[image: image1.jpg]@-Eﬂndmvszooo

Confidential
5

Windows 2000+ Professional

User State Migration Design Specification

Friday, November 12, 1999 – Version 1.0

Author: Alex Armanasu

© 1999 Microsoft Corporation. All rights reserved.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Windows 2000, Windows NT and Windows 95, 98 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other tademarks or tradenames mentioned herein may be the trademarks of their respctive owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

User Settings Migration Design

1. Overview

This document describes a tool to move state from a machine running Win9x or Windows NT 4 to a machine running Windows 2000. The requirements specification for this tool is “NTW Migration Services v1 Functional Requirements.doc”. This document only describes the design for moving user state.

The tool is composed of two parts, ScanState and LoadState. The administrator runs ScanState on the source machine. ScanState saves a bunch of files to a server or to the destination machine. Then the administrator runs LoadState on the destination machine.

This document describes the following requirements.

1) Move Win9x profile.

2) Move NT 4 profile.

3) Move Office, email client, and IE settings.

4) Declarative method to specify more settings to move.

5) Executable method to move more settings.

The following items will not be implemented in the first (and perhaps only) version of the tool.

6) Filter shortcuts to executables and fix shortcuts to documents.

7) Convert cookies to IE 5 format.

8) Tool to convert a MSI file to a ScanState input file.

9) Create local user accounts.

10) Move multiple user accounts.

11) Accept policy input (for example, move all documents to “My documents”).

The tool renders the destination machine unusable about 5% of the time.

2. ScanState Parameters

This tool saves the state of the user running the tool to a server or destination machine. The tool is a command line tool. It does not prompt for input. It reports results to a log file. It is intended to be able to be run remotely via some method like SMS. The program will return zero to DOS if successful. If unsuccessful, the program will return the last Win32 or HRESULT error.

The command takes the following parameters.

ScanState [/i input.inf]* [/l scanstate.log]

 [/v] [/f] [/s] [/u] [/x] path

The path parameter is the path to the output directory. ScanState will save all migrated files to the output path. It will also write migration.inf to that path. This file will be passed as input to the LoadState program. The file will be unicode.

The /l parameter specifies the name and path to the log file. This file will contain a message indicating whether the scan was successful. If the scan failed, it will indicate why. If the /l parameter is not specified the program will create scanstate.log in the current directory. The file will be unicode.

The /v parameter tells the program to write verbose messages to the log. This parameter is meant for debugging. If present, the last entry in the log file will indicate the success of failure of the program. All other entries are informational.

ScanState normally copies data files, system settings, and user settings. The /f, /s, and /u parameters force ScanState to copy a subset of that information. The /f parameters indicates that files should be copied. The /s parameter indicates that system settings should be copied. The /u parameter indicates that user settings should be copied. If none of these parameters are specified, all three types of data are copied. Otherwise only the specified types of data are copied. The /x parameter forces ScanState to not copy files, system settings or user settings. The /x parameter may be used with the /i parameter to force just the rules in the inf file to be applied.

The /i parameter specifies the name and path to any input inf files. Multiple input files may be specified. They will be concatenated together and processed as one file. ScanState will look for the following sections in the input files. A section name may exist in more then one file. If multiple copies of a section exist, they will all be processed. Each section must begin and end in the same file. The input files may be ascii or unicode. The /i parameter does not look in the current directory. Either specify an absolute path or look up the documentation for SetupOpenInfFile. Everything specified by /i will be scanned regardless of the whether /x, /s, /u, or /f are specified.

2.1.

2.2. [Run These Commands]

This section allows the administrator to extend ScanState. It specifies executables to run that will collect additional state. Each line in this section should be of the form label=command. ScanState will run the command. The command should write a list of files it wishes copied to standard output. The list should contain full path names. The label will be used to find the matching command in the input to LoadState.

LoadState will take the list of files and modify it to reflect the location of the files on the destination machine. LoadState will look for a label in its [Run These Commands] section that matches the label for ScanState. LoadState will run the command matching the label and pass it the modified file list as parameters. It is not an error if there is no matching label. LoadState will run all the commands under its [Run These Commands] section, even if they have no matching label from ScanState. If there is no matching label, LoadState will run the command with no parameters.

Both ScanState and LoadState will call CreateProcess on each the command. Commas should separate the arguments to the command. LoadState will append its arguments after any arguments specified in this section. Any double quotes for the command or arguments will be removed. If commas are required in the command name or in any arguments, they must be surrounded by double quotes.

[Run These Commands]

Word95=\\Server\Migstuff\CopyWord.bat,5,”Red, White, and Blue”

2.3. [Copy This State]

This section allows the administrator to extend ScanState. It specifies INF sections to apply. This section has the same syntax as the install section in an INF file. It may contain AddReg, DelReg, RenReg, RegFile, CopyFiles, RenFiles, or DelFiles.

Alternately this section will be in the same format as the win9x to Windows 2000 upgrade INF files. Here is the only description of that format.

file:\\orville\razzle\src\setup\inf\win4\inf\usermig.inx

The AddReg label is followed by a list of sections containing registry keys to be copied to the destination machine. They will overwrite any corresponding registry keys on the destination machine.

The DelReg label is following by a list of sections containing registry keys that should not be copied to the destination. If ScanState was going to copy the specified registry keys, it will discard them. Note that this section does not specify keys to be deleted from the destination machine.

The RenReg label is followed by a list of sections containing registry keys to be copied to the destination machine and renamed. The syntax for these sections still needs to be determined. The syntax for the AddReg and DelReg sections may be modified to specify trees of keys to add or delete.

The RegFile label is followed by a list of sections containing registry keys. Each key listed should contain a file name. All those files will be copied to the destination machine. The file path in the key on the destination machine will be set to the actual location of the file. A key is allowed to be listed under both RenReg and RegFile.

[Copy This State]

AddReg=Word95, Excel95

DelReg=Powerpnt95, Virus

CopyFiles=Special User Data

[Word95]

HKLM, Software\Microsoft\Office 95\Printer Setup,,,

[Excel95]

HKLM, Software\Microsoft\Office 95\Macro Configuration,,,

[Powerpnt95]

HKCU, Software\Microsoft\Office 95\Powerpoint,

[Virus]

HKLM, Software\Microsoft\Windows\CurrentVersion\Run\Virus

[Special User Data]

c:\Work\timecard.qqq

The next three sections really belong to Philip. Here is a proposal for him.

The CopyFiles label is followed by a list of sections containing files to copy to the destination machine.

The RenFiles label is followed by a list of sections containing files to copy to the destination machine and rename.

The DelFiles label is followed by a list of sections containing files that should not be copied to the destination machine. If ScanState was going to copy the specified files, it will discard them. Note that this section does not specify files to be deleted from the destination machine.

Registry rules will be applied in the following order. DelReg may be specified to ScanState or LoadState. AddReg, RenReg, and RegFile may be specified to either ScanState or LoadState. However, if they are specified to LoadState and not ScanState, the specified key may not be copied. In the case of RegFile, the file may not be copied.

· Anything listed under DelReg will not be copied to the destination machine.

· Anything listed under RenReg will be renamed. If the same key is listed multiple times, only one rename rule will apply.

· Anything listed under RegFile will have the path in the value fixed. Listing a key under RegFile multiple times is the same as listing it once.

· Anything listed under AddReg will overwrite the corresponding key on the destination machine. Listing a key multiple times is the same as listing it once.

· If a key exists on the destination machine, it will not be overwritten (unless the key is listed in an AddReg section).

· If the /u flag is specified (or if none of /u, /f, /s, and /x are specified), the entire HKCU for the specified user is copied.

· If the /s flag is specified (or if none of /u, /f, /s, and /x are specified), some of HKLM is copied.

A key may have one rule from each of the set of RenReg, RegFile, and AddReg rules. In that case, all the specified rules are applied simultaneously. However, all rules applied simultaneously must be at the same depth in the path. For example you could apply a AddReg and RenReg rule to HKLM\Software\Microsoft\Exchange*. But if you applied an AddReg rule to HKLM\Software\Microsoft\Exchange* and a RenReg rule to HKLM\Software\Microsoft\Exchange\Client, the RenReg rule would not be applied.

2.4. [Version]

This section is an exception to the rule that sections can’t be duplicated. Each INF file needs to have this section. It is simply a requirement of INF files. It must look exactly like the sample below.

[Version]

Signature=$Windows NT$

2.5. Sample

Here is a sample of a complete INF file.

[Version]

Signature=$Windows NT$

[Users]

Redmond\Oleuser

[Run These Commands]

Word95=\\Server\Migstuff\CopyWord.bat,5,”Red, White, and Blue”

[Copy This State]

AddReg=Word95, Excel95

DelReg=Powerpnt95, Virus

CopyFiles=Special User Data

[Word95]

HKLM, Software\Microsoft\Office 95\Printer Setup,,,

[Excel95]

HKLM, Software\Microsoft\Office 95\Macro Configuration,,,

[Powerpnt95]

HKCU, Software\Microsoft\Office 95\Powerpoint,

[Virus]

HKLM, Software\Microsoft\Windows\CurrentVersion\Run\Virus

[Special User Data]

c:\Work\timecard.qqq

3. LoadState Parameters

This tool loads the state of a machine from a server or the current machine. The tool is a command line tool. It does not prompt for input. It reports results to a log file. It is intended to be able to be run remotely via some method like SMS. The program will return zero to DOS if successful. If unsuccessful, the program will return the last Win32 or HRESULT error. The tool must be run as an administrator. The tool will load the state for the user that ran scanstate. Loadstate cannot be run by the user whose state is being loaded.
The command takes the following parameters.

LoadState [/i input.inf] [/l loadstate.log]

 [/v] [/f] [/s] [/u] [/x] path

The path parameter is the path to the files being migrated. It must point to the same volume that ScanState wrote its state. In particular, the file migration.inf must be in the directory specified by path.

The /l parameter specifies the name and path to the log file. This file will contain a message indicating whether the load was successful. If the load failed, it will indicate why. If the /l parameter is not specified the program will create loadstate.log in the current directory. The file will be unicode.

The /v parameter tells the program to write verbose messages to the log. This parameter is meant for debugging. If present, the last entry in the log file will indicate the success of failure of the program. All other entries are informational.

Normally LoadState copies data files, system settings, and user settings. The /f, /s, and /u parameters force LoadState to copy a subset of that information. The /f parameters indicates that files should be copied. The /s parameter indicates that system settings should be copied. The /u parameter indicates that user settings should be copied. If none of these parameters are specified, all three types of data are copied. Otherwise only the specified types of data are copied.

The /i parameter specifies the name and path to any input inf files. Multiple input files may be specified. They will be concatenated together and processed as one file. LoadState will look for the following sections in the input files. A section name may exist in more then one file. If multiple copies of a section exist, they will all be processed. Each section must begin and end in the same file. The files may be ascii or unicode except on Win9x where they must be ascii. The /i parameter does not look in the current directory. Either specify an absolute path or look up the documentation for SetupOpenInfFile. Everything specified by /i will be scanned regardless of the whether /x, /s, /u, or /f are specified.

LoadState requires at least 2 special input INF files. The first is migration.inf from ScanState. LoadState expects migration.inf to be in the directory specified by the path parameter. The second is migfilter.inf, a special INF file that ships with LoadState. Other sections are optional. The sections of migration.inf are specified with the design of each component to the tool. The chapter entitled migfilter.inf below specifies the sections in migfilter.inf.

3.1. [Run These Commands]

See the description of this section under ScanState.

4. Common Design

The ScanState and LoadState tools will share the common functions listed in the next chapters.

There will be no project wide coding conventions. Each file should follow some consistent coding convention. You may document the convention at the head of the file. When editing a file, follow the coding convention of the file. If you cannot, change the entire file to use whatever coding convention you choose. We should not have classes where some of the members have no prefix, some have an underscore prefix and some have a m_ prefix.

Since there is no time for code reviews in the schedule, we will do them in November, after code complete.

4.1. ParseParams

This function will parse the command line arguments.

BOOL ParseParams(int argc, char*argv[], BOOL scan)

The argc and argv parameters and the command line arguments. The scan parameter is true when called by ScanState. The function opens and concatenates the input files and saves the INF (good only with the setup INF APIs) handle in a global. The function opens the log file and saves the win32 file handle in a global. The function sets global variables to indicate the state of the /v, /f, /s, and /u flags. For ScanState, the function opens the output file and saves the win32 file handle in a global.

// Global variables set by ParseParams.

HINF

InputInf;

HANDLE
LogFile;

HANDLE
OutputFile;

BOOL

Verbose;

BOOL

CopyFiles;

BOOL

CopySystem;

BOOL

CopyUser;

4.2. Win32Printf

This function will printf to a win32 file handle. It should be used when printing things that will not be localized, for example migration.inf.

DWORD Win32Printf(HANDLE file, CHAR *szFormat, ...);

The function returns ERROR_SUCCESS if successful and an error code if it fails.

The function takes ascii input so it can run on Win9x and writes unicode output.

4.3. Win32PrintfResource

This funtion will print to a win32 file handle. It will take a resource id to identify the format string. It should be used when printing things that will be localized, for example log.txt.

DWORD Win32PrintfResource(HANDLE file, DWORD resource_id, ...);

The function.returns ERROR_SUCCESS if successful and an error code if it fails.

The resource_id parameter specifies a resource string that will be loaded by calling LoadString. It will be printed by calling FormatMessage. FormatMessage does not take the same escape sequences as printf. If takes parameters of the form %1, %2, %3 for strings or %1!d!, %2!x!, etc for other data types.

4.4. DebugAssert

This macro will display a popup if the assert fails in a debug build.

void DebugAssert(BOOL expression)

If expression is true, a popup will be displayed containing the text of the expression, the program name, and the source file and line number. The popup will have an ok and a debug button.

5. ScanState Design

The ScanState tool is very simple. It just calls a bunch of functions and gives up if any of them fail.

// More globals

SOME_RESOURCE_TYPE
ResourceFile;

char *TempDir;

HKEY

CurrentUser;

OpenResource

ParseParams

ComputeTemp

ScanUser

ScanSystem

ScanFiles

CloseFiles

EraseTemp

Each of the functions above returns a DWORD. The ScanState simply returns the DWORD to DOS. If any of the functions has an error, it should print a message to the console and the log file before returning. OpenResource saves the handle to the resource thing in a global. ComputeTemp saves the path to the temporary directory in a global. EraseTemp deletes all the files in the temporary directory. ScanUser saves the registry key for the current user in CurrentUser. If CopyFiles is false, ScanFiles will generate a list of files specified by inf input and ScanUser and ScanSystem. If CopySystem is false, ScanSystem will copy registry keys specified by inf input.

Aside from the common functions listed in chapter 4, there will be only two interfaces between the ScanFiles, ScanUser, and ScanSystem modules. First, all of them will have access to the global input and output files. Second, the ScanFiles module will provide an interface to specify files to copy.

DWORD PickUpThisFile(char *filepath)

This function takes the fully qualified path and name of a file that should be copied to the destination machine. It does not take relative path names or unexpanded path names (d:\nt\..\tmp\file or %windir%\file). It returns ERROR_SUCCESS if it can take the file and some error code if it can’t. The same path may be passed to WhereIsThisFile on the destination machine to get the new path to the file.

6. LoadState Design

The LoadState tool is very simple. It just calls a bunch of functions and gives up if any of them fail.

// More globals

SOME_RESOURCE_TYPE
ResourceFile;

char *TempDir;

HKEY

CurrentUser;

OpenResource

ParseParams

ComputeTemp

LoadFiles

LoadUser

LoadSystem

CreateUserProfile

CloseFiles

EraseTemp

See ScanState Design for general comments. If CopyFiles is false, no files will be copied. If CopySystem is false, no system registry keys will be copied. If a user wants to use this tool to pick up a few explicit settings, the user should call “ScanState /x /i stuff.inf somewhere” followed by “LoadState somewhere”.

The LoadFile module will provide this function to find out where files ended up on the destination machine.

DWORD WhereIsThisFile(char filepath, char **newpath)

This function takes the fully qualified path and name of a file that should have been copied to the destination machine. It does not take relative path names or unexpanded path names (d:\nt\..\tmp\file or %windir%\file). It returns ERROR_SUCCESS if it can find the file and some error code if it can’t. The function returns the new path via the parameter newpath. The function calls malloc to allocate memory for the new path. The caller is responsible for freeing the memory.

7. Move Win9x Profile

ScanUser will copy the [Users] section to migrate.inf. If the domain name is not specified, it will attempt to find it in the registry. It will add the line “section=user1” to the [Users] section. It will create the section [user1].

[user1]

user=name

domain=name

section=Registry for user1

ScanUser will locate the hive for the user. It will write the entire hive to the section [Registry for user1] in the format of an INF addreg section.

LoadUser will read the section [Users] from migrate.inf. From there it will find the section [user1]. It will copy the default hive and open it. It will filter and copy the section [Registry for user1] into the default hive. It will call CreateUserProfile to copy the generated hive into the profile for the user. Then the generated hive can be deleted.

See the section migfilter.inf for a description of the filtering rules.

If we have time, all keys in the user profile that reference files will be added to a RegFile section in a default input file to ScanState. This will cause the files to be copied to the destination machine and the paths to the files in the registry to be fixed. This paragraph applies to the NT 4 profile as well. Here are some such files.

· Background bitmap.

· Files referenced by screen savers.

· Custom cursors.

· Custom sounds.

· Custom icons.

· Custom schemes.

8. Move NT 4 Profile

ScanUser will copy the [Users] section to migrate.inf. If the domain name is not specified, it will attempt to find it in the registry. It will add the line “section=user1” to the [Users] section. It will create the section [user1].

[user1]

user=name

domain=name

hive=path to user’s hive

ScanUser will call PickUpThisFile to copy the user’s hive.

LoadUser will read the section [Users] from migrate.inf. From there it will find the section [user1]. It will call WhereIsThisFile to find the new location of the hive. It will call CreateUserProfile to copy the old hive into the profile for the user. Then the old hive can be deleted. The NT 4 hive will not be filtered.

9. Move Office Settings

ScanUser will move settings for Office 2000 and Office 97. It will depend on moving the user profile to get most settings. I will test the settings to find out which ones aren’t moved automatically. For such settings I will create sections of the form [Office 2000 AddReg] in an input for to ScanState. A section [Office 2000 RegFile] will be created to fix all registry keys that point to files, such as the custom dictionary. LoadState will not need any extra input files since all the right data should end up in migrate.inf.

The section migfilter.inf describes how the registry keys in this section are filtered.

If any office settings are not going to be migrated, I will list them here.

I will put a list of office registry keys that reference files here as I discover them.

Office

97

2000

95

10. Move Email Client Settings

Email client settings will be moved the same way office settings are moved. The section migfilter.inf describes how the registry keys in this section are filtered.

Mail Clients
Outlook 98

Outlook 97

Outlook 2000

Outlook Express 4.0

Outlook Express 5.0

11. Move Internet Explorer Settings

IE settings will be moved the same way office settings are moved. The section migfilter.inf describes how the registry keys in this section are filtered.

Internet Explorer
4.0

5.0

3.0

12. Declarative Extension

The input format for declarative extensions is specified above under the chapter [Copy This State]. ScanState will create a [Copied State] section in migrate.inf. It will contain the same lines as the [Copy This State] section. For each addreg section in the put file, there will be a section in migrate.inf containing the actual registry key from the client machine. Each delreg, renreg, and regfile section will be copied directly into migrate.inf. LoadState will load the contents of those sections into its registry filtering code. They will be applied as any keys are written to the registry. Additionally, for each regfile section, there will be a section of the same name with the word Filenames added. That section will list each regkey referenced under regfile and the value (ie, actual file name) for the key. These sections will be used as input to compute the destination path for those files.

13. Executable Extension

The input format for the executable extensions is specified above under the chapter [Run These Commands]. ScanState will create a section [Ran Commands] in the migrate.inf. It will contain a line for each command that was executed of the form label=file1,file2,... It will be used to compute the arguments to pass to the commands run by LoadState.

14. MigFilter.inf

Currently I am planning on using the same format as the win9x to Windows 2000 upgrade INF files. Here is the only description of that format.

file:\\orville\razzle\src\setup\inf\win4\inf\usermig.inx

The filtering will follow the rules described in usermig.inx with the following exceptions.

· The [Win9x Data Conversion] section will have lines of the form key=function rather then function=key. This makes all the sections have the key name first which greatly simplifies parsing the sections.

· The [Suppress Win9x Settings] section will have lines of the form key= rather then key. Then makes all the sections have the key name followed by an equals which greatly simplifies parsing the sections.

Confidential

2
5
User Settings Migration Design

Preliminary Draft: 11/12/1999

