6 engine[4];	/* Engine Characteristics */

	

	fnt_ParameterBlock defaultParBlock;	/* variables settable by TT instructions */

	fnt_ParameterBlock localParBlock;

	/* Only the above is exported to Client through FontScaler.h */

/* VARIABLES NOT DIRECTLY MANIPULABLE BY TT INSTRUCTIONS */

	

	fnt_funcDef* funcDef;	/* function Definitions identifiers */

	fnt_instrDef* instrDef;	/* instruction Definitions identifiers */

	GlobalGSScaleFunc ScaleFuncXBase;

	GlobalGSScaleFunc ScaleFuncYBase;

	GlobalGSScaleFunc ScaleFuncX;

	GlobalGSScaleFunc ScaleFuncY;

	GlobalGSScaleFunc ScaleFuncCVT;

	fnt_pgmList pgmList[MAXPREPROGRAMS];	/* each program ptr is in here */

	

/* These are parameters used by the call back function */

	fnt_ScaleRecord scaleXBase;

	fnt_ScaleRecord scaleYBase;

	fnt_ScaleRecord scaleX;

	fnt_ScaleRecord scaleY;

	fnt_ScaleRecord scaleCVT;

	Fixed cvtStretchX;

	Fixed cvtStretchY;

	int8 identityTransformation; /* true/false (does not mean identity from a global sense) */

	int8 non90DegreeTransformation; /* bit 0 is 1 if non-90 degree, bit 1 is 1 if x scale doesn't equal y scale */

	Fixed xStretch;	/* Tweaking for glyphs under transformational stress <4> */

	Fixed yStretch;	/* Tweaking for glyphs under transformational stress <4> */

	

	int8 init;	/* executing preprogram ?? */

	/* !!! Should not be uint8, instead fnt_ProgramIndex */

	uint8 pgmIndex;	/* which preprogram is current */

	int32 instrDefCount;	/* number of currently defined IDefs */

	uint8			bSameStretch;

	uint8			bCompositeGlyph;	/* Flag that indicates composite glyph */

	LocalMaxProfile *	 maxp;

	uint16 cvtCount;

	Fixed interpScalarX;	/* scalar for instructable things */

	Fixed interpScalarY;	/* scalar for instructable things */

	Fixed fxMetricScalarX;	/* scalar for metric things */

	Fixed fxMetricScalarY;	/* scalar for metric things */

	/* int16 pad2; */

} fnt_GlobalGraphicStateType;

�The fields in the fnt_GlobalGraphicStateType data structure have the following significance:

*function�Pointer to the instruction definition area��*stackBase�Pointer to the stack area��*store�Pointer to a storage area that you can use for any purpose you like. You set the number of storage locations with the maxStorage field of the maxProfile table. Use the WS instruction to set the value of a storage location and the RS instruction to read a value.��*funcDef�A ptr to an array of fnt_FuncDef structs. Function definitions identifiers.��*instrDef�A ptr to an array of fnt_instrDef. Instruction definitions identifiers.��*controlValueTable�Pointer to the control value table. When you execute the fs_NewTransformation routine, the interpreter scales the values in the control value table to the point size that you specify. Use the WCVT and WCVTFOD instructions to set values in the control value table, and the RCVT instruction to read values in the control value table.��*pgmList[]�Array of program pointers.��*ScaleFunc�The callback function to do scaling.��defaultParBlock�fnt_ParameterBlock. Variables settable by TT instructions.��localParBlock�fnt_ParameterBlock.��pixelsPerEm�The resolution in pixels per em currently being used by the Font Scaler when scaling a glyph.��pointSize�The point size you specified, rounded to the closest integer. The pointSize field is used by the MPS instruction.��ppemDot6�Fractional pixels per em.��pointSizeDot6�Fractional user point size.��engine[4]�An array used by the Font Scaler to represent the pixel diameter for internal purposes.��fixedScale�Fixed scaling factor.��nScale�Numerator required to scale points to the correct size.��dScale�Denominator required to scale points to the correct size.��shift�log2 of dScale.��identityTransformation�Transform is identity true/false (does not mean identity from a global sense).��non90DegreeTransformation�Rotation component of transform is 0, 90, 180, or 270.��xStretch�Tweaking for glyphs under transformational stress.��yStretch�Tweaking for glyphs under transformational stress.��*anglePoint�Pointer to an fnt_FractPoint. Part of fnt_AngleInfo.��*angleDistance�Pointer to an int16. The other part of fnt_AngleInfo.��init�Indicates whether the preprogram is being executed. This field is set to True (nonzero) while the preprogram is executing.��pgmIndex�Indicates which preprogram is currently executing. Currently, there are two possible preprograms: the Font program, which is executed only once, when the font is first used, and the Control Value Program which is executed whenever the font, point size or transformation matrix change.��instrDefCount�Count of IDEFs defined for this font. An IDEF is an instruction redefinition usually defined in the font program table.��*maxp�Pointer to MaxProfile data for font.��cvtCount�Number of CVT entries.��bSameStretch�Same stretch factor in x and y directions.��bCompositeGlyph�Flag that indicates this is a composite glyph.��interpScalarX�Scalar for instructable things in x.��interpScalarY�Scalar for instructable things in y.��fxMetricScalarX�Scalar for metric things in x.��fxMetricScalarY�Scalar for metric things in Y.��Font Scaler Routines

This section describes the routines that make up the client interface to the Font Scaler. For information about how to call these routines and the sequence in which you should call them, see the section “Using the Font Scaler Client Interface,” earlier in this document. The fields in the fs_GlyphInputType and fs_GlyphInfoType records are described in the section “Font Scaler Data Structures,” earlier in this document.

The Font Scaler does not allocate the memory it needs to execute these routines. When the Font Scaler needs memory, it specifies the amount of memory, in bytes, in one or more elements of the memorySizes vector in the fs_GlyphInfoType record. You must allocate the memory and place pointers to the memory in the corresponding elements of the memoryBases vector in the fs_GlyphInputType record. Except for the OpenFonts and CloseFonts routines, no Font Scaler routine allocates memory, deallocates memory, or moves objects in memory. If you move any of the blocks of memory that you have allocated, be sure to update the pointers in the memoryBases vector before your next call to the Font Scaler.

Every Font Scaler routine returns an error code as the function result. You must check the error after every call to the Font Scaler, and respond appropriately if the error is nonzero. The error codes are described in the section “Font Scaler Errors,” later in this document.

�fs_OpenFonts

Description�Opens the Font Scaler.��Fields of the fs_GlyphInputType record to initialize before routine�None necessary.��Fields of the fs_GlyphInfoType record returned by routine�memorySizes. The elements memorySizes[0..2] indicate the amount of memory needed.��When to call�Before any other Font Scaler routine. This routine does not ever have to be called again, unless the fs_CloseFonts routine is executed by your program.���fs_Initialize

Description�Initializes the Font Scaler.��Fields of the fs_GlyphInputType record to initialize before routine�The memoryBases[0..2] fields must contain pointers to the memory blocks that were requested by the Font Scaler. The sizes of these memory blocks were specified by the memorySizes[0..2] fields of the fs_GlyphInfoType record after the fs_OpenFonts routine.��Fields of the fs_GlyphInfoType record returned by routine�None applicable.��When to call�After the fs_OpenFonts routine and before any other Font Scaler routine. This routine does not ever have to be called again, unless the fs_CloseFonts routine is executed by your program.��

�fs_NewSfnt

Description�Indicates that there is a new sfnt data structure, and provides a pointer to the function that the Font Scaler uses to read data from the sfnt data structure. Specifies the amount of memory needed by the Font Scaler.��Fields of the fs_GlyphInputType record to initialize before routine�memoryBases, sfntDiriectory, GetSfntFunc, ReleaseSfntFrag, ClientID, platformID, specificID. ��Fields of the fs_GlyphInfoType record returned by routine�memorySizes. The elements memorySizes[3] and memorySizes[4] indicate the amount of memory needed.��When to call�After the fs_Initialize routine and before the fs_NewTransformation routine. You must execute this routine each time you change to a different sfnt data structure or change the contents of the maxProfile table in the sfnt data structure. ���fs_NewTransformation

Description�Informs the Font Scaler about the point size and device resolution; provides a pointer to your trace function (if any). See the description of the traceFunc field in the section “Font Scaler Data Structures” for information about the trace function.��Fields of the fs_GlyphInputType record to initialize before routine�xResolution, yResolution, pointsize, pixelDiameter, transformMatrix, and traceFunc. Set the traceFunc field to 0 if you do not want to activate the trace function. ��Fields of the fs_GlyphInfoType record returned by routine�scaledCVT. If you set the traceFunc field to a nonzero value, then the scaledCVT field contains the values from the controlValue table of the sfnt data structure scaled to the point size you specified.��When to call�After the fs_NewSfnt routine and before the fs_NewGlyph routine. You must execute this routine each time you change the point size, the resolution of the display device, the pixel diameter, or the transformation matrix.��

�fs_NewGlyph

Description�Computes the glyph index value from the character code. ��Fields of the fs_GlyphInputType record to initialize before routine�characterCode. If you specify 0xFFFF for the character code, you must also initialize the glyphIndex field. In this case, the Font Scaler uses the glyph index value you specify rather than the character code.��Fields of the fs_GlyphInfoType record returned by routine�glyphIndex, numberOfBytesTaken��When to call�After the fs_NewTransformation routine and before the fs_GetAdvanceWidth, fs_ContourGridFit, or fs_ContourNoGridFit routines. You must call this routine each time you want to display a new glyph, or each time you change a glyph description in the sfnt data structure and want to recalculate the outline. ��

�fs_GetAdvanceWidth

Description�Causes the Font Scaler to extract advance width from the sfnt data structure.��Fields of the fs_GlyphInputType record to initialize before routine�None.��Fields of the fs_GlyphInfoType record returned by routine�metricInfo. The first element of the metricInfo field contains the advance width.��When to call�Instead of the fs_ContourGridFit routine or the fs_ContourNoGridFit routine when you only want to know the width of the glyph and do not want to display it. (Note that widths returned by fs_GetAdvanceWidth do not take into account any hints that may change the advance width. fs_ContourGridFit should be called for that case.)���fs_GetScaledAdvanceWidths

Description�Returns the hinted advance widths for the range of glyphs specified. The routine takes advantage of the hdmx and LTSH tables if they are present in the font file.��Prototype�FS_PUBLIC FS_ENTRY FS_ENTRY_PROTO fs_GetScaledAdvanceWidths (

 fs_GlyphInputType * inputPtr,

 uint16 usFirstGlyph,

 uint16 usLastGlyph,

 int16 * psGlyphWidths);��Fields of the fs_GlyphInputType record to initialize before routine�MemoryBases[0].��Input Parameters�inputPtr — Pointer to the Glyph Input Type used by other client interface calls; usFirstGlyph — Glyph index of the first glyph to return the hinted advance width; usLastGlyph — Glyph index of the last glyph to return the hinted advance width; pfxGlyphWidths — Pointer to the table to contain first glyph through last glyph advance widths.��Returned Values�pfxGlyphWidths — This array contains the fixed point representation of the hinted widths. Note that each glyph contains both an x and y position.��When to call�Anytime after the fs_NewTransformation routine.��Notes�This routine is different from other client interface routines, and should be considered more of a helper routine than a client interface call. The memory for the pfxGlyphWidths array must be allocated by the client. The glyph range is inclusive, returning both usFirstGlyph and usLastGlyph widths. usLastGlyph must not be less than usFirstGlyph. The possible errors returned by this routine would be consistent with the fs_ContourGridFit routine.���fs_ContourGridFit

Description�Causes the Font Scaler to execute the instructions for the glyph and convert the glyph data into an outline. Compare this routine with the fs_ContourNoGridFit routine.��Fields of the fs_GlyphInputType record to initialize before routine�None��Fields of the fs_GlyphInfoType record returned by routine�xPtr, yPtr, startPtr, endPtr, onCurve, numberOfContours, scaledCVT, outlinesExist. The fields xPtr, yPtr, startPtr, endPtr, onCurve, and numberOfContours contain the outline data.��When to call�After the fs_NewGlyph routine and before the fs_FindBitMapSize routine (if you want to prepare a bitmap).��

�fs_ContourNoGridFit

Description�Causes the Font Scaler to convert the glyph description into an outline without executing the instructions. Compare this routine with the fs_ContourGridFit routine.��Fields of the fs_GlyphInputType record to initialize before routine�None��Fields of the fs_GlyphInfoType record returned by routine�xPtr, yPtr, startPtr, endPtr, onCurve, numberOfContours scaledCVT, outlinesExist. The fields xPtr, yPtr, startPtr, endPtr, onCurve, and numberOfContours contain the outline data.��When to call�When you want to see what a glyph looks like when the instructions are not executed; after the fs_NewGlyph routine and before the fs_FindBitMapSize routine (if you want to prepare a bitmap).���fs_ContourGrayScan

Description�Converts an outline into a gray scale bitmap.��Fields of the fs_GlyphInputType record to initialize before routine�The fields memoryBases[5], memoryBases[6], memoryBases[7], and memoryBases[8] must contain pointers to the memory blocks whose size is greater than or equal to the values returned by fs_FindGraySize or fs_FindGrayBandingSize. No pointers are required for memoryBases whose size is zero.

The fields param.scan.topClip and param.scan.bottomClip define the range of lines to convert. Setting topClip to bitMapInfo.bounds.bottom and bottomClip to bitMapInfo.bounds.top (in accordance with the upside down convention of bitmap bounds) will scan convert the entire glyph. If topClip - bottomClip is smaller than the entire glyph, then a single band will be scan converted. The field topClip is the scan line above the top line of the resulting bitmap; bottomClip is the bottom scan line of the bitmap.��Fields of the fs_GlyphInfoType record returned by routine�The bitMapInfo structure contains a pointer to the gray scale bitmap, the number of bytes per row, and the bitmap bounds. The gray scale bitmap is an array of bytes, each containing the magnified pixel count of each pixel. The beginning of each scan line is double word (32 bits) aligned.��When to call�When ready to create a bitmap, after the last call of fs_FindGraySize, fs_RestoreOutlines, or fs_FindGrayBandingSize.��Notes�As with fs_ContourScan, dropout control may be disabled by returning a Null pointer for memoryBases[7].

Values of topClip and bottomClip outside the bounding box will be trimmed to the bounding box. Any illegal combination of topClip and bottomClip (such as topClip = bottomClip, or topClip < bottomClip) will cause the entire glyph to be scan converted.���fs_FindBitMapSize

Description�Determines the amount of memory needed by the Font Scaler to create a bitmap of the glyph.��Fields of the fs_GlyphInputType record to initialize before routine�None��Fields of the fs_GlyphInfoType record returned by routine�metricInfo, memorySizes. The element metricInfo[1] contains the advance width. The element metricInfo[2] contains the left side bearing. The elements memorySizes[5], memorySizes[6] and memorySizes[7] indicate the amount of memory needed.��When to call�After the fs_ContourGridFit or fs_ContourNoGridFit routine and before the fs_ContourScan routine. ��

�fs_FindBandingSize

Description�Determines the amount of memory needed by the Font Scaler to scan convert a glyph bitmap using banding.��Fields of the fs_GlyphInputType record to initialize before routine�The field param.band.usBandType must be set to either FS_BANDINGSMALL or FS_BANDINGFAST (constants defined in fscaler.h). The field param.band.usBandWidth must contain the size in scanlines of the maximum band to be rasterized. If an outline has been cached, then the field param.band.outlineCache must contain a pointer to the current outline cache. If no outline has been cached it must be set to NULL.��Fields of the fs_GlyphInfoType record returned by routine�The elements memorySizes[5], memorySizes[6], and memorySizes[7] indicate the amount of memory needed to scan convert one band of the bitmap.��When to call�After the fs_FindBitMapSize routing and before the first call to fs_ContourScan. This routing may be called just prior to scan conversion to setup the Banding type and calculate new memory requirements. If no banding is being done then this call is not needed.��Notes�fs_FindBandingSize enables two new banding schemes. FS_BANDINGSMALL allows the client to rasterize a glyph with the minimum amount of workspace memory. It returns both memorySizes[5] and memorySizes[6], scaled down to the size of the band. FS_BANDINGSMALL does not work with dropout control on, so memorySizes[7] is always returned as zero. A client attempting to rasterize a large glyph in limited memory may make additional calls to fs_FindBandingSize with progressively smaller bands if the memory requirements from previous calls were still too great. When a band size small enough to use has been found, that size band (or smaller) should be used to rasterize the entire glyph. It should be understood that there is a substantial overhead per call to fs_ContourScan, so for performance reasons the band size should be kept as large as possible.

FS_BANDINGFAST allows the client to rasterize a glyph more efficiently by using the full allocation of memoryBases[6] and memoryBases[7] to save the outline rendering data between banding calls. FS_BANDINGFAST also allows dropout control of any kind to work correctly. Dropout control was disabled during banding in the old rasterizer because the algorithm required access to the bitmap outside of the band. The new routine reserves extra work space in memoryBases[5] and memoryBases[7] for this requirement when dropout control is enabled. For exact pixel for pixel accuracy from banding with dropout control, the client must call the rasterizer with a series of consecutive non-overlapping bands from the top of the glyph to the bottom of the glyph (in the upside-down notation of the bounds structure, that’s from bitMapInfo.bounds.bottom to bitMapInfo.bounds.top).���The old banding scheme, whereby the client called fs_FindBitMapSize and then did its own calculation of memorySizes[5], is still supported. It still requires the full allocation of memoryBases[6], and it still forces dropout control off, so memoryBases[7] isn’t used. The somewhat undocumented override feature, allowing a client to disable dropout control (and save some memory) by forcing memoryBases[7] equal to Null prior to the fs_ContourScan call, is still supported.��

�fs_FindGrayBandingSize

Description�Determines the amount of memory needed to create a gray scale bitmap using banding.��Fields of the fs_GlyphInputType record to initialize before routine�The field param.band.usBandType must be set to either FS_BANDINGSMALL or FS_BANDINGFAST (constants defined in fscaler.h). The field param.band.usBandWidth must contain the size in scanlines of the maximum band to be rasterized. If an outline has been cached, then the field param.band.outlineCache must contain a pointer to the current outline cache. If no outline has been cached, it must be set to NULL.��Fields of the fs_GlyphInfoType record returned by routine�The elements memorySizes[5], memorySizes[6], memorySizes[7], and memorySizes[8] indicate the amount of memory needed to scan convert one band of the bitmap.��When to call�After fs_FindGraySize and before the first call to fs_ContourGrayScan. This routine is called just prior to scan conversion to set-up the banding type and calculate new memory requirements. If no banding is being done then, this call is not needed.��Notes�fs_FindGrayBandingSize used two banding schemes. FS_BANDINGSMALL allows the client to rasterize a glyph with the minimum amount of workspace memory. It returns memorySizes[5], memorySizes[6], and memorySizes[8], scaled down to the size of the band. FS_BANDINGSMALL does not work with dropout control on, so memorySizes[7] is always returned as zero. A client attempting to rasterize a large glyph in limited memory may make additional calls to fs_FindGrayBandingSize with progressively smaller bands if the memory requirements from previous calls were still too great. When a band size small enough to use has been found, that size band (or smaller) should be used to rasterize the entire glyph. It should be understood that there is a substantial overhead per call to fs_ContourGrayScan, so for performance reasons the band size should be kept as large as possible.

FS_BANDINGFAST allows the client to rasterize a glyph more efficiently by using the full allocation of memoryBases[6] and memoryBases[7] to save the outline rendering data between banding calls. FS_BANDINGFAST also allows dropout control of any kind to work correctly. The routine reserves extra work space in memoryBases[7] and memoryBases[8] for this requirement when dropout control is enabled. For exact accuracy from banding with dropout control, the client must call the rasterizer with a series of consecutive non-overlapping bands from the top of the glyph to the bottom of the glyph (in the upside-down notation of the bounds structure, that’s from bitMapInfo.bounds.bottom to bitMapInfo.bounds.top).

The “old” banding scheme is not supported for gray scale, since the client has no easy way to calculate the size requirements for memoryBases[8].��

�fs_FindGraySize

Description�Determines the amount of memory needed to create a gray scale bitmap.��Fields of the fs_GlyphInputType record to initialize before routine�The field param.gray.usOverScale contains the factor used to magnify the outline prior to scan conversion. The number of gray levels reported in the bitmap will be usOverScale2 + 1. The allowable values for this parameter will be indicated in the constant FS_GRAY_VALUE_MASK. The field param.gray.bMatchBBox is a boolean value which is set True to force the gray scale bounding box to match the bounding box of monochrome scan conversion. Setting this value to True has the benefit of guaranteeing identical bounding boxes at the cost of shaving off gray pixels at the extremes of the glyph.��Fields of the fs_GlyphInfoType record returned by routine�The elements memorySizes[5], memorySizes[6], memorySizes[7], and memorySizes[8] indicate the amount of memory needed to create the gray scale bitmap. MemoryBases[5] is used for the gray scale bitmap, memoryBases[6] and memoryBases[7] for workspace, and memoryBases[8] for the magnified bitmap.��When to call�fs_FindGraySize is called as an alternative to fs_FindBitMapSize. It should be called after fs_ContourGridFit of fs_ContourNoGridFit and before fs_SizeOfOutlines, fs_FindGrayBandingSize, or fs_ContourGrayScan.��Notes�Gray scaling is done by scan converting a magnified glyph outline and counting the number of magnified pixels which are turned on in each of the original pixels. This count is returned by fs_ContourGrayScan as an array of bytes; one byte per pixel. The magnification factor (usOverScale) determines the number of gray levels reported.

For example, if usOverScale = 2, the number of magnified pixels per original pixel is 4 (2 x 2), and the number of these that may be turned on is 0, 1, 2, 3, or 4. So each byte in the array will contain one of these five values. Similarly, a magnification of 4 will yield 17 different values, and a magnification of 8 will yield 65.

For reasons of efficiency, the best values for usOverScale are powers of 2. The values 2, 4, and 8 appear to be reasonable choices, depending upon how many gray levels the client can display. The allowable values of usOverScale for any particular implementation of the TrueType rasterizer will be indicated by a bitmask constant: FS_GRAY_VALUE_MASK. If, for instance, the rasterizer supports usOverScale values of 2, 4, and 8, then FS_GRAY_VALUE_MASK will have ones in bit poisitions 2, 4, and 8, giving a value of: 00000000 10001010 b = 008Ah. Note that for this constant, bit position 1 is the least significant bit, and bit position 16 is the most significant bit.��

�fs_SizeOfOutlines

Description�Determines the amount of memory needed by the Font Scaler to cache an outline.��Fields of the fs_GlyphInputType record to initialize before routine�None.��Fields of the fs_GlyphInfoType record returned by routine�outlineCacheSize. The field outlineCacheSize contains the amount of memory needed.��When to call�After the fs_ContourGridFit routine or the fs_ContourNoGridFit routine and before the fs_SaveOutlines routine when you want to cache an outline instead of immediately preparing a bitmap.��

�fs_SaveOutlines

Description�Caches an outline; that is, stores the outline in memory for later retrieval.��Fields of the fs_GlyphInputType record to initialize before routine�The outlineCache field must contain a pointer to the memory block that was requested by the Font Scaler. The size of this memory block was specified by the outlineCacheSize field of the fs_GlyphInfoType record after the fs_SizeOfOutlines routine.��Fields of the fs_GlyphInfoType record returned by routine���When to call�After the fs_SizeOfOutlines routine when you want to cache an outline. Use the fs_RestoreOutlines routine to recover a cached outline.��

�fs_RestoreOutlines

Description�Recovers a cached outline so that it can be used for preparing a bitmap of a glyph.��Fields of the fs_GlyphInputType record to initialize before routine�The outlineCache field must contain a pointer to the memory block that you used when you cached the outline with the fs_SaveOutlines routine.��Fields of the fs_GlyphInfoType record returned by routine�memorySizes. The elements memorySizes[5], memorySizes[6] and memorySizes[7] indicate the amount of memory needed. Additionally, these fields are returned: outlinesExist, glyphIndex, outlineCacheSize, metricInfo, numberOfContours, xPtr, yPtr, startPtr, endPtr, onCurve.��When to call�When you are ready to prepare a bitmap from a cached outline; after the fs_SaveOutlines routine.��

�fs_ContourScan

Description�Causes the Font Scaler to convert the outline into a bitmap.��Fields of the fs_GlyphInputType record to initialize before routine�The fields memoryBases[5], memoryBases[6] and memoryBases[7] must contain pointers to the memory blocks that were requested by the Font Scaler. The sizes of these memory blocks were specified by the memorySizes[5], memorySizes[6] and memorySizes[7] fields of the fs_GlyphInfoType record after the fs_FindBitMapSize or fs_RestoreOutlines routines

The fields bottomClip and topClip must contain the bottom and top scan lines (in pixels) of the glyph to be processed. To process the entire glyph, set bottomClip equal to yMin and topClip equal to yMax as returned by the fs_FindBitMapSize routine.

Set the field ReleaseSfntFrag to 0 unless you want to replace the Font Scaler’s scan converter with your own routine.��Fields of the fs_GlyphInfoType record returned by routine�bitMapInfo. The bitMapInfo field contains a pointer to the bitmap data, i.e. the number of bytes per row, and the corners coordinates of the bitmap.��When to call�When you are ready to prepare a bitmap, after the fs_FindBitMapSize or fs_RestoreOutlines routines.���fs_CloseFonts

Description�Closes the Font Scaler.��Fields of the fs_GlyphInputType record to initialize before routine�None��Fields of the fs_GlyphInfoType record returned by routine�None��When to call�At the end of your program, after the last call to the Font Scaler.��

�Font Scaler Errors

Each Font Scaler client interface routine returns an error code both as the function result and as the value of the error field in the fs_GlyphInfoType record. If this error code is anything other than 0, you should display an error message for the user and quit. This section lists and describes the errors that you can receive.

Error�Code�Explanation��NULL_KEY_ERR�0x1001�Memory Base () unexpectedly contains a Null pointer.��NULL_INPUT_PTR_ERR�0x1002�InputPtr is unexpectedly Null.��NULL_MEMORY_BASES_ERR�0x1003�MemoryBases in InputPtr is Null.��VOID_FUNC_PTR_BASE_ERR�0x1004�No longer used.��OUT_OFF_SEQUENCE_CALL_ERR�0x1005�Client Interface call made out of sequence.��BAD_CLIENT_ID_ERR�0x1006�No longer used.��NULL_SFNT_DIR_ERR�0x1007�sfnt Directory is null from client callback routine.��NULL_SFNT_FRAG_PTR_ERR�0x1008�GetSfntFragmentPtr is Null in InputPtr.��NULL_OUTPUT_PTR_ERR�0x1009�OutputPtr is unexpectedly Null.��INVALID_GLYPH_INDEX�0x100A�Glyph requested exceeds MaxProfile entry for glyph index.��BAND_TOO_BIG_ERR�0x100B�Band is larger than was specified in the fs_FindBandingSize call.���

Error�Code�Explanation��fnt_execute����UNDEFINED_INSTRUCTION_ERR�0x1101�An illegal instruction is part of the TrueType program, or, more likely, the program has run amok.��TRASHED_MEM_ERR�0x1102�No longer used.��fsg_CalculateBBox����POINT_MIGRATION_ERR�0x1201�A scaled and hinted point is outside the maximum bounding box (absolute value greater than 2^15 pixels).��sc_ScanChar����BAD_START_POINT_ERR�0x1301�No longer used.��SCAN_ERR�0x1302�No longer used.��BAD_SCAN_KIND_ERR�0x1302�No longer used.��SFNT DATA ERROR and errors in sfntaccs.c��SFNT_DATA_ERR�0x1400�Inconsistent glyph bounding box data in sfnt.��POINTS_DATA_ERR�0x1401�Number of points in glyph exceeds MaxProfile data.��INSTRUCTION_SIZE_ERR�0x1402�No longer used.��CONTOUR_DATA_ERR�0x1403�Number of contours in glyph exceeds MaxProfile data.��GLYPH_INDEX_ERR�0x1404�No longer used.��Error�Code�Explanation��BAD_MAGIC_ERR�0x1405�Problem with sfnt data, Magic number in ‘head’ table not found.��OUT_OF_RANGE_SUBTABLE�0x1406�Requested PlatformId/SpecificID not found in cmap.��UNKNOWN_COMPOSITE_VERSION�0x1407�Illegal composite indicator in glyph data.��CLIENT_RETURNED_NULL�0x1408�Client callback routine returned Null.��MISSING_SFNT_TABLE�0x1409�Required table in sfnt not found.��UNKNOWN_CMAP_FORMAT�0x140A�Unknown cmap format.��BAD_MAXP_DATA�0x140B�Incorrect MaxProfile entries for maxComponentElements and maxComponentDepth.��Spline call errors����BAD_CALL_ERR�0x1500�No longer used.��TRASHED_OUTLINE_CACHE�0x1600�Invalid outline cache stamp indicates that outline cache has been corrupted.��Gray scale errors����BAD_GRAY_LEVEL_ERR�0x1701�Requested gray level is not supported by this version of the rasterizer.��GRAY_SEQUENCE_ERR�0x1702�Grayscale call made out of sequence or in a disallowed combination with a non-grayscale call.��GRAY_OLD_BANDING_ERR�0x1703�Grayscale doesn’t work with “old” banding mode.���Sample of a Routine That Uses the Client Interface

/*********************** Parameters **************************/

#define CHAR_CODE	'R'

#define POINT_SIZE		60

#define FILE_NAME		"times.ttf"

#define PLATFORM_ID	1

#define ENCODING_ID	0

/*********************** Imports ****************************/

#include <stdio.h> /* Standard imports */

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <assert.h>

#include "fscdefs.h" /* TrueType imports */

#include "sfnt.h"

#include "fscaler.h"

/****************** Definitions and Prototypes **********************/

typedef struct	/* Client Data for a single job */

{

	fs_GlyphInputType in;	/* Client interface input */

	fs_GlyphInfoType out;	/* Client interface output */

	transMatrix mat;	/* Client Matrix Transform */

} CLIENTDATA;

static CLIENTDATA cd; /* We support ONE client at a time */

static void NewClientData (size_t, size_t);

static void* CallbackGetSfntFragment (long, long, long);

static void CallbackReleaseSfntFragment (void*);

static void* MyMalloc (size_t cb);

static void MyFree (void* pv);

static int DumpBitmap (char*, short, short, short, short, short, short, FILE*);

#define SIGN(a) ((a)<0 ? -1 : 1)

#define ABS(a) ((a) < 0 ? -(a) : (a))

#define ROUND_FIXPT(fx) ((short) (SIGN(fx) * (ONEFIX/2+ABS(fx)) / ONEFIX))

#define CHAR_CODE	'B'

#define POINT_SIZE		60

#define FILE_NAME		"times.ttf"

/************************* Main Routine *****************************/

int main()

{

	FILE* pfi;

	int32 lCode;

	short xLeft,sAdvanceWidth,cx;

	static char szFontFile[] = FILE_NAME;

	

	pfi = fopen (szFontFile, "rb");

	if (pfi == NULL)

	{

		perror (szFontFile);

		return EXIT_FAILURE;

	}

	

	lCode = fs_OpenFonts (&cd.in,&cd.out);

	assert (lCode == 0);

	NewClientData (0,2);

	lCode = fs_Initialize (&cd.in,&cd.out);

	assert (lCode == 0);

	cd.in.clientID = (int32)(pfi);

	cd.in.param.newsfnt.platformID = PLATFORM_ID;

	cd.in.param.newsfnt.specificID = ENCODING_ID;

	cd.in.GetSfntFragmentPtr = CallbackGetSfntFragment;

	cd.in.ReleaseSfntFrag = CallbackReleaseSfntFragment;

	cd.in.sfntDirectory = NULL;

	lCode = fs_NewSfnt (&cd.in, &cd.out);

	assert (lCode == 0);

	NewClientData (3,4);

	cd.mat.transform[0][0] = ONEFIX;			 /* identity transform */

	cd.mat.transform[0][1] = 0;

	cd.mat.transform[0][2] = 0;

	cd.mat.transform[1][0] = 0;

	cd.mat.transform[1][1] = ONEFIX;

	cd.mat.transform[1][2] = 0;

	cd.mat.transform[2][0] = 0;

	cd.mat.transform[2][1] = 0;

	cd.mat.transform[2][2] = ONEFIX;

	cd.in.param.newtrans.pointSize = (Fixed)(POINT_SIZE) << 16;

	cd.in.param.newtrans.xResolution = 72; /* 1 pt = 1 ppem */

	cd.in.param.newtrans.yResolution = 72;

	cd.in.param.newtrans.pixelDiameter = FIXEDSQRT2;

	cd.in.param.newtrans.transformMatrix = &cd.mat;

	cd.in.param.newtrans.traceFunc = NULL;

	lCode = fs_NewTransformation (&cd.in,&cd.out);

	assert (lCode == 0);

	cd.in.param.newglyph.characterCode = CHAR_CODE;

	cd.in.param.newglyph.glyphIndex = 0;

	lCode = fs_NewGlyph (&cd.in,&cd.out);

	assert (lCode == 0);

	cd.in.param.gridfit.styleFunc = NULL;

	cd.in.param.gridfit.traceFunc = NULL;

	lCode = fs_ContourGridFit (&cd.in,&cd.out);

	assert (lCode == 0);

	lCode = fs_FindBitMapSize (&cd.in,&cd.out);

	assert (lCode == 0);

	NewClientData (5,7);

	xLeft = 		ROUND_FIXPT(cd.out.metricInfo.devLeftSideBearing.x);

	sAdvanceWidth = ROUND_FIXPT(cd.out.metricInfo.devAdvanceWidth.x);

	cd.in.param.scan.bottomClip = cd.out.bitMapInfo.bounds.top;

	cd.in.param.scan.topClip = cd.out.bitMapInfo.bounds.bottom;

	cd.in.param.scan.outlineCache = NULL;

	lCode = fs_ContourScan (&cd.in,&cd.out);

	assert (lCode == 0);

	cx = cd.out.bitMapInfo.bounds.right - cd.out.bitMapInfo.bounds.left;

	DumpBitmap ((char*)cd.out.bitMapInfo.baseAddr,

		xLeft,

		cd.out.bitMapInfo.bounds.bottom,

		(short)(xLeft + cx),

		cd.out.bitMapInfo.bounds.top,

		cd.out.bitMapInfo.rowBytes,

		sAdvanceWidth,

		stdout

);

	lCode = fs_CloseFonts (&cd.in,&cd.out);

	assert (lCode == 0);

	fclose (pfi);

	printf ("%s: Done\n", szFontFile);

	return EXIT_SUCCESS;

}

/*********************** Memory Management **************************/

/*	NewClientData(): Call this function to allocate data in

	the memoryBases[] rasterizer input array based on sizes found in the

	memorySizes[] rasterizer output array.

 */

static void NewClientData (size_t iLo, size_t iHi)

{

	size_t i, cbBuf;

	for (i=iLo; i<=iHi; i++)

	{

		if (cd.out.memorySizes[i] == 0)

			cd.in.memoryBases[i] = NULL;

		else

		{

			cbBuf = (size_t) cd.out.memorySizes[i];

			assert ((FS_MEMORY_SIZE)cbBuf == cd.out.memorySizes[i]);

			cd.in.memoryBases[i] = MyMalloc (cbBuf);

			assert (cd.in.memoryBases[i] != NULL);

		}

	}

}

static void* CallbackGetSfntFragment (long lClient, long lOff, long lSize)

{

	FILE* pfi = (FILE*) lClient;

	void* pvBuf;

	if ((long)(size_t)lSize != lSize)

	return NULL;

	if (fseek (pfi,lOff,SEEK_SET))

	return NULL;

	pvBuf = MyMalloc ((size_t)lSize);

	if (pvBuf == NULL)

		return NULL;

	if (fread (pvBuf, 1, (size_t)lSize, pfi) != (size_t)lSize)

	{

		MyFree (pvBuf);

		return NULL;

	}

	return pvBuf;

}

static void CallbackReleaseSfntFragment (void* pv)

{

	MyFree (pv);

}

static void* MyMalloc (size_t cb)

{

	if (cb == 0)

		return NULL;

	return malloc (cb);

}

static void MyFree (void* pv)

{

	free (pv);

}

/************************ Output Routines ****************************/

static void DumpBinaryRaster (char*, unsigned short, FILE*);

static void DumpBinaryShort (short, FILE*);

static void DumpBinaryLong (long, FILE*);

static void DumpPixels (FILE*, char*, unsigned short);

static void DumpSpaces (FILE*, short);

static void PutNewLine (FILE*);

/*

	DumpBitmap(): Writes rasterizer output to the indicated file

 */

static int DumpBitmap (char* pchBits,	/* The bitmap */

	short xLeft, short yTop, short xRight, short yBottom,	/* BoundBox */

	short cbRaster,	/* # bytes per row */

	short sAdvWidth,	/* integral advance width */

	FILE* pfiOut	/* Output file */

)

{

	unsigned short i,cxWidth,cxBlack,cyBlack;

	short y,xRightSideBearing;

	unsigned short cxAdvWidth;

	

	cxBlack = xRight - xLeft;

	cyBlack = yTop - yBottom;

	fprintf (pfiOut, "\r\n[%hd %hd %hd %hd] %hd\r\n",

		xLeft,yTop,xRight,yBottom,sAdvWidth

);

	cxAdvWidth = (unsigned short) (sAdvWidth);

	xRightSideBearing = cxAdvWidth - (xLeft + cxBlack);

	for (i=0; i<cyBlack; i++, pchBits+=cbRaster)

	{

		DumpSpaces (pfiOut, xLeft);

		DumpPixels (pfiOut, pchBits, cxBlack);

		DumpSpaces (pfiOut, xRightSideBearing);

		PutNewLine (pfiOut);

	}

	cxWidth = cxBlack + (xLeft + xRightSideBearing);

	for (y=0; y<yBottom; y++)

	{

		DumpSpaces (pfiOut, (short)cxWidth);

		PutNewLine (pfiOut);

	}

	if (xLeft < 0)

		DumpSpaces (pfiOut,(short)-xLeft);

	putc ('L', pfiOut);

	DumpSpaces (pfiOut,(short)(((short)cxAdvWidth) - 1));

	putc ('R', pfiOut);

	PutNewLine (pfiOut);

	return ferror(pfiOut)==0 && feof(pfiOut)==0;

}

/* DumpSpaces(): prints a given number of spaces to the indicated file

 */

static void DumpSpaces (FILE* pfiOut, short cxSpaces)

{

	short i;

	

	for (i=0; i<cxSpaces; i++)

		putc (' ', pfiOut);

}

/* DumpPixels(): emits an ASCII representation of a row of pixels

 */

static void DumpPixels (FILE* pfiOut, char* pchPels, unsigned short cxPels)

{

	unsigned short i,j;

	unsigned uBits,uMask;

	int iOut;

	for (i=0; i<cxPels; i+=8, pchPels++)

	{

		uBits = (unsigned)(*pchPels);

		for (j=0, uMask = 0x80; uMask && ((i+j) < cxPels); uMask>>=1, j++)

		{

			iOut = ((uMask & uBits) == 0x00) ? (char)' ' : '#';

			putc (iOut, pfiOut);

		}

	}

}

static void PutNewLine (FILE* pfiOut)

{

	putc ('\r', pfiOut);

	putc ('\n', pfiOut);

}

�Summary of the Font Scaler Client Interface

Constants

#define FS_BANDINGOLD	0

#define FS_BANDINGSMALL	1

#define FS_BANDINGFAST	2

#define FS_GRAY_VALUE_MASK	0x008B

#define ONCURVE 	0x01

#ifdef FSCFG_GRAY_SCALE

#define MEMORYFRAGMENTS 9	/* extra memory base for overscaled bitmap */

#else

#define MEMORYFRAGMENTS	8

#endif

Macros

#define F26Dot6 long

#define boolean int

#define FS_MEMORY_SIZE int32

Data Types

typedef signed char int8;

typedef unsigned char uint8;

typedef short int16;

typedef unsigned short uint16;

typedef long int32;

typedef unsigned long uint32;

typedef long Fixed;

typedef void (*voidFunc) ();

typedef void * voidPtr;

typedef void (FS_CALLBACK_PROTO *ReleaseSFNTFunc) (voidPtr);

typedef void * (FS_CALLBACK_PROTO *GetSFNTFunc) (int32, int32, int32);

typedef struct Rect {

 int16 top;

 int16 left;

 int16 bottom;

 int16 right;

} Rect;

typedef struct {

 Fixed transform[3][3];

} transMatrix;

typedef struct {

 Fixed x, y;

} vectorType;

typedef struct BitMap {

	char* baseAddr;

	int16 rowBytes;

	Rect bounds;

} BitMap;

typedef struct {

	vectorType advanceWidth;

	vectorType leftSideBearing;

	vectorType leftSideBearingLine;

	vectorType devLeftSideBearingLine;

	vectorType devAdvanceWidth;

	vectorType devLeftSideBearing;

} metricsType;

typedef struct {

	FS_MEMORY_SIZE memorySizes[MEMORYFRAGMENTS];

	uint16 glyphIndex;

	uint16 numberOfBytesTaken; /* from the character code */

	metricsType metricInfo;

	BitMap bitMapInfo;

	/* Spline Data */

	int32 outlineCacheSize;

	uint16 outlinesExist;

	uint16 numberOfContours;

	F26Dot6 *xPtr, *yPtr;

	int16 *startPtr;

	int16 *endPtr;

	uint8 *onCurve;

	/* End of spline data */

	/* Only of interest to editors */

	F26Dot6 *scaledCVT;

#ifdef FSCFG_GRAY_SCALE

	/* gray scale outline magnification */

	uint16 usOverScale;

#endif

} fs_GlyphInfoType;

#ifndef UNNAMED_UNION

typedef struct {

	Fixed	version;

	char*	memoryBases[MEMORYFRAGMENTS];

	int32	*sfntDirectory; /* (sfnt_OffsetTable *) always needs to be set, when we have the sfnt */

	GetSFNTFunc	GetSfntFragmentPtr; /* (clientID, offset, length) */

	ReleaseSFNTFunc	ReleaseSfntFrag;

	int32	clientID; /* client private id/stamp (eg. handle for the sfnt) */

	union {

		struct {

			uint16 platformID;

			uint16 specificID;

		} newsfnt;

		struct {

			Fixed pointSize;

			int16 xResolution;

			int16 yResolution;

			Fixed pixelDiameter; /* compute engine char from this */

			transMatrix* transformMatrix;

			FntTraceFunc traceFunc;

		} newtrans;

		struct {

			uint16 characterCode;

			uint16 glyphIndex;

		} newglyph;

		struct {

			void (*styleFunc) (fs_GlyphInfoType*);

			FntTraceFunc traceFunc;

		} gridfit;

		struct { /* for fs_FindGraySize */

	uint16	usOverScale; 	/* outline magnification */

	boolean	bMatchBBox; 	/* force bounding box match */

		} gray;

		int32* outlineCache;

		struct { /* for fs_FindBandingSize */

			uint16 usBandType; /* old, small or fast */

			uint16 usBandWidth; /* number of scanlines */

			int32* outlineCache; /* cacheing works with banding */

		} band;

		struct {

			int16 bottomClip;

			int16 topClip;

			int32* outlineCache;

		} scan;

	} param;

} fs_GlyphInputType;

#else

typedef struct {

	Fixed version;

	char* memoryBases[MEMORYFRAGMENTS];

	int32 *sfntDirectory; /* (sfnt_OffsetTable *) always needs to be set, when we have the sfnt */

	GetSFNTFunc GetSfntFragmentPtr; /* (clientID, offset, length) */

	ReleaseSFNTFunc ReleaseSfntFrag;

	int32 clientID; /* client private id/stamp (eg. handle for the sfnt) */

	union {

		struct {

			uint16 platformID;

			uint16 specificID;

		};

		struct {

			Fixed pointSize;

			int16 xResolution;

			int16 yResolution;

			Fixed pixelDiameter; /* compute engine char from this */

			transMatrix* transformMatrix;

			FntTraceFunc tracePreProgramFunc;

		};

		struct {

			uint16 characterCode;

			uint16 glyphIndex;

		};

		struct {

			void (*styleFunc) (fs_GlyphInfoType*);

			FntTraceFunc traceGridFitFunc;

		};

		struct { /* for fs_FindGraySize */

			uint16 usOverScale; /* outline magnification */

			boolean bMatchBBox; /* force bounding box match */

		};

		int32* outlineCache1;

		struct { /* for fs_FindBandingSize */

			uint16 usBandType; /* old, small or fast */

			uint16 usBandWidth; /* number of scanlines */

			int32* outlineCache3; /* cacheing works with banding */

		};

		struct {

			int16 bottomClip;

			int16 topClip;

			int32* outlineCache2;

		};

	};

} fs_GlyphInputType;

#endif /* unnamed union */

Functions

fs_OpenFonts (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_Initialize (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_NewSfnt (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_NewTransformation (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_NewGlyph (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_GetAdvanceWidth (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_ContourGridFit (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_ContourNoGridFit (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_FindBitMapSize (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_FindBandingSize (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_SizeOfOutlines (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_SaveOutlines (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_RestoreOutlines (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_ContourScan (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_CloseFonts (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_FindGraySize (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_FindGrayBandingSize (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_ContourGrayScan (fs_GlyphInputType *inputPtr, fs_GlyphInfoType *outputPtr);

fs_InitializeData (void);

fs_GetScaledAdvanceWidths (fs_GlyphInputType * inputPtr,uint16 usFirstGlyph, uint16 usLastGlyph, int16 *psGlyphWidths);

		

	

		Font Scaler Client Interface �page * arabic�2�

	Confidential	Font Scaler Client Interface �page * arabic�1�

Font Scaler Client Interface		� DATE \l �1/21/94�

� DATE \l �1/21/94�		Font Scaler Client Interface

�page * arabic�80�	Microsoft Confidential	

	Microsoft Confidential	�page * arabic�79�

