10/15/1999

State Management Technologies

1. Overview

For NT 5.0 we have a nice roaming and redirected my documents feature that manages some user state. In particular it manages user data in my documents and user state from well-behaved applications that put their state in the profile. We also have a stand alone tool to help move some state and some files from older machines to NT 5.0. For the future, we would like to advance this technology. I would like to enhance roaming so that it is powerful enough to do state management and migration. For the most part this involves a strategy to make sure application state moves better. How much effort do we want to put into picking up legacy OS state better? Roaming and document redirection can also be extended to move user data outside the profile.

1.1. Move user files outside my documents

We could find all user files, regardless of whether they were in My Documents. We could roam, redirect, backup, or migrate them.

1.2. Handle application state for poorly behaved applications

We could define a manifest for legacy applications. The manifest would define the actual location of the application state. We would have a method to roam that state to and from the machine. Thus applications that don’t put their state in HKCU or the profile would still have their state roamed.

1.3. Allow roaming to work independent of logging in and out

Currently the user state is only saved when the user logs out and only restored when the user logs in. By using some other trigger for saving and restoring we could better support users that don’t log in and out. We could better support users that have simultaneous logins. And we could better support users who want roaming for backup.

1.4. Allow roaming to work independent of application startup and shutdown

Similarly some applications, like email clients are rarely stopped. By providing a method to notify applications of state changes while they run, we can provide the user with a more consistent experience.

1.5. Allow roaming to work across a wider variety of platforms

Currently roaming works between Windows NT 4 and Windows NT 5. Users also use Windows 9x, Macintosh, and Unix. It should be possible to roam application settings and relevant system settings across platform.

1.6. Allow state to be shared across versions of applications

Currently each application has a different behavior when their state is inconsistent. Some rewrite all their state. Some don’t detect the inconsistency and don’t work properly. Some assume you are migrating from a previous version of the app and migrate the state to the form the current version of the app wants. Unfortunately this means that users roaming to different machines can have their state mangled each time they roam. We should have a method to help applications deal with roaming between versions.

1.7. Allow state to be shared across different applications

In an ideal world, you could access your schedule regardless of what schedule application you had available. You could see your schedule on your dev machine, your WinCE machine, or on the internet.

1.8. Allow machine state to be moved

Some things deliberately are not in the user profile. For example the time zone depends on the location of the machine, not which user logged in to the machine. However, when a user has multiple machines, he may want to share that state. There should be a method to roam, migrate, clone, or backup machine settings.

1.9. Make roaming so good you don’t need backup

A lot of customers use roaming to provide backup in case a machine fails. Not everybody does.

1.10. Allow roaming of application installation

Windows installer allows applications to be published by an admin so they are installed automatically. In smaller environments users would like to install an application once and have it move to whatever machine they need it on. They would also like to be able to really uninstall an application.

1.11. Make roaming so good you don’t need migration

Given the commonality between roaming and state migration, why do we have both. If roaming can do a better job identifying user files and migrate application installation and machine settings, then there is no need for migration.

2. Application State Management (ASM)

John Delo has been working on a way to define application state. You can think of it as a version of the registry that enables the features we want. Instead of applications managing their state with the registry, they will use a very similar new set of APIs. Instead of storing all the state in one file, each application will have its own file. Instead of the file format being proprietary and changing from OS to OS, it will be public, perhaps XML.

2.1. Technology

2.1.1. New Interface To State Files

Rather than store application state in the registry, ASM would have applications store their state in state files. The state would be accessed with APIs like the registry. The files would store per user state, per machine state, and perhaps other application specific categories of state. For example, an application could choose to store state with each shortcut, like the command prompt does today. This would allow word to have a shortcut to write a new letter and another shortcut to write a new status report.

There are two main reasons for moving application state out of the registry. First, you can get all the state of the application in one place. Second, once you have all the state of the application in one place, it becomes possible to implement interesting technologies like partial backup and roaming (only write the state files that changed to the server rather then the entire registry), roaming between platforms (because the state format isn’t platform specific), and more extensive application state roaming (roaming at times other then log on and log off). The disadvantage of ASM is that application state takes more disk space since you have 1000 small application state files rather then 1 file with all their state.

For each application that uses ASM we will need a manifest. The manifest contains declarative information about the application and its state. It describes the application state in the same way a MSI file describes the application installation. Perhaps the MSI file and ASM manifest should be a single file.

2.1.2. Wrap Legacy Applications

 ASM will work with applications that define their own manifest and use the new APIs. To support legacy applications we can create a manifest for each legacy application of interest. The manifest specifies how to read the application state from the registry and INI files and write it to a state file, which can be roamed. It also specifies how to write the state back to the registry and INI files. The conversion process would have to happen when roaming happened or when the application was started or stopped.

2.1.3. Notify Application of State Changes

It will not be possible to represent all useful state transformations in the manifest. For example when application state is roamed from NT 4 to NT 5, the application may need to change some of the state. Say that different versions of the OS had different ways of specifying some GUI attribute. The application would want to convert the saved version of the GUI attribute to the current OS. ASM will define a method to notify the application of state changes. This will include changes that happen while the application is running, while the application is not running, and will work even if multiple instances of the application are running on the same or multiple machines. Interested applications will be notified of events like roaming state, roaming state to different machines, roaming state to different OSs, arrival of roamed state while the application is running, and a change in dependent applications (the app uses IE and you roamed from a machine with IE 4 to a machine with IE 5).

2.1.4. State Consistency Framework

Applications often have a dependency between multiple state values. For example, the user may set the background color which results in the foreground color being computed to a value which has good contrast with the background color. Both values get saved to the state. If a different version of the application or the ASM equivalent of the registry editor changes one value, ASM will know that the values are paired from the manifest and will notify the application that one value was changed. The application can recompute the second value.

This would probably be a rather complex mechanism. It may be possible to avoid it completely by teaching applications how to specify data such that their are no dependencies. Alternately we could define how applications should reconstruct their state when it becomes inconsistent. This avoids the problem of Word97 overwriting all the user settings every time it concludes that the registry is inconsistent.

2.1.5. Logging, Undo, Restore, Defaults

By storing application state in small files it becomes relatively easy to log changes to the application state and allow undo, redo, backup, and restore. It also becomes easy to restore all the application default settings. Since people are using state migration to clean up their machines we need a way to allow them to clean up their application state if that turns out to be what they didn’t like. Since the shell and control panel become applications in this model, you can restore the OS defaults, hopeful across the entire machine or across individual control panel applets.

2.2. My Programs

Some of the application state management features happen transparently to the user. Some will require UI. This UI could be put under a new line on the start menu. The line would be “My Programs”. It would be something like My Documents. It would have a list of programs installed on the machine. Going to My Programs wouldn’t execute the program, it would give you program properties. From the properties dialog you could control several aspects of the program and perhaps even execute it. Note that the shell, control panel, and the OS would be considered programs in this menu.

2.2.1. Backup / Restore

This option would let you backup or restore the settings for the application or the application installation. You could back up to a server, removable media, a backup partition, or a web server.

2.2.2. Undo / Redo Settings

This option would let you maintain a history of application settings and choose which ones to use. Because the application data isn’t opaque we may be able to merge changes instead of just applying/removing them linearly. If the application supports dependency checking, it could help us with the merge. We should be able to maintain at least one level of undo. We need to decide how many old versions of the state file to back up. Do we define an efficient difference format and store the changes every time the app exits? Do we only store changes when the user tells us to? Do we let the user schedule it? We could save the user’s old profile when logging on before downloading the new profile. This allows users to take advantage of cached profiles should the server happen to lose the user’s profile.

2.2.3. Default Settings

This option lets the user tell the application to restore all settings to the default values. This is also a good time to automatically save the old settings so we can redo them later. This provides a simple way for users to fix application problems. It also lets product support over the phone put the application in a consistent state for debugging or demonstrating features.

2.2.4. Migrate Settings

This option lets the user manually share application settings. It also lets the user share settings while the application is running or without logging off.

2.2.5. Settings Policy

This option controls corporate application settings policy. Perhaps users get a read only view of corporate policy. Perhaps this only exists for administrators and lets them set a manifest for application policy for particular users.

2.2.6. View License

This option lets the user review the application license agreement.

2.2.7. Remote and Programmatic Access

All these features are accessible via APIs. The APIs are scriptable and take a remote machine name so you can read and write these settings remotely.

2.3. Real World

The biggest risk I see in defining a new method of application state management is getting applications to use it. While we can wrap some legacy applications, the technology becomes most useful if applications ship with it. I don’t have a story for making this happen and I need someone to write the story in our vision document.

3. Application Installation

Here are some areas that we could improve the windows installer as part of the effort to simplify the user’s experience of the OS and applications.

3.1. Support Application Migration

Allow the user to migrate an application installation across an OS upgrade or to a new machine. Allow the application to be migrated using the installed binaries rather then the installation media. Perhaps even predetermine if it is possible to migrate the application using installed binaries or will additional binaries from the installation media be required.

We could implement this by copying the MSI state, all the files the MSI state references, and asking windows installer to fix the application.

3.1.1. Licensing

There are two views of licensing when migrating application installations. First, it’s the users problem and we just need to warn them. Second, it’s always going to be our problem since we are the bigger target. With a manifest for the application we can solve half of the licensing problem. We can make our application migration obey the application’s rules for copying the binaries. The application will be responsible for any run time checking of license (either checking a dongle or querying a server). The user will be responsible for obeying the license copying binaries manually. If the user runs our feature, we will check the applications rules. They can be some of the following: one copy for backup only (we know when the user is backing up and can prompt the user if he restores to another machine), one machine only (we won’t migrate the application), delete from the old machine when migrating (we will warn the user and perform the deletion), free copying.

3.2. Support Application Auto-Uninstall

Currently applications just build up on a users machine. It is particularly upsetting to have multiple old versions of some active X control associated with a web page on a machine. It would be nice to remove old applications as a machine fills up or when they are no longer needed. It would be bad to remove something the user still wants. Here are some possible methods.

When the disk gets full and the OS puts up the disk is full dialog, have a button that goes to the disk space reclamation applet. Put a list of applications that haven’t been used or can automatically be reinstalled in that applet.

Record which applets came from websites. Record if the application was manually installed or installed via accessing the web page. Record in the application manifest if it completely supercedes a previous version. Automatically uninstall web applications that were automatically installed and whose web pages either haven’t been accessed in a while or have a newer version of the application.

Improve add/remove programs so it works declaratively rather then programmatically. The current implementation often fails to remove the program. The declarative version could at least remove some application files and hopefully all its shortcuts.

4. Review

Here is the original list of features and how they could be implemented.

4.1. Move user files outside my documents

Using MSI and ASM we can get a good idea of all the application files on the machine. On upgrade or OS installation we can scan the machine for executables and look for the executable name and files size in our complete list of manifests to determine all the applications installed on the machine. We can ask OEMs to produce manifests for everything they put on the machine. Everything else is a user file.

Alternately we can add a property page to my documents where you specify your documents. You can list them by extension and path. You can exclude by extension and path. When we move documents, we know what to move.

4.2. Handle application state for poorly behaved applications

The manifest lets us manage application state for legacy applications.

4.3. Allow roaming to work independent of logging in and out

The manifest lets us incrementally move application state. My programs gives the user a manual way to trigger roaming. We need to find some other triggers.

4.4. Allow roaming to work independent of application startup and shutdown

The ASM model allows us to tell new applications when their state changes while they are running.

4.5. Allow roaming to work across a wider variety of platforms

The manifest in XML format is easily readable on multiple platforms.

4.6. Allow state to be shared across versions of applications

The manifest definition says that state that is the same across application versions should have the same name in the manifest. State that is different should have a different name. Thus different versions of an application can have shared state and private state in the same manifest. The state dependency mechanism provides a method to handle consistency issues when roaming between versions of an application. While its better then nothing you may get features that toggle each time you roam between application versions.

4.7. Allow state to be shared across different applications

The method of allowing different versions of an application to use the same state could be extended to allow different applications to use the same state. I think there are a lot of issues. Take a calendar for example. One application may wish to store the calendar sorted by date and another may wish to store it sorted by time. Perhaps XSL could be used to convert between various forms. Also, an application may originally store both a calendar and address book in one state file. Later another application wants to share the calendar but also wants to include a list of haircut preferences. Later another application wants to share the list of haircut preferences and a list of style magazines. Again, perhaps XSL can be used to push and pull the required pieces of state between applications. I think this area needs research.

4.8. Allow machine state to be moved

The manifest allows the machine state to be specified in such a fashion that it can be moved.

4.9. Make roaming so good you don’t need backup

By incrementally, automatically saving all the users state, the user should never need to backup. If the machine ever fails the user just roams to a new one.

4.10. Allow roaming of application installation

MSI improvements can support this.

4.11. Make roaming so good you don’t need migration

By incrementally, automatically saving all the users state, the user should not need to migrate. If the user wants a new machine, the user just logs in on it and his state is roamed. In the short term we can create a tool that calls all the features we added to the OS to improve roaming, backup, and state management rather then leaving all those features in the tool we have today. However, this only allows the user to roam-migrate between NT 5.1 and newer OSs. To handle pre NT 5 machines we would continue to support the tool we are writing now. To handle NT 5 we may extend the tool, release a service pack, or something else.

PAGE
6

