
1
4
 Win32 Multilingual IME Application Programming Interface

Win32 Multilingual IME Application Programming Interface 
5

Win32 Multilingual IME Application Programming Interface

Version 1.41

04-01-1999

This documentation contains the application programming interface reference for Input Method Editor (IME)development. The following functions are intended to be used by the IME.

IMM UI Functions

Following are the Input Method Manager (IMM) functions that can be accessed from the UI window. They are also used by applications to change IME status.

ImmGetCompositionWindow
ImmSetCompositionWindow

ImmGetCandidateWindow

ImmSetCandidateWindow

ImmGetCompositionString

ImmSetCompositionString

ImmGetCompositionFont

ImmSetCompositionFont

ImmGetNumCandidateList

ImmGetCandidateList

ImmGetGuideLine

ImmGetConversionStatus

ImmGetConversionList

ImmGetOpenStatus

ImmSetConversionStatus

ImmSetOpenStatus

ImmNotifyIME

ImmCreateSoftKeyboard

ImmDestroySoftkeyboard

ImmShowSoftKeyboard

Please refer to the Input Method Editor (IME) functions in the Platform SDK for information about these functions.

IMM Support Functions

The following topics contain IMM functions that support and are used by the IME.

ImmGenerateMessage

The IME uses the ImmGenerateMessage function to send messages to the hWnd of hIMC. The messages to be sent are stored in hMsgBuf of hIMC.

BOOL WINAPI
    ImmGenerateMessage(
    HIMC hIMC
   )
Parameters

hIMC
Input context handle containing hMsgBuf.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

Comments

This is a general purpose function. Typically, an IME uses this function when it is notified about the context update through ImmNotifyIME from IMM. In this case, even if IME needs to provide messages to an application, there is no keystroke in the application’s message queue.

An IME User Interface should not use this function when it only wants to update the UI appearance. The IME User Interface should have been updated when the IME is informed about the updated Input Context. It is recommended that you use this function from the IME only when the IME changes the Input Context without any keystroke given and needs to inform an application of the change.

ImmRequestMessage

The ImmRequestMessage function is used to send a WM_IME_REQUEST message to the application. 

LRESULT WINAPI
    ImmRequestMessage(
    HIMC hIMC,
    WPARAM wParam,
    LPARAM lParam
   )
Parameters

hIMC
Target input context handle.

wParam
wParam for the WM_IME_REQUEST message.

lParam
lParam for the WM_IME_REQUEST message.

Return Values

The return value is the return value of the WM_IME_REQUEST message.

Comments

This function is new for Windows® 98 and Window 2000, and is used by the IME to send a WM_IME_REQUEST message to the application. The IME may want to obtain some guidelines from the application in defining the position of the candidate or composition window. But in an IME fully aware (true in-line) application, the application usually does not set the composition window position. When the IME makes a request to the application, it receives the WM_IME_REQUEST message. The IME should make a request to the application by calling the ImmRequestMessage function and not by calling SendMessage
The following is a list of submessages that the IME can send to applications through the ImmRequestMessage function:

IMR_COMPOSITIONWINOW

IMR_CANDIDATEWINDOW

IMR_COMPOSITIONFONT

IMR_RECONVERTSTRING

IMR_CONFIRMRECONVERTSTRING

IMR_QUERYCHARPOSITION

IMR_DOCUMENTFEED

Please refer to the Input Method Editor (IME) functions in the Platform SDK for information about these messages.

HIMC and HIMCC Management Functions

The following topics contain the HIMC and HIMCC management functions.

ImmLockIMC

The ImmLockIMC function increases the lock count for the IMC. When the IME needs to see the INPUTCONTEXT structure, it calls this function to get the pointer of the INPUTCONTEXT structure.

LPINPUTCONTEXT WINAPI
    ImmLockIMC(
    HIMC hIMC
   )
Parameters

hIMC
Input context handle.

Return Values

If the function is successful, it returns a pointer to the INPUTCONTEXT structure. Otherwise, it returns NULL.

ImmUnlockIMC

The ImmUnlockIMC function decrements the lock count for the IMC.

BOOL WINAPI
    ImmUnlockIMC(
    HIMC hIMC
   )
Parameters

hIMC
Input context handle.

Return Values

If the lock count of the IMC is decremeted to zero, the return value is FALSE. Otherwise, the return value is TRUE.

ImmGetIMCLockCount

The ImmGetIMCLockCount is used to get the lock count of the IMC.

HIMCC WINAPI
    ImmGetIMCLockCount(
    HIMC hIMC
   )
Parameters

hIMC
Input context handle

Return Values

If the function is successful, the return value is the lock count of the IMC. Otherwise, the return value is NULL.

ImmCreateIMCC

The ImmCreateIMCC function creates a new component as a member of the IMC.

HIMCC WINAPI
    ImmCreateIMCC(
    DWORD dwSize
   )
Parameters

dwSize
Size of the new IMC component.

Return Values

If the function is successful, the return value is the IMC component handle (HIMCC). Otherwise, the return value is NULL.

Comments

The IMC component created by this function is initialized as zero.

ImmDestroyIMCC

The ImmDestroyIMCC function is used by the IME to destroy the IMC component that was created as a member of the IMC.

HIMCC WINAPI
    ImmDestroyIMCC(
    HIMCC hIMCC
   )
Parameters

hIMCC
Handle of the IMC component.

Return Values

If the function is successful, the return value is NULL. Otherwise, the return value is equal to the HIMCC.

ImmLockIMCC

The ImmLockIMCC function is used by the IME to get the pointer for the IMC component that was created as a member of the IMC. The ImmLockIMC function increases the lock count for the IMCC.

LPVOID WINAPI
    ImmLockIMCC(
    HIMCC hIMCC
   )
Parameters

hIMCC
Handle of the IMC component.

Return Values

If the function is successful, the return value is the pointer for the IMC component. Otherwise, the return value is NULL.

ImmUnlockIMCC

The ImmUnlockIMC function decrements the lock count for the IMCC.

BOOL WINAPI
    ImmUnlockIMCC(
    HIMCC hIMCC
   )
Parameters

hIMCC
Handle of the IMC component.

Return Values

If the lock count of the IMCC is decremeted to zero, the return value is FALSE. Otherwise, the return value is TRUE.

ImmReSizeIMCC

The ImmReSizeIMCC function changes the size of the component.

HIMCC WINAPI
    ImmReSizeIMCC(
    HIMCC hIMCC,
    DWORD dwSize
   )
Parameters

hIMCC
Handle of the IMC component.

dwSize
New size of the IMC component.

Return Values

If the function is successful, the return value is the new HIMCC. Otherwise, the return value is NULL.

ImmGetIMCCSize

The ImmGetIMCCLockCount function is used to get the size of the IMCC.

DWORD WINAPI
    ImmGetIMCCSize(
    HIMCC hIMCC
   )
Parameters

hIMCC
Handle of the IMC component.

Return Values

Size of the IMCC.

ImmGetIMCCLockCount

The ImmGetIMCCLockCount function is used to get the lock count of the IMCC.

DWORD WINAPI
    ImmGetIMCCLockCount(
    HIMCC hIMCC
   )
Parameters

hIMCC
Handle of the IMC component.

Return Values

If the function is successful, the return value is the lock count of the IMCC. Otherwise, the return value is zero.

IME Hot Keys and Hot Key Functions

The IME hot key is used for changing the IME input mode and for switching the IME. The IME hot key used to switch directly to an IME is called a direct switching hot key.

The direct switching hot key ranges from IME_HOTKEY_DSWITCH_FIRST to IME_HOTKEY_DSWITCH_LAST. It is registered by an IME or Control Panel when the IME or an end user wants such a hot key. The IME hot key is effective in all IMEs, regardless which IME is active.

There are several predefined hot key functionalities in the IMM. The IMM itself provides the functionality (different handling routines) of those hot key functions. Every hot key funtionality has a different hot key ID in IMM and each ID has its own functionality according to the specific requirements of each country. Note that an application cannot add another predefined hot key ID into the system.

Following are the predefined hot key identifiers.

	Hot Key ID
	Description

	

	IME_CHOTKEY_IME_NONIME_TOGGLE
	Hot key for Simplified Chinese Edition. This hot key toggles between the IME and non-IME.

	IME_CHOTKEY_SHAPE_TOGGLE
	Hot key for Simplified Chinese Edition. This hot key toggles the shape conversion mode of the IME.

	IME_CHOTKEY_SYMBOL_TOGGLE
	Hot key for Simplified Chinese Edition. This hot key toggles the symbol conversion mode of the IME. The symbol mode indicates that the user can input Chinese punctuation and symbols (full shape characters) by mapping it to the punctuation and symbol keystrokes of the keyboard.

	IME_JHOTKEY_CLOSE_OPEN
	Hot key for Japanese Edition. This hot key toggles between closed and opened.

	IME_THOTKEY_IME_NONIME_TOGGLE
	Hot key for (Traditional) Chinese Edition. This hot key toggles between the IME and non-IME.

	IME_THOTKEY_SHAPE_TOGGLE
	Hot key for (Traditional) Chinese Edition. This hot key toggles the shape conversion mode of the IME.

	IME_THOTKEY_SYMBOL_TOGGLE
	Hot key for (Traditional) Chinese Edition. This hot key toggles the symbol conversion mode of the IME.


The other kind of hot key is the IME private hot key, but there is no functionality for this kind of hot key. It is just a placeholder for a hot key value. An IME can get this value by calling ImmGetHotKey. If an IME supports this functionality for one hot key ID, it will perform the functionality every time it finds this key input.

Following are the currently defined private IME hot key IDs.
	Hot Key ID
	Description

	

	IME_ITHOTKEY_RESEND_RESULSTR
	Hot key for (Traditional) Chinese Edition. This hot key should trigger the IME to resend the previous result string to the application. If the IME detects that this hot key is pressed, it needs to resend the previous result string to this application.

	IME_ITHOTKEY_PREVIOUS_COMPOSITION
	Hot key for (Traditional) Chinese Edition. This hot key should trigger the IME to bring up the previous composition string to the application.

	IME_ITHOTKEY_UISTYLE_TOGGLE
	Hot key for (Traditional) Chinese Edition. This hot key should trigger the IME UI to toggle the UI style between caret-related UI and the caret-unrelated UI.

	IME_ITHOTKEY_RECONVERTSTRING
	Hot key for (Traditional) Chinese Edition. This hot key should trigger the IME to make a reconversion. This is a new ID for Windows 98 and Windows 2000.


ImmGetHotKey

The ImmGetHotKey function gets the value of the IME hot key.

BOOL WINAPI
    ImmGetHotKey(
    DWORD dwHotKeyID,
    LPUINT lpuModifiers,
    LPUINT lpuVKey,
    LPHKL lphKL
   )
Parameters

dwHotKeyID
Hot key identifier.

lpuModifiers
Combination keys with the hot key. It includes ALT (MOD_ALT), CTRL (MOD_CONTROL), SHIFT (MOD_SHIFT), left-hand side (MOD_LEFT), and right-hand side (MOD_RIGHT).

The key up flag (MOD_ON_KEYUP) indicates that the hot key is effective when the key is up. The modifier ignore flag (MOD_IGNORE_ALL_MODIFIER) indicates that the combination of modifiers is ignored in hot key matching.

lpuVKey
Virtual key code of this hot key.

lphKL
HKL of the IME. If the return value of this parameter is not NULL, this hot key can switch to the IME with this HKL.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

Comments

This function is called by the Control Panel.

ImmSetHotKey

The ImmSetHotKey function sets the value of the IME hot key.

OOL WINAPI
    ImmSetHotKey(
    DWORD dwHotKeyID,
    UINT uModifiers,
    UINT uVKey,
    hKL hKL
   )
Parameters

dwHotKeyID
Hot key identifier.

uModifiers
Combination keys with the hot key. It includes ALT (MOD_ALT), CTRL (MOD_CONTROL), SHIFT (MOD_SHIFT), left-hand side (MOD_LEFT), and right-hand side (MOD_RIGHT).

The key up flag (MOD_ON_KEYUP) indicates that the hot key is effective when the key is up. The modifier ignore flag (MOD_IGNORE_ALL_MODIFIER) indicates that the combination of modifiers is ignored in hot key matching.

uVKey
Virtual key code of this hot key.

hKL
HKL of the IME. If this parameter is specified, this hot key can switch to the IME with this HKL.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

Comments

This function is called by the Control Panel. For a key that does not indicate a specific keyboard hand side, the uModifiers should specify both sides (MOD_LEFT|MODE_RIGHT).

IMM Soft Keyboard Functions

The following topics contain the IMM functions that are used by the IME to manipulate the soft keyboard.

ImmCreateSoftKeyboard

The ImmCreateSoftKeyboard function creates one type of soft keyboard window.

HWND WINAPI
    ImmCreateSoftKeyboard(
    UINT uType,
    UINT hOwner,
    int x,
    int y
   )
Parameters

uType
Specifies the type of the soft keyboard.

	Utype
	Description

	

	SOFTKEYBOARD_TYPE_T1
	Type T1 soft keyboard. This kind of soft keyboard should be updated by IMC_SETSOFTKBDDATA.

	SOFTKEYBOARD_TYPE_C1
	Type C1 soft keyboard. This kind of soft keyboard should be updated by IMC_SETSOFTKBDDATA with two sets of 256-word array data. The first set is for nonshift state, and the second is for shift state.


hOwner
Specifies the owner of the soft keyboard. It must be the UI window.

x
Specifies the initial horizontal position of the soft keyboard.

y
Specifies the initial vertical position of the soft keyboard.

Return Values

This function returns the window handle of the soft keyboard.

ImmDestroySoftKeyboard

The ImmDestroySoftKeyboard function destroys the soft keyboard window.

BOOL WINAPI
    ImmDestroySoftKeyboard(
    HWND hSoftKbdWnd
   )
Parameters

hSoftKbdWnd
Window handle of the soft keyboard to destroy.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

ImmShowSoftKeyboard

The ImmShowSoftKeyboard function shows or hides the given soft keyboard.

BOOL WINAPI
    ImmShowSoftKeyboard(
    HWND hSoftKbdWnd,
    int nCmdShow
   )
Parameters

hSoftKbdWnd
Window handle of the soft keyboard.

nCmdShow
Shows the state of the window. The following values are provided.

	NcmdShow
	Meaning

	

	SW_HIDE
	Hides the soft keyboard.

	SW_SHOWNOACTIVATE
	Displays the soft keyboard


Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

Messages

The following topics contain the messages that the UI window receives.

WM_IME_SETCONTEXT

The WM_IME_SETCONTEXT message is sent to an application when a window of the application is being activated. If the application does not have an application IME window, the application has to pass this message to the DefWindowProc and should return the return value of the DefWindowProc. If the application has an application IME window, the application should call ImmIsUIMessage.
WM_IME_SETCONTEXT

fSet= (BOOL) wParam; 

lISCBits = lParam; 

Parameters

fSet
fSet is TRUE when the Input Context becomes active for the application. When it is FALSE, the Input Context becomes inactive for the application.

lISCBits
lISCBits consists of the following bit combinations.

	Value
	Description

	

	ISC_SHOWUICOMPOSITIONWINDOW
	Shows the composition window.

	ISC_SHOWUIGUIDWINDOW
	Shows the guide window.

	ISC_SHOWUICANDIDATEWINDOW
	Shows the candidate window of Index 0.

	(ISC_SHOWUICANDIDATEWINDOW << 1)
	Shows the candidate window of Index 1.

	(ISC_SHOWUICANDIDATEWINDOW << 2)
	Shows the candidate window of Index 2.

	(ISC_SHOWUICANDIDATEWINDOW << 3)
	Shows the candidate window of Index 3.


Return Values

The return value is the return value of DefWindowProc or ImmIsUIMessage.

Comments

After an application calls DefWindowProc( or ImmIsUIMessage with WM_IME_SETCONTEXT, the UI window receives WM_IME_SETCONTEXT. If the bit is on, the UI window shows the composition, guide, or candidate window as the bit status of lParam.
If an application draws the composition window by itself, the UI window does not need to show its composition window. The application then has to clear the ISC_SHOWUICOMPOSITIONWINDOW bit of lParam and call DefWindowProc or ImmIsUIMessage with it.

WM_IME_CONTROL

The WM_IME_CONTROL message is a group of sub messages used to control the IME User Interface. An application uses this message to interact with the IME window created by the application.

WM_IME_CONTROL

wSubMessage= wParam;

lpData = (LPVOID) lParam;

Parameters

wSubMessage

Submessage value.

LpData

Dependent on each wSubMessage. 

The following topics contain the submessages classified by the wSubMessage value.

Except for IMC_GETSOFTKBDSUBTYPE, IMC_SETSOFTKBDSUBTYPE, IMC_SETSOFTKBDDATA, IMC_GETSOFTKBDFONT, IMC_SETSOFTKBDFONT, IMC_GETSOFTKBDPOS and IMC_SETSOFTKBDPOS, it is recommended that applications use IMM APIs instead of the IMC messages to communicate with the IME window. 
IMC_GETCANDIDATEPOS

The IMC_GETCANDIDATEPOS message is sent by an application to the IME window to get the position of the candidate window. The IME can adjust the position of a candidate window in respect to the screen boundary. In addition, an application can obtain the real position of a candidate window to determine whether to move it to another position.

WM_IME_CONTROL

wSubMessage= IMC_GETCANDIDATEPOS;

lpCANDIDATENFORM = (LPCANDIDATEFORM) lParam;
Parameters

lpCANDIDATENFORM 
Buffer to retrieve the position of the candidate window.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

In return, the IME will fill the CANDIDATEFORM pointed to by lpCANDIDATENFORM with the client coordinates of the application’s focus window. The UI window receives this message. An application should specify lpCANIDATEFORM->dwIndex to 0 ~ 3 to obtain a different candidate window position. (For example, index 0 is a top-level candidate window.)
IMC_GETCOMPOSITONFONT

The IMC_GETCOMPOSITONFONT message is sent by an application to the IME window to obtain the font to use in displaying intermediate characters in the composition window.

WM_IME_CONTROL

wSubMessage= IMC_GETCOMPOSITIONFONT;

lpLogFont= (LPLOGFONT) lParam;
Parameters

lpLogFont
Buffer to retrieve the LOGFONT.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The UI window does not receive this message.

IMC_GETCOMPOSITONWINDOW

The IMC_GETCOMPOSITONWINDOW message is sent by an application to the IME window to get the position of the composition window. An IME can adjust the position of a composition window, and an application can obtain the real position of composition window to determine whether to move it to another position.

WM_IME_CONTROL

wSubMessage= IMC_GETCOMPOSITIONWINDOW;

lpCOMPOSITIONFORM = (LPCOMPOSITIONFORM) lParam;

Parameters

lpCOMPOSITIONFORM
Buffer to retrieve the position of the composition window.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

In return, the IME will fill the CANDIDATEFORM pointed to by lpCANDIDATENFORM with the client coordinates of the application’s focus window. The UI window receives this message.

IMC_GETSOFTKBDFONT

The IMC_GETSOFTKBDFONT message is sent by the IME to the soft keyboard window to obtain the font to use for character display in the soft keyboard window.

WM_IME_CONTROL

wSubMessage= IMC_GETSOFTKBDFONT;

lpLogFont= (LPLOGFONT) lParam;

Parameters

lpLogFont
Buffer to retrieve the LOGFONT.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

IMC_GETSOFTKBDPOS

The IMC_GETSOFTKBDPOS message is sent by an IME to the soft keyboard window to obtain the position of the soft keyboard window.

WM_IME_CONTROL

wSubMessage= IMC_GETSOFTKBDPOS;

lParam = 0;

Parameters

lParam
Not used.

Return Values

The return value specifies a POINTS structure that contains the x and y coordinates of the position of the soft keyboard window, in screen coordinates.

Comments

The POINTS structure has the following form:

typedef struct tagPOINTS { /* pts */

SHORT x;

SHORT y;

} POINTS;

IMC_GETSOFTKBDSUBTYPE

The IMC_GETSOFTKBDSUBTYPE message is sent by an IME to the soft keyboard window to obtain the subtype of the soft keyboard window set by IMC_SETSOFTKBDSUBTYPE.

WM_IME_CONTROL

wSubMessage= IMC_GETSOFTKBDSUBTYPE;

lParam = 0;

Parameters

lParam
Not used.

Return Values

The return value is the subtype of the soft keyboard set by IMC_SETSOFTKBDSUBTYPE. A return value of -1 indicates failure.

IMC_GETSTATUSWINDOWPOS

The IMC_GETSTATUSWINDOWPOS message is sent by an application to the IME window to get the position of the status window.

WM_IME_CONTROL

wSubMessage= IMC_GETSTATUSWINDOWPOS;

lParam = 0;

Parameters

lParam
Not used.

Return Values

The return value specifies a POINTS structure that contains the x and y coordinates of the position of the status window, in screen coordinates.

Comments

The POINTS structure has the following form:

typedef struct tagPOINTS { /* pts */

SHORT x;

SHORT y;

} POINTS;

Comments

The UI window receives the message.

IMC_SETCANDIDATEPOS

The IMC_SETCANDIDATEPOS message is sent by an application to the IME window to specify the display position of a candidate window. In particular, this applies to an application that displays composition characters by itself, but uses the IME UI to display candidates.

WM_IME_CONTROL

wSubMessage= IMC_SETCANDIDATEPOS;

lpCANDIDATEFORM= (LPCANDIDATEFORM) lParam;

Parameters

lpCANDIDATEFORM
Buffer includes the candidate window position information.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The UI window does not receive this message.

IMC_SETCOMPOSITONFONT

The IMC_SETCOMPOSITONFONT message is sent by an application to the IME window to specify the font to use in displaying intermediate characters in the composition window.

WM_IME_CONTROL

wSubMessage= IMC_SETCOMPOSITIONFONT;

lpLogFont= (LPLOGFONT) lParam;

Parameters

lpLogFont
Buffer includes the LOGFONT data to set.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The UI window does not receive this message.

IMC_SETCOMPOSITONWINDOW

The IMC_SETCOMPOSITONWINDOW message is sent by an application to the IME window to set the style of the composition window in the current active Input Context. Once an application sets the style, the IME user interface then follows the style specified in the Input Context.

WM_IME_CONTROL

wSubMessage= IMC_SETCOMPOSITIONWINDOW;

lpCOMPOSITIONFORM= (LPCOMPOSITIONFORM) lParam;

Parameters

lpCOMPOSITIONFORM 
COMPOSITIONFORM structure includes the new styles for the composition window.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The IME user interface uses a default style for the composition window that is equal to the CFS_POINT style. If an application has not specified a composition style in its Input Context, the IME user interface retrieves the current caret position and window client area when it opens the composition window (in client coordinates). The UI window does not receive this message.

IMC_SETSOFTKBDDATA

The IMC_SETSOFTKBDDATA message is sent by the IME to the soft keyboard window to specify the character code to use for displaying characters in the soft keyboard window.

WM_IME_CONTROL

wSubMessage= IMC_SETSOFTKBDDATA;

lpSoftKbdData= (LPSOFTKBDDATA) lParam;

Parameters

lpSoftKbdData 
Points to the buffer to specify the character code to use for displaying characters.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The UI window does not receive this message.

IMC_SETSOFTKBDSUBTYPE

The IMC_SETSOFTKBDSUBTYPE message is sent by the IME to the soft keyboard window to specify the subtype to use for displaying characters in the soft keyboard window. It also can be used for IME-specific purposes.

WM_IME_CONTROL

wSubMessage= IMC_SETSOFTKBDSUBTYPE;

lSubType= lParam;

Parameters

lSubType
Specifies the subtype to set.

Return Values

The return value is the subtype. A return value of -1 indicates failure.

Comments

The UI window does not receive this message, and the SOFTKEYBOARD_TYPE_T1 does not use this information. The IME sends this message so the soft keyboard will not change the displayed reading characters. The IME can use the SOFTKEYBOARD_TYPE_T1 soft keyboard to define the meaning of this message and can obtain this data by using IMC_GETSOFTKBDSUBTYPE.

IMC_SETSOFTKBDFONT

The IMC_SETSOFTKBDFONT message is sent by the IME to the soft keyboard window to specify the font to use in displaying characters in the soft keyboard window.

WM_IME_CONTROL

wSubMessage= IMC_SETSOFTKBDFONT;

lpLogFont= (LPLOGFONT)lParam;

Parameters

lpLogFont 

Points to the LOGFONT to be set.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The UI window does not receive this message.

IMC_SETSOFTKBDPOS

The IMC_SETSOFTKBDPOS message is sent by the UI window to soft keyboard window to set the position of the soft keyboard window.

WM_IME_CONTROL

wSubMessage= IMC_SETSOFTKBDPOS;

ptsPt= (POINTS)lParam;

Parameters

ptsPt
Specifies a POINTS structure that contains the x and y coordinates of the position of the soft keyboard window, in screen coordinates.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The POINTS structure has the following form:

typedef struct tagPOINTS { /* pts */

SHORT x;

SHORT y;

} POINTS;

IMC_SETSTATUSWINDOWPOS

The IMC_SETSTATUSWINDOWPOS message is sent by an application to the IME window to set the position of the status window.

WM_IME_CONTROL

wSubMessage= IMC_SETSTATUSWINDOWPOS;

ptsPt= (POINTS)lParam;

Parameters

ptsPt
Specifies a POINTS structure that contains the x and y coordinates of the position of the status window, in screen coordinates.

Return Values

If the message is successful, the return value is zero. Otherwise, the return value is nonzero.

Comments

The POINTS structure has the following form:

typedef struct tagPOINTS { /* pts */

SHORT x;

SHORT y;

} POINTS;

WM_IME_COMPOSITION 

The WM_IME_COMPOSITION message is sent to an application when the IME composition status is changed (by the user). The message consists of two bytes of composition character. The IME user interface window changes its appearance when it processes this message. An application can call ImmGetCompositionString to obtain the new composition status.

WM_IME_COMPOSITION

wChar= wParam;

lAttribute= lParam;

Parameters

wChar
Consists of two bytes of DBCS character that is the latest change of composition character.

lAttribute
Contains the following flag combinations. Basically, the flag indicates how the composition string or character has changed. An application checks this to retrieve necessary information.

	Value
	Description

	

	GCR_ERRORSTR
	Updates the error string.

	GCR_INFORMATIONSTR
	Updates the information string.

	GCS_COMPATTR
	Updates the attribute of the composition string.

	GCS_COMPCLAUSE
	Updates clause information of the composition string.

	GCS_COMPREADATTR
	Updates the attributes of the reading string of the current composition.

	GCS_COMPREADCLAUSE
	Updates the clause information of the reading string of the composition string.

	GCS_COMPREADSTR
	Updates the reading string of the current composition. 

	GCS_COMPSTR
	Updates the current composition string. 

	GCS_CURSORPOS
	Updates the cursor position in composition string.

	GCS_DELTASTART
	Updates the starting position of any changes in composition string.

	GCS_RESULTCLAUSE
	Updates clause information of the result string. 

	GCS_RESULTREADCLAUSE
	Updates clause information of the reading string. 

	GCS_RESULTREADSTR
	Updates the reading string. 

	GCS_RESULTSTR
	Updates the string of the composition result. 


The following style bit values are provided for WM_IME_COMPOSITION.

	Value
	Description

	

	CS_INSERTCHAR
	An IME specifies this value when wParam shows a composition character that should be inserted into the current insertion point. An application should display a composition character if it processes this bit flag.

	CS_NOMOVECARET
	An IME specifies this value when it does not want an application to move the caret position as a result of processing WM_IME_COMPOSITION. For example, if an IME specifies a combination of CS_INSERTCHAR and CS_NOMOVECARET, it means that an application should insert a character given by wParam to the current caret position, but should not move the caret. Subsequent WM_IME_COMPOSITION messages containing the GCS_RESULTSTR flag will replace this character.


Return Values

None.

Comments

When an application wants to display composition characters by themselves, it should not pass this message to the application IME user interface window or to DefWindowProc. The DefWindowProc function processes this message to pass to the Default IME window. An IME should send this message to an application even when the IME only cancels the current composition. This message should also be used to notify an application or IME UI to erase the current composition string.

See Also

ImmGetCompositionString

WM_IME_COMPOSITIONFULL

The WM_IME_COMPOSITIONFULL message is sent to an application when the IME user interface window cannot increase the size of the composition window. An application should specify how to display the IME UI window when it receives this message.

WM_IME_COMPOSITIONFULL

wParam = 0

lParam= 0

Parameters

wParam
Not used.

lParam
Not used.

Return Values

None.

Comments

This message is a notification, which is sent to an application by the IME user interface window and not by the IME itself. The IME uses SendMEssage to send this notification.

See Also

IMC_SETCOMPOSITONWINDOW
WM_IME_ENDCOMPOSITION

The WM_IME_ENDCOMPOSITION message is sent to an application when the IME ends composition.

WM_IME_ENDCOMPOSITION

wParam = 0

lParam= 0

Parameters

wParam
Not used.

lParam
Not used.

Return Values

None.

Comments

When an application wants to display composition characters by themselves, it should not pass this message to the application IME UI window or to DefWindowProc. DefWindowProc processes this message to pass it to the default IME window.

WM_IME_SELECT

The WM_IME_SELECT message is sent to the UI window when the system is about to change the current IME.

WM_IME_SELECT

fSelect= (BOOL)wParam;

hKL= lParam;

Parameters

fSelect
TRUE if the IME is newly selected. Otherwise, it is FALSE if the IME is unselected.

hKL
Input language handle of the IME. 

Return Values

None.

Comments

The system IME class uses this message to create a new UI window and destroy an old UI window for an application or system. DefWindowProc processes this message to pass the information to the default IME window. The default IME window then sends this message to its UI window.

WM_IME_STARTCOMPOSITION

The WM_IME_STARTCOMPOSITION message is sent immediately before an IME generates a composition string as a result of a user’s keystroke. The UI window opens its composition window when it receives this message.

WM_IME_STARTCOMPOSITION

wParam = 0

lParam= 0

Parameters

wParam
Not used.

lParam
Not used.

Return Values

None.

Comments

When an application wants to display composition characters by themselves, it should not pass this message to the application IME window or to DefWindowProc. The DefWindowProc function processes this message to pass it to the default IME window.

WM_IME_NOTIFY

The WM_IME_NOTIFY message is a group of submessages that notifies an application or UI window of the IME status. 

WM_IME_NOTIFY

wSubMessage= wParam; //submessage ID

lParam= lParam; // depends on the submessage

The following topics contain the submessages classified by the value of wSubMessage. 

IMN_CLOSESTATUSWINDOW
The IMN_CLOSESTATUSWINDOW message is sent when an IME is about to close a status window. 

WM_IME_NOTIFY

wSubMessage = IMN_CLOSESTATUSWINDOW;

lParam= 0;

Parameters

lParam
Not used.

Return Values

None.

Comments

The UI window closes the status window when it receives this message.

IMN_OPENSTATUSWINDOW

The IMN_OPENSTATUSWINDOW message is sent when an IME is about to create a status window. An application then processes this message and displays a system window for the IME itself.

An application can obtain information about the system window by calling the ImmGetConversionStatus function.

WM_IME_NOTIFY

wSubMessage = IMN_OPENSTATUSWINDOW;

lParam= 0;

Parameters

lParam
Not used.

Return Values

None.

Comments

The UI window creates a status window when it receives this message. 

See Also

ImmGetConversionStatus

IMN_OPENCANDIDATE

The IMN_OPENCANDIDATE message is sent when an IME is about to open a candidate window. An application then processes this message and calls ImmGetCandidateCount and ImmGetCandidateList to display the candidate window itself.

WM_IME_NOTIFY

wSubMessage = IMN_OPENCANDIDATE;

lCandidateList= lParam;

Parameters

lCandidateList
Shows which candidate list should be updated. For example, if bit 0 is 1, the first candidate list should be updated. If bit 31 is 1, the 32nd candidate list should be updated.

Return Values

None.

Comments

The UI window creates a candidate window when it receives this message. 

See Also

ImmGetCandidateListCount, ImmGetCandidateList, WM_IME_CHANGECANDIDATE

IMN_CHANGECANDIDATE

The IMN_CHANGECANDIDATE message is sent when an IME is about to change the content of a candidate window. An application then processes this message to display the candidate window itself.

WM_IME_NOTIFY

wSubMessage = IMN_CHANGECANDIDATE;

lCandidateList= lParam;

Parameters

lCandidateList
Shows which candidate list should be updated. For example, if bit 0 is 1, the first candidate list should be updated. If bit 31 is 1, the 32nd candidate list should be updated.

Return Values

None.

Comments

The UI window redraws a candidate window when it receives this message. 

See Also

ImmGetCandidateCount, ImmGetCandidateList
IMN_CLOSECANDIDATE

The IMN_CLOSECANDIDATE message is sent when an IME is about to close a candidate window. An application processes this message to obtain information about the end of candidate processing. 

WM_IME_NOTIFY

wSubMessage = IMN_CLOSECANDIDATE;

lCandidateList= lParam;

Parameters

lCandidateList
Shows which candidate list should be closed. For example, if bit 0 is 1, the first candidate list should be updated. If bit 31 is 1, the 32nd candidate list should be updated.

Return Values

None.

Comments

The UI window destroys a candidate window when it receives this message.

IMN_SETCONVERSIONMODE

The IMN_SETCONVERSIONMODE message is sent when the conversion mode of the Input Context is updated. When the application or UI window receives this message, either one can call ImmGetConversionStatus to obtain information about the status window.

WM_IME_NOTIFY

wSubMessage = IMN_SETCONVERSIONMODE;

lParam= 0;

Parameters

lParam
Not used.

Return Values

None.

Comments

The UI window redraws the status window if the status window shows the conversion mode.

IMN_SETSENTENCEMODE

The IMN_SETSENTENCEMODE message is sent when the sentence mode of the Input Context is updated. When the application or UI window receives this message, either one can call ImmGetConversionStatus to obtain information about the status window.

WM_IME_NOTIFY

wSubMessage = IMN_SETSENTENCEMODE;

lParam= 0;

Parameters

lParam
Not used.

Return Values

None.

Comments

The UI window redraws the status window if the status window shows the sentence mode.

IMN_SETOPENSTATUS

The IMN_SETOPENSTATUS message is sent when the open status of the Input Context is updated. When the application or UI window receives this message, either one can call ImmGetOpenStatus to obtain information.

WM_IME_NOTIFY

wSubMessage = IMN_SETOPENSTATUS;

lParam= 0;

Parameters

lParam
Not used.

Return Values

None.

Comments

The UI window redraws the status window if the status window shows the open/close status.

IMN_SETCANDIDATEPOS

The IMN_SETCANDIDATEPOS message is sent when an IME is about to move the candidate window. An application processes this message to obtain information about the end of candidate processing.

WM_IME_NOTIFY

wSubMessage = IMN_SETCANDIDATEPOS;

lCandidateList= lParam;

Parameters

lCandidateList
Shows which candidate list should be moved. For example, if bit 0 is 1, the first candidate list should be updated. If bit 31 is 1, the 32nd candidate list should be updated.

Return Values

None.

Comments

The UI window moves a candidate window when it receives this message.

IMN_SETCOMPOSITIONFONT

The IMN_SETCOMPOSITIONFONT message is sent when the font of the Input Context is updated. When the application or UI window receives this message, either one can call ImmGetCompositionFont to obtain information about the composition font.

WM_IME_NOTIFY

wSubMessage = IMN_SETCOMPOSITIONFONT;

lParam= 0;

Parameters

lParam
Not used.

Return Values

None.

Comments

The composition component of the UI window uses the font information by calling ImmGetCompositionFont to draw the text of the composition string.

IMN_SETCOMPOSITIONWINDOW

The IMN_SETCOMPOSITIONWINDOW message is sent when the composition form of the Input Context is updated. When the UI window receives this message, the cfCompForm of the Input Context can be referenced to obtain the new conversion mode.

WM_IME_NOTIFY

wSubMessage = IMN_SETCOMPOSITIONWINDOW;

lParam= 0;

Parameters

lParam
Not used.

Return Values

None.

Comments

The composition component of the UI window uses cfCompForm to show the composition window.

IMN_GUIDELINE

The IMN_GUIDELINE message is sent when an IME is about to show an error or information. When the application or UI window receives this message, either one can call ImmGetGuideLine to obtain information about the guideline. 

WM_IME_NOTIFY

wSubMessage = IMN_GUIDELINE;

lParam= 0;

Parameters

lParam
Not used. Has to be zero.

Return Values

None.

Comments

The UI window can create an information window when it receives this message and show the information string. 

See Also

ImmGetGuideLine, GUIDELINE structure

IMN_SOFTKBDDESTROYED

The IMN_SOFTKBDDESTROYED message is sent to the UI window when the soft keyboard is destroyed.

WM_IME_NOTIFY

wSubMessage = IMN_SOFTKBDDESTROYED;

lParam= 0;

Parameters

lParam
Not used. Has to be zero.

Return Values

None.

WM_IME_KEYDOWN and WM_IME_KEYUP

The WM_IME_KEYDOWN and WM_IME_KEYUP messages are sent to an application when an IME needs to generate a WM_KEYDOWN or WM_KEYUP message. The value sent is the same as the original Windows WM_KEYDOWN and WM_KEYUP value (English version).

WM_IME_KEYDOWN / WM_IME_KEYUP

nVirtKey = (int) wParam; // virtual-key code 

lKeyData = lParam; // key data 

Parameters 

nVirtKey 

Value of wParam. Specifies the virtual key code of the nonsystem key. 

lKeyData 

Value of lParam. Specifies the repeat count, scan code, extended key flag, context code, previous key state flag, and transition state flag. It is the same as for the original Windows WM_KEYDOWN and WM_KEYUP messages

Return Values

None.

Comments

An application can handle this message the same way as the WM_KEYDOWN and WM_KEYUP message. Otherwise, DefWindowProc processes this message to generate a WM_KEYDOWN or WM_KEYUP message with the same wParam and lParam parameters. This message is usually generated by the IME to maintain message order.

WM_IME_CHAR

The WM_IME_CHAR message is sent to an application when the IME gets a character of the conversion result. The value that is sent is similar to the original Windows WM_CHAR (English version). The difference is that wParam can include two bytes of character. 

WM_IME_CHAR

wCharCode = wParam;

lKeyData = lParam;

Parameters

wCharCode
Includes two bytes for an FE character. For NT Unicode application, it includes one Unicode character.

lKeyData
Same as the original Windows WM_CHAR (English Version). Following are the available bits and their description.

	Value
	Description

	

	 0 – 15
	Repeat count. Since the first byte and second byte are continuous, this is always 1.

	16 – 23
	Scan Code. Scan code for a complete FE character.

	24 – 28
	Not used.

	29
	Context code.

	31
	Conversion state.


Return Values

None.

Comments

If the application does not handle this message, the DefWindowProc function processes this message to generate WM_CHAR messages. If the application is not Unicode based and wCharCode includes 2 bytes of DBCS character, the DefWindowProc function will generate two WM_CHAR messages, each message containing 1 byte of the DBCS character. If the message just includes an SBCS character, DefWindowProc generates only one WM_CHAR message.

VK_PROCESSKEY

The VK_PROCESSKEY message is sent to an application as a wParam of WM_KEYDOWN or WM_KEYUP. When this virtual key is generated, either the real virtual key is saved in the Input Context or the messages that were generated by IME are stored in the Input Context. The system either restores the real virtual key or posts the messages that are stored in the message buffer of the Input Context.

WM_KEYDOWN /WM_KEYUP

wParam = VK_PROCESSKEY;

lParam= 1;

Parameters

lParam
Must be 1.

INDICM_SETIMEICON

This message is sent to the Indicator window when the IME wants to change the icon for System Pen icon. This message can be accepted when the selected hKL of the focused window is the same as the sender IME.

INDICM_SETIMEICON

nIconIndex = wParam;

hKL = lParam;

Parameters

nIconIdex
Index for the icon resource of the IME file. If this value is (-1), the Indicator restores the original icon provided by the system.

lKey
hKL that is the sender IME.

Return Values

A nonzero value indicates failure. Otherwise, zero is returned.

Comments

Due to the internal design requirement in the task bar manager, the IME must use PostMessage for INDICM_xxx messages.

INDICM_SETIMETOOLTIPS

This message is sent to the Indicator window when the IME wants to change the Tooltip string for the System Pen icon. This message can be accepted when the selected hKL of the focused window is the same as the sender IME.
INDICM_SETIMETOOLTIPS

hAtom = wParam;

hKL = lParam;

Parameters

hAtom
Global ATOM value for the Tooltip string. If this value is (-1), the Indicator restores the original tips provided by the system.

lKey
hKL that is the sender IME.

Return Values

A nonzero indicates failure. Otherwise, zero is returned.

Comments

Due to the internal design requirement in the task bar manager, the IME must use PostMessage for INDICM_xxx messages. The global ATOM must be retrieved by GlobalAddAtom or GlobalFindAtom.

INDICM_REMOVEDEFAULTMENUITEMS

This message is sent to the Indicator window when the IME wants to remove the default menu items of the System Pen icon.
INDICM_REMOVEDEFAULTMENUITEMS

wValue = wParam;

hKL = lParam;

Parameters

wValue
wValue is a combination of the following bits.

	Value
	Description

	

	RDMI_LEFT
	Removes the menu items of the left click menu.

	RDMI_RIGHT
	Removes the menu items of the right click menu.


If wValue is zero, all default menu items are restored.

lKey
hKL that is the sender IME.

Return Values

A nonzero indicates failure. Otherwise, zero is returned.

Comments

Due to the internal design requirement in the task bar manager, the IME must use PostMessage for INDICM_xxx messages. 

IME Interface Functions

IMEs are provided as dynamic-link libraries (DLLs). The Input Method Manager (IMM) should handle all installed IMEs. Because IMEs are changeable at run time without rebooting, the IMM will have a structure to maintain all the entry points of each IME.

The following topics contain all the common IME functions. These functions should not be called by an application directly.

ImeInquire

For Windows 95, Windows 98, and Windows NT 3.51
The ImeInquire function handles initialization of the IME. It also returns an IMEINFO structure and the UI class name of the IME.

BOOL
    ImeInquire(
    LPIMEINFO lpIMEInfo,
    LPTSTR lpszWndClass,
    LPCTSTR lpszData
   )

Parameters

lpIMEInfo
Pointer to the IME info structure.

lpszWndClass
Window class name that should be filled by the IME. This name is the IME’s UI class. 

lpszData
IME option block. NULL for this version.

For Windows NT 4.0 and Windows 2000

BOOL
    ImeInquire(
    LPIMEINFO lpIMEInfo,
    LPTSTRlpszWndClass,
    DWORD dwSystemInfoFlags
   )
Parameters

lpIMEInfo
Pointer to the IME info structure.

lpszWndClass
Window class name that should be filled by the IME. This name is the IME’s UI class. 

dwSystemInfoFlags
Varying system information provided by the system. The following flags are provided.

	Flag
	Description

	

	IME_SYSINFO_WINLOGON
	Tells the IME that the client process is the Winlogon process. The IME should not allow users to configure the IME when this flag is specified.

	IME_SYSINFO_WOW16
	Tells the IME that the client process is a 16-bit application.


Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

ImeConversionList

The ImeConversionList function obtains a converted result list from another character or string.

DWORD
    IMEConversionList(
    HIMC hIMC,
    LPCTSTRlpSrc,
    LPCANDIDATELIST lpDst,
    DWORD dwBufLen,
    UINT uFlag
   )
Parameters

hIMC
Input context handle.

lpSrc
Character string to be converted.

lpDst
Pointer to the destination buffer.

dwBufLen
Length of the destination buffer.

uFlag
Currently can be one of the following three flags.

	Flag
	Description

	

	GCL_CONVERSION
	Specifies the reading string to the lpSrc parameter. The IME returns the result string in the lpDst parameter.

	GCL_REVERSECONVERSION
	Specifies the result string in the lpSrc parameter. The IME returns the reading string in the lpDst parameter.

	GCL_REVERSE_LENGTH
	Specifies the result string in the lpSrc parameter. The IME returns the length that it can handle in GCL_REVERSECONVERSION. For example, an IME cannot convert a result string with a sentence period to a reading string. As a result, it returns the string length in bytes without the sentence period.


Return Values

The return value is the number of bytes of the result string list.

Comments

This function is intended to be called by an application or an IME without generating IME-related messages. Therefore, an IME should not generate any IME-related messages in this function.

ImeConfigure

The ImeConfigure function provides a dialog box to use to request optional information for an IME.

BOOL
    ImeConfigure(
    HKL hKL,
    HWND hWnd,
    DWORD dwMode,
    LPVOID lpData
   )
Parameters

hKL
Input language handle of this IME.

hWnd
Parent window handle.

dwMode
Mode of dialog. The following flags are provided.

	Flag
	Description

	

	IME_CONFIG_GENERAL
	Dialog for general purpose configuration. 

	IME_CONFIG_REGWORD
	Dialog for register word. 

	IME_CONFIG_SELECTDICTIONARY
	Dialog for selecting the IME dictionary. 


lpData
Pointer to VOID, which will be a pointer to the REGISTERWORD structure only if dwMode==IME_CONFIG_REGISTERWORD. Otherwise, lpData should just be ignored.

This also can be NULL with the IME_CONFIG_REGISTER mode, if no initial string information is given.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

Comments

An IME checks lpData in the following way in the pseudo code.

if (dwmode != IME_CONFIG_REGISTERWORD)

    {

// Does original execution

    }

else if (IsBadReadPtr(lpdata, sizeof(REGISTERWORD))==FALSE)

    {

if (IsBadStringPtr(PREGISTERWORD(lpdata)->lpReading, (UINT)-1)==FALSE)

    {

// Set the reading string to word registering dialogbox

    }

if (IsBadStringPtr(PREGISTERWORD(lpdata)->lpWord, (UINT)-1)==FALSE)

    {

// Set the word string to word registering dialogbox

    }

    }

ImeDestroy

The ImeDestroy function terminates the IME itself. 

BOOL
    ImeDestroy(
    UINT uReserved
   )
Parameters

uReserved
Reserved. Currently, it should be zero. For this version, the IME should return FALSE if it is not zero.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

ImeEscape

The ImeEscape function allows an application to access capabilities of a particular IME not directly available though other IMM functions. This is necessary mainly for country-specific functions or private functions in the IME. 

LRESULT
    ImeEscape(
    HIMC hIMC,
    UINT uEscape,
    LPVOID lpData
   )
Parameters

hIMC
Input context handle

uEscape
Specifies the escape function to be performed.

lpData
Points to the data required for the specified escape.

The ImeEscape function supports the following escape functions.

	uEscape
	Meaning

	

	IME_ESC_QUERY _SUPPORT
	Checks for implementation. If this escape is not implemented, the return value is zero.

	IME_ESC_RESERVED_FIRST
	Escape that is between IME_ESC_RESERVED_FIRST and IME_ESC_RESERVED_LAST is reserved by the system.

	IME_ESC_RESERVED_LAST
	Escape that is between IME_ESC_RESERVED_FIRST and IME_ESC_RESERVED_LAST is reserved by the system.

	IME_ESC_PRIVATE_FIRST
	Escape that is between IME_ESC_PRIVATE_FIRST and IME_ESC_PRIVATE_LAST is reserved for the IME. The IME can freely use these escape functions for its own purposes.

	IME_ESC_PRIVATE_LAST
	Escape that is between IME_ESC_PRIVATE_FIRST and IME_ESC_PRIVATE_LAST is reserved for the IME. The IME can freely use these escape functions for its own purposes. 

	IME_ESC_SEQUENCE_TO_
INTERNAL
	Escape that is Chinese specific. An application that wants to run under all Far East platforms should not use this. It is for the Chinese EUDC editor. The *(LPWORD)lpData is the sequence code, and the return value is the character code for this sequence code. Typically, the Chinese IME will encode its reading character codes into sequence 1 to n.

	IME_ESC_GET_EUDC_
DICTIONARY
	Escape that is Chinese specific. An application that wants to run under all Far East platforms should not use this. It is for the Chinese EUDC editor. On return from the function, the (LPTSTR)lpData is filled with the full path file name of the EUDC dictionary. The size of this buffer pointed by lpData should be greater or egual to MAX_PATH * sizeof(TCHAR). Note: Windows 95/98 and Windows NT 4.0 EUDC editor expect IMEs just use the buffer up to 80*sizeof(TCHAR).  

	IME_ESC_SET_EUDC_
DICTIONARY
	Sets the EUDC dictionary file. On input, the lpData parameter is the pointer to a null-terminated string specifying the full path. For use by the Chinese EUDC editor; do not use in other applications.

	IME_ESC_MAX_KEY
	Escape that is Chinese specific. An application that wants to run under all Far East platforms should not use this. It is for the Chinese EUDC editor. The return value is the maximum keystrokes for a EUDC character.

	IME_ESC_IME_NAME
	Escape that is Chinese specific. An application that wants to run under all Far East platforms should not use this. It is for the Chinese EUDC editor. On return from the function, the (LPTSTR) is the IME name to be displayed on the EUDC editor. The size of this buffer pointed to by lpData should be greater or equal to 16 * sizeof(TCHAR).

	IME_ESC_SYNC_HOTKEY
	Escape that is (Traditional) Chinese specific. An application that wants to run under all Far East platforms should not use this. It is for synchronizing between different IMEs. The input parameter *(LPDWORD)lpData is the IME private hot key ID. If this ID is zero, this IME should check every private hot key ID it concerns.

	IME_ESC_HANJA_MODE
	Escape that is Korean specific. An application that wants to run under all Far East platforms should not use this. It is for conversion from Hangeul to Hanja. The input parameter (LPSTR)lpData is filled with Hangeul characters that will be converted to Hanja and its null-terminated string. When an application wants to convert any Hangeul character to a Hanja character by using the same method as the Hanja conversion when the composition character is present, the application only needs to request this function. The IME will then set itself as the Hanja conversion mode.

	IME_ESC_GETHELPFILENAME
	Escape that is the name of the IME’s help file. On return from the function, the (LPTSTR)lpData is the full path file name of the IME’s help file. The path name should be less than MAX_PATH * sizeof(TCHAR). This is added to Windows 98 and Windows 2000. Note: Windows 98 expects the path length is less than 80 TCHARs. 

	IME_ESC_PRIVATE_HOTKEY
	lpdata points to a DWORD that contains the hot key ID (in the range of IME_HOTKEY_PRIVATE_FIRST and IME_HOTKEY_PRIVATE_LAST). After the system receives the hot key request within this range, the IMM will dispatch it to the IME using the ImeEscape function. Note: Windows® 95 does not support this escape.


Return Values

If the function fails, the return value is zero. Otherwise, the return value depends on each escape function.

Comments

Parameter validation should be inside each escape function for robustness.

When uEscape is IME_ESC_QUERY _SUPPORT, lpData is the pointer to the variable that contains the IME escape value. Following is an example that can be used to determine if the current IME supports IME_ESC_GETHELPFILENAME.

DWORD dwEsc = IME_ESC_GETHELPFILENAME;

LRESULT lRet = ImmEscape(hKL, hIMC, IME_ESC_QUERYSUPPORT, (LPVOID)&dwEsc);

See Also

ImmEscape

ImeSetActiveContext

The ImeSetActiveContext function notifies the current IME active Input Context.

BOOL
    ImeSetActiveContext(
    HIMC hIMC,
    BOOL fFlag
   )
Parameters

hIMC
Input context handle.

fFlag
Two flags are provided. TRUE indicates activated and FALSE indicates deactivated. 

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

Comments

The IME is informed by this function about a newly selected Input Context. The IME can carry out initialization, but it is not required.

See Also

ImeSetActiveContext
ImeProcessKey

The ImeProcessKey function preprocesses all the keystrokes given through the IMM and returns TRUE if that key is necessary for the IME with a given Input Context.

BOOL
    ImeProcessKey(
    HIMC hIMC,
    UINT uVirKey,
    DWORD lParam,
    CONST LPBYTE lpbKeyState
   )
Parameters

hIMC
Input context handle

uVirKey
Virtual key to be processed.

lParam
lParam of key messages.

lpbKeyState
Points to a 256-byte array that contains the current keyboard state. The IME should not modify the content of the key state.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

Comments

The system decides whether the key is handled by IME or not by calling this function. If the function returns TRUE before the application gets the key message, the IME will handle the key. The system will then call the ImeToAsciiEx function. If this function returns FALSE, the system recognizes that the key will not be handled by the IME and the key message will be sent to the application.

For IMEs that support IME_PROP_ACCEPT_WIDE_VKEY on Windows 2000, ImeProcessKey will receive full 32 bit value for uVirKey, which is injected by using SendInput API through VK_PACKET. uVirKey will include 16-bit Unicode in hiword even the IME may be ANSI version. 

For IMEs that do not support IME_PROP_ACCEPT_WIDE_VKEY, Unicode IME's ImeProcessKey will receive VK_PACKET with zero'ed hiword. Unicode IME still can return TRUE so ImeToAsciiEx will be called with the injected Unicode. ANSI IME's ImeProcessKey will not receive anything. The injected Unicode will be discarded if the ANSI IME is open. If the ANSI IME is closed, the injected Unicode message will be posted to application's queue immediately.
NotifyIME

The NotifyIME function changes the status of the IME according to the given parameters.

BOOL
    NotifyIME(
    HIMC hIMC,
    DWORD dwAction,
    DWORD dwIndex,
    DWORD dwValue
   )

Parameters

hIMC
Input context handle.

dwAction
Following are the context items that an application can specify in the dwAction parameter.

	Context Item
	Description

	

	NI_OPENCANDIDATE 
	Application has the IME open the candidate list. If the IME opens the candidate list, the IME sends a WM_IME_NOTIFY (subfunction is IMN_OPENCANDIDATE) message.

	
	dwIndex
	Index of the candidate list to be opened.

	
	dwValue
	Not used.

	NI_CLOSECANDIDATE
	Application has the IME close the candidate list. If the IME closes the candidate list, the IME sends a WM_IME_NOTIFY (subfunction is IMN_CLOSECANDIDATE) message.

	
	dwIndex
	Index of the candidate list to be closed.

	
	dwValue
	Not used.

	NI_SELECTCANDIDATESTR
	Application selects one of the candidates.

	
	dwIndex
	Index of the candidate list to be selected.

	
	dwValue
	Index of the candidate string in the selected candidate list.

	NI_CHANGECANDIDATELIST
	Application changes the currently selected candidate.

	
	dwIndex
	Index of the candidate list to be selected.

	
	dwValue
	Not used.

	NI_SETCANDIDATE_PAGESTART
	Application changes the page starting index of the candidate list.

	
	dwIndex
	Index of the candidate list to be changed.

	
	dwValue
	New page start index.

	NI_SETCANDIDATE_PAGESIZE
	Application changes the page size of the candidate list.

	
	dwIndex
	Index of the candidate list to be changed.

	
	dwValue
	New page size.

	NI_CONTEXTUPDATED
	Application or system updates the Input Context.

	
	dwIndex
	When the value of dwValue is IMC_SETCONVERSIONMODE, dwIndex is the previous conversion mode.

When the value of dwValue is IMC_SETSENTENCEMODE, dwIndex is the previous sentence mode.

For any other dwValue, dwIndex is not used.

	
	dwValue
	One of following values used by the WM_IME_CONTROL message:

IMC_SETCANDIDATEPOS

IMC_SETCOMPOSITIONFONT

IMC_SETCOMPOSITIONWINDOW

IMC_SETCONVERSIONMODE

IMC_SETSENTENCEMODE

IMC_SETOPENSTATUS

	NI_COMPOSITIONSTR
	Application changes the composition string. This action takes effect only when there is a composition string in the Input Context.

	
	dwIndex
	The following values are provided for dwIndex:
CPS_COMPLETE

To determine the composition string as the result string.

CPS_CONVERT
To convert the composition string.

CPS_REVERT
To revert the composition string. The current composition string will be canceled and the unconverted string will be set as the composition string.

CPS_CANCEL 
To clear the composition string and set the status as no composition string.

	
	dwValue
	Not used.


dwIndex
Dependent on uAction.

dwValue
Dependent on uAction.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

See Also

ImmNotifyIME

ImeSelect

The ImeSelect function is used to initialize and uninitialize the IME private context.

BOOL
    ImeSelect(
    HIMC hIMC,
    BOOL fSelect
   )
Parameters

hIMC
Input context handle

fSelect
Two flags are provided. TRUE indicates initialize and FALSE indicates uninitialize (free resource). 

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

ImeSetCompositionString

The ImeSetCompositionString function is used by an application to set the IME composition string structure with the data contained in the lpComp or lpRead parameters. The IME then generates a WM_IME_COMPOSITION message.

BOOL WINAPI
    ImeSetCompositionString(
    HIMC hIMC,
    DWORD dwIndex,
    LPCVOID lpComp,
    DWORD dwCompLen,
    LPCVOID lpRead,
    DWORD dwReadLen
   );
Parameters

hIMC
Input context handle. 

dwIndex
The following values are provided for dwIndex.
	Value
	Description

	

	SCS_SETSTR
	Application sets the composition string, the reading string, or both. At least one of the lpComp and lpRead parameters must point to a valid string. If either string is too long, the IME truncates it.

	SCS_CHANGEATTR
	Application sets attributes for the composition string, the reading string, or both. At least one of the lpComp and lpRead parameters must point to a valid attribute array. 

	SCS_CHANGECLAUSE
	Application sets the clause information for the composition string, the reading string, or both. At least one of the lpComp and lpRead parameters must point to a valid clause information array.

	SCS_QUERYRECONVERTSTRING
	Application asks the IME to adjust its RECONERTSTRINGSTRUCTRE. If the application calls the ImeSetCompositionString function with this value, the IME adjusts the RECONVERTSTRING structure. The application can then pass the adjusted RECONVERTSTRING structure to this function with SCS_RECONVERTSTRING. The IME will not generate any WM_IMECOMPOSITION messages.

	SCS_SETRECONVERTSTRING
	Application asks the IME to reconvert the string contained in the RECONVERTSTRING structure.


lpComp
Pointer to the buffer that contains the updated string. The type of string is determined by the value of dwIndex.

dwCompLen
Length of the buffer in bytes.

lpRead
Pointer to the buffer that contains the updated string. The type of string is determined by the value of dwIndex. If the value of dwIndex is SCS_SETRRECONVERTSTRING or SCS_QUERYRECONVERTSTRING, lpRead will be a pointer to the RECONVERTSTRING structure that contains the updated reading string. If the selected IME has the value SCS_CAP_MAKEREAD, this can be NULL.

dwReadLen
Length of the buffer in bytes.

Comments

For Unicode, dwCompLen and dwReadLen specifies the length of the buffer in bytes, even if SCS_SETSTR is specified and the buffer contains a Unicode string. 

SCS_SETRECONVERTSTRING or SCS_QUERYRECONVERTSTRING can be used only for IMEs that have an SCS_CAP_SETRECONVERTSTRING property. This property can be retrieved by using the ImmGetProperty function.

ImeToAsciiEx 

The ImeToAsciiEx function generates a conversion result through the IME conversion engine according to the hIMC parameter.

UINT
    ImeToAsciiEx(
    UINT uVirKey,
    UINT uScanCode,
    CONST LPBYTE lpbKeyState,
    LPTRANSMSGLIST lpTransMsgList,
    UINT fuState,
    HIMC hIMC
   )
Parameters

uVirKey
Specifies the virtual key code to be translated. When the property bit IME_PROP_KBD_CHAR_FIRST is on, the upper byte of the virtual key is the aid character code.

For Unicode, the upper word of uVirKey contains the Unicode character code if the IME_PROP_KBD_CHAR_FIRST bit is on.

uScanCode
Specifies the hardware scan code of the key to be translated.

LpbKeyState

Points to a 256-byte array that contains the current keyboard state. The IME should not modify the content of the key state.

lpTransMsgList
Point to a TRANSMSGLIST buffer to receive the translated message result. This was defined as a double word buffer in Windows 95/98 and Windows NT 4.0 IME document, and the double word buffer format is [Length of the pass in translated message buffer] [Message1] [wParam1] [lParam1] {[Message2] [wParam2] [lParam2]{...{...{...}}}}.

fuState
Active menu flag.

hIMC
Input context handle.

Return Values

The return value indicates the number of messages. If the number is greater than the length of the translated message buffer, the translated message buffer is not enough. The system then checks hMsgBuf to get the translation messages.

Comments

On Windows 2000, a new 32bit-width virtual key code, using VK_PACKET in LOBYTE of wParam and the high word is Unicode, can be injected by using SendInput. 

For ANSI IMEs that support IME_PROP_ACCEPT_WIDE_VKEY, ImeToAsciiEx may receive up to 16bit ANSI code for a character. It will be packed as below.  The character is injected from SendInput API through VK_PACKET. 

	24-31 bit
	16-23 bit
	8-15 bit
	0-7 biy

	Reserved
	Trailing DBCS byte(if any)
	Leading byte
	VK_PACKET


See Also

ImmToAsciiEx
ImeRegisterWord

The ImeRegisterWord function registers a string into the dictionary of this IME.

BOOL WINAPI
    ImeRegisterWord(
    LPCTSTR lpszReading,
    DWORD dwStyle,
    LPCTSTR lpszString
   )
Parameters

lpszReading
Reading string of the registered string.

dwStyle
Style of the registered string. The following values are provided.

	Value
	Description

	

	IME_REGWORD_STYLE_EUDC
	String is within the EUDC range

	IME_REGWORD_STYLE_USER_FIRST to IME_REGWORD_STYLE_USER_LAST
	Constants range from IME_REGWORD_STYLE_USER_FIRST to IME_REGWORD_STYLE_USER_LAST and are used for private styles of the IME ISV. The IME ISV can freely define its own style. For example:

#define MSIME_NOUN (IME_REGWORD_STYLE_USER_FIRST)

#define MSIME_VERB (IME_REGWORD_STYLE_USER_FISRT +1)


lpszString
String to be registered.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

ImeUnregisterWord

The ImeUnregisterWord function removes a registered string from the dictionary of this IME.

BOOL WINAPI
    ImeUnregisterWord(
    LPCTSTR lpszReading,
    DWORD dwStyle,
    LPCTSTR lpszString
   )

Parameters

lpszReading
Reading string of the registered string.

dwStyle
Style of the registered string. Please refer to the ImeRegisterWord function for a description of dwStyle. 

lpszString
String to be unregistered.

Return Values

If the function is successful, the return value is TRUE. Otherwise, the return value is FALSE.

ImeGetRegisterWordStyle

The ImeGetRegisterWordStyle function gets the available styles in this IME.

UINT WINAPI
    ImeGetRegisterWordStyle(
    UINT nItem,
    LPSTYLEBUF lpStyleBuf
   )
Parameters

nItem
Maximum number of styles that the buffer can hold.

lpStyleBuf
Buffer to be filled.

Return Values

The return value is the number of the styles copied to the buffer. If nItems is zero, the return value is the buffer size in array elements needed to receive all available styles in this IME.

ImeEnumRegisterWord

The ImeEnumRegisterWord function enumerates the information of the registered strings with specified reading string, style, and registered string data.

UINT WINAPI
    ImeEnumRegisterWord(
    hKL,
    REGISTERWORDENUMPROC lpfnEnumProc,
    LPCTSTR lpszReading,
    DWORD dwStyle,
    LPCTSTR lpszString,
    LPVOID lpData
   )
Parameters

hKL
Input language handle.

lpfnEnumProc
Address of callback function.

lpszReading
Specifies the reading string to be enumerated. If lpszReading is NULL, ImeEnumRegisterWord enumerates all available reading strings that match the specified dwStyle and lpszString parameters.

dwStyle
Specifies the style to be enumerated. If dwStyle is NULL, ImeEnumRegisterWord enumerates all available styles that match the specified lpszReading and lpszString parameters.

lpszString
Specifies the registered string to be enumerated. If lpszString is NULL, ImeEnumRegisterWord enumerates all registered strings that match the specified lpszReading and dwStyle parameters.

lpData
Address of application-supplied data.

Return Values

If the function is successful, the return value is the last value returned by the callback function. Its meaning is defined by the application.

Comments

If all lpszReading dwStyle, and lpszString parameters are NULL, ImeEnumRegisterWord enumerates all registered strings in the IME dictionary. If any two of the input parameters are NULL, ImeEnumRegisterWord enumerates all registered strings matching the third parameter.

ImeGetImeMenuItems

The ImeGetImeMenuItems function gets the menu items that are registered in the IME menu.

DWORD WINAPI
    ImeGetImeMenuItems(
    HIMC hIMC,
    DWORD dwFlags,
    DWORD dwType,
    LPIMEMENUITEMINFO lpImeParentMenu,
    LPIMEMENUITEMINFO lpImeMenu,
    DWORD dwSize
   )

Parameters

hIMC
The lpMenuItem contains menu items that are related to this input context.

dwFlags
Consists of the following bit combinations.

	Bit
	Description

	

	IGIMIF_RIGHTMENU
	If this bit is 1, this function returns the menu items for the right click Context menu.


dwType
Consists of the following bit combinations.

	Bit
	Description

	

	IGIMII_CMODE
	Returns the menu items related to the conversion mode.

	IGIMII_SMODE
	Returns the menu items related to the sentence mode.

	IGIMII_CONFIGURE
	Returns the menu items related to the configuration of IME.

	IGIMII_TOOLS
	Returns the menu items related to the IME tools.

	IGIMII_HELP
	Returns the menu items related to IME help.

	IGIMII_OTHER
	Returns the menu items related to others.

	IGIMII_INPUTTOOLS
	Returns the menu items related to the IME input tools that provide the extended way to input the characters.


lpImeParentMenu
Pointer to the IMEMENUINFO structure that has MFT_SUBMENU in fType. ImeGetImeMenuItems returns the submenu items of this menu item. If this is NULL, lpImeMenu contains the top-level IME menu items.

lpImeMenu
Pointer to the buffer to receive the contents of the menu items. This buffer is the array of IMEMENUITEMINFO structure. If this is NULL, ImeGetImeMenuItems returns the number of the registered menu items.

dwSize
Size of the buffer to receive the IMEMENUITEMINFO structure.

Return Values

The return value is the number of the menu items that were set into lpIM. If lpImeMenu is NULL, ImeGetImeMenuItems returns the number of menu items that are registered in the specified hKL.

Comments

ImeGetImeMenuItems is a new function for Windows 98 and Windows 2000.


/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

  dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

  dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

  dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

  dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

  stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

  dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

  closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: IMEIMES2.doc     Project: Win32 IME Spec     
 Revision #: 14     Page: 4 of 62     


0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On: ) show statusdict begin product show end 

(     Colorlayer: ) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse 

(     Document Page: ) show wp$fpage show"
!Unexpected End of Expression


/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

  dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

  dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

  dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

  dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

  stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

  dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

  closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: IMEIMES2.doc     Project: Win32 IME Spec     
 Revision #: 14     Page: 5 of 62     


0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On: ) show statusdict begin product show end 

(     Colorlayer: ) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse 

(     Document Page: ) show wp$fpage show"
!Unexpected End of Expression


