	

	Title

	Author
	Manu Thambi (manut)
	Created
	4/19/2000 4:10 PM

	Revision
	1.0
	Updated
	0/0/0000 0:00 AM

	Location
	\\manut-dev\ddrive\Multicolor\Design_Document.doc

21.
Introduction

21.1
Summary and Goals

21.2
Scenarios

21.3
Feature and Process Details

21.4
Dependencies and Owners

22.
Design Overview

22.1
High Level Feature Set

22.2
High Level Design

32.3
Public Interfaces

33.
Development Plan

33.1
Usability Issues

33.2
Development Schedule

33.3
Testing

33.4
Dependencies

33.5
Release

34.
Design Review

34.1
UI Changes

44.2
Localization

44.3
Accessibility

44.4
Extensibility

44.5
Modularity and Code Leverage

44.6
Performance and Scalability

44.7
Upgrade

44.8
Compatibility

44.9
Interop

54.10
Application Compatibility

54.11
Security

54.12
Setup and Administration

54.13
Clustering

54.14
Terminal Services

54.15
Network

54.16
Scripting

54.17
Hardware Dependency

54.18
Protocol Dependency

65.
Detailed Design

65.1
Modules

65.2
Module Level Flow diagram

65.3
Interface definition

65.4
Implementation Detail

65.5
Futures

66.
Issues

67.
History

1. Introduction

1.1 Summary and Goals

Some newer printers (from HP and Lexmark) support color inks with more than 2 levels (usually 4-8 levels). That means the printer is able to print different shades of the printer inks for each dot. Unidrive currently does not support this feature. Therefore the OEMs have written their own Customization Modules, which support this feature. But they use 24 BPP rendering which is very slow and memory intensive. Then the 24 BPP bitmap is halftoned into the appropriate multicolor format suitable for the printer. The goal is to write a Customization Module in Unidrive to allow printing in the multi color resolution mode (Multicolor mode for short), which makes use of Multicolor support in GDI, there by avoiding rendering in 24 BPP and improving performance.

Why are we doing it?

1. To demonstrate that the Unidrive Customization Module interface is powerful enough to do allow implementation of this feature.

2. To publish the code into the Windows DDK as an example of a fairly complex Customization Module.

3. To improve performance of printing to printers which support Multicolor inks.

1.2 Scenarios

When the user prints a color document using Unidrive into a printer, which supports the Multicolor inks, there are two possibilities.

1. There is no Customization module in the driver and since Unidrive does not take advantage of Multicolor inks, the quality of the output is less than the best quality the printer can achieve.

2. There is an OEM Customization module in the driver. The GDI renders the image to be printer in 24 BPP and the Customization module halftones it to the appropriate format. For printers with a large DPI, this can be very slow and memory intensive. So the user will have to wait longer for the printing to complete.

1.3 Feature and Process Details

This new driver will allow printing to printers, which support Multicolor inks. GDI has the ability to halftone images into Multicolor format. But Unidrive does not understand Multicolor inks. So we will be implement a Customization Module in Unidrive (we will call it Multicolor module from now on), which will enable the driver to take advantage of the Multicolor modes of the printer.

1.4 Dependencies and Owners

Although not very likely, there is a possibility that some changes might be required in Unidrive or GDI to allow implementation of this feature. Also some bugs might be exposed in GDI and/or Unidrive during the implementation.

2. Design Overview

2.1 High Level Feature Set

Using this feature, Unidrive will be able to make use of the Multicolor mode in printers, which support it, to produce superior quality color output.

2.2 High Level Design

GDI has the ability to halftone images into Multicolor format of three primary inks – Cyan, Magenta and Yellow. But Unidrive does not understand this format. The Multicolor format, which most printers support, is 8BPP. There is a standard 8BPP format which Unidrive supports. So we design the Multicolor module such that it makes Unidrive think that the printer is in the standard 8BPP format. At the same time the Multicolor module configures GDI to produce the output in the 8BPP Multicolor format.

The Multicolor module cannot rely on Unidrive to send the raster data to the printer because Unidrive does not understand the format. So the Multicolor module directly sends the raster data to the printer.

GDI Multicolor format contains the color values for only three primary colors – Cyan, Magenta and Yellow. But most printers use an additional ink – Black. So the Multicolor module generates the black ink level from the CMY values in the GDI output.

The functions of Multicolor module are the following:

1. Configure GDI to produce Multicolor output. This can be best done by setting the appropriate flags in GDIINFO structure in the IOemUni::EnablePDEV method of the Multicolor module.

2. Generate the black ink level required by the printer from the three primary color levels generated by GDI. The is best done in the IOemUni::ImageProcessing method.

3. Send the raster image data to the printer. Unidrive cannot do this because it does not understand the Multicolor format. The code for this should be implemented in IOemUni::ImageProcsinesg.

During the implementation of this Module we might find that the implementation of certain Unidrive DDI functions needs to be changed. This can be done in two ways

1. Modify Unidrive. This can be done is the modification fits into the overall design of Unidrive and the modification does not affect the behavior of Unidrive in other circumstances.

2. Hook the DDI function in the Multicolor module. This is the better alternative if the modification is specific to the Multicolor module.

Finally, an option has to be added to the ColorMode feature in the driver’s GPD file. Selecting this option would enable the Multicolor module. Also the appropriate command string to put the printer into the Multicolor mode should be included as an option attribute.

2.3 Public Interfaces

There is no public API for this Customization module.

3. Development Plan

3.1 Usability Issues

There are no usability issues with the Multicolor module as such, because it is pretty much hidden from the user. The Multicolor module is enabled by the appropriate color mode selection in the Advanced Page in Printer Properties. Any other options specific to the Multicolor module can be added as an option in the Tree on the Advanced Page. Since this addition is very similar to other printer options, we won’t need further usability study.

3.2 Development Schedule

As a first stage, we will try to implement the Multicolor module only for one particular printer – HP DeskJet 970Cxi. The schedule for that is given below.

Total Time:

1. Reading DDK documentation on writing Customization modules for Unidrive and understanding the structure of Unidrive: 4 days.

2. Figuring out the GDI Multicolor image formats and how GDI uses the 8bit color format: 2 days

3. Figuring out how to put the printer into the Multicolor mode and how to Figuring out which printer to use and reading up on the documentation of the printer: 3 days

4. Writing the design document: 5 days.

5. Implementing the Multicolor Customization module and modifying the GPD file: 5 days

6. Testing the code: 5 days

7. Documenting the Multicolor Module for the DDK: 2 days
After the above work is over, further work needs to be done to fine tune the various settings in GDIINFO and improve the black ink level generation algorithm. Also, the Multicolor module will have to be generalized to work with most printers supporting Multicolor inks. If the Multicolor module exposes bugs in GDI or Unidrive then the time required might be more.
3.3 Testing

Testing can be done in three parts:

1. Output the raster data into a DIB and in the IOemUni::ImageProcessing function and make sure that the DIB is what is expected. This will make sure that all the configuration settings in GDIINFO are correct.

2. Test the black ink level generation algorithm.

3. Test the code in IOemUni::ImageProcessing function, which configures the printer by sending printer configuration commands. Sending the output to a port, which represents a file, and examining the output can easily do this.

Further testing, including regression testing, needs to be done if it turns out that any of the Unidrive DDI functions needs to be hooked or modified.

3.4 Dependencies

Although not very likely, there is a possibility that some changes might be required in Unidrive or GDI to allow implementation of this feature. Also some bugs might be exposed in GDI and/or Unidrive during the implementation. In that case the development cannot be completed until those bugs are fixed.

3.5 Release

If no Unidrive or GDI changes or bug fixes are required, then the code can be released in the next version of DDK. If there are bug fixes or modifications, then we have to wait until those fixes go into a release of Windows.

4. Design Review

4.1 UI Changes

The Multicolor module is enabled by the appropriate color mode selection in the Advanced Page in Printer Properties. Any other options specific to the Multicolor module can be added as an option in the Tree on the Advanced Page. This should be easy to do.

4.2 Localization

The only UI is where the user selects the appropriate color mode and the user selects the new options specific to Multicolor module. This uses the current architecture of putting options in the Advanced Tab of driver UI, so localizing it should be pretty easy.

4.3 Accessibility

Re-using the current mechanism. So there are no new issues.

4.4 Extensibility

4.5 Modularity and Code Leverage

The Multicolor module uses a well-defined COM interface to talk to Unidrive. So, other customization modules can be added to the same driver and without many problems.

4.6 Performance and Scalability

Most of the time spent while printing a document in the Multicolor module would be in the black ink level generation algorithm. Simple algorithms can be implemented pretty fast (speed O(n), n is the number of bytes in the raster image). So this would not be an issue, but can be an issue if we use a more complex algorithm.

4.7 Upgrade

How does upgrade affect this feature?

I haven’t thought about this enough.

	Upgrade from OS
	Win9x
	NT4
	Win2000
	Win2002

	Issues
	OEM driver would be replaced.
	
	
	No problem

4.8 Compatibility

Since we are mostly using the published APIs in GDI and Unidrive there won’t be any significant compatibility issues with future versions of Windows. But some of the code makes certain assumptions about the Unidrive DDI implementations, which are not explicitly stated in the DDK. So these might cause problems.

	OS
	Win 2000
	Win2001
	Win2002

	Issues
	
	
	

4.9 Interop

I have to think about this in more detail later.

Client/server matrix:

	Server

Client

	Win2k
	Win2001 (Current)
	Win2002

	Win2k
	
	
	

	Win2001 (Current)
	
	No problem
	

	Win2002
	
	
	

	Win9x
	
	
	

4.10 Application Compatibility

The Multicolor module should work will all well behaved applications, because they don’t interact directly with the driver.

4.11 Security

Security issues do not arise because we are not exporting new public interfaces. Also the we are not adding any code to the kernel.

4.12 Setup and Administration

The setup just involves installation of the new driver. The setup procedure would exactly be the same as any other driver.

4.13 Clustering

4.14 Terminal Services

4.15 Network

No network is accessed.

4.16 Scripting

4.17 Hardware Dependency

HP and Lexmark printers, which support Multicolor inks, will benefit from this feature.

4.18 Protocol Dependency

5. Detailed Design

5.1 Modules

1. Unidrive Customization Module

2. GPD file

3. INF file for driver installation

5.2 Module Level Flow diagram

5.3 Interface definition

5.4 Implementation Detail

5.5 Futures

Since we expect printers with multicolor inks to become more common (because it is a cost effective way to improve print quality compared to increasing the DPI), we can consider adding Multicolor support into Unidrive so that a Customization module will not be necessary.

Generating the black ink level is best done in the GDI, because there is more information available in the GDI to do that. So this functionality should be moved into the GDI in the future.

6. Issues

Potential bugs in Unidrive or GDI

7. History
	Date
	Changes made
	Author

	4/18/2000
	Created
	Manut

	4/24/2000
	Added changes suggested by Alvins
	Manut

Microsoft Confidential

Page 7 of 7

