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Introduction 

This book explains how to write device drivers for the newest members of the Microsoft Windows family of operating systems 
using the Windows Driver Model (WDM). In this Introduction, I'll explain who should be reading this book, the organization 
of the book, and how to use the book most effectively. You'll also find a note on errors and a section on other resources you can 
use to learn about driver programming. Looking ahead, Chapter 1 explains how the two main branches of the Windows family 
operate internally, what a WDM device driver is, and how it relates to the rest of Windows. 

Who Should Read This Book 

I've aimed this book at experienced programmers who don't necessarily know anything about writing device drivers for 
Windows operating systems. This book is for you if you want to learn how to do that. To succeed at driver writing, you will 
need to understand the C programming language very well because WDM drivers are written in C. You'll also need to be 
exceptionally able to tolerate ambiguity and to reverse-engineer portions of the operating system because a good deal of trial 
and error in the face of incomplete or inaccurate information is required. 

Writing a WDM driver is much like writing a kernel-mode driver for Windows NT4.0. It's a bit easier because you don't have 
to detect and configure your own hardware. Ironically, it's simultaneously harder because correctly handling Plug and Play and 
power management is fiendishly difficult. If you've written kernel-mode drivers for Windows NT, you'll have no trouble at all 
reading this book. You'll also be glad to have some code samples that you can cut and paste to deal with the aforementioned 
fiendishly difficult areas. 

Writing a WDM driver is completely unlike writing a virtual device driver (VxD) for Windows 3.0 and its successors, a UNIX 
driver, or a real-mode driver for MS-DOS. If your experience lies in those areas, expect to work hard learning this new 
technology. Nonetheless, I think programming WDM drivers is easier than programming those other drivers because you have 
more rules to follow, leading to fewer choices between confusing alternatives. Of course, you have to learn the rules before you 
can benefit from that fact. 

If you already own a copy of the first edition of this book and are wondering whether you should buy this revised edition, 
here's a bit of information to help you decide. Windows XP and Windows Me made few changes in the way you develop 
drivers for Windows 2000 and Windows 98, respectively. The main reason we decided to revise this book is that so many 
changes had accumulated on my update/errata Web page. This edition does, of course, explain some of the new bells and 
whistles that Windows XP brings with it. It contains more explicit advice about writing robust, secure drivers. It also, frankly, 
explains some things much better than the first edition does. 

Chapter 1 has some information that will be useful to development managers and others who need to plan hardware projects. 
It's very embarrassing to be brought up short near the end of a hardware development project by the realization that you need a 
driver. Sometimes you'll be able to find a generic driver that will handle your hardware. Often, however, such a driver won't 
exist and you'll need to write one yourself. I hope to convince you managers in the first chapter that writing drivers is pretty 
hard and deserves your attention earlier rather than later. When you're done reading that chapter, by the way, give the book to 
the person who's going to carry the oar. And buy lots more copies. (As I told one of my college friends, you can always use the 
extra copies as dining room chair extenders for a young family.) 

Organization of This Book 

After teaching driver programming seminars for many years, I've come to understand that people learn things in fundamentally 
different ways. Some people like to learn a great deal of theory about something and then learn how to apply that theory to 
practical problems. Other people like to learn practical things first and then learn the general theory. I call the former approach 
deductive and the latter approach inductive. I personally prefer an inductive approach, and I've organized this book to suit that 
style of learning. 

My aim is to explain how to write device drivers. Broadly speaking, I want to provide the minimum background you'll need to 
write an actual driver and then move on to more specialized topics. That "minimum background" is pretty extensive, however; 
it consumes seven chapters. Once past Chapter 7, you'll be reading about topics that are important but not necessarily on the 
fall line that leads straight downhill to a working driver. 

Chapter 1, "Beginning a Driver Project," as I've mentioned, describes WDM device drivers and how they relate to Windows 
itself. Along the way, I'll relate the story of how we got to where we are today in operating system and driver technology. The 
chapter also explains how to choose the kind of driver you need, provides an overview and checklist specifically for 
development managers, and addresses the issue of binary compatibility. 

Chapter 2, "Basic Structure of a WDM Driver," explains the basic data structures that Windows 2000 uses to manage I/O 
devices and the basic way your driver relates to those data structures. I'll discuss the driver object and the device object. I'll 
also discuss how you write two of the subroutines—the DriverEntry and AddDevice routines—that every WDM driver 
package contains. 
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Chapter 3, "Basic Programming Techniques," describes the most important service functions you can call on to perform 
mundane programming tasks. In that chapter, I'll discuss error handling, memory management, and a few other miscellaneous 
tasks. 

Chapter 4, "Synchronization," discusses how your driver can synchronize access to shared data in the multitasking, 
multiprocessor world of Windows XP. You'll learn the details about interrupt request level (IRQL) and about various 
synchronization primitives that the operating system offers for your use. 

Chapter 5, "The I/O Request Packet," introduces the subject of input/output programming, which of course is the real reason 
for this book. I'll explain where I/O request packets come from, and I'll give an overview of what drivers do with them when 
they follow what I call the "standard model" for IRP processing. I'll also discuss the knotty subject of IRP queuing and 
cancellation, wherein accurate reasoning about synchronization problems becomes crucial. 

Chapter 6, "Plug and Play for Function Drivers," concerns just one type of I/O request packet, namely IRP_MJ_PNP. The Plug 
and Play Manager component of the operating system sends you this IRP to give you details about your device's configuration 
and to notify you of important events in the life of your device. 

Chapter 7, "Reading and Writing Data," is where we finally get to write driver code that performs I/O operations. I'll discuss 
how you obtain configuration information from the PnP Manager and how you use that information to prepare your driver for 
"substantive" IRPs that read and write data. I'll present two simple driver sample programs as well: one for dealing with a PIO 
device and one for dealing with a bus-mastering DMA device. 

Chapter 8, "Power Management," describes how your driver participates in power management. I think you'll find, as I did, 
that power management is pretty complicated. Unfortunately, you have to participate in the system's power management 
protocols, or else the system as a whole won't work right. Luckily, the community of driver writers already has a grand 
tradition of cutting and pasting, and that will save you. 

Chapter 9, "I/O Control Operations," contains a discussion of this important way for applications and other drivers to 
communicate "out of band" with your driver. 

Chapter 10, "Windows Management Instrumentation," concerns a scheme for enterprisewide computer management in which 
your driver can and should participate. I'll explain how you can provide statistical and performance data for use by monitoring 
applications, how you can respond to standard WMI controls, and how you can alert controlling applications of important 
events when they occur. 

Chapter 11, "Controller and Multifunction Devices," discusses how to write a driver for a device that embodies multiple 
functions, or multiple instances of the same function, in one physical device. 

Chapter 12, "The Universal Serial Bus," describes how to write drivers for USB devices. 

Chapter 13, "Human Interface Devices," explains how to write a driver for this important class of devices. 

Chapter 14, "Specialized Topics," describes system threads, work items, error logging, and other special programming topics. 

Chapter 15, "Distributing Device Drivers," tells you how to arrange for your driver to get installed on end user systems. You'll 
learn the basics of writing an INF file to control installation, and you'll also learn some interesting and useful things to do with 
the system registry. This is where to look for information about WHQL submissions too. 

Chapter 16, "Filter Drivers," discusses when you can use filter drivers to your advantage and how to build and install them. 

Appendix A, "Coping with Cross-Platform Incompatibilities," explains how to determine which version of the operating 
system is in control and how to craft a binary-compatible driver. 

Appendix B, "Using WDMWIZ.AWX," describes how to use my Visual C++ application wizard to build a driver. 
WDMWIZ.AWX is not intended to take the place of a commercial toolkit. Among other things, that means that it's not easy 
enough to use that you can dispense with documentation. 

Driver Security and Reliability 

Software security and reliability is everybody's job. Those of us who write drivers have a special responsibility because our 
code runs in the trusted kernel. When our code crashes, it usually takes the whole system with it. When our code has a trap 
door, a hacker can squeeze through to take over the whole system and, perhaps, the enterprise it serves. It behooves all of us to 

take these issues seriously. If we don't, real people can suffer economic and physical injury. 

Because of the seriousness of security issues in driver programming, this edition uses a special icon to highlight areas that 
are especially important to driver reliability and security. 

The Driver Verifier component of the operating system performs a variety of checks on a driver—if we ask it to. The 
Windows Hardware Quality Laboratory (WHQL) will run your driver with all sorts of Driver Verifier tests enabled, so 

you might as well beat them to it by enabling Driver Verifier as soon as your driver is minimally functional. We'll use this icon 
to mark discussions of how the Driver Verifier can help you debug your driver. 
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Sample Files 

You can find sample files for this book at the Microsoft Press Web site at http://www.microsoft.com/mspress/books/6262.asp. 
Clicking the Companion Content link takes you to a page from which you can download the sa mples. You can also find the 
files on the book's companion CD. 

This book’s companion content contains a great many sample drivers and test programs. I crafted each sample with a view 
toward illustrating a particular issue or technique that the text discusses. Each of the samples is, therefore, a “toy” that you 
can’t just ship after changing a few lines of code. I wrote the samples this way on purpose. Over the years, I've observed that 
programmer-authors tend to build samples that illustrate their prowess at overcoming complexity rather than samples that teach 
beginners how to solve basic problems, so I won’t do that to you. Chapter 7 and Chapter 12 have some drivers that work with 
“real” hardware, namely development boards from the makers of a PCI chip set and a USB chip set. Apart from that, however, 
all the drivers are for nonexistent hardware. 

In nearly every case, I built a simple user-mode test program that you can use to explore the operation of the sample driver. 
These test programs are truly tiny: they contain just a few lines of code and are concerned with only whatever point the driver 
sample attempts to illustrate. Once again, I think it’s better to give you a simple way to exercise the driver code that I assume 
you’re really interested in instead of trying to show off every MFC programming trick I’ve ever learned. 

You’re free to use all the sample code in this book in your own projects without paying me or anyone else a royalty. (Of course, 
you must consult the detailed license agreement at the end of this book—this paraphrase is not intended to override that 
agreement in any way.) Please don’t ship GENERIC.SYS to your customers, and please don't ship a driver that calls functions 
from GENERIC.SYS. The GENERIC.CHM help file in the companion content contains instructions on how to rename 
GENERIC to something less, well, generic. I intend readers to ship WDMSTUB.SYS and the AutoLaunch.exe modules, but 
I’ll ask you to execute a royalty-free license agreement before doing so. Simply e-mail me at waltoney@oneysoft.com, and I’ll 
tell you what to do. The license agreement basically obligates you to ship only the latest version of these components with an 
installation program that will prevent end users from ending up with stale copies. 

About the Companion CD 

The CD that comes with this book contains the complete source code and an executable copy of each sample. To access those 
files, insert the companion CD in your computer’s CD-ROM drive, and make a selection from the menu that appears. If the 
AutoRun feature isn’t enabled on your system (if a menu doesn’t appear when you insert the disc in your computer’s CD-ROM 
drive), run StartCD.exe in the root folder of the companion CD. Installing the sample files on your hard disk requires 
approximately 50 MB of disk space. 

The companion CD also contains a few utility programs that you might find useful in your own work. Open the file 
WDMBOOK.HTM in your Web browser for an index to the samples and an explanation of how to use these tools. 

The setup program on the CD gives you the option to install all the samples on your own disk or to leave them on the CD. 
However, setup will not actually install any kernel-mode components on your system. Setup will ask your permission to add 
some environment variables to your system. The build procedure for the samples relies on these environment variables. They 
will be correctly set immediately on Windows XP and the next time you reboot Windows 98/Windows Me. 

If your computer runs both Windows XP and Windows 98/Windows Me, I recommend performing a full install under both 
operating systems so that the registry and the environment are correctly set up in both places. Run the setup program from the 
installed sample directory the second time too, to avoid useless file copying. It isn’t necessary or desirable to specify different 
target directories for the two installations. 

Each sample includes an HTML file that explains (very briefly) 
what the sample does, how to build it, and how to test it. I 
recommend that you read the file before trying to install the 
sample because some of the samples have unusual installation 
requirements. Once you’ve installed a sample driver, you’ll find 
that the Device Manager has an extra property page from which 
you can view the same HTML file, as shown here: 

How the Samples Were Created 

There’s a good reason why my sample drivers look as though 
they all came out of a cookie cutter: they did. Faced with so 
many samples to write, I decided to write a custom application 
wizard. The wizard functionality in Microsoft Visual C++ 
version 6.0 is almost up to snuff for building a WDM driver 
project, so I elected to depend on it. The wizard is named 
WDMWIZ.AWX, and you’ll find it in the companion content. 
I’ve documented how to use it in Appendix B. Use it, if you 
want, to construct the skeletons for your own drivers. But be 
aware that this wizard is not of product grade—it’s intended to 
help you learn about writing drivers rather than to replace or compete with a commercial toolkit. Be aware too that you need to 
change a few project settings by hand because the wizard support is only almost what’s needed. Refer to the 
WDMBOOK.HTM in the root directory of the companion CD for more information. 
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Building the Samples 

I vastly prefer using the Microsoft Visual Studio 6.0 integrated development environment for driver projects. If you share this 
preference, you can follow suit when you work with my samples. The WDMBOOK.HTM file in the companion content 
contains detailed instructions about how to set up the development environment. I’m deliberately not repeating those 
instructions here because they may change in the future. Each sample also includes a standard SOURCES file for use with the 
Driver Development Kit (DDK) build environments, in case your preference lies in that direction. 

Updates to the Samples 

At my Web site,http://www.oneysoft.com, you’ll find a page concerning service packs for the sample drivers. In the three years 
since the first edition was printed, I issued about a dozen service packs. Service packs fix bugs and offer new samples. If you 
install my sample drivers, I recommend that you also install each new service pack as it comes out. 

If you want to find out when a new service pack is available, you can fill out a simple online form to be added to my mailing 
list. First edition subscribers needn’t reregister, by the way: you’re all grandfathered in. 

GENERIC.SYS 

A WDM driver contains a great deal of code that you could call boilerplate for handling Plug and Play and power management. 
This code is long. It’s boring. It’s easy to get wrong. My samples all rely on what amounts to a kernel-mode DLL named 
GENERIC.SYS. WDMWIZ.AWX will build a project that uses GENERIC.SYS or that doesn’t, as you specify. 
GENERIC.CHM in the companion content details the support functions that GENERIC.SYS exports, in case you want to use 
them yourself. 

The downside to my using GENERIC all over the place is that I managed to obscure how some crucial things occur in the 
driver. The drivers that use GENERIC delegate all of the IRP_MJ_PNP (see Chapter 6) and IRP_MJ_POWER (see Chapter 8) 
handling to GENERIC, which then calls back to driver-specific routines to handle details. The following table describes the 
important callback functions. 

IRP Type Callback Function Purpose 

IRP_MJ_PNP  StartDevice  
Start the device (map memory registers, connect interrupt, and so 
on). 

  StopDevice  
Halt device and release I/O resources (unmap memory registers, 
disconnect interrupt, and so on). 

 RemoveDevice  
Undo steps performed in AddDevice (disconnect from lower device 
object, delete device object, and so on). 

 OkayToStop  
(Optional) Is it OK to stop this device now (used while processing 
IRP_MN_QUERY_STOP_DEVICE)? 

 OkayToRemove  
(Optional) Is it OK to remove this device now (used while processing 
IRP_MN_QUERY_REMOVE_DEVICE)? 

 FlushPendingIo  
(Optional) Take any required action to force pending operations to 
finish in the near future. 

IRP_MJ_POWER  QueryPower  
(Optional) Is a proposed change in device power OK (used while 
processing IRP_MN_QUERY_POWER)? 

 SaveDeviceContext  
(Optional) Save any device context that will be lost during a period of 
low power. 

 RestoreDeviceContext  (Optional) Restore device context after a period of low power. 

 GetDevicePowerState  
(Optional) Get device power state corresponding to a given system 
power state. 

System Requirements 

To run the sample programs in the companion content, you’ll need a computer running Windows 98 Second Edition, Windows 
Me, Windows 2000, Windows XP, or any later version of Windows. Some of the samples require a USB port and an EZ-USB 
development kit from Cypress Semiconductors. Two of the samples require an ISA expansion slot and an S5933-DK 
development board (or equivalent) from Applied Micro Circuits Corporation. 

To build the sample programs, you’ll need a set of software tools that will change over time whenever I issue service packs. 
The file WDMBOOK.HTM describes the requirements and will be updated when requirements change. At the time this book 
is published, you’ll need the following: 

 The Microsoft Windows .NET DDK. 

 Microsoft Visual Studio 6.0. Any edition will do, and it doesn’t matter whether you’ve installed any of the service packs. 
When you’re building the driver samples, you’ll be using just the integrated development environment provided by 
Visual Studio. The compiler and other build tools will be coming from the DDK. 

 For one of the samples only (PNPMON), the Windows 98 DDK. 
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If you have to use Windows 98 or Windows Me as your only build and test environment, you’ll also need to obtain a copy of 
the Windows DDK for a pre-.NET platform. Microsoft denied me permission to distribute a version of the resource compiler 
that would work on Windows 98/Windows Me or a cross-platform-compatible version of USBD.LIB. Grab these from 
wherever you can find them before Microsoft stops supporting earlier versions of the DDK. Bear in mind that drivers built on 
Windows 98/Windows Me might not run on Windows 2000 and later platforms due to an error in checksum computation in the 
image helper DLL. 

Support 

Every effort has been made to ensure the accuracy of this book and the contents of the companion content. Microsoft Press 
provides corrections for books through the World Wide Web at the following address: 

http://www.microsoft.com/mspress/support 

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a question or an issue that you might 
have, go to: 

http://www.microsoft.com/mspress/support/search.asp 

If you have comments, questions, or ideas regarding this book or the companion content, or questions that aren’t answered by 
querying the Knowledge Base, please send them to Microsoft Press by e-mail to: 

mspinput@microsoft.com 

Or by postal mail to: 

Microsoft Press 
Attn: 
Programming Microsoft SQL Server 2000 with Microsoft Visual Basic .NET 
Editor 
One Microsoft Way 
Redmond, WA 98052-6399 

 

Please note that product support is not offered through the preceding mail address. For product support information, please 
visit the Microsoft Support Web site at: 

http://support.microsoft.com 

Note on Errors 

Despite heroic attention to detail, I and the editors at Microsoft Press let a few errors slip by from my original manuscript to 
the finished first edition of this book. I overlooked a few technical things, slipped up on some others, and learned about still 
others after the book was in print. My personal favorite was the “Special Sauce” layer in Figure 3-1, which was a typically 
lame attempt to introduce humor into the editorial process that went awry when the original draft of the figure made it into the 
finished book. At any rate, my errata/update Web page has grown to about 30 printed pages, and my desire to start over at zero 
was one of the main reasons for this edition. 

But, sigh, there will still be corrections and updates to be made to this edition too. I’ll continue to publish updates and errata at 
http://www.oneysoft.com for at least the next couple of years. I recommend you go there first and often to stay up-to-date. And 
please send me your comments and questions so that I can correct as many errors as possible. 

Other Resources  

This book shouldn’t be the only source of information you use to learn about driver programming. It emphasizes the features 
that I think are important, but you might need information I don’t provide, or you might have a different way of learning than I 
do. I don’t explain how the operating system works except insofar as it bears on what I think you need to know to effectively 
write drivers. If you’re a deductive learner, or if you simply want more theoretical background, you might want to consult one 
of the additional resources listed next. If you’re standing in a bookstore right now trying to decide which book to buy, my 
advice is to buy all of them: a wise craftsperson never skimps on his or her tools. Besides, you can never tell when a young 
dinner guest may need help reaching the table. 

Books Specifically About Driver Development  

Art Baker and Jerry Lozano, The Windows 2000 Device Driver Book: A Guide for Programmers, 2nd edition (Prentice Hall, 
2001). Quite readable. Some errors survive from the first edition. 

Edward N. Dekker and Joseph M. Newcomer, Developing Windows NT Device Drivers: A Programmer’s Handbook 
(Addison-Wesley, 1999). A fine book with a fine sense of humor. Written just before WDM came out, so not much coverage of 
that. 

Rajeev Nagar, Windows NT File System Internals: A Developer’s Guide (O’Reilly & Associates, 1997). Nothing at all to do 
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with WDM, but the only book that attempts to explain the internals of the Windows NT file system. 

Peter G. Viscarola and W. Anthony Mason, Windows NT Device Driver Development (Macmillan, 1998). Technical and 
authoritative. A WDM edition is supposedly coming someday. 

Other Useful Books  

Michael Howard and David LeBlanc, Writing Secure Code (Microsoft Press, 2001). Exceptionally detailed and readable 
discussion of security issues in applications. I’ll be reiterating many of Writing Secure Code’s lessons throughout this book. 

Gary Nebbett, Windows NT/2000 Native API Reference (MacMillan, 2000). Detailed exposition of the underdocumented native 
API. 

David A. Solomon and Mark E. Russinovich, Inside Windows 2000, Third Edition (Microsoft Press, 2000). All about the 
operating system. How come they got their pictures on the cover, inquiring minds would like to know? 

Magazines  

Old editions of Microsoft Systems Journal and Windows Developer Journal contain many articles about driver programming. 
Both of the magazines have gone to that Great Publishers Clearinghouse in the sky, however, and I can’t speak for how well or 
often their successors cover driver issues. 

Online Resources  

The comp.os.ms-windows.programmer.nt.kernel-mode newsgroup provides a forum for technical discussion on kernel-mode 
programming issues. On the msnews.microsoft.com server, you can subscribe to microsoft.public.development.device.drivers. 
You can find mailing list servers for file system and driver programming issues by going to http://www.osr.com.  

Roedy Green, “How to Write Unmaintainable Code” (2002), which I found at http://www.mindprod.com/unmain.html. 

Seminars and Development Services  

I conduct public and on-site seminars on WDM programming. Visit my Web site at http://www.oneysoft.com for more 
information and schedules. I also develop custom drivers for hardware manufacturers all over the world. I promise this is the 
only commercial in the book. (Not counting the back cover of the book, that is, which is full of statements aimed at getting you 
to buy the book and whose correspondence, if any, to reality will become susceptible to evaluation only if you succumb and 
actually read the book.) 

About the Author  

Walter Oney has 35 years of experience in systems-level programming and has been teaching Windows device driver classes 
for 10 years. He was a contributing editor to Microsoft Systems Journal during its heyday and is a Microsoft MVP. He has 
written several books, including Systems Programming for Windows 95 and the first edition of Programming the Microsoft 
Windows Driver Model. In his free time, he’s a committed jogger, a fan of classical dance, and an amateur oboist. He and his 
wife, Marty, live in Boston, Massachusetts.  
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Chapter 1  

1 Beginning a Driver Project  

In this chapter, I’ll present an overview of the driver writing process. My own personal involvement with personal computing 
dates from the mid-1980s, when IBM introduced its personal computer (PC) with MS-DOS as the operating system. Decisions 
made by IBM and Microsoft that long ago are still being felt today. Consequently, a bit of historical perspective will help you 
understand how to program device drivers. 

Windows Driver Model (WDM) drivers run in two radically different operating system environments, and I’ll provide an 
overview of the architecture of these environments in this chapter. Windows XP, like Windows 2000 and earlier versions of 
Windows NT, provides a formal framework in which drivers play well-defined roles in carrying out I/O operations on behalf of 
applications and other drivers. Windows Me, like Windows 9x and Windows 3.x before it, is a more freewheeling sort of 
system in which drivers play many roles. 

The first step in any driver project is to decide what kind of driver you need to write—if indeed you need to write one at all. 
I’ll describe many different classes of device in this chapter with a view toward helping you make this decision. 

Finally I’ll round out the chapter with a management checklist to help you understand the scope of the project. 

1.1 A Brief History of Device Drivers  

The earliest PCs ran on an Intel processor chip that provided addressability for 640 KB of “real” memory—so called because 
the memory was really there in the form of memory chips that the processor addressed directly by means of a 20-bit physical 
address. The processor itself offered just one mode of operation, the so-called real mode, wherein the processor combined 
information from two 16-bit registers to form a 20-bit memory address for every instruction that referenced memory. The 
computer architecture included the concept of expansion slots that brave users could populate with cards purchased separately 
from the computer itself. The cards themselves usually came with instructions about how to set DIP switches (later, jumpers 
between pins) in order to make slight changes in I/O configuration. You had to keep a map of all the I/O and interrupt 
assignments for your PC in order to do this correctly. MS-DOS incorporated a scheme based on the CONFIG.SYS file whereby 
the operating system could load real-mode device drivers for original equipment and for add-on cards. Inevitably, these drivers 
were programmed in assembly language and relied to a greater or lesser extent on the INT instruction to talk to the BIOS and 
to system services within MS-DOS itself. End users perforce learned how to invoke applications via commands. Application 
programmers perforce learned how to program the video display, keyboard, and mouse directly because neither MS-DOS nor 
the system BIOS did so adequately. 

Later on, IBM introduced the AT class of personal computers based on the Intel 80286 processor. The 286 processor added a 
protected mode of operation wherein programs could address up to 16 MB of main and extended memory using a 24-bit 
segment address (specified indirectly via a segment selector in a 16-bit segment register) and a 16-bit offset. MS-DOS itself 
remained a real-mode operating system, so several software vendors built DOS extender products to allow programmers to 
migrate their real-mode applications to protected mode and gain access to all the memory that was becoming available on the 
market. Since MS-DOS was still in charge of the computer, driver technology didn’t advance at this point. 

The watershed change in PC technology occurred—in my view, anyway—when Intel released the 80386 processor chip. The 
386 allowed programs to access up to 4 GB of virtual memory addressed indirectly via page tables, and it allowed programs to 
easily use 32-bit quantities for arithmetic and addressing. There was a flurry of activity in the software tools market as 
compiler vendors and DOS extender companies raced to capture the ever-growing volume of large applications hungry for 
memory and processor speed. Device drivers were still 16-bit real-mode programs written in assembly language and installed 
via CONFIG.SYS, and end users still needed to manually configure cards. 

Subsequent advances in processor chips have been mainly in the area of performance and capacity. As I write this chapter, 
computers operating faster than 1 GHz with 50-GB hard drives and 512 MB (or more) of memory are commonplace and easily 
affordable by large segments of the population. 

In parallel with the evolution of the platform, another evolution was occurring with operating system technology. Most people, 
even including programmers of system software, prefer graphics-based ways of interacting with computers to character-based 
ways. Microsoft was late to the graphical operating system party—Apple beat them with the first Macintosh—but has come to 
dominate it with the Windows family of operating systems. In the beginning, Windows was just a graphical shell for real-mode 
MS-DOS. Over time, a collection of Windows drivers for common hardware, including the display, keyboard, and mouse, 
came into existence. These drivers were executable files with a .DRV extension, and they were written primarily in assembly 
language. 

With the advent of the AT class of computer, Microsoft added a protected-mode version of Windows. Microsoft ported the 
real-mode .DRV drivers to protected mode as well. Hardware other than the standard Windows devices (the display, keyboard, 
and mouse) continued to be handled by real-mode MS-DOS drivers. 
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Finally, some time after PCs with 386 processors became widely available, Microsoft released Windows 3.0, whose 
“enhanced” mode of operation took full advantage of the virtual memory capabilities. Even so, it was still true that every new 
piece of hardware needed a real-mode driver. But now there was a big problem. To support multitasking of MS-DOS 
applications (a requirement for end user acceptance of Windows), Microsoft had built a virtual-machine operating system. 
Each MS-DOS application ran in its own virtual machine, as did the Windows graphical environment. But all those MS-DOS 
applications were trying to talk directly to hardware by issuing IN and OUT instructions, reading and writing device memory, 
and handling interrupts from the hardware. Furthermore, two or more applications sharing processor time could be issuing 
conflicting instructions to the hardware. They would certainly conflict over use of the display, keyboard, and mouse, of course. 

To allow multiple applications to share physical hardware, Microsoft introduced the concept of a virtual device driver, whose 
broad purpose is to “virtualize” a hardware device. Such drivers were generically called VxDs because most of them had 
filenames fitting the pattern VxD.386, where x indicated the type of device they managed. Using this concept, Windows 3.0 
created the appearance of virtual machines outfitted with separate instances of many hardware devices. But the devices 
themselves continued, in most cases, to be driven by real-mode MS-DOS drivers. A VxD’s role was to mediate application 
access to hardware by first intercepting the application’s attempts to touch the hardware and briefly switching the processor to 
a sort of real mode called virtual 8086 mode to run the MS-DOS driver. 

Not to put too fine a face on it, mode switching to run real-mode drivers was a hack whose only virtue was that it allowed for a 
reasonably smooth growth in the hardware platform and operating system. Windows 3.0 had many bugs whose root cause was 
that very feature of the architecture. Microsoft’s answer was to be OS/2, which it was developing in harmony (using a 
twentieth-century definition of harmony, that is) with IBM. 

Microsoft’s version of OS/2 became Windows NT, whose first public release was in the early 1990s, shortly after Windows 3.1. 
Microsoft built Windows NT from the ground up with the intention of making it a durable and secure platform on which to run 
Windows. Drivers for Windows NT used a brand-new kernel-mode technology that shared practically nothing with the other 
two driver technologies then in vogue. Windows NT drivers used the C programming language almost exclusively so that they 
could be recompiled for new CPU architectures without requiring any source changes. 

Another thing happened along about the Windows 3.0 time frame that has an important ramification for us today. Windows 3.0 
formally divided the software world into user-mode and kernel-mode programs. User-mode programs include all the 
applications and games that people buy computers to run, but they are not to be trusted to deal robustly (or even honestly) with 
hardware or with other programs. Kernel-mode programs include the operating system itself and all the device drivers that 
people like you and me write. Kernel-mode programs are fully trusted and can touch any system resource they please. 
Although Windows 3.0 segregated programs by their mode of operation, no version of Windows (not even Windows Me) has 
actually put memory protection in place to yield a secure system. Security is the province of Windows NT and its successors, 
which do forbid user-mode programs from seeing or changing the resources managed by the kernel. 

Computing power didn’t really advance to the point where an average PC could run Windows NT well until quite recently. 
Microsoft therefore had to keep the Windows product line alive. Windows 3.0 grew into 3.1, 3.11, and 95. Starting with 
Windows 95, if you wanted to write a device driver, you would write something called a VxD that was really just a 32-bit 
protected-mode driver. Also starting with Windows 95, end users could throw away their I/O maps because the new Plug and 
Play feature of the operating system identified and configured hardware somewhat automatically. As a hardware maker, though, 
you might have had to write a real-mode driver to keep happy those of your customers who weren’t upgrading from Windows 
3.1. Meanwhile, Windows NT grew into 3.5, 4.0. You would have needed a third driver to support these systems, and not much 
of your programming knowledge would have been portable between projects. 

Enough was enough. Microsoft designed a new technology for device drivers, the Windows Driver Model (WDM), and put it 
into Windows 98 and Windows Me, the successors to Windows 95. They also put this technology into Windows 2000 and 
Windows XP, the successors to Windows NT 4.0. By the time of Windows Me, MS-DOS was present only by courtesy and 
there was finally no need for a hardware maker to worry about real-mode device drivers. Because WDM was, at least by 
original intention, practically the same on all platforms, it became possible to write just one driver. 

To summarize, we stand today in the shadow of the original PC architecture and of the first versions of MS-DOS. End users 
still occasionally have to open the skin of their PCs to install expansion cards, but we use a different and more powerful bus 
nowadays than we did originally. Plug and Play and the Peripheral Component Interconnect (PCI) bus have largely removed 
the need for end users to keep track of I/O, memory, and interrupt request usage. There is still a BIOS in place, but its job 
nowadays is mostly to boot the system and to inform the real operating system (Windows XP or Windows Me) about 
configuration details discovered along the way. And WDM drivers still have the file extension .SYS, just as the first real-mode 
drivers did. 
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1.2 An Overview of the Operating Systems  

The Windows Driver Model provides a framework for device drivers that operate in two operating systems—Windows 
98/Windows Me and Windows 2000/Windows XP. As discussed in the preceding historical summary, these two pairs of 
operating systems are the products of two lines of parallel evolution. In fact, I’ll refer to the former pair of systems with the 
abbreviation “98/Me” to emphasize their common heritage and to the latter pair simply as XP. Although to the end user these 
two pairs of systems are similar, they work quite differently on the inside. In this section, I’ll present a brief overview of the 
two systems. 

1.2.1 Windows XP Overview  

 

Figure 1-1. Windows XP architecture. 

Figure 1-1 is a highly abbreviated functional diagram of the Windows XP operating system, wherein I emphasize the features 
that are important to people who write device drivers. Every platform where Windows XP runs supports two modes of 
execution. Software executes either in user mode or in kernel mode. A user-mode program that wants to, say, read some data 
from a device would call an application programming interface (API) such as ReadFile. A subsystem module such as 
KERNEL32.DLL implements this API by invoking a native API function such as NtReadFile. Refer to the sidebar for more 
information about the native API. 

We often say that NtReadFile is part of a system component called the I/O Manager. The term I/O Manager is perhaps a little 
misleading because there isn’t any single executable module with that name. We need a name to use when discussing the 
“cloud” of operating system services that surrounds our own driver, though, and this name is the one we usually pick. 

Many routines serve a purpose similar to NtReadFile. They operate in kernel mode in order to service an application’s request 
to interact with a device in some way. They all validate their parameters, thereby ensuring that they don’t inadvertently allow a 
security breach by performing an operation, or accessing some data, that the user-mode program wouldn’t have been able to 
perform or access by itself. They then create a data structure called an I/O request packet (IRP) that they pass to an entry point 
in some device driver. In the case of an original ReadFile call, NtReadFile would create an IRP with the major function code 
IRP_MJ_READ (a constant in a DDK [Driver Development Kit] header file). Processing details at this point can differ, but a 
likely scenario is for a routine such as NtReadFile to return to the user-mode caller with an indication that the operation 
described by the IRP hasn’t finished yet. The user-mode program might continue about its business and then wait for the 
operation to finish, or it might wait immediately. Either way, the device driver proceeds independently of the application to 
service the request.  



- 4 - Beginning a Driver Project | Chapter 1 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

The Native API 
NtReadFile is part of the so-called native API of Windows XP. The reason there is a native API is historical. The 
original Windows NT operating system contained a number of subsystems to implement the semantics of 
several new and existing operating systems. There was an OS/2 subsystem, a POSIX subsystem, and a Win32 
subsystem. The subsystems were implemented by making user-mode calls to the native API, which was itself 
implemented in kernel mode.  

A user-mode DLL named (rather redundantly, I’ve always thought) NTDLL.DLL implements the native API for 
Win32 callers. Each entry in this DLL is a thin wrapper around a call to a kernel-mode function that actually 
carries out the function. The call uses a platform-dependent system service interface to transfer control across 
the user-mode/kernel-mode boundary. On newer Intel processors, this system service interface uses the 
SYSENTER instruction. On older Intel processors, the interface uses the INT instruction with the function code 
0x2E. On other processors, still other mechanisms are employed. You and I don’t need to understand the details 
of the mechanism to write drivers, though. All we need to understand is that the mechanism allows a program 
running in user mode to call a subroutine that executes in kernel mode and that will eventually return to its 
user-mode caller. No thread context switching occurs during the process: all that changes is the privilege level 
of the executing code (along with a few other details that only assembly language programmers would ever 
notice or care about). 

The Win32 subsystem is the one most application programmers are familiar with because it implements the 
functions one commonly associates with the Windows graphical user interface. The other subsystems have 
fallen by the wayside over time. The native API remains, however, and the Win32 subsystem still relies on it in 
the way I’m describing by example in the text. 

A device driver may eventually need to actually access its hardware to perform an IRP. In the case of an IRP_MJ_READ to a 
programmed I/O (PIO) sort of device, the access might take the form of a read operation directed to an I/O port or a memory 
register implemented by the device. Drivers, even though they execute in kernel mode and can therefore talk directly to their 
hardware, use facilities provided by the hardware abstraction layer (HAL) to access hardware. A read operation might involve 
calling READ_PORT_UCHAR to read a single data byte from an I/O port. The HAL routine uses a platform-dependent 
method to actually perform the operation. On an x86 computer, the HAL would use the IN instruction; on some other future 
Windows XP platform, it might perform a memory fetch. 

After a driver has finished with an I/O operation, it completes the IRP by calling a particular kernel-mode service routine. 
Completion is the last act in processing an IRP, and it allows the waiting application to resume execution. 

1.2.2 Windows 98/Windows Me Overview  
Figure 1-2 shows one way of thinking about Windows 98/Windows Me. The operating system kernel is called the Virtual 
Machine Manager (VMM) because its main job is to create one or more virtual machines that share the hardware of a single 
physical machine. The original purpose of a virtual device driver in Windows 3.0 was to virtualize a specific device in order to 
help the VMM create the fiction that each virtual machine has a full complement of hardware. The same VMM architecture 
introduced with Windows 3.0 is in place today in Windows 98/Me, but with a bunch of accretions to handle new hardware and 
32-bit applications. 

Figure 1-2. Windows 98/Me architecture. 

Windows 98/Me doesn’t handle I/O operations in quite as orderly a way as Windows XP. There are major differences in the 
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way Windows 98/Me handles operations directed to disks, to communication ports, to keyboards, and so on. There are also 
fundamental differences between how Windows services 32-bit and 16-bit applications. See Figure 1-3. 

Figure 1-3. I/O requests in Windows 98/Me 

The left column of Figure 1-3 shows how 32-bit applications get I/O done for them. An application calls a Win32 API such as 
ReadFile, which a system DLL such as KERNEL32.DLL services. But applications can use ReadFile only for reading disk 
files, communication ports, and devices that have WDM drivers. For any other kind of device, an application must use some ad 
hoc mechanism based on DeviceIoControl. The system DLL contains different code than its Windows XP counterpart too. The 
user-mode implementation of ReadFile, for example, validates parameters—a step done in kernel mode on Windows XP—and 
uses one or another special mechanism to reach a kernel-mode driver. There’s one special mechanism for disk files, another for 
serial ports, another for WDM devices, and so on. The mechanisms all use software interrupt 30h to transition from user mode 
to kernel mode, but they’re otherwise completely different. 

The middle column of Figure 1-3 shows how 16-bit Windows-based applications (Win16 applications) perform I/O. The right 
column illustrates the control flow for MS-DOS-based applications. In both cases, the user-mode program calls directly or 
indirectly on the services of a user-mode driver that, in principle, could stand alone by itself on a bare machine. Win16 
programs perform serial port I/O by indirectly calling a 16-bit DLL named COMM.DRV, for example. (Up until Windows 95, 
COMM.DRV was a stand-alone driver that hooked IRQ 3 and 4 and issued IN and OUT instructions to talk directly to the 
serial chip.) A virtual communications device driver (VCD) intercepts the port I/O operations in order to guard against having 
two different virtual machines access the same port simultaneously. In a weird way of thinking about the process, these 
user-mode drivers use an “API” interface based on interception of I/O operations. “Virtualizing” drivers like VCD service 
these pseudo-API calls by simulating the operation of hardware. 

Whereas all kernel-mode I/O operations in Windows XP use a common data structure (the IRP), no such uniformity exists in 
Windows 98/Me, even after an application's request reaches kernel mode. Drivers of serial ports conform to a port driver 
function-calling paradigm orchestrated by VCOMM.VXD. Disk drivers, on the other hand, participate in a packet-driven 
layered architecture implemented by IOS.VXD. Other device classes use still other means. 

When it comes to WDM drivers, though, the interior architecture of Windows 98/Me is necessarily very similar to that of 
Windows XP. A system module (NTKERN.VXD) contains Windows-specific implementations of a great many Windows NT 
kernel support functions. NTKERN creates IRPs and sends them to WDM drivers in just about the same way as Windows XP. 
WDM drivers can almost not tell the difference between the two environments, in fact. 

Despite the similarities in the WDM environments of Windows XP and Windows 98/Me, however, there are some significant 
differences. You'll find compatibility notes throughout this book that highlight the differences that matter to most driver 
programmers. Appendix A outlines a scheme whereby you can use the same binary driver on Windows 2000/XP and Windows 
98/Me despite these differences. 
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1.3 What Kind of Driver Do I Need?  

Many kinds of drivers form a complete Windows XP system. Figure 1-4 diagrams several of them. 

Figure 1-4. Types of device drivers in Windows XP.  

 A virtual device driver (VDD) is a user-mode component that allows MS-DOS-based applications to access hardware on 
Intel x86 platforms. A VDD relies on the I/O permission mask to trap port access, and it essentially simulates the 
operation of hardware for the benefit of applications that were originally programmed to talk directly to hardware on a 
bare machine. Don’t confuse a Windows XP VDD with a Windows 98/Me VxD. Both are called virtual device drivers, 
and they serve the same basic purpose of virtualizing hardware, but they employ completely different software 
technology. 

 The category kernel-mode drivers includes many subcategories. A PnP driver is a kernel-mode driver that understands 
the Plug and Play protocols of Windows XP. To be perfectly accurate, this book concerns PnP drivers and nothing else. 

 A WDM driver is a PnP driver that additionally understands power-management protocols and is source compatible with 
both Windows 98/Me and Windows 2000/XP. Within the category of WDM driver, you can also distinguish between 
class drivers (which manage a device belonging to some well-defined class of device) and minidrivers (which supply 
vendor-specific help to a class driver), and between monolithic function drivers (which embody all the functionality 
needed to support a hardware device) and filter drivers (which “filter” the I/O operations for a particular device in order 
to add or modify behavior). 

 File system drivers implement the standard PC file system model (which includes the concepts of a hierarchical directory 
structure containing named files) on local hard disks or over network connections. These, too, are kernel-mode drivers. 

 Legacy device drivers are kernel-mode drivers that directly control a hardware device without help from other drivers. 
This category essentially includes drivers for earlier versions of Windows NT that are running without change in 
Windows XP. 

Not all the distinctions implied by this classification scheme are important all of the time. As I remarked in my previous book 
Systems Programming for Windows 95 (Microsoft Press, 1996), you haven’t stumbled into a nest of pedants by buying my 
book. In particular, I’m not always going to carefully distinguish between WDM and PnP drivers in the rigorous way implied 
by the preceding taxonomy. The distinction is a phenomenological one based on whether a given driver runs both in Windows 
2000/XP and Windows 98/Me. Without necessarily using the technically exact term, I’ll be very careful to discuss system 
dependencies when they come up hereafter. 

Faced with all these categories of driver, a new driver writer or manager would understandably be confused about what sort of 
driver he or she needs for a given piece of hardware. For some devices, you don’t need to write any driver at all because 
Microsoft already ships a generic driver that will work with your device. Here are some examples: 

 SCSI-compatible or ATAPI-compatible mass storage device 

 Any device connected to a USB port that is fully compatible with an approved specification, provided you’re happy with 
any limitations in the standard Microsoft driver 

 Standard serial or PS/2 mouse 

 Standard keyboard 
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 Video adapter without acceleration or other special features 

 Standard parallel or serial port 

 Standard floppy disk drive 

1.3.1 WDM Drivers  
For most devices that Microsoft doesn’t directly support, you need to write a WDM driver. You will decide first whether to 
write a monolithic function driver, a filter driver, or just a minidriver. You’ll probably never need to write a class driver 
because Microsoft would like to reserve that specialty to itself in order to serve the broadest range of hardware makers. 

WDM Minidrivers  

The basic rule of thumb is that if Microsoft has written a class driver for the type of device you’re trying to support, you should 
write a minidriver to work with that class driver. Your minidriver is nominally in charge of the device, but you’ll call 
subroutines in the class driver that basically take over the management of the hardware and call back to you to do various 
device-dependent things. The amount of work you need to do in a minidriver varies tremendously from one class of device to 
another. 

Here are some examples of device classes for which you should plan to write a minidriver: 

 Non-USB human input devices (HID), including mice, keyboards, joysticks, steering wheels, and so on. If you have a 
USB device for which the generic behavior of HIDUSB.SYS (the Microsoft driver for USB HID devices) is insufficient, 
you would write a HIDCLASS minidriver too. The main characteristic of these devices is that they report user input by 
means of reports that can be described by a descriptor data structure. For such devices, HIDCLASS.SYS serves as the 
class driver and performs many functions that Direct-Input and other higher layers of software depend on, so you’re 
pretty much stuck with using HIDCLASS.SYS. This is hard enough that I’ve devoted considerable space to it later in this 
book. As an aside, HIDUSB.SYS is itself a HIDCLASS minidriver. 

 Windows Image Acquisition (WIA) devices, including scanners and cameras. You will write a WIA minidriver that 
essentially implements some COM-style interfaces to support vendor-specific aspects of your hardware. 

 Streaming devices, such as audio, DVD, and video devices, and software-only filters for multimedia data streams. You 
will write a stream minidriver. 

 Network interface devices on nontraditional buses, such as USB or 1394. For such a device, you will write a Network 
Driver Interface Specification (NDIS) miniport driver “with a WDM lower edge,” to use the same phrase as the DDK 
documentation on this subject. Such a driver is unlikely to be portable between operating systems, so you should plan on 
writing several of them with minor differences to cope with platform dependencies. 

 Video cards. These devices require a video minidriver that works with the video port class driver. 

 Printers, which require user-mode DLLs instead of kernel-mode drivers. 

 Batteries, for which Microsoft supplies a generic class driver. You would write a minidriver (which the DDK calls a 
miniclass driver, but it’s the same thing) to work with BATTC.SYS. 

WDM Filter Drivers  

You may have a device that operates so closely to a recognized standard that a generic Microsoft driver is almost adequate. In 
some situations, you may be able to write a filter driver that modifies the behavior of the generic driver just enough to make 
your hardware work. This doesn’t happen very frequently, by the way, because it’s often not easy to change the way a generic 
driver accesses the hardware. I’ll discuss filter drivers in great detail in Chapter 16. 

Monolithic WDM Function Drivers  

With some exceptions to be noted in the next section, most other types of device require what I’ve called here a monolithic 
WDM function driver. Such a driver essentially stands alone and handles all the details of controlling your hardware. 

When this style of driver is appropriate, I recommend the following approach so that you can end up with a single binary that 
will work on Intel x86 platforms in all operating systems. First, build with the most recent DDK—I used a beta version of 
the .NET DDK for the samples in the companion content. You can use IoIsWdmVersionAvailable to decide which operating 
system you happen to be using. If you happen to be running in Windows 2000 or Windows XP, you can call 
MmGetSystemRoutineAddress to get a pointer to a Windows XP-only function. I also suggest shipping WDMSTUB.SYS, 
which is discussed in Appendix A, to define MmGetSystemRoutineAddress and other critical kernel functions in Windows 
98/Me; otherwise, your driver simply won’t load in Windows 98/Me because of undefined imports. 
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Here are some examples of devices for which you might write a monolithic WDM function driver: 

 Any kind of SmartCard reader except one attached to a serial port 

 Digital-to-analog converter 

 ISA card supporting proprietary identification tag read/write transducer 

More About Binary Compatibility 
Originally, WDM was to have been binary portable across all versions of Windows. Because of release schedules 
and second (and higher-order) thoughts, every release since Windows 98 has included support for more and 
more kernel functions that are useful, and sometimes even essential, for robust and convenient programming. 
An example is the IoXxxWorkItem family of functions, discussed in Chapter 14, which was added to Windows 
2000 and which must be used instead of the similar but less robust ExXxxWorkItem family. Unless you do 
something extra, a driver that calls IoXxxWorkItem functions simply won’t load in Windows 98/Me because the 
operating system doesn’t export the functions. MmGetSystemRoutineAddress is another function that didn’t 
make it into Windows 98/Me, unfortunately, so you can’t even make a run-time decision regarding which work 
item functions to call. As if this weren’t enough, the WHQL tests for all drivers flag calls to the ExXxxWorkItem 
functions.  

In Windows 98/Me, a VxD named NTKERN implements the WDM subset of kernel support functions. As 
discussed in more detail in Appendix A, NTKERN relies on defining new export symbols for use by the run-time 
loader. You can also define your own export symbols, which is how WDMSTUB manages to define missing 
symbols for use by the kind of binary-portable driver I’m advocating you build. 

The companion content for this book includes the WDMCHECK utility, which you can run on a Windows 98/Me 
system to check a driver for missing imports. If you’ve developed a driver that works perfectly in Windows XP, 
I suggest copying the driver to a Windows 98/Me system and running WDMCHECK first thing. If WDMCHECK 
shows that your driver calls some unsupported functions, the next thing to check is whether WDMSTUB 
supports those functions. If so, just add WDMSTUB to your driver package as shown in Appendix A. If not, either 
modify your driver or send me an e-mail asking me to modify WDMSTUB. Either way, you’ll eventually end up 
with a binary-compatible driver. 

1.3.2 Other Types of Drivers  
A few situations exist in which a monolithic WDM function driver won’t suffice because of architectural differences between 
Windows 98/Me and Windows 2000/XP. In the following cases, you would need to write two drivers: a WDM driver for 
Windows 2000/XP and a VxD driver for Windows 98/Me: 

 A driver for a serial port. The Windows 98/Me driver is a VxD that offers the VCOMM port driver interface at its upper 
edge, whereas the Windows 2000/XP driver is a WDM driver that offers a rich and rigidly specified IOCTL interface at 
its upper edge. The two upper-edge specifications have nothing in common. 

 A driver for a device connected to a serial port. The Windows 98/Me driver is a VxD that calls VCOMM in order to talk 
to the port. The Windows 2000/XP driver is a WDM driver that talks to SERIAL.SYS or some other serial port driver that 
implements the same IOCTL interface. 

 A driver for a nonstandard USB mass storage device. For Windows 98/Me, you’ll write a VxD that fits into the I/O 
Supervisor hierarchy of layered drivers. For Windows 2000/XP, you’ll write a monolithic WDM function driver that 
accepts SCSI Request Blocks at its upper edge and communicates with the USB device at its lower edge. 

 For two classes of device, Microsoft defined a portable driver architecture long before WDM: 

 Small Computer System Interface (SCSI) adapters use a “SCSI miniport” driver, which doesn’t use any of the standard 
kernel support functions and relies instead on a special API exported by SCSIPORT.SYS or SCSIPORT.VXD, as the case 
may be. The miniport is portable between systems. 

 Network interface cards use an “NDIS miniport driver,” which relies exclusively on a special API exported by NDIS.SYS 
or NDIS.VXD, as the case may be. At one time, NDIS miniport drivers were portable between systems, but portability 
has pretty much been lost by now. Network protocol drivers and so-called “intermediate” drivers that provide filtering 
functionality also orbit around NDIS. 
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1.3.3 Management Overview and Checklist 
If you’re a development manager, or if you’re otherwise responsible for delivering a hardware device to market, there are a few 
things you need to know about device drivers. You need to decide, first of all, whether you need a customized driver and, if so, 
what kind. The preceding section should help you with that decision, but you might want to hire an expert consultant for the 
limited purpose of advising you on that score. 

If your evaluation leads you to believe you need a custom driver, you then need to locate an appropriate programmer. The sad 
truth is that WDM driver programming is pretty hard, and only experienced (and expensive!) programmers are capable of 
doing it well. Some companies have cadres of driver programmers, but most can’t afford to. If you’re in the latter situation, 
your basic choice is between training someone who’s already on your staff, hiring a programmer who already has the necessary 
skills, engaging a consultant or contract programmer, or outsourcing the development to a company that specializes in driver 
programming. All of these alternatives have pluses and minuses, and you will have to weigh them based on your own unique 
needs. 

Driver programming should start as soon as there is a reasonably firm specification for how the hardware will work. You 
should expect to modify the specification in light of unpleasant discoveries during driver development, and you should also 
expect to iterate your hardware/firmware and driver design several times. Flexibility and a willingness to start over will really 
help you. 

You should also expect driver programming to last longer and cost more than you initially imagine. All software is subject to 
time and cost overruns. Additional overruns in this kind of programming stem from communication difficulties between the 
hardware and software people, from ambiguity in specifications and in the DDK documentation, from bugs in all the 
components, and from delays in engineering and production. 

In most cases, you’ll want to submit your hardware and software to the Windows Hardware Quality Lab (WHQL) in order to 
obtain a digital certificate that will streamline installation and provide an entrée to one of Microsoft’s logo programs. You’ll do 
most of the testing yourself, and you’ll need specific computer setups to do it, so find out early what the testing requirements 
are for your class of device to avoid being caught short at the end of your project. (Just as an example, testing a USB device 
requires you to have a variety of audio hardware in a specific topology, even if your device has nothing to do with audio or any 
other kind of streaming media.) 

Also prepare your business infrastructure for working with WHQL. At a minimum, this will require obtaining a Data Universal 
Numbering System (DUNS) number from Dun and Bradstreet (or providing equivalent proof of business organization) and a 
digital signature certificate from Verisign. As of this writing, the DUNS number was free, but the Verisign certificate was not. 
And working through all the processes of multiple companies will take time. 

Pay attention early on to how end users will install the driver software. Most vendors of add-on hardware prefer to ship a 
custom installation program on a CD-ROM, and writing the installer is a lengthy process that can consume an experienced 
programmer for several weeks. Web-based driver repositories are quite common and require special attention to installation 
issues. 

Drivers can provide statistical and other management information in two ways. The Windows Management Instrumentation 
(WMI) subsystem provides a language- and transport-independent pathway for various sorts of binary data. Microsoft has 
established standard WMI classes for certain types of device, and your own industry subgroup may have established other 
standards to which your driver should conform. Chapter 10 contains information on how to conform to the Microsoft standards, 
but finding out how to fit in with the rest of the industry may be a job for your company’s trade group representatives. 

The second way of providing management information is by means of the system event log, which has been part of Windows 
NT since the beginning and which gives administrators a quick way of learning about exceptional conditions that have arisen 
in the recent past. Your driver should report events that an administrator would be interested in and can do something about. 
Whoever programs your driver should consult with an experienced system administrator to decide which events to log, so as to 
avoid cluttering the log with routine and unexceptional information. Your driver executable file will also probably include the 
text of messages in a special multilingual message resource, and it would be a good idea to have a trained writer compose that 
text. (I’m not saying your driver programmer can’t do this, but he or she may not be the best choice.) 

In addition to a driver, you may need control panel or other configuration software. The driver programmer and a specialist in 
user interaction should work together to build these components. Since they’ll be installed along with the driver, they’ll be part 
of the package that WHQL digitally signs, so they need to be finished at the same time as the driver. 

Finally, don’t treat your drivers as unimportant details. Having a good driver with a smooth installation is at least as important 
as the exterior appearance of the product. To put it simply, if your driver crashes the operating system, reviewers will alert the 
public, and anyone who doesn’t read the reviews will be irately returning your product to the stores. You won’t have any repeat 
business from people whose systems have crashed, even once, because of your driver. So a myopic decision to short-fund 
driver development could easily have a dramatic, negative effect on your bottom line for years to come. This advice is 
especially important for hardware manufacturers in developing countries, where managers have a tendency to look for every 
possible way to cut costs. I suggest that driver development is one place where cost-based decision making is inappropriate. 
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To summarize, plan your project with the following milestones in mind: 

 Evaluation of required driver and selection of programming talent 

 Programming specification for hardware complete enough for driver work to begin 

 Prototype hardware available for driver testing 

 Driver and hardware/firmware working together as originally intended 

 Installation (INF) file tested on all operating systems 

 Control panels and other ancillary software done 

 WMI and event log functionality done and tested 

 WHQL self-tests passed and submission made 

 Custom installation program done (not part of WHQL submission) 

 Ready to burn discs and ship product! 
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Chapter 2  

2 Basic Structure of a WDM Driver  

In the first chapter, I described the basic architecture of the Microsoft Windows XP and Microsoft Windows 98/Me operating 
systems. I explained that the purpose of a device driver is to manage a piece of hardware on behalf of the system, and I 
discussed how to decide what kind of driver your hardware will need. In this chapter, I’ll describe more specifically what 
program code goes into a WDM driver and how different kinds of drivers work together to manage hardware. I’ll also present 
an overview of how the system finds and loads drivers. 

2.1 How Drivers Work  

A useful way to think of a complete driver is as a container for a collection of subroutines that the operating system calls to 
perform various operations that relate to your hardware. Figure 2-1 illustrates this concept. Some routines, such as the 
DriverEntry and AddDevice routines, as well as dispatch functions for a few types of I/O Request Packet (IRP), will be present 
in every such container. Drivers that need to queue requests might have a StartIo routine. Drivers that perform direct memory 
access (DMA) transfers will have an AdapterControl routine. Drivers for devices that generate hardware interrupts will have an 
interrupt service routine (ISR) and a deferred procedure call (DPC) routine. Most drivers will have dispatch functions for 
several types of IRP besides the three that are shown in Figure 2-1. One of your jobs as the author of a WDM driver, therefore, 
is to select the functions that need to be included in your particular container. 

Figure 2-1. A driver considered as a package of subroutines. 

I’ll show you in this chapter how to write the DriverEntry and AddDevice routines for a monolithic function driver, one of the 
types of WDM driver this book discusses. As you’ll learn in later chapters, filter drivers also have DriverEntry and AddDevice 
routines that are similar to what you’ll see here. As you’ll also learn, minidrivers have very different DriverEntry routines and 
may or may not have AddDevice routines, all depending on how the author of the associated class driver designed the class 
driver interface. 

2.1.1 How Applications Work  
It’s worth a moment to reflect on the implications of the “package of subroutines” model for a driver by contrasting it with the 
“main program and helpers” model that applies to an application. Consider this program, which is among the first that many of 
us learn to write: 
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int main(int argc, char* argv[]) 
  { 
  printf("Hello, world!\n"); 
  return 0; 
  } 

This program consists of a main program named main and a library of helper routines, most of which we don’t explicitly call. 
One of the helper routines, printf, prints a message to the standard output file. After compiling the source module containing 
the main program and linking it with a runtime library containing printf and the other helper routines needed by the main 
program, you would end up with an executable module that you might name HELLO.EXE. I’ll go so far as to call this module 
by the grandiose name application because it’s identical in principle to every other application now in existence or hereafter 
written. You could invoke this application from a command prompt this way: 

C:\>hello 
Hello, world! 
 
C:\> 

Here are some other common facts about applications: 

 Some of the helper routines an application uses come from a static library, from which the linkage editor extracts them as 
part of the build process. printf is one of these functions. 
 
Other helper routines are dynamically linked from system dynamic-link libraries (DLLs). For these routines, the linkage 
editor places special import references in the executable file, and the runtime loader fixes up these references to point to 
the actual system code. As a matter of fact, the entire Win32 API used by application programs is dynamically linked, so 
you can see that dynamic linking is a very important concept in Windows programming. 

 Executable files can contain symbolic information that allows debuggers to associate runtime addresses with the original 
source code. 

 Executable files can also contain resource data, such as dialog box templates, text strings, and version identification. 
Placing this sort of data within the file is better than using separate auxiliary files because it avoids the problem of having 
mismatched files. 

The interesting thing about HELLO.EXE is that once the operating system gives it control, it doesn’t return until it’s 
completely done with the task it performs. That’s a characteristic of every application you’ll ever use in Windows, actually. In 
a console-mode application such as HELLO, the operating system initially transfers control to an initialization function that’s 
part of the compiler’s runtime library. The initialization function eventually calls main to do the application’s work. 

Graphical applications in Windows work in much the same way except that the main program is named WinMain instead of 
main. WinMain operates a message pump to receive and dispatch messages to window procedures. It returns to the operating 
system when the user closes the main window. If the only Windows applications you ever build use Microsoft Foundation 
Classes (MFC), the WinMain procedure is buried in the library where you might never spot it, but rest assured it’s there. 

More than one application can appear to be running simultaneously on a computer, even a computer that has just one central 
processing unit. The operating system kernel contains a scheduler that gives short blocks of time, called time slices, to all the 
threads that are currently eligible to run. An application begins life with a single thread and can create more if it wants. Each 
thread has a priority, given to it by the system and subject to adjustment up and down for various reasons. At each decision 
point, the scheduler picks the highest-priority eligible thread and gives it control by loading a set of saved register images, 
including an instruction pointer, into the processor registers. A processor interrupt accompanies expiration of the thread’s time 
slice. As part of handling the interrupt, the system saves the current register images, which can be restored the next time the 
system decides to redispatch the same thread. 

Instead of just waiting for its time slice to expire, a thread can block each time it initiates a time-consuming activity in another 
thread until the activity finishes. This is better than spinning in a polling loop waiting for completion because it allows other 
threads to run sooner than they would if the system had to rely solely on expiration of a time slice to turn its attention to some 
other thread. 

Now, I know you already knew what I just said. I just wanted to focus attention on the fact that an application is, at bottom, a 
selfish thread that grabs the CPU and tries to hold on until it exits and that the operating system scheduler acts like a 
playground monitor to make a bunch of selfish threads play well together. 

2.1.2 Device Drivers  
Like HELLO.EXE, a driver is also an executable file. It has the file extension .SYS, but structurally the disk file looks exactly 
like any 32-bit Windows or console-mode application. Also like HELLO.EXE, a driver uses a number of helper routines, many 
of which are dynamically linked from the operating system kernel or from a class driver or other supporting library. A driver 
file can have symbolic debugging information and resource data too. 
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The System Is in Charge  

Unlike HELLO.EXE, however, a driver doesn’t contain a main program. Instead, it contains a collection of subroutines that the 
system can call when the system thinks it’s time to. To be sure, these subroutines can use helper subroutines in the driver, in 
static libraries, and in the operating system, but the driver isn’t in charge of anything except its own hardware: the system is in 
charge of everything else, including the decisions about when to run your driver code. 

Here’s a brief snapshot of how the operating system might call subroutines in your driver: 

1. The user plugs in your device, so the system loads your driver executable into virtual memory and calls your DriverEntry 
routine. DriverEntry does a few things and returns. 

2. The Plug and Play Manager (PnP Manager) calls your AddDevice routine, which does a few things and returns. 

3. The PnP Manager sends you a few IRPs. Your dispatch function processes each IRP in turn and returns. 

4. An application opens a handle to your device, whereupon the system sends you another IRP. Your dispatch routine does a 
little work and returns. 

5. The application tries to read some data, whereupon the system sends you an IRP. Your dispatch routine puts the IRP in a 
queue and returns. 

6. A previous I/O operation finishes by signaling a hardware interrupt to which your driver is connected. Your interrupt 
routine does a little bit of work, schedules a DPC, and returns. 

7. Your DPC routine runs. Among other things, it removes the IRP you queued at step 5 and programs your hardware to 
read the data. Then the DPC routine returns to the system. 

8. Time passes, during which the system makes many other brief calls into your subroutines. 

9. Eventually, the end user unplugs your device. The PnP Manager sends you some IRPs, which you process and return. The 
operating system calls your DriverUnload routine, which usually just does a tiny amount of work and returns. Then the 
system removes your driver code from virtual memory. 

At each step of this process, the system decided that your driver needed to do something, be it initializing, processing an IRP, 
handling an interrupt, or whatever. So the system selected the appropriate subroutine within your driver. Your routine did what 
it was supposed to do and returned to the system. 

Threads and Driver Code  

Another way in which drivers are dissimilar to applications is that the system doesn’t create a special thread in which to run the 
driver code. Instead, a driver subroutine executes in the context of whatever thread happens to be currently active at the time 
the system decides to call that subroutine. 

It’s not possible to predict which thread will be current at the time a hardware interrupt occurs. As an analogy, imagine that 
you’re watching a carousel at an amusement park. The horses on the carousel are like threads in a running system. Call the 
horse that’s nearest to you the “current” horse. Now suppose you decide to take a picture with your camera the next time you 
overhear someone say the phrase, “That’s awesome, dude.” (In my experience at amusement parks, this does not entail a long 
wait.) You wouldn’t expect to be able to predict which horse would be “current” in your snapshot. Which of all the eligible 
threads that happens to be executing at the time of hardware interrupt is likewise not predictable. We call this an arbitrary 
thread, and we speak of running in an arbitrary thread context. 

The system is often running in an arbitrary thread context when it decides to call a subroutine in your driver. The thread 
context would be arbitrary—for example, when your interrupt service routine gets control. If you schedule a DPC, the thread in 
which your DPC routine runs will be arbitrary. If you queue IRPs, your StartIo routine will be called in an arbitrary thread. In 
fact, if some driver outside your own stack sends you an IRP, you have to assume that the thread context is arbitrary. Such 
would normally be the case for a storage driver since a file system driver will be the agent ultimately responsible for doing 
reads and writes. 

The system doesn’t always execute driver code in an arbitrary thread context. A driver can create its own system threads by 
calling PsCreateSystemThread. A driver can also ask the system to call it back in the context of a system thread by scheduling 
a work item. In these situations, we consider the thread context to be nonarbitrary. I’ll discuss the mechanics of system threads 
and work items in Chapter 14. 

Another situation in which the thread context is not arbitrary occurs when an application issues an API call that causes the I/O 
Manager to send an IRP directly to a driver. You can know when you write a driver whether or not this will be the case with 
respect to each type of IRP you handle. 

You care whether the thread context is arbitrary for two reasons. First, a driver shouldn’t block an arbitrary thread: it would be 
unfair to halt one thread while you carry out activities that benefit some other thread. 

The second reason applies when a driver creates an IRP to send to some other driver. As I’ll discuss more fully in Chapter 5, 
you need to create one kind of IRP (an asynchronous IRP) in an arbitrary thread, but you might create a different kind of IRP (a 
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synchronous IRP) in a nonarbitrary thread. The I/O Manager ties the synchronous kind of IRP to the thread within which you 
create the IRP. It will cancel the IRP automatically if that thread terminates. The I/O Manager doesn’t tie an asynchronous IRP 
to any particular thread, though. The thread in which you create an asynchronous IRP may have nothing to do with the I/O 
operation you’re trying to perform, and it would be incorrect for the system to cancel the IRP just because that thread happens 
to terminate. So it doesn’t. 

Symmetric Multiprocessing  

Windows XP uses a so-called symmetric model for managing computers with multiple central processors. In this model, each 
CPU is treated exactly like every other CPU with respect to thread scheduling. Each CPU has its own current thread. It’s 
perfectly possible for the I/O Manager, executing in the context of the threads running on two or more CPUs, to call 
subroutines in your driver simultaneously. I’m not talking about the sort of fake simultaneity with which threads execute on a 
single CPU—on the time scale of the computer, the threads are really taking turns. Rather, on a multiprocessor machine, 
different threads really do execute at the same time. As you can imagine, simultaneous execution leads to exacting 
requirements for drivers to synchronize access to shared data. In Chapter 4, I’ll discuss the various synchronization methods 
that you can use for this purpose. 

2.2 How the System Finds and Loads Drivers  

I emphasized in the preceding section how the operating system is in overall charge of the computer and calls on device drivers 
to do small amounts of work with respect to hardware. Drivers have a similarly passive role in the process that causes them to 
be loaded in the first place. It will help you understand the rest of the book if you understand right away how the system 
detects hardware, determines which driver to load, and then configures the driver to manage the hardware. The system uses 
two slightly different methods, depending on whether the hardware is Plug and Play compatible: 

 A Plug and Play device has an electronic signature that the system can detect. For Plug and Play devices, a system bus 
driver detects the existence of the hardware and reads the signature to determine what kind of hardware it is. Thereafter, 
an automatic process based on the registry and INF files allows the system to load the right driver. 

 A legacy device does not have any electronic signature, so the system can’t detect it automatically. The end user must 
therefore initiate the “detection” process by invoking the Add New Hardware Wizard, which ends with the system 
knowing that a certain new piece of hardware exists. Thereafter, the system uses the same automatic registry-and-INF-file 
process that’s used for Plug and Play devices to load the right driver. 

Whichever method the system uses to detect hardware and load a driver, the driver itself will be a WDM driver that reacts 
passively to calls from the operating system. On this point, WDM drivers contrast sharply with kernel-mode drivers for earlier 
versions of Windows NT and with VxD drivers prior to Windows 95. In those environments, you had to somehow arrange for 
the system to load your driver. Your driver would then scan hardware buses looking for its own hardware and decide whether 
to stay resident or not. In addition, your driver had to determine which I/O resources to use and take steps to prevent other 
drivers from taking the same resources. 

2.2.1 Device and Driver Layering  
Before I can make sense of the hardware detection and driver loading processes, I need to explain the concept of driver 
layering illustrated in Figure 2-2. In the figure, the left column represents an upwardly linked stack of kernel 
DEVICE_OBJECT structures, all of which relate to how the system manages a single piece of hardware. The middle column 
represents the collection of device drivers that have roles to play in the management. The right column illustrates the flow of 
an IRP through the drivers. 

In the Windows Driver Model, each hardware device has at least two device drivers. One of these drivers, which we call the 
function driver, is what you’ve always thought of as being the device driver. It understands all the details about how to make 
the hardware work. It’s responsible for initiating I/O operations, for handling the interrupts that occur when those operations 
finish, and for providing a way for the end user to exercise any control over the device that might be appropriate. 

NOTE  
A monolithic WDM function driver is a single executable file with dynamic links to NTOSKRNL.EXE, which 
contains the kernel of the operating system, and HAL.DLL, which contains the hardware abstraction layer 
(HAL). A function driver can dynamically link to other kernel-mode DLLs too. In situations in which Microsoft has 
provided a class driver for your type of hardware, your minidriver will dynamically link to the class driver. The 
combination of minidriver and class driver adds up to a single function driver. You may see pictures in which 
things called class drivers appear to be above or below a minidriver. I prefer to think of those so-called “class” 
drivers as free-standing filter drivers and to use the term class driver solely for drivers that are next to 
minidrivers, reached by means of explicit imports, and acting as partners that the minidriver willingly brings 
into play. 
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Figure 2-2. Layering of device objects and drivers in the Windows Driver Model.  

We call the other of the two drivers that every device has the bus driver. It’s responsible for managing the connection between 
the hardware and the computer. For example, the bus driver for the Peripheral Component Interconnect (PCI) bus is the 
software component that actually detects that your card is plugged into a PCI slot and determines the requirements your card 
has for I/O-mapped or memory-mapped connections with the host. It’s also the software that turns on or off the flow of 
electrical current to your card’s slot. 

Some devices have more than two drivers. We use the generic term filter driver to describe these other drivers. Some filter 
drivers simply watch as the function driver performs I/O. More often, a software or hardware vendor supplies a filter driver to 
modify the behavior of an existing function driver in some way. Upper filter drivers see IRPs before the function driver, and 
they have the chance to support additional features that the function driver doesn’t know about. Sometimes an upper filter can 
perform a workaround for a bug or other deficiency in the function driver or the hardware. Lower filter drivers see IRPs that 
the function driver is trying to send to the bus driver. (A lower filter is below the function driver in the stack but still above the 
bus driver.) In some cases, such as when the device is attached to a universal serial bus (USB), a lower filter can modify the 
stream of bus operations that the function driver is trying to perform. 

Referring once again to Figure 2-2, notice that each of the four drivers shown for a hypothetical device has a connection to one 
of the DEVICE_OBJECT structures in the left column. The acronyms used in the structures are these: 

 PDO stands for physical device object. The bus driver uses this object to represent the connection between the device and 
the bus. 

 FDO stands for function device object. The function driver uses this object to manage the functionality of the device. 

 FiDO stands for filter device object. A filter driver uses this object as a place to store the information it needs to keep 
about the hardware and its filtering activities. (The early beta releases of the Windows 2000 DDK used the term FiDO, 
and I adopted it then. The DDK no longer uses this term because, I guess, it was considered too frivolous.) 

What Is a Bus? 
I’ve already used the terms bus and bus driver pretty freely without explaining what they mean. For purposes 
of the WDM, a bus is anything that you can plug a device into, either physically or metaphorically.  

This is a pretty broad definition. Not only does it include items such as the PCI bus, but it also includes a Small 
Computer System Interface (SCSI) adapter, a parallel port, a serial port, a USB hub, and so on—anything, in 
fact, that can have another device plugged into it. 

The definition also includes a notional root bus that exists only as a figment of our imagination. Think of the root 
bus as being the bus into which all legacy devices plug. Thus, the root bus is the parent of a non-PnP Industry 
Standard Architecture (ISA) card or of a SmartCard reader that connects to the serial port but doesn’t answer 
with a standard identification string to the serial port enumeration signals. We also consider the root bus to be 
the parent of the PCI bus—this is because the PCI bus does not itself announce its presence electronically, and 
the operating system therefore has to treat it like a legacy device. 

2.2.2 Plug and Play Devices  
To repeat what I said earlier, a Plug and Play device is one that has an electronic signature that a bus driver can interrogate to 
learn the identity of a device. Here are some examples of these signatures: 

 A PCI card has a configuration space that the PCI bus driver can read via dedicated memory or I/O port addresses. The 
configuration space contains vendor and product identification information. 

 A USB device returns a device descriptor in response to a standardized control-pipe transaction. The device descriptor 
contains vendor and product identification information. 
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 A Personal Computer Memory Card International Association (PCMCIA) device has attribute memory that the PCMCIA 
bus driver can read in order to determine the identity of the card. 

A bus driver for a Plug and Play bus has the ability to enumerate its bus by scanning all possible slots at start-up time. Drivers 
for buses that support hot plugging of devices during a session (as do USB and PCMCIA) also monitor some sort of hardware 
signal that indicates arrival of a new device, whereupon the driver reenumerates its bus. The end result of the enumeration or 
reenumeration process is a collection of PDOs. See point 1 in Figure 2-3. 

Figure 2-3. Installing a Plug and Play device.  

When a bus driver detects the insertion or removal of hardware, it calls IoInvalidateDeviceRelations to notify the PnP Manager 
that the bus’s population of child devices has changed. To obtain an updated list of the PDOs for the child devices, the PnP 
Manager sends an IRP to the bus driver. The major function code for this IRP is IRP_MJ_PNP, and the minor function code is 
IRP_MN_QUERY_DEVICE_RELATIONS, with a code indicating that the PnP Manager is looking for the so-called “bus” 
relations. This is point 2 in Figure 2-3. 

NOTE  
Each IRP has a major and a minor function code. The major function code indicates what sort of request the IRP 
contains. IRP_MJ_PNP is the major function code for requests that the PnP Manager makes. With some of the 
major function codes, including IRP_MJ_PNP, the minor function code is required to further specify the 
operation.In response to the bus relations query, the bus driver returns its list of PDOs. The PnP Manager can 
easily determine which of the PDOs represent devices that it hasn’t yet initialized. Let’s focus on the PDO for 
your hardware for the time being and see what happens next. 

The PnP Manager will send another IRP to the bus driver, this time with the minor function code IRP_MN_QUERY_ID. This is 
point 3 in Figure 2-3. In fact, the PnP Manager sends several such IRPs, each with an operand that instructs the bus driver to 
return a particular type of identifier. One of the identifiers, the device identifier, uniquely specifies the type of device. A device 
identifier is just a string, and it might look like one of these examples: 

PCI\VEN_102C&DEV_00E0&SUBSYS_00000000 
USB\VID_0547&PID_2125&REV_0002 
PCMCIA\MEGAHERTZ-CC10BT/2-BF05 

 

NOTE  
Each bus driver has its own scheme for formatting the electronic signature information it gathers into an 
identifier string. I’ll discuss the identifier strings used by common bus drivers in Chapter 15. That chapter is also 
the place to look for information about INF files and about where the various registry keys described in the text 
are in the registry hierarchy and what sorts of information are kept in the keys.The PnP Manager uses the device 
identifier to locate a hardware key in the system registry. For the moment, let’s assume that this is the first time 
your particular device has been plugged into the computer. In that case, there won’t yet be a hardware key for 
your type of device. This is where the setup subsystem steps in to figure out what software is needed to support 
your device. (See point 4 in Figure 2-3.) 
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The PnP Manager uses the device identifier to locate a hardware key in the system registry. For the moment, let’s assume that 
this is the first time your particular device has been plugged into the computer. In that case, there won’t yet be a hardware key 
for your type of device. This is where the setup subsystem steps in to figure out what software is needed to support your device. 
(See point 4 in Figure 2-3.) 

Installation instructions for all types of hardware exist in files with the extension .INF. Each INF contains one or more model 
statements that relate particular device identifier strings to install sections within that INF file. Confronted with brand-new 
hardware, then, the setup subsystem tries to find an INF file containing a model statement that matches the device identifier. It 
will be your responsibility to provide this file, which is why I labeled the box You that corresponds to this step. I’m being 
deliberately vague at this point about how the system searches for INF files and ranks the several model statements it’s likely 
to find. I’ll burden you with these details in Chapter 15, but it would be a bit much to do that just yet. 

When the setup subsystem finds the right model statement, it carries out the instructions you provide in an install section. 
These instructions probably include copying some files onto the end user’s hard drive, defining a new driver service in the 
registry, and so on. By the end of the process, the setup program will have created the hardware key in the registry and 
installed all of the software you provided. 

Now step back a few paragraphs and suppose that this was not the first time this particular computer had seen an instance of 
your hardware. For example, maybe we’re talking about a USB device that the user introduced to the system long ago and that 
the user is now reattaching to the system. In that case, the PnP Manager would have found the hardware key and would not 
have needed to invoke the setup program. So the PnP Manager would skip around all the setup processing to point 5 in Figure 
2-3. 

At this point, the PnP Manager knows there is a device and that your driver is responsible for it. If your driver isn’t already 
loaded in virtual memory, the PnP Manager calls the Memory Manager to map it in. The system doesn’t read the disk file 
containing your driver directly into memory. Instead, it creates a file mapping that causes the driver code and data to be fetched 
by paging I/O. The fact that the system uses a file mapping really doesn’t affect you much except that it has the side effect of 
making you be careful later on about when you allow your driver to be unmapped. The Memory Manager then calls your 
DriverEntry routine. 

Next the PnP Manager calls your AddDevice routine to inform your driver that a new instance of your device has been 
discovered. (See point 5 in Figure 2-3.) Then the PnP Manager sends an IRP to the bus driver with the minor function code 
IRP_MN_QUERY_RESOURCE_REQUIREMENTS. This IRP is basically asking the bus driver to describe the requirements 
your device has for an interrupt request line, for I/O port addresses, for I/O memory addresses, and for system DMA channels. 
The bus driver constructs a list of these resource requirements and reports them back. (See point 6 in Figure 2-3.) 

Finally the PnP Manager is ready to configure the hardware. It works with a set of resource arbitrators to assign resources to 
your device. If that can be done—and it usually can be—the PnP Manager sends an IRP_MJ_PNP to your driver with the 
minor function code IRP_MN_START_DEVICE. Your driver handles this IRP by configuring and connecting various kernel 
resources, following which your hardware is ready to use. 

Windows NT Drivers Contrasted 
The process described in the text for how Windows XP (and, indeed, Windows 2000, Windows 95, and all 
successors of Windows 95) finds and loads drivers requires the driver to be relatively passive. Windows NT 4.0 
and before worked quite differently. In those systems, you would have provided some sort of setup program to 
install your driver. Your setup program would have modified the registry to cause your driver to be loaded during 
the next system restart. At that time, the system would load your driver and call your DriverEntry routine.  

Your DriverEntry would have somehow determined which instances of your hardware were actually present. You 
might have scanned all possible slots of a PCI bus, for example, or assumed that each instance of your device 
corresponded to a subkey in the registry. 

After detecting your own hardware, your DriverEntry routine would go on to assign and reserve I/O resources 
and then to do the configuration and connection steps that a present-day WDM driver does. As you can see, 
then, WDM drivers have much less work to do to get started than did drivers for earlier versions of Windows NT. 

2.2.3 Legacy Devices  
I use the term legacy device to describe any device that isn’t Plug and Play, meaning that the operating system can’t detect its 
existence automatically. Let’s suppose your device fits this category. After purchasing your device, the end user will first 
invoke the Add New Hardware Wizard and will make a series of dialog selections to lead the setup program to an install 
section in an INF file. (See Figure 2-4, point 1.) 

The setup program follows the instructions in the install section by creating registry entries for use by the root enumerator 
(point 2 in Figure 2-4). The registry entries might include a logical configuration that lists the I/O resource requirements for the 
device (point 3). 

Finally the setup program instructs the end user to restart the system (point 4). The designers of the setup system expected that 
the end user would now need to follow the manufacturer’s directions to configure the card by setting jumpers or switches and 
would then need to insert the card into an expansion slot of a powered-down computer. 
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Figure 2-4. The detection process for a legacy device. 

Following the restart (or following the end user’s decision to bypass the restart), the root enumerator will scan the registry and 
find the newly added device. Thereafter, the process of loading your driver is nearly identical to that for a Plug and Play device. 
See Figure 2-5. 

NOTE  
Most of the sample drivers in the companion content are for fake hardware, and you install them as if the 
(nonexistent) hardware were a legacy device. One or two of the samples work with I/O ports and interrupts. 
The respective INF files contain LogConfig sections to cause the PnP Manager to assign these resources. If you 
install one of these drivers via the Add New Hardware Wizard, the system will think that a power-off restart is 
needed, but you don’t really need to restart. 

Figure 2-5. Loading a legacy driver. 

2.2.4 Recursive Enumeration  
In the preceding sections, I described how the system loads the correct driver for a single device. That description begs the 
question of how the system manages to load drivers for all the hardware in the computer. The answer is that it uses a recursive 
process. 
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In the first instance, the PnP Manager invokes the root enumerator to find all hardware that can’t electronically announce its 
presence—including the primary hardware bus (such as PCI). The root bus driver gets information about the computer from 
the registry, which was initialized by the Windows XP Setup program. Setup got the information by running an elaborate 
hardware detection program and by asking the end user suitable questions. Consequently, the root bus driver knows enough to 
create a PDO for the primary bus. 

The function driver for the primary bus can then enumerate its own hardware electronically. When a bus driver enumerates 
hardware, it acts in the guise of an ordinary function driver. Having detected a piece of hardware, however, the driver switches 
roles: it becomes a bus driver and creates a new PDO for the detected hardware. The PnP Manager then loads drivers for this 
device PDO, as previously discussed. It might happen that the function driver for the device enumerates still more hardware, in 
which case the whole process repeats recursively. The end result will be a tree like that shown in Figure 2-6, wherein a 
bus-device stack branches into other device stacks for the hardware attached to that bus. The dark-shaded boxes in the figure 
illustrate how one driver can wear an “FDO hat” to act as the function driver for its hardware and a “PDO hat” to act as the bus 
driver for the attached devices. 

2.2.5 Order of Driver Loading  
I said earlier that devices can have upper and lower filter drivers as well as a function driver. Two registry keys associated with 
the device contain information about filter drivers. The hardware key, which contains information about an instance of your 
hardware, can have UpperFilters and LowerFilters values that specify filter drivers for that instance. There is another registry 
key for the class to which the device belongs. For example, a mouse belongs to the Mouse class, which you could probably 
have figured out without me telling you. The class key can also contain UpperFilters and LowerFilters values. They specify 
filter drivers that the system will load for every device belonging to the class. 

Figure 2-6. Layering of recursively enumerated devices. 

No matter where it appears, an UpperFilters or LowerFilters value is of type REG_MULTI_SZ and can therefore contain one 
or more null-terminated Unicode string values. 

NOTE  
Windows 98/Me doesn’t support the REG_MULTI_SZ registry type and doesn’t fully support Unicode. In 
Windows 98/Me, the UpperFilters and LowerFilters values are REG_BINARY values that contain multiple 
null-terminated ANSI strings followed by an extra null terminator. 

It may be important in some situations to understand in what order the system calls drivers. The actual process of “loading” a 
driver entails mapping its code image into virtual memory, and the order in which that’s done is actually not very interesting. 
You might be interested, however, in knowing the order of calls to the AddDevice functions in the various drivers. (Refer to 
Figure 2-7.) 

1. The system first calls the AddDevice functions in any lower filter drivers specified in the device key for the device, in the 
order in which they appear in the LowerFilters value. 

2. Then the system calls AddDevice in any lower filter drivers specified in the class key. Again, the calls occur in the order 
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in which the drivers appear in the LowerFilters string. 

3. The system calls AddDevice in the driver specified by the Service value in the device key. This is the function driver. 

4. The system calls AddDevice for any upper filter drivers specified in the device key, in the order in which they appear in 
the UpperFilters data string. 

5. Finally the system calls AddDevice for any upper filter drivers specified in the class key, in the order in which they 
appear in the UpperFilters data string. 

As I explain later in this chapter, each AddDevice function creates a kernel DEVICE_OBJECT and links it into the stack rooted 
in the PDO. Therefore, the order of calls to AddDevice governs the order of device objects in the stack and, ultimately, the 
order in which drivers see IRPs. 

NOTE  
You might have noticed that the loading of upper and lower filters belonging to the class and to the device 
instance isn’t neatly nested as you might have expected. Before I knew the facts, I guessed that device-level 
filters would be closer to the function driver than class-level filters. 

Figure 2-7. Order of AddDevice calls 

2.2.6 IRP Routing  
The formal layering of drivers in the WDM facilitates routing IRPs from one driver to another in a predictable way. Figure 2-2 
illustrates the general idea: whenever the system wants to carry out an operation on a device, it sends an IRP to the topmost 
filter driver in the stack. That driver can decide to process the IRP, to pass the IRP down to the next level, or to do both. Each 
driver that sees the IRP makes the same decision. Eventually, the IRP might reach the bus driver in its PDO role. The bus 
driver does not usually pass the IRP any further, despite what Figure 2-6 might seem to imply. Rather, the bus driver usually 
completes the IRP. In some situations, the bus driver will pass the same IRP to the stack (the parent driver stack) in which it 
plays the FDO role. In other situations, the bus driver will create a secondary IRP and pass it to the parent driver stack. 

How the Device Stack Is Implemented  
I’ll show you the DEVICE_OBJECT data structure a bit later in this chapter. The opaque field AttachedDevice 
links device objects into a vertical stack. Starting with the PDO, each device object points to the object 
immediately above it. There is no documented downward pointer—drivers must keep track on their own of 
what’s underneath them. (In fact, IoAttachDeviceToDeviceStack does set up a downward pointer in a structure 
for which the DDK doesn’t have a complete declaration. It would be unwise to try to reverse-engineer that 
structure because it’s subject to change at any time.)  

The AttachedDevice field is purposely not documented because its proper use requires synchronization with 
code that might be deleting device objects from memory. You and I are allowed to call 
IoGetAttachedDeviceReference to find the topmost device object in a given stack. That function also increments 
a reference count that will prevent that object from being prematurely removed from memory. If you wanted to 
work your way down to the PDO, you could send your own device an IRP_MJ_PNP request with the minor 
function code IRP_MN_QUERY_DEVICE_RELATIONS and the Type parameter TargetDeviceRelation. The PDO’s 
driver will answer by returning the address of the PDO. It would be a great deal easier just to remember the PDO 
address when you first create the device object. 

Similarly, to know which device object is immediately underneath you, you need to save a pointer when you first 
add your object to the stack. Since each of the drivers in a stack will have its own unknowable way of 
implementing the downward pointers used for IRP dispatching, it’s not practical to alter the device stack once 
the stack has been created. 
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A few examples should clarify the relationship between FiDOs, FDOs, and PDOs. The first example concerns a read operation 
directed to a device that happens to be on a secondary PCI bus that itself attaches to the main bus through a PCI-to-PCI bridge 
chip. To keep things simple, let’s suppose there’s one FiDO for this device, as illustrated in Figure 2-8. You’ll learn in later 
chapters that a read request turns into an IRP with the major function code IRP_MJ_READ. Such a request would flow first to 
the upper FiDO and then to the function driver for the device. (That driver is the one for the device object marked FDOdev in 
the figure.) The function driver calls the HAL directly to perform its work, so none of the other drivers in the figure will see the 
IRP. 

Figure 2-8. The flow of a read request for a device on a secondary bus.  

A variation on the first example is shown in Figure 2-9. Here we have a read request for a device plugged into a USB hub that 
itself is plugged into the host controller. The complete device tree therefore contains stacks for the device, for the hub, and for 
the host controller. The IRP_MJ_READ flows through the FiDO to the function driver, which then sends one or more IRPs of a 
different kind downward to its own PDO. The PDO driver for a USB device is USBHUB.SYS, and it forwards the IRPs to the 
topmost driver in the host controller device stack, skipping the two-driver stack for the USB hub in the middle of the figure. 

Figure 2-9. The flow of a read request for a USB device. 

The third example is similar to the first except that the IRP in question is a notification concerning whether a disk drive on a 
PCI bus will be used as the repository for a system paging file. You’ll learn in Chapter 6 that this notification takes the form of 
an IRP_MJ_PNP request with the minor function code IRP_MN_DEVICE_USAGE_NOTIFICATION. In this case, the FiDO 
driver passes the request to the FDOdev driver, which takes note of it and passes it further down the stack to the PDOdev driver. 
This particular notification has implications about how other I/O requests that concern the PnP system or power management 
will be handled, so the PDOdev driver sends an identical notification to the stack within which is the FDObus, as illustrated in 
Figure 2-10. (Not all bus drivers work this way, but the PCI bus does.) 
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Figure 2-10. The flow of a device usage notification 

Visualizing the Device Tree 
To better visualize the way device objects and drivers are layered, it helps to have a tool. I wrote the DEVVIEW 
utility, which you’ll find in the companion content, for this purpose. With the USB42 sample for Chapter 12 
plugged into a secondary USB hub, I ran DEVVIEW and generated the two screen shots shown in Figure 2-11 
and Figure 2-12.  

This particular device uses only two device objects. The PDO is managed by USBHUB.SYS, whereas the FDO is 
managed by USB42. In the first of these screen shots, you can see other information about the PDO. 

It’s worth experimenting with DEVVIEW on your own system to see how various drivers are layered for the 
hardware you own. 

Figure 2-11. DEVVIEW information about USB42’s PDO. 
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Figure 2-12. DEVVIEW information about USB42’s FDO.  

2.3 The Two Basic Data Structures  

This section describes the two most basic data structures that concern a WDM driver: the driver object and the device object. 
The driver object represents the driver itself and contains pointers to all the driver subroutines that the system will ever call on 
its own motion. (For the sake of completeness, you should know that you often provide pointers to other routines within your 
driver as arguments in various kernel-mode service calls.) The device object represents an instance of hardware and contains 
data to help you manage that instance. 

2.3.1 Driver Objects  
The I/O Manager uses a driver object data structure to represent each device driver. (See Figure 2-13.) Like many of the data 
structures we’ll be discussing, the driver object is partially opaque. This means that you and I are supposed to directly access or 
change only certain fields in the structure, even though the DDK headers declare the entire structure. I’ve shown the opaque 
fields of the driver object in the figure with a gray background. These opaque fields are analogous to the private and protected 
members of a C++ class, and the accessible fields are analogous to public members. 

The DDK headers declare the driver object, and all other kernel-mode data structures for that matter, in a stylized way, as this 
excerpt from WDM.H illustrates: 

typedef struct _DRIVER_OBJECT { 
  CSHORT Type; 
  CSHORT Size; 
 
  } DRIVER_OBJECT, *PDRIVER_OBJECT; 

That is, the header declares a structure with the type name DRIVER_OBJECT. It also declares a pointer type 
(PDRIVER_OBJECT) and assigns a structure tag (_DRIVER_OBJECT). This declaration pattern appears many places in the 
DDK, and I won’t mention it again. The headers also declare a small set of type names (such as CSHORT) to describe the 
atomic data types used in kernel mode. CSHORT, for example, means “signed short integer used as a cardinal number.” Table 
2-1 lists some of these names. 
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Type Name Description 

PVOID, PVOID64 Generic pointers (default precision and 64-bit precision) 

NTAPI  
Used with service function declarations to force use of __stdcall calling convention on i86 
architectures 

VOID  Equivalent to “void” 

CHAR, PCHAR 8-bit character, pointer to same (signed or not according to compiler default) 

UCHAR, PUCHAR Unsigned 8-bit character, pointer to same 

SCHAR, PSCHAR Signed 8-bit character, pointer to same 

SHORT, PSHORT Signed 16-bit integer, pointer to same 

CSHORT  Signed short integer, used as a cardinal number 

USHORT, PUSHORT Unsigned 16-bit integer, pointer to same 

LONG, PLONG Signed 32-bit integer, pointer to same 

ULONG, PULONG Unsigned 32-bit integer, pointer to same 

WCHAR, PWSTR, 
PWCHAR 

Wide (Unicode) character or string  

PCWSTR  Pointer to constant Unicode string 

NTSTATUS  Status code (typed as signed long integer) 

LARGE_INTEGER  Signed 64-bit integer 

ULARGE_INTEGER  Unsigned 64-bit integer 

PSZ, PCSZ Pointer to ASCIIZ (single-byte) string or constant string 

BOOLEAN, PBOOLEAN TRUE or FALSE (equivalent to UCHAR) 

Table 2-1. Common Type Names for Kernel-Mode Drivers 

Figure 2-13. The DRIVER_OBJECT data structure.  
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NOTE  
Note on 64-bit Types: The DDK headers contain type names that will make it relatively painless for driver 
authors to compile the same source code for either 32-bit or 64-bit Intel platforms. For example, instead of 
blithely assuming that a long integer and a pointer are the same size, you should declare variables that might 
be either a LONG_PTR or a ULONG_PTR. Such a variable can hold either a long (or unsigned long) or a pointer 
to something. Also, for example, use the type SIZE_T to declare an integer that can count as high as a pointer 
might span—you’ll get a 64-bit integer on a 64-bit platform. These and other 32/64 typedefs are in the DDK 
header file named BASETSD.H. 

I’ll briefly discuss the accessible fields of the driver object structure now. 

DeviceObject (PDEVICE_OBJECT) anchors a list of device object data structures, one for each of the devices managed by the 
driver. The I/O Manager links the device objects together and maintains this field. The DriverUnload function of a non-WDM 
driver would use this field to traverse the list of device objects in order to delete them. A WDM driver probably doesn’t have 
any particular need to use this field. 

DriverExtension (PDRIVER_EXTENSION) points to a small substructure within which only the AddDevice 
(PDRIVER_ADD_DEVICE) member is accessible to the likes of us. (See Figure 2-14.) AddDevice is a pointer to a function 
within the driver that creates device objects; this function is rather a big deal, and I’ll discuss it at length in the section “The 
AddDevice Routine” later in this chapter. 

Figure 2-14. The DRIVER_EXTENSION data structure.  

HardwareDatabase (PUNICODE_STRING) describes a string that names a hardware database registry key for the device. This 
is a name like \Registry\Machine\Hardware\Description\System and names the registry key within which resource allocation 
information resides. WDM drivers have no need to access the information below this key because the PnP Manager performs 
resource allocation automatically. The name is stored in Unicode. (In fact, all kernel-mode string data uses Unicode.) I’ll 
discuss the format and the use of the UNICODE_STRING data structure in the next chapter. 

FastIoDispatch (PFAST_IO_DISPATCH) points to a table of function pointers that file system and network drivers export. 
How these functions are used is beyond the scope of this book. If you’re interested in learning more about file system drivers, 
consult Rajeev Nagar’s Windows NT File System Internals: A Developer’s Guide (O’Reilly & Associates, 1997). 

DriverStartIo (PDRIVER_STARTIO) points to a function in your driver that processes I/O requests that the I/O Manager has 
serialized for you. I’ll discuss request queuing in general and the use of this routine in particular in Chapter 5. 

DriverUnload (PDRIVER_UNLOAD) points to a cleanup function in your driver. I’ll discuss this function a bit further on in 
connection with DriverEntry, but you might as well know now that a WDM driver probably doesn’t have any significant 
cleanup to do anyway. 

MajorFunction (array of PDRIVER_DISPATCH) is a table of pointers to functions in your driver that handle each of the 
roughly two dozen types of I/O requests. This table is also something of a big deal, as you might guess, because it defines how 
I/O requests make it into your code. 

2.3.2 Device Objects  
Figure 2-15 illustrates the format of a device object and uses the same shading convention for opaque fields that I used in the 
preceding discussion of driver objects. As the author of a WDM driver, you’ll create some of these objects by calling 
IoCreateDevice. 

DriverObject (PDRIVER_OBJECT) points to the object describing the driver associated with this device object, usually the 
one that called IoCreateDevice to create it. 

NextDevice (PDEVICE_OBJECT) points to the next device object that belongs to the same driver as this one. This field is the 
one that links device objects together starting from the driver object’s DeviceObject member. There’s probably no reason for a 
WDM driver to use this field. That’s just as well because proper use of this pointer requires synchronization using an internal 
system lock that’s not exposed for access by device drivers. 
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Figure 2-15. The DEVICE_OBJECT data structure.  

CurrentIrp (PIRP) is used by the Microsoft IRP queuing routines StartPacket and StartNextPacket to record the IRP most 
recently sent to your StartIo routine. WDM drivers should implement their own IRP queues (see Chapter 5) and may have no 
use for this field. 

Flags (ULONG) contains a collection of flag bits. Table 2-2 lists the bits that are accessible to driver writers. 

Flag Description 

DO_BUFFERED_IO  
Reads and writes use the buffered method (system copy buffer) for accessing 
user-mode data. 

DO_EXCLUSIVE  Only one thread at a time is allowed to open a handle. 

DO_DIRECT_IO  
Reads and writes use the direct method (memory descriptor list) for accessing 
user-mode data. 

DO_DEVICE_INITIALIZING  Device object isn’t initialized yet. 

DO_POWER_PAGABLE  IRP_MJ_PNP must be handled at PASSIVE_LEVEL. 

DO_POWER_INRUSH  Device requires large inrush of current during power-on. 

Table 2-2. Flags in a DEVICE_OBJECT Data Structure 

Table 2-3. Characteristics Flags in a DEVICE_OBJECT Data Structure 

Characteristics (ULONG) is another collection of flag bits describing various optional characteristics of the device. (See Table 
2-3.) The I/O Manager initializes these flags based on an argument to IoCreateDevice. Filter drivers propagate some of them 

Flag Description 

FILE_REMOVABLE_MEDIA  Media can be removed from device. 

FILE_READ_ONLY_DEVICE  Media can only be read, not written. 

FILE_FLOPPY_DISKETTE  Device is a floppy disk drive. 

FILE_WRITE_ONCE_MEDIA  Media can be written once. 

FILE_REMOTE_DEVICE  Device accessible through network connection. 

FILE_DEVICE_IS_MOUNTED  Physical media is present in device. 

FILE_VIRTUAL_VOLUME  This is a virtual volume. 

FILE_AUTOGENERATED_DEVICE_NAME  I/O Manager should automatically generate a name for this device. 

FILE_DEVICE_SECURE_OPEN  Force security check during open. 
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upward in the device stack. (See the detailed discussion of filter drivers in Chapter 16 for more information about flag 
propagation.) 

DeviceExtension (PVOID) points to a data structure you define that will hold per-instance information about the device. The 
I/O Manager allocates space for the structure, but its name and contents are entirely up to you. A common convention is to 
declare a structure with the type name DEVICE_EXTENSION. To access it given a pointer (for example, fdo) to the device 
object, use a statement like this one: 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 

It happens to be true (now, anyway) that the device extension immediately follows the device object in memory. It would be a 
bad idea to rely on this always being true, though, especially when the documented method of following the DeviceExtension 
pointer will always work. 

DeviceType (DEVICE_TYPE) is an enumeration constant describing what type of device this is. The I/O Manager initializes 
this member based on an argument to IoCreateDevice. Filter drivers might conceivably need to inspect it. At the date of this 
writing, there are over 50 possible values for this member. Consult the DDK documentation entry “Specifying Device Types” 
in the MSDN Library for a list. 

StackSize (CCHAR) counts the number of device objects starting from this one and descending all the way to the PDO. The 
purpose of this field is to inform interested parties regarding how many stack locations should be created for an IRP that will 
be sent first to this device’s driver. WDM drivers don’t normally need to modify this value, however, because the support 
routine they use for building the device stack (IoAttachDeviceToDeviceStack) does so automatically. 

AlignmentRequirement (ULONG) specifies the required alignment for data buffers used in read or write requests to this device. 
WDM.H contains a set of manifest constants ranging from FILE_BYTE_ALIGNMENT and FILE_WORD_ALIGNMENT up to 
FILE_512_BYTE_ALIGNMENT for these values. The values are just powers of 2 minus 1. For example, the value 0x3F is 
FILE_64_BYTE_ALIGNMENT. 

2.4 The DriverEntry Routine  

In preceding sections, I said that the PnP Manager loads the drivers needed for hardware and calls their AddDevice functions. A 
given driver might be used for more than one piece of similar hardware, and there’s some global initialization that the driver 
needs to perform only once when it’s loaded for the first time. That global initialization is the responsibility of the DriverEntry 
routine: 

extern "C" NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, 
  IN PUNICODE_STRING RegistryPath) 
  { 
 
  } 

 

NOTE  
You call the main entry point to a kernel-mode driver “DriverEntry” because the build script—if you use standard 
procedures—will instruct the linker that DriverEntry is the entry point, and it’s best to make your code match 
this assumption (or else change the build script, but why bother?). 

 

Sample Code  
You can experiment with the ideas discussed in this chapter using the STUPID sample driver. STUPID 
implements DriverEntry and AddDevice but nothing else. It’s similar to the very first driver I attempted to write 
when I was learning. 

Before I describe the code you’d write inside DriverEntry, I want to mention a few things about the function prototype itself. 
Unbeknownst to you and me (unless we look carefully at the compiler options used in the build script), kernel-mode functions 
and the functions in your driver use the __stdcall calling convention when compiled for an x86 computer. This shouldn’t affect 
any of your programming, but it’s something to bear in mind when you’re debugging. I used the extern “C” directive because, 
as a rule, I package my code in a C++ compilation unit—mostly to gain the freedom to declare variables wherever I please 
instead of only immediately after left braces. This directive suppresses the normal C++ decoration of the external name so that 
the linker can find this function. Thus, an x86 compile produces a function whose external name is _DriverEntry@8. 

Another point about the prototype of DriverEntry is those “IN” keywords. IN and OUT are both noise words that the DDK 
defines as empty strings. By original intention, they perform a documentation function. That is, when you see an IN parameter, 
you’re supposed to infer that it’s purely input to your function. An OUT parameter is output by your function, while an IN 
OUT parameter is used for both input and output. As it happens, the DDK headers don’t always use these keywords intuitively, 
and there’s not a great deal of point to them. To give you just one example out of many: DriverEntry claims that the 
DriverObject pointer is IN; indeed, you don’t change the pointer, but you will assuredly change the object to which it points. 
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The last general thing I want you to notice about the prototype is that it declares this function as returning an NTSTATUS value. 
NTSTATUS is actually just a long integer, but you want to use the typedef name NTSTATUS instead of LONG so that people 
understand your code better. A great many kernel-mode support routines return NTSTATUS status codes, and you’ll find a list 
of them in the DDK header NTSTATUS.H. I’ll have a bit more to say about status codes in the next chapter; for now, just be 
aware that your DriverEntry function will be returning a status code when it finishes. 

2.4.1 Overview of DriverEntry  
The first argument to DriverEntry is a pointer to a barely initialized driver object that represents your driver. A WDM driver’s 
DriverEntry function will finish initializing this object and return. Non-WDM drivers have a great deal of extra work to 
do—they must also detect the hardware for which they’re responsible, create device objects to represent the hardware, and do 
all the configuration and initialization required to make the hardware fully functional. The relatively arduous detection and 
configuration steps are handled automatically for WDM drivers by the PnP Manager, as I’ll discuss in Chapter 6. If you want 
to know how a non-WDM driver initializes itself, consult Art Baker and Jerry Lozano’s The Windows 2000 Device Driver 
Book (Prentice Hall, 2d ed., 2001) and Viscarola and Mason’s Windows NT Device Driver Development (Macmillan, 1998). 

The second argument to DriverEntry is the name of the service key in the registry. This string is not persistent—you must copy 
it if you plan to use it later. In a WDM driver, the only use I’ve ever made of this string is as part of WMI registration. (See 
Chapter 10.) 

A WDM driver’s main job in DriverEntry is to fill in the various function pointers in the driver object. These pointers indicate 
to the operating system where to find the subroutines you’ve decided to place in your driver container. They include these 
pointer members of the driver object: 

 DriverUnload  
Set this to point to whatever cleanup routine you create. The I/O Manager will call this routine just prior to unloading the 
driver. If there’s nothing to clean up, you need to have a DriverUnload function for the system to be able to unload your 
driver dynamically. 

 DriverExtension->AddDevice  
Set this to point to your AddDevice function. The PnP Manager will call AddDevice once for each hardware instance 
you’re responsible for. Since AddDevice is so important to the way WDM drivers work, I’ve devoted the next main 
section of this chapter (“The AddDevice Routine”) to explaining what it does. 

 DriverStartIo  
If your driver uses the standard method of queuing I/O requests, you’ll set this member of the driver object to point to 
your StartIo routine. Don’t worry (yet, that is) if you don’t understand what I mean by the “standard” queuing method; all 
will become clear in Chapter 5, where you’ll discover that WDM drivers shouldn’t use it. 

 MajorFunction  
The I/O Manager initializes this vector of function pointers to point to a dummy dispatch function that fails every request. 
You’re presumably going to be handling certain types of IRPs—otherwise, your driver is basically going to be deaf and 
inert—so you’ll set at least some of these pointers to your own dispatch functions. Chapter 5 discusses IRPs and dispatch 
functions in detail. For now, all you need to know is that you must handle two kinds of IRPs and that you’ll probably be 
handling several other kinds as well. 

A nearly complete DriverEntry routine will, then, look like this: 

extern "C" NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, 
  IN PUNICODE_STRING RegistryPath) 
  { 
 
  DriverObject->DriverUnload = DriverUnload; 
  DriverObject->DriverExtension->AddDevice = AddDevice; 
 
  DriverObject->MajorFunction[IRP_MJ_PNP] = DispatchPnp; 
  DriverObject->MajorFunction[IRP_MJ_POWER] = DispatchPower; 
  DriverObject->MajorFunction[IRP_MJ_SYSTEM_CONTROL] = DispatchWmi; 
 
 
 
  servkey.Buffer = (PWSTR) ExAllocatePool(PagedPool, 
    RegistryPath->Length + sizeof(WCHAR)); 
  if (!servkey.Buffer) 
    return STATUS_INSUFFICIENT_RESOURCES; 
  servkey.MaximumLength = RegistryPath->Length + sizeof(WCHAR); 
  RtlCopyUnicodeString(&servkey, RegistryPath); 
  servkey.Buffer[RegistryPath->Length/sizeof(WCHAR)] = 0; 
 
  return STATUS_SUCCESS; 
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  } 

1. These two statements set the function pointers for entry points elsewhere in the driver. I elected to give them simple 
names indicative of their function: DriverUnload and AddDevice. 

2. Every WDM driver must handle PNP, POWER, and SYSTEM_CONTROL I/O requests, and it should handle 
SYSTEM_CONTROL I/O requests. This is where you specify your dispatch functions for these requests. What’s now 
IRP_MJ_SYSTEM_CONTROL was called IRP_MJ_WMI in some early beta releases of the Windows XP DDK, which is 
why I called my dispatch function DispatchWmi. 

3. In place of this ellipsis, you’ll have code to set several additional MajorFunction pointers. 

4. If you ever need to access the service registry key elsewhere in your driver, it’s a good idea to make a copy of the 
RegistryPath string here. I’ve assumed that you declared a global variable named servkey as a UNICODE_STRING 
elsewhere. I’ll explain the mechanics of working with Unicode strings in the next chapter. 

5. Returning STATUS_SUCCESS is how you indicate success. If you were to discover something wrong, you’d return an 
error code chosen from the standard set in NTSTATUS.H or from a set of error codes that you define yourself. 
STATUS_SUCCESS happens to be numerically 0. 

Subroutine Naming 
Many driver writers give the subroutines in their drivers names that include the name of the driver. For example, 
instead of defining AddDevice and DriverUnload functions, many programmers would define Stupid_AddDevice 
and Stupid_DriverUnload. I’m told that earlier versions of Microsoft’s WinDbg debugger forced a convention like 
this onto (possibly unwilling) programmers because it had just one global namespace. Later versions of this 
debugger don’t have that limitation, but you’ll observe that the DDK sample drivers still follow the convention. 

Now, I’m a great fan of code reuse and an indifferent typist. For me, it has seemed much simpler to have short 
subroutine names that are exactly the same from one project to the next. That way, I can just lift a body of code 
from one driver and paste it into another without needing to make a bunch of name changes. I can also compare 
one driver with another without having extraneous name differences clutter up the comparison results. 

2.4.2 DriverUnload  
The purpose of a WDM driver’s DriverUnload function is to clean up after any global initialization that DriverEntry might 
have done. There’s almost nothing to do. If you made a copy of the RegistryPath string in DriverEntry, though, DriverUnload 
would be the place to release the memory used for the copy: 

VOID DriverUnload(PDRIVER_OBJECT DriverObject) 
  { 
  RtlFreeUnicodeString(&servkey); 
  } 

If your DriverEntry routine returns a failure status, the system doesn’t call your DriverUnload routine. Therefore, if 
DriverEntry generates any side effects that need cleaning up prior to returning an error status, DriverEntry has to perform the 
cleanup. 

2.5 The AddDevice Routine  

In the preceding main section, I showed how you initialize a WDM driver when it’s first loaded. In general, though, a driver 
might be called upon to manage more than one actual device. In the WDM architecture, a driver has a special AddDevice 
function that the PnP Manager can call for each such device. The function has the following skeleton: 

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo) 
  { 
 
  return STATUS_SOMETHING;  // e.g., STATUS_SUCCESS 
  } 

The DriverObject argument points to the same driver object that you initialized in your DriverEntry routine. The pdo argument 
is the address of the physical device object at the bottom of the device stack, even if there are already filter drivers below. 

The basic responsibility of AddDevice in a function driver is to create a device object and link it into the stack rooted in this 
PDO. The steps involved are as follows: 

1. Call IoCreateDevice to create a device object and an instance of your own device extension object. 

2. Register one or more device interfaces so that applications know about the existence of your device. Alternatively, give 
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the device object a name and then create a symbolic link. 

3. Next initialize your device extension and the Flags member of the device object. 

4. Call IoAttachDeviceToDeviceStack to put your new device object into the stack. 

Now I’ll explain these steps in more detail. I’ll show a complete example of AddDevice at the very end of this discussion. 

NOTE  
In the code snippets that follow, I’ve deliberately left out all the error handling that should be there. That’s so 
I could concentrate on the normal control flow through AddDevice. You mustn’t imitate this programming style 
in a production driver—but of course you already knew that. I’ll discuss how to handle errors in the next chapter. 
Every code sample in the companion content has full error checking in place too. 

2.5.1 Creating a Device Object  
You create a device object by calling IoCreateDevice. For example: 

PDEVICE_OBJECT fdo; 
NTSTATUS status = IoCreateDevice(DriverObject,  
  sizeof(DEVICE_EXTENSION), NULL, FILE_DEVICE_UNKNOWN, 
  FILE_DEVICE_SECURE_OPEN, FALSE, &fdo); 

The first argument (DriverObject) is the same value supplied to AddDevice as the first parameter. This argument establishes 
the connection between your driver and the new device object, thereby allowing the I/O Manager to send you IRPs intended 
for the device. The second argument is the size of your device extension structure. As I discussed earlier in this chapter, the I/O 
Manager allocates this much additional memory and sets the DeviceExtension pointer in the device object to point to it. 

The third argument, which is NULL in this example, can be the address of a UNICODE_STRING providing a name for the 
device object. Deciding whether to name your device object and which name to give it requires some thought, and I’ll describe 
these surprisingly complex considerations a bit further on in the section “Should I Name My Device Object?” 

The fourth argument (FILE_DEVICE_UNKNOWN) is one of the device types defined in WDM.H. Whatever value you specify 
here can be overridden by an entry in the device’s hardware key or class key. If both keys have an override, the device key has 
precedence. For devices that fit into one of the established categories, specify the right value in one of these places because 
some details about the interaction between your driver and the surrounding system depend on it. In fact, the device type is 
crucial for the correct functioning of a file system driver or a disk or tape driver. Additionally, the default security settings for 
your device object depend on this device type. 

The fifth argument (FILE_DEVICE_SECURE_OPEN) provides the Characteristics flag for the device object. (See Table 2-3.) 
Most of these flags are relevant for mass storage devices. The flag bit FILE_AUTOGENERATED_DEVICE_NAME is for use 
by bus and multifunction drivers when creating PDOs. I’ll discuss the importance of FILE_DEVICE_SECURE_OPEN later in 
this chapter in the section “Should I Name My Device Object?” Whatever value you specify here can be overridden by an 
entry in the device’s hardware key or class key. If both keys have an override, the hardware key has precedence. 

The sixth argument to IoCreateDevice (FALSE in my example) indicates whether the device is exclusive. The I/O Manager 
allows only one handle to be opened by normal means to an exclusive device. Whatever value you specify here can be 
overridden by an entry in the device’s hardware key or class key. If both keys have an override, the hardware key has 
precedence. 

NOTE  
The exclusivity attribute matters only for whatever named device object is the target of an open request. If you 
follow Microsoft’s recommended guidelines for WDM drivers, you won’t give your device object a name. Open 
requests will then target the PDO, but the PDO will not usually be marked exclusive because the bus driver 
generally has no way of knowing whether you need your device to be exclusive. The only time the PDO will be 
marked exclusive is when there’s an Exclusive override in the device’s hardware key or the class key’s 
Properties subkey. You’re best advised, therefore, to avoid relying on the exclusive attribute altogether. 
Instead, make your IRP_MJ_CREATE handler reject open requests that would violate whatever restriction you 
require. 

The last argument (&fdo) points to a location where IoCreateDevice will store the address of the device object it creates. 

If IoCreateDevice fails for some reason, it returns a status code and doesn’t alter the PDEVICE_OBJECT described by the last 
argument. If it succeeds, it returns a successful status code and sets the PDEVICE_OBJECT pointer. You can then proceed to 
initialize your device extension and do the other work associated with creating a new device object. Should you discover an 
error after this point, you should release the device object and return a status code. The code to accomplish these tasks would 
be something like this: 

NTSTATUS status = IoCreateDevice(...); 
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if (!NT_SUCCESS(status)) 
  return status; 
 
if (<some other error discovered>) 
  { 
  IoDeleteDevice(fdo); 
  return status; 
  } 

I’ll explain the NTSTATUS status codes and the NT_SUCCESS macro in the next chapter. 

2.5.2 Naming Devices  
Windows XP uses a centralized Object Manager to manage many of its internal data structures, including the driver and device 
objects I’ve been talking about. David Solomon and Mark Russinovich present a fairly complete explanation of the Object 
Manager and namespace in Chapter 3, “System Mechanisms,” of Inside Windows 2000, Third Edition (Microsoft Press, 2000). 
Objects have names, which the Object Manager maintains in a hierarchical namespace. Figure 2-16 is a screen shot of my 
DEVVIEW application showing the top level of the name hierarchy. The objects displayed as folders in this screen shot are 
directory objects, which can contain subdirectories and “regular” objects. The objects displayed with other icons are examples 
of these regular objects. (In this respect, DEVVIEW is similar to the WINOBJ utility that you’ll find in the BIN\WINNT 
directory of the Platform SDK. WINOBJ can’t give you information about device objects and drivers, though, which is why I 
wrote DEVVIEW in the first place.) 

Figure 2-16. Using DEVVIEW to view the namespace.  

Device objects can have names that conventionally live in the \Device directory. Names for devices serve two purposes in 
Windows XP. Giving your device object a name allows other kernel-mode components to find it by calling service functions 
such as IoGetDeviceObjectPointer. Having found your device object, they can send you IRPs. 

The other purpose of naming a device object is to allow applications to open handles to the device so they can send you IRPs. 
An application uses the standard CreateFile API to open a handle, whereupon it can use ReadFile, WriteFile, and 
DeviceIoControl to talk to you. The pathname an application uses to open a device handle begins with the prefix \\.\ rather than 
with a standard Universal Naming Convention (UNC) name such as C:\MYFILE.CPP or \\FRED\C-Drive\HISFILE.CPP. 
Internally, the I/O Manager converts this prefix to \??\ before commencing a name search. To provide a mechanism for 
connecting names in the \?? directory to objects whose names are elsewhere (such as in the \Device directory), the Object 
Manager implements an object called a symbolic link. 

The name \?? has a special meaning in Windows XP. Confronted with this name, the Object Manager first searches a portion of 
the kernel namespace that is local to the current user session. To see how this works, establish two or more sessions and start 
DEVVIEW in one of them. Expand the \Sessions folder, and you will eventually see folders for each user. Figure 2-18, which 
appears later in this chapter, provides an example. If the local search isn’t successful, the Object Manager then searches the 
\GLOBAL?? folder. 
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Symbolic Links  

A symbolic link is a little bit like a desktop shortcut in that it points to some other entity that’s the real object of attention. One 
use of symbolic links in Windows XP is to connect the leading portion of MS-DOS-style names to devices. Figure 2-17 shows 
a portion of the \GLOBAL?? directory, which includes a number of symbolic links. Notice, for example, that C and other drive 
letters in the MS-DOS file-naming scheme are actually links to objects whose names are in the \Device directory. These links 
allow the Object Manager to jump somewhere else in the namespace as it parses through a name. So if I call CreateFile with 
the name C:\MYFILE.CPP, the Object Manager will take this path to open the file: 

Figure 2-17. The \GLOBAL?? directory with several symbolic links. 

1. Kernel-mode code initially sees the name \??\C:\MYFILE.CPP. The Object Manager special-cases the “??” name to mean 
the DosDevices directory for the current session. (In Figure 2-18, this directory is one of the subdirectories of 
\Sessions\0\DosDevices.) 

2. The Object Manager doesn’t find “C:” in the session DosDevices directory, so it follows a symbolic link named “Global” 
to the “GLOBAL??” directory. 

3. The Object Manager now looks up “C:” in the \GLOBAL?? directory. It finds a symbolic link by that name, so it forms 
the new kernel-mode pathname \Device\HarddiskVolume1\MYFILE.CPP and parses that. 

4. Working with the new pathname, the Object Manager looks up “Device” in the root directory and finds a directory object. 

5. The Object Manager looks up “HarddiskVolume1” in the \Device directory. It finds a device object by that name. 

Opening a Disk File 
The overall process that occurs when an application opens a disk file is complicated almost beyond belief. To 
continue the example in the text, the driver for HarddiskVolume1 would be a file system driver such as 
NTFS.SYS, FASTFAT.SYS, or CDFS.SYS. How a file system realizes that a particular disk volume belongs to it and 
initializes to handle the volume is itself a saga of Norse proportions. That would have already happened before 
an application could get far enough to call CreateFile with a particular volume letter in the pathname, though, 
so we can ignore that process.  

The file system driver will locate the topmost device object in the storage stack that includes the physical disk 
drive on which the C volume happens to be mounted. The I/O Manager and file system driver share 
management of a Volume Parameters Block (VPB) that ties the storage stack and the file system’s volume stack 
together. In principle, the file system driver sends IRPs to the storage driver in order to read directory entries 
that it can search while parsing the pathname specified by the original CreateFile call. In practice, the file 
system calls the kernel cache manager, which fulfills requests from an in-memory cache if possible and makes 
recursive calls to the file system driver to fill cache buffers. Deadlock prevention and surprise dismount handling 
during this process require heroic efforts, including a mechanism whereby a file system driver can stash a 
pointer to an automatic variable (that is, one allocated on the call/return stack) to be used in deeper layers of 
recursion within the same thread. 
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Luckily, you needn’t worry about VPBs and other complications arising from the way file system drivers work in 
any driver besides one for a storage device. I won’t say any more about this in the book. 

At this point in the process, the Object Manager will create an IRP that it will send to the driver or drivers for 
HarddiskVolume1. The IRP will eventually cause some file system driver or another to locate and open a disk file. Describing 
how a file system driver works is beyond the scope of this book, but the sidebar “Opening a Disk File” will give you a bit of 
the flavor. 

If we were dealing with a device name such as COM1, the driver that ended up receiving the IRP would be the driver for 
\Device\Serial0. How a device driver handles an open request is definitely within the scope of this book, and I’ll be discussing 
it in this chapter (in the section “Should I Name My Device Object?”) and in Chapter 5, when I’ll talk about IRP processing in 
general. 

A user-mode program can create a symbolic link in the local (session) namespace by calling DefineDosDevice, as in this 
example (see Figure 2-18): 

BOOL okay = DefineDosDevice(DDD_RAW_TARGET_PATH, 
  "barf", "\\Device\\Beep"); 

Figure 2-18. Symbolic link created by DefineDosDevice 

You can create a symbolic link in a WDM driver by calling IoCreateSymbolicLink, 

IoCreateSymbolicLink(linkname, targname); 

where linkname is the name of the symbolic link you want to create and targname is the name to which you’re linking. 
Incidentally, the Object Manager doesn’t care whether targname is the name of any existing object: someone who tries to 
access an object by using a link that points to an undefined name simply receives an error. If you want to allow user-mode 
programs to override your link and point it somewhere else, you should call IoCreateUnprotectedSymbolicLink instead. 

The kernel-mode equivalent of the immediately preceding DefineDosDevice call is this: 

UNICODE_STRING linkname; 
UNICODE_STRING targname; 
RtlInitUnicodeString(&linkname, L"\\DosDevices\\barf"); 
RtlInitUnicodeString(&targname, L"\\Device\\Beep"); 
IoCreateSymbolicLink(&linkname, &targname); 
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Should I Name My Device Object?  

Deciding whether to give your device object a name requires, as I said earlier, a little thought. If you give your object a 
name, it will be possible for any kernel-mode program to try to open a handle to your device. Furthermore, it will be 
possible for any kernel-mode or user-mode program to create a symbolic link to your device object and to use the 

symbolic link to try to open a handle. You might or might not want to allow these actions. 

The primary consideration in deciding whether to name your device object is security. When someone opens a handle to a 
named object, the Object Manager verifies that they have permission to do so. When IoCreateDevice creates a device object 
for you, it assigns a default security descriptor based on the device type you specify as the fourth argument. The I/O Manager 
uses three basic categories to select a security descriptor: 

 Most file system device objects (that is, disk, CD-ROM, file, and tape) receive the “public default unrestricted” access 
control list (ACL). This list gives just SYNCHRONIZE, READ_CONTROL, FILE_READ_ATTRIBUTES, and 
FILE_TRAVERSE access to everyone except the System account and all administrators. File system device objects, by 
the way, exist only so that there can be a target for a CreateFile call that will open a handle to a file managed by the file 
system. 

 Disk devices and network file system objects receive the same ACL as the file system objects, with some modifications. 
For example, everyone gets full access to a named floppy disk device object, and administrators get sufficient rights to 
run ScanDisk. (User-mode network provider DLLs need greater access to the device object for their corresponding file 
system driver, which is why network file systems are treated differently from other file systems.) 

 All other device objects receive the public open unrestricted ACL, which allows anyone with a handle to the device to do 
pretty much anything. 

You can see that anyone will be able to access a nondisk device for both reading and writing if the driver gives the device 
object a name at the time it calls IoCreateDevice. This is because the default security allows nearly full access and because no 
security check at all is associated with creating a symbolic link—the security checks happen at open time, based on the named 
object’s security descriptor. This is true even if other device objects in the same stack have more restrictive security. 

NOTE  
IoCreateDeviceSecure, a function in the .NET DDK, allows you to specify a nondefault security descriptor in 
situations in which no override is in the registry. This function is too new for us to describe it more fully here. 

DEVVIEW will show you the security attributes of the device objects it displays. You can see the operation of the default rules 
I just described by examining a file system, a disk device, and any other random device. 

The PDO also receives a default security descriptor, but it’s possible to override it with a security descriptor stored in the 
hardware key or in the Properties subkey of the class key. (The hardware key has precedence if both keys specify a descriptor.) 
Even lacking a specific security override, if either the hardware key or the class key’s Properties subkey overrides the hardware 
type or characteristics specification, the I/O Manager constructs a new default security descriptor based on the new type. The 
I/O Manager does not, however, override the security setting for any of the other device objects above the PDO. Consequently, 
for the overrides (and the administrative actions that set them up) to have any effect, you shouldn’t name your device object. 
Don’t despair though—applications can still access your device by means of a registered interface, which I’ll discuss soon. 

You need to know about one last security concern. As the Object Manager parses its way through an object name, it 
needs only FILE_TRAVERSE access to the intermediate components of the name. It performs a full security check only 
on the object named by the final component. So suppose you have a device object reachable under the name 

\Device\Beep or by the symbolic link \??\Barf. A user-mode application that tries to open \\.\Barf for writing will be blocked if 
the object security has been set up to deny write access. But if the application tries to open a name like \\.\Barf\ExtraStuff that 
has additional name qualifications, the open request will make it all the way to the device driver (in the form of an 
IRP_MJ_CREATE I/O request) if the user merely has FILE_TRAVERSE permission, which is routinely granted. (In fact, most 
systems even run with the option to check for traverse permission turned off.) The I/O Manager expects the device driver to 
deal with the additional name components and to perform any required security checks with regard to them.  

To avoid the security concern I just described, you can supply the flag FILE_DEVICE_SECURE_OPEN in the device 
characteristics argument to IoCreateDevice. This flag causes Windows XP to verify that someone has the right to open a handle 
to a device even if additional name components are present. 

The Device Name  

If you decide to name the device object, you’ll normally put the name in the \Device branch of the namespace. To give it a 
name, you have to create a UNICODE_STRING structure to hold the name, and you have to specify that string as an argument 
to IoCreateDevice: 

UNICODE_STRING devname; 
RtlInitUnicodeString(&devname, L"\\Device\\Simple0"); 
IoCreateDevice(DriverObject, sizeof(DEVICE_EXTENSION), &devname,  
...); 
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I’ll discuss the use of RtlInitUnicodeString in the next chapter. 

NOTE  
Starting in Windows XP, device object names are case insensitive. In Windows 98/Me and in Windows 2000, 
they are case sensitive. Be sure to spell \Device exactly as shown if you want your driver to be portable across 
all the systems. Note also the spelling of \DosDevices, particularly if your mother tongue doesn’t inflect the 
plural form of nouns! 

Conventionally, drivers assign their device objects a name by concatenating a string naming their device type (“Simple” in this 
code fragment) with a 0-based integer denoting an instance of that type. In general, you don’t want to hard-code a name as I 
just did—you want to compose it dynamically using string-manipulation functions like the following: 

UNICODE_STRING devname; 
static LONG lastindex = -1; 
LONG devindex = InterlockedIncrement(&lastindex); 
WCHAR name[32]; 
_snwprintf(name, arraysize(name), L"\\Device\\SIMPLE%2.2d",devindex); 
RtlInitUnicodeString(&devname, name); 
IoCreateDevice(...); 

I’ll explain the various service functions used in this code fragment in the next couple of chapters. The instance number you 
derive for private device types might as well be a static variable, as shown in the code fragment. 

Notes on Device Naming  
The \GLOBAL?? directory used to be named \DosDevices. The change was made to move the often-searched 
directory of user-mode names to the front of the alphabetical list of directories. Windows 98/Me doesn’t 
recognize the name \?? or \GLOBAL??.  

Windows 2000 defines a symbolic link named \DosDevices that points to the \?? directory. Windows XP treats 
\DosDevices differently depending on the process context at the time you create an object. If you create an 
object, such as a symbolic link, in a system thread, \DosDevices refers to \GLOBAL??, and you end up with a 
global name. If you create an object in a user thread, \DosDevices refers to \??, and you end up with a 
session-specific name. In most situations, a device driver creates symbolic links in its AddDevice function, 
which runs in a system thread, and so ends up with globally named objects in all WDM environments simply by 
putting the symbolic link in \DosDevices. If you create a symbolic link at another time, you should use 
\GLOBAL?? in Windows XP and \DosDevices in earlier systems. See Appendix A for a discussion of how to 
distinguish between WDM platforms. 

A quick-and-dirty shortcut for testing is to name your device object in the \DosDevices directory, as many of the 
sample drivers in the companion content do. A production driver should name the device object in \Device, 
however, to avoid the possibility of creating an object that ought to be global in a session-private namespace. 

In previous versions of Windows NT, drivers for certain classes of devices (notably disks, tapes, serial ports, and 
parallel ports) called IoGetConfigurationInformation to obtain a pointer to a global table containing counts of 
devices in each of these special classes. A driver would use the current value of the counter to compose a name 
like Harddisk0, Tape1, and so on and would also increment the counter. WDM drivers don’t need to use this 
service function or the table it returns, however. Constructing names for the devices in these classes is now the 
responsibility of a Microsoft type-specific class driver (such as DISK.SYS). 

Device Interfaces  

The older method of naming I just discussed—naming your device object and creating a symbolic link name that applications 
can use—has two major problems. We’ve already discussed the security implications of giving your device object a name. In 
addition, the author of an application that wants to access your device has to know the scheme you adopted to name your 
devices. If you’re the only one writing the applications that will be accessing your hardware, that’s not much of a problem. But 
if many different companies will be writing applications for your hardware, and especially if many hardware companies are 
making similar devices, devising a suitable naming scheme is difficult. 

To solve these problems, WDM introduces a new naming scheme for devices that is language-neutral, easily extensible, usable 
in an environment with many hardware and software vendors, and easily documented. The scheme relies on the concept of a 
device interface, which is basically a specification for how software can access hardware. A device interface is uniquely 
identified by a 128-bit GUID. You can generate GUIDs by running the Platform SDK utilities UUIDGEN or GUIDGEN—both 
utilities generate the same kind of number, but they output the result in different formats. The idea is that some industry group 
gets together to define a standard way of accessing a certain kind of hardware. As part of the standard-making process, 
someone runs GUIDGEN and publishes the resulting GUID as the identifier that will be forever after associated with that 
interface standard. 
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More About GUIDs  
The GUIDs used to identify software interfaces are the same kind of unique identifier that’s used in the 
Component Object Model (COM) to identify COM interfaces and in the Open Software Foundation (OSF) 
Distributed Computing Environment (DCE) to identify the target of a remote procedure call (RPC). For an 
explanation of how GUIDs are generated so as to be statistically unique, see page 66 of Kraig Brockschmidt’s 
Inside OLE, Second Edition (Microsoft Press, 1995), which contains a further reference to the original algorithm 
specification by the OSF. I found the relevant portion of the OSF specification on line at 
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.  

The mechanics of creating a GUID for use in a device driver involve running either UUIDGEN or GUIDGEN and 
then capturing the resulting identifier in a header file. GUIDGEN is easier to use because it allows you to choose 
to format the GUID for use with the DEFINE_GUID macro and to copy the resulting string onto the Clipboard. 
Figure 2-19 shows the GUIDGEN window. You can paste its output into a header file to end up with this: 

// {CAF53C68-A94C-11d2-BB4A-00C04FA330A6} 
DEFINE_GUID(<<name>>,  
  0xcaf53c68, 0xa94c, 0x11d2, 0xbb, 0x4a, 0x0, 0xc0, 0x4f, 
  0xa3, 0x30, 0xa6); 

You then replace <<name>> with something more mnemonic like GUID_DEVINTERFACE_SIMPLE and include 
the definition in your driver and applications. 

Figure 2-19. Using GUIDGEN to generate a GUID 

I think of an interface as being analogous to the protein markers that populate the surface of living cells. An application 
desiring to access a particular kind of device has its own protein markers that fit like a key into the markers exhibited by 
conforming device drivers. See Figure 2-20. 

Figure 2-20. Using device interfaces to match applications and devices 

Registering a Device Interface 

A function driver’s AddDevice function should register one or more device interfaces by calling IoRegisterDeviceInterface, as 
shown here: 
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#include <initguid.h> 
 
  #include "guids.h" 
 
  NTSTATUS AddDevice(...) 
    { 
 
 
    IoRegisterDeviceInterface(pdo, &GUID_DEVINTERFACE_SIMPLE,NULL, &pdx->ifname); 
 
    } 

1. We’re about to include a header (GUIDS.H) that contains one or more DEFINE_GUID macros. DEFINE_GUID 
normally declares an external variable. Somewhere in the driver, though, we have to actually reserve initialized storage 
for every GUID we’re going to reference. The system header file INITGUID.H works some preprocessor magic to make 
DEFINE_GUID reserve the storage even if the definition of the DEFINE_GUID macro happens to be in one of the 
precompiled header files. 

2. I’m assuming here that I put the GUID definitions I want to reference into a separate header file. This would be a good 
idea, inasmuch as user-mode code will also need to include these definitions and won’t want to include a bunch of 
extraneous kernel-mode declarations relevant only to our driver. 

3. The first argument to IoRegisterDeviceInterface must be the address of the PDO for your device. The second argument 
identifies the GUID associated with your interface, and the third argument specifies additional qualified names that 
further subdivide your interface. Only Microsoft code uses this name subdivision scheme. The last argument is the 
address of a UNICODE_STRING structure that will receive the name of a symbolic link that resolves to this device 
object. 

The return value from IoRegisterDeviceInterface is a Unicode string that applications will be able to determine without 
knowing anything special about how you coded your driver and will then be able to use in opening a handle to the device. The 
name is pretty ugly, by the way; here’s an example that I generated for one of my sample devices:  
\\?\ROOT#UNKNOWN#0000#{b544b9a2-6995-11d3-81b5-00c04fa330a6}. 

All that registration actually does is create the symbolic link name and save it in the registry. Later on, in response to the 
IRP_MN_START_DEVICE Plug and Play request we’ll discuss in Chapter 7, you’ll make the following call to 
IoSetDeviceInterfaceState to enable the interface: 

IoSetDeviceInterfaceState(&pdx->ifname, TRUE); 

In response to this call, the I/O Manager creates an actual symbolic link object pointing to the PDO for your device. You’ll 
make a matching call to disable the interface at a still later time (just call IoSetDeviceInterfaceState with a FALSE argument), 
whereupon the I/O Manager will delete the symbolic link object while preserving the registry entry that contains the name. In 
other words, the name persists and will always be associated with this particular instance of your device; the symbolic link 
object comes and goes with the hardware. 

Since the interface name ends up pointing to the PDO, the PDO’s security descriptor ends up controlling whether people can 
access your device. That’s good because it’s the PDO’s security that you control in the INF used to install the driver. 

Enumerating Device Interfaces 

Both kernel-mode and user-mode code can locate all the devices that happen to support an interface in which they’re interested. 
I’m going to explain how to enumerate all the devices for a particular interface in user mode. The enumeration code is so 
tedious to write that I eventually wrote a C++ class to make my own life simpler. You’ll find this code in the 
DEVICELIST.CPP and DEVICELIST.H files that are part of the HIDFAKE and DEVPROP samples in Chapter 8. These files 
declare and implement a CDeviceList class, which contains an array of CDeviceListEntry objects. These two classes have the 
following declaration: 

class CDeviceListEntry 
{ 
public: 
  CDeviceListEntry(LPCTSTR linkname, LPCTSTR friendlyname); 
  CDeviceListEntry(){} 
  CString m_linkname; 
  CString m_friendlyname; 
}; 
 
class CDeviceList 
{ 
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public: 
  CDeviceList(const GUID& guid); 
  ~CDeviceList(); 
  GUID m_guid; 
  CArray<CDeviceListEntry, CDeviceListEntry&> m_list; 
  int Initialize(); 
}; 

The classes rely on the CString class and CArray template class that are part of the Microsoft Foundation Classes (MFC) 
framework. The constructors for these two classes simply copy their arguments into the obvious data members: 

CDeviceList::CDeviceList(const GUID& guid) 
  { 
  m_guid = guid; 
  } 
CDeviceListEntry::CDeviceListEntry(LPCTSTR linkname,LPCTSTR friendlyname) 
  { 
  m_linkname = linkname; 
  m_friendlyname = friendlyname; 
  } 

All the interesting work occurs in the CDeviceList::Initialize function. The executive overview of what it does is this: it will 
enumerate all of the devices that expose the interface whose GUID was supplied to the constructor. For each such device, it 
will determine a friendly name that we’re willing to show to an unsuspecting end user. Finally it will return the number of 
devices it found. Here’s the code for this function: 

int CDeviceList::Initialize() 
  { 
 
  HDEVINFO info = SetupDiGetClassDevs(&m_guid, NULL, NULL, 
    DIGCF_PRESENT │ DIGCF_INTERFACEDEVICE); 
  if (info == INVALID_HANDLE_VALUE) 
    return 0; 
  SP_INTERFACE_DEVICE_DATA ifdata; 
  ifdata.cbSize = sizeof(ifdata); 
  DWORD devindex; 
 
  for (devindex = 0;  
    SetupDiEnumDeviceInterfaces(info,NULL, &m_guid, devindex, &ifdata);  
    ++devindex) 
    { 
    DWORD needed; 
 
    SetupDiGetDeviceInterfaceDetail(info, &ifdata, NULL, 0, &needed, NULL); 
 
    PSP_INTERFACE_DEVICE_DETAIL_DATA detail =  
      (PSP_INTERFACE_DEVICE_DETAIL_DATA) malloc(needed); 
    detail->cbSize = sizeof(SP_INTERFACE_DEVICE_DETAIL_DATA); 
    SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)}; 
    SetupDiGetDeviceInterfaceDetail(info, &ifdata, detail, needed, NULL, &did)); 
 
 
    TCHAR fname[256]; 
    if (!SetupDiGetDeviceRegistryProperty(info, &did,  
      SPDRP_FRIENDLYNAME, NULL, (PBYTE) fname,  
      sizeof(fname), NULL) 
      && !SetupDiGetDeviceRegistryProperty(info, &did,  
        SPDRP_DEVICEDESC, 
        NULL, (PBYTE) fname, sizeof(fname), NULL)) 
      _tcsncpy(fname, detail->DevicePath, 256); 
      fname[255] = 0; 
 
 
    CDeviceListEntry e(detail->DevicePath, fname); 
    free((PVOID) detail); 
 
    m_list.Add(e); 
    } 
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  SetupDiDestroyDeviceInfoList(info); 
  return m_list.GetSize(); 
  } 

1. This statement opens an enumeration handle that we can use to find all devices that have registered an interface that uses 
the same GUID. 

2. Here we call SetupDiEnumDeviceInterfaces in a loop to find each device. 

3. The only two items of information we need are the detail information about the interface and information about the 
device instance. The detail is just the symbolic name for the device. Since it’s variable in length, we make two calls to 
SetupDiGetDeviceInterfaceDetail. The first call determines the length. The second call retrieves the name. 

4. We obtain a friendly name for the device from the registry by asking for either the FriendlyName or the DeviceDesc. 

5. We create a temporary instance named e of the CDeviceListEntry class, using the device’s symbolic name as both the link 
name and the friendly name. 

NOTE  
You might be wondering how the registry comes to have a FriendlyName for a device. The INF file you use to 
install your device driver—see Chapter 15—can have an HW section that specifies registry parameters for the 
device. You can provide a FriendlyName as one of these parameters, but bear in mind that every instance of 
your hardware will have the same name if you do. The MAKENAMES sample describes a DLL-based way of 
defining a unique friendly name for each instance. You can also write a CoInstaller DLL that will define unique 
friendly names.  

If you don’t define a FriendlyName, by the way, most system components will use the DeviceDesc string in the 
registry. This string originates in the INF file and will usually describe your device by manufacturer and model. 

 

Sample Code  
The DEVINTERFACE sample is a user-mode program that enumerates all instances of all known device interface 
GUIDs on your system. One way to use this sample is as a way to determine which GUID you need to enumerate 
to find a particular device. 

2.5.3 Other Global Device Initialization  
You need to take some other steps during AddDevice to initialize your device object. I’m going to describe these steps in the 
order you should do them, which isn’t exactly the same order as their respective logical importance. I want to emphasize that 
the code snippets in this section are even more fragmented than usual—I’m going to show only enough of the entire 
AddDevice routine to establish the surrounding context for the small pieces I’m trying to illustrate. 

Initializing the Device Extension  

The content and management of the device extension are entirely up to you. The data members you place in this structure will 
obviously depend on the details of your hardware and on how you go about programming the device. Most drivers would need 
a few items placed there, however, as illustrated in the following fragment of a declaration: 

 
typedef struct _DEVICE_EXTENSION { 
 
    PDEVICE_OBJECT DeviceObject; 
 
    PDEVICE_OBJECT LowerDeviceObject; 
 
    PDEVICE_OBJECT Pdo; 
 
    UNICODE_STRING ifname; 
 
    IO_REMOVE_LOCK RemoveLock; 
 
    DEVSTATE devstate; 
    DEVSTATE prevstate; 
    DEVICE_POWER_STATE devpower; 
    SYSTEM_POWER_STATE syspower; 
 
    DEVICE_CAPABILITIES devcaps; 
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    } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

1. I find it easiest to mimic the pattern of structure declaration used in the official DDK, so I declared this device extension 
as a structure with a tag as well as a type and pointer-to-type name. 

2. You already know that you locate your device extension by following the DeviceExtension pointer from the device object. 
It’s also useful in several situations to be able to go the other way—to find the device object given a pointer to the 
extension. The reason is that the logical argument to certain functions is the device extension itself (since that’s where all 
of the per-instance information about your device resides). Hence, I find it useful to have this DeviceObject pointer. 

3. I’ll mention in a few paragraphs that you need to record the address of the device object immediately below yours when 
you call IoAttachDeviceToDeviceStack, and LowerDeviceObject is the place to do that. 

4. A few service routines require the address of the PDO instead of some higher device object in the same stack. It’s very 
difficult to locate the PDO, so the easiest way to satisfy the requirement of those functions is to record the PDO address 
in a member of the device extension that you initialize during AddDevice. 

5. Whichever method (symbolic link or device interface) you use to name your device, you’ll want an easy way to 
remember the name you assign. In this code fragment, I’ve declared a Unicode string member named ifname to record a 
device interface name. If you were going to use a symbolic link name instead of a device interface, it would make sense 
to give this member a more mnemonic name, such as linkname. 

6. I’ll discuss in Chapter 6 a synchronization problem affecting how you decide when it’s safe to remove this device object 
by calling IoDeleteDevice. The solution to that problem involves using an IO_REMOVE_LOCK object that needs to be 
allocated in your device extension as shown here. AddDevice needs to initialize that object. 

7. You’ll probably need a device extension variable to keep track of the current Plug and Play state and current power states 
of your device. DEVSTATE is an enumeration that I’m assuming you’ve declared elsewhere in your own header file. I’ll 
discuss the use of all these state variables in later chapters. 

8. Another part of power management involves remembering some capability settings that the system initializes by means 
of an IRP. The devcaps structure in the device extension is where I save those settings in my sample drivers. 

The initialization statements in AddDevice (with emphasis on the parts involving the device extension) would be as follows: 

NTSTATUS AddDevice(...) 
  { 
  PDEVICE_OBJECT fdo; 
  IoCreateDevice(..., sizeof(DEVICE_EXTENSION), ..., &fdo); 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  pdx->DeviceObject = fdo; 
  pdx->Pdo = pdo; 
  IoInitializeRemoveLock(&pdx->RemoveLock, ...); 
  pdx->devstate = STOPPED; 
  pdx->devpower = PowerDeviceD0; 
  pdx->syspower = PowerSystemWorking; 
  IoRegisterDeviceInterface(..., &pdx->ifname); 
  pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(...); 
  } 

In this code snippet, STOPPED and DEVICE_EXTENSION are things I defined in one of my own header files. 

Initializing the Default DPC Object  

Many devices signal completion of operations by means of an interrupt. As you’ll learn when I discuss interrupt handling in 
Chapter 7, there are strict limits on what your interrupt service routine (ISR) can do. In particular, an ISR isn’t allowed to call 
the routine (IoCompleteRequest) that signals completion of an IRP, but that’s exactly one of the steps you’re likely to want to 
take. You utilize a deferred procedure call (DPC) to get around the limitations. Your device object contains a subsidiary DPC 
object that can be used for scheduling your particular DPC routine, and you need to initialize it shortly after creating the device 
object: 

NTSTATUS AddDevice(...) 
  { 
  IoCreateDevice(...); 
  IoInitializeDpcRequest(fdo, DpcForIsr) 
  } 

Setting the Buffer Alignment Mask  

Devices that perform DMA transfers work directly with data buffers in memory. The HAL might require that buffers used for 
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DMA be aligned to some particular boundary, and your device might require still more stringent alignment. The 
AlignmentRequirement field of the device object expresses the restriction—it’s a bit mask equal to 1 less than the required 
address boundary. You can round an arbitrary address down to this boundary with this statement: 

PVOID address = ...; 
SIZE_T ar = fdo->AlignmentRequirement; 
address = (PVOID) ((SIZE_T) address & ~ar); 

You round an arbitrary address up to the next alignment boundary like this: 

PVOID address = ...; 
SIZE_T ar = fdo->AlignmentRequirement; 
address = (PVOID) (((SIZE_T) address + ar) & ~ar); 

In these two code fragments, I used SIZE_T casts to transform the pointer (which may be 32 bits or 64 bits wide, depending on 
the platform for which you’re compiling) into an integer wide enough to span the same range as the pointer. 

IoCreateDevice sets the AlignmentRequirement field of the new device object equal to whatever the HAL requires. For 
example, the HAL for Intel x86 chips has no alignment requirement, so AlignmentRequirement is 0 initially. If your device 
requires a more stringent alignment for the data buffers it works with (say, because you have bus-mastering DMA capability 
with a special alignment requirement), you want to override the default setting. For example: 

if (MYDEVICE_ALIGNMENT - 1 > fdo->AlignmentRequirement) 
  fdo->AlignmentRequirement = MYDEVICE_ALIGNMENT - 1; 

I’ve assumed here that elsewhere in your driver is a manifest constant named MYDEVICE_ALIGNMENT that equals a power 
of 2 and represents the required alignment of your device’s data buffers. 

Miscellaneous Objects  

Your device might well use other objects that need to be initialized during AddDevice. Such objects might include various 
synchronization objects, linked list anchors, scatter/gather list buffers, and so on. I’ll discuss these objects, and the fact that 
initialization during AddDevice would be appropriate, in various other parts of this book. 

Initializing the Device Flags  

Two of the flag bits in your device object need to be initialized during AddDevice and never changed thereafter: the 
DO_BUFFERED_IO and DO_DIRECT_IO flags. You can set one (but only one) of these bits to declare once and for all how 
you want to handle memory buffers coming from user mode as part of read and write requests. (I’ll explain in Chapter 7 what 
the difference between these two buffering methods is and why you’d want to pick one or the other.) The reason you have to 
make this important choice during AddDevice is that any upper filter drivers that load afterwards will be copying your flag 
settings, and it’s the setting of the bits in the topmost device object that’s actually important. Were you to change your mind 
after the filter drivers loaded, they probably wouldn’t know about the change. 

Two of the flag bits in the device object pertain to power management. In contrast with the two buffering flags, these two can 
be changed at any time. I’ll discuss them in greater detail in Chapter 8, but here’s a preview. DO_POWER_PAGABLE means 
that the Power Manager must send you IRP_MJ_POWER requests at interrupt request level (IRQL) PASSIVE_LEVEL. (If you 
don’t understand all of the concepts in the preceding sentence, don’t worry—I’ll completely explain all of them in later 
chapters.) DO_POWER_INRUSH means that your device draws a large amount of current when powering on, so the Power 
Manager should make sure that no other inrush device is powering up simultaneously. 

Building the Device Stack  

Each filter and function driver has the responsibility of building up the stack of device objects, starting from the PDO and 
working upward. You accomplish your part of this work with a call to IoAttachDeviceToDeviceStack: 

NTSTATUS AddDevice(..., PDEVICE_OBJECT pdo) 
  { 
  PDEVICE_OBJECT fdo; 
  IoCreateDevice(..., &fdo); 
  pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo, pdo); 
  } 

The first argument to IoAttachDeviceToDeviceStack (fdo) is the address of your own newly created device object. The second 
argument is the address of the PDO. The second parameter to AddDevice is this address. The return value is the address of 
whatever device object is immediately underneath yours, which can be the PDO or the address of some lower filter device 
object. Figure 2-21 illustrates the situation when there are three lower filter drivers for your device. By the time your 
AddDevice function executes, all three of their AddDevice functions have already been called. They have created their 
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respective FiDOs and linked them into the stack rooted at the PDO. When you call IoAttachDeviceToDeviceStack, you get 
back the address of the topmost FiDO. 

IoAttachDeviceToDeviceStack might conceivably fail by returning a NULL pointer. For this to occur, someone would have to 
remove the physical device from the system at just the point in time when your AddDevice function was doing its work, and 
the PnP Manager would have to process the removal on another CPU. I’m not even sure these conditions are enough to trigger 
a failure. (Or else the driver under you could have forgotten to clear DO_DEVICE_INITIALIZING, I suppose.) You would deal 
with the failure by cleaning up and returning STATUS_DEVICE_REMOVED from your AddDevice function. 

Figure 2-21. What IoAttachDeviceToDeviceStack returns. 

Clear DO_DEVICE_INITIALIZING  

Pretty much the last thing you do in AddDevice should be to clear the DO_DEVICE_INITIALIZING flag in your device object: 

fdo->Flags &= ~DO_DEVICE_INITIALIZING; 

While this flag is set, the I/O Manager will refuse to attach other device objects to yours or to open a handle to your device. 
You have to clear the flag because your device object initially arrives in the world with the flag set. In previous releases of 
Windows NT, most drivers created all of their device objects during DriverEntry. When DriverEntry returns, the I/O Manager 
automatically traverses the list of device objects linked from the driver object and clears this flag. Since you’re creating your 
device object long after DriverEntry returns, however, this automatic flag clearing won’t occur, and you must do it yourself. 

2.5.4 Putting the Pieces Together  
Here is a complete AddDevice function, presented without error checking or annotations and including all the pieces described 
in the preceding sections: 

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo) 
  { 
  PDEVICE_OBJECT fdo; 
  NTSTATUS status = IoCreateDevice(DriverObject, 
    sizeof(DEVICE_EXTENSION), NULL, 
    FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, FALSE, &fdo); 
   
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) 
    fdo->DeviceExtension; 
 
  IoRegisterDeviceInterface(pdo, &GUID_DEVINTERFACE_SIMPLE, NULL, &pdx->ifname); 
 
  pdx->DeviceObject = fdo; 
  pdx->Pdo = pdo; 
  IoInitializeRemoveLock(&pdx->RemoveLock, 0, 0, 0); 
  pdx->devstate = STOPPED; 
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  pdx->devpower = PowerDeviceD0; 
  pdx->syspower = PowerSystemWorking; 
 
  IoInitializeDpcRequest(fdo, DpcForIsr); 
 
  if (MYDEVICE_ALIGNMENT - 1 > fdo->AlignmentRequirement) 
    fdo->AlignmentRequirement = MYDEVICE_ALIGNMENT - 1; 
   
  KeInitializeSpinLock(&pdx->SomeSpinLock); 
  KeInitializeEvent(&pdx->SomeEvent, NotificationEvent, FALSE); 
  InitializeListHead(&pdx->SomeListAnchor); 
 
  fdo->Flags │= DO_BUFFERED_IO │ DO_POWER_PAGABLE; 
   
  pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo, pdo); 
 
  fdo->Flags &= ~DO_DEVICE_INITIALIZING; 
  return STATUS_SUCCESS; 
  } 

2.6 Windows 98/Me Compatibility Notes  

Windows 98/Me handles some of the details surrounding device object creation and driver loading differently than Windows 
XP. This section explains the differences that might affect your driver. I’ve already mentioned a few of these, but repetition 
can’t hurt. 

2.6.1 Differences in DriverEntry Call  
As I indicated earlier, the DriverEntry routine receives a UNICODE_STRING argument naming the service key for the driver. 
In Windows XP, the string is a full registry path of the form \Registry\Machine\System\CurrentControlSet\Services\xxx (where 
xxx is the name of the service entry for your driver). In Windows 98/Me, however, the string is of the form 
System\CurrentControlSet\Services\<classname >\<instance#> (where <classname> is the class name of your device and 
<instance#> is an instance number such as 0000 indicating which device of that class you happen to be). You can open the key 
in either environment by calling ZwOpenKey, however. 

2.6.2 DriverUnload  
Windows 98/Me will call DriverUnload within a call to IoDeleteDevice that occurs within DriverEntry. You care about this 
only if (1) your DriverEntry function calls IoCreateDevice and then (2) decides to return an error status, whereupon it (3) 
cleans up by calling IoDeleteDevice. 

2.6.3 The \GLOBAL?? Directory  
Windows 98/Me doesn’t understand the directory name \GLOBAL??. Consequently, you need to put symbolic link names in 
the \DosDevices directory. You can use \DosDevices in Windows XP also because it’s a symbolic link to the \?? directory, 
whose (virtual) contents include \GLOBAL??. 

2.6.4 Unimplemented Device Types  
Windows 98 didn’t support creating device objects for mass storage devices. These are devices with types 
FILE_DEVICE_DISK, FILE_DEVICE_TAPE, FILE_DEVICE_CD_ROM, and FILE_DEVICE_VIRTUAL_DISK. You can call 
IoCreateDevice, and it will even return with a status code of STATUS_SUCCESS, but it won’t have actually created a device 
object or modified the PDEVICE_OBJECT variable whose address you gave as the last argument. 
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Chapter 3  

3 Basic Programming Techniques  

Writing a WDM driver is fundamentally an exercise in software engineering. Whatever the requirements of your particular 
hardware, you will combine various elements to form a program. In the preceding chapter, I described the basic structure of a 
WDM driver, and I showed you two of its elements—DriverEntry and AddDevice—in detail. In this chapter, I’ll focus on the 
even more basic topic of how you call upon the large body of kernel-mode support routines that the operating system exposes 
for your use. I’ll discuss error handling, memory and data structure management, registry and file access, and a few other 
topics. I’ll round out the chapter with a short discussion of the steps you can take to help debug your driver. 

3.1 The Kernel-Mode Programming Environment  

Figure 3-1 illustrates some of the components that make up the Microsoft Windows XP operating system. Each component 
exports service functions whose names begin with a particular two-letter or three-letter prefix:  

Figure 3-1. Overview of kernel-mode support routines 

 The I/O Manager (prefix Io) contains many service functions that drivers use, and I’ll be discussing them all throughout 
this book. 

 The Process Structure module (prefix Ps) creates and manages kernel-mode threads. An ordinary WDM driver might use 
an independent thread to repeatedly poll a device incapable of generating interrupts, and for other purposes. 

 The Memory Manager (prefix Mm) controls the page tables that define the mapping of virtual addresses onto physical 
memory. 

 The executive (prefix Ex) supplies heap management and synchronization services. I’ll discuss the heap management 
service functions in this chapter. The next chapter covers the synchronization services. 

 The Object Manager (prefix Ob) provides centralized control over the many data objects with which Windows XP works. 
WDM drivers rely on the Object Manager for keeping a reference count that prevents an object from disappearing while 
someone is still using it and to convert object handles to pointers to the objects the handles represent. 

 The Security Reference Monitor (prefix Se) allows file system drivers to perform security checks. Someone else has 
usually dealt with security concerns by the time an I/O request reaches a WDM driver, so I won’t be discussing these 
functions in this book. 

 The so-called run-time library component (prefix Rtl) contains utility routines, such as list and string-management 
routines, that kernel-mode drivers can use instead of regular ANSI-standard library routines. For the most part, the 
operation of these functions is obvious from their names, and you would pretty much know how to use them in a program 
if you just were aware of them. I’ll describe a few of them in this chapter. 

 Windows XP implements the native API for kernel-mode callers using routine names that begin with the prefix Zw. The 
DDK documents just a few of the ZwXxx functions, namely the ones that pertain to registry and file access. I’ll discuss 
those functions in this chapter. 
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 The Windows XP kernel (prefix Ke) is where all the low-level synchronization of activities between threads and 
processors occurs. I’ll discuss the KeXxx functions in the next chapter. 

 The very bottom layer of the operating system, on which the support sandwich rests, is the hardware abstraction layer (or 
HAL, prefix Hal). All the operating system’s knowledge of how the computer is actually wired together reposes in the 
HAL. The HAL understands how interrupts work on a particular platform, how to address I/O and memory-mapped 
devices, and so on. Instead of talking directly to their hardware, WDM drivers call functions in the HAL to do it. The 
driver ends up being platform-independent and bus-independent. 

3.1.1 Using Standard Run-Time Library Functions  
Historically, the Windows NT architects preferred that drivers not use the run-time libraries supplied by vendors of C 
compilers. In part, the initial disapproval arose from simple timing. Windows NT was designed at a time when there was no 
ANSI standard for what functions belonged in a standard library and when many compiler vendors existed, each with its own 
idea of what might be cool to include and its own unique quality standards. Another factor is that standard run-time library 
routines sometimes rely on initialization that can happen only in a user-mode application and are sometimes implemented in a 
thread-unsafe or multiprocessor-unsafe way. 

I suggested in the first edition that it would be OK to use a number of “standard” runtime library functions for string 
processing. That was probably bad advice, though, because most of us (including me!) have a hard time using them 
safely. It’s true (at least at the time I’m writing this paragraph) that the kernel exports standard string functions such as 

strcpy, wcscmp, and strncpy. Since these functions work with null-terminated strings, though, it’s just too easy to make 
mistakes with them. Are you sure you’ve provided a large enough target buffer for strcpy? Are you sure that both of the strings 
you’re comparing with wcscmp have a null terminator before they tail off into a not-present page? Were you aware that strncpy 
can fail to null-terminate the target string if the source string is longer than the target?  

Because of all the potential problems with run-time library functions, Microsoft now recommends using the set of “safe” string 
functions declared in NtStrsafe.h. I’ll discuss these functions, and the very few standard string and byte functions that it’s safe 
to use in a driver, later in this chapter. 

3.1.2 A Caution About Side Effects  
Many of the support “functions” that you use in a driver are defined as macros in the DDK header files. We were all taught to 
avoid using expressions that have side effects (that is, expressions that alter the state of the computer in some persistent way) 
as arguments to macros for the obvious reason that the macro can invoke the argument more or less than exactly once. 
Consider, for example, the following code: 

int a = 2, b = 42, c; 
c = min(a++, b); 

What’s the value of a afterward? (For that matter, what’s the value of c?) Take a look at a plausible implementation of min as a 
macro: 

#define min(x,y) (((x) < (y)) ? (x) : (y)) 

If you substitute a++ for x, you can see that a will equal 4 because the expression a++ gets executed twice. The value of the 
“function” min will be 3 instead of the expected 2 because the second invocation of a++ delivers the value. 

You basically can’t tell when the DDK will use a macro and when it will declare a real external function. Sometimes a 
particular service function will be a macro for some platforms and a function call for other platforms. Furthermore, Microsoft 
is free to change its mind in the future. Consequently, you should follow this rule when programming a WDM driver: 

Never use an expression that has side effects as an argument to a kernel-mode service function.  

3.2 Error Handling  

To err is human; to recover is part of software engineering. Exceptional conditions are always arising in programs. Some of 
them start with program bugs, either in our own code or in the user-mode applications that invoke our code. Some of them 
relate to system load or the instantaneous state of hardware. Whatever the cause, unusual circumstances demand a flexible 
response from our code. In this section, I’ll describe three aspects of error handling: status codes, structured exception handling, 
and bug checks. In general, kernel-mode support routines report unexpected errors by returning a status code, whereas they 
report expected variations in normal flow by returning a Boolean or numeric value other than a formal status code. Structured 
exception handling offers a standardized way to clean up after really unexpected events, such as dereferencing an invalid 
user-mode pointer, or to avoid the system crash that normally ensues after such events. A bug check is the internal name for a 
catastrophic failure for which a system shutdown is the only cure. 
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3.2.1 Status Codes  
Kernel-mode support routines (and your code too, for that matter) indicate success or failure by returning a status code to their 
caller. An NTSTATUS value is a 32-bit integer composed of several subfields, as illustrated in Figure 3-2. The high-order 2 bits 
denote the severity of the condition being reported—success, information, warning, or error. I’ll explain the impact of the 
customer flag shortly. The facility code indicates which system component originated the message and basically serves to 
decouple development groups from each other when it comes to assigning numbers to codes. The remainder of the status 
code—16 bits’ worth—indicates the exact condition being reported. 

Figure 3-2. Format of an NTSTATUS code.  

You should always check the status returns from routines that provide them. I’m going to break this rule frequently in some of 
the code fragments I show you because including all the necessary error handling code often obscures the expository purpose 
of the fragment. But don’t you emulate this sloppy practice! 

If the high-order bit of a status code is 0, any number of the remaining bits could be set and the code would still indicate 
success. Consequently, never just compare status codes with 0 to see whether you’re dealing with success—instead, use the 
NT_SUCCESS macro: 

NTSTATUS status = SomeFunction(...); 
if (!NT_SUCCESS(status)) 
  { 
  //handle error 
 
  } 

Not only do you want to test the status codes you receive from routines you call, but you also want to return status codes to the 
routines that call you. In the preceding chapter, I dealt with two driver subroutines—DriverEntry and AddDevice—that are 
both defined as returning NTSTATUS codes. As I discussed, you want to return STATUS_SUCCESS as the success indicator 
from these routines. If something goes wrong, you often want to return an appropriate status code, which is sometimes the 
same value that a routine returned to you. 

As an example, here are some initial steps in the AddDevice function, with all the error checking left in: 

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo) 
  { 
  NTSTATUS status; 
  PDEVICE_OBJECT fdo; 
  status = IoCreateDevice(DriverObject, sizeof(DEVICE_EXTENSION), 
    NULL, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, FALSE, 
    &fdo); 
 
  if (!NT_SUCCESS(status)) 
    { 
 
    KdPrint(("IoCreateDevice failed - %X\n", status)); 
    return status; 
    } 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  pdx->DeviceObject = fdo; 
  pdx->Pdo = pdo; 
  pdx->state = STOPPED; 
 
  IoInitializeRemoveLock(&pdx->RemoveLock, 0, 0, 0); 
 
  status = IoRegisterDeviceInterface(pdo, &GUID_SIMPLE, NULL, 
    &pdx->ifname); 
  if (!NT_SUCCESS(status)) 
    { 
    KdPrint(("IoRegisterDeviceInterface failed - %X\n", status)); 
    IoDeleteDevice(fdo); 



- 48 - Basic Programming Techniques | Chapter 3 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

    return status; 
    } 
 
  } 

1. If IoCreateDevice fails, we’ll simply return the same status code it gave us. Note the use of the NT_SUCCESS macro as 
described in the text. 

2. It’s sometimes a good idea, especially while debugging a driver, to print any error status you discover. I’ll discuss the 
exact usage of KdPrint later in this chapter (in the “Making Debugging Easier” section). 

3. IoInitializeRemoveLock, discussed in Chapter 6, cannot fail. Consequently, there’s no need to check a status code. 
Generally speaking, most functions declared with type VOID are in the same “cannot fail” category. A few VOID 
functions can fail by raising an exception, but the DDK documents that behavior very clearly. 

4. Should IoRegisterDeviceInterface fail, we have some cleanup to do before we return to our caller; namely, we must call 
IoDeleteDevice to destroy the device object we just created. 

You don’t always have to fail calls that lead to errors in the routines you call, of course. Sometimes you can ignore an error. 
For example, in Chapter 8, I’ll tell you about a power management I/O request with the subtype 
IRP_MN_POWER_SEQUENCE that you can use as an optimization to avoid unnecessary state restoration during a power-up 
operation. Not only is it optional whether you use this request, but it’s also optional for the bus driver to implement it. 
Therefore, if that request should fail, you should just go about your business. Similarly, you can ignore an error from 
IoAllocateErrorLogEntry because the inability to add an entry to the error log isn’t at all critical. 

Completing an IRP with an error status—driver programmers call this failing the IRP—usually leads to a failure indication in 
the return from a Win32 API function in an application. The application can call GetLastError to determine the cause of the 
failure. If you fail the IRP with a status code containing the customer flag, GetLastError will return exactly that status code. If 
you fail the IRP with a status code in which the customer flag is 0 (which is the case for every standard status code defined by 
Microsoft), GetLastError returns a value drawn from WINERROR.H in the Platform SDK. Knowledge Base article Q113996, 
“Mapping NT Status Error Codes to Win32 Error Codes,” documents the correspondence between GetLastError return values 
and kernel status codes. Table 3-1 shows the correspondence for the most important status codes. 

Kernel-Mode Status Code User-Mode Error Code 

STATUS_SUCCESS  NO_ERROR (0)  

STATUS_INVALID_PARAMETER  ERROR_INVALID_PARAMETER  

STATUS_NO_SUCH_FILE  ERROR_FILE_NOT_FOUND  

STATUS_ACCESS_DENIED  ERROR_ACCESS_DENIED  

STATUS_INVALID_DEVICE_REQUEST  ERROR_INVALID_FUNCTION  

ERROR_BUFFER_TOO_SMALL  ERROR_INSUFFICIENT_BUFFER  

STATUS_DATA_ERROR  ERROR_CRC  

Table 3-1. Correspondence Between Common Kernel-Mode and User-Mode Status Codes   

The difference between an error and a warning can be significant. For example, failing a METHOD_BUFFERED control 
operation (see Chapter 9) with STATUS_BUFFER_OVERFLOW—a warning—causes the I/O Manager to copy data to the 
user-mode buffer. Failing the same operation with STATUS_BUFFER_TOO_SMALL—an error—causes the I/O Manager to 
not copy any data. 

3.2.2 Structured Exception Handling  
The Windows family of operating systems provides a method of handling exceptional conditions that helps you avoid potential 
system crashes. Closely integrated with the compiler’s code generator, structured exception handling lets you easily place a 
guard on sections of your code and invoke exception handlers when something goes wrong in the guarded section. Structured 
exception handling also lets you easily provide cleanup statements that you can be sure will always execute no matter how 
control leaves a guarded section of code. 

Very few of my seminar students have been familiar with structured exceptions, so I’m going to explain some of the basics 
here. You can write better, more bulletproof code if you use these facilities. In many situations, the parameters that you receive 
in a WDM driver have been thoroughly vetted by other code and won’t cause you to generate inadvertent exceptions. Good 
taste may, therefore, be the only impetus for you to use the stuff I’m describing in this section. As a general rule, though, you 
always want to protect direct references to user-mode virtual memory with a structured exception frame. Such references occur 
when you directly reference memory and when you call MmProbeAndLockPages, ProbeForRead, and ProbeForWrite, and 
perhaps at other times. 

Sample Code  
The SEHTEST sample driver illustrates the mechanics of structured exceptions in a WDM driver. 
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Which Exceptions Can Be Trapped 
Gary Nebbett researched the question of which exceptions can be trapped with the structured exception 
mechanism and reported his results in a newsgroup post several years ago. The SEHTEST sample incorporates 
what he learned. In summary, the following exceptions will be caught when they occur at IRQL less than or 
equal to DISPATCH_LEVEL (note that some of these are specific to the Intel x86 processor):  

 Anything signaled by ExRaiseStatus and related functions 

 Attempt to dereference invalid pointer to user-mode memory 

 Debug or breakpoint exception 

 Integer overflow (INTO instruction) 

 Invalid opcode 

Note that a reference to an invalid kernel-mode pointer leads directly to a bug check and can’t be trapped. 
Likewise, a divide-by-zero exception or a BOUND instruction exception leads to a bug check. 

Kernel-mode programs use structured exceptions by establishing exception frames on the same stack that’s used for argument 
passing, subroutine calling, and automatic variables. A dedicated processor register points to the current exception frame. Each 
frame points to the preceding frame. Whenever an exception occurs, the kernel searches the list of exception frames for an 
exception handler. It will always find one because there is an exception frame at the very top of the stack that will handle any 
otherwise unhandled exception. Once the kernel locates an exception handler, it unwinds the execution and exception frame 
stacks in parallel, calling cleanup handlers along the way. Then it gives control to the exception handler. 

When you use the Microsoft compiler, you can use Microsoft extensions to the C/C++ language that hide some of the 
complexities of working with the raw operating system primitives. You use the __try statement to designate a compound 
statement as the guarded body for an exception frame, and you use either the __finally statement to establish a termination 
handler or the __except statement to establish an exception handler. 

NOTE  
It’s better to always spell the words __try, __finally, and __except with leading underscores. In C compilation 
units, the DDK header file WARNING.H defines macros spelled try, finally, and except to be the words with 
underscores. DDK sample programs use those macro names rather than the underscored names. The problem 
this can create for you is that in a C++ compilation unit, try is a statement verb that pairs with catch to invoke 
a completely different exception mechanism that’s part of the C++ language. C++ exceptions don’t work in a 
driver unless you manage to duplicate some infrastructure from the run-time library. Microsoft would prefer you 
not do that because of the increased size of your driver and the memory pool overhead associated with handling 
the throw verb. 

Try-Finally Blocks  

It’s easiest to begin explaining structured exception handling by describing the try-finally block, which you can use to provide 
cleanup code: 

__try 
  { 
  <guarded body> 
  } 
__finally 
  { 
  <termination handler> 
  } 

In this fragment of pseudocode, the guarded body is a series of statements and subroutine calls that expresses some main idea 
in your program. In general, these statements have side effects. If there are no side effects, there’s no particular point to using a 
try-finally block because there’s nothing to clean up. The termination handler contains statements that undo some or all of the 
side effects that the guarded body might leave behind. 

Semantically, the try-finally block works as follows: First the computer executes the guarded body. When control leaves the 
guarded body for any reason, the computer executes the termination handler. See Figure 3-3. 



- 50 - Basic Programming Techniques | Chapter 3 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

Figure 3-3. Flow of control in a try-finally block.  

Here’s one simple illustration: 

LONG counter = 0; 
__try 
  { 
  ++counter; 
  } 
__finally 
  { 
  --counter; 
  } 
KdPrint(("%d\n", counter)); 

First the guarded body executes and increments the counter variable from 0 to 1. When control “drops through” the right brace 
at the end of the guarded body, the termination handler executes and decrements counter back to 0. The value printed will 
therefore be 0. 

Here’s a slightly more complicated variation: 

VOID RandomFunction(PLONG pcounter) 
  { 
  __try 
    { 
    ++*pcounter; 
    return; 
    } 
  __finally 
    { 
    --*pcounter; 
    } 
  } 

The net result of this function is no change to the integer at the end of the pcounter pointer: whenever control leaves the 
guarded body for any reason, including a return statement or a goto, the termination handler executes. Here the guarded body 
increments the counter and performs a return. Next the cleanup code executes and decrements the counter. Then the subroutine 
actually returns. 

One final example should cement the idea of a try-finally block: 

static LONG counter = 0; 
__try 
  { 
  ++counter; 
  BadActor(); 
  } 
__finally 
  { 
  --counter; 
  } 

Here I’m supposing that we call a function, BadActor, that will raise some sort of exception that triggers a stack unwind. As 
part of the process of unwinding the execution and exception stacks, the operating system will invoke our cleanup code to 
restore the counter to its previous value. The system then continues unwinding the stack, so whatever code we have after the 
__finally block won’t get executed. 
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Try-Except Blocks  

The other way to use structured exception handling involves a try-except block: 

__try 
  { 
  <guarded body> 
  } 
__except(<filter expression>) 
  { 
  <exception handler> 
  } 

The guarded body in a try-except block is code that might fail by generating an exception. Perhaps you’re going to call a 
kernel-mode service function such as MmProbeAndLockPages that uses pointers derived from user mode without explicit 
validity checking. Perhaps you have other reasons. In any case, if you manage to get all the way through the guarded body 
without an error, control continues after the exception handler code. You’ll think of this case as being the normal one. If an 
exception arises in your code or in any of the subroutines you call, however, the operating system will unwind the execution 
stack, evaluating the filter expressions in __except statements. These expressions yield one of the following values: 

 EXCEPTION_EXECUTE_HANDLER is numerically equal to 1 and tells the operating system to transfer control to your 
exception handler. If your handler falls through the ending right brace, control continues within your program at the 
statement immediately following that right brace. (I’ve seen Platform SDK documentation to the effect that control 
returns to the point of the exception, but that’s not correct.) 

 EXCEPTION_CONTINUE_SEARCH is numerically equal to 0 and tells the operating system that you can’t handle the 
exception. The system keeps scanning up the stack looking for another handler. If no one has provided a handler for the 
exception, a system crash will occur. 

 EXCEPTION_CONTINUE_EXECUTION is numerically equal to -1 and tells the operating system to return to the point 
where the exception was raised. I’ll have a bit more to say about this expression value a little further on. 

Take a look at Figure 3-4 for the possible control paths within and around a try-except block. 

Figure 3-4. Flow of control in a try-except block.  

For example, you can protect yourself from receiving an invalid pointer by using code like the following. (See the SEHTEST 
sample in the companion content.) 

PVOID p = (PVOID) 1; 
__try 
  { 
  KdPrint(("About to generate exception\n")); 
  ProbeForWrite(p, 4, 4); 
  KdPrint(("You shouldn't see this message\n")); 
  } 
__except(EXCEPTION_EXECUTE_HANDLER) 
  { 
  KdPrint(("Exception was caught\n")); 
  } 
KdPrint(("Program kept control after exception\n")); 

ProbeForWrite tests a data area for validity. In this example, it will raise an exception because the pointer argument we supply 
isn’t aligned to a 4-byte boundary. The exception handler gains control. Control then flows to the next statement after the 
exception handler and continues within your program. 

In the preceding example, had you returned the value EXCEPTION_CONTINUE_SEARCH, the operating system would have 
continued unwinding the stack looking for an exception handler. Neither your exception handler code nor the code following it 
would have been executed: either the system would have crashed or some higher-level handler would have taken over. 
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You should not return EXCEPTION_CONTINUE_EXECUTION in kernel mode because you have no way to alter the 
conditions that caused the exception in order to allow a retry to occur. 

Note that you cannot trap arithmetic exceptions, or page faults due to referencing an invalid kernel-mode pointer, by using 
structured exceptions. You just have to write your code so as not to generate such exceptions. It’s pretty obvious how to avoid 
dividing by 0—just check, as in this example: 

ULONG numerator, denominator;  // <== numbers someone gives you 
ULONG quotient; 
if (!denominator) 
  <handle error>else 
  quotient = numerator / denominator; 

But what about a pointer that comes to you from some other part of the kernel? There is no function that you can use to check 
the validity of a kernel-mode pointer. You just need to follow this rule: 

Usually, trust values that a kernel-mode component gives you.  

I don’t mean by this that you shouldn’t liberally sprinkle your code with ASSERT statements—you should because you may 
not initially understand all the ins and outs of how other kernel components work. I just mean that you don’t need to burden 
your own driver with excessive defenses against mistakes in other, well-tested, parts of the system unless you need to work 
around a bug. 

More About NULL Pointers 
While we’re on the subject of invalid pointers, note that a NULL pointer is (a) an invalid user-mode pointer in 
Windows XP and (b) a perfectly valid pointer in Windows 98/Me. If you use a NULL pointer directly, as in *p, or 
indirectly, as in p->StructureMember, you’ll be trying to reference something in the first few bytes of virtual 
memory. Doing so in Windows XP will cause a trappable access violation.  

Dereferencing a NULL pointer in Windows 98/Me will not, of itself, cause any immediately observable problem. 
I once spent several days tracking down a bug that resulted from overstoring location 0x0000000C in a 
Windows 95 system. That location is the real-mode vector for the breakpoint (INT 3) interrupt. The wild store 
didn’t show up until some infrequently used application did an INT 3 that wasn’t caught by a debugger. The 
system reflected the interrupt to real mode. The invalid interrupt vector pointed to memory containing a bunch 
of technically valid but nonsensical instructions followed by an invalid one. The system halted with an invalid 
operation exception. As you can see, the eventual symptom was very far removed in space and time from the 
wild store. 

To debug a different problem in Windows 98, I once installed a debugging driver to catch alterations to the first 
16 bytes of virtual memory. I had to remove it because so many VxD drivers (including some belonging to 
Microsoft) were getting caught. 

The moral of these anecdotes is that you should always test pointers for NULL before using them if there is any 
possibility that the pointer could be NULL. To learn whether the possibility exists, read documentation and 
specifications very carefully. 

Exception Filter Expressions  

You might be wondering how to perform any sort of involved error detection or correction when all you’re allowed to do is 
evaluate an expression that yields one of three integer values. You could use the C/C++ comma operator to string expressions 
together: 

__except(expr-1, ... EXCEPTION_CONTINUE_SEARCH){} 

The comma operator basically discards whatever value is on its left side and evaluates its right side. The value that’s left over 
after this computational game of musical chairs (with just one chair!) is the value of the expression. 

You could use the C/C++ conditional operator to perform a more involved calculation: 

__except(<some-expr>  
    ? EXCEPTION_EXECUTE_HANDLER 
    : EXCEPTION_CONTINUE_SEARCH) 

If the some_expr expression is TRUE, you execute your own handler. Otherwise, you tell the operating system to keep looking 
for another handler above you in the stack. 

Finally, it should be obvious that you could just write a subroutine whose return value is one of the EXCEPTION_Xxx values: 

LONG EvaluateException() 
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  { 
  if (<some-expr>) 
    return EXCEPTION_EXECUTE_HANDLER; 
  else 
    return EXCEPTION_CONTINUE_SEARCH; 
  } 
 
 
__except(EvaluateException()) 
 

For any of these expression formats to do you any good, you need access to more information about the exception. You can 
call two functions when evaluating an __except expression that will supply the information you need. Both functions actually 
have intrinsic implementations in the Microsoft compiler and can be used only at the specific times indicated: 

 GetExceptionCode() returns the numeric code for the current exception. This value is an NTSTATUS value that you can 
compare with manifest constants in ntstatus.h if you want to. This function is available in an __except expression and 
within the exception handler code that follows the __except clause. 

 GetExceptionInformation() returns the address of an EXCEPTION_POINTERS structure that, in turn, allows you to learn 
all the details about the exception, such as where it occurred, what the machine registers contained at the time, and so on. 
This function is available only within an __except expression. 

NOTE  
The scope rules for names that appear in try-except and try-finally blocks are the same as elsewhere in the 
C/C++ language. In particular, if you declare variables within the scope of the compound statement that follows 
__try, those names aren’t visible in a filter expression, an exception handler, or a termination handler. 
Documentation to the contrary that you might have seen in the Platform SDK or on MSDN is incorrect. For what 
it’s worth, the stack frame containing any local variables declared within the scope of the guarded body still 
exists at the time the filter expression is evaluated. So if you had a pointer (presumably declared at some outer 
scope) to a variable declared within the guarded body, you could safely dereference it in a filter expression. 

Because of the restrictions on how you can use these two expressions in your program, you’ll probably want to use them in a 
function call to some filter function, like this: 

LONG EvaluateException(NTSTATUS status, PEXCEPTION_POINTERS xp) 
  { 
 
  } 
 
__except(EvaluateException(GetExceptionCode(), 
  GetExceptionInformation())) 
 

Raising Exceptions  

Program bugs are one way you can (inadvertently) raise exceptions that invoke the structured exception handling mechanism. 
Application programmers are familiar with the Win32 API function RaiseException, which allows you to generate an arbitrary 
exception on your own. In WDM drivers, you can call the routines listed in Table 3-2. I’m not going to give you a specific 
example of calling these functions because of the following rule: 

Raise an exception only in a nonarbitrary thread context, when you know there’s an exception handler above you, and when 
you really know what you’re doing.  

In particular, raising exceptions is not a good way to tell your callers information that you discover in the ordinary course of 
executing. It’s far better to return a status code, even though that leads to apparently more unreadable code. You should avoid 
exceptions because the stack-unwinding mechanism is very expensive. Even the cost of establishing exception frames is 
significant and something to avoid when you can. 

Service Function Description 

ExRaiseStatus  Raise exception with specified status code 

ExRaiseAccessViolation  Raise STATUS_ACCESS_VIOLATION 

ExRaiseDatatypeMisalignment  Raise STATUS_DATATYPE_MISALIGNMENT 

Table 3-2. Service Functions for Raising Exceptions  
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Real-World Examples  

Notwithstanding the expense of setting up and tearing down exception frames, you have to use structured exception 
syntax in an ordinary driver in particular situations. 

One of the times you must set up an exception handler is when you call MmProbeAndLockPages to lock the pages for a 
memory descriptor list (MDL) you’ve created: 

PMDL mdl = MmCreateMdl(...); 
__try 
  { 
  MmProbeAndLockPages(mdl, ...); 
  } 
__except(EXCEPTION_EXECUTE_HANDLER) 
  { 
  NTSTATUS status = GetExceptionCode(); 
  IoFreeMdl(mdl); 
  return CompleteRequest(Irp, status, 0); 
  } 

(CompleteRequest is a helper function I use to handle the mechanics of completing I/O requests. Chapter 5 explains all about 
I/O requests and what it means to complete one.) 

Another time to use an exception handler is when you want to access user-mode memory using a pointer from an untrusted 
source. In the following example, suppose you obtained the pointer p from a user-mode program and believe it points to an 
integer: 

PLONG p;        // from user-mode 
__try 
  { 
  ProbeForRead(p, 4, 4); 
  LONG x = *p; 
 
  } 
__except(EXCEPTION_EXECUTE_HANDLER) 
  { 
  NTSTATUS status = GetExceptionCode(); 
 
  } 

3.2.3 Bug Checks  
Unrecoverable errors in kernel mode can manifest themselves in the so-called blue screen of death (BSOD) that’s all too 
familiar to driver programmers. Figure 3-5 is an example (hand-painted because no screen capture software is running when 
one of these occurs!). Internally, these errors are called bug checks, after the service function you use to diagnose their 
occurrence: KeBugCheckEx. The main feature of a bug check is that the system shuts itself down in as orderly a way as 
possible and presents the BSOD. Once the BSOD appears, the system is dead and must be rebooted. 

You call KeBugCheckEx like this: 

KeBugCheckEx(bugcode, info1, info2, info3, info4); 

where bugcode is a numeric value identifying the cause of the error and info1, info2, and so on are integer parameters that will 
appear in the BSOD display to help a programmer understand the details of the error. This function does not return (!). 

As a developer, you don’t get much information from the Blue Screen. If you’re lucky, the information will include the offset 
of an instruction within your driver. Later on, you can examine this location in a kernel debugger and, perhaps, deduce a 
possible cause for the bug check. Microsoft’s own bug-check codes appear in bugcodes.h (one of the DDK headers); a fuller 
explanation of the codes and their various parameters can be found in Knowledge Base article Q103059, “Descriptions of Bug 
Codes for Windows NT,” which is available on MSDN, among other places. 

Sample Code  
The BUGCHECK sample driver illustrates how to call KeBugCheckEx. I used it to generate the screen shot for 
Figure 3-5. 
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Figure 3-5. The blue screen of death.  

You can certainly create your own bug-check codes if you want. The Microsoft values are simple integers beginning with 1 
(APC_INDEX_MISMATCH) and (currently) extending through 0xF6 (PCI_VERIFIER_DETECTED_VIOLATION), along with 
a few others. To create your own bug-check code, define an integer constant as if it were STATUS_SEVERITY_SUCCESS 
status code, but supply either the customer flag or a nonzero facility code. For example: 

#define MY_BUGCHECK_CODE 0x002A0001 
 
KeBugCheckEx(MY_BUGCHECK_CODE, 0, 0, 0, 0); 

You use a nonzero facility code (42 in this example) or the customer flag (which I left 0 in this example) so that you can tell 
your own codes from the ones Microsoft uses. 

Now that I’ve told you how to generate your own BSOD, let me tell you when to do it: never. Or at most, in the checked build 
of your driver for use during your own internal debugging. You and I are unlikely to write a driver that will discover an error so 
serious that taking down the system is the only solution. It would be far better to log the error (using the error-logging facilities 
I’ll describe in Chapter 14) and return a status code. 

Note that the end user can configure the behavior of KeBugCheckEx in the advanced settings for My Computer. The user can 
choose to automatically restart the machine or to generate the BSOD. The end user can likewise choose several levels of detail 
(including none) for a dump file and whether to log an event in the system event log. 

3.3 Memory Management  

In this section, I’ll discuss the topic of memory management. Windows XP divides the available virtual address space in 
several ways. One division—a very firm one based on security and integrity concerns—is between user-mode addresses and 
kernel-mode addresses. Another division, which is almost but not quite coextensive with the first, is between paged and 
nonpaged memory. All user-mode addresses and some kernel-mode addresses reference page frames that the Memory Manager 
swaps to and from the disk over time, while some kernel-mode addresses always reference page frames in physical memory. 
Since Windows XP allows portions of drivers to be paged, I’ll explain how you control the pageability of your driver at the 
time you build your driver and at run time. 

Windows XP provides several methods for managing memory. I’ll describe two basic service 
functions—ExAllocatePoolWithTag and ExFreePool—that you use for allocating and releasing randomly sized blocks from a 
heap. I’ll also describe the primitives that you use for organizing memory blocks into linked lists of structures. Finally I’ll 
describe the concept of a lookaside list, which allows you to efficiently allocate and release blocks that are all the same size. 

3.3.1 User-Mode and Kernel-Mode Address Spaces  
Windows XP and Microsoft Windows 98/Me run on computers that support a virtual address space, wherein virtual addresses 
are mapped either to physical memory or (conceptually, anyway) to page frames within a swap file on disk. To grossly simplify 
matters, you can think of the virtual address space as being divided into two parts: a kernel-mode part and a user-mode part. 
See Figure 3-6. 
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Figure 3-6. User-mode and kernel-mode portions of the address space.  

Each user-mode process has its own address context, which maps the user-mode virtual addresses to a unique collection of 
physical page frames. In other words, the meaning of any particular virtual address changes from one moment to the next as 
the Windows XP scheduler switches from a thread in one process to a thread in another process. Part of the work in switching 
threads is to change the page tables used by a processor so that they refer to the incoming thread’s process context. 

It’s generally unlikely that a WDM driver will execute in the same thread context as the initiator of the I/O requests it handles. 
We say that we’re running in arbitrary thread context if we don’t know for sure to which process the current user-mode 
address context belongs. In arbitrary thread context, we simply can’t use a virtual address that belongs to user mode because 
we can’t have any idea to what physical memory it might point. In view of this uncertainty, we generally obey the following 
rule inside a driver program: 

Never (well, hardly ever) directly reference user-mode memory.  

In other words, don’t take an address that a user-mode application provides and treat that address as a pointer that we can 
directly dereference. I’ll discuss in later chapters a few techniques for accessing data buffers that originate in user mode. All 
we need to know right now, though, is that we’re (nearly) always going to be using kernel-mode virtual addresses whenever we 
want to access the computer’s memory. 

How Big Is a Page?  

In a virtual memory system, the operating system organizes physical memory and the swap file into like-size page frames. In a 
WDM driver, you can use the manifest constant PAGE_SIZE to tell you how big a page is. In some Windows XP computers, a 
page is 4096 bytes long; in others, it’s 8192 bytes long. A related constant named PAGE_SHIFT equals the page size as a 
power of 2. That is: 

PAGE_SIZE == 1 << PAGE_SHIFT 

For your convenience, you can use a few preprocessor macros in your code when you’re working with the size of a page: 

 ROUND_TO_PAGES rounds a size in bytes to the next-higher page boundary. For example, ROUND_TO_PAGES(1) is 
4096 on a 4-KB-page computer. 

 BYTES_TO_PAGES determines how many pages are required to hold a given number of bytes beginning at the start of a 
page. For example, BYTES_TO_PAGES(42) would be 1 on all platforms, and BYTES_TO_PAGES(5000) would be 2 on 
some platforms and 1 on others. 

 BYTE_OFFSET returns the byte offset portion of a virtual address. That is, it calculates the starting offset within some 
page frame of a given address. On a 4-KB-page computer, BYTE_OFFSET(0x12345678) would be 0x678. 

 PAGE_ALIGN rounds a virtual address down to a page boundary. On a 4-KB-page computer, PAGE_ALIGN(0x12345678) 
would be 0x12345000. 

 ADDRESS_AND_SIZE_TO_SPAN_PAGES returns the number of page frames occupied by a specified number of bytes 
beginning at a specified virtual address. For example, the statement 
ADDRESS_AND_SIZE_TO_SPAN_PAGES(0x12345FFF, 2) is 2 on a 4-KB-page machine because the 2 bytes span a 
page boundary. 

Paged and Nonpaged Memory  

The whole point of a virtual memory system is that you can have a virtual address space that’s much bigger than the amount of 
physical memory on the computer. To accomplish this feat, the Memory Manager needs to swap page frames in and out of 
physical memory. Certain parts of the operating system can’t be paged, though, because they’re needed to support the Memory 
Manager itself. The most obvious example of something that must always be resident in memory is the code that handles page 
faults (the exceptions that occur when a page frame isn’t physically present when needed) and the data structures used by the 
page fault handler. 
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The category of “must be resident” stuff is much broader than just the page fault handlers. Windows XP allows hardware 
interrupts to occur at nearly any time, including while a page fault is being serviced. If this weren’t so, the page fault handler 
wouldn’t be able to read or write pages from a device that uses an interrupt. Thus, every hardware interrupt service routine 
must be in nonpaged memory. The designers of Windows NT decided to include even more routines in the nonpaged category 
by using a simple rule: 

Code executing at or above interrupt request level (IRQL) DISPATCH_LEVEL cannot cause page faults.  

I’ll elaborate on this rule in the next chapter. 

You can use the PAGED_CODE preprocessor macro (declared in wdm.h) to help you discover violations of this rule in the 
checked build of your driver. For example: 

NTSTATUS DispatchPower(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PAGED_CODE() 
 
  } 

PAGED_CODE contains conditional compilation. In the checked-build environment, it prints a message and generates an 
assertion failure if the current IRQL is too high. In the free-build environment, it doesn’t do anything. To understand why 
PAGED_CODE is useful, imagine that DispatchPower needs for some reason to be in nonpaged memory but that you have 
misplaced it in paged memory. If the system happens to call DispatchPower at a time when the page containing it isn’t present, 
a page fault will occur, followed by a bug check. The bug check code will be pretty uninformative 
(IRQL_NOT_LESS_OR_EQUAL or DRIVER_IRQL_NOT_LESS_OR_EQUAL), but at least you’ll find out that you have a 
problem. If you test your driver in a situation in which the page containing DispatchPower happens fortuitously to be in 
memory, though, there won’t be a page fault. PAGED_CODE will detect the problem even so. 

Setting the Driver Verifier “Force IRQL Checking” option will greatly increase the chances of discovering that you’ve 
broken the rule about paging and IRQL. The option forces pageable pages out of memory whenever verified drivers 

raise the IRQL to DISPATCH_LEVEL or beyond.  

Compile-Time Control of Pageability  

Given that some parts of your driver must always be resident and some parts can be paged, you need a way to control the 
assignment of your code and data to the paged and nonpaged pools. You accomplish part of this job by instructing the compiler 
how to apportion your code and data among various sections. The run-time loader uses the names of the sections to put parts of 
your driver in the places you intend. You can also accomplish parts of this job at run time by calling various Memory Manager 
routines that I’ll discuss in the next section. 

NOTE  
Win32 executable files, including kernel-mode drivers, are internally composed of one or more sections. A 
section can contain code or data and, generally speaking, has additional attributes such as being readable, 
writable, shareable, executable, and so on. A section is also the smallest unit that you can designate when 
you’re specifying pageability. When loading a driver image, the system puts sections whose literal names begin 
with PAGE or .EDA (the start of .EDATA) into the paged pool unless the DisablePagingExecutive value in the 
HKLM\System\CurrentControlSet\Control\Session Manager\Memory Management key happens to be set (in 
which case no driver paging occurs). Note that these names are case sensitive! In one of the little twists of fate 
that affect us all from time to time, running Soft-Ice/W on Windows XP requires you to disable kernel paging in 
this way. This certainly makes it harder to find bugs caused by misplacement of driver code or data into the 
paged pool! If you use this debugger, I recommend that you religiously use the PAGED_CODE macro and the 
Driver Verifier. 

The traditional way of telling the compiler to put code into a particular section is to use the alloc_text pragma. Since not every 
compiler will necessarily support the pragma, the DDK headers either define or don’t define the constant ALLOC_PRAGMA 
to tell you whether to use the pragma. You can then invoke the pragma to specify the section placement of individual 
subroutines in your driver, as follows: 

#ifdef ALLOC_PRAGMA 
  #pragma alloc_text(PAGE, AddDevice) 
  #pragma alloc_text(PAGE, DispatchPnp) 
 
#endif 

These statements serve to place the AddDevice and DispatchPnp functions into the paged pool. 

The Microsoft C/C++ compiler places two annoying restrictions on using alloc_text: 

 The pragma must follow the declaration of a function but precede the definition. One way to obey this rule is to declare 
all the functions in your driver in a standard header file and invoke alloc_text at the start of the source file that contains a 
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given function but after you include that header. 

 The pragma can be used only with functions that have C-linkage. In other words, it won’t work for class member 
functions or for functions in a C++ source file that you didn’t declare using extern “C”. 

To control the placement of data variables, you use a different pragma under the control of a different preprocessor macro 
symbol: 

#ifdef ALLOC_DATA_PRAGMA 
  #pragma data_seg("PAGEDATA") 
#endif 

The data_seg pragma causes all static data variables declared in a source module after the appearance of the pragma to go into 
the paged pool. You’ll notice that this pragma differs in a fundamental way from alloc_text. A pageable section starts where 
#pragma data_seg(“PAGEDATA”) appears and ends where a countervailing #pragma data_seg() appears. Alloc_text, on the 
other hand, applies to a specific function. 

More About Section Placement  
In general, I find it more convenient to specify the section placement of whole blocks of code by using the 
Microsoft code_seg pragma, which works the same way as data_seg, only for code. That is, you can tell the 
Microsoft compiler to start putting functions into the paged pool like this:  

#pragma code_seg("PAGE") 
NTSTATUS AddDevice(...){...} 
NTSTATUS DispatchPnp(...){...} 

The AddDevice and DispatchPnp functions would both end up in the paged pool. You can check to see whether 
you’re compiling with the Microsoft compiler by testing the existence of the predefined preprocessor macro 
_MSC_VER. 

To revert to the default code section, just code #pragma code_seg with no argument: 

#pragma code_seg() 

Similarly, to revert to the regular nonpaged data section, code #pragma data_seg with no argument: 

#pragma data_seg() 

This sidebar is also the logical place to mention that you can also direct code into the INIT section if it’s not 
needed once your driver finishes initializing. For example: 

#pragma alloc_text(INIT, DriverEntry) 

This statement forces the DriverEntry function into the INIT section. The system will release the memory it 
occupies when it returns. This small savings isn’t very important in the grand scheme of things because a WDM 
driver’s DriverEntry function isn’t very big. Previous Windows NT drivers had large DriverEntry functions that 
had to create device objects, locate resources, configure devices, and so on. For them, using this feature 
offered significant memory savings. 

Notwithstanding the low utility of putting DriverEntry in the INIT section in a WDM driver, I was in the habit of 
doing so until quite recently. Because of a bug in Windows 98/Me, I had a situation in which a WDM driver wasn’t 
being completely removed from memory after I unplugged my hardware. One part of the system didn’t 
understand this and tried to call DriverEntry when I replugged the hardware. The memory that had originally 
contained DriverEntry had long since been overwritten by INIT code belonging to other drivers, and a crash 
resulted. This was very difficult to debug! I now prefer to place DriverEntry in a paged section. 

You can use the DUMPBIN utility that comes with Microsoft Visual C++ .NET to easily see how much of your 
driver is initially pageable. Your marketing department might even want to crow about how much less nonpaged 
memory you use than your competitors. 

Run-Time Control of Pageability  

Table 3-3 lists the service functions you can use at run time to fine-tune the pageability of your driver in various situations. The 
purpose of these routines is to let you release the physical memory that would otherwise be tied up by your code and data 
during periods when it won’t be needed. In Chapter 8, for example, I’ll discuss how you can put your device into a low power 
state during periods of inactivity. Powering down might be a good time to release your locked pages. 
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Service Function Description 

MmLockPagableCodeSection  Locks a code section given an address inside it 

MmLockPagableDataSection  Locks a data section given an address inside it 

MmLockPagableSectionByHandle  
Locks a code section by using a handle from a previous 
MmLockPagableCodeSection call (Windows 2000 and Windows XP only) 

MmPageEntireDriver  Unlocks all pages belonging to driver 

MmResetDriverPaging  Restores compile-time pageability attributes for entire driver 

MmUnlockPagableImageSection  Unlocks a locked code or data section 

Table 3-3. Routines for Dynamically Locking and Unlocking Driver Pages  

I’m going to describe one way to use these functions to control the pageability of code in your driver. You might want to read 
the DDK descriptions to learn about other ways to use them. First distribute subroutines in your driver into separately named 
code sections, like this: 

#pragma alloc_text(PAGEIDLE, DispatchRead) 
#pragma alloc_text(PAGEIDLE, DispatchWrite) 
 

That is, define a section name beginning with PAGE and ending in any four-character suffix you please. Then use the 
alloc_text pragma to place some group of your own routines in that special section. You can have as many special pageable 
sections as you want, but your logistical problems will grow as you subdivide your driver in this way. 

During initialization (say, in DriverEntry), lock your pageable sections like this: 

PVOID hPageIdleSection; 
NTSTATUS DriverEntry(...) 
  { 
  hPageIdleSection = MmLockPagableCodeSection((PVOID) DispatchRead); 
  } 

When you call MmLockPagableCodeSection, you specify any address at all within the section you’re trying to lock. The real 
purpose of making this call during DriverEntry is to obtain the handle value it returns, which I’ve shown you saving in a global 
variable named hPageIdleSection. You’ll use that handle much later on, when you decide you don’t need a particular section in 
memory for a while: 

MmUnlockPagableImageSection(hPageIdleSection); 

This call will unlock the pages containing the PAGEIDLE section and allow them to move in and out of memory on demand. If 
you later discover that you need those pages back again, you make this call: 

MmLockPagableSectionByHandle(hPageIdleSection); 

Following this call, the PAGEIDLE section will once again be in nonpaged memory (but not necessarily the same physical 
memory as previously). Note that this function call is available to you only in Windows 2000 and Windows XP, and then only 
if you’ve included ntddk.h instead of wdm.h. In other situations, you will have to call MmLockPagableCodeSection again. 

You can do something similar to place data objects into pageable sections: 

PVOID hPageDataSection; 
 
#pragma data_seg("PAGE") 
ULONG ulSomething; 
#pragma data_seg() 
 
hPageDataSection = MmLockPagableDataSection((PVOID)&ulSomething); 
 
MmUnlockPagableImageSection(hPageDataSection); 
 
MmLockPagableSectionByHandle(hPageDataSection); 

I’ve played fast and loose with my syntax here—these statements would appear in widely separated parts of your driver. 

The key idea behind the Memory Manager service functions I just described is that you initially lock a section containing one 
or more pages and obtain a handle for use in subsequent calls. You can then unlock the pages in a particular section by calling 
MmUnlockPagableImageSection and passing the corresponding handle. Relocking the section later on requires a call to 
MmLockPagableSectionByHandle. 



- 60 - Basic Programming Techniques | Chapter 3 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

A quick shortcut is available if you’re sure that no part of your driver will need to be resident for a while. 
MmPageEntireDriver will mark all the sections in a driver’s image as being pageable. Conversely, MmResetDriverPaging will 
restore the compile-time pageability attributes for the entire driver. To call these routines, you just need the address of some 
piece of code or data in the driver. For example: 

MmPageEntireDriver((PVOID) DriverEntry); 
 
MmResetDriverPaging((PVOID) DriverEntry); 
 

You need to exercise care when using any of the Memory Manager routines I’ve just described if your device uses an 
interrupt. If you page your entire driver, the system will also page your interrupt service routine (ISR). If your device or 
any device with which you share an interrupt vector should interrupt, the system will try to call your ISR. Even if you 

think your interrupt isn’t shared and you’ve inhibited your device from generating an interrupt, bear in mind that spurious 
interrupts have been known to occur. If the ISR isn’t present, the system will crash. You avoid this problem by disconnecting 
your interrupt before allowing the ISR to be paged. 

3.3.2 Heap Allocator  
The basic heap allocation service function in kernel mode is ExAllocatePoolWithTag. You call it like this: 

PVOID p = ExAllocatePoolWithTag(type, nbytes, tag); 

The type argument is one of the POOL_TYPE enumeration constants described in Table 3-4, and nbytes is the number of bytes 
you want to allocate. The tag argument is an arbitrary 32-bit value. The return value is a kernel-mode virtual address pointer to 
the allocated memory block. 

In most drivers, including the samples in this book and in the DDK, you’ll see calls to an older function named 
ExAllocatePool: 

PVOID p = ExAllocatePool(type, nbytes); 

ExAllocatePool was the heap allocation function in the earliest versions of Windows NT. In the Windows XP DDK, 
ExAllocatePool is actually a macro that invokes ExAllocatePoolWithTag using the tag value ’ mdW’ (’Wdm’ plus a trailing 
space after byte reversal). 

Pool Type Description 

NonPagedPool  Allocates from the nonpaged pool of memory 

PagedPool  Allocates from the paged pool of memory 

NonPagedPoolCacheAligned  
Allocates from the nonpaged pool and ensures that memory is aligned with the 
CPU cache 

PagedPoolCacheAligned  
Allocates from the paged pool of memory and ensures that memory is aligned 
with the CPU cache 

Table 3-4. Pool Type Arguments for ExAllocatePool  

The most basic decision you must make when you call ExAllocatePoolWithTag is whether the allocated memory block can be 
swapped out of memory. That choice depends simply on which parts of your driver will need to access the memory block. If 
you’ll be using a memory block at or above DISPATCH_LEVEL, you must allocate it from the nonpaged pool. If you’ll always 
use the memory block below DISPATCH_LEVEL, you can allocate from the paged or nonpaged pool as you choose. 

Allocations from the PagedPool must occur at an IRQL less than DISPATCH_LEVEL. Allocations from the 
NonPagedPool must occur at an IRQL less than or equal to DISPATCH_LEVEL. The Driver Verifier bug checks 

whether you violate either of these rules.  
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Limits on Pool Allocations 
A frequently asked question is, “How much memory can I allocate with one call to ExAllocatePoolWithTag?” 
Unfortunately, there’s no simple answer to the question. A starting point is to determine the maximum sizes of 
the paged and non-paged pools. You can consult Knowledge Base article Q126402 and Chapter 7 of Inside 
Windows 2000 (Microsoft Press, 2000) for (probably) more information than you’ll ever want to know about this 
topic. By way of example, on a 512 MB machine, I ended up with a maximum nonpaged pool size of 128 MB and 
an actual paged pool size of 168 MB.  

Knowing the pool sizes is not the end of the story, though. I wouldn’t expect to be able to allocate anywhere 
close to 128 MB of nonpaged memory on this 512-MB computer in one call to ExAllocatePoolWithTag. For one 
thing, other parts of the system will have used up significant amounts of nonpaged memory by the time my 
driver gets a chance to try, and the system would probably run very poorly if I took all that was left over. For 
another thing, the virtual address space is likely to be fragmented once the system has been running for a 
while, so the heap manager wouldn’t be able to find an extremely large contiguous range of unused virtual 
addresses. 

In actual, not-very-scientific tests, using the MEMTEST sample from the companion content, I was able to 
allocate about 129 MB of paged memory and 100 MB of nonpaged memory in a single call. 

Sample Code  
The MEMTEST sample uses ExAllocatePoolWithTagPriority to determine the largest contiguous allocations 
possible from the paged and nonpaged pools. 

When you use ExAllocatePoolWithTag, the system allocates 4 more bytes of memory than you asked for and returns you a 
pointer that’s 4 bytes into that block. The tag occupies the initial 4 bytes and therefore precedes the pointer you receive. The 
tag will be visible to you when you examine memory blocks while debugging or while poring over a crash dump, and it can 
help you identify the source of a memory block that’s involved in some problem or another. For example: 

#define DRIVERTAG 'KNUJ' 
 
PVOID p = ExAllocatePoolWithTag(PagedPool, 42, DRIVERTAG); 

Here I used a 32-bit integer constant as the tag value. On a little-endian computer such as an x86, the bytes that compose this 
value will be reversed in memory to spell out a common word in the English language. Several features of the Driver Verifier 
relate to specific memory tags, by the way, so you can do yourself a favor in the debugging department by using one more 
unique tags in your allocation calls. 

Do not specify zero or “ GIB” (BIG with a space at the end, after byte reversal) as a tag value. Zero-tagged blocks can’t 
be tracked, and the system internally uses the BIG tag for its own purposes. Do not request zero bytes. This restriction 

could be a special concern if you’re writing your own C or C++ runtime support, since malloc and operator new allow requests 
for zero bytes.  

More About Pool Tags 
Several diagnostic mechanisms inside the kernel depend on pool tagging, and you can help yourself analyze 
your driver’s performance by picking a unique set of tags. You must also explicitly enable kernel pool tagging in 
the retail release of the system (it’s enabled by default in the checked build) by using the GFLAGS.EXE utility. 
GFLAGS is part of the platform SDK and other components.  

Having done both of these things—using unique tags in your driver and enabling pool tagging in the kernel—you 
can profitably use a few tools. POOLMON and POOLTAG in the DDK tools directory report on memory usage by 
tag value. You can also ask GFLAGS to make one of your pools “special” in order to check for overwrites. 

The pointer you receive will be aligned with at least an 8-byte boundary. If you place an instance of some structure in the 
allocated memory, members to which the compiler assigns an offset divisible by 4 or 8 will therefore occupy an address 
divisible by 4 or 8 too. On some RISC platforms, of course, you must have doubleword and quadword values aligned in this 
way. For performance reasons, you might want to be sure that the memory block will fit in the fewest possible number of 
processor cache lines. You can specify one of the XxxCacheAligned type codes to achieve that result. If you ask for less than a 
page’s worth of memory, the block will be contained in a single page. If you ask for at least a page’s worth of memory, the 
block will start on a page boundary. 

NOTE  
Asking for PAGE_SIZE + 1 bytes of memory is about the worst thing you can do to the heap allocator: the 
system reserves two pages, of which nearly half will ultimately be wasted. 

It should go without saying that you need to be extra careful when accessing memory you’ve allocated from the free storage 
pools in kernel mode. Since driver code executes in the most privileged mode possible for the processor, there’s almost no 
protection from wild stores. 
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Using GFLAGS or the Driver Verifier’s Special Pool option allows you to find memory overwrite errors more easily. 
With this option, allocations from the “special” pool lie at the end of a page that’s followed in virtual memory by a 

not-present page. Trying to touch memory past the end of your allocated block will earn you an immediate page fault. In 
addition, the allocator fills the rest of the page with a known pattern. When you eventually release the memory, the system 
checks to see whether you overwrote the pattern. In combination, these checks make it much easier to detect bugs that result 
from “coloring outside the lines” of your allocated memory. You can also ask to have allocations at the start of a page preceded 
by a not-present page, by the way. Refer to Knowledge Base article Q192486 for more information about the special pool.  

Handling Low-Memory Situations  

If there isn’t enough memory to satisfy your request, the pool allocator returns a NULL pointer. You should always test 
the return value and do something reasonable. For example: 

PMYSTUFF p = (PMYSTUFF) ExAllocatePool(PagedPool, sizeof(MYSTUFF)); 
if (!p) 
  return STATUS_INSUFFICIENT_RESOURCES; 

Additional pool types include the concept must succeed. If there isn’t enough heap memory to satisify a request from the 
must-succeed pool, the system bug checks. Drivers should not allocate memory using one of the must-succeed specifiers. This 
is because a driver can nearly always fail whatever operation is under way. Causing a system crash in a low-memory situation 
is not something a driver should do. Furthermore, only a limited pool of must-succeed memory exists in the entire system, and 
the operating system might not be able to allocate memory needed to keep the computer running if drivers tie up some. In fact, 
Microsoft wishes it had never documented the must-succeed options in the DDK to begin with. 

The Driver Verifier will bug check whether a driver specifies one of the must-succeed pool types in an allocation 
request. In addition, if you turn on the low-resource-simulation option in the Driver Verifier, your allocations will begin 

randomly failing after the system has been up seven or eight minutes. Every five minutes or so, the system will fail all your 
allocations for a burst of 10 seconds.  

In some situations, you might want to use a technique that’s commonly used in file system drivers. If you OR the value 
POOL_RAISE_IF_ALLOCATION_FAILURE (0x00000010) into the pool type code, the heap allocator will raise a 
STATUS_INSUFFICIENT_RESOURCES exception instead of returning NULL if there isn’t enough memory. You should use a 
structured exception frame to catch such an exception. For example: 

#ifndef POOL_RAISE_IF_ALLOCATION_FAILURE 
  #define POOL_RAISE_IF_ALLOCATION_FAILURE 16 
#endif 
 
#define PagedPoolRaiseException (POOL_TYPE) \ 
  (PagedPool │ POOL_RAISE_IF_ALLOCATION_FAILURE) 
#define NonPagedPoolRaiseException (POOL_TYPE) \ 
  (NonPagedPool │ POOL_RAISE_IF_ALLOCATION_FAILURE) 
 
 
NTSTATUS SomeFunction() 
  { 
  NTSTATUS status; 
  __try 
    { 
 
    PMYSTUFF p = (PMYSTUFF) 
      ExAllocatePoolWithTag(PagedPoolRaiseException,  
      sizeof(MYSTUFF), DRIVERTAG); 
    <Code that uses "p" without checking it for NULL> 
    status = STATUS_SUCCESS; 
    } 
  __except(EXCEPTION_EXECUTE_HANDLER) 
    { 
    status = GetExceptionCode(); 
    } 
  return status; 
  } 

 

NOTE  
POOL_RAISE_IF_ALLOCATION_FAILURE is defined in NTIFS.H, a header file that’s available only as part of the 
extra-cost Installable File System kit. Doing memory allocations with this flag set is so common in file system 
drivers, though, that I thought you should know about it. 
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Incidentally, I suggest that you not go crazy trying to diagnose or recover from failures to allocate small blocks of memory. As 
a practical matter, an allocation request for, say, 32 bytes is never going to fail. If memory were that tight, the system would be 
running so sluggishly that someone would surely reboot the machine. You must not be the cause of a system crash in this 
situation, though, because you would thereby be the potential source of a denial-of-service exploit. But since the error won’t 
arise in real life, there’s no point in putting elaborate code into your driver to log errors, signal WMI events, print debugging 
messages, execute alternative algorithms, and so on. Indeed, the extra code needed to do all that might be the reason the system 
didn’t have the extra 32 bytes to give you in the first place! Thus, I recommend testing the return value from every call to 
ExAllocatePoolWithTag. If it discloses an error, do any required cleanup and return a status code. Period. 

Releasing a Memory Block  

To release a memory block you previously allocated with ExAllocatePoolWithTag, you call ExFreePool: 

ExFreePool((PVOID) p); 

You do need to keep track somehow of the memory you’ve allocated from the pool in order to release it when it’s no longer 
needed. No one else will do that for you. You must sometimes closely read the DDK documentation of the functions you call 
with an eye toward memory ownership. For example, in the AddDevice function I showed you in the previous chapter, there’s a 
call to IoRegisterDeviceInterface. That function has a side effect: it allocates a memory block to hold the string that names the 
interface. You are responsible for releasing that memory later on. 

The Driver Verifier checks at DriverUnload time to ensure a verified driver has released all the memory it allocated. In 
addition, the verifier sanity-checks all calls to ExFreePool to make sure they refer to a complete block of memory 

allocated from a pool consistent with the current IRQL.  

The DDK headers declare an undocumented function named ExFreePoolWithTag. This function was intended for internal use 
only in order to make sure that system components didn’t inadvertently release memory belonging to other components. The 
function was politely called a “waste of time” by one of the Microsoft developers, which pretty much tells us that we needn’t 
worry about what it does or how to use it. (Hint: you need to do some other undocumented things in order to use it 
successfully.) 

Two More Functions  

Although ExAllocatePoolWithTag is the function you should use for heap allocation, you can use two other pool allocation 
functions in special circumstances: ExAllocatePoolWithQuotaTag (and a macro named ExAllocatePoolWithQuota that supplies 
a default tag) and ExAllocatePoolWithTagPriority. ExAllocatePoolWithQuotaTag allocates a memory block and charges the 
current thread’s scheduling quota. This function is for use by file system drivers and other drivers running in a nonarbitrary 
thread context for allocating memory that belongs to the current thread. A driver wouldn’t ordinarily use this function because 
a quota violation causes the system to raise an exception. 

ExAllocatePoolWithTagPriority, which is new with Windows XP, allows you to specify how important you consider it to be 
that a memory allocation request succeed: 

PVOID p = ExAllocatePoolWithTagPriority(type, nbytes, tag, priority); 

The arguments are the same as we’ve been studying except that you also supply an additional priority indicator. See Table 3-5. 

Priority Argument Description 

LowPoolPriority  System may fail request if low on resources. Driver can easily cope with failure. 

NormalPoolPriority  System may fail request if low on resources. 

HighPoolPriority  System should not fail request unless completely out of resources. 

Table 3-5. Pool Priority Arguments for ExAllocatePoolWithTagPriority  

The DDK indicates that most drivers should specify NormalPoolPriority when calling this function. HighPoolPriority should 
be reserved for situations in which success is critically important to the continued working of the system. 

You can lexigraphically append the phrases SpecialPoolOverrun and SpecialPoolUnderrun to the names given in Table 
3-5 (for example, LowPoolPrioritySpecialPoolOverrun, and so on). If an allocation would use the special pool, the 

overrun and underrun flags override the default placement of blocks.  

At the time I’m writing this, ExAllocatePoolWithTagPriority turns into a simple call to ExAllocatePoolWithTag if you are 
asking for paged memory at high priority or nonpaged memory at any priority. The extra resource checking happens only with 
requests for paged memory at low or normal priority. This behavior could change in service packs or later versions of the 
operating system. 
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3.3.3 Linked Lists  
Windows XP makes extensive use of linked lists as a way of organizing collections of similar data structures. In this chapter, 
I’ll discuss the basic service functions you use to manage doubly-linked and singly-linked lists. Separate service functions 
allow you to share linked lists between threads and across multiple processors; I’ll describe those functions in the next chapter 
after I’ve explained the synchronization primitives on which they depend. 

Whether you organize data structures into a doubly-linked or a singly-linked list, you normally embed a linking 
substructure—either a LIST_ENTRY or a SINGLE_LIST_ENTRY—into your own data structure. You also reserve a list head 
element somewhere that uses the same structure as the linking element. For example: 

typedef struct _TWOWAY  
  { 
 
  LIST_ENTRY linkfield; 
 
  } TWOWAY, *PTWOWAY; 
 
LIST_ENTRY DoubleHead; 
 
typedef struct _ONEWAY 
  { 
 
  SINGLE_LIST_ENTRY linkfield; 
 
  } ONEWAY, *PONEWAY; 
 
SINGLE_LIST_ENTRY SingleHead; 

When you call one of the list-management service functions, you always work with the linking field or the list head—never 
directly with the containing structures themselves. So suppose you have a pointer (pdElement) to one of your TWOWAY 
structures. To put that structure on a list, you’d reference the embedded linking field like this: 

InsertTailList(&DoubleHead, &pdElement->linkfield); 

Similarly, when you retrieve an element from a list, you’re really getting the address of the embedded linking field. To recover 
the address of the containing structure, you can use the CONTAINING_RECORD macro. (See Figure 3-7.) 

Figure 3-7. The CONTAINING_RECORD macro.  

So if you wanted to process and discard all the elements in a singly-linked list, your code would look something like this: 

PSINGLE_LIST_ENTRY psLink = PopEntryList(&SingleHead); 
while (psLink) 
  { 
  PONEWAY psElement = CONTAINING_RECORD(psLink, ONEWAY, linkfield); 
 
  ExFreePool(psElement); 
  psLink = PopEntryList(&SingleHead); 
  } 

Just before the start of this loop, and again after every iteration, you retrieve the current first element of the list by calling 
PopEntryList. PopEntryList returns the address of the linking field within a ONEWAY structure, or else it returns NULL to 
signify that the list is empty. Don’t just indiscriminately use CONTAINING_RECORD to develop an element address that you 
then test for NULL—you need to test the link field address that PopEntryList returns! 
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Doubly-Linked Lists  

A doubly-linked list links its elements both backward and forward in a circular fashion. See Figure 3-8. That is, starting with 
any element, you can proceed forward or backward in a circle and get back to the same element. The key feature of a 
doubly-linked list is that you can add or remove elements anywhere in the list. 

Figure 3-8. Topology of a doubly-linked list.  

Table 3-6 lists the service functions you use to manage a doubly-linked list. 

Service Function or Macro Description 

InitializeListHead  Initializes the LIST_ENTRY at the head of the list 

InsertHeadList  Inserts element at the beginning 

InsertTailList  Inserts element at the end 

IsListEmpty  Determines whether list is empty 

RemoveEntryList  Removes element 

RemoveHeadList  Removes first element 

RemoveTailList  Removes last element 

Table 3-6. Service Functions for Use with Doubly-Linked List  

Here is a fragment of a fictitious program to illustrate how to use some of these functions: 

  typedef struct _TWOWAY { 
 
    LIST_ENTRY linkfield; 
 
    } TWOWAY, *PTWOWAY; 
 
  LIST_ENTRY DoubleHead; 
 
 
  InitializeListHead(&DoubleHead); 
  ASSERT(IsListEmpty(&DoubleHead)); 
 
  PTWOWAY pdElement = (PTWOWAY) ExAllocatePool(PagedPool,sizeof(TWOWAY)); 
 
  InsertTailList(&DoubleHead, &pdElement->linkfield); 
 
 
  if (!IsListEmpty(&DoubleHead)) 
    { 
 
    PLIST_ENTRY pdLink = RemoveHeadList(&DoubleHead); 
    pdElement = CONTAINING_RECORD(pdLink, TWOWAY, linkfield); 
 
    ExFreePool(pdElement); 
    } 

1. InitializeListHead initializes a LIST_ENTRY to point (both backward and forward) to itself. That configuration indicates 
that the list is empty. 

2. InsertTailList puts an element at the end of the list. Notice that you specify the address of the embedded linking field 
instead of your own TWOWAY structure. You could call InsertHeadList to put the element at the beginning of the list 
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instead of the end. By supplying the address of the link field in some existing TWOWAY structure, you could put the new 
element either just after or just before the existing one. 

PTWOWAY prev; 
InsertHeadList(&prev->linkfield, &pdElement->linkfield); 
 
PTWOWAY next; 
InsertTailList(&next->linkfield, &pdElement->linkfield); 

3. Recall that an empty doubly-linked list has the list head pointing to itself, both backward and forward. Use IsListEmpty to 
simplify making this check. The return value from RemoveXxxList will never be NULL! 

4. RemoveHeadList removes the element at the head of the list and gives you back the address of the linking field inside it. 
RemoveTailList does the same thing, just with the element at the end of the list instead. 

It’s important to know the exact way RemoveHeadList and RemoveTailList are implemented if you want to avoid errors. For 
example, consider the following innocent-looking statement: 

if (<some-expr>) 
  pdLink = RemoveHeadList(&DoubleHead); 

What I obviously intended with this construction was to conditionally extract the first element from a list. C’est raisonnable, 
n’est-ce pas? But no, when you debug this later on, you find that elements keep mysteriously disappearing from the list. You 
discover that pdLink gets updated only when the if expression is TRUE but that RemoveHeadList seems to get called even 
when the expression is FALSE. 

Mon dieu! What’s going on here? Well, RemoveHeadList is really a macro that expands into multiple statements. Here’s what 
the compiler really sees in the above statement: 

if (<some-expr>) 
  pdLink = (&DoubleHead)->Flink; 
{{ 
PLIST_ENTRY _EX_Blink; 
PLIST_ENTRY _EX_Flink; 
_EX_Flink = ((&DoubleHead)->Flink)->Flink; 
_EX_Blink = ((&DoubleHead)->Flink)->Blink; 
_EX_Blink->Flink = _EX_Flink; 
_EX_Flink->Blink = _EX_Blink; 
}} 

Aha! Now the reason for the mysterious disappearance of list elements becomes clear. The TRUE branch of the if statement 
consists of just the single statement pdLink = (&DoubleHead)->Flink, which stores a pointer to the first element. The logic 
that removes a list element stands alone outside the scope of the if statement and is therefore always executed. Both 
RemoveHeadList and RemoveTailList amount to an expression plus a compound statement, and you dare not use either of them 
in a spot where the syntax requires an expression or a statement alone. Zut alors! 

The other list-manipulation macros don’t have this problem, by the way. The difficulty with RemoveHeadList and 
RemoveTailList arises because they have to return a value and do some list manipulation. The other macros do only one or the 
other, and they’re syntactically safe when used as intended. 

Singly-Linked Lists  

A singly-linked list links its elements in only one direction, as illustrated in Figure 3-9. Windows XP uses singly-linked lists to 
implement pushdown stacks, as suggested by the names of the service routines in Table 3-7. Just as was true for doubly-linked 
lists, these “functions” are actually implemented as macros in wdm.h, and similar cautions apply. PushEntryList and 
PopEntryList generate multiple statements, so you can use them only on the right side of an equal sign in a context in which 
the compiler is expecting multiple statements. 

Service Function or Macro Description 

PushEntryList  Adds element to top of list 

PopEntryList  Removes topmost element 

Table 3-7. Service Functions for Use with Singly-Linked Lists  
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Figure 3-9. Topology of a singly-linked list.  

The following pseudofunction illustrates how to manipulate a singly-linked list: 

  typedef struct _ONEWAY { 
 
  SINGLE_LIST_ENTRY linkfield; 
  } ONEWAY, *PONEWAY; 
 
  SINGLE_LIST_ENTRY SingleHead; 
 
  SingleHead.Next = NULL; 
 
  PONEWAY psElement = (PONEWAY) ExAllocatePool(PagedPool, 
    sizeof(ONEWAY)); 
 
  PushEntryList(&SingleHead, &psElement->linkfield); 
 
 
  SINGLE_LIST_ENTRY psLink = PopEntryList(&SingleHead); 
  if (psLink) 
    { 
    psElement = CONTAINING_RECORD(psLink, ONEWAY, linkfield); 
 
    ExFreePool(psElement); 
    } 

1. Instead of invoking a service function to initialize the head of a singly-linked list, just set the Next field to NULL. Note 
also the absence of a service function for testing whether this list is empty; just test Next yourself. 

2. PushEntryList puts an element at the head of the list, which is the only part of the list that’s directly accessible. Notice 
that you specify the address of the embedded linking field instead of your own ONEWAY structure. 

3. PopEntryList removes the first entry from the list and gives you back a pointer to the link field inside it. In contrast with 
doubly-linked lists, a NULL value indicates that the list is empty. In fact, there’s no counterpart to IsListEmpty for use 
with a singly-linked list. 

3.3.4 Lookaside Lists  
Even employing the best possible algorithms, a heap manager that deals with randomly sized blocks of memory will require 
some scarce processor time to coalesce adjacent free blocks from time to time. Figure 3-10 illustrates how, when something 
returns block B to the heap at a time when blocks A and C are already free, the heap manager can combine blocks A, B, and C 
to form a single large block. The large block is then available to satisfy some later request for a block bigger than any of the 
original three components. 

Figure 3-10. Coalescing adjacent free blocks in a heap.  

If you know you’re always going to be working with fixed-size blocks of memory, you can craft a much more efficient scheme 
for managing a heap. You can, for example, preallocate a large block of memory that you subdivide into pieces of the given 
fixed size. Then you can devise some scheme for knowing which blocks are free and which are in use, as suggested by Figure 
3-11. Returning a block to such a heap merely involves marking it as free—you don’t need to coalesce it with adjacent blocks 
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because you never need to satisfy randomly sized requests. 

Merely allocating a large block that you subdivide might not be the best way to implement a fixed-size heap, though. In 
general, it’s hard to guess how much memory to preallocate. If you guess too high, you’ll be wasting memory. If you guess too 
low, your algorithm will either fail when it runs out (bad!) or make too-frequent trips to a surrounding random heap manager to 
get space for more blocks (better). Microsoft has created the lookaside list object and a set of adaptive algorithms to deal with 
these shortcomings. 

Figure 3-11. A heap containing fixed-size blocks.  

Figure 3-12 illustrates the concept of a lookaside list. Imagine that you had a glass that you could (somehow—the laws of 
physics don’t exactly make this easy!) balance upright in a swimming pool. The glass represents the lookaside list object. 
When you initialize the object, you tell the system how big the memory blocks (water drops, in this analogy) are that you’ll be 
working with. In earlier versions of Windows NT, you could also specify the capacity of the glass, but the operating system 
now determines that adaptively. To allocate a memory block, the system first tries to remove one from the list (remove a water 
drop from the glass). If there are no more, the system dips into the surrounding memory pool. Conversely, to return a memory 
block, the system first tries to put it back on the list (add a water drop to the glass). But if the list is full, the block goes back 
into the pool using the regular heap manager routine (the drop slops over into the swimming pool). 

Figure 3-12. Lookaside lists.  

The system periodically adjusts the depths of all lookaside lists based on actual usage. The details of the algorithm aren’t really 
important, and they’re subject to change in any case. Basically (in the current release, anyway), the system will reduce the 
depth of lookaside lists that haven’t been accessed recently or that aren’t forcing pool access at least 5 percent of the time. The 
depth never goes below 4, however, which is also the initial depth of a new list. 

When the Driver Verifier is running, all lookaside lists are set to a depth of zero, which forces all allocation and free 
calls to go directly to the pool. This action makes it more likely that driver problems involving memory corruption can 

be caught. Just bear this fact in mind when you’re debugging your driver with the Driver Verifier engaged.  

Table 3-8 lists the eight service functions that you use when you work with a lookaside list. There are really two sets of four 
functions, one set for a lookaside list that manages paged memory (the ExXxxPagedLookasideList set) and another for a 
lookaside list that manages nonpaged memory (the ExXxxNPagedLookasideList set). The first thing you must do is reserve 
nonpaged memory for a PAGED_LOOKASIDE_LIST or an NPAGED_LOOKASIDE_LIST object. Even the paged variety of 
object needs to be in nonpaged memory because the system will access the list object itself at an elevated IRQL. 

Service Function Description 

ExInitializeNPagedLookasideList ExInitializePagedLookasideList Initialize a lookaside list 

ExAllocateFromNPagedLookasideList ExAllocateFromPagedLookasideList Allocate a fixed-size block 

ExFreeToNPagedLookasideList ExFreeToPagedLookasideList 
Release a block back to a 
lookaside list 

ExDeleteNPagedLookasideList ExDeletePagedLookasideList Destroy a lookaside list 

Table 3-8. Service Functions for Lookaside List   
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After reserving storage for the lookaside list object somewhere, you call the appropriate initialization routine: 

PPAGED_LOOKASIDE_LIST pagedlist; 
PNPAGED_LOOKASIDE_LIST nonpagedlist; 
 
ExInitializePagedLookasideList(pagedlist, Allocate, Free, 0, blocksize, tag, 0); 
ExInitializeNPagedLookasideList(nonpagedlist, Allocate, Free, 
  0, blocksize, tag, 0); 

(The only difference between the two examples is the spelling of the function name and the first argument.) 

The first argument to either of these functions points to the [N]PAGED_LOOKASIDE_LIST object for which you’ve already 
reserved space. Allocate and Free are pointers to routines you can write to allocate or release memory from a random heap. 
You can use NULL for either or both of these parameters, in which case ExAllocatePoolWithTag and ExFreePool will be used, 
respectively. The blocksize parameter is the size of the memory blocks you will be allocating from the list, and tag is the 32-bit 
tag value you want placed in front of each such block. The two zero arguments are placeholders for values that you supplied in 
previous versions of Windows NT but that the system now determines on its own; these values are flags to control the type of 
allocation and the depth of the lookaside list. 

To allocate a memory block from the list, call the appropriate AllocateFrom function: 

PVOID p = ExAllocateFromPagedLookasideList(pagedlist); 
PVOID q = ExAllocateFromNPagedLookasideList(nonpagedlist); 

To put a block back onto the list, call the appropriate FreeTo function: 

ExFreeToPagedLookasideList(pagedlist, p); 
ExFreeToNPagedLookasideList(nonpagedlist, q); 

Finally, to destroy a list, call the appropriate Delete function: 

ExDeletePagedLookasidelist(pagedlist); 
ExDeleteNPagedLookasideList(nonpagedlist); 
 

It is very important for you to explicitly delete a lookaside list before allowing the list object to pass out of scope. I’m 
told that a common programming mistake is to place a lookaside list object in a device extension and then forget to 
delete the object before calling IoDeleteDevice. If you make this mistake, the next time the system runs through its list 

of lookaside lists to tune their depths, it will put its foot down on the spot where your list object used to be, probably with bad 
results. 

3.4 String Handling  

WDM drivers can work with string data in any of four formats: 

 A Unicode string, normally described by a UNICODE_STRING structure, contains 16-bit characters. Unicode has 
sufficient code points to accommodate the language scripts used on this planet. A whimsical attempt to standardize code 
points for the Klingon language, reported in the first edition, has been rejected. A reader of the first edition sent me the 
following e-mail comment about this: 

I suspect this is rude, and possibly obscene. 

 An ANSI string, normally described by an ANSI_STRING structure, contains 8-bit characters. A variant is an 
OEM_STRING, which also describes a string of 8-bit characters. The difference between the two is that an OEM string 
has characters whose graphic depends on the current code page, whereas an ANSI string has characters whose graphic is 
independent of code page. WDM drivers won’t normally deal with OEM strings because they would have to originate in 
user mode, and some other kernel-mode component will have already translated them into Unicode strings by the time 
the driver sees them. 

 A null-terminated string of characters. You can express constants using normal C syntax, such as “Hello, world!” Strings 
employ 8-bit characters of type CHAR, which are assumed to be from the ANSI character set. The characters in string 
constants originate in whatever editor you used to create your source code. If you use an editor that relies on the 
then-current code page to display graphics in the editing window, be aware that some characters might have a different 
meaning when treated as part of the Windows ANSI character set. 
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 A null-terminated string of wide characters (type WCHAR). You can express wide string constants using normal C syntax, 
such as L"Goodbye, cruel world!" Such strings look like Unicode constants, but, being ultimately derived from some text 
editor or another, actually use only the ASCII and Latin1 code points (0020-007F and 00A0-00FF) that correspond to the 
Windows ANSI set. 

The UNICODE_STRING and ANSI_STRING data structures both have the layout depicted in Figure 3-13. The Buffer field of 
either structure points to a data area elsewhere in memory that contains the string data. MaximumLength gives the length of the 
buffer area, and Length provides the (current) length of the string without regard to any null terminator that might be present. 
Both length fields are in bytes, even for the UNICODE_STRING structure. 

Figure 3-13. The UNICODE_STRING and ANSI_STRING structures.  

The kernel defines three categories of functions for working with Unicode and ANSI strings. One category has names 
beginning with Rtl (for run-time library). Another category includes most of the functions that are in a standard C library for 
managing null-terminated strings. The third category includes the safe string functions from strsafe.h, which will hopefully be 
packaged in a DDK header named NtStrsafe.h by the time you read this. I can’t add any value to the DDK documentation by 
repeating what it says about the RtlXxx functions. I have, however, distilled in Table 3-9 a list of now-deprecated standard C 
string functions and the recommended alternatives from NtStrsafe.h. 

Standard function 
(deprecated) 

Safe UNICODE Alternative Safe ANSI Alternative 

strcpy, wcscpy, 
strncpy, wcsncpy  

RtlStringCbCopyW, RtlStringCchCopyW  
RtlStringCbCopyA,  
RtlStringCchCopyA  

strcat, wcscat,  
strncat, wcsncat 

RtlStringCbCatW, RtlStringCchCatW  
RtlStringCbCatA, 
RtlStringCchCatA  

sprintf, swprintf,  
_snprintf, _snwprintf 

RtlStringCbPrintfW, RtlStringCchPrintfW  
RtlStringCbPrintfA, 
RtlStringCchPrintfA  

vsprintf, vswprintf,  
vsnprintf, _vsnwprintf 

RtlStringCbVPrintfW, RtlStringCchVPrintfW  
RtlStringCbVPrintfA, 
RtlStringCchVPrintfA  

strlen, wcslen  RtlStringCbLengthW, RtlStringCchLengthW  
RtlStringCbLengthA, 
RtlStringCchLengthA  

Table 3-9. Safe Functions for String Manipulation  

NOTE  
I based the contents of Table 3-9 on a description of how one of the kernel developers planned to craft 
NtStrsafe.h from an existing user-mode header named strsafe.h. Don’t trust me—trust the contents of the 
DDK! 

It’s also okay, but not idiomatic, to use memcpy, memmove, memcmp, and memset in a driver. Nonetheless, most driver 
programmers use these RtlXxx functions in preference: 

 RtlCopyMemory or RtlCopyBytes instead of memcpy to copy a “blob” of bytes from one place to another. These functions 
are actually identical in the current Windows XP DDK. Furthermore, for Intel 32-bit targets, both are macro’ed to 
memcpy, and memcpy is the subject of a #pragma intrinsic, so the compiler generates inline code to perform it. 

 RtlZeroMemory instead of memset to zero an area of memory. RtlZeroMemory is macro’ed to memset for Intel 32-bit 
targets, and memset is mentioned in a #pragmaintrinsic. 

You should use the safe string functions in preference to standard run-time routines such as strcpy and the like. As I 
mentioned at the outset of this chapter, the standard string functions are available, but they’re often too hard to use 

safely. Consider these points in choosing which string functions you’ll use in your driver:  

 The uncounted forms strcpy, strcat, sprintf, and vsprintf (and their Unicode equivalents) don’t protect you against 
overrunning the target buffer. Neither does strncat (and its Unicode equivalent), wherein the length argument applies to 
the source string. 
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 The strncpy and wcsncpy functions will fail to append a null terminator to the target if the source is at least as long as the 
specified length. In addition, these functions have the possibly expensive feature of filling any leftover portion of the 
target buffer with nulls. 

 Any of the deprecated functions has the potential to walk off the end of a memory page looking in vain for a null 
terminator. This trait makes them especially dangerous when dealing with string data coming to you from user mode. 

 As I write this, NtStrsafe.h doesn’t currently define any comparison functions (strcmp, etc.). Keep your eye on the DDK 
for such functions. Note that case-insensitive comparisons of ANSI strings are tricky because they depend on localization 
settings that can vary from one session to another on the same computer. 

Allocating and Releasing String Buffers  

You often define UNICODE_STRING (or ANSI_STRING) structures as automatic variables or as parts of your own device 
extension. The string buffers to which these structures point usually occupy dynamically allocated memory, but you’ll 
sometimes want to work with string constants too. Keeping track of who owns the memory to which a particular 
UNICODE_STRING or ANSI_STRING structure points can be a bit of a problem. Consider the following fragment of a 
function: 

UNICODE_STRING foo; 
if (bArriving) 
  RtlInitUnicodeString(&foo, L"Hello, world!"); 
else 
  { 
  ANSI_STRING bar; 
  RtlInitAnsiString(&bar, "Goodbye, cruel world!"); 
  RtlAnsiStringToUnicodeString(&foo, &bar, TRUE); 
  } 
 
RtlFreeUnicodeString(&foo); // <== don't do this! 

In one case, we initialize foo.Length, foo.MaximumLength, and foo.Buffer to describe a wide character string constant in our 
driver. In another case, we ask the system (by means of the TRUE third argument to RtlAnsiStringToUnicodeString) to allocate 
memory for the Unicode translation of an ANSI string. In the first case, it’s a mistake to call RtlFreeUnicodeString because it 
will unconditionally try to release a memory block that’s part of our code or data. In the second case, it’s mandatory to call 
RtlFreeUnicodeString eventually if we want to avoid a memory leak. 

The moral of the preceding example is that you have to know where the memory comes from in any UNICODE_STRING 
structures you use so that you can release the memory only when necessary. 

3.5 Miscellaneous Programming Techniques  

In the remainder of this chapter, I’m going to discuss some miscellaneous topics that might be useful in various parts of your 
driver. I’ll begin by describing how you access the registry database, which is where you can find various configuration and 
control information that might affect your code or your hardware. I’ll go on to describe how you access disk files and other 
named devices. A few words will suffice to describe how you can perform floating-point calculations in a WDM driver. Finally 
I’ll describe a few of the features you can embed in your code to make it easier to debug your driver in the unlikely event it 
shouldn’t work correctly the first time you try it out. 

3.5.1 Accessing the Registry  
Windows XP and Windows 98/Me record configuration and other important information in a database called the registry. 
WDM drivers can call the functions listed in Table 3-10 to access the registry. If you’ve done user-mode programming 
involving registry access, you might be able to guess how to use these functions in a driver. I found the kernel-mode support 
functions sufficiently different, however, that I think it’s worth describing how you might use them. 

In this section, I’ll discuss, among other things, the ZwXxx family of routines and RtlDeleteRegistryValue, which provide the 
basic registry functionality that suffices for most WDM drivers. 

Opening a Registry Key  

Before you can interrogate values in the registry, you need to open the key that contains them. You use ZwOpenKey to open an 
existing key. You use ZwCreateKey either to open an existing key or to create a new key. Either function requires you to first 
initialize an OBJECT_ATTRIBUTES structure with the name of the key and (perhaps) other information. The 
OBJECT_ATTRIBUTES structure has the following declaration: 
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typedef struct _OBJECT_ATTRIBUTES { 
  ULONG Length; 
  HANDLE RootDirectory; 
  PUNICODE_STRING ObjectName; 
  ULONG Attributes; 
  PVOID SecurityDescriptor; 
  PVOID SecurityQualityOfService; 
  } OBJECT_ATTRIBUTES; 

Service Function Description 

IoOpenDeviceRegistryKey  Opens special key associated with a physical device object (PDO) 

IoOpenDeviceInterfaceRegistryKey  Opens a registry key associated with a registered device interface 

RtlDeleteRegistryValue  Deletes a registry value 

RtlQueryRegistryValues  Reads several values from the registry 

RtlWriteRegistryValue  Writes a value to the registry 

ZwClose  Closes handle to a registry key 

ZwCreateKey  Creates a registry key 

ZwDeleteKey  Deletes a registry key 

ZwDeleteValueKey  Deletes a value (Windows 2000 and later) 

ZwEnumerateKey  Enumerates subkeys 

ZwEnumerateValueKey  Enumerates values within a registry key 

ZwFlushKey  Commits registry changes to disk 

ZwOpenKey  Opens a registry key 

ZwQueryKey  Gets information about a registry key 

ZwQueryValueKey  Gets a value within a registry key 

ZwSetValueKey  Sets a value within a registry key 

Table 3-10. Service Functions for Registry Access   

Rather than initialize an instance of this structure by hand, it’s easiest to use the macro InitializeObjectAttributes, which I’m 
about to show you. 

Suppose, for example, that we wanted to open the service key for our driver. The I/O Manager gives us the name of this key as 
a parameter to DriverEntry. So we could write code like the following: 

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) 
  { 
 
  OBJECT_ATTRIBUTES oa; 
 
  InitializeObjectAttributes(&oa, RegistryPath, OBJ_KERNEL_HANDLE │  
  OBJ_CASE_INSENSITIVE, NULL, NULL); 
  HANDLE hkey; 
 
  status = ZwOpenKey(&hkey, KEY_READ, &oa); 
  if (NT_SUCCESS(status)) 
    { 
 
 
    ZwClose(hkey); 
    } 
 
  } 

1. We’re initializing the object attributes structure with the registry pathname supplied to us by the I/O Manager and with a 
NULL security descriptor. ZwOpenKey will ignore the security descriptor anyway—you can specify security attributes 
only when you create a key for the first time. 

2. ZwOpenKey will open the key for reading and store the resulting handle in our hkey variable. 

3. ZwClose is a generic routine for closing a handle to a kernel-mode object. Here we use it to close the handle we have to 
the registry key. 

The OBJ_KERNEL_HANDLE flag, shown in the preceding code sample, is important for system integrity. If you’re 
running in the context of a user thread when you call ZwOpenKey, and if you don’t supply this flag bit, the handle you 
get will be available to the user-mode process. It might even happen that user-mode code will close the handle and open 
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a new object, receiving back the same numeric value. All of a sudden, your calls to registry functions will be dealing with the 
wrong kind of handle.  

Even though we often refer to the registry as being a database, it doesn’t have all of the attributes that have come to be 
associated with real databases. It doesn’t allow for committing or rolling back changes, for example. Furthermore, the access 
rights you specify when you open a key (KEY_READ in the preceding example) are for security checking rather than for the 
prevention of incompatible sharing. That is, two different processes can have the same key open after specifying write access 
(for example). The system does guard against destructive writes that occur simultaneously with reads, however, and it does 
guarantee that a key won’t be deleted while someone has an open handle to it. 

Other Ways to Open Registry Keys  

In addition to ZwOpenKey, Windows XP provides two other functions for opening registry keys. 

IoOpenDeviceRegistryKey allows you to open one of the special registry keys associated with a device object: 

HANDLE hkey; 
Status = IoOpenDeviceRegistryKey(pdo, flag, access, &hkey); 

where pdo is the address of the physical device object (PDO) at the bottom of your particular driver stack, flag is an indicator 
for which special key you want to open (see Table 3-11), and access is an access mask such as KEY_READ. 

Flag Value Selected Registry Key 

PLUGPLAY_REGKEY_DEVICE  The hardware (instance) subkey of the Enum key 

PLUGPLAY_REGKEY_DRIVER  The driver subkey of the class key 

Table 3-11. Registry Key Codes for IoOpenDeviceRegistryKey  

I use IoOpenDeviceRegistryKey with the PLUGPLAY_REGKEY_DEVICE flag very often in my own drivers. In Windows XP, 
this function opens the Device Parameters subkey of the hardware key for the device. In Windows 98/Me, it opens the 
hardware key itself. These keys are the right place to store parameter information about the hardware. I’ll discuss this key more 
fully in Chapter 15 in connection with installing and distributing a driver. 

IoOpenDeviceInterfaceRegistryKey opens the key associated with an instance of a registered device interface: 

HANDLE hkey; 
status = IoOpenDeviceInterfaceRegistryKey(linkname, access,   &hkey); 

where linkname is the symbolic link name of the registered interface and access is an access mask such as KEY_READ. 

The interface registry key is a subkey of HKLM\System\CurrentControlSet\Control\DeviceClasses that persists from one 
session to the next. It’s a good place to store parameter information that you want to share with user-mode programs because 
user-mode code can call SetupDiOpenDeviceInterfaceRegKey to gain access to the same key. 

Getting and Setting Values  

Usually, you open a registry key because you want to retrieve a value from the database. The basic function you use for that 
purpose is ZwQueryValueKey. For example, to retrieve the ImagePath value in the driver’s service key—I don’t actually know 
why you’d want to know this, but that’s not my department—you could use the following code: 

UNICODE_STRING valname; 
RtlInitUnicodeString(&valname, L"ImagePath"); 
size = 0; 
status = ZwQueryValueKey(hkey, &valname, KeyValuePartialInformation,  
  NULL, 0, &size); 
if (status == STATUS_OBJECT_NAME_NOT_FOUND ││ size == 0) 
  <handle error>; 
size = min(size, PAGE_SIZE); 
PKEY_VALUE_PARTIAL_INFORMATION vpip =  
  PKEY_VALUE_PARTIAL_INFORMATION) ExAllocatePool(PagedPool, size); 
if (!vpip) 
  <handle error>; 
status = ZwQueryValueKey(hkey, &valname, KeyValuePartialInformation, 
  vpip, size, &size); 
if (!NT_SUCCESS(status)) 
  <handle error>; 
<do something with vpip->Data>ExFreePool(vpip); 

Here we make two calls to ZwQueryValueKey. The purpose of the first call is to determine how much space we need to allocate 
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for the KEY_VALUE_PARTIAL_INFORMATION structure we’re trying to retrieve. The second call retrieves the information. I 
left the error checking in this code fragment because the errors didn’t work out in practice the way I expected them to. In 
particular, I initially guessed that the first call to ZwQueryValueKey would return STATUS_BUFFER_TOO_SMALL (since I 
passed it a zero-length buffer). It didn’t do that, though. The important failure code is 
STATUS_OBJECT_NAME_NOT_FOUND, which indicates that the value doesn’t actually exist. Hence, I test for that value 
only. If there’s some other error that prevents ZwQueryValueKey from working, the second call will uncover it. 

NOTE  
The reason for trimming the size to PAGE_SIZE is to impose a reasonableness limit on the amount of 

memory you allocate. If a malicious user were able to gain access to the key from which you’re reading, he or 
she could replace the ImagePath value with an arbitrary amount of data. Your driver could then become an 
unwitting accomplice to a denial of service attack by consuming mass quantities of memory. Now, drivers 
ordinarily deal with registry keys that only administrators can modify, and an administrator has many other 
ways of attacking the system. It’s nonetheless good to provide a defense in depth against all forms of attack. 

The so-called “partial” information structure you retrieve in this way contains the value’s data and a description of its data 
type: 

typedef struct _KEY_VALUE_PARTIAL_INFORMATION { 
  ULONG   TitleIndex; 
  ULONG   Type; 
  ULONG   DataLength; 
  UCHAR   Data[1]; 
  } KEY_VALUE_PARTIAL_INFORMATION,  *PKEY_VALUE_PARTIAL_INFORMATION; 

Type is one of the registry data types listed in Table 3-12. (Additional data types are possible but not interesting to device 
drivers.) DataLength is the length of the data value, and Data is the data itself. TitleIndex has no relevance to drivers. Here are 
some useful facts to know about the various data types: 

 REG_DWORD is a 32-bit unsigned integer in whatever format (big-endian or little-endian) is natural for the platform. 

 REG_SZ describes a null-terminated Unicode string value. The null terminator is included in the DataLength count. 

 To expand a REG_EXPAND_SZ value by substituting environment variables, you should use RtlQueryRegistryValues as 
your method of interrogating the registry. The internal routines for accessing environment variables aren’t documented or 
exposed for use by drivers. 

 RtlQueryRegistryValues is also a good way to interrogate REG_MULTI_SZ values in that it will call your designated 
callback routine once for each of the potentially many strings. 

NOTE  
Notwithstanding the apparent utility of RtlQueryRegistryValues, I’ve avoided using it ever since it caused a 
crash in one of my drivers. Apparently, the value I was reading required the function to call a helper function 
that was placed in the initialization section of the kernel and that was, therefore, no longer present. 

Data TypeConstant Description 

REG_BINARY  Variable-length binary data 

REG_DWORD  Unsigned long integer in natural format for the platform 

REG_EXPAND_SZ  
Null-terminated Unicode string containing %-escapes for environment variable 
names 

REG_MULTI_SZ  One or more null-terminated Unicode strings, followed by an extra null 

REG_SZ  Null-terminated Unicode string 

Table 3-12. Types of Registry Values Useful to WDM Drivers  

To set a registry value, you must have KEY_SET_VALUE access to the parent key. I used KEY_READ earlier, which wouldn’t 
give you such access. You could use KEY_WRITE or KEY_ALL_ACCESS, although you thereby gain more than the necessary 
permission. Then call ZwSetValueKey. For example: 

RtlInitUnicodeString(&valname, L"TheAnswer"); 
ULONG value = 42; 
ZwSetValueKey(hkey, &valname, 0, REG_DWORD, &value, sizeof(value)); 

Deleting Subkeys or Values  

To delete a value in an open key, you can use RtlDeleteRegistryValue in the following special way: 
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RtlDeleteRegistryValue(RTL_REGISTRY_HANDLE, (PCWSTR) hkey, L"TheAnswer"); 

RtlDeleteRegistryValue is a general service function whose first argument can designate one of several special places in the 
registry. When you use RTL_REGISTRY_HANDLE, as I did in this example, you indicate that you already have an open handle 
to the key within which you want to delete a value. You specify the key (with a cast to make the compiler happy) as the second 
argument. The third and final argument is the null-terminated Unicode name of the value you want to delete. This is one time 
when you don’t have to create a UNICODE_STRING structure to describe the string. 

In Windows 2000 and later, you can use ZwDeleteValueKey to delete a value (it’s an oversight that this function isn’t 
documented in the DDK): 

UNICODE_STRING valname; 
RtlInitUnicodeString(&valname, L"TheAnswer"); 
ZwDeleteValueKey(hkey, &valname); 

You can delete only those keys that you’ve opened with at least DELETE permission (which you get with KEY_ALL_ACCESS). 
You call ZwDeleteKey: 

ZwDeleteKey(hkey); 

The key lives on until all handles are closed, but subsequent attempts to open a new handle to the key or to access the key by 
using any currently open handle will fail with STATUS_KEY_DELETED. Since you have an open handle at this point, you 
must be sure to call ZwClose sometime. (The DDK documentation entry for ZwDeleteKey says the handle becomes invalid. It 
doesn’t—you must still close it by calling ZwClose.) 

Enumerating Subkeys or Values  

A complicated activity you can carry out with an open registry key is to enumerate the elements (subkeys and values) that the 
key contains. To do this, you’ll first call ZwQueryKey to determine a few facts about the subkeys and values, such as their 
number, the length of the largest name, and so on. ZwQueryKey has an argument that indicates which of three types of 
information you want to retrieve about the key. These types are named basic, node, and full. To prepare for an enumeration, 
you’d be interested first in the full information: 

typedef struct _KEY_FULL_INFORMATION { 
    LARGE_INTEGER LastWriteTime; 
    ULONG   TitleIndex; 
    ULONG   ClassOffset; 
    ULONG   ClassLength; 
    ULONG   SubKeys; 
    ULONG   MaxNameLen; 
    ULONG   MaxClassLen; 
    ULONG   Values; 
    ULONG   MaxValueNameLen; 
    ULONG   MaxValueDataLen; 
    WCHAR   Class[1]; 
} KEY_FULL_INFORMATION, *PKEY_FULL_INFORMATION; 

This structure is actually of variable length since Class[0] is just the first character of the class name. It’s customary to make 
one call to find out how big a buffer you need to allocate and a second call to get the data, as follows: 

ULONG size; 
ZwQueryKey(hkey, KeyFullInformation, NULL, 0, &size); 
size = min(size, PAGE_SIZE); 
PKEY_FULL_INFORMATION fip = (PKEY_FULL_INFORMATION) 
  ExAllocatePool(PagedPool, size); 
ZwQueryKey(hkey, KeyFullInformation, fip, size, &size); 

Were you now interested in the subkeys of your registry key, you could perform the following loop calling ZwEnumerateKey: 

for (ULONG i = 0; i < fip->SubKeys; ++i) 
  { 
  ZwEnumerateKey(hkey, i, KeyBasicInformation, NULL, 0, &size); 
  size = min(size, PAGE_SIZE); 
  PKEY_BASIC_INFORMATION bip = (PKEY_BASIC_INFORMATION) 
    ExAllocatePool(PagedPool, size); 
  ZwEnumerateKey(hkey, i, KeyBasicInformation, bip, size, &size); 
  <do something with bip->Name> 
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  ExFreePool(bip); 
  } 

The key fact you discover about each subkey is its name, which shows up as a counted Unicode string in the 
KEY_BASIC_INFORMATION structure you retrieve inside the loop: 

typedef struct _KEY_BASIC_INFORMATION { 
    LARGE_INTEGER LastWriteTime; 
    ULONG   Type; 
    ULONG   NameLength; 
    WCHAR   Name[1]; 
} KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION; 

The name isn’t null-terminated; you must use the NameLength member of the structure to determine its length. Don’t forget 
that the length is in bytes! The name isn’t the full registry path either; it’s just the name of the subkey within whatever key 
contains it. This is actually lucky because you can easily open a subkey given its name and an open handle to its parent key. 

To accomplish an enumeration of the values in an open key, employ the following method: 

ULONG maxlen = fip->MaxValueNameLen + sizeof(KEY_VALUE_BASIC_INFORMATION); 
maxlen = min(maxlen, PAGE_SIZE); 
PKEY_VALUE_BASIC_INFORMATION vip = (PKEY_VALUE_BASIC_INFORMATION) 
  ExAllocatePool(PagedPool, maxlen); 
for (ULONG i = 0; i < fip->Values; ++i) 
  { 
  ZwEnumerateValueKey(hkey, i, KeyValueBasicInformation, vip, maxlen, &size); 
  <do something with vip->Name> 
  } 
ExFreePool(vip); 

Allocate space for the largest possible KEY_VALUE_BASIC_INFORMATION structure that you’ll ever retrieve based on the 
MaxValueNameLen member of the KEY_FULL_INFORMATION structure. Inside the loop, you’ll want to do something with 
the name of the value, which comes to you as a counted Unicode string in this structure: 

typedef struct _KEY_VALUE_BASIC_INFORMATION { 
    ULONG   TitleIndex; 
    ULONG   Type; 
    ULONG   NameLength; 
    WCHAR   Name[1];  
} KEY_VALUE_BASIC_INFORMATION, *PKEY_VALUE_BASIC_INFORMATION; 

Once again, having the name of the value and an open handle to its parent key is just what you need to retrieve the value, as 
shown in the preceding section. 

There are variations on ZwQueryKey and on these two enumeration functions that I haven’t discussed. You can, for example, 
obtain full information about a subkey when you call ZwEnumerateKey. I showed you only how to get the basic information 
that includes the name. You can retrieve data values only, or names plus data values, from ZwEnumerateValueKey. I showed 
you only how to get the name of a value. 

3.5.2 Accessing Files  
It’s sometimes useful to be able to read and write regular disk files from inside a WDM driver. Perhaps you need to download a 
large amount of microcode to your hardware, or perhaps you need to create your own extensive log of information for some 
purpose. There’s a set of ZwXxx routines to help you do these things. 

File access via the ZwXxx routines require you be running at PASSIVE_LEVEL (see the next chapter) in a thread that can 
safely be suspended. In practice, the latter requirement means that you must not have disabled Asynchronous Procedure Calls 
(APCs) by calling KeEnterCriticalRegion. You’ll read in the next chapter that some synchronization primitives require you to 
raise the IRQL above PASSIVE_LEVEL or to disable APCs. Just bear in mind that those synchronization primitives and file 
access are incompatible. 

The first step in accessing a disk file is to open a handle by calling ZwCreateFile. The full description of this function in the 
DDK is relatively complex because of all the ways in which it can be used. I’m going to show you two simple scenarios, 
however, that are useful if you just want to read or write a file whose name you already know. 

Sample Code  
The FILEIO sample driver in the companion content illustrates calls to some of the ZwXxx functions discussed 
in this section. This particular sample is valuable because it provides workarounds for the platform 
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incompatibilities mentioned at the end of this chapter. 

Opening an Existing File for Reading  

To open an existing file so that you can read it, follow this example: 

NTSTATUS status; 
OBJECT_ATTRIBUTES oa; 
IO_STATUS_BLOCK iostatus; 
HANDLE hfile;              // the output from this process 
PUNICODE_STRING pathname;  // you've been given this 
 
InitializeObjectAttributes(&oa, pathname,  
  OBJ_CASE_INSENSITIVE │ OBJ_KERNEL_HANDLE, NULL, NULL); 
status = ZwCreateFile(&hfile, GENERIC_READ, &oa, &iostatus, 
  NULL, 0, FILE_SHARE_READ, FILE_OPEN, 
  FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0); 

Creating or Rewriting a File  

To create a new file, or to open and truncate to zero length an existing file, replace the call to ZwCreateFile in the preceding 
fragment with this one: 

status = ZwCreateFile(&hfile, GENERIC_WRITE, &oa, &iostatus, 
  NULL, FILE_ATTRIBUTE_NORMAL, 0, FILE_OVERWRITE_IF,  
  FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0); 

In these fragments, we set up an OBJECT_ATTRIBUTES structure whose main purpose is to point to the full pathname of the 
file we’re about to open. We specify the OBJ_CASE_INSENSITIVE attribute because the Win32 file system model doesn’t 
treat case as significant in a pathname. We specify OBJ_KERNEL_HANDLE for the same reason we did so in the registry 
example shown earlier in this chapter. Then we call ZwCreateFile to open the handle. 

The first argument to ZwCreateFile(&hfile) is the address of the HANDLE variable where ZwCreateFile will return the handle 
it creates. The second argument (GENERIC_READ or GENERIC_WRITE) specifies the access we need to the handle to 
perform either reading or writing. The third argument (&oa) is the address of the OBJECT_ATTRIBUTES structure containing 
the name of the file. The fourth argument points to an IO_STATUS_BLOCK that will receive a disposition code indicating how 
ZwCreateFile actually implemented the operation we asked it to perform. When we open a read-only handle to an existing file, 
we expect the Status field of this structure to end up equal to FILE_OPENED. When we open a write-only handle, we expect it 
to end up equal to FILE_OVERWRITTEN or FILE_CREATED, depending on whether the file did or didn’t already exist. The 
fifth argument (NULL) can be a pointer to a 64-bit integer that specifies the initial allocation size for the file. This argument 
matters only when you create or overwrite a file, and omitting it as I did here means that the file grows from zero length as you 
write data. The sixth argument (0 or FILE_ATTRIBUTE_NORMAL) specifies file attribute flags for any new file that you 
happen to create. The seventh argument (FILE_SHARE_READ or 0) specifies how the file can be shared by other threads. If 
you’re opening for input, you can probably tolerate having other threads read the file simultaneously. If you’re opening for 
sequential output, you probably don’t want other threads trying to access the file at all. 

The eighth argument (FILE_OPEN or FILE_OVERWRITE_IF) indicates how to proceed if the file either already exists or 
doesn’t. In the read-only case, I specified FILE_OPEN because I expected to open an existing file and wanted a failure if the 
file didn’t exist. In the write-only case, I specified FILE_OVERWRITE_IF because I wanted to overwrite any existing file by 
the same name or create a brand-new file as necessary. The ninth argument (FILE_SYNCHRONOUS_IO_NONALERT) 
specifies additional flag bits to govern the open operation and the subsequent use of the handle. In this case, I indicated that 
I’m going to be doing synchronous I/O operations (wherein I expect the read or write function not to return until the I/O is 
complete). The tenth and eleventh arguments (NULL and 0) are, respectively, an optional pointer to a buffer for extended 
attributes and the length of that buffer. 

You expect ZwCreateFile to return STATUS_SUCCESS and to set the handle variable. You can then carry out whatever read or 
write operations you please by calling ZwReadFile or ZwWriteFile, and then you close the handle by calling ZwClose: 

ZwClose(hfile); 

You can perform synchronous or asynchronous reads and writes, depending on the flags you specified to ZwCreateFile. In the 
simple scenarios I’ve outlined, you would do synchronous operations that don’t return until they’ve completed. For example: 

PVOID buffer; 
ULONG bufsize; 
status = ZwReadFile(hfile, NULL, NULL, NULL, &iostatus, buffer, 
  bufsize, NULL, NULL); 
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            -or- 

status = ZwWriteFile(hfile, NULL, NULL, NULL, &iostatus, buffer, 
  bufsize, NULL, NULL); 

These calls are analogous to a nonoverlapped ReadFile or WriteFile call from user mode. When the function returns, you might 
be interested in iostatus.Information, which will hold the number of bytes transferred by the operation. 

Scope of Handles 
Each process has a private handle table that associates numeric handles with pointers to kernel objects. When 
you open a handle using ZwCreateFile, or NtCreateFile, that handle belongs to the then-current process, unless 
you use the OBJ_KERNEL_HANDLE flag. A process-specific handle will go away if the process terminates. 
Moreover, if you use the handle in a different process context, you’ll be indirectly referencing whatever object 
(if any) that that handle corresponds to in the other process. A kernel handle, on the other hand, is kept in a 
global table that doesn’t disappear until the operating system shuts down and can be used without ambiguity 
in any process. 

If you plan to read an entire file into a memory buffer, you’ll probably want to call ZwQueryInformationFile to determine the 
total length of the file: 

FILE_STANDARD_INFORMATION si; 
ZwQueryInformationFile(hfile, &iostatus, &si, sizeof(si), 
  FileStandardInformation); 
ULONG length = si.EndOfFile.LowPart; 

Timing of File Operations 
You’ll be likely to want to read a disk file in a WDM driver while you’re initializing your device in response to an 
IRP_MN_START_DEVICE request. (See Chapter 6.) Depending on where your device falls in the initialization 
sequence, you might or might not have access to files using normal pathnames like \??\C:\dir\file.ext. To be 
safe, put your data files into some directory below the system root directory and use a filename like 
\SystemRoot\dir\file.ext. The SystemRoot branch of the namespace is always accessible since the operating 
system has to be able to read disk files to start up. 

Sample Code  
The RESOURCE sample combines several of the ideas discussed in this chapter to illustrate how to access data 
in a standard resource script from within a driver. This is not especially easy to do, as you’ll see if you examine 
the sample code. 

3.5.3 Floating-Point Calculations  
There are times when integer arithmetic just isn’t sufficient to get your job done and you need to perform floating-point 
calculations. On an Intel processor, the math coprocessor is also where Multimedia Extensions (MMX) instructions execute. 
Historically, there have been two problems with drivers carrying out floating-point calculations. The operating system will 
emulate a missing coprocessor, but the emulation is expensive and normally requires a processor exception to trigger it. 
Handling exceptions, especially at elevated IRQLs, can be difficult in kernel mode. Additionally, on computers that have 
hardware coprocessors, the CPU architecture might require a separate expensive operation to save and restore the coprocessor 
state during context switches. Therefore, conventional wisdom has forbidden kernel-mode drivers from using floating-point 
calculations. 

Windows 2000 and later systems provide a way around past difficulties. First of all, a system thread—see Chapter 14—running 
at or below DISPATCH_LEVEL is free to use the math coprocessor all it wants. In addition, a driver running in an arbitrary 
thread context at or below DISPATCH_LEVEL can use these two system calls to bracket its use of the math coprocessor: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KFLOATING_SAVE FloatSave; 
NTSTATUS status = KeSaveFloatingPointState(&FloatSave); 
if (NT_SUCCESS(status)) 
  { 
 
  KeRestoreFloatingPointState(&FloatSave); 
  } 

These calls, which must be paired as shown here, save and restore the “nonvolatile” state of the math coprocessor for the 
current CPU—that is, all the state information that persists beyond a single operation. This state information includes registers, 
control words, and so on. In some CPU architectures, no actual work might occur because the architecture inherently allows 
any process to perform floating-point operations. In other architectures, the work involved in saving and restoring state 
information can be quite substantial. For this reason, Microsoft recommends that you avoid using floating-point calculations in 
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a kernel-mode driver unless necessary. 

Sample Code  
The FPUTEST sample illustrates one way to use floating-point and MMX instructions in a WDM driver. 

What happens when you call KeSaveFloatingPointState depends, as I said, on the CPU architecture. To give you an idea, on an 
Intel-architecture processor, this function saves the entire floating-point state by executing an FSAVE instruction. It can save 
the state information either in a context block associated with the current thread or in an area of dynamically allocated memory. 
It uses the opaque FloatSave area to record meta-information about the saved state to allow KeRestoreFloatingPointState to 
correctly restore the state later. 

KeSaveFloatingPointState will fail with STATUS_ILLEGAL_FLOAT_CONTEXT if no real coprocessor is present. (All CPUs 
of a multi-CPU computer must have coprocessors, or else none of them can, by the way.) Your driver will therefore need 
alternative code to carry out whatever calculations you had in mind, or else you’ll want to decline to load (by failing 
DriverEntry) if the computer doesn’t have a coprocessor. 

NOTE  
You can call ExIsProcessorFeaturePresent to check up on various floating-point capabilities. Since this function 
isn’t present in Windows 98/Me, you’ll also need to ship WDMSTUB with your driver. Consult Appendix A for 
more information about this and related system incompatibilities. 

3.5.4 Making Debugging Easier  
My drivers always have bugs. Maybe you’re as unlucky as I am. If so, you’ll find yourself spending lots of time with a 
debugger trying to figure out what your code is doing or not doing correctly or incorrectly. I won’t discuss the potentially 
divisive subject of which debugger is best or the noncontroversial but artistic subject of how to debug a driver. But you can do 
some things in your driver code that will make your life easier. 

Checked and Free Builds  

When you build your driver, you select either the checked or the free build environment. In the checked build environment, the 
preprocessor symbol DBG equals 1, whereas it equals 0 in the free build environment. So one of the things you can do in your 
own code is to provide additional code that will take effect only in the checked build: 

#if DBG 
  <extra debugging code> 
#endif 

The KdPrint macro  

One of the most useful debugging techniques ever invented is to simply print messages from time to time. I used to do this 
when I was first learning to program (in FORTRAN on a computer made out of vacuum tubes, no less), and I still do it today. 
DbgPrint is a kernel-mode service routine you can call to display a formatted message in whatever output window your 
debugger provides. Another way to see the output from DbgPrint calls is to download the DebugView utility from 
http://www.sysinternals.com. Instead of directly referencing DbgPrint in your code, it’s often easier to use the macro named 
KdPrint, which calls DbgPrint if DBG is true and generates no code at all if DBG is false: 

KdPrint((DRIVERNAME " - KeReadProgrammersMind failed - %X\n",  status)); 

You use two sets of parentheses with KdPrint because of the way it’s defined. The first argument is a string with %-escapes 
where you want to substitute values. The second, third, and following arguments provide the values to go with the %-escapes. 
The macro expands into a call to DbgPrint, which internally uses the standard run-time library routine _vsnprintf to format the 
string. You can, therefore, use the same set of %-escape codes that are available to application programs that call this routine 
but not the escapes for floating-point numbers. 

In all of my drivers, I define a constant named DRIVERNAME like this: 

#define DRIVERNAME "xxx" 

where xxx is the name of the driver. Recall that the compiler sees two adjacent string constants as a single constant. Using this 
particular trick allows me to cut and paste entire subroutines, including their KdPrint calls, from one driver to another without 
needing to make source changes. 

The ASSERT macro  

Another useful debugging technique relies on the ASSERT macro: 
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ASSERT(1 + 1 == 2); 

In the checked build of your driver, ASSERT generates code to evaluate the Boolean expression. If the expression is false, 
ASSERT will try to halt execution in the debugger so that you can see what’s going on. If the expression is true, your program 
continues executing normally. Kernel debuggers will halt when ASSERT failures happen, even in the retail build of the 
operating system, by the way. 

IMPORTANT  
An ASSERT failure in a retail build of the operating system with no kernel debugger running generates a bug 
check. 

The Driver Verifier  

The Driver Verifier is part of the checked and free builds of the operating system and is fast becoming one of 
Microsoft’s major tools for checking driver quality. You can launch Driver Verifier from the Start Menu, whereupon 

you’ll be presented with a series of wizard pages. Here is a bit of a road map to guide you through these pages the first time. 

Figure 3-14 illustrates the initial wizard page. I recommend checking the Create Custom Settings (For Code Developers) 
option. This choice will allow you to specify in detail which Driver Verifier options you want to engage.  

Figure 3-14. Initial Driver Verifier wizard page  

After making my recommended choice from the first page, you’ll be presented with a second page (see Figure 3-15). Here, I 
recommend checking the Select Individual Settings From A Full List option. 

Figure 3-15. Second Driver Verifier wizard page  

The next wizard page (see Figure 3-16) allows you to specify the verifier settings you desire. The specified checks are in 
addition to a number of checks that the Driver Verifier makes automatically. 
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Figure 3-16. Driver Verifier’s custom settings wizard page  

The choices available at the time I’m writing this are as follows: 

 Special Pool forces all memory allocations from verified drivers to be made from the special pool. As described earlier in 
this chapter, such allocations are at the end (or start) of a page, so that storing after (or before) the allocated memory leads 
to an immediate bug check. 

 Pool Tracking causes the Driver Verifier to track memory allocations made by verified drivers. You can see statistics 
about memory usage as it changes from time to time. The Driver Verifier also ensures that all allocations are freed when 
the verified drivers unload to help you catch memory leaks. 

 Force IRQL Checking essentially causes paged memory to be flushed whenever a verified driver raises IRQL to 
DISPATCH_LEVEL or above. This action helps find places where the driver is incorrectly accessing paged memory. The 
system runs quite slowly when this option is turned on. 

 I/O Verification causes the Driver Verifier to make basic checks on how a driver handles IRPs that it creates or forwards 
to other drivers. 

 Enhanced I/O Verification attempts to flush out driver errors in boundary cases, such as completing PnP and Power IRPs 
incorrectly, making assumptions about the order in which the PnP Manager loads drivers, and so on. Some of these tests 
occur when the driver initially starts, by the way, which can prevent the system from starting. 

 Deadlock Detection creates a graph of the locking hierarchy for spin locks, mutexes, and fast mutexes used by verified 
drivers in order to detect potential deadlocks. 

 DMA Checking ensures that verified drivers perform DMA using the methods prescribed by the DDK. 

 Low Resources Simulation involves randomly failing pool allocations from verified drivers, beginning seven minutes 
after the system starts. The purpose of these failures is to ensure that drivers test the return value from pool allocation 
calls. 

You can use a special procedure, described in the DDK, to activate checks on a SCSI miniport driver. 

NOTE  
There can be interactions between the options you specify. At the present time, for example, asking for DMA 
checking or deadlock detection turns off enhanced I/O verification.  

Note too that the Driver Verifier is evolving rapidly even as we speak. Consult the DDK you happen to be 
working with for up-to-date information. 

After you select the verifier options you want, you will see one final wizard page (see Figure 3-17). This page allows you to 
specify which drivers you want verified by checking boxes in a list. After making that selection, you’ll need to restart the 
computer because many of the Driver Verifier checks require boot-time initialization. When I’m debugging one of my own 
drivers, I find it most convenient to not have my driver loaded when the restart occurs. My driver therefore won’t already be in 
the list, and I’ll have to add it via the Add Currently Not Loaded Driver(s) To The List button. 

Driver Verifier failures are bug checks, by the way. You will need to be running a kernel debugger or to analyze the crash dump 
after the fact to isolate the cause of the failure. 

Don’t Ship the Checked Version!  

Incidentally, I and every other user of kernel debuggers would greatly prefer that you not ship the debug version of your driver. 
It will probably contain a bunch of ASSERT statements that will go off while we’re looking for our own bugs, and it will 
probably also print a lot of messages that will obscure the messages from our drivers. I recall a vendor who shipped a debug 
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driver for a popular network card. This particular driver logs every packet it receives over the wire. Nowadays I carry with me 
to consulting gigs a little driver that patches their driver to eliminate the spew. And I buy other vendors’ network cards. 

Figure 3-17. Driver selection page for Driver Verifier.  

3.6 Windows 98/Me Compatibility Notes  

3.6.1 File I/O  
The ZwXxx routines for accessing disk files don’t work well in Windows 98/Me because of two basic problems—one from the 
architecture of Windows and the other from what looks like an ordinary bug in the original release of Windows 98. 

The first problem with file access has to do with the order in which Windows 98/Me initializes various virtual device drivers. 
The Configuration Manager (CONFIGMG.VXD) initializes before the Installable File System Manager (IFSMGR.VXD). 
WDM drivers for devices that exist at start-up time receive their IRP_MN_START_DEVICE requests during CONFIGMG’s 
initialization phase. But since IFSMGR hasn’t initialized at that point, it’s not possible to perform file I/O operations by using 
ZwCreateFile and the other functions discussed earlier in this chapter. Furthermore, there’s no way for a WDM driver to defer 
handling IRP_MN_START_DEVICE until file system functionality becomes available. If you don’t have a debugger such as 
Soft-Ice/W running, the symptom you will see is a blue screen complaining of a Windows Protection error while initializing 
CONFIGMG. 

A second and more crippling problem existed in the July 1998 retail release of Windows 98. The problem had to do with the 
validity checking that ZwReadFile, ZwWriteFile, and ZwQueryInformationFile perform on their arguments. If you supply an 
IO_STATUS_BLOCK in kernel-mode memory (and there’s basically no way to do anything else), these functions probe a 
virtual address that doesn’t exist. In this original release, the resulting page fault was caught by a structured exception handler 
and resulted in you getting back STATUS_ACCESS_VIOLATION even when you did everything right. I don’t know of any 
workaround for this except by using the technique in the FILEIO sample. The problem was fixed in Windows 98, Second 
Edition, by the way. 

The FILEIO sample in the companion content illustrates a way past these Windows 98/Me difficulties. FILEIO makes a 
run-time decision whether to call the ZwXxx functions or instead to call VxD services to perform file operations. 

3.6.2 Floating Point  
Floating-point operations are permissible in Windows 98/Me WDM drivers, but with some important restrictions relative to the 
situation in Windows XP: 

 You can do floating-point (including MMX) operations in a WDM driver only in a system thread. System threads include 
those you create yourself by calling PsCreateSystemThread and system worker threads. Note that work item callbacks 
occur in a system worker thread, so you can do floating point in such a callback. 

 You should do floating-point operations only at PASSIVE_LEVEL. (DISPATCH_LEVEL corresponds to VxD hardware 
interrupt handling in Windows 98/Me.) 

The DDK cautions that you should not attempt to circumvent these rules. For example, you might be tempted to use 
KeSaveFloatingPointState and KeRestoreFloatingPointState in an IOCTL handler despite the explicit prohibition on doing so, 
or to manually save and restore the FPU state. What can happen to you is this: if an exception is pending in the coprocessor 
when you initially save the floating-point state, that exception will be taken when you restore the state. The kernel cannot 
correctly handle that exception. There is no workaround for this problem, which is inherent in the Intel processor design and 
the way VMCPD.VXD works. 

Note that the FPUTEST sample program obeys these rules by refusing to work in Windows 98/Me. 
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Chapter 4  

4 Synchronization  

Microsoft Windows XP is a multitasking operating system that can run in a symmetric multiprocessor environment. It’s not my 
purpose here to provide a rigorous description of the multitasking capabilities of Microsoft Windows XP; one good place to get 
more information is David Solomon and Mark Russinovich’s Inside Windows 2000, Third Edition (Microsoft Press, 2000). All 
we need to understand as driver writers is that our code executes in the context of one thread or another (and the thread context 
can change from one invocation of our code to another) and that the exigencies of multitasking can yank control away from us 
at practically any moment. Furthermore, true simultaneous execution of multiple threads is possible on a multiprocessor 
machine. In general, we need to assume two worst-case scenarios: 

1. The operating system can preempt any subroutine at any moment for an arbitrarily long period of time, so we cannot be 
sure of completing critical tasks without interference or delay. 

2. Even if we take steps to prevent preemption, code executing simultaneously on another CPU in the same computer can 
interfere with our code—it’s even possible that the same set of instructions belonging to one of our programs could be 
executing in parallel in the context of two different threads. 

Windows XP allows you to solve these general synchronization problems by using a variety of synchronization primitives. The 
system prioritizes the handling of hardware and software interrupts with the interrupt request level (IRQL). The system offers a 
variety of synchronization primitives. Some of these primitives are appropriate at times when you can safely block and 
unblock threads. One primitive, the spin lock, allows you to synchronize access to shared resources even at times when thread 
blocking wouldn’t be allowed because of the priority level at which a program runs. 

4.1 An Archetypal Synchronization Problem  

A hackneyed example will motivate this discussion. Suppose your driver has a static integer variable that you use for some 
purpose, say, to count the number of I/O requests that are currently outstanding: 

static LONG lActiveRequests; 

Suppose further that you increment this variable when you receive a request and decrement it when you later complete the 
request: 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  ++lActiveRequests; 
  ... // process PNP request 
  --lActiveRequests; 
  } 

I’m sure you recognize already that a counter such as this one ought not to be a static variable: it should be a member of your 
device extension so that each device object has its own unique counter. Bear with me, and pretend that your driver always 
manages only a single device. To make the example more meaningful, suppose finally that a function in your driver will be 
called when it’s time to delete your device object. You might want to defer the operation until no more requests are outstanding, 
so you might insert a test of the counter: 

NTSTATUS HandleRemoveDevice(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  if (lActiveRequests) 
    <wait for all requests to complete> 
  IoDeleteDevice(fdo); 
  } 

This example describes a real problem, by the way, which we’ll tackle in Chapter 6 in our discussion of Plug and Play (PnP) 
requests. The I/O Manager can try to remove one of our devices at a time when requests are active, and we need to guard 
against that by keeping some sort of counter. I’ll show you in Chapter 6 how to use IoAcquireRemoveLock and some related 
functions to solve the problem. 

A horrible synchronization problem lurks in the code fragments I just showed you, but it becomes apparent only if you look 
behind the increment and decrement operations inside DispatchPnp. On an x86 processor, the compiler might implement them 
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using these instructions: 

; ++lActiveRequests; 
  mov eax, lActiveRequests 
  add eax, 1 
  mov lActiveRequests, eax 
 
 
 
; --lActiveRequests; 
  mov eax, lActiveRequests 
  sub eax, 1 
  mov lActiveRequests, eax 

To expose the synchronization problem, let’s consider first what might go wrong on a single CPU. Imagine two threads that are 
both trying to advance through DispatchPnp at roughly the same time. We know they’re not both executing truly 
simultaneously because we have only a single CPU for them to share. But imagine that one of the threads is executing near the 
end of the function and manages to load the current contents of lActiveRequests into the EAX register just before the other 
thread preempts it. Suppose lActiveRequests equals 2 at that instant. As part of the thread switch, the operating system saves 
the EAX register (containing the value 2) as part of the outgoing thread’s context image somewhere in main memory. 

NOTE  
The point being made in the text isn’t limited to thread preemption that occurs as a result of a time slice 
expiring. Threads can also involuntarily lose control because of page faults, changes in CPU affinity, or priority 
changes instigated by outside agents. Think, therefore, of preemption as being an all-encompassing term that 
includes all means of giving control of a CPU to another thread without explicit permission from the currently 
running thread. 

Now imagine that the other thread manages to get past the incrementing code at the beginning of DispatchPnp. It will 
increment lActiveRequests from 2 to 3 (because the first thread never got to update the variable). If the first thread preempts 
this other thread, the operating system will restore the first thread’s context, which includes the value 2 in the EAX register. 
The first thread now proceeds to subtract 1 from EAX and store the result back in lActiveRequests. At this point, 
lActiveRequests contains the value 1, which is incorrect. Somewhere down the road, we might prematurely delete our device 
object because we’ve effectively lost track of one I/O request. 

Solving this particular problem is easy on an x86 computer—we just replace the load/add/store and load/subtract/store 
instruction sequences with atomic instructions: 

; ++lActiveRequests; 
  inc lActiveRequests 
 
; --lActiveRequests; 
  dec lActiveRequests 

On an Intel x86, the INC and DEC instructions cannot be interrupted, so there will never be a case in which a thread can be 
preempted in the middle of updating the counter. As it stands, though, this code still isn’t safe in a multiprocessor environment 
because INC and DEC are implemented in several microcode steps. It’s possible for two different CPUs to be executing their 
microcode just slightly out of step such that one of them ends up updating a stale value. The multi-CPU problem can also be 
avoided in the x86 architecture by using a LOCK prefix: 

; ++lActiveRequests; 
  lock inc lActiveRequests 
 
; --lActiveRequests; 
  lock dec lActiveRequests 

The LOCK instruction prefix locks out all other CPUs while the microcode for the current instruction executes, thereby 
guaranteeing data integrity. 

Not all synchronization problems have such an easy solution, unfortunately. The point of this example isn’t to demonstrate how 
to solve one simple problem on one of the platforms where Windows XP runs but rather to illustrate the two sources of 
difficulty: preemption of one thread by another in the middle of a state change and simultaneous execution of conflicting 
state-change operations. We can avoid difficulty by judiciously using synchronization primitives, such as mutual exclusion 
objects, to block other threads while our thread accesses shared data. At times when thread blocking is impermissible, we can 
avoid preemption by using the IRQL priority scheme, and we can pre vent simultaneous execution by judiciously using spin 
locks. 
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4.2 Interrupt Request Level  

Windows XP assigns an interrupt request level to each hardware interrupt and to a select few software events. Each CPU has 
its own IRQL. We label the different IRQL levels with names such as PASSIVE_LEVEL, APC_LEVEL, and so on. Figure 4-1 
illustrates the range of IRQL values for the x86 platform. (In general, the numeric values of IRQL depend on which platform 
you’re talking about.) Most of the time, the computer executes in user mode at PASSIVE_LEVEL. All of your knowledge about 
how multitasking operating systems work applies at PASSIVE_LEVEL. That is, the scheduler may preempt a thread at the end 
of a time slice or because a higher-priority thread has become eligible to run. Threads can also voluntarily block while they 
wait for events to occur. 

Figure 4-1. Interrupt request levels.  

When an interrupt occurs, the kernel raises the IRQL on the interrupting CPU to the level associated with that interrupt. The 
activity of processing an interrupt can be—uh, interrupted—to process an interrupt at a higher IRQL but never to process an 
interrupt at the same or a lower IRQL. I’m sorry to use the word interrupt in two slightly different ways here. I struggled to 
find a word to describe the temporary suspension of an activity that wouldn’t cause confusion with thread preemption, and that 
was the best choice. 

What I just said is sufficiently important to be enshrined as a rule: 

An activity on a given CPU can be interrupted only by an activity that executes at a higher IRQL. 

You have to read this rule the way the computer does. Expiration of a time slice eventually invokes the thread scheduler at 
DISPATCH_LEVEL. The scheduler can then make a different thread current. When the IRQL returns to PASSIVE_LEVEL, a 
different thread is running. But it’s still true that the first PASSIVE_LEVEL activity wasn’t interrupted by the second 
PASSIVE_LEVEL activity. I thought this interpretation was incredible hair-splitting until it was pointed out to me that this 
arrangement allows a thread running at APC_LEVEL to be preempted by a different thread running at PASSIVE_LEVEL. 
Perhaps a more useful statement of the rule is this one: 

An activity on a given CPU can be interrupted only by an activity that executes at a higher IRQL. An activity at or above 
DISPATCH_LEVEL cannot be suspended to perform another activity at or below the then-current IRQL. 

Since each CPU has its own IRQL, it’s possible for any CPU in a multiprocessor computer to run at an IRQL that’s less than or 
equal to the IRQL of any other CPU. In the next major section, I’ll tell you about spin locks, which combine the within-a-CPU 
synchronizing behavior of an IRQL with a multiprocessor lockout mechanism. For the time being, though, I’m talking just 
about what happens on a single CPU. 

To repeat something I just said, user-mode programs execute at PASSIVE_LEVEL. When a user-mode program calls a function 
in the native API, the CPU switches to kernel mode but continues to run at PASSIVE_LEVEL in the same thread context. Many 
times, the native API function calls an entry point in a driver without raising the IRQL. Driver dispatch routines for most types 
of I/O request packet (IRP) execute at PASSIVE_LEVEL. In addition, certain driver subroutines, such as DriverEntry and 
AddDevice, execute at PASSIVE_LEVEL in the context of a system thread. In all of these cases, the driver code can be 
preempted just as a user-mode application can be. 

Certain common driver routines execute at DISPATCH_LEVEL, which is higher than PASSIVE_LEVEL. These include the 
StartIo routine, deferred procedure call (DPC) routines, and many others. What they have in common is a need to access fields 
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in the device object and the device extension without interference from driver dispatch routines and one another. When one of 
these routines is running, the rule stated earlier guarantees that no thread can preempt it on the same CPU to execute a driver 
dispatch routine because the dispatch routine runs at a lower IRQL. Furthermore, no thread can preempt it to run another of 
these special routines because that other routine will run at the same IRQL. 

NOTE  
Dispatch routine and DISPATCH_LEVEL unfortunately have similar names. Dispatch routines are so called 
because the I/O Manager dispatches I/O requests to them. DISPATCH_LEVEL is so called because it’s the IRQL 
at which the kernel’s thread dispatcher originally ran when deciding which thread to run next. (The thread 
dispatcher runs at SYNCH_LEVEL, if you care. This is the same as DISPATCH_LEVEL on a uniprocessor machine, 
if you really care.) 

Between DISPATCH_LEVEL and PROFILE_LEVEL is room for various hardware interrupt levels. In general, each device that 
generates interrupts has an IRQL that defines its interrupt priority vis-à-vis other devices. A WDM driver discovers the IRQL 
for its interrupt when it receives an IRP_MJ_PNP request with the minor function code IRP_MN_START_DEVICE. The 
device’s interrupt level is one of the many items of configuration information passed as a parameter to this request. We often 
refer to this level as the device IRQL, or DIRQL for short. DIRQL isn’t a single request level. Rather, it’s the IRQL for the 
interrupt associated with whichever device is under discussion at the time. 

The other IRQL levels have meanings that sometimes depend on the particular CPU architecture. Since those levels are used 
internally by the kernel, their meanings aren’t especially germane to the job of writing a device driver. The purpose of 
APC_LEVEL, for example, is to allow the system to schedule an asynchronous procedure call (APC), which I’ll describe in 
detail later in this chapter. Operations that occur at HIGH_LEVEL include taking a memory snapshot just prior to hibernating 
the computer, processing a bug check, handling a totally spurious interrupt, and others. I’m not going to attempt to provide an 
exhaustive list here because, as I said, you and I don’t really need to know all the details. 

To summarize, drivers are normally concerned with three interrupt request levels: 

 PASSIVE_LEVEL, at which many dispatch routines and a few special routines execute 

 DISPATCH_LEVEL, at which StartIo and DPC routines execute 

 DIRQL, at which an interrupt service routine executes 

4.2.1 IRQL in Operation  
To illustrate the importance of IRQL, refer to Figure 4-2, which illustrates a possible time sequence of events on a single CPU. 
At the beginning of the sequence, the CPU is executing at PASSIVE_LEVEL. At time t1, an interrupt arrives whose service 
routine executes at IRQL-1, one of the levels between DISPATCH_LEVEL and PROFILE_LEVEL. Then, at time t2, another 
interrupt arrives whose service routine executes at IRQL-2, which is less than IRQL-1. Because of the rule already discussed, 
the CPU continues servicing the first interrupt. When the first interrupt service routine completes at time t3, it might request a 
DPC. DPC routines execute at DISPATCH_LEVEL. Consequently, the highest priority pending activity is the service routine 
for the second interrupt, which therefore executes next. When it finishes at t4, assuming nothing else has occurred in the 
meantime, the DPC will run at DISPATCH_LEVEL. When the DPC routine finishes at t5, IRQL can drop back to 
PASSIVE_LEVEL. 

Figure 4-2. Interrupt priority in action.  

4.2.2 IRQL Compared with Thread Priorities  
Thread priority is a very different concept from IRQL. Thread priority controls the actions of the scheduler in deciding when to 
preempt running threads and what thread to start running next. The only “priority” that means anything at IRQLs above 
APC_LEVEL is IRQL itself, and it controls which programs can execute rather than the thread context within which they 
execute. 
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4.2.3 IRQL and Paging  
One consequence of running at elevated IRQL is that the system becomes incapable of servicing page faults. The rule this fact 
implies is simply stated: 

Code executing at or above DISPATCH_LEVEL must not cause page faults. 

One implication of this rule is that any of the subroutines in your driver that execute at or above DISPATCH_LEVEL must be 
in nonpaged memory. Furthermore, all the data you access in such a subroutine must also be in nonpaged memory. Finally, as 
IRQL rises, fewer and fewer kernel-mode support routines are available for your use. 

 The DDK documentation explicitly states the IRQL restrictions on support routines. For example, the entry for 
KeWaitForSingleObject indicates two restrictions: 

 The caller must be running at or below DISPATCH_LEVEL. 

If a nonzero timeout period is specified in the call, the caller must be running strictly below DISPATCH_LEVEL. 

Reading between the lines, what is being said here is this: if the call to KeWaitForSingleObject might conceivably block for 
any period of time (that is, you’ve specified a nonzero timeout), you must be below DISPATCH_LEVEL, where thread 
blocking is permitted. If all you want to do is check to see whether an event has been signaled, however, you can be at 
DISPATCH_LEVEL. You can’t call this routine at all from an interrupt service routine or other routine running above 
DISPATCH_LEVEL. 

For the sake of completeness, it’s well to point out that the rule against page faults is really a rule prohibiting any sort of 
hardware exception, including page faults, divide checks, bounds exceptions, and so on. Software exceptions, like quota 
violations and probe failures on nonpaged memory, are permissible. Thus, it’s acceptable to call ExAllocatePoolWithQuota to 
allocate nonpaged memory at DISPATCH_LEVEL. 

4.2.4 Implicitly Controlling IRQL  
Most of the time, the system calls the routines in your driver at the correct IRQL for the activities you’re supposed to carry out. 
Although I haven’t discussed many of these routines in detail, I want to give you an example of what I mean. Your first 
encounter with a new I/O request occurs when the I/O Manager calls one of your dispatch routines to process an IRP. The call 
usually occurs at PASSIVE_LEVEL because you might need to block the calling thread and you might need to call any support 
routine at all. You can’t block a thread at a higher IRQL, of course, and PASSIVE_LEVEL is the level at which there are the 
fewest restrictions on the support routines you can call. 

NOTE  
Driver dispatch routines usually execute at PASSIVE_LEVEL but not always. You can designate that you want to 
receive IRP_MJ_POWER requests at DISPATCH_LEVEL by setting the DO_POWER_INRUSH flag, or by clearing 
the DO_POWER_PAGABLE flag, in a device object. Sometimes a driver architecture requires that other drivers 
be able to send certain IRPs at DISPATCH_LEVEL. The USB bus driver, for example, accepts data transfer 
requests at DISPATCH_LEVEL or below. A standard serial-port driver accepts any read, write, or control 
operation at or below DISPATCH_LEVEL. 

If your dispatch routine queues the IRP by calling IoStartPacket, your next encounter with the request will be when the I/O 
Manager calls your StartIo routine. This call occurs at DISPATCH_LEVEL because the system needs to access the queue of I/O 
requests without interference from the other routines that are inserting and removing IRPs from the queue. As I’ll discuss later 
in this chapter, queue access occurs under protection of a spin lock, and that carries with it execution at DISPATCH_LEVEL. 

Later on, your device might generate an interrupt, whereupon your interrupt service routine will be called at DIRQL. It’s likely 
that some registers in your device can’t safely be shared. If you access those registers only at DIRQL, you can be sure that no 
one can interfere with your interrupt service routine (ISR) on a single-CPU computer. If other parts of your driver need to 
access these crucial hardware registers, you would guarantee that those other parts execute only at DIRQL. The 
KeSynchronizeExecution service function helps you enforce that rule, and I’ll discuss it in Chapter 7 in connection with 
interrupt handling. 

Still later, you might arrange to have a DPC routine called. DPC routines execute at DISPATCH_LEVEL because, among other 
things, they need to access your IRP queue to remove the next request from a queue and pass it to your StartIo routine. You call 
the IoStartNextPacket service routine to extract the next request from the queue, and it must be called at DISPATCH_LEVEL. It 
might call your StartIo routine before returning. Notice how neatly the IRQL requirements dovetail here: queue access, the call 
to IoStartNextPacket, and the possible call to StartIo are all required to occur at DISPATCH_LEVEL, and that’s the level at 
which the system calls the DPC routine. 

Although it’s possible for you to explicitly control IRQL (and I’ll explain how in the next section), there’s seldom any reason 
to do so because of the correspondence between your needs and the level at which the system calls you. Consequently, you 
don’t need to get hung up on which IRQL you’re executing at from moment to moment: it’s almost surely the correct level for 
the work you’re supposed to do right then. 
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4.2.5 Explicitly Controlling IRQL  
When necessary, you can raise and subsequently lower the IRQL on the current processor by calling KeRaiseIrql and 
KeLowerIrql. For example, from within a routine running at PASSIVE_LEVEL: 

 
KIRQL oldirql; 
 
ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
 
KeRaiseIrql(DISPATCH_LEVEL, &oldirql); 
 
 
KeLowerIrql(oldirql); 

1. KIRQL is the typedef name for an integer that holds an IRQL value. We’ll need a variable to hold the current IRQL, so 
we declare it this way. 

2. This ASSERT expresses a necessary condition for calling KeRaiseIrql: the new IRQL must be greater than or equal to the 
current level. If this relation isn’t true, KeRaiseIrql will bugcheck (that is, report a fatal error via a blue screen of death). 

3. KeRaiseIrql raises the current IRQL to the level specified by the first argument. It also saves the current IRQL at the 
location pointed to by the second argument. In this example, we’re raising IRQL to DISPATCH_LEVEL and saving the 
current level in oldirql. 

4. After executing whatever code we desired to execute at elevated IRQL, we lower the request level back to its previous 
value by calling KeLowerIrql and specifying the oldirql value previously returned by KeRaiseIrql. 

After raising the IRQL, you should eventually restore it to the original value. Otherwise, various assumptions made by code 
you call later or by the code that called you can later turn out to be incorrect. The DDK documentation says that you must 
always call KeLowerIrql with the same value as that returned by the immediately preceding call to KeRaiseIrql, but this 
information isn’t exactly right. The only rule that KeLowerIrql actually applies is that the new IRQL must be less than or equal 
to the current one. You can lower the IRQL in steps if you want to. 

It’s a mistake (and a big one!) to lower IRQL below whatever it was when a system routine called your driver, even if you raise 
it back before returning. Such a break in synchronization might allow some activity to preempt you and interfere with a data 
object that your caller assumed would remain inviolate. 

4.3 Spin Locks  

To help you synchronize access to shared data in the symmetric multiprocessing world of Windows XP, the kernel lets you 
define any number of spin lock objects. To acquire a spin lock, code on one CPU executes an atomic operation that tests and 
then sets a memory variable in such a way that no other CPU can access the variable until the operation completes. If the test 
indicates that the lock was previously free, the program continues. If the test indicates that the lock was previously held, the 
program repeats the test-and-set in a tight loop: it “spins.” Eventually the owner releases the lock by resetting the variable, 
whereupon one of the waiting CPUs’ test-and-set operations will report the lock as free. 

Figure 4-3. Using a spin lock to guard a shared resource.  

Figure 4-3 illustrates the concept of using a spin lock. Suppose we have some “resource” that might be used simultaneously on 
two different CPUs. To make the example concrete, imagine that the resource is the LIST_ENTRY cell that anchors a linked list 
of IRPs. The list might be accessed by one or more dispatch routines, a cancel routine, a DPC routine, and perhaps others as 
well. Any number of these routines might be executing simultaneously on different CPUs and trying to modify the list anchor. 
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To prevent chaos, we associate a spin lock with this “resource.” 

Suppose now that code executing on CPU A wants to access the shared resource at time t1. It acquires the spin lock and begins 
its access. Shortly afterward, at time t2, code executing on CPU B also wants to access the same resource. The CPU-B program 
tries to acquire the spin lock. Since CPU A currently owns the spin lock, CPU B spins in a tight loop, continually checking and 
rechecking the spin lock to see whether it has become free. When CPU A releases the lock at time t3, CPU B finds the lock free 
and claims it. Then CPU B has unfettered access to the resource. Finally, at time t4, CPU B finishes its access and releases the 
lock. 

I want to be very clear about how a spin lock and a shared resource come to be associated. We make the association when we 
design the driver. We decide that we will access the resource only while owning the spin lock. The operating system isn’t 
aware of our decision. Furthermore, we can define as many spin locks as we want, to guard as many shared resources as we 
want. 

4.3.1 Some Facts About Spin Locks  
You need to know several important facts about spin locks. First of all, if a CPU already owns a spin lock and tries to obtain it 
a second time, the CPU will deadlock. No usage counter or owner identifier is associated with a spin lock; somebody either 
owns the lock or not. If you try to acquire the lock when it’s owned, you’ll wait until the owner releases it. If your CPU 
happens to already be the owner, the code that would release the lock can never execute because you’re spinning in a tight loop 
testing and setting the lock variable. 

CAUTION  
You can certainly avoid the deadlock that occurs when a CPU tries to acquire a spin lock it already owns by 
following this rule: make sure that the subroutine that claims the lock releases it and never tries to claim it 
twice, and then don’t call any other subroutine while you own the lock. There’s no policeman in the operating 
system to ensure you don’t call other subroutines—it’s just an engineering rule of thumb that will help you avoid 
an inadvertent mistake. The danger you’re guarding against is that you (or some maintenance programmer 
who follows in your footsteps) might forget that you’ve already claimed a certain spin lock. I’ll tell you about an 
ugly exception to this salutary rule in Chapter 5, when I discuss IRP cancel routines. 

In addition, acquiring a spin lock raises the IRQL to DISPATCH_LEVEL automatically. Consequently, code that acquires a lock 
must be in nonpaged memory and must not block the thread in which it runs. (There is an exception in Windows XP and later 
systems. KeAcquireInterruptSpinLock raises the IRQL to the DIRQL for an interrupt and claims the spin lock associated with 
the interrupt.) 

As an obvious corollary of the previous fact, you can request a spin lock only when you’re running at or below 
DISPATCH_LEVEL. Internally, the kernel is able to acquire spin locks at an IRQL higher than DISPATCH_LEVEL, but you 
and I are unable to accomplish that feat. 

Another fact about spin locks is that very little useful work occurs on a CPU that’s waiting for a spin lock. The spinning 
happens at DISPATCH_LEVEL with interrupts enabled, so a CPU that’s waiting for a spin lock can service hardware interrupts. 
But to avoid harming performance, you need to minimize the amount of work you do while holding a spin lock that some other 
CPU is likely to want. 

Two CPUs can simultaneously hold two different spin locks, by the way. This arrangement makes sense: you associate a spin 
lock with a certain shared resource, or some collection of shared resources. There’s no reason to hold up processing related to 
different resources protected by different spin locks. 

As it happens, there are separate uniprocessor and multiprocessor kernels. The Windows XP setup program decides which 
kernel to install after inspecting the computer. The multiprocessor kernel implements spin locks as I’ve just described. The 
uniprocessor kernel realizes, however, that another CPU can’t be in the picture, so it implements spin locks a bit more simply. 
On a uniprocessor system, acquiring a spin lock raises the IRQL to DISPATCH_LEVEL and does nothing else. Do you see how 
you still get the synchronization benefit from claiming the so-called lock in this case? For some piece of code to attempt to 
claim the same spin lock (or any other spin lock, actually, but that’s not the point here), it would have to be running at or below 
DISPATCH_LEVEL—you can request a lock starting at or below DISPATCH_LEVEL only. But we already know that’s 
impossible because, once you’re above PASSIVE_LEVEL, you can’t be interrupted by any other activity that would run at the 
same or a lower IRQL. Q., as we used to say in my high school geometry class, E.D. 

4.3.2 Working with Spin Locks  
To use a spin lock explicitly, allocate storage for a KSPIN_LOCK object in nonpaged memory. Then call KeInitializeSpinLock 
to initialize the object. Later, while running at or below DISPATCH_LEVEL, acquire the lock, perform the work that needs to 
be protected from interference, and then release the lock. For example, suppose your device extension contains a spin lock 
named QLock that you use for guarding access to a special IRP queue you’ve set up. You’ll initialize this lock in your 
AddDevice function: 

typedef struct _DEVICE_EXTENSION { 
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  KSPIN_LOCK QLock; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
 
 
NTSTATUS AddDevice(...) 
  { 
 
  PDEVICE_EXTENSION pdx = ...; 
  KeInitializeSpinLock(&pdx->QLock); 
 
  } 

Elsewhere in your driver, say in the dispatch function for some type of IRP, you can claim (and quickly release) the lock 
around some queue manipulation that you need to perform. Note that this function must be in nonpaged memory because it 
executes for a period of time at an elevated IRQL. 

NTSTATUS DispatchSomething(...) 
  { 
  KIRQL oldirql; 
  PDEVICE_EXTENSION pdx = ...; 
 
  KeAcquireSpinLock(&pdx->QLock, &oldirql); 
 
 
  KeReleaseSpinLock(&pdx->QLock, oldirql); 
  } 

1. When KeAcquireSpinLock acquires the spin lock, it also raises IRQL to DISPATCH_LEVEL and returns the current (that 
is, preacquisition) level in the variable to which the second argument points. 

2. When KeReleaseSpinLock releases the spin lock, it also lowers IRQL back to the value specified in the second argument. 

If you know you’re already executing at DISPATCH_LEVEL, you can save a little time by calling two special routines. This 
technique is appropriate, for example, in DPC, StartIo, and other driver routines that execute at DISPATCH_LEVEL: 

KeAcquireSpinLockAtDpcLevel(&pdx->QLock); 
 
KeReleaseSpinLockFromDpcLevel(&pdx->QLock); 

4.3.3 Queued Spin Locks  
Windows XP introduces a new type of spin lock, called an in-stack queued spin lock, that has a more efficient implementation 
than a regular spin lock. The mechanics of using this new kind of lock are a bit different from what I just described. You still 
allocate a KSPIN_LOCK object in nonpaged memory to which all relevant parts of your driver have access, and you still 
initialize it by calling KeAcquireSpinLock. To acquire and release the lock, however, you use code like the following: 

 
KLOCK_QUEUE_HANDLE qh; 
 
KeAcquireInStackQueuedSpinLock(&pdx->QLock, &qh); 
 
 
KeReleaseInStackQueuedSpinLock(&qh); 

1. The KLOCK_QUEUE_HANDLE structure is opaque—you’re not supposed to know what it contains, but you do have to 
reserve storage for it. The best way to do that is to define an automatic variable (hence the in-stack part of the name). 

2. Call KeAcquireInStackQueuedSpinLock instead of KeAcquireSpinLock to acquire the lock, and supply the address of the 
KLOCK_QUEUE_HANDLE object as the second argument. 

3. Call KeReleaseInStackQueuedSpinLock instead of KeReleaseSpinLock to release the lock. 

The reason an in-stack queued spin lock is more efficient relates to the performance impact of a standard spin lock. With a 
standard spin lock, each CPU that is contending for ownership constantly modifies the same memory location. Each 
modification requires every contending CPU to reload the same dirty cache line. A queued spin lock, introduced for internal 
use in Windows 2000, avoids this adverse effect by cleverly using interlocked exchange and compare-exchange operations to 
track users and waiters for a lock. A waiting CPU continually reads (but does not write) a unique memory location. A CPU that 
releases a lock alters the memory variable on which the next waiter is spinning. 
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Internal queued spin locks can’t be directly used by driver code because they rely on a fixed-size table of lock pointers to 
which drivers don’t have access. Windows XP added the in-stack queued spin lock, which relies on an automatic variable 
instead of the fixed-size table. 

In addition to the two routines I showed you for acquiring and releasing this new kind of spin lock, you can also use two other 
routines if you know you’re already executing at DISPATCH_LEVEL: KeAcquireInStackQueuedSpinLockAtDpcLevel and 
KeReleaseInStackQueuedSpinLockFromDpcLevel. (Try spelling those names three times fast!) 

NOTE  
Because Windows versions earlier than XP don’t support the in-stack queued spin lock or interrupt spin lock 
routines, you can’t directly call them in a driver intended to be binary portable between versions. The SPINLOCK 
sample driver shows how to make a run-time decision to use the newer spin locks under XP and the old spin 
locks otherwise. 

4.4 Kernel Dispatcher Objects  

The kernel provides five types of synchronization objects that you can use to control the flow of nonarbitrary threads. See 
Table 4-1 for a summary of these kernel dispatcher object types and their uses. At any moment, one of these objects is in one 
of two states: signaled or not-signaled. At times when it’s permissible for you to block a thread in whose context you’re 
running, you can wait for one or more objects to reach the signaled state by calling KeWaitForSingleObject or 
KeWaitForMultipleObjects. The kernel also provides routines for initializing and controlling the state of each of these objects. 

Object Data Type Description 

Event  KEVENT  Blocks a thread until some other thread detects that an event has occurred 

Semaphore  KSEMAPHORE  Used instead of an event when an arbitrary number of wait calls can be satisfied 

Mutex  KMUTEX  Excludes other threads from executing a particular section of code 

Timer  KTIMER  Delays execution of a thread for a given period of time 

Thread  KTHREAD  Blocks one thread until another thread terminates 

Table 4-1. Kernel Dispatcher Objects  

In the next few sections, I’ll describe how to use the kernel dispatcher objects. I’ll start by explaining when you can block a 
thread by calling one of the wait primitives, and then I’ll discuss the support routines that you use with each of the object types. 
I’ll finish this section by discussing the related concepts of thread alerts and asynchronous procedure call delivery. 

4.4.1 How and When You Can Block  
To understand when and how it’s permissible for a WDM driver to block a thread on a kernel dispatcher object, you have to 
recall some of the basic facts about threads from Chapter 2. In general, whatever thread was executing at the time of a software 
or hardware interrupt continues to be the current thread while the kernel processes the interrupt. We speak of executing 
kernel-mode code in the context of this current thread. In response to interrupts of various kinds, the scheduler might decide to 
switch threads, of course, in which case a new thread becomes “current.” 

We use the terms arbitrary thread context and nonarbitrary thread context to describe the precision with which we can know 
the thread in whose context we’re currently operating in a driver subroutine. If we know that we’re in the context of the thread 
that initiated an I/O request, the context is not arbitrary. Much of the time, however, a WDM driver can’t know this fact 
because chance usually controls which thread is active when the interrupt occurs that results in the driver being called. When 
applications issue I/O requests, they cause a transition from user mode to kernel mode. The I/O Manager routines that create an 
IRP and send it to a driver dispatch routine continue to operate in this nonarbitrary thread context, as does the first dispatch 
routine to see the IRP. We use the term highest-level driver to describe the driver whose dispatch routine first receives the IRP. 

As a general rule, only a highest-level driver can know for sure that it’s operating in a nonarbitrary thread context. Let’s 
suppose you are a dispatch routine in a lower-level driver, and you’re wondering whether you’re getting called in an arbitrary 
thread. If the highest-level driver just sent you an IRP directly from its dispatch routine, you’d be in the original, nonarbitrary, 
thread. But suppose that driver had put an IRP on a queue and then returned to the application. That driver would have 
removed the IRP from the queue in an arbitrary thread and then sent it or another IRP to you. Unless you know that didn’t 
happen, you should assume you’re in an arbitrary thread if you’re not the highest-level driver. 

Notwithstanding what I just said, in many situations you can be sure of the thread context. Your DriverEntry and AddDevice 
routines are called in a system thread that you can block if you need to. You won’t often need to explicitly block inside these 
routines, but you could if you wanted to. You receive IRP_MJ_PNP requests in a system thread too. In many cases, you must 
block that thread to correctly process the request. Finally, you’ll sometimes receive I/O requests directly from an application, in 
which case you’ll know you’re in a thread belonging to the application. 
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NOTE  
Microsoft uses the term highest-level driver primarily to distinguish between file system drivers and the storage 
device drivers they call to do actual I/O. The file system driver is “highest level,” while the storage driver is not. 
It would be easy to confuse this concept with the layering of WDM drivers, but it’s not the same. The way I think 
of things is that all the WDM drivers for a given piece of hardware, including all the filter drivers, the function 
driver, and the bus driver, are collectively either “highest level” or not. A filter driver has no business queuing 
an IRP that, but for the intervention of the filter, would have flowed down the stack in the original thread 
context. So if the thread context was nonarbitrary when the IRP got to the topmost filter dispatch object (FiDO), 
it should still be nonarbitrary in every lower dispatch routine. 

Also recall from the discussion earlier in this chapter that you must not block a thread if you’re executing at or above 
DISPATCH_LEVEL. 

Having recalled these facts about thread context and IRQL, we can state a simple rule about when it’s OK to block a thread: 

Block only the thread that originated the request you’re working on, and only when executing at IRQL strictly less than 
DISPATCH_LEVEL. 

Several of the dispatcher objects, and the so-called Executive Fast Mutex I’ll discuss later in this chapter, offer “mutual 
exclusion” functionality. That is, they permit one thread to access a given shared resource without interference from other 
threads. This is pretty much what a spin lock does, so you might wonder how to choose between synchronization methods. In 
general, I think you should prefer to synchronize below DISPATCH_LEVEL if you can because that strategy allows a thread 
that owns a mutual exclusion lock to cause page faults and to be preempted by other threads if the thread continues to hold the 
lock for a long time. In addition, this strategy allows other CPUs to continue doing useful work, even though threads have 
blocked on those CPUs to acquire the same lock. If any of the code that accesses a shared resource can run at 
DISPATCH_LEVEL, though, you must use a spin lock because the DISPATCH_LEVEL code might interrupt code running at 
lower IRQL. 

4.4.2 Waiting on a Single Dispatcher Object  
You call KeWaitForSingleObject as illustrated in the following example: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER timeout; 
NTSTATUS status = KeWaitForSingleObject(object, WaitReason, 
  WaitMode, Alertable, &timeout); 

As suggested by the ASSERT, you must be executing at or below DISPATCH_LEVEL to even call this service routine. 

In this call, object points to the object you want to wait on. Although this argument is typed as a PVOID, it should be a pointer 
to one of the dispatcher objects listed in Table 4-1. The object must be in nonpaged memory—for example, in a device 
extension structure or other data area allocated from the nonpaged pool. For most purposes, the execution stack can be 
considered nonpaged. 

WaitReason is a purely advisory value chosen from the KWAIT_REASON enumeration. No code in the kernel actually cares 
what value you supply here, so long as you don’t specify WrQueue. (Internally, scheduler code bases some decisions on 
whether a thread is currently blocked for this “reason.”) The reason a thread is blocked is saved in an opaque data structure, 
though. If you knew more about that data structure and were trying to debug a deadlock of some kind, you could perhaps gain 
clues from the reason code. The bottom line: always specify Executive for this parameter; there’s no reason to say anything 
else. 

WaitMode is one of the two values of the MODE enumeration: KernelMode or UserMode. Alertable is a simple Boolean value. 
Unlike WaitReason, these parameters do make a difference in the way the system behaves by controlling whether the wait can 
be terminated early in order to deliver asynchronous procedure calls of various kinds. I’ll explain these interactions in more 
detail in “Thread Alerts and APCs” later in this chapter. Waiting in user mode also authorizes the Memory Manager to swap 
your thread’s kernel-mode stack out. You’ll see examples in this book and elsewhere where drivers create event objects, for 
instance, as automatic variables. A bug check would result if some other thread were to call KeSetEvent at elevated IRQL at a 
time when the event object was absent from memory. The bottom line: you should probably always wait in KernelMode and 
specify FALSE for the Alertable parameter. 

The last parameter to KeWaitForSingleObject is the address of a 64-bit timeout value, expressed in 100-nanosecond units. A 
positive number for the timeout is an absolute timestamp relative to the January 1, 1601, epoch of the system clock. You can 
determine the current time by calling KeQuerySystemTime, and you can add a constant to that value. A negative number is an 
interval relative to the current time. If you specify an absolute time, a subsequent change to the system clock alters the duration 
of the timeout you might experience. That is, the timeout doesn’t expire until the system clock equals or exceeds whatever 
absolute value you specify. In contrast, if you specify a relative timeout, the duration of the timeout you experience is 
unaffected by changes in the system clock. 
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Why January 1, 1601? 
Years ago, when I was first learning the Win32 API, I was bemused by the choice of January 1, 1601, as the 
origin for the timestamps in Windows NT. I understood the reason for this choice when I had occasion to write 
a set of conversion routines. Everyone knows that years divisible by four are leap years. Many people know that 
century years (such as 1900) are exceptions—they’re not leap years even though they’re divisible by 4. A few 
people know that every fourth century year (such as 1600 and 2000) is an exception to the exception—they are 
leap years. January 1, 1601, was the start of a 400-year cycle that ends in a leap year. If you base timestamps 
on this origin, it’s possible to write programs that convert a Windows NT timestamp to a conventional 
representation of the date (and vice versa) without doing any jumps. 

Specifying a zero timeout causes KeWaitForSingleObject to return immediately with a status code indicating whether the 
object is in the signaled state. If you’re executing at DISPATCH_LEVEL, you must specify a zero timeout because blocking is 
not allowed. Each kernel dispatcher object offers a KeReadStateXxx service function that allows you to determine the state of 
the object. Reading the state isn’t completely equivalent to waiting for zero time, however: when KeWaitForSingleObject 
discovers that the wait is satisfied, it performs the side effects that the particular object requires. In contrast, reading the state of 
the object doesn’t perform the operations, even if the object is already signaled and a wait would be satisfied if it were 
requested right now. 

Specifying a NULL pointer for the timeout parameter is OK and indicates an infinite wait. 

The return value indicates one of several possible results. STATUS_SUCCESS is the result you expect and indicates that the 
wait was satisfied. That is, either the object was in the signaled state when you made the call to KeWaitForSingleObject or else 
the object was in the not-signaled state and later became signaled. When the wait is satisfied in this way, operations might need 
to be performed on the object. The nature of these operations depends on the type of the object, and I’ll explain them later in 
this chapter in connection with discussing each type of object. (For example, a synchronization type of event will be reset after 
your wait is satisfied.) 

The return value STATUS_TIMEOUT indicates that the specified timeout occurred without the object reaching the signaled 
state. If you specify a zero timeout, KeWaitForSingleObject returns immediately with either this code (indicating that the 
object is not-signaled) or STATUS_SUCCESS (indicating that the object is signaled). This return value isn’t possible if you 
specify a NULL timeout parameter pointer because you thereby request an infinite wait. 

Two other return values are possible. STATUS_ALERTED and STATUS_USER _APC mean that the wait has terminated without 
the object having been signaled because the thread has received an alert or a user-mode APC, respectively. I’ll discuss these 
concepts a bit further on in “Thread Alerts and APCs.” 

Note that STATUS_TIMEOUT, STATUS_ALERTED, and STATUS_USER_APC all pass the NT_SUCCESS test. Therefore, 
don’t simply use NT_SUCCESS on the return code from KeWaitForSingleObject in the expectation that it will distinguish 
between cases in which the object was signaled and cases in which the object was not signaled. 

Windows 98/Me Compatibility Note 
KeWaitForSingleObject and KeWaitForMultipleObjects have a horrible bug in Windows 98 and Millennium in that 
they can return the undocumented and nonsensical value 0xFFFFFFFF in two situations. One situation occurs 
when a thread terminates while blocked on a WDM object. The wait returns early with this bogus code. The 
return code should never happen (because it’s undocumented), and the wait shouldn’t terminate early unless 
you specify TRUE for the Alertable parameter. You can work around this problem by just reissuing the wait.  

The other circumstance in which you can get the bogus return occurs if the thread you’re trying to block is 
already blocked. How, you might well ask, could you be executing in the context of a thread that’s really 
blocked? This situation happens in Windows 98/Me when someone blocks on a VxD-level object with the 
BLOCK_SVC_INTS flag and the system later calls a function in your driver at what’s called event time. You can 
nominally be in the context of the blocked thread, and you simply cannot block a second time on a WDM object. 
In fact, I’ve even seen KeWaitForSingleObject return with the IRQL raised to DISPATCH_LEVEL in this 
circumstance. As far as I know, there’s no workaround for the problem. Thankfully, it seems to occur only with 
drivers for serial devices, in which there’s a crossover between VxD and WDM code. 

4.4.3 Waiting on Multiple Dispatcher Objects  
KeWaitForMultipleObjects is a companion function to KeWaitForSingleObject that you use when you want to wait for one or 
all of several dispatcher objects simultaneously. Call this function as in this example: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER timeout; 
NTSTATUS status = KeWaitForMultipleObjects(count, objects,  
  WaitType, WaitReason, WaitMode, Alertable, &timeout, waitblocks); 

Here objects is the address of an array of pointers to dispatcher objects, and count is the number of pointers in the array. The 
count must be less than or equal to the value MAXIMUM_WAIT_OBJECTS, which currently equals 64. The array, as well as 
each of the objects to which the elements of the array point, must be in nonpaged memory. WaitType is one of the enumeration 
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values WaitAll or WaitAny and specifies whether you want to wait until all of the objects are simultaneously in the signaled 
state or whether, instead, you want to wait until any one of the objects is signaled. 

The waitblocks argument points to an array of KWAIT_BLOCK structures that the kernel will use to administer the wait 
operation. You don’t need to initialize these structures in any way—the kernel just needs to know where the storage is for the 
group of wait blocks that it will use to record the status of each of the objects during the wait. If you’re waiting for a small 
number of objects (specifically, a number no bigger than THREAD_WAIT_OBJECTS, which currently equals 3), you can 
supply NULL for this parameter. If you supply NULL, KeWaitForMultipleObjects uses a preallocated array of wait blocks that 
lives in the thread object. If you’re waiting for more objects than this, you must provide nonpaged memory that’s at least count 
* sizeof(KWAIT_BLOCK) bytes in length. 

The remaining arguments to KeWaitForMultipleObjects are the same as the corresponding arguments to 
KeWaitForSingleObject, and most return codes have the same meaning. 

If you specify WaitAll, the return value STATUS_SUCCESS indicates that all the objects managed to reach the signaled state 
simultaneously. If you specify WaitAny, the return value is numerically equal to the objects array index of the single object that 
satisfied the wait. If more than one of the objects happens to be signaled, you’ll be told about one of them—maybe the 
lowest-numbered of all the ones that are signaled at that moment, but maybe some other one. You can think of this value being 
STATUS_WAIT_0 plus the array index. You can’t simply perform the usual NT_SUCCESS test of the returned status before 
extracting the array index from the status code, though, because other possible return codes (including STATUS_TIMEOUT, 
STATUS_ALERTED, and STATUS_USER_APC) would also pass the test. Use code like this: 

NTSTATUS status = KeWaitForMultipleObjects(...); 
if ((ULONG) status < count) 
  { 
  ULONG iSignaled = (ULONG) status - (ULONG) STATUS_WAIT_0; 
 
  } 

When KeWaitForMultipleObjects returns a status code equal to an object’s array index in a WaitAny case, it also performs the 
operations required by that object. If more than one object is signaled and you specified WaitAny, the operations are performed 
only for the one that’s deemed to satisfy the wait and whose index is returned. That object isn’t necessarily the first one in your 
array that happens to be signaled. 

4.4.4 Kernel Events  
You use the service functions listed in Table 4-2 to work with kernel event objects. To initialize an event object, first reserve 
nonpaged storage for an object of type KEVENT and then call KeInitializeEvent: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
KeInitializeEvent(event, EventType, initialstate); 

Event is the address of the event object. EventType is one of the enumeration values NotificationEvent and 
SynchronizationEvent. A notification event has the characteristic that, when it is set to the signaled state, it stays signaled until 
it’s explicitly reset to the not-signaled state. Furthermore, all threads that wait on a notification event are released when the 
event is signaled. This is like a manual-reset event in user mode. A synchronization event, on the other hand, gets reset to the 
not-signaled state as soon as a single thread gets released. This is what happens in user mode when someone calls SetEvent on 
an auto-reset event object. The only operation performed on an event object by KeWaitXxx is to reset a synchronization event 
to not-signaled. Finally, initialstate is TRUE to specify that the initial state of the event is to be signaled and FALSE to specify 
that the initial state is to be not-signaled. 

Service Function Description 

KeClearEvent  Sets event to not-signaled; doesn’t report previous state 

KeInitializeEvent  Initializes event object 

KeReadStateEvent  Determines current state of event (Windows XP and Windows 2000 only) 

KeResetEvent  Sets event to not-signaled; returns previous state 

KeSetEvent  Sets event to signaled; returns previous state 

Table 4-2. Service Functions for Use with Kernel Event Objects  

NOTE  
In this series of sections on synchronization primitives, I’m repeating the IRQL restrictions that the DDK 
documentation describes. In the current release of Microsoft Windows XP, the DDK is sometimes more 
restrictive than the operating system actually is. For example, KeClearEvent can be called at any IRQL, not just 
at or below DISPATCH_LEVEL. KeInitializeEvent can be called at any IRQL, not just at PASSIVE_LEVEL. 
However, you should regard the statements in the DDK as being tantamount to saying that Microsoft might 
someday impose the documented restriction, which is why I haven’t tried to report the true state of affairs. 
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You can call KeSetEvent to place an event in the signaled state: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG wassignaled = KeSetEvent(event, boost, wait); 

As implied by the ASSERT, you must be running at or below DISPATCH_LEVEL to call this function. The event argument is a 
pointer to the event object in question, and boost is a value to be added to a waiting thread’s priority if setting the event results 
in satisfying someone’s wait. See the sidebar (“That Pesky Third Argument to KeSetEvent”) for an explanation of the Boolean 
wait argument, which a WDM driver would almost never want to specify as TRUE. The return value is nonzero if the event 
was already in the signaled state before the call and 0 if the event was in the not-signaled state. 

A multitasking scheduler needs to artificially boost the priority of a thread that waits for I/O operations or synchronization 
objects in order to avoid starving threads that spend lots of time waiting. This is because a thread that blocks for some reason 
generally relinquishes its time slice and won’t regain the CPU until either it has a relatively higher priority than other eligible 
threads or other threads that have the same priority finish their time slices. A thread that never blocks, however, gets to 
complete its time slices. Unless a boost is applied to the thread that repeatedly blocks, therefore, it will spend a lot of time 
waiting for CPU-bound threads to finish their time slices. 

You and I won’t always have a good idea of what value to use for a priority boost. A good rule of thumb to follow is to specify 
IO_NO_INCREMENT unless you have a good reason not to. If setting the event is going to wake up a thread that’s dealing 
with a time-sensitive data flow (such as a sound driver), supply the boost that’s appropriate to that kind of device (such as 
IO_SOUND_INCREMENT). The important thing is not to boost the waiter for a silly reason. For example, if you’re trying to 
handle an IRP_MJ_PNP request synchronously—see Chapter 6—you’ll be waiting for lower-level drivers to handle the IRP 
before you proceed, and your completion routine will be calling KeSetEvent. Since Plug and Play requests have no special 
claim on the processor and occur only infrequently, specify IO_NO_INCREMENT, even for a sound card. 

That Pesky Third Argument to KeSetEvent 
The purpose of the wait argument to KeSetEvent is to allow internal code to hand off control from one thread 
to another very quickly. System components other than device drivers can, for example, create paired event 
objects that are used by client and server threads to gate their communication. When the server wants to wake 
up its paired client, it will call KeSetEvent with the wait argument set to TRUE and then immediately call 
KeWaitXxx to put itself to sleep. The use of wait allows these two operations to be done atomically so that no 
other thread can be awakened in between and possibly wrest control from the client and the server.  

The DDK has always sort of described what happens internally, but I’ve found the explanation confusing. I’ll try 
to explain it in a different way so that you can see why you should always say FALSE for this parameter. 
Internally, the kernel uses a dispatcher database lock to guard operations related to thread blocking, waking, 
and scheduling. KeSetEvent needs to acquire this lock, and so do the KeWaitXxx routines. If you say TRUE for 
the wait argument, KeSetEvent sets a flag so that KeWaitXxx will know you did so, and it returns to you without 
releasing this lock. When you turn around and (immediately, please—you’re running at a higher IRQL than 
every hardware device, and you own a spin lock that’s very frequently in contention) call KeWaitXxx, it needn’t 
acquire the lock all over again. The net effect is that you’ll wake up the waiting thread and put yourself to sleep 
without giving any other thread a chance to start running. 

You can see, first of all, that a function that calls KeSetEvent with wait set to TRUE has to be in nonpaged 
memory because it will execute briefly above DISPATCH_LEVEL. But it’s hard to imagine why an ordinary device 
driver would even need to use this mechanism because it would almost never know better than the kernel which 
thread ought to be scheduled next. The bottom line: always say FALSE for this parameter. In fact, it’s not clear 
why the parameter has even been exposed to tempt us. 

You can determine the current state of an event (at any IRQL) by calling KeReadStateEvent: 

LONG signaled = KeReadStateEvent(event); 

The return value is nonzero if the event is signaled, 0 if it’s not-signaled. 

NOTE  
KeReadStateEvent isn’t supported in Microsoft Windows 98/Me, even though the other KeReadStateXxx 
functions described here are. The absence of support has to do with how events and other synchronization 
primitives are implemented in Windows 98/Me. 

You can determine the current state of an event and, immediately thereafter, place it in the not-signaled state by calling the 
KeResetEvent function (at or below DISPATCH_LEVEL): 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG signaled = KeResetEvent(event); 

If you’re not interested in the previous state of the event, you can save a little time by calling KeClearEvent instead: 
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ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KeClearEvent(event); 

KeClearEvent is faster because it doesn’t need to capture the current state of the event before setting it to not-signaled. But 
beware of calling KeClearEvent when another thread might be using the same event since there’s no good way to control the 
races between you clearing the event and some other thread setting it or waiting on it. 

Using a Synchronization Event for Mutual Exclusion  

I’ll tell you later in this chapter about two types of mutual exclusion objects—a kernel mutex and an executive fast 
mutex—that you can use to limit access to shared data in situations in which a spin lock is inappropriate for some reason. 
Sometimes you can simply use a synchronization event for this purpose. First define the event in nonpaged memory, as 
follows: 

typedef struct _DEVICE_EXTENSION { 
 
  KEVENT lock; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

Initialize it as a synchronization event in the signaled state: 

KeInitializeEvent(&pdx->lock, SynchronizationEvent, TRUE); 

Enter your lightweight critical section by waiting on the event. Leave by setting the event. 

KeWaitForSingleObject(&pdx->lock, Executive, KernelMode, FALSE, NULL); 
 
KeSetEvent(&pdx->lock, EVENT_INCREMENT, FALSE); 
 

Use this trick only in a system thread, though, to prevent a user-mode call to NtSuspendThread from creating a 
deadlock. (This deadlock can easily happen if a user-mode debugger is running on the same process.) If you’re running 
in a user thread, you should prefer to use an executive fast mutex. Don’t use this trick at all for code that executes in the 

paging path, as explained later in connection with the “unsafe” way of acquiring an executive fast mutex.  

4.4.5 Kernel Semaphores  
A kernel semaphore is an integer counter with associated synchronization semantics. The semaphore is considered signaled 
when the counter is positive and not-signaled when the counter is 0. The counter cannot take on a negative value. Releasing a 
semaphore increases the counter, whereas successfully waiting on a semaphore decrements the counter. If the decrement makes 
the count 0, the semaphore is then considered not-signaled, with the consequence that other KeWaitXxx callers who insist on 
finding it signaled will block. Note that if more threads are waiting for a semaphore than the value of the counter, not all of the 
waiting threads will be unblocked. 

The kernel provides three service functions to control the state of a semaphore object. (See Table 4-3.) You initialize a 
semaphore by making the following function call at PASSIVE_LEVEL: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
KeInitializeSemaphore(semaphore, count, limit); 

In this call, semaphore points to a KSEMAPHORE object in nonpaged memory. The count variable is the initial value of the 
counter, and limit is the maximum value that the counter will be allowed to take on, which must be as large as the initial count. 

Service Function Description 

KeInitializeSemaphore  Initializes semaphore object 

KeReadStateSemaphore  Determines current state of semaphore 

KeReleaseSemaphore  Sets semaphore object to the signaled state 

Table 4-3. Service Functions for Use with Kernel Semaphore Objects  

If you create a semaphore with a limit of 1, the object is somewhat similar to a mutex in that only one thread at a time will be 
able to claim it. A kernel mutex has some features that a semaphore lacks, however, to help prevent deadlocks. Accordingly, 
there’s almost no point in creating a semaphore with a limit of 1. 

If you create a semaphore with a limit bigger than 1, you have an object that allows multiple threads to access a given resource. 
A familiar theorem in queuing theory dictates that providing a single queue for multiple servers is more fair (that is, results in 
less variation in waiting times) than providing a separate queue for each of several servers. The average waiting time is the 
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same in both cases, but the variation in waiting times is smaller with the single queue. (This is why queues in stores are 
increasingly organized so that customers wait in a single line for the next available clerk.) This kind of semaphore allows you 
to organize a set of software or hardware servers to take advantage of that theorem. 

The owner (or one of the owners) of a semaphore releases its claim to the semaphore by calling KeReleaseSemaphore: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG wassignaled = KeReleaseSemaphore(semaphore, boost,  delta, wait); 

This operation adds delta, which must be positive, to the counter associated with semaphore, thereby putting the semaphore in 
the signaled state and allowing other threads to be released. In most cases, you’ll specify 1 for this parameter to indicate that 
one claimant of the semaphore is releasing its claim. The boost and wait parameters have the same import as the corresponding 
parameters to KeSetEvent, discussed earlier. The return value is 0 if the previous state of the semaphore was not-signaled and 
nonzero if the previous state was signaled. 

KeReleaseSemaphore doesn’t allow you to increase the counter beyond the limit specified when you initialized the semaphore. 
If you try, it doesn’t adjust the counter at all, and it raises an exception with the code 
STATUS_SEMAPHORE_LIMIT_EXCEEDED. Unless someone has a structured exception handler to trap the exception, a bug 
check will eventuate. 

You can also interrogate the current state of a semaphore with this call: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG signaled = KeReadStateSemaphore(semaphore); 

The return value is nonzero if the semaphore is signaled and 0 if the semaphore is not-signaled. You shouldn’t assume that the 
return value is the current value of the counter—it could be any nonzero value if the counter is positive. 

Having told you all this about how to use kernel semaphores, I feel I ought to tell you that I’ve never seen a driver that uses 
one of them. 

4.4.6 Kernel Mutexes  
The word mutex is a contraction of mutual exclusion. A kernel mutex object provides one method (and not necessarily the best 
one) to serialize access by competing threads to a given shared resource. The mutex is considered signaled if no thread owns it 
and not-signaled if a thread currently does own it. When a thread gains control of a mutex after calling one of the KeWaitXxx 
routines, the kernel also prevents delivery of any but special kernel APCs to help avoid possible deadlocks. This is the 
operation referred to in the earlier discussion of KeWaitForSingleObject (in the section “Waiting on a Single Dispatcher 
Object”). 

It’s generally better to use an executive fast mutex rather than a kernel mutex, as I’ll explain in more detail later in “Fast Mutex 
Objects.” The main difference between the two is that acquiring a fast mutex raises the IRQL to APC_LEVEL, whereas 
acquiring a kernel mutex doesn’t change the IRQL. Among the reasons you care about this fact is that completion of so-called 
synchronous IRPs requires delivery of a special kernel-mode APC, which cannot occur if the IRQL is higher than 
PASSIVE_LEVEL. Thus, you can create and use synchronous IRPs while owning a kernel mutex but not while owning an 
executive fast mutex. Another reason for caring arises for drivers that execute in the paging path, as elaborated later on in 
connection with the “unsafe” way of acquiring an executive fast mutex. 

Another, less important, difference between the two kinds of mutex object is that a kernel mutex can be acquired recursively, 
whereas an executive fast mutex cannot. That is, the owner of a kernel mutex can make a subsequent call to KeWaitXxx 
specifying the same mutex and have the wait immediately satisfied. A thread that does this must release the mutex an equal 
number of times before the mutex will be considered free. 

Table 4-4 lists the service functions you use with mutex objects. 

Service Function Description 

KeInitializeMutex  Initializes mutex object 

KeReadStateMutex  Determines current state of mutex 

KeReleaseMutex  Sets mutex object to the signaled state 

Table 4-4. Service Functions for Use with Kernel Mutex Objects  

To create a mutex, you reserve nonpaged memory for a KMUTEX object and make the following initialization call: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
KeInitializeMutex(mutex, level); 

where mutex is the address of the KMUTEX object, and level is a parameter originally intended to help avoid deadlocks when 
your own code uses more than one mutex. Since the kernel currently ignores the level parameter, I’m not going to attempt to 



- 98 - Synchronization | Chapter 4 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

describe what it used to mean. 

The mutex begins life in the signaled—that is, unowned—state. An immediate call to KeWaitXxx would take control of the 
mutex and put it in the not-signaled state. 

You can interrogate the current state of a mutex with this function call: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG signaled = KeReadStateMutex(mutex); 

The return value is 0 if the mutex is currently owned, nonzero if it’s currently unowned. 

The thread that owns a mutex can release ownership and return the mutex to the signaled state with this function call: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG wassignaled = KeReleaseMutex(mutex, wait); 

The wait parameter means the same thing as the corresponding argument to KeSetEvent. The return value is always 0 to 
indicate that the mutex was previously owned because, if this were not the case, KeReleaseMutex would have bugchecked (it 
being an error for anyone but the owner to release a mutex). 

Just for the sake of completeness, I want to mention a macro in the DDK named KeWaitForMutexObject. (See WDM.H.) It’s 
defined simply as follows: 

#define KeWaitForMutexObject KeWaitForSingleObject 

Using this special name offers no benefit at all. You don’t even get the benefit of having the compiler insist that the first 
argument be a pointer to a KMUTEX instead of any random pointer type. 

4.4.7 Kernel Timers  
The kernel provides a timer object that functions something like an event that automatically signals itself at a specified 
absolute time or after a specified interval. It’s also possible to create a timer that signals itself repeatedly and to arrange for a 
DPC callback following the expiration of the timer. Table 4-5 lists the service functions you use with timer objects. 

Service Function Description 

KeCancelTimer  Cancels an active timer 

KeInitializeTimer  Initializes a one-time notification timer 

KeInitializeTimerEx  Initializes a one-time or repetitive notification or synchronization timer 

KeReadStateTimer  Determines current state of a timer 

KeSetTimer  (Re)specifies expiration time for a notification timer 

KeSetTimerEx  (Re)specifies expiration time and other properties of a timer 

Table 4-5. Service Functions for Use with Kernel Timer Objects  

There are several usage scenarios for timers, which I’ll describe in the next few sections: 

 Timer used like a self-signaling event 

 Timer with a DPC routine to be called when a timer expires 

 Periodic timer used to call a DPC routine over and over again 

Notification Timers Used like Events  

In this scenario, we’ll create a notification timer object and wait until it expires. First allocate a KTIMER object in nonpaged 
memory. Then, running at or below DISPATCH_LEVEL, initialize the timer object, as shown here: 

PKTIMER timer;      // <== someone gives you this 
ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KeInitializeTimer(timer); 

At this point, the timer is in the not-signaled state and isn’t counting down—a wait on the timer would never be satisfied. To 
start the timer counting, call KeSetTimer as follows: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duetime; 
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BOOLEAN wascounting = KeSetTimer(timer, duetime, NULL); 

The duetime value is a 64-bit time value expressed in 100-nanosecond units. If the value is positive, it’s an absolute time 
relative to the same January 1, 1601, epoch used for the system timer. If the value is negative, it’s an interval relative to the 
current time. If you specify an absolute time, a subsequent change to the system clock alters the duration of the timeout you 
experience. That is, the timer doesn’t expire until the system clock equals or exceeds whatever absolute value you specify. In 
contrast, if you specify a relative timeout, the duration of the timeout you experience is unaffected by changes in the system 
clock. These are the same rules that apply to the timeout parameter to KeWaitXxx. 

The return value from KeSetTimer, if TRUE, indicates that the timer was already counting down (in which case, our call to 
KeSetTimer would have canceled it and started the count all over again). 

At any time, you can determine the current state of a timer: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
BOOLEAN counting = KeReadStateTimer(timer); 

KeInitializeTimer and KeSetTimer are actually older service functions that have been superseded by newer functions. We could 
have initialized the timer with this call: 

ASSERT(KeGetCurrentIqrl() <= DISPATCH_LEVEL); 
KeInitializeTimerEx(timer, NotificationTimer); 

We could also have used the extended version of the set timer function, KeSetTimerEx: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duetime; 
BOOLEAN wascounting = KeSetTimerEx(timer, duetime, 0, NULL); 

I’ll explain a bit further on in this chapter the purpose of the extra parameters in these extended versions of the service 
functions. 

Once the timer is counting down, it’s still considered to be not-signaled until the specified due time arrives. At that point, the 
object becomes signaled, and all waiting threads are released. The system guarantees only that the expiration of the timer will 
be noticed no sooner than the due time you specify. If you specify a due time with a precision finer than the granularity of the 
system timer (which you can’t control), the timeout will be noticed later than the exact instant you specify. You can call 
KeQueryTimeIncrement to determine the granularity of the system clock. 

Notification Timers Used with a DPC  

In this scenario, we want expiration of the timer to trigger a DPC. You would choose this method of operation if you wanted to 
be sure that you could service the timeout no matter what priority level your thread had. (Since you can wait only below 
DISPATCH_LEVEL, regaining control of the CPU after the timer expires is subject to the normal vagaries of thread scheduling. 
The DPC, however, executes at elevated IRQL and thereby effectively preempts all threads.) 

We initialize the timer object in the same way. We also have to initialize a KDPC object for which we allocate nonpaged 
memory. For example: 

PKDPC dpc;  // <== points to KDPC you've allocated 
ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
KeInitializeTimer(timer); 
KeInitializeDpc(dpc, DpcRoutine, context); 

You can initialize the timer object by using either KeInitializeTimer or KeInitializeTimerEx, as you please. DpcRoutine is the 
address of a deferred procedure call routine, which must be in nonpaged memory. The context parameter is an arbitrary 32-bit 
value (typed as a PVOID) that will be passed as an argument to the DPC routine. The dpc argument is a pointer to a KDPC 
object for which you provide nonpaged storage. (It might be in your device extension, for example.) 

When we want to start the timer counting down, we specify the DPC object as one of the arguments to KeSetTimer or 
KeSetTimerEx: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duetime; 
BOOLEAN wascounting = KeSetTimer(timer, duetime, dpc); 

You could also use the extended form KeSetTimerEx if you wanted to. The only difference between this call and the one we 
examined in the preceding section is that we’ve specified the DPC object address as an argument. When the timer expires, the 
system will queue the DPC for execution as soon as conditions permit. This would be at least as soon as you’d be able to wake 



- 100 - Synchronization | Chapter 4 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

up from a wait. Your DPC routine would have the following skeletal appearance: 

VOID DpcRoutine(PKDPC dpc, PVOID context, PVOID junk1, PVOID junk2) 
  { 
 
  } 

For what it’s worth, even when you supply a DPC argument to KeSetTimer or KeSetTimerEx, you can still call KeWaitXxx to 
wait at PASSIVE_LEVEL or APC_LEVEL if you want. On a single-CPU system, the DPC would occur before the wait could 
finish because it executes at a higher IRQL. 

Synchronization Timers  

Like event objects, timer objects come in both notification and synchronization flavors. A notification timer allows any number 
of waiting threads to proceed once it expires. A synchronization timer, by contrast, allows only a single thread to proceed. Once 
a thread’s wait is satisfied, the timer switches to the not-signaled state. To create a synchronization timer, you must use the 
extended form of the initialization service function: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KeInitializeTimerEx(timer, SynchronizationTimer); 

SynchronizationTimer is one of the values of the TIMER_TYPE enumeration. The other value is NotificationTimer. 

If you use a DPC with a synchronization timer, think of queuing the DPC as being an extra thing that happens when the timer 
expires. That is, expiration puts the timer in the signaled state and queues a DPC. One thread can be released as a result of the 
timer being signaled. 

The only use I’ve ever found for a synchronization timer is when you want a periodic timer (see the next section). 

Periodic Timers  

So far, I’ve discussed only timers that expire exactly once. By using the extended set timer function, you can also request a 
periodic timeout: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duetime; 
BOOLEAN wascounting = KeSetTimerEx(timer, duetime,  period, dpc); 

Here period is a periodic timeout, expressed in milliseconds (ms), and dpc is an optional pointer to a KDPC object. A timer of 
this kind expires once at the due time and periodically thereafter. To achieve exact periodic expiration, specify the same 
relative due time as the interval. Specifying a zero due time causes the timer to immediately expire, whereupon the periodic 
behavior takes over. It often makes sense to start a periodic timer in conjunction with a DPC object, by the way, because doing 
so allows you to be notified without having to repeatedly wait for the timeout. 

Be sure to call KeCancelTimer to cancel a periodic timer before the KTIMER object or the DPC routine disappears 
from memory. It’s quite embarrassing to let the system unload your driver and, 10 nanoseconds later, call your 
nonexistent DPC routine. Not only that, but it causes a bug check. These problems are so hard to debug that the Driver 
Verifier makes a special check for releasing memory that contains an active KTIMER.  

An Example  

One use for kernel timers is to conduct a polling loop in a system thread dedicated to the task of repeatedly checking a device 
for activity. Not many devices nowadays need to be served by a polling loop, but yours may be one of the few exceptions. I’ll 
discuss this subject in Chapter 14, and the companion content includes a sample driver (POLLING) that illustrates all of the 
concepts involved. Part of that sample is the following loop that polls the device at fixed intervals. The logic of the driver is 
such that the loop can be broken by setting a kill event. Consequently, the driver uses KeWaitForMultipleObjects. The code is 
actually a bit more complicated than the following fragment, which I’ve edited to concentrate on the part related to the timer: 

VOID PollingThreadRoutine(PDEVICE_EXTENSION pdx) 
  { 
  NTSTATUS status; 
  KTIMER timer; 
 
  KeInitializeTimerEx(&timer, SynchronizationTimer); 
 
  PVOID pollevents[] = { 
    (PVOID) &pdx->evKill, 
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    (PVOID) &timer, 
    }; 
  C_ASSERT(arraysize(pollevents) <= THREAD_WAIT_OBJECTS); 
   
  LARGE_INTEGER duetime = {0}; 
  #define POLLING_INTERVAL 500 
 
  KeSetTimerEx(&timer, duetime, POLLING_INTERVAL, NULL); 
  while (TRUE) 
    { 
 
    status = KeWaitForMultipleObjects(arraysize(pollevents), 
      pollevents, WaitAny, Executive, KernelMode, FALSE, 
      NULL, NULL); 
    if (status == STATUS_WAIT_0) 
      break; 
 
    if (<device needs attention>) 
      <do something>; 
    } 
  KeCancelTimer(&timer); 
  PsTerminateSystemThread(STATUS_SUCCESS); 
  } 

1. Here we initialize a kernel timer. You must specify a SynchronizationTimer here, because a NotificationTimer stays in the 
signaled state after the first expiration. 

2. We’ll need to supply an array of dispatcher object pointers as one of the arguments to KeWaitForMultipleObjects, and 
this is where we set that up. The first element of the array is the kill event that some other part of the driver might set 
when it’s time for this system thread to exit. The second element is the timer object. The C_ASSERT statement that 
follows this array verifies that we have few enough objects in our array that we can implicitly use the default array of 
wait blocks in our thread object. 

3. The KeSetTimerEx statement starts a periodic timer running. The duetime is 0, so the timer goes immediately into the 
signaled state. It will expire every 500 ms thereafter. 

4. Within our polling loop, we wait for the timer to expire or for the kill event to be set. If the wait terminates because of the 
kill event, we leave the loop, clean up, and exit this system thread. If the wait terminates because the timer has expired, 
we go on to the next step. 

5. This is where our device driver would do something related to our hardware. 

Alternatives to Kernel Timers  

Rather than use a kernel timer object, you can use two other timing functions that might be more appropriate. First of all, you 
can call KeDelayExecutionThread to wait at PASSIVE_LEVEL for a given interval. This function is obviously less cumbersome 
than creating, initializing, setting, and awaiting a timer by using separate function calls. 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
LARGE_INTEGER duetime; 
NSTATUS status = KeDelayExecutionThread(WaitMode,  Alertable, &duetime); 

Here WaitMode, Alertable, and the returned status code have the same meaning as the corresponding parameters to KeWaitXxx, 
and duetime is the same kind of timestamp that I discussed previously in connection with kernel timers. Note that this function 
requires a pointer to a large integer for the timeout parameter, whereas other functions related to timers require the large 
integer itself. 

If your requirement is to delay for a very brief period of time (less than 50 microseconds), you can call 
KeStallExecutionProcessor at any IRQL: 

KeStallExecutionProcessor(nMicroSeconds); 

The purpose of this delay is to allow your hardware time to prepare for its next operation before your program continues 
executing. The delay might end up being significantly longer than you request because KeStallExecutionProcessor can be 
preempted by activities that occur at a higher IRQL than that which the caller is using. 

4.4.8 Using Threads for Synchronization  
The Process Structure component of the operating system provides a few routines that WDM drivers can use for creating and 
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controlling system threads. I’ll be discussing these routines later on in Chapter 14 from the perspective of how you can use 
these functions to help you manage a device that requires periodic polling. For the sake of thoroughness, I want to mention 
here that you can use a pointer to a kernel thread object in a call to KeWaitXxx to wait for the thread to complete. The thread 
terminates itself by calling PsTerminateSystemThread. 

Before you can wait for a thread to terminate, you need to first obtain a pointer to the opaque KTHREAD object that internally 
represents that thread, which poses a bit of a problem. While running in the context of a thread, you can determine your own 
KTHREAD easily: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
PKTHREAD thread = KeGetCurrentThread(); 

Unfortunately, when you call PsCreateSystemThread to create a new thread, you get back only an opaque HANDLE for the 
thread. To get the KTHREAD pointer, you use an Object Manager service function: 

HANDLE hthread; 
PKTHREAD thread; 
PsCreateSystemThread(&hthread, ...); 
ObReferenceObjectByHandle(hthread, THREAD_ALL_ACCESS, 
  NULL, KernelMode, (PVOID*) &thread, NULL); 
ZwClose(hthread); 

ObReferenceObjectByHandle converts your handle to a pointer to the underlying kernel object. Once you have the pointer, you 
can discard the handle by calling ZwClose. At some point, you need to release your reference to the thread object by making a 
call to ObDereferenceObject: 

ObDereferenceObject(thread); 

4.4.9 Thread Alerts and APCs  
Internally, the Windows NT kernel uses thread alerts as a way of waking threads. It uses an asynchronous procedure call as a 
way of waking a thread to execute some particular subroutine in that thread’s context. The support routines that generate alerts 
or APCs aren’t exposed for use by WDM driver writers. But since the DDK documentation and header files contain a great 
many references to these concepts, I want to finish this discussion of kernel dispatcher objects by explaining them. 

I’ll start by describing the “plumbing”—how these two mechanisms work. When someone blocks a thread by calling one of 
the KeWaitXxx routines, they specify by means of a Boolean argument whether the wait is to be alertable. An alertable wait 
might finish early—that is, without any of the wait conditions or the timeout being satisfied—because of a thread alert. Thread 
alerts originate in user mode when someone calls the native API function NtAlertThread. The kernel returns the special status 
value STATUS_ALERTED when a wait terminates early because of an alert. 

An APC is a mechanism whereby the operating system can execute a function in the context of a particular thread. The 
asynchronous part of an APC stems from the fact that the system effectively interrupts the target thread to execute an 
out-of-line subroutine. 

APCs come in three flavors: user mode, kernel mode, and special kernel mode. User-mode code requests a user-mode APC by 
calling the Win32 API QueueUserAPC. Kernel-mode code requests an APC by calling an undocumented function for which 
the DDK headers have no prototype. Diligent reverse engineers probably already know the name of this routine and something 
about how to call it, but it’s really just for internal use and I’m not going to say any more about it. The system queues APCs to 
a specific thread until appropriate execution conditions exist. Appropriate execution conditions depend on the type of APC, as 
follows: 

 Special kernel APCs execute as soon as possible—that is, as soon as an activity at APC_LEVEL can be scheduled in the 
thread. A special kernel APC can even temporarily awaken a blocked thread in many circumstances. 

 Normal kernel APCs execute after all special APCs have been executed but only when the target thread is running and no 
other kernel-mode APC is executing in this thread. Delivery of normal kernel and user-mode APCs can be blocked by 
calling KeEnterCriticalRegion. 

 User-mode APCs execute after both flavors of kernel-mode APC for the target thread have been executed but only if the 
thread has previously been in an alertable wait in user mode. Execution actually occurs the next time the thread is 
dispatched for execution in user mode. 

If the system awakens a thread to deliver a user-mode APC, the wait primitive on which the thread was previously blocked 
returns with one of the special status values STATUS_KERNEL_APC and STATUS_USER_APC. 

The Strange Role of APC_LEVEL  

The IRQ level named APC_LEVEL works in a way that I found to be unexpected. You’re allowed to block a thread running at 
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APC_LEVEL (or at PASSIVE_LEVEL, but we’re concerned only with APC_LEVEL right now). An APC_LEVEL thread can 
also be interrupted by any hardware device, following which a higher-priority thread might become eligible to run. In either 
situation, the thread scheduler can then give control of the CPU to another thread, which might be running at PASSIVE_LEVEL 
or APC_LEVEL. In effect, the IRQL levels PASSIVE_LEVEL and APC_LEVEL pertain to a thread, whereas the higher IRQLs 
pertain to a CPU. 

How APCs Work with I/O Requests  

The kernel uses the APC concept for several purposes. We’re concerned in this book just with writing device drivers, though, 
so I’m only going to explain how APCs relate to the process of performing an I/O operation. In one of many possible scenarios, 
when a user-mode program performs a synchronous ReadFile operation on a handle, the Win32 subsystem calls a kernel-mode 
routine named NtReadFile. NtReadFile creates and submits an IRP to the appropriate device driver, which often returns 
STATUS_PENDING to indicate that it hasn’t finished the operation. NtReadFile returns this status code to ReadFile, which 
thereupon calls NtWaitForSingleObject to wait on the file object to which the user-mode handle points. NtWaitForSingleObject, 
in turn, calls KeWaitForSingleObject to perform a nonalertable user-mode wait on an event object within the file object. 

When the device driver eventually finishes the read operation, it calls IoCompleteRequest, which queues a special kernel-mode 
APC. The APC routine calls KeSetEvent to signal the file object, thereby releasing the application to continue execution. Some 
sort of APC is required because some of the tasks that need to be performed when an I/O request is completed (such as buffer 
copying) must occur in the address context of the requesting thread. A kernel-mode APC is required because the thread in 
question is not in an alertable wait state. A special APC is required because the thread is actually ineligible to run at the time 
we need to deliver the APC. In fact, the APC routine is the mechanism for awakening the thread. 

Kernel-mode routines can call ZwReadFile, which turns into a call to NtReadFile. If you obey the injunctions in the DDK 
documentation when you call ZwReadFile, your call to NtReadFile will look almost like a user-mode call and will be 
processed in almost the same way, with just two differences. The first, which is quite minor, is that any waiting will be done in 
kernel mode. The other difference is that if you specified in your call to ZwCreateFile that you wanted to do synchronous 
operations, the I/O Manager will automatically wait for your read to finish. The wait will be alertable or not, depending on the 
exact option you specify to ZwCreateFile. 

How to Specify Alertable and WaitMode Parameters  

Now you have enough background to understand the ramifications of the Alertable and WaitMode parameters in the calls to the 
various wait primitives. As a general rule, you’ll never be writing code that responds synchronously to requests from user 
mode. You could do so for, say, certain I/O control requests. Generally speaking, however, it’s better to pend any operations 
that take a long time to finish (by returning STATUS_PENDING from your dispatch routine) and to finish them asynchronously. 
So, to continue speaking generally, you don’t often call a wait primitive in the first place. Thread blocking is appropriate in a 
device driver in only a few scenarios, which I’ll describe in the following sections. 

Kernel Threads 

Sometimes you’ll create your own kernel-mode thread—when your device needs to be polled periodically, for example. In this 
scenario, any waits performed will be in kernel mode because the thread runs exclusively in kernel mode. 

Handling Plug and Play Requests 

I’ll show you in Chapter 6 how to handle the I/O requests that the PnP Manager sends your way. Several such requests require 
synchronous handling on your part. In other words, you pass them down the driver stack to lower levels and wait for them to 
complete. You’ll be calling KeWaitForSingleObject to wait in kernel mode because the PnP Manager calls you within the 
context of a kernel-mode thread. In addition, if you need to perform subsidiary requests as part of handling a PnP request—for 
example, to talk to a universal serial bus (USB) device—you’ll be waiting in kernel mode. 

Handling Other I/O Requests 

When you’re handling other sorts of I/O requests and you know that you’re running in the context of a nonarbitrary thread that 
must get the results of your deliberations before proceeding, it might conceivably be appropriate to block that thread by calling 
a wait primitive. In such a case, you want to wait in the same processor mode as the entity that called you. Most of the time, 
you can simply rely on the RequestorMode in the IRP you’re currently processing. If you gained control by means other than 
an IRP, you could call ExGetPreviousMode to determine the previous processor mode. If you’re going to wait for a long time, 
it would be well to use the result of these tests as the WaitMode argument in your KeWaitXxx call, and it would also be well to 
specify TRUE for the Alertable argument. 

NOTE  
The bottom line: perform nonalertable waits unless you know you shouldn’t. 
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4.5 Other Kernel-Mode Synchronization Primitives  

The Windows XP kernel offers some additional methods for synchronizing execution between threads or for guarding access to 
shared objects. In this section, I’ll discuss the fast mutex, which is a mutual exclusion object that offers faster performance than 
a kernel mutex because it’s optimized for the case in which no contention is actually occurring. I’ll also describe the category 
of support functions that include the word Interlocked somewhere in their name. These functions carry out certain common 
operations—such as incrementing or decrementing an integer or inserting or removing an entry from a linked list—in an 
atomic way that prevents multitasking or multiprocessing interference. 

4.5.1 Fast Mutex Objects  
An executive fast mutex provides an alternative to a kernel mutex for protecting a critical section of code. Table 4-6 
summarizes the service functions you use to work with this kind of object. 

Service Function Description 

ExAcquireFastMutex  Acquires ownership of mutex, waiting if necessary 

ExAcquireFastMutexUnsafe  
Acquires ownership of mutex, waiting if necessary, in circumstance in which caller has 
already disabled receipt of APCs 

ExInitializeFastMutex  Initializes mutex object 

ExReleaseFastMutex  Releases mutex 

ExReleaseFastMutexUnsafe  Releases mutex without reenabling APC delivery 

ExTryToAcquireFastMutex  Acquires mutex if possible to do so without waiting 

Table 4-6. Service Functions for Use with Executive Fast Mutexes  

Compared with kernel mutexes, fast mutexes have the strengths and weaknesses summarized in Table 4-7. On the plus side, a 
fast mutex is much faster to acquire and release if there’s no actual contention for it. On the minus side, a thread that acquires a 
fast mutex will not be able to receive certain types of asynchronous procedure call, depending on exactly which functions you 
call, and this constrains how you send IRPs to other drivers. 

Kernel Mutex Fast Mutex 

Can be acquired recursively by a single thread (system 
maintains a claim counter) 

Cannot be acquired recursively 

Relatively slower Relatively faster 

Owner will receive only “special” kernel APCs 
Owner won’t receive any APCs unless you use the 
XxxUnsafe functions 

Can be part of a multiple-object wait 
Cannot be used as an argument to 
KeWaitForMultipleObjects 

Table 4-7. Comparison of Kernel and Fast Mutex Objects  

Incidentally, the DDK documentation about kernel mutex objects has long said that the kernel gives a priority boost to a thread 
that claims a mutex. I’m reliably informed that this hasn’t actually been true since 1992 (the year, that is, not the Windows 
build number). The documentation has also long said that a thread holding a mutex can’t be removed from the balance set (that 
is, subjected to having all of its pages moved out of physical memory). This was true when Windows NT was young but hasn’t 
been true for a long time. 

To create a fast mutex, you must first allocate a FAST_MUTEX data structure in nonpaged memory. Then you initialize the 
object by “calling” ExInitializeFastMutex, which is really a macro in WDM.H: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
ExInitializeFastMutex(FastMutex); 

where FastMutex is the address of your FAST_MUTEX object. The mutex begins life in the unowned state. To acquire 
ownership later on, call one of these functions: 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
ExAcquireFastMutex(FastMutex); 

or 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
ExAcquireFastMutexUnsafe(FastMutex); 

The first of these functions waits for the mutex to become available, assigns ownership to the calling thread, and then raises the 
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current processor IRQL to APC_LEVEL. Raising the IRQL has the effect of blocking delivery of all APCs. The second of these 
functions doesn’t change the IRQL. 

You need to think about potential deadlocks if you use the “unsafe” function to acquire a fast mutex. A situation to 
avoid is allowing user-mode code to suspend a thread in which you hold a mutex. That would deadlock other threads 
that need the mutex. For this reason, the DDK recommends (and the Driver Verifier requires) that you forestall the 
delivery of user-mode and normal kernel-mode APCs either by raising the IRQL to APC_LEVEL or by calling 
KeEnterCriticalRegion before ExAcquireFastMutexUnsafe. (Thread suspension involves an APC, so user-mode code 

can’t suspend your thread if you disallow user-mode APCs. Yes, I know the reasoning here is a bit of a stretch!)  

Another possible deadlock can arise with a driver in the paging path—in other words, a driver that gets called to help the 
memory manager process a page fault. Suppose you simply call KeEnterCriticalRegion and then ExAcquireFastMutexUnsafe. 
Now suppose the system tries to execute a special kernel-mode APC in the same thread, which is possible because 
KeEnterCriticalRegion doesn’t forestall special kernel APCs. The APC routine might page fault, which might then lead to you 
being reentered and deadlocking on a second attempt to claim the same mutex. You avoid this situation by raising IRQL to 
APC_LEVEL before acquiring the mutex in the first place or, more simply, by using KeAcquireFastMutex instead of 
KeAcquireFastMutexUnsafe. The same problem can arise if you use a regular KMUTEX or a synchronization event, of course. 

IMPORTANT  
If you use ExAcquireFastMutex, you will be at APC_LEVEL. This means you can’t create any synchronous IRPs. 
(The routines that do this must be called at PASSIVE_LEVEL.) Furthermore, you’ll deadlock if you try to wait for 
a synchronous IRP to complete (because completion requires executing an APC, which can’t happen because of 
the IRQL). In Chapter 5, I’ll discuss how to use asynchronous IRPs to work around this problem. 

If you don’t want to wait if the mutex isn’t immediately available, use the “try to acquire” function: 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
BOOLEAN acquired = ExTryToAcquireFastMutex(FastMutex); 

If the return value is TRUE, you now own the mutex. If it’s FALSE, someone else owns the mutex and has prevented you from 
acquiring it. 

To release control of a fast mutex and allow some other thread to claim it, call the release function corresponding to the way 
you acquired the fast mutex: 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
ExReleaseFastMutex(FastMutex); 

or 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
ExReleaseFastMutexUnsafe(FastMutex); 

A fast mutex is fast because the acquisition and release steps are optimized for the usual case in which there’s no contention for 
the mutex. The critical step in acquiring the mutex is to atomically decrement and test an integer counter that indicates how 
many threads either own or are waiting for the mutex. If the test indicates that no other thread owns the mutex, no additional 
work is required. If the test indicates that another thread does own the mutex, the current thread blocks on a synchronization 
event that’s part of the FAST_MUTEX object. Releasing the mutex entails atomically incrementing and testing the counter. If 
the test indicates that no thread is currently waiting, no additional work is required. If another thread is waiting, however, the 
owner calls KeSetEvent to release one of the waiters. 

Note on Deadlock Prevention 
Whenever you use synchronization objects such as spin locks, fast mutexes, and so on, in a driver, you should 
be on the lookout for potential deadlocks. We’ve already talked about two deadlock issues: trying to acquire a 
spin lock that you already hold and trying to claim a fast mutex or synchronization event with APCs enabled in 
the thread. This sidebar concerns a more insidious potential deadlock that can arise when your driver uses more 
than one synchronization object.  

Suppose there are two synchronization objects, A and B. It doesn’t matter what types of objects these are, and 
they needn’t even be the same type. Now suppose we have two subroutines—I’ll call them Fred and Barney just 
so I have names to work with. Subroutine Fred claims object A followed by object B. Subroutine Barney claims 
B followed by A. This sets up a potential deadlock if Fred and Barney can be simultaneously active or if a thread 
running one of those routines can be preempted by a thread running the other routine. 

The deadlock arises, as you probably remember from studying this sort of thing in school, when two threads 
manage to execute Fred and Barney at about the same time. The Fred thread gets object A, while the Barney 
thread gets object B. Fred now tries to get object B, but can’t have it (Barney has it). Barney, on the other hand, 
now tries to get object A, but can’t have it (Fred has it). Both threads are now deadlocked, waiting for the other 
one to release the object each needs. 
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The easiest way to prevent this kind of deadlock is to always acquire objects such as A and B in the same order, 
everywhere. The order in which you decide to acquire a set of resources is called the locking hierarchy. There 
are other schemes, which involve conditional attempts to acquire resources combined with back-out loops, but 
these are much harder to implement. 

If you engage the Deadlock Detection option, the Driver Verifier will look for potential deadlocks resulting from 
locking hierarchy violations involving spin locks, kernel mutexes, and executive fast mutexes. 

The DDK documents another synchronization primitive that I didn’t discuss in this chapter: an ERESOURCE. File 
system drivers use ERESOURCE objects extensively because they allow for shared and exclusive ownership. 
Because file system drivers often have to use complex locking logic, the Driver Verifier doesn’t check the locking 
hierarchy for an ERESOURCE. 

4.5.2 Interlocked Arithmetic  
You can call several service functions in a WDM driver to perform arithmetic in a way that’s thread-safe and 
multiprocessor-safe. (See Table 4-8.) These routines come in two flavors. The first type of routine has a name beginning with 
Interlocked and performs an atomic operation in such a way that no other thread or CPU can interfere. The other flavor has a 
name beginning with ExInterlocked and uses a spin lock. 

Service Function Description 

InterlockedCompareExchange  Compares and conditionally exchanges 

InterlockedDecrement  Subtracts 1 from an integer 

InterlockedExchange  Exchanges two values 

InterlockedExchangeAdd  Adds two values and returns sum 

InterlockedIncrement  Adds 1 to an integer 

InterlockedOr  ORs bits into an integer 

InterlockedAnd  ANDs bits into an integer 

InterlockedXor  Exclusive-ORs bits into an integer 

ExInterlockedAddLargeInteger  Adds value to 64-bit integer 

ExInterlockedAddLargeStatistic  Adds value to ULONG 

ExInterlockedAddUlong  Adds value to ULONG and returns initial value 

ExInterlockedCompareExchange64  Exchanges two 64-bit values 

Table 4-8. Service Functions for Interlocked Arithmetic  

The InterlockedXxx functions can be called at any IRQL; they can also handle pageable data at PASSIVE_LEVEL because they 
don’t require a spin lock. Although the ExInterlockedXxx routines can be called at any IRQL, they operate on the target data at 
or above DISPATCH_LEVEL and therefore require a nonpaged argument. The only reason to use an ExInterlockedXxx function 
is if you have a data variable that you sometimes need to increment or decrement and sometimes need to access throughout 
some series of instructions. You would explicitly claim the spin lock around the multi-instruction accesses and use the 
ExInterlockedXxx function to perform the simple increments or decrements. 

InterlockedXxx Functions  

InterlockedIncrement adds 1 to a long integer in memory and returns the postincrement value to you: 

LONG result = InterlockedIncrement(pLong); 

where pLong is the address of a variable typed as a LONG (that is, a long integer). Conceptually, the operation of the function 
is equivalent to the statement return ++*pLong in C, but the implementation differs from that simple statement in order to 
provide thread safety and multiprocessor safety. InterlockedIncrement guarantees that the integer is successfully incremented 
even if code on other CPUs or in other eligible threads on the same CPU is simultaneously trying to alter the same variable. In 
the nature of the operation, InterlockedIncrement cannot guarantee that the value it returns is still the value of the variable even 
one machine cycle later because other threads or CPUs will be able to modify the variable as soon as the atomic increment 
operation completes. 

InterlockedDecrement is similar to InterlockedIncrement, but it subtracts 1 from the target variable and returns the 
postdecrement value, just like the C statement return --*pLong but with thread safety and multiprocessor safety. 

LONG result = InterlockedDecrement(pLong); 

You call InterlockedCompareExchange like this: 
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LONG target; 
LONG result = InterlockedCompareExchange(&target, newval, oldval); 

Here target is a long integer used both as input and output to the function, oldval is your guess about the current contents of the 
target, and newval is the new value that you want installed in the target if your guess is correct. The function performs an 
operation similar to that indicated in the following C code but does so via an atomic operation that’s both thread-safe and 
multiprocessor-safe: 

LONG CompareExchange(PLONG ptarget, LONG newval, LONG oldval) 
  { 
  LONG value = *ptarget; 
  if (value == oldval) 
    *ptarget = newval; 
  return value; 
  } 

In other words, the function always returns the previous value of the target variable to you. In addition, if that previous value 
equals oldval, it sets the target equal to the newval you specify. The function uses an atomic operation to do the compare and 
exchange so that the replacement happens only if you’re correct in your guess about the previous contents. 

You can also call the InterlockedCompareExchangePointer function to perform a similar sort of compare-and-exchange 
operation with a pointer. This function is defined either as a compiler-intrinsic (that is, a function for which the compiler 
supplies an inline implementation) or a real function call, depending on how wide pointers are on the platform for which 
you’re compiling and on the ability of the compiler to generate inline code. 

The last function in this class is InterlockedExchange, which simply uses an atomic operation to replace the value of an integer 
variable and to return the previous value: 

LONG value; 
LONG oldval = InterlockedExchange(&value, newval); 

As you might have guessed, there’s also an InterlockedExchangePointer that exchanges a pointer value (64-bit or 32-bit, 
depending on the platform). Be sure to cast the target of the exchange operation to avoid a compiler error when building 64-bit 
drivers: 

PIRP Irp = (PIRP) InterlockedExchangePointer( (PVOID*) &foo, NULL); 

InterlockedOr, InterlockedAnd and InterlockedXor are new with the XP DDK. You can use them in drivers that will run on 
earlier Windows versions because they’re actually implemented as compiler-intrinsic functions. 

Interlocked Fetches and Stores? 

A frequently asked question is how to do simple fetch-and-store operations on data that’s otherwise being accessed by 
InterlockedXxx functions. You don’t have to do anything special to fetch a self-consistent value from a variable that other 
people are modifying with interlocked operations so long as the data in question is aligned on a natural address boundary. Data 
so aligned cannot cross a memory cache boundary, and the memory controller will always update a cache-sized memory block 
atomically. Thus, if someone is updating a variable at about the same time you’re trying to read it, you’ll get either the 
preupdate or the postupdate value but never anything in between. 

For store operations, however, the answer is more complex. Suppose you write the following sort of code to guard access to 
some shared data: 

if (InterlockedExchange(&lock, 42) == 0) 
  { 
  sharedthing++; 
  lock = 0;   // <== don't do this 
  } 

This code will work fine on an Intel x86 computer, where every CPU sees memory writes in the same order. On another type 
of CPU, though, there could be a problem. One CPU might actually change the memory variable lock to 0 before updating 
memory for the increment statement. That behavior could allow two CPUs to simultaneously access sharedthing. This problem 
could happen because of the way the CPU performs operations in parallel or because of quirks in the memory controller. 
Consequently, you should rework the code to use an interlocked operation for both changes to lock: 

if (InterlockedExchange(&lock, 42) == 0) 
  { 
  sharedthing++; 
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  InterlockedExchange(&lock, 0); 
  } 

ExInterlockedXxx Functions  

Each of the ExInterlockedXxx functions requires that you create and initialize a spin lock before you call it. Note that the 
operands of these functions must all be in nonpaged memory because the functions operate on the data at elevated IRQL. 

ExInterlockedAddLargeInteger adds two 64-bit integers and returns the previous value 
of the target: 
LARGE_INTEGER value, increment; 
KSPIN_LOCK spinlock; 
LARGE_INTEGER prev = ExInterlockedAddLargeInteger(&value,  increment, &spinlock); 

Value is the target of the addition and one of the operands. Increment is an integer operand that’s added to the target. Spinlock 
is a spin lock that you previously initialized. The return value is the target’s value before the addition. In other words, the 
operation of this function is similar to the following function except that it occurs under protection of the spin lock: 

__int64 AddLargeInteger(__int64* pvalue, __int64 increment) 
  { 
  __int64 prev = *pvalue; 
  *pvalue += increment; 
  return prev; 
  } 

Note that the return value is the preaddition value, which contrasts with the postincrement return from InterlockedExchange 
and similar functions. (Also, not all compilers support the __int64 integer data type, and not all computers can perform a 64-bit 
addition operation using atomic instructions.) 

ExInterlockedAddUlong is analogous to ExInterlockedAddLargeInteger except that it works with 32-bit unsigned integers: 

ULONG value, increment; 
KSPIN_LOCK spinlock; 
ULONG prev = ExInterlockedAddUlong(&value, increment, &spinlock); 

This function likewise returns the preaddition value of the target of the operation. 

ExInterlockedAddLargeStatistic is similar to ExInterlockedAddUlong in that it adds a 32-bit value to a 64-bit value: 

VOID ExInterlockedAddLargeStatistic(PLARGE_INTEGER Addend, ULONG Increment); 

This new function is faster than ExInterlockedAddUlong because it doesn’t need to return the preincrement value of the 
Addend variable. It therefore doesn’t need to employ a spin lock for synchronization. The atomicity provided by this function 
is, however, only with respect to other callers of the same function. In other words, if you had code on one CPU calling 
ExInterlockedAddLargeStatistic at the same time as code on another CPU was accessing the Addend variable for either reading 
or writing, you could get inconsistent results. I can explain why this is so by showing you this paraphrase of the Intel x86 
implementation of the function (not the actual source code): 

mov eax, Addend 
mov ecx, Increment 
lock add [eax], ecx 
lock adc [eax+4], 0 

This code works correctly for purposes of incrementing the Addend because the lock prefixes guarantee atomicity of each 
addition operation and because no carries from the low-order 32 bits can ever get lost. The instantaneous value of the 64-bit 
Addend isn’t always consistent, however, because an incrementer might be poised between the ADD and the ADC just at the 
instant someone makes a copy of the complete 64-bit value. Therefore, even a caller of ExInterlockedCompareExchange64 on 
another CPU could obtain an inconsistent value. 

4.5.3 Interlocked List Access  
The Windows NT executive offers three sets of support functions for dealing with linked lists in a thread-safe and 
multiprocessor-safe way. These functions support doubly-linked lists, singly-linked lists, and a special kind of singly-linked list 
called an S-List. I discussed noninterlocked doubly-linked and singly-linked lists in the preceding chapter. To close this chapter 
on synchronization within WDM drivers, I’ll explain how to use these interlocked accessing primitives. 

If you need the functionality of a FIFO queue, you should use a doubly-linked list. If you need the functionality of a 
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thread-safe and multiprocessor-safe pushdown stack, you should use an S-List. In both cases, to achieve thread safety and 
multiprocessor safety, you will allocate and initialize a spin lock. The S-List might not actually use the spin lock, however, 
because the presence of a sequence number might allow the kernel to implement it using just atomic compare-exchange sorts 
of operations. 

The support functions for performing interlocked access to list objects are similar, so I’ve organized this section along 
functional lines. I’ll explain how to initialize all three kinds of lists. Then I’ll explain how to insert an item into all three kinds. 
After that, I’ll explain how to remove items. 

Initialization  

You can initialize these lists as shown here: 

LIST_ENTRY DoubleHead; 
SINGLE_LIST_ENTRY SingleHead; 
SLIST_HEADER SListHead; 
 
InitializeListHead(&DoubleHead); 
 
SingleHead.Next = NULL; 
 
ExInitializeSListHead(&SListHead); 

Don’t forget that you must also allocate and initialize a spin lock for each list. Furthermore, the storage for the list heads and 
all the items you put into the lists must come from nonpaged memory because the support routines perform their accesses at 
elevated IRQL. Note that the spin lock isn’t used during initialization of the list head because it doesn’t make any sense to 
allow contention for list access before the list has been initialized. 

Inserting Items  

You can insert items at the head and tail of a doubly-linked list and at the head (only) of a singly-linked list or an S-List: 

PLIST_ENTRY pdElement, pdPrevHead, pdPrevTail; 
PSINGLE_LIST_ENTRY psElement, psPrevHead; 
PKSPIN_LOCK spinlock; 
 
pdPrevHead = ExInterlockedInsertHeadList(&DoubleHead, pdElement, spinlock); 
pdPrevTail = ExInterlockedInsertTailList(&DoubleHead, pdElement, spinlock); 
 
psPrevHead = ExInterlockedPushEntryList(&SingleHead, psElement, spinlock); 
 
psPrevHead = ExInterlockedPushEntrySList(&SListHead, psElement, spinlock); 

The return values are the addresses of the elements previously at the head (or tail) of the list in question. Note that the element 
addresses you use with these functions are the addresses of list entry structures that are usually embedded in larger structures 
of some kind, and you’ll need to use the CONTAINING_RECORD macro to recover the address of the surrounding structure. 

Removing Items  

You can remove items from the head of any of these lists: 

pdElement = ExInterlockedRemoveHeadList(&DoubleHead, spinlock); 
 
psElement = ExInterlockedPopEntryList(&SingleHead, spinlock); 
 
psElement = ExInterlockedPopEntrySList(&SListHead, spinlock); 

The return values are NULL if the respective lists are empty. Be sure to test the return value for NULLbefore applying the 
CONTAINING_RECORD macro to recover a containing structure pointer. 

IRQL Restrictions  

You can call the S-List functions only while running at or below DISPATCH_LEVEL. The ExInterlockedXxx functions for 
accessing doubly-linked or singly-linked lists can be called at any IRQL so long as all references to the list use an 
ExInterlockedXxx call. The reason for no IRQL restrictions is that the implementations of these functions disable interrupts, 
which is tantamount to raising IRQL to the highest possible level. Once interrupts are disabled, these functions then acquire the 
spin lock you’ve specified. Since no other code can gain control on the same CPU, and since no code on another CPU can 
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acquire the spin lock, your lists are protected. 

NOTE  
The DDK documentation states this rule in an overly restrictive way for at least some of the ExInterlockedXxx 
functions. It says that all callers must be running at some single IRQL less than or equal to the DIRQL of your 
interrupt object. There is, in fact, no requirement that all callers be at the same IRQL because you can call the 
functions at any IRQL. Likewise, no <= DIRQL restriction exists either, but there’s also no reason for the code 
you and I write to raise IRQL higher than that. 

It’s perfectly OK for you to use ExInterlockedXxx calls to access a singly-linked or doubly-linked list (but not an S-List) in 
some parts of your code and to use the noninterlocked functions (InsertHeadList and so on) in other parts of your code if you 
follow a simple rule. Before using a noninterlocked primitive, acquire the same spin lock that your interlocked calls use. 
Furthermore, restrict list access to code running at or below DISPATCH_LEVEL. For example: 

// Access list using noninterlocked calls: 
 
VOID Function1() 
  { 
  ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
  KIRQL oldirql; 
  KeAcquireSpinLock(spinlock, &oldirql); 
  InsertHeadList(...); 
  RemoveTailList(...); 
 
  KeReleaseSpinLock(spinlock, oldirql); 
  } 
 
// Access list using interlocked calls: 
 
VOID Function2() 
  { 
  ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
  ExInterlockedInsertTailList(..., spinlock); 
  } 

The first function must be running at or below DISPATCH_LEVEL because that’s a requirement of calling KeAcquireSpinLock. 
The reason for the IRQL restriction on the interlocked calls in the second function is as follows: Suppose Function1 acquires 
the spin lock in preparation for performing some list accesses. Acquiring the spin lock raises IRQL to DISPATCH_LEVEL. 
Now suppose an interrupt occurs on the same CPU at a higher IRQL and Function2 gains control to use one of the 
ExInterlockedXxx routines. The kernel will now attempt to acquire the same spin lock, and the CPU will deadlock. This 
problem arises from allowing code running at two different IRQLs to use the same spin lock: Function1 is at 
DISPATCH_LEVEL, and Function2 is—practically speaking, anyway—at HIGH_LEVEL when it tries to recursively acquire 
the lock. 

4.5.4 Windows 98/Me Compatibility Notes  
In addition to the horrible problem with KeWaitXxx functions described in an earlier sidebar and the fact that 
KeReadStateEvent isn’t supported, note the following additional compatibility issues between Windows 98/Me on the one hand 
and Windows 2000/XP on the other. 

You cannot wait on a KTHREAD object in Windows 98/Me. Attempting to do so crashes the system because the thread object 
doesn’t have the fields necessary for VWIN32 to wait on it. 

DISPATCH_LEVEL in a WDM driver corresponds to what is called “interrupt time” in a VxD driver. Every WDM interrupt 
service routine runs at a higher IRQL, which means that WDM interrupts have higher priority than non-WDM interrupts. If a 
WDM device shares an interrupt with a VxD device, however, both interrupt routines run at the WDM driver’s DIRQL. 

WDM driver code running at PASSIVE_LEVEL won’t be preempted in Windows 98/Me unless it blocks explicitly by waiting 
for a dispatcher object or implicitly by causing a page fault. 

Windows 98/Me is inherently a single-CPU operating system, so the spin lock primitives always just raise the IRQL. This fact, 
combined with the fact that nonpaged driver code won’t be preempted, means that synchronization problems are much less 
frequent in this environment. (Therefore, do most of your debugging in Windows XP so you’ll trip on the problems.) 
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Chapter 5  

5 The I/O Request Packet  

The operating system uses a data structure known as an I/O request packet, or IRP, to communicate with a kernel-mode device 
driver. In this chapter, I’ll discuss this important data structure and the means by which it’s created, sent, processed, and 
ultimately destroyed. I’ll include a discussion of the relatively complex subject of IRP cancellation. 

This chapter is rather abstract, I’m afraid, because I haven’t yet talked about any of the concepts that surround specific types of 
I/O request packets (IRPs). You might, therefore, want to skim this chapter and refer back to it while you’re reading later 
chapters. The last major section of this chapter contains a cookbook, if you will, that presents the bare-bones code for handling 
IRPs in eight different scenarios. You can use the cookbook without understanding all the theory that this chapter contains. 

5.1 Data Structures  

Two data structures are crucial to the handling of I/O requests: the I/O request packet itself and the IO_STACK_LOCATION 
structure. I’ll describe both structures in this section. 

5.1.1 Structure of an IRP  
Figure 5-1 illustrates the IRP data structure, with opaque fields shaded in the usual convention of this book. A brief description 
of the important fields follows. 

Figure 5-1. I/O request packet data structure.  

MdlAddress (PMDL) is the address of a memory descriptor list (MDL) describing the user-mode buffer associated with this 
request. The I/O Manager creates this MDL for IRP_MJ_READ and IRP_MJ_WRITE requests if the topmost device object’s 
flags indicate DO_DIRECT_IO. It creates an MDL for the output buffer used with an IRP_MJ_DEVICE_CONTROL request if 
the control code indicates METHOD_IN_DIRECT or METHOD_OUT_DIRECT. The MDL itself describes the user-mode 
virtual buffer and also contains the physical addresses of locked pages containing that buffer. A driver has to do additional 
work, which can be quite minimal, to actually access the user-mode buffer. 
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Flags (ULONG) contains flags that a device driver can read but not directly alter. None of these flags are relevant to a 
Windows Driver Model (WDM) driver. 

AssociatedIrp (union) is a union of three possible pointers. The alternative that a typical WDM driver might want to access is 
named AssociatedIrp.SystemBuffer. The SystemBuffer pointer holds the address of a data buffer in nonpaged kernel-mode 
memory. For IRP_MJ_READ and IRP_MJ_WRITE operations, the I/O Manager creates this data buffer if the topmost device 
object’s flags specify DO_BUFFERED_IO. For IRP_MJ_DEVICE_CONTROL operations, the I/O Manager creates this buffer 
if the I/O control function code indicates that it should. (See Chapter 9.) The I/O Manager copies data sent by user-mode code 
to the driver into this buffer as part of the process of creating the IRP. Such data includes the data involved in a WriteFile call 
or the so-called input data for a call to DeviceIoControl. For read requests, the device driver fills this buffer with data; the I/O 
Manager later copies the buffer back to the user-mode buffer. For control operations that specify METHOD_BUFFERED, the 
driver places the so-called output data in this buffer, and the I/O Manager copies it to the user-mode output buffer. 

IoStatus (IO_STATUS_BLOCK) is a structure containing two fields that drivers set when they ultimately complete a request. 
IoStatus.Status will receive an NTSTATUS code, while IoStatus.Information is a ULONG_PTR that will receive an information 
value whose exact content depends on the type of IRP and the completion status. A common use of the Information field is to 
hold the total number of bytes transferred by an operation such as IRP_MJ_READ that transfers data. Certain Plug and Play 
(PnP) requests use this field as a pointer to a structure that you can think of as the answer to a query. 

RequestorMode will equal one of the enumeration constants UserMode or KernelMode, depending on where the original I/O 
request originated. Drivers sometimes inspect this value to know whether to trust some parameters. 

PendingReturned (BOOLEAN) is meaningful in a completion routine and indicates whether the next lower dispatch routine 
returned STATUS_PENDING. This chapter contains a disagreeably long discussion of how to use this flag. 

Cancel (BOOLEAN) is TRUE if IoCancelIrp has been called to cancel this request and FALSE if it hasn’t (yet) been called. IRP 
cancellation is a relatively complex topic that I’ll discuss fully later on in this chapter (in “Cancelling I/O Requests”). 

CancelIrql (KIRQL) is the interrupt request level (IRQL) at which the special cancel spin lock was acquired. You reference this 
field in a cancel routine when you release the spin lock. 

CancelRoutine (PDRIVER_CANCEL) is the address of an IRP cancellation routine in your driver. You use IoSetCancelRoutine 
to set this field instead of modifying it directly. 

UserBuffer (PVOID) contains the user-mode virtual address of the output buffer for an IRP_MJ_DEVICE_CONTROL request 
for which the control code specifies METHOD_NEITHER. It also holds the user-mode virtual address of the buffer for read 
and write requests, but a driver should usually specify one of the device flags DO_BUFFERED_IO or DO_DIRECT_IO and 
should therefore not usually need to access the field for reads or writes. When handling a METHOD_NEITHER control 
operation, the driver can create its own MDL using this address. 

Figure 5-2. Map of the Tail union in an IRP.  
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Tail.Overlay is a structure within a union that contains several members potentially useful to a WDM driver. Refer to Figure 
5-2 for a map of the Tail union. In the figure, items at the same level as you read left to right are alternatives within a union, 
while the vertical dimension portrays successive locations within a structure. Tail.Overlay.DeviceQueueEntry 
(KDEVICE_QUEUE_ENTRY) and Tail.Overlay.DriverContext (PVOID[4]) are alternatives within an unnamed union within 
Tail.Overlay. The I/O Manager uses DeviceQueueEntry as a linking field within the standard queue of requests for a device. 
The cancel-safe queuing routines IoCsqXxx use the last entry in the DriverContext array. If these system usages don’t get in 
your way, at moments when the IRP is not in some queue that uses this field and when you own the IRP, you can use the four 
pointers in DriverContext in any way you please. Tail.Overlay.ListEntry (LIST_ENTRY) is available for you to use as a linking 
field for IRPs in any private queue you choose to implement. 

CurrentLocation (CHAR) and Tail.Overlay.CurrentStackLocation (PIO_STACK_LOCATION) aren’t documented for use by 
drivers because support functions such as IoGetCurrentIrpStackLocation can be used instead. During debugging, however, it 
might help you to realize that CurrentLocation is the index of the current I/O stack location and CurrentStackLocation is a 
pointer to it. 

5.1.2 The I/O Stack  
Whenever any kernel-mode program creates an IRP, it also creates an associated array of IO_STACK_LOCATION structures: 
one stack location for each of the drivers that will process the IRP and sometimes one more stack location for the use of the 
originator of the IRP. (See Figure 5-3.) A stack location contains type codes and parameter information for the IRP as well as 
the address of a completion routine. Refer to Figure 5-4 for an illustration of the stack structure. 

Figure 5-3. Parallelism between driver and I/O stacks.  

NOTE 
I’ll discuss the mechanics of creating IRPs a bit further on in this chapter. It helps to know right now that the 
StackSize field of a DEVICE_OBJECT indicates how many locations to reserve for an IRP sent to that device’s 
driver. 

MajorFunction (UCHAR) is the major function code associated with this IRP. This code is a value such as IRP_MJ_READ that 
corresponds to one of the dispatch function pointers in the MajorFunction table of a driver object. Because the code is in the 
I/O stack location for a particular driver, it’s conceivable that an IRP could start life as an IRP_MJ_READ (for example) and be 
transformed into something else as it progresses down the stack of drivers. I’ll show you examples in Chapter 12 of how a 
USB driver changes the personality of a read or write request into an internal control operation to submit the request to the 
USB bus driver. 

MinorFunction (UCHAR) is a minor function code that further identifies an IRP belonging to a few major function classes. 
IRP_MJ_PNP requests, for example, are divided into a dozen or so subtypes with minor function codes such as 
IRP_MN_START_DEVICE, IRP_MN_REMOVE_DEVICE, and so on. 

Parameters (union) is a union of substructures, one for each type of request that has specific parameters. The substructures 
include, for example, Create (for IRP_MJ_CREATE requests), Read (for IRP_MJ_READ requests), and StartDevice (for the 
IRP_MN_START_DEVICE subtype of IRP_MJ_PNP). 

DeviceObject (PDEVICE_OBJECT) is the address of the device object that corresponds to this stack entry. IoCallDriver fills 
in this field. 

FileObject (PFILE_OBJECT) is the address of the kernel file object to which the IRP is directed. Drivers often use the 
FileObject pointer to correlate IRPs in a queue with a request (in the form of an IRP_MJ_CLEANUP) to cancel all queued 
IRPs in preparation for closing the file object. 
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Figure 5-4. I/O stack location data structure.  

CompletionRoutine (PIO_COMPLETION_ROUTINE) is the address of an I/O completion routine installed by the driver above 
the one to which this stack location corresponds. You never set this field directly—instead, you call IoSetCompletionRoutine, 
which knows to reference the stack location below the one that your driver owns. The lowest-level driver in the hierarchy of 
drivers for a given device never needs a completion routine because it must complete the request. The originator of a request, 
however, sometimes does need a completion routine but doesn’t usually have its own stack location. That’s why each level in 
the hierarchy uses the next lower stack location to hold its own completion routine pointer. 

Context (PVOID) is an arbitrary context value that will be passed as an argument to the completion routine. You never set this 
field directly; it’s set automatically from one of the arguments to IoSetCompletionRoutine. 

5.2 The “Standard Model” for IRP Processing  

Particle physics has its “standard model” for the universe, and so does WDM. Figure 5-5 illustrates a typical flow of ownership 
for an IRP as it progresses through various stages in its life. Not every type of IRP will go through these steps, and some of the 
steps might be missing or altered depending on the type of device and the type of IRP. Notwithstanding the possible variability, 
however, the picture provides a useful starting point for discussion. 

Figure 5-5. The “standard model” for IRP processing.  

When you engage I/O Verification, the Driver Verifier makes a few basic checks on how you handle IRPs. Extended 
I/O Verification includes many more checks. Because there are so many tests, however, I didn’t put the Driver Verifier 
flag in the margin for every one of them. Basically, if the DDK or this chapter tells you not to do something, there is 

probably a Driver Verifier test to make sure you don’t.  

5.2.1 Creating an IRP  
The IRP begins life when an entity calls an I/O Manager function to create it. In Figure 5-5, I used the term I/O Manager to 
describe this entity, as though there were a single system component responsible for creating IRPs. In reality, no such single 
actor in the population of operating system routines exists, and it would have been more accurate to just say that somebody 
creates the IRP. Your own driver will be creating IRPs from time to time, for example, and you’ll occupy the initial ownership 
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box for those particular IRPs. 

You can use any of four functions to create a new IRP: 

 IoBuildAsynchronousFsdRequest builds an IRP on whose completion you don’t plan to wait. This function and the next 
are appropriate for building only certain types of IRP. 

 IoBuildSynchronousFsdRequest builds an IRP on whose completion you do plan to wait. 

 IoBuildDeviceIoControlRequest builds a synchronous IRP_MJ_DEVICE_CONTROL or 
IRP_MJ_INTERNAL_DEVICE_CONTROL request. 

 IoAllocateIrp builds an asynchronous IRP of any type. 

The Fsd in the first two of these function names stands for file system driver (FSD). Any driver is allowed to call these 
functions to create an IRP destined for any other driver, though. The DDK also documents a function named 
IoMakeAssociatedIrp for building an IRP that’s subordinate to some other IRP. WDM drivers should not call this function. 
Indeed, completion of associated IRPs doesn’t work correctly in Microsoft Windows 98/Me anyway. 

NOTE  
Throughout this chapter, I use the terms synchronous and asynchronous IRPs because those are the terms used 
in the DDK. Knowledgeable developers in Microsoft wish that the terms threaded and nonthreaded had been 
chosen because they better reflect the way drivers use these two types of IRP. As should become clear, you use 
a synchronous, or threaded, IRP in a non-arbitrary thread that you can block while you wait for the IRP to finish. 
You use an asynchronous, or nonthreaded, IRP in every other case. 

Creating Synchronous IRPs  

Deciding which of these functions to call and determining what additional initialization you need to perform on an IRP is a 
rather complicated matter. IoBuildSynchronousFsdRequest and IoBuildDeviceIoControlRequest create a so-called synchronous 
IRP. The I/O Manager considers that a synchronous IRP belongs to the thread in whose context you create the IRP. This 
ownership concept has several consequences: 

 If the owning thread terminates, the I/O Manager automatically cancels any pending synchronous IRPs that belong to that 
thread. 

 Because the creating thread owns a synchronous IRP, you shouldn’t create one in an arbitrary thread—you most 
emphatically do not want the I/O Manager to cancel the IRP because this thread happens to terminate. 

 Following a call to IoCompleteRequest, the I/O Manager automatically cleans up a synchronous IRP and signals an event 
that you must provide. 

 You must take care that the event object still exists at the time the I/O Manager signals it. 

Refer to IRP handling scenario number 6 at the end of this chapter for a code sample involving a synchronous IRP. 

You must call these two functions at PASSIVE_LEVEL only. In particular, you must not be at APC_LEVEL (say, as a result of 
acquiring a fast mutex) because the I/O Manager won’t then be able to deliver the special kernel asynchronous procedure call 
(APC) that does all the completion processing. In other words, you mustn’t do this: 

PIRP Irp = IoBuildSynchronousFsdRequest(...); 
ExAcquireFastMutex(...); 
NTSTATUS status = IoCallDriver(...); 
if (status == STATUS_PENDING) 
  KeWaitForSingleObject(...);  // <== don't do this 
ExReleaseFastMutex(...); 

The problem with this code is that the KeWaitForSingleObject call will deadlock: when the IRP completes, IoCompleteRequest 
will schedule an APC in this thread. The APC routine, if it could run, would set the event. But because you’re already at 
APC_LEVEL, the APC cannot run in order to set the event. 

If you need to synchronize IRPs sent to another driver, consider the following alternatives: 

 Use a regular kernel mutex instead of an executive fast mutex. The regular mutex leaves you at PASSIVE_LEVEL and 
doesn’t inhibit special kernel APCs. 

 Use KeEnterCriticalRegion to inhibit all but special kernel APCs, and then use ExAcquireFastMutexUnsafe to acquire the 
mutex. This technique won’t work in the original release of Windows 98 because KeEnterCriticalRegion wasn’t 
supported there. It will work on all later WDM platforms. 

 Use an asynchronous IRP. Signal an event in the completion routine. Refer to IRP-handling scenario 8 at the end of this 
chapter for a code sample. 
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A final consideration in calling the two synchronous IRP routines is that you can’t create just any kind of IRP using these 
routines. See Table 5-1 for the details. A common trick for creating another kind of synchronous IRP is to ask for an 
IRP_MJ_SHUTDOWN, which has no parameters, and then alter the MajorFunction code in the first stack location. 

Support Function Types of IRP You Can Create 

IoBuildSynchronousFsdRequest  

IRP_MJ_READ  
IRP_MJ_WRITE  
IRP_MJ_FLUSH_BUFFERS  
IRP_MJ_SHUTDOWN  
IRP_MJ_PNP  
IRP_MJ_POWER (but only for IRP_MN_POWER_SEQUENCE) 

IoBuildDeviceIoControlRequest  
IRP_MJ_DEVICE_CONTROL  
IRP_MJ_INTERNAL_DEVICE_CONTROL  

Table 5-1. Synchronous IRP Types  

Creating Asynchronous IRPs  

The other two IRP creation functions—IoBuildAsynchronousFsdRequest and IoAllocateIrp—create an asynchronous IRP. 
Asynchronous IRPs don’t belong to the creating thread, and the I/O Manager doesn’t schedule an APC and doesn’t clean up 
when the IRP completes. Consequently: 

 When a thread terminates, the I/O Manager doesn’t try to cancel any asynchronous IRPs that you happen to have created 
in that thread. 

 It’s OK to create asynchronous IRPs in an arbitrary or nonarbitrary thread. 

 Because the I/O Manager doesn’t do any cleanup when the IRP completes, you must provide a completion routine that 
will release buffers and call IoFreeIrp to release the memory used by the IRP. 

 Because the I/O Manager doesn’t automatically cancel asynchronous IRPs, you might have to provide code to do that 
when you no longer want the operation to occur. 

 Because you don’t wait for an asynchronous IRP to complete, you can create and send one at IRQL <= 
DISPATCH_LEVEL (assuming, that is, that the driver to which you send the IRP can handle the IRP at elevated 
IRQL—you must check the specifications for that driver!). Furthermore, it’s OK to create and send an asynchronous IRP 
while owning a fast mutex. 

Refer to Table 5-2 for a list of the types of IRP you can create using the two asynchronous IRP routines. Note that 
IoBuildSynchronousFsdRequest and IoBuildAsynchronousFsdRequest support the same IRP major function codes. 

Support Function Types of IRP You Can Create 

IoBuildAsynchronousFsdRequest  

IRP_MJ_READ  
IRP_MJ_WRITE  
IRP_MJ_FLUSH_BUFFERS  
IRP_MJ_SHUTDOWN  
IRP_MJ_PNP  
IRP_MJ_POWER (but only for IRP_MN_POWER_SEQUENCE) 

IoAllocateIrp  Any (but you must initialize the MajorFunction field of the first stack location) 

Table 5-2. Asynchronous IRP Types  

IRP-handling scenario numbers 5 and 8 at the end of this chapter contain “cookbook” code for using asynchronous IRPs. 

5.2.2 Forwarding to a Dispatch Routine  
After you create an IRP, you call IoGetNextIrpStackLocation to obtain a pointer to the first stack location. Then you initialize 
just that first location. If you’ve used IoAllocateIrp to create the IRP, you need to fill in at least the MajorFunction code. If 
you’ve used another of the four IRP-creation functions, the I/O Manager might have already done the required initialization. 
You might then be able to skip this step, depending on the rules for that particular type of IRP. Having initialized the stack, you 
call IoCallDriver to send the IRP to a device driver: 

PDEVICE_OBJECT DeviceObject; // <== somebody gives you this 
PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
stack->MajorFunction = IRP_MJ_Xxx; 
<other initialization of 
"stack">NTSTATUS status = IoCallDriver(DeviceObject, Irp); 

The first argument to IoCallDriver is the address of a device object that you’ve obtained somehow. Often you’re sending an 
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IRP to the driver under yours in the PnP stack. In that case, the DeviceObject in this fragment is the LowerDeviceObject you 
saved in your device extension after calling IoAttachDeviceToDeviceStack. I’ll describe some other common ways of locating a 
device object in a few paragraphs. 

The I/O Manager initializes the stack location pointer in the IRP to 1 before the actual first location. Because the I/O stack is an 
array of IO_STACK_LOCATION structures, you can think of the stack pointer as being initialized to point to the “-1” element, 
which doesn’t exist. (In fact, the stack “grows” from high toward low addresses, but that detail shouldn’t obscure the concept 
I’m trying to describe here.) We therefore ask for the “next” stack location when we want to initialize the first one. 

What IoCallDriver Does  

You can imagine IoCallDriver as looking something like this (but I hasten to add that this is not a copy of the actual source 
code): 

NTSTATUS IoCallDriver(PDEVICE_OBJECT DeviceObject, PIRP Irp) 
  { 
  IoSetNextIrpStackLocation(Irp); 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  stack->DeviceObject = DeviceObject; 
  ULONG fcn = stack->MajorFunction; 
  PDRIVER_OBJECT driver = DeviceObject->DriverObject; 
  return (*driver->MajorFunction[fcn])(DeviceObject, Irp); 
  } 

As you can see, IoCallDriver simply advances the stack pointer and calls the appropriate dispatch routine in the driver for the 
target device object. It returns the status code that that dispatch routine returns. Sometimes I see online help requests wherein 
people attribute one or another unfortunate action to IoCallDriver. (For example, “IoCallDriver is returning an error code for 
my IRP….”) As you can see, the real culprit is a dispatch routine in another driver. 

Locating Device Objects  

Apart from IoAttachDeviceToDeviceStack, drivers can locate device objects in at least two ways. I’ll tell you here about 
IoGetDeviceObjectPointer and IoGetAttachedDeviceReference. 

IoGetDeviceObjectPointer  

If you know the name of the device object, you can call IoGetDeviceObjectPointer as shown here: 

PUNICODE_STRING devname; // <== somebody gives you this 
ACCESS_MASK access;      // <== more about this later 
PDEVICE_OBJECT DeviceObject; 
PFILE_OBJECT FileObject; 
NTSTATUS status; 
ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
status = IoGetDeviceObjectPointer(devname, access, &FileObject, &DeviceObject); 

This function returns two pointers: one to a FILE_OBJECT and one to a DEVICE_OBJECT. 

To help defeat elevation-of-privilege attacks, specify the most restricted access consistent with your needs. For example, 
if you’ll just be reading data, specify FILE_READ_DATA.  

When you create an IRP for a target you discover this way, you should set the FileObject pointer in the first stack location. 
Furthermore, it’s a good idea to take an extra reference to the file object until after IoCallDriver returns. The following 
fragment illustrates both these ideas: 

PIRP Irp = IoXxx(...); 
PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
ObReferenceObject(FileObject); 
stack->FileObject = FileObject;<etc.> 
IoCallDriver(DeviceObject, Irp); 
ObDereferenceObject(FileObject); 

The reason you put the file object pointer in each stack location is that the target driver might be using fields in the file object 
to record per-handle information. The reason you take an extra reference to the file object is that you’ll have code somewhere 
in your driver that dereferences the file object in order to release your hold on the target device. (See the next paragraph.) 
Should that code execute before the target driver’s dispatch routine returns, the target driver might be removed from memory 
before its dispatch routine returns. The extra reference prevents that bad result. 
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NOTE  
Removability of devices in a Plug and Play environment is the ultimate source of the early-unload problem 
mentioned in the text. I discuss this problem in much greater detail in the next chapter. The upshot of that 
discussion is that it’s your responsibility to avoid sending an IRP to a driver that might no longer be in memory 
and to prevent the PnP manager from unloading a driver that’s still processing an IRP you’ve sent to that driver. 
One aspect of how you fulfill that responsibility is shown in the text: take an extra reference to the file object 
returned by IoGetDeviceObjectPointer around the call to IoCallDriver. In most drivers, you’ll probably need the 
extra reference only when you’re sending an asynchronous IRP. In that case, the code that ordinarily 
dereferences the file object is likely to be in some other part of your driver that runs asynchronously with the 
call to IoCallDriver—say, in the completion routine you’re obliged to install for an asynchronous IRP. If you send 
a synchronous IRP, you’re much more likely to code your driver in such a way that you don’t dereference the file 
object until the IRP completes. 

When you no longer need the device object, dereference the file object: 

ObDereferenceObject(FileObject); 

After making this call, don’t use either of the file or device object pointers. 

IoGetDeviceObjectPointer performs several steps to locate the two pointers that it returns to you: 

1. It uses ZwOpenFile to open a kernel handle to the named device object. Internally, this will cause the Object Manager to 
create a file object and to send an IRP_MJ_CREATE to the target device. ZwOpenFile returns a file handle. 

2. It calls ObReferenceObjectByHandle to get the address of the FILE_OBJECT that the handle represents. This address 
becomes the FileObject return value. 

3. It calls IoGetRelatedDeviceObject to get the address of the DEVICE_OBJECT to which the file object refers. This 
address becomes the DeviceObject return value. 

4. It calls ZwClose to close the handle. 

Names for Device Objects 
For you to use IoGetDeviceObjectPointer, a driver in the stack for the device to which you want to connect must 
have named a device object. We studied device object naming in Chapter 2. Recall that a driver might have 
specified a name in the \Device folder in its call to IoCreateDevice, and it might have created one or more 
symbolic links in the \DosDevices folder. If you know the name of the device object or one of the symbolic links, 
you can use that name in your call to IoGetDeviceObjectPointer.  

Instead of naming a device object, the function driver for the target device might have registered a device 
interface. I showed you the user-mode code for enumerating instances of registered interfaces in Chapter 2. I’ll 
discuss the kernel-mode equivalent of that enumeration code in Chapter 6, when I discuss Plug and Play. The 
upshot of that discussion is that you can obtain the symbolic link names for all the devices that expose a 
particular interface. With a bit of effort, you can then locate the desired device object. 

The reference that IoGetDeviceObjectPointer claims to the file object effectively pins the device object in memory too. 
Releasing that reference indirectly releases the device object. 

Based on this explanation of how IoGetDeviceObjectPointer works, you can see why it will sometimes fail with 
STATUS_ACCESS_DENIED, even though you haven’t done anything wrong. If the target driver implements a “one handle 
only” policy, and if a handle happens to be open, the driver will cause the IRP_MJ_CREATE to fail. That failure causes the 
ZwOpenFile call to fail in turn. Note that you can expect this result if you try to locate a device object for a serial port or 
SmartCard reader that happens to already be open. 

Sometimes driver programmers decide they don’t want the clutter of two pointers to what appears to be basically the same 
object, so they release the file object immediately after calling IoGetDeviceObjectPointer, as shown here: 

status = IoGetDeviceObjectPointer(...); 
ObReferenceObject(DeviceObject); 
ObDereferenceObject(FileObject); 

Referencing the device object pins it in memory until you dereference it. Dereferencing the file object allows the I/O Manager 
to delete it right away. 

Releasing the file object immediately might or might not be OK, depending on the target driver. Consider these fine points 
before you decide to do it: 
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1. Deferencing the file object will cause the I/O Manager to send an immediate IRP_MJ_CLEANUP to the target driver. 

2. IRPs that the target driver queues will no longer be associated with a file object. When you eventually release the device 
object reference, the target driver will probably not be able to cancel any IRPs you sent it that remain on its queues. 

3. In many situations, the I/O Manager will also send an IRP_MJ_CLOSE to the target driver. (If you’ve opened a disk file, 
the file system driver’s use of the system cache will probably cause the IRP_MJ_CLOSE to be deferred.) Many drivers, 
including the standard driver for serial ports, will now refuse to process IRPs that you send them. 

4. Instead of claiming an extra reference to the file object around calls to IoCallDriver, you’ll want to reference the device 
object instead. 

NOTE  
I recommend avoiding an older routine named IoAttachDevice, which appears superficially to be a sort-of 
combination of IoGetDeviceObjectPointer and IoAttachDeviceToDeviceStack. The older routine does its internal 
ZwClose call after attaching your device object. Your driver will receive the resulting IRP_MJ_CLOSE. To handle 
the IRP correctly, you must call IoAttachDevice in such a way that your dispatch routine has access to the 
location you specify for the output DEVICE_OBJECT pointer. It turns out that IoAttachDevice sets your output 
pointer before calling ZwClose and depends on you using it to forward the IRP_MJ_CLOSE to the target device. 
This is the only example I’ve seen in many decades of programming where you’re required to use the return 
value from a function before the function actually returns. 

IoGetAttachedDeviceReference  

To send an IRP to all the drivers in your own PnP stack, use IoGetAttachedDeviceReference, as shown here: 

PDEVICE_OBJECT tdo = IoGetAttachedDeviceReference(fdo); 
 
ObDereferenceObject(tdo); 

This function returns the address of the topmost device object in your own stack and claims a reference to that object. Because 
of the reference you hold, you can be sure that the pointer will remain valid until you release the reference. As discussed earlier, 
you might also want to take an extra reference to the topmost device object until IoCallDriver returns. 

5.2.3 Duties of a Dispatch Routine  
An archetypal IRP dispatch routine would look similar to this example: 

NTSTATUS DispatchXxx(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
 
  return STATUS_Xxx; 
  } 

1. You generally need to access the current stack location to determine parameters or to examine the minor function code. 

2. You also generally need to access the device extension you created and initialized during AddDevice. 

3. You’ll be returning some NTSTATUS code to IoCallDriver, which will propagate the code back to its caller. 

Where I used an ellipsis in the foregoing prototypical dispatch function, a dispatch function has to choose between three 
courses of action. It can complete the request immediately, pass the request down to a lower-level driver in the same driver 
stack, or queue the request for later processing by other routines in this driver. 

Completing an IRP  

Someplace, sometime, someone must complete every IRP. You might want to complete an IRP in your dispatch routine in 
cases like these: 

If the request is erroneous in some easily determined way (such as a request to rewind a printer or to eject the keyboard), the 
dispatch routine should cause the request to fail by completing it with an appropriate status code. 
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If the request calls for information that the dispatch function can easily determine (such as a control request asking for the 
driver’s version number), the dispatch routine should provide the answer and complete the request with a successful status 
code. 

Mechanically, completing an IRP entails filling in the Status and Information members within the IRP’s IoStatus block and 
calling IoCompleteRequest. The Status value is one of the codes defined by manifest constants in the DDK header file 
NTSTATUS.H. Refer to Table 5-3 for an abbreviated list of status codes for common situations. The Information value 
depends on what type of IRP you’re completing and on whether you’re causing the IRP to succeed or to fail. Most of the time, 
when you’re causing an IRP to fail (that is, completing it with an error status of some kind), you’ll set Information to 0. When 
you cause an IRP that involves data transfer to succeed, you ordinarily set the Information field equal to the number of bytes 
transferred. 

Status Code Description 

STATUS_SUCCESS  Normal completion. 

STATUS_UNSUCCESSFUL  Request failed, but no other status code describes the reason specifically. 

STATUS_NOT_IMPLEMENTED  A function hasn’t been implemented. 

STATUS_INVALID_HANDLE  An invalid handle was supplied for an operation. 

STATUS_INVALID_PARAMETER  A parameter is in error. 

STATUS_INVALID_DEVICE_REQUEST  The request is invalid for this device. 

STATUS_END_OF_FILE  End-of-file marker reached. 

STATUS_DELETE_PENDING  The device is in the process of being removed from the system. 

STATUS_INSUFFICIENT_RESOURCES  Not enough system resources (often memory) to perform an operation. 

Table 5-3. Some Commonly Used NTSTATUS Codes  

NOTE  
Always be sure to consult the DDK documentation for the correct setting of IoStatus.Information for the IRP 
you’re dealing with. In some flavors of IRP_MJ_PNP, for example, this field is used as a pointer to a data 
structure that the PnP Manager is responsible for releasing. If you were to overstore the Information field with 
0 when causing the request to fail, you would unwittingly cause a resource leak. 

Because completing a request is something you do so often, I find it useful to have a helper routine to carry out the mechanics: 

NTSTATUS CompleteRequest(PIRP Irp, NTSTATUS status, 
  ULONG_PTR Information) 
  { 
  Irp->IoStatus.Status = status; 
  Irp->IoStatus.Information = Information; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return status; 
  } 

I defined this routine in such a way that it returns whatever status value you supply as its second argument. That’s because I’m 
such a lazy typist: the return value allows me to use this helper whenever I want to complete a request and then immediately 
return a status code. For example: 

NTSTATUS DispatchControl(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  ULONG code = stack->Parameters.DeviceIoControl.IoControlCode; 
  if (code == IOCTL_TOASTER_BOGUS) 
    return CompleteRequest(Irp, STATUS_INVALID_DEVICE_REQUEST, 0); 
 
  } 

You might notice that the Information argument to the CompleteRequest function is typed as a ULONG_PTR. In other words, 
this value can be either a ULONG or a pointer to something (and therefore potentially 64 bits wide). 

When you call IoCompleteRequest, you supply a priority boost value to be applied to whichever thread is currently waiting for 
this request to complete. You normally choose a boost value that depends on the type of device, as suggested by the manifest 
constant names listed in Table 5-4. The priority adjustment improves the throughput of threads that frequently wait for I/O 
operations to complete. Events for which the end user is directly responsible, such as keyboard or mouse operations, result in 
greater priority boosts in order to give preference to interactive tasks. Consequently, you want to choose the boost value with at 
least some care. Don’t use IO_SOUND_INCREMENT for absolutely every operation a sound card driver finishes, for 
example—it’s not necessary to apply this extraordinary priority increment to a get-driver-version control request. 
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Manifest Constant Numeric Priority Boost 

IO_NO_INCREMENT  0 

IO_CD_ROM_INCREMENT  1 

IO_DISK_INCREMENT  1 

IO_KEYBOARD_INCREMENT  6 

IO_MAILSLOT_INCREMENT  2 

IO_MOUSE_INCREMENT  6 

IO_NAMED_PIPE_INCREMENT  2 

IO_NETWORK_INCREMENT  2 

IO_PARALLEL_INCREMENT  1 

IO_SERIAL_INCREMENT  2 

IO_SOUND_INCREMENT  8 

IO_VIDEO_INCREMENT  1 

Table 5-4. Priority Boost Values for IoCompleteRequest  

Don’t, by the way, complete an IRP with the special status code STATUS_PENDING. Dispatch routines often return 
STATUS_PENDING as their return value, but you should never set IoStatus.Status to this value. Just to make sure, the 

checked build of IoCompleteRequest generates an ASSERT failure if it sees STATUS_PENDING in the ending status. Another 
popular value for people to use by mistake is apparently -1, which doesn’t have any meaning as an NTSTATUS code at all. 
There’s a checked-build ASSERT to catch that mistake too. The Driver Verifier will complain if you try to do either of these 
bad things.  

Before calling IoCompleteRequest, be sure to remove any cancel routine that you might have installed for an IRP. As you’ll 
learn later in this chapter, you install a cancel routine while you keep an IRP in a queue. You must remove an IRP from the 
queue before completing it. All the queuing schemes I’ll discuss in this book clear the cancel routine pointer when they 
dequeue an IRP. Therefore, you probably don’t need to have additional code in your driver as in this sample: 

IoSetCancelRoutine(Irp, NULL);  // <== almost certainly redundant 
IoCompleteRequest(Irp, ...); 

So far, I’ve just explained how to call IoCompleteRequest. That function performs several tasks that you need to understand: 

 Calling completion routines that various drivers might have installed. I’ll discuss the important topic of I/O completion 
routines later in this chapter. 

 Unlocking any pages belonging to Memory Descriptor List (MDL) structures attached to the IRP. An MDL will be used 
for the buffer for an IRP_MJ_READ or IRP_MJ_WRITE for a device whose device object has the DO_DIRECT_IO flag 
set. Control operations also use an MDL if the control code’s buffering method specifies one of the 
METHOD_XX_DIRECT methods. I’ll discuss these issues more fully in Chapter 7 and Chapter 9, respectively. 

 Scheduling a special kernel APC to perform final cleanup on the IRP. This cleanup includes copying input data back to a 
user buffer, copying the IRP’s ending status, and signaling whichever event the originator of the IRP might be waiting on. 
The fact that completion processing includes an APC, and that the cleanup includes setting an event, imposes some 
exacting requirements on the way a driver implements a completion routine, so I’ll also discuss this aspect of I/O 
completion in more detail later. 

Passing an IRP Down the Stack  

The whole goal of the layering of device objects that WDM facilitates is for you to be able to easily pass IRPs from one layer 
down to the next. Back in Chapter 2, I discussed how your AddDevice routine would contribute its portion of the effort 
required to create a stack of device objects with a statement like this one: 

pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo, pdo); 

where fdo is the address of your own device object and pdo is the address of the physical device object (PDO) at the bottom of 
the device stack. IoAttachDeviceToDeviceStack returns to you the address of the device object immediately underneath yours. 
When you decide to forward an IRP that you received from above, this is the device object you’ll specify in the eventual call to 
IoCallDriver. 

Before passing an IRP to another driver, be sure to remove any cancel routine that you might have installed for the IRP. 
As I mentioned just a few paragraphs ago, you’ll probably fulfill this requirement without specifically worrying about it. 

Your queue management code will zero the cancel routine pointer when it dequeues an IRP. If you never queued the IRP in the 
first place, the driver above you will have made sure the cancel routine pointer was NULL. The Driver Verifier will make sure 
that you don’t break this rule.  

When you pass an IRP down, you have the additional responsibility of initializing the IO_STACK_LOCATION that the next 
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driver will use to obtain its parameters. One way of doing this is to perform a physical copy, like this: 

 
IoCopyCurrentIrpStackLocationToNext(Irp); 
status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
 

IoCopyCurrentIrpStackLocationToNext is a macro in WDM.H that copies all the fields in an IO_STACK_LOCATION—except 
for the ones that pertain to the I/O completion routines—from the current stack location to the next one. In previous versions of 
Windows NT, kernel-mode driver writers sometimes copied the entire stack location, which would cause the caller’s 
completion routine to be called twice. The IoCopyCurrentIrpStackLocationToNext macro, which is new with the WDM, avoids 
the problem. 

If you don’t care what happens to an IRP after you pass it down the stack, use the following alternative to 
IoCopyCurrentIrpStackLocationToNext: 

NTSTATUS ForwardAndForget(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  IoSkipCurrentIrpStackLocation(Irp); 
  return IoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 

IoSkipCurrentIrpStackLocation retards the IRP’s stack pointer by one position. IoCallDriver will immediately advance the 
stack pointer. The net effect is to not change the stack pointer. When the next driver’s dispatch routine calls 
IoGetCurrentIrpStackLocation, it will retrieve exactly the same IO_STACK_LOCATION pointer that we were working with, 
and it will thereby process exactly the same request (same major and minor function codes) with the same parameters. 

Figure 5-6. Comparison of copying vs. skipping I/O stack locations.  

CAUTION  
The version of IoSkipCurrentIrpStackLocation that you get when you use the Windows Me or Windows 2000 
build environment in the DDK is a macro that generates two statements without surrounding braces. Therefore, 
you mustn’t use it in a construction like this:  

 

if (<expression>) 
  IoSkipCurrentIrpStackLocation(Irp);  // <== don't do this! 

The explanation of why IoSkipCurrentIrpStackLocation works is so tricky that I thought an illustration might help. Figure 5-6 
illustrates a situation in which three drivers are in a particular stack: yours (the function device object [FDO]) and two others 
(an upper filter device object [FiDO] and the PDO). In the picture on the left, you see the relationship between stack locations, 
parameters, and completion routines when we do the copy step with IoCopyCurrentIrpStackLocationToNext. In the picture on 
the right, you see the same relationships when we use the IoSkipCurrentIrpStackLocation shortcut. In the right-hand picture, 
the third and last stack location is fallow, but nobody gets confused by that fact. 
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Queuing an IRP for Later Processing  

The third alternative action for a dispatch routine is to queue the IRP for later processing. The following code snippet assumes 
you’re using one of my DEVQUEUE queue objects for IRP queuing. I’ll explain the DEVQUEUE object later in this chapter. 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
 
 
  IoMarkIrpPending(Irp); 
 
  StartPacket(&pdx->dqSomething, fdo, Irp, CancelRoutine); 
 
  return STATUS_PENDING; 
  } 

1. Whenever we return STATUS_PENDING from a dispatch routine (as we’re about to do here), we make this call to help 
the I/O Manager avoid an internal race condition. We must do this before we relinquish ownership of the IRP. 

2. If our device is currently busy or stalled because of a PnP or Power event, StartPacket puts the request in a queue. 
Otherwise, StartPacket marks the device as busy and calls our StartIo routine. I’ll describe the StartIo routine in the next 
section. The last argument is the address of a cancel routine. I’ll discuss cancel routines later in this chapter. 

3. We return STATUS_PENDING to tell our caller that we’re not done with this IRP yet. 

It’s important not to touch the IRP once we call StartPacket. By the time that function returns, the IRP might have been 
completed and the memory it occupies released. The pointer we have might, therefore, now be invalid. 

5.2.4 The StartIo Routine  
IRP-queuing schemes often revolve around calling a StartIo function to process IRPs: 

VOID StartIo(PDEVICE_OBJECT device, PIRP Irp) 
  { 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) device->DeviceExtension; 
 
  } 

A StartIo routine generally receives control at DISPATCH_LEVEL, meaning that it must not generate any page faults. 

Your job in StartIo is to commence the IRP you’ve been handed. How you do this depends entirely on your device. Often you 
will need to access hardware registers that are also used by your interrupt service routine (ISR) and, perhaps, by other routines 
in your driver. In fact, sometimes the easiest way to commence a new operation is to store some state information in your 
device extension and then fake an interrupt. Because either of these approaches needs to be carried out under the protection of 
the same spin lock that protects your ISR, the correct way to proceed is to call KeSynchronizeExecution. For example: 

VOID StartIo(...) 
  { 
 
  KeSynchronizeExecution(pdx->InterruptObject, TransferFirst, (PVOID) pdx); 
  } 
 
BOOLEAN TransferFirst(PVOID context) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) context; 
  <initialize device for new operation> 
  return TRUE; 
  } 

The TransferFirst routine shown here is an example of the generic class of SynchCritSection routines, so called because 
they’re synchronized with the ISR. I’ll discuss the SynchCritSection concept in more detail in Chapter 7. 

In Windows XP and later systems, you can follow this template instead of calling KeSynchronizeExecution: 

VOID StartIo(...) 
  { 
  KIRQL oldirql = KeAcquireInterruptSpinLock(pdx->InterruptObject); 
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  <initialize device for new operation> 
  KeReleaseInterruptSpinLock(pdx->InterruptObject, oldirql); 
  } 

Once StartIo gets the device busy handling the new request, it returns. You’ll see the request next when your device interrupts 
to signal that it’s done with whatever transfer you started. 

5.2.5 The Interrupt Service Routine  
When your device is finished transferring data, it might signal a hardware interrupt. In Chapter 7, I’ll show you how to use 
IoConnectInterrupt to “hook” the interrupt. One of the arguments to IoConnectInterrupt is the address of your ISR. When an 
interrupt occurs, the system calls your ISR. The ISR runs at the device IRQL (DIRQL) of your particular device and under the 
protection of a spin lock associated specifically with your ISR. The ISR has the following skeleton: 

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject, PDEVICE_EXENSION pdx) 
  { 
  if (<my device didn't interrupt>) 
    return FALSE; 
 
  return TRUE; 
  } 

The first argument of your ISR is the address of the interrupt object created by IoConnectInterrupt, but you’re unlikely to use 
this argument. The second argument is whatever context value you specified in your original call to IoConnectInterrupt; it will 
probably be the address of your device extension, as shown in this fragment. 

I’ll discuss the duties of your ISR in detail in Chapter 7 in connection with reading and writing data, the subject to which 
interrupt handling is most relevant. To carry on with this discussion of the standard model, I need to tell you that one of the 
likely things for the ISR to do is to schedule a deferred procedure call (DPC). The purpose of the DPC is to let you do things, 
such as calling IoCompleteRequest, that can’t be done at the rarified DIRQL at which your ISR runs. So you might have a line 
of code like this one: 

IoRequestDpc(pdx->DeviceObject, NULL, pdx); 

You’ll next see the IRP in the DPC routine you registered inside AddDevice with your call to IoInitializeDpcRequest. The 
traditional name for that routine is DpcForIsr because it’s the DPC routine your ISR requests. 

5.2.6 Deferred Procedure Call Routine  
The DpcForIsr routine requested by your ISR receives control at DISPATCH_LEVEL. Generally, its job is to finish up the 
processing of the IRP that caused the most recent interrupt. Often that job entails calling IoCompleteRequest to complete this 
IRP and StartNextPacket to remove the next IRP from your device queue for forwarding to StartIo. 

VOID DpcForIsr(PKDPC Dpc PDEVICE_OBJECT fdo, PIRP junk, PDEVICE_EXTENSION pdx) 
  { 
 
 
  StartNextPacket(&pdx->dqSomething, fdo); 
 
  IoCompleteRequest(Irp, boost); 
  } 

StartNextPacket removes the next IRP from your queue and sends it to StartIo. 

IoCompleteRequest completes the IRP you specify as the first argument. The second argument specifies a priority boost for the 
thread that has been waiting for this IRP. You’ll also fill in the IoStatus block within the IRP before calling IoCompleteRequest, 
as I explained earlier, in the section “Completing an IRP.” 

I’m not (yet) showing you how to determine which IRP has just completed. You might notice that the third argument to the 
DPC is typed as a pointer to an IRP. This is because, once upon a time, people often specified an IRP address as one of the 
context parameters to IoRequestDpc, and that value showed up here. Trying to communicate an IRP pointer from the function 
that queues a DPC is unwise, though, because it’s possible for there to be just one call to the DPC routine for any number of 
requests to queue that DPC. Accordingly, the DPC routine should develop the current IRP pointer based on whatever scheme 
you happen to be using for IRP queuing. 

The call to IoCompleteRequest is the end of this standard way of handling an I/O request. After that call, the I/O Manager (or 
whichever entity created the IRP in the first place) owns the IRP once more. That entity will destroy the IRP and might unblock 
a thread that has been waiting for the request to complete. 
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5.3 Completion Routines  

You often need to know the results of I/O requests that you pass down to lower levels of the driver hierarchy or that you 
originate. To find out what happened to a request, you install a completion routine by calling IoSetCompletionRoutine: 

IoSetCompletionRoutine(Irp, CompletionRoutine, context, 
  InvokeOnSuccess, InvokeOnError, InvokeOnCancel); 

Irp is the request whose completion you want to know about. CompletionRoutine is the address of the completion routine you 
want called, and context is an arbitrary pointer-size value you want passed as an argument to the completion routine. The 
InvokeOnXxx arguments are Boolean values indicating whether you want the completion routine called in three different 
circumstances: 

 InvokeOnSuccess means you want the completion routine called when somebody completes the IRP with a status code 
that passes the NT_SUCCESS test. 

 InvokeOnError means you want the completion routine called when somebody completes the IRP with a status code that 
does not pass the NT_SUCCESS test. 

 InvokeOnCancel means you want the completion routine called when somebody calls IoCancelIrp before completing the 
IRP. I worded this quite delicately: IoCancelIrp will set the Cancel flag in the IRP, and that’s the condition that gets tested 
if you specify this argument. A cancelled IRP might end up being completed with STATUS_CANCELLED (which would 
cause the NT_SUCCESS test to fail) or with any other status at all. If the IRP gets completed with an error and you 
specified InvokeOnError, InvokeOnError by itself will cause your completion routine to be called. Conversely, if the IRP 
gets completed without error and you specified InvokeOnSuccess, InvokeOnSuccess by itself will cause your completion 
routine to be called. In these cases, InvokeOnCancel will be redundant. But if you left out one or the other (or both) of 
InvokeOnSuccess or InvokeOnError, the InvokeOnCancel flag will let you see the eventual completion of an IRP whose 
Cancel flag has been set, no matter which status is used for the completion. 

At least one of these three flags must be TRUE. Note that IoSetCompletionRoutine is a macro, so you want to avoid arguments 
that generate side effects. The three flag arguments and the function pointer, in particular, are each referenced twice by the 
macro. 

IoSetCompletionRoutine installs the completion routine address and context argument in the next 
IO_STACK_LOCATION—that is, in the stack location in which the next lower driver will find its parameters. Consequently, 
the lowest-level driver in a particular stack of drivers doesn’t dare attempt to install a completion routine. Doing so would be 
pretty futile, of course, because—by definition of lowest-level driver—there’s no driver left to pass the request on to. 

CAUTION  
Recall that you are responsible for initializing the next I/O stack location before you call IoCallDriver. Do this 
initialization before you install a completion routine. This step is especially important if you use 
IoCopyCurrentIrpStackLocationToNext to initialize the next stack location because that function clears some 
flags that IoSetCompletionRoutine sets. 

A completion routine looks like this: 

NTSTATUS CompletionRoutine(PDEVICE_OBJECT fdo, PIRP Irp, PVOID context) 
  { 
 
  return <some status code>; 
  } 

It receives pointers to the device object and the IRP, and it also receives whichever context value you specified in the call to 
IoSetCompletionRoutine. Completion routines can be called at DISPATCH_LEVEL in an arbitrary thread context but can also 
be called at PASSIVE_LEVEL or APC_LEVEL. To accommodate the worst case (DISPATCH_LEVEL), completion routines 
therefore need to be in nonpaged memory and must call only service functions that are callable at or below DISPATCH_LEVEL. 
To accommodate the possibility of being called at a lower IRQL, however, a completion routine shouldn’t call functions such 
as KeAcquireSpinLockAtDpcLevel that assume they’re at DISPATCH_LEVEL to start with. 

There are really just two possible return values from a completion routine: 

 STATUS_MORE_PROCESSING_REQUIRED, which aborts the completion process immediately. The spelling of this 
status code obscures its actual purpose, which is to short-circuit the completion of an IRP. Sometimes, a driver actually 
does some additional processing on the same IRP. Other times, the flag just means, “Yo, IoCompleteRequest! Like, don’t 
touch this IRP no more, dude!” Future versions of the DDK will therefore define an enumeration constant, 
StopCompletion, that is numerically the same as STATUS_MORE_PROCESSING_REQUIRED but more evocatively 
named. (Future printings of this book may also employ better grammar in describing the meaning to be ascribed the 
constant, at least if my editors get their way.) 
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 Anything else, which allows the completion process to continue. Because any value besides 
STATUS_MORE_PROCESSING_REQUIRED has the same meaning as any other, I usually just code STATUS_SUCCESS. 
Future versions of the DDK will define STATUS_CONTINUE_COMPLETION and an enumeration constant, Con-
tinueCompletion, that are numerically the same as STATUS_SUCCESS. 

I’ll have more to say about these return codes a bit further on in this chapter. 

NOTE  
The device object pointer argument to a completion routine is the value left in the I/O stack location’s 
DeviceObject pointer. IoCallDriver ordinarily sets this value. People sometimes create an IRP with an extra stack 
location so that they can pass parameters to a completion routine without creating an extra context structure. 
Such a completion routine gets a NULL device object pointer unless the creator sets the DeviceObject field. 

How Completion Routines Get Called  

Figure 5-7. Logic of IoCompleteRequest.  

IoCompleteRequest is responsible for calling all of the completion routines that drivers installed in their respective stack 
locations. The way the process works, as shown in the flowchart in Figure 5-7, is this: Somebody calls IoCompleteRequest to 
signal the end of processing for the IRP. IoCompleteRequest then consults the current stack location to see whether the driver 
above the current level installed a completion routine. If not, it moves the stack pointer up one level and repeats the test. This 
process repeats until a stack location is found that does specify a completion routine or until IoCompleteRequest reaches the 
top of the stack. Then IoCompleteRequest takes steps that eventually result in somebody releasing the memory occupied by the 
IRP (among other things). 

When IoCompleteRequest finds a stack frame with a completion routine pointer, it calls that routine and examines the return 
code. If the return code is anything other than STATUS_MORE_PROCESSING_REQUIRED, IoCompleteRequest moves the 
stack pointer up one level and continues as before. If the return code is STATUS_MORE_PROCESSING_REQUIRED, however, 
IoCompleteRequest stops dead in its tracks and returns to its caller. The IRP will then be in a sort of limbo state. The driver 
whose completion routine halted the stack unwinding process is expected to do more work with the IRP and call 
IoCompleteRequest to resume the completion process. 

Within a completion routine, a call to IoGetCurrentIrpStackLocation will retrieve the same stack pointer that was current when 
somebody called IoSetCompletionRoutine. You shouldn’t rely in a completion routine on the contents of any lower stack 
location. To reinforce this rule, IoCompleteRequest zeroes most of the next location just before calling a completion routine. 
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Actual Question from Who Wants to Be a Gazillionaire Driver Tycoon: 
Suppose you install a completion routine and then immediately call IoCompleteRequest. What do you suppose 
happens?  

A. Your computer implodes, creating a gravitational singularity into which the universe instantaneously 
collapses. 

B. You receive the blue screen of death because you’re supposed to know better than to install a completion 
routine in this situation. 

C. IoCompleteRequest calls your completion routine. Unless the completion routine returns 
STATUS_MORE_PROCESSING_REQUIRED, IoCompleteRequest then completes the IRP normally. 

D. IoCompleteRequest doesn’t call your completion routine. It completes the IRP normally.  

 

 

 

 

 

The Problem of IoMarkIrpPending  

Completion routines have one more detail to attend to. You can learn this the easy way or the hard way, as they say in the 
movies. First the easy way—just follow this rule: 

Execute the following code in any completion routine that does not return STATUS_MORE_PROCESSING_REQUIRED :  

if (Irp->PendingReturned) IoMarkIrpPending(Irp); 

Now we’ll explore the hard way to learn about IoMarkIrpPending. Some I/O Manager routines manage an 
IRP with code that functions much as does this example:  

KEVENT event; 
IO_STATUS_BLOCK iosb; 
KeInitializeEvent(&event, ...); 
PIRP Irp = IoBuildDeviceIoControlRequest(..., &event, &iosb); 
NTSTATUS status = IoCallDriver(SomeDeviceObject, Irp); 
if (status == STATUS_PENDING) 
  { 
  KeWaitForSingleObject(&event, ...); 
  status = iosb.Status; 
  } 
else 
  <cleanup IRP> 

The key here is that, if the returned status is STATUS_PENDING, the entity that creates this IRP will wait on the event that was 
specified in the call to IoBuildDeviceIoControlRequest. This discussion could also be about an IRP built by 
IoBuildSynchronousFsdRequest too—the important factor is the conditional wait on the event. 

So who, you might well wonder, signals that event? IoCompleteRequest does this signaling indirectly by scheduling an APC to 
the same routine that performs the <cleanup IRP> step in the preceding pseudocode. That cleanup code will do many tasks, 
including calling IoFreeIrp to release the IRP and KeSetEvent to set the event on which the creator might be waiting. For some 
types of IRP, IoCompleteRequest will always schedule the APC. For other types of IRP, though, IoCompleteRequest will 
schedule the APC only if the SL_PENDING_RETURNED flag is set in the topmost stack location. You don’t need to know 
which types of IRP fall into these two categories because Microsoft might change the way this function works and invalidate 
the deductions you might make if you knew. You do need to know, though, that IoMarkPending is a macro whose only purpose 
is to set SL_PENDING_RETURNED in the current stack location. Thus, if the dispatch routine in the topmost driver on the 
stack does this: 

NTSTATUS TopDriverDispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  IoMarkIrpPending(Irp); 
 
  return STATUS_PENDING; 
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  } 

things will work out nicely. (I’m violating my naming convention here to emphasize where this dispatch function lives.) 
Because this dispatch routine returns STATUS_PENDING, the originator of the IRP will call KeWaitForSingleObject. Because 
the dispatch routine sets the SL_PENDING_RETURNED flag, IoCompleteRequest will know to set the event on which the 
originator waits. 

But suppose the topmost driver merely passed the request down the stack, and the second driver pended the IRP: 

NTSTATUS TopDriverDispatchSomething(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  return IoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 
 
NTSTATUS SecondDriverDispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  IoMarkIrpPending(Irp); 
 
  return STATUS_PENDING; 
  } 

Apparently, the second driver’s stack location contains the SL_PENDING_RETURNED flag, but the first driver’s does not. 
IoCompleteRequest anticipates this situation, however, by propagating the SL_PENDING_RETURNED flag whenever it 
unwinds a stack location that doesn’t have a completion routine associated with it. Because the top driver didn’t install a 
completion routine, therefore, IoCompleteRequest will have set the flag in the topmost location, and it will have caused the 
completion event to be signaled. 

In another scenario, the topmost driver uses IoSkipCurrentIrpStackLocation instead of IoCopyCurrentIrpStackLocationToNext. 
Here, everything works out by default. This is because the IoMarkIrpPending call in SecondDriverDispatchSomething sets the 
flag in the topmost stack location to begin with. 

Things get sticky if the topmost driver installs a completion routine: 

NTSTATUS TopDriverDispatchSomething(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, TopDriverCompletionRoutine, ...); 
  return IoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 
 
NTSTATUS SecondDriverDispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  IoMarkIrpPending(Irp); 
 
  return STATUS_PENDING; 
  } 

Here IoCompleteRequest won’t propagate SL_PENDING_RETURNED into the topmost stack location. I’m not exactly sure 
why the Windows NT designers decided not to do this propagation, but it’s a fact that they did so decide. Instead, just before 
calling the completion routine, IoCompleteRequest sets the PendingReturned flag in the IRP to whichever value 
SL_PENDING_RETURNED had in the immediately lower stack location. The completion routine must then take over the job 
of setting SL_PENDING_RETURNED in its own location: 

NTSTATUS TopDriverCompletionRoutine(PDEVICE_OBJECT fido,  PIRP Irp, ...) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); 
   
  return STATUS_SUCCESS; 
  } 

If you omit this step, you’ll find that threads deadlock waiting for someone to signal an event that’s destined never to be 
signaled. So don’t omit this step. 

Given the importance of the call to IoMarkIrpPending, driver programmers through the ages have tried to find other ways of 
dealing with the problem. Here is a smattering of bad ideas. 
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Bad Idea # 1—Conditionally Call IoMarkIrpPending in the Dispatch Routine 

The first bad idea is to try to deal with the pending flag solely in the dispatch routine, thereby keeping the completion routine 
pristine and understandable in some vague way: 

NTSTATUS TopDriverDispatchSomething(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, TopDriverCompletionRoutine, ...); 
  NTSTATUS status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
  if (status == STATUS_PENDING) 
    IoMarkIrpPending(Irp); // <== Argh! Don't do this! 
  return status; 
  } 

The reason this is a bad idea is that the IRP might already be complete, and someone might already have called IoFreeIrp, by 
the time IoCallDriver returns. You must treat the pointer as poison as soon as you give it away to a function that might 
complete the IRP. 

Bad idea # 2—Always Call IoMarkIrpPending in the Dispatch Routine 

Here the dispatch routine unconditionally calls IoMarkIrpPending and then returns whichever value IoCallDriver returns: 

NTSTATUS TopDriverDispatchSomething(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  IoMarkIrpPending(Irp); // <== Don't do this either! 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, TopDriverCompletionRoutine, ...); 
  return IoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 

This is a bad idea if the next driver happens to complete the IRP in its dispatch routine and returns a nonpending status. In this 
situation, IoCompleteRequest will cause all the completion cleanup to happen. When you return a nonpending status, the I/O 
Manager routine that originated the IRP might call the same completion cleanup routine a second time. This leads to a 
double-completion bug check. 

Remember always to pair the call to IoMarkIrpPending with returning STATUS_PENDING. That is, do both or neither, but 
never one without the other. 

Bad Idea # 3—Call IoMarkPending Regardless of the Return Code from the Completion Routine 

In this example, the programmer forgot the qualification of the rule about when to make the call to IoMarkIrpPending from a 
completion routine: 

NTSTATUS TopDriverDispatchSomething(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  KEVENT event; 
  KeInitializeEvent(&event, NotificationEvent, FALSE); 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, TopDriverCompletionRoutine, &event, 
    TRUE, TRUE, TRUE); 
  IoCallDriver(pdx->LowerDeviceObject, Irp); 
  KeWaitForSingleObject(&event, ...); 
 
  Irp->IoStatus.Status = status; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return status; 
  } 
 
NTSTATUS TopDriverCompletionRoutine(PDEVICE_OBJECT fido, PIRP Irp, PVOID pev) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); // <== oops 
  KeSetEvent((PKEVENT) pev, IO_NO_INCREMENT, FALSE); 
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  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

What’s probably going on here is that the programmer wants to forward the IRP synchronously and then resume processing the 
IRP after the lower driver finishes with it. (See IRP-handling scenario 7 at the end of this chapter.) That’s how you’re supposed 
to handle certain PnP IRPs, in fact. This example can cause a double-completion bug check, though, if the lower driver 
happens to return STATUS_PENDING. This is actually the same scenario as in the previous bad idea: your dispatch routine is 
returning a nonpending status, but your stack frame has the pending flag set. People often get away with this bad idea, which 
existed in the IRP_MJ_PNP handlers of many early Windows 2000 DDK samples, because no one ever posts a Plug and Play 
IRP. (Therefore, PendingReturned is never set, and the incorrect call to IoMarkIrpPending never happens.) 

A variation on this idea occurs when you create an asynchronous IRP of some kind. You’re supposed to provide a completion 
routine to free the IRP, and you’ll necessarily return STATUS_MORE_PROCESSING_REQUIRED from that completion 
routine to prevent IoCompleteRequest from attempting to do any more work on an IRP that has disappeared: 

SOMETYPE SomeFunction() 
  { 
  PIRP Irp = IoBuildAsynchronousFsdRequest(...); 
  IoSetCompletionRoutine(Irp, MyCompletionRoutine, ...); 
  IoCallDriver(...); 
  } 
 
NTSTATUS MyCompletionRoutine(PDEVICE_OBJECT junk, PIRP Irp, 
  PVOID context) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); // <== oops! 
  IoFreeIrp(Irp); 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

The problem here is that there is no current stack location inside this completion routine! Consequently, IoMarkIrpPending 
modifies a random piece of storage. Besides, it’s fundamentally silly to worry about setting a flag that IoCompleteRequest will 
never inspect: you’re returning STATUS_MORE_PROCESSING_REQUIRED, which is going to cause IoCompleteRequest to 
immediately return to its own caller without doing another single thing with your IRP. 

Avoid both of these problems by remembering not to call IoMarkIrpPending from a completion routine that returns 
STATUS_MORE_PROCESSING_REQUIRED. 

Bad Idea # 4—Always Pend the IRP 

Here the programmer gives up trying to understand and just always pends the IRP. This strategy avoids needing to do anything 
special in the completion routine. 

NTSTATUS TopDriverDispatchSomething(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  IoMarkIrpPending(Irp); 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, TopDriverCompletionRoutine, ...); 
  IoCallDriver(pdx->LowerDeviceObject, Irp); 
  return STATUS_PENDING; 
  } 
 
NTSTATUS TopDriverCompletionRoutine(PDEVICE_OBJECT fido, PIRP Irp, ...) 
  { 
 
  return STATUS_SUCCESS; 
  } 

This strategy isn’t so much bad as inefficient. If SL_PENDING_RETURNED is set in the topmost stack location, 
IoCompleteRequest schedules a special kernel APC to do the work in the context of the originating thread. Generally speaking, 
if a dispatch routine posts an IRP, the IRP will end up being completed in some other thread. An APC is needed to get back into 
the original context in order to do some buffer copying. But scheduling an APC is relatively expensive, and it would be nice to 
avoid the overhead if you’re still in the original thread. Thus, if your dispatch routine doesn’t actually return 
STATUS_PENDING, you shouldn’t mark your stack frame pending. 

But nothing really awful will happen if you implement this bad idea, in the sense that the system will keep working normally. 
Note also that Microsoft might someday change the way completion cleanup happens, so don’t write your driver on the 



5.3 Completion Routines   - 131 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

assumption that an APC is always going to occur. 

A Plug and Play Complication  

The PnP Manager might conceivably decide to unload your driver before one of your completion routines has a chance to 
return to the I/O Manager. Anyone who sends you an IRP is supposed to prevent this unhappy occurrence by making sure you 
can’t be unloaded until you’ve finished handling that IRP. When you create an IRP, however, you have to protect yourself. Part 
of the protection involves a so-called remove lock object, discussed in Chapter 6, which gates PnP removal until drivers under 
you finish handling all outstanding IRPs. Another part of the protection is the following function, available in XP and later 
releases of Windows: 

IoSetCompletionRoutineEx(DeviceObject, Irp, CompletionRoutine, 
  context, InvokeOnSuccess, InvokeOnError, InvokeOnCancel); 

 

NOTE  
The DDK documentation for IoSetCompletionRoutineEx suggests that it’s useful only for non-PnP drivers. As 
discussed here, however, on many occasions a PnP driver might need to use this function to achieve full 
protection from early unloading. 

The DeviceObject parameter is a pointer to your own device object. IoSetCompletionRoutineEx takes an extra reference to this 
object just before calling your completion routine, and it releases the reference when your completion routine returns. The 
extra reference pins the device object and, more important, your driver, in memory. But because this function doesn’t exist in 
Windows versions prior to XP, you need to consider carefully whether you want to go to the trouble of calling 
MmGetSystemRoutineAddress (and loading a Windows 98/Me implementation of the same function) to dynamically link to this 
routine if it happens to be available. It seems to me that there are five discrete situations to consider: 

Situation 1: Synchronous Subsidiary IRP 

The first situation to consider occurs when you create a synchronous IRP to help you process an IRP that 
someone else has sent you. You intend to complete the main IRP after the subsidiary IRP completes. 

You wouldn’t ordinarily use a completion routine with a synchronous IRP, but you might want to if you were going to 
implement the safe cancel logic discussed later in this chapter. If you follow that example, your completion routine will safely 
return before you completely finish handling the subsidiary IRP and, therefore, comfortably before you complete the main IRP. 
The sender of the main IRP is keeping you in memory until then. Consequently, you won’t need to use 
IoSetCompletionRoutineEx. 

Situation 2: Asynchronous Subsidiary IRP 

In this situation, you use an asynchronous subsidiary IRP to help you implement a main IRP that someone sends you. You 
complete the main IRP in the completion routine that you’re obliged to install for the subsidiary IRP. 

Here you should use IoSetCompletionRoutineEx if it’s available because the main IRP sender’s protection expires as soon as 
you complete the main IRP. Your completion routine still has to return to the I/O Manager and therefore needs the protection 
offered by this new routine. 

Situation 3: IRP Issued from Your Own System Thread 

The third situation in our analysis of completion routines occurs when a system thread you’ve created (see Chapter 14 for a 
discussion of system threads) installs completion routines for IRPs it sends to other drivers. If you create a truly asynchronous 
IRP in this situation, use IoSetCompletionRoutineEx to install the obligatory completion routine and make sure that your driver 
can’t unload before the completion routine is actually called. You could, for example, claim an IO_REMOVE_LOCK that you 
release in the completion routine. If you use scenario 8 from the cookbook at the end of this chapter to send a nominally 
asynchronous IRP in a synchronous way, however, or if you use synchronous IRPs in the first place, there’s no particular 
reason to use IoSetCompletionRoutineEx because you’ll presumably wait for these IRPs to finish before calling 
PsTerminateSystemThread to end the thread. Some other function in your driver will be waiting for the thread to terminate 
before allowing the operating system to finally unload your driver. This combination of protections makes it safe to use an 
ordinary completion routine. 

Situation 4: IRP Issued from a Work Item 

Here I hope you’ll be using IoAllocateWorkItem and IoQueueWorkItem, which protect your driver from being unloaded until 
the work item callback routine returns. As in the previous situation, you’ll want to use IoSetCompletionRoutineEx if you issue 
an asynchronous IRP and don’t wait (as in scenario 8) for it to finish. Otherwise, you don’t need the new routine unless you 
somehow return before the IRP completes, which would be against all the rules for IRP handling and not just the rules for 
completion routines. 
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Situation 5: Synchronous or Asynchronous IRP for Some Other Purpose 

Maybe you have some reason for issuing a synchronous IRP that is not in aid of an IRP that someone else has sent you and is 
not issued from the context of your own system thread or a work item. I confess that I can’t think of a circumstance in which 
you’d actually want to do this, but I think you’d basically be toast if you tried. Protecting your completion routine, if any, 
probably helps a bit, but there’s no bulletproof way for you to guarantee that you’ll still be there when IoCallDriver returns. If 
you think of a way, you’ll simply move the problem to after you do whatever it is you think of, at which point there has to be at 
least a return instruction that will get executed without protection from outside your driver. 

So don’t do this. 

5.4 Queuing I/O Requests  

Sometimes your driver receives an IRP that it can’t handle right away. Rather than reject the IRP by causing it to fail with an 
error status, your dispatch routine places the IRP on a queue. In another part of your driver, you provide logic that removes one 
IRP from the queue and passes it to a StartIo routine. 

Queuing an IRP is conceptually very simple. You can provide a list anchor in your device extension, which you initialize in 
your AddDevice function: 

typedef struct _DEVICE_EXTENSION { 
 
  LIST_ENTRY IrpQueue; 
  BOOLEAN DeviceBusy; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS AddDevice(...) 
  { 
 
  InitializeListHead(&pdx->IrpQueue); 
 
  } 

Then you can write two naive routines for queuing and dequeuing IRPs: 

VOID NaiveStartPacket(PDEVICE_EXTENSION pdx, PIRP Irp) 
  { 
  if (pdx->DeviceBusy) 
    InsertTailList(&pdx->IrpQueue, &Irp->Tail.Overlay.ListEntry); 
  else 
    { 
    pdx->DeviceBusy = TRUE; 
    StartIo(pdx->DeviceObject, Irp); 
    } 
  } 
 
VOID NaiveStartNextPacket(PDEVICE_EXTENSION pdx, PIRP Irp) 
  { 
  if (IsListEmpty(&pdx->IrpQueue)) 
    pdx->DeviceBusy = FALSE; 
  else 
    { 
    PLIST_ENTRY foo = RemoveHeadList(&pdx->IrpQueue); 
    PIRP Irp = CONTAINING_RECORD(foo, IRP, 
      Tail.Overlay.ListEntry); 
    StartIo(pdx->DeviceObject, Irp); 
    } 
  } 
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Microsoft Queuing Routines| 
Apart from this sidebar, I’m omitting discussion of the functions IoStartPacket and IoStartNextPacket, which 
have been part of Windows NT since the beginning. These functions implement a queuing model that’s 
inappropriate for WDM drivers. In that model, a device is in one of three states: idle, busy with an empty queue, 
or busy with a nonempty queue. If you call IoStartPacket at a time when the device is idle, it unconditionally 
sends the IRP to your StartIo routine. Unfortunately, many times a WDM driver needs to queue an IRP even 
though the device is idle. These functions also rely heavily on a global spin lock whose overuse has created a 
serious performance bottleneck.  

Just in case you happen to be working on an old driver that uses these obsolete routines, however, here’s how 
they work. A dispatch routine would queue an IRP like this: 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  IoMarkIrpPending(Irp); 
  IoStartPacket(fdo, Irp, NULL, CancelRoutine); 
  return STATUS_PENDING; 
  } 

Your driver would have a single StartIo routine. Your DriverEntry routine would set the DriverStartIo field of the 
driver object to point to this routine. If your StartIo routine completes IRPs, you would also call IoSetStart-
IoAttributes (in Windows XP or later) to help prevent excessive recursion into StartIo. IoStartPacket and 
IoStartNextPacket call StartIo to process one IRP at a time. In other words, StartIo is the place where the I/O 
manager serializes access to your hardware. 

A DPC routine (see the later discussion of how DPC routines work) would complete the previous IRP and start 
the next one using this code: 

VOID DpcForIsr(PKDPC junk, PDEVICE_OBJECT fdo, PIRP Irp,  PVOID morejunk) 
  { 
  IoCompleteRequest(Irp, STATUS_NO_INCREMENT); 
  IoStartNextPacket(fdo, TRUE); 
  } 

To provide for canceling a queued IRP, you would need to write a cancel routine. Illustrating that and the cancel 
logic in StartIo is beyond the scope of this book. 

In addition, you can rely on the CurrentIrp field of a DEVICE_OBJECT to always contain NULL or the address of 
the IRP most recently sent (by IoStartPacket or IoStartNextPacket) to your StartIo routine. 

Then your dispatch routine calls NaiveStartPacket, and your DPC routine calls NaiveStartNextPacket in the manner discussed 
earlier in connection with the standard model. 

There are many problems with this scheme, which is why I called it naive. The most basic problem is that your DPC routine 
and multiple instances of your dispatch routine could all be simultaneously active on different CPUs. They would likely 
conflict in trying to access the queue and the busy flag. You could address that problem by creating a spin lock and using it to 
guard against the obvious races, as follows: 

typedef struct _DEVICE_EXTENSION { 
 
  LIST_ENTRY IrpQueue; 
  KSPIN_LOCK IrpQueueLock; 
  BOOLEAN DeviceBusy; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS AddDevice(...) 
  { 
 
  InitializeListHead(&pdx->IrpQueue); 
  KeInitializeSpinLock(&pdx->IrpQueueLock); 
   
 
  } 
 
VOID LessNaiveStartPacket(PDEVICE_EXTENSION pdx, PIRP Irp) 
  { 
  KIRQL oldirql; 
  KeAcquireSpinLock(&pdx->IrpQueueLock, &oldirql); 
  if (pdx->DeviceBusy) 
    { 
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    InsertTailList(&pdx->IrpQueue, &Irp->Tail.Overlay.ListEntry; 
    KeReleaseSpinLock(&pdx->IrpQueueLock, oldirql); 
    } 
  else 
    { 
    pdx->DeviceBusy = TRUE; 
    KeReleaseSpinLock(&pdx->IrpQueueLock, DISPATCH_LEVEL); 
    StartIo(pdx->DeviceObject, Irp); 
    KeLowerIrql(oldirql); 
    } 
  } 
 
VOID LessNaiveStartNextPacket(PDEVICE_EXTENSION pdx, PIRP Irp) 
  { 
  KIRQL oldirql; 
  KeAcquireSpinLock(&pdx->IrpQueueLock, &oldirql); 
  if (IsListEmpty(&pdx->IrpQueue) 
   { 
    pdx->DeviceBusy = FALSE; 
    KeReleaseSpinLock(&pdx->IrpQueueLock, oldirql); 
  else 
    { 
    PLIST_ENTRY foo = RemoveHeadList(&pdx->IrpQueue); 
    KeReleaseSpinLock(&pdx->IrpQueueLock, DISPATCH_LEVEL); 
    PIRP Irp = CONTAINING_RECORD(foo, IRP, Tail.Overlay.ListEntry); 
    StartIo(pdx->DeviceObject, Irp); 
    KeLowerIrql(oldirql); 
    } 
  } 

Incidentally, we always want to call StartIo at a single IRQL. Because DPC routines are among the callers of 
LessNaiveStartNextPacket, and they run at DISPATCH_LEVEL, we pick DISPATCH_LEVEL. That means we want to stay at 
DISPATCH_LEVEL when we release the spin lock. 

(You did remember that these two queue management routines need to be in nonpaged memory because they run at 
DISPATCH_LEVEL, right?) 

These queueing routines are actually almost OK, but they have one more defect and a shortcoming. The shortcoming is that we 
need a way to stall a queue for the duration of certain PnP and Power states. IRPs accumulate in a stalled queue until someone 
unstalls the queue, whereupon the queue manager can resume sending IRPs to a StartIo routine. The defect in the “less naive” 
set of routines is that someone could decide to cancel an IRP at essentially any time. IRP cancellation complicates IRP queuing 
logic so much that I’ve devoted the next major section to discussing it. Before we get to that, though, let me explain how to use 
the queuing routines that I crafted to deal with all the problems. 

5.4.1 Using the DEVQUEUE Object  
To solve a variety of IRP queuing problems, I created a package of subroutines for managing a queue object that I call a 
DEVQUEUE. I’ll show you first the basic usage of a DEVQUEUE. Later in this chapter, I’ll explain how the major 
DEVQUEUE service routines work. I’ll discuss in later chapters how your PnP and power management code interacts with the 
DEVQUEUE object or objects you define. 

You define a DEVQUEUE object for each queue of requests you’ll manage in the driver. For example, if your device manages 
reads and writes in a single queue, you define one DEVQUEUE: 

typedef struct _DEVICE_EXTENSION { 
 
  DEVQUEUE dqReadWrite;  
 
} DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

On the CD   Code for the DEVQUEUE is part of GENERIC.SYS. In addition, if you use my WDMWIZ to create a 
skeleton driver and don’t ask for GENERIC.SYS support, your skeleton project will include the files 
DEVQUEUE.CPP and DEVQUEUE.H, which fully implement exactly the same object. I don’t recommend trying to 
type this code from the book because the code from the companion content will contain even more features 
than I can describe in the book. I also recommend checking my Web site (www.oneysoft.com) for updates and 
corrections. 

Figure 5-8 illustrates the IRP processing logic for a typical driver using DEVQUEUE objects. Each DEVQUEUE has its own 
StartIo routine, which you specify when you initialize the object in AddDevice: 

http://www.oneysoft.com/
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NTSTATUS AddDevice(...) 
  { 
 
  PDEVICE_EXTENSION pdx = ...; 
  InitializeQueue(&pdx->dqReadWrite, StartIo); 
 
  } 

Figure 5-8. IRP flow with a DEVQUEUE and a StartIo routine.  

You can specify a common dispatch function for both IRP_MJ_READ and IRP_MJ_WRITE: 

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) 
  { 
 
  DriverObject->MajorFunction[IRP_MJ_READ] = DispatchReadWrite; 
  DriverObject->MajorFunction[IRP_MJ_WRITE] = DispatchReadWrite; 
 
  } 
 
#pragma PAGEDCODE 
 
NTSTATUS DispatchReadWrite(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PAGED_CODE(); 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  IoMarkIrpPending(Irp); 
  StartPacket(&pdx->dqReadWrite, fdo, Irp, CancelRoutine); 
  return STATUS_PENDING; 
  } 
 
#pragma LOCKEDCODE 
 
VOID CancelRoutine(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  CancelRequest(&pdx->dqReadWrite, Irp); 
  } 

Note that the cancel argument to StartPacket is not optional: you must supply a cancel routine, but you can see how simple that 
routine will be. 

If you complete IRPs in a DPC routine, you’ll also call StartNextPacket: 

VOID DpcForIsr(PKPDC junk1, PDEVICE_OBJECT fdo, PIRP junk2, 
  PDEVICE_EXTENSION pdx) 
  { 
 
  StartNextPacket(&pdx->dqReadWrite, fdo); 
  } 

If you complete IRPs in your StartIo routine, schedule a DPC to make the call to StartNextPacket in order to avoid excessive 
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recursion. For example: 

typedef struct _DEVICE_EXTENSION { 
 
  KDPC StartNextDpc; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS AddDevice(...) 
  { 
 
  KeInitializeDpc(&pdx->StartNextDpc,  
    (PKDEFERRED_ROUTINE) StartNextDpcRoutine, pdx); 
 
  } 
 
VOID StartIo(...) 
  { 
 
  IoCompleteRequest(...); 
  KeInsertQueueDpc(&pdx->StartNextDpc, NULL, NULL); 
  } 
 
VOID StartNextDpcRoutine(PKDPC junk1, PDEVICE_EXTENSION pdx, 
  PVOID junk2, PVOID junk3) 
  { 
  StartNextPacket(&pdx->dqReadWrite, pdx->DeviceObject); 
  } 

In this example, StartIo calls IoCompleteRequest to complete the IRP it has just handled. Calling StartNextPacket directly 
might lead to a recursive call to StartIo. After enough recursive calls, we’ll run out of stack. To avoid the potential stack 
overflow, we queue the StartNextDpc DPC object and return. Because StartIo runs at DISPATCH_LEVEL, it won’t be possible 
for the DPC routine to be called before StartIo returns. Therefore, StartNextDpcRoutine can call StartNextPacket without 
worrying about recursion. 

NOTE  
If you were using the Microsoft queue routines IoStartPacket and IoStartNextPacket, you’d have a single 
StartIo routine. Your DriverEntry routine would set the DriverStartIo pointer in the driver object to the address 
of this routine. To avoid the recursion problem discussed in the text in Windows XP or later, you could call 
IoSetStartIoAttributes. 

5.4.2 Using Cancel-Safe Queues  
Some drivers work better if they operate with a separate I/O thread. Such a thread wakes up each time there is an IRP to be 
processed, processes IRPs until a queue is empty, and then goes back to sleep. I’ll discuss the details of how such a thread 
routine works in Chapter 14, but this is the appropriate time to talk about how you can queue IRPs in such a driver. See Figure 
5-9. 

A DEVQUEUE isn’t appropriate for this situation because the DEVQUEUE wants to call a StartIo routine to process IRPs. 
When you have a separate I/O thread, you want to be responsible in that thread for fetching IRPs. Microsoft provides a set of 
routines for cancel-safe queue operations that provide most of the functionality you need. These routines don’t work 
automatically with your PnP and Power logic, but I predict it won’t be hard to add such support. The Cancel sample in the 
DDK shows how to work with a cancel-safe queue in exactly this situation, but I’ll go over the mechanics here as well. 

NOTE  
In their original incarnation, the cancel-safe queue functions weren’t appropriate when you wanted to use a 
StartIo routine for actual I/O because they didn’t provide a way to set a CurrentIrp pointer and do a queue 
operation inside one invocation of the queue lock. They were modified while I was writing this book to support 
StartIo usage, but we didn’t have time to include an explanation of how to use the new features. I commend 
you, therefore, to the DDK documentation.  

Note also that the cancel-safe queue functions were first described in an XP release of the DDK. They are 
implemented in a static library, however, and are therefore available for use on all prior platforms. 
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Figure 5-9. IRP flow with an I/O thread.  

Initialization for Cancel-Safe Queue  

To take advantage of the cancel-safe queue functions, first declare six helper functions (see Table 5-5) that the I/O Manager 
can call to perform operations on your queue. Declare an instance of the IO_CSQ structure in your device extension structure. 
Also declare an anchor for your IRP queue and whichever synchronization object you want to use. You initialize these objects 
in your AddDevice function. For example: 

typedef struct _DEVICE_EXTENSION { 
 
  IO_CSQ IrpQueue; 
  LIST_ENTRY IrpQueueAnchor; 
  KSPIN_LOCK IrpQueueLock; 
 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo) 
  { 
 
  KeInitializeSpinLock(&pdx->IrpQueueLock); 
  InitializeListHead(&pdx->IrpQueueAnchor); 
  IoCsqInitialize(&pdx->IrpQueue, InsertIrp, RemoveIrp, 
    PeekNextIrp, AcquireLock, ReleaseLock, CompleteCanceledIrp); 
 
  } 

Callback Routine Purpose 

AcquireLock  Acquire lock on the queue 

CompleteCanceledIrp  Complete an IRP that has been cancelled 

InsertIrp  Insert IRP into queue 

PeekNextIrp  Retrieve pointer to next IRP in queue without removing it 

ReleaseLock  Release queue lock 

RemoveIrp  Remove IRP from queue 

Table 5-5. Cancel-Safe Queue Callback Routines  

Using the Queue  

You queue an IRP in a dispatch routine like this: 
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NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  IoCsqInsertIrp(&pdx->IrpQueue, Irp, NULL); 
  return STATUS_PENDING; 
  } 

It’s unnecessary and incorrect to call IoMarkIrpPending yourself because IoCsqInsertIrp does so automatically. As is true with 
other queuing schemes, the IRP might be complete by the time IoCsqInsertIrp returns, so don’t touch the pointer afterwards. 

To remove an IRP from the queue (say, in your I/O thread), use this code: 

PIRP Irp = IoCsqRemoveNextIrp(&pdx->IrpQueue, PeekContext); 

I’ll describe the PeekContext argument a bit further on. Note that the return value is NULL if no IRPs on are on the queue. The 
IRP you get back hasn’t been cancelled, and any future call to IoCancelIrp is guaranteed to do nothing more than set the 
Cancel flag in the IRP. 

You’ll also want to provide a dispatch routine for IRP_MJ_CLEANUP that will interact with the queue. I’ll show you code for 
that purpose a bit later in this chapter. 

Cancel-Safe Queue Callback Routines  

The I/O Manager calls your cancel-safe queue callback routines with the address of the queue object as one of the arguments. 
To recover the address of your device extension structure, use the CONTAINING_RECORD macro: 

#define GET_DEVICE_EXTENSION(csq) \ 

  CONTAINING_RECORD(csq, DEVICE_EXTENSION, IrpQueue) 

You supply callback routines for acquiring and releasing the lock you’ve decided to use for your queue. For example, if you 
had settled on using a spin lock, you’d write these two routines: 

VOID AcquireLock(PIO_CSQ csq, PKIRQL Irql) 
  { 
  PDEVICE_EXTENSION pdx = GET_DEVICE_EXTENSION(csq); 
  KeAcquireSpinLock(&pdx->IrpQueueLock, Irql); 
  } 
 
VOID ReleaseLock(PIO_CSQ csq, KIRQL Irql) 
  { 
  PDEVICE_EXTENSION pdx = GET_DEVICE_EXTENSION(csq); 
  KeReleaseSpinLock(&pdx->IrpQueueLock, Irql); 
  } 

You don’t have to use a spin lock for synchronization, though. You can use a mutex, a fast mutex, or any other object that suits 
your fancy. 

When you call IoCsqInsertIrp, the I/O Manager locks your queue by calling your AcquireLock routine and then calls your 
InsertIrp routine: 

VOID InsertIrp(PIO_CSQ csq, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = GET_DEVICE_EXTENSION(csq); 
  InsertTailList(&pdx->IrpQueueAnchor, &Irp->Tail.Overlay.ListEntry); 
  } 

When you call IoCsqRemoveNextIrp, the I/O Manager locks your queue and calls your PeekNextIrp and RemoveIrp functions: 

PIRP PeekNextIrp(PIO_CSQ csq, PIRP Irp, PVOID PeekContext) 
  { 
  PDEVICE_EXTENSION pdx = GET_DEVICE_EXTENSION(csq); 
  PLIST_ENTRY next = Irp  
    ? Irp->Tail.Overlay.ListEntry.Flink 
    : pdx->IrpQueueAnchor.Flink; 
  while (next != &pdx->IrpQueueAnchor) 
    { 
    PIRP NextIrp = CONTAINING_RECORD(next, IRP, 
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      Tail.Overlay.ListEntry); 
    if (PeekContext && <NextIrp matches PeekContext>) 
      return NextIrp; 
    if (!PeekContext) 
      return NextIrp; 
    next = next->Flink; 
    } 
  return NULL; 
  } 
 
VOID RemoveIrp(PIO_CSQ csq, PIRP Irp) 
  { 
  RemoveEntryList(&Irp->Tail.Overlay.ListEntry); 
  } 

The parameters to PeekNextIrp require a bit of explanation. Irp, if not NULL, is the predecessor of the first IRP you should 
look at. If Irp is NULL, you should look at the IRP at the front of the list. PeekContext is an arbitrary parameter that you can 
use for any purpose you want as a way for the caller of IoCsqRemoveNextIrp to communicate with PeekNextIrp. A common 
convention is to use this argument to point to a FILE_OBJECT that’s the current subject of an IRP_MJ_CLEANUP. I wrote 
this function so that a NULL value for PeekContext means, “Return the next IRP, period.” A non-NULL value means, “Return 
the next value that matches PeekContext.” You define what it means to “match” the peek context. 

The sixth and last callback function is this one, which the I/O Manager calls when an IRP needs to be cancelled: 

VOID CompleteCanceledIrp(PIO_CSQ csq, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = GET_DEVICE_EXTENSION(csq); 
  Irp->IoStatus.Status = STATUS_CANCELLED; 
  Irp->IoStatus.Information = 0; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  } 

That is, all you do is complete the IRP with STATUS_CANCELLED. 

To reiterate, the advantage you gain by using the cancel-safe queue functions is that you don’t need to write a cancel routine, 
and you don’t need to include any code in your driver (apart from the CompleteCanceledIrp function, that is) that relates to 
cancelling queued IRPs. The I/O Manager installs its own cancel routine, and it promises never to deliver a cancelled IRP back 
from IoCsqRemoveNextIrp. 

Parking an IRP on a Cancel-Safe Queue  

The preceding sections described how you can use a cancel-safe queue to serialize I/O processing in a kernel thread. Another 
way to use the cancel-safe queue functions is for parking IRPs while you process them. The idea is that you would place the 
IRP into the queue when you first received it. Then, when it comes time to complete the IRP, you remove that specific IRP 
from the queue. You’re not using the queue as a real queue in this scenario, because you don’t pay any attention to the order of 
the IRPs in the queue. 

To park an IRP, define a persistent context structure for use by the cancel-safe queue package. You need one such structure for 
each separate IRP that you plan to park. Suppose, for example, that your driver processes “red” requests and “blue” requests 
(fanciful names to avoid the baggage that real examples sometimes bring along with them). 

typedef struct _DEVICE_EXTENSION { 
 
  IO_CSQ_IRP_CONTEXT RedContext; 
  IO_CSQ_IRP_CONTEXT BlueContext; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

When you receive a “red” IRP, you specify the context structure in your call to IoCsqInsertIrp: 

IoCsqInsertIrp(&pdx->IrpQueue, RedIrp, &pdx->RedContext); 

How to park a “blue” IRP should be pretty obvious. 

When you later decide you want to complete a parked IRP, you write code like this: 

PIRP RedIrp = IoCsqRemoveIrp(&pdx->IrpQueue, &pdx->RedContext); 
if (RedIrp) 
  { 
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  RedIrp->IoStatus.Status = STATUS_XXX; 
  RedIrp->IoStatus.Information = YYY; 
  IoCompleteRequest(RedIrp, IO_NO_INCREMENT); 
  } 

IoCsqRemoveIrp will return NULL if the IRP associated with the context structure has already been cancelled. 

Bear in mind the following caveats when using this mechanism: 

 It’s up to you to make sure that you haven’t previously parked an IRP using a particular context structure. IoCsqInsertIrp 
is a VOID function and therefore has no way to tell you when you violate this rule. 

 You mustn’t touch an I/O buffer associated with a parked IRP because the IRP can be cancelled (and the I/O buffer 
released!) at any time while it’s parked. You should remove the IRP from the queue before trying to use a buffer. 

5.5 Cancelling I/O Requests  

Just as happens with people in real life, programs sometimes change their mind about the I/O requests they’ve asked you to 
perform for them. We’re not talking about simple fickleness here. Applications might terminate after issuing requests that will 
take a long time to complete, leaving requests outstanding. Such an occurrence is especially likely in the WDM world, where 
the insertion of new hardware might require you to stall requests while the Configuration Manager rebalances resources or 
where you might be told at any moment to power down your device. 

To cancel a request in kernel mode, someone calls IoCancelIrp. The operating system automatically calls IoCancelIrp for 
every IRP that belongs to a thread that’s terminating with requests still outstanding. A user-mode application can call CancelIo 
to cancel all outstanding asynchronous operations issued by a given thread on a file handle. IoCancelIrp would like to simply 
complete the IRP it’s given with STATUS_CANCELLED, but there’s a hitch: IoCancelIrp doesn’t know where you have salted 
away pointers to the IRP, and it doesn’t know for sure whether you’re currently processing the IRP. So it relies on a cancel 
routine you provide to do most of the work of cancelling an IRP. 

It turns out that a call to IoCancelIrp is more of a suggestion than a demand. It would be nice if every IRP that somebody tried 
to cancel really got completed with STATUS_CANCELLED. But it’s OK if a driver wants to go ahead and finish the IRP 
normally if that can be done relatively quickly. You should provide a way to cancel I/O requests that might spend significant 
time waiting in a queue between a dispatch routine and a StartIo routine. How long is significant is a matter for your own 
sound judgment; my advice is to err on the side of providing for cancellation because it’s not that hard to do and makes your 
driver fit better into the operating system. 

5.5.1 If It Weren’t for Multitasking…  
An intricate synchronization problem is associated with cancelling IRPs. Before I explain the problem and the solution, I want 
to describe the way cancellation would work in a world where there was no multitasking and no concern with multiprocessor 
computers. In that utopia, several pieces of the I/O Manager would fit together with your StartIo routine and with a cancel 
routine you’d provide, as follows: 

 When you queue an IRP, you set the CancelRoutine pointer in the IRP to the address of your cancel routine. When you 
dequeue the IRP, you set CancelRoutine to NULL. 

 IoCancelIrp unconditionally sets the Cancel flag in the IRP. Then it checks to see whether the CancelRoutine pointer in 
the IRP is NULL. While the IRP is in your queue, CancelRoutine will be non-NULL. In this case, IoCancelIrp calls your 
cancel routine. Your cancel routine removes the IRP from the queue where it currently resides and completes the IRP with 
STATUS_CANCELLED. 

 Once you dequeue the IRP, IoCancelIrp finds the CancelRoutine pointer set to NULL, so it doesn’t call your cancel 
routine. You process the IRP to completion with reasonable promptness (a concept that calls for engineering judgment), 
and it doesn’t matter to anyone that you didn’t actually cancel the IRP. 

5.5.2 Synchronizing Cancellation  
Unfortunately for us as programmers, we write code for a multiprocessing, multitasking environment in which effects can 
sometimes appear to precede causes. There are many possible race conditions between the queue insertion, queue removal, and 
cancel routines in the naive scenario I just described. For example, what would happen if IoCancelIrp called your cancel 
routine to cancel an IRP that happened to be at the head of your queue? If you were simultaneously removing an IRP from the 
queue on another CPU, you can see that your cancel routine would probably conflict with your queue removal logic. But this is 
just the simplest of the possible races. 

In earlier times, driver programmers dealt with the cancel races by using a global spin lock—the cancel spin lock. Because you 
shouldn’t use this spin lock for synchronization in your own driver, I’ve explained it briefly in the sidebar. Read the sidebar for 
its historical perspective, but don’t plan to use this lock. 
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The Global Cancel Spin Lock 
The original Microsoft scheme for synchronizing IRP cancellation revolved around a global cancel spin lock. 
Routines named IoAcquireCancelSpinLock and IoReleaseCancelSpinLock acquire and release this lock. The 
Microsoft queuing routines IoStartPacket and IoStartNextPacket acquire and release the lock to guard their 
access to the cancel fields in an IRP and to the CurrentIrp field of the device object. IoCancelIrp acquires the 
lock before calling your cancel routine but doesn’t release the lock. Your cancel routine runs briefly under the 
protection of the lock and must call IoReleaseCancelSpinLock before returning.  

In this scheme, your own StartIo routine must also acquire and release the cancel spin lock to safely test the 
Cancel flag in the IRP and to reset the CancelRoutine pointer to NULL. 

Hardly anyone was able to craft queuing and cancel logic that approached being bulletproof using this original 
scheme. Even the best algorithms actually have a residual flaw arising from a coincidence in IRP pointer values. 
In addition, the fact that every driver in the system needed to use a single spin lock two or three times in the 
normal execution path created a measurable performance problem. Consequently, Microsoft now recommends 
that drivers either use the cancel-safe queue routines or else copy someone else’s proven queue logic. Neither 
Microsoft nor I would recommend that you try to design your own queue logic with cancellation because getting 
it right is very hard. 

Nowadays, we handle the cancel races in one of two ways. We can implement our own IRP queue (or, more probably, cut and 
paste someone else’s). Or, in certain kinds of drivers, we can use the IoCsqXxx family of functions. You don’t need to 
understand how the IoCsqXxx functions handle IRP cancellation because Microsoft intends these functions to be a black box. 
I’ll discuss in detail how my own DEVQUEUE handles cancellation, but I first need to tell you a bit more about the internal 
workings of IoCancelIrp. 

5.5.3 Some Details of IRP Cancellation  
Here is a sketch of IoCancelIrp. You need to know this to correctly write IRP-handling code. (This isn’t a copy of the Windows 
XP source code—it’s an abridged excerpt.) 

BOOLEAN IoCancelIrp(PIRP Irp) 
  { 

 
  IoAcquireCancelSpinLock(&Irp->CancelIrql); 

 
  Irp->Cancel = TRUE; 

 
  PDRIVER_CANCEL CancelRoutine = IoSetCancelRoutine(Irp, NULL); 
  if (CancelRoutine) 
    { 
    PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 

 
    (*CancelRoutine)(stack->DeviceObject, Irp); 
    return TRUE; 
    } 
  else 
    { 

 
    IoReleaseCancelSpinLock(Irp->CancelIrql); 
    return FALSE; 
    } 
  } 

1. IoCancelIrp first acquires the global cancel spin lock. As you know if you read the sidebar earlier, lots of old drivers 
contend for the use of this lock in their normal IRP-handling path. New drivers hold this lock only briefly while handling 
the cancellation of an IRP. 

2. Setting the Cancel flag to TRUE alerts any interested party that IoCancelIrp has been called for this IRP. 

3. IoSetCancelRoutine performs an interlocked exchange to simultaneously retrieve the existing CancelRoutine pointer and 
set the field to NULL in one atomic operation. 

4. IoCancelIrp calls the cancel routine, if there is one, without first releasing the global cancel spin lock. The cancel routine 
must release the lock! Note also that the device object argument to the cancel routine comes from the current stack 
location, where IoCallDriver is supposed to have left it. 

5. If there is no cancel routine, IoCancelIrp itself releases the global cancel spin lock. Good idea, huh? 
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5.5.4 How the DEVQUEUE Handles Cancellation  
As I promised, I’ll now show you how the major DEVQUEUE routines work so you can see how they safely cope with IRP 
cancellation. 

DEVQUEUE Internals—Initialization  

The DEVQUEUE object has this declaration in my DEVQUEUE.H and GENERIC.H header files: 

typedef struct _DEVQUEUE { 
 
  LIST_ENTRY head; 
 
  KSPIN_LOCK lock; 
 
  PDRIVER_START StartIo; 
 
  LONG stallcount; 
 
  PIRP CurrentIrp; 
 
  KEVENT evStop; 
 
  NTSTATUS abortstatus; 
  } DEVQUEUE, *PDEVQUEUE; 

InitializeQueue initializes one of these objects like this: 

VOID NTAPI InitializeQueue(PDEVQUEUE pdq, 
  PDRIVER_STARTIO StartIo) 
  { 
  InitializeListHead(&pdq->head); 
  KeInitializeSpinLock(&pdq->lock); 
  pdq->StartIo = StartIo; 
  pdq->stallcount = 1; 
  pdq->CurrentIrp = NULL; 
  KeInitializeEvent(&pdq->evStop, NotificationEvent, FALSE); 
  pdq->abortstatus = (NTSTATUS) 0; 
  } 

1. We use an ordinary (noninterlocked) doubly-linked list to queue IRPs. We don’t need to use an interlocked list because 
we’ll always access it within the protection of our own spin lock. 

2. This spin lock guards access to the queue and other fields in the DEVQUEUE structure. It also takes the place of the 
global cancel spin lock for guarding nearly all of the cancellation process, thereby improving system performance. 

3. Each queue has its own associated StartIo function that we call automatically in the appropriate places. 

4. The stall counter indicates how many times somebody has requested that IRP delivery to StartIo be stalled. Initializing 
the counter to 1 means that the IRP_MN_START_DEVICE handler must call RestartRequests to release an IRP. I’ll 
discuss this issue more fully in Chapter 6. 

5. The CurrentIrp field records the IRP most recently sent to the StartIo routine. Initializing this field to NULL indicates that 
the device is initially idle. 

6. We use this event when necessary to block WaitForCurrentIrp, one of the DEVQUEUE routines involved in handling 
PnP requests. We’ll set the event inside StartNextPacket, which should always be called when the current IRP completes. 

7. We reject incoming IRPs in two situations. The first situation occurs after we irrevocably commit to removing the device, 
when we must start causing new IRPs to fail with STATUS_DELETE_PENDING. The second situation occurs during a 
period of low power, when, depending on the type of device we’re managing, we might choose to cause new IRPs to fail 
with the STATUS_DEVICE_POWERED_OFF code. The abortstatus field records the status code we should use in 
rejecting IRPs in these situations. 

In the steady state after all PnP initialization finishes, each DEVQUEUE will have a zero stallcount and abortstatus. 

DEVQUEUE Internals—Queuing and Cancellation  

Here is the complete implementation of the three DEVQUEUE routines whose usage I just showed you. I cut and pasted the 
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source code directly from GENERIC.SYS and did some minor formatting for the sake of readability on the printed page. I also 
removed some power management code from StartNextPacket because it would just confuse this presentation. 

VOID StartPacket(PDEVQUEUE pdq, PDEVICE_OBJECT fdo, PIRP Irp,  
  PDRIVER_CANCEL cancel) 
  { 
  KIRQL oldirql; 
 
  KeAcquireSpinLock(&pdq->lock, &oldirql); 
  NTSTATUS abortstatus = pdq->abortstatus; 
 
  if (abortstatus) 
    { 
    KeReleaseSpinLock(&pdq->lock, oldirql); 
    Irp->IoStatus.Status = abortstatus; 
    IoCompleteRequest(Irp, IO_NO_INCREMENT); 
    } 
 
  else if (pdq->CurrentIrp ││ pdq->stallcount) 
    { 
 
    IoSetCancelRoutine(Irp, cancel); 
 
    if (Irp->Cancel && IoSetCancelRoutine(Irp, NULL)) 
      { 
      KeReleaseSpinLock(&pdq->lock, oldirql); 
      Irp->IoStatus.Status = STATUS_CANCELLED; 
      IoCompleteRequest(Irp, IO_NO_INCREMENT); 
      } 
 
    else 
      { 
      InsertTailList(&pdq->head, &Irp->Tail.Overlay.ListEntry); 
      KeReleaseSpinLock(&pdq->lock, oldirql); 
      } 
    } 
 
  else 
    { 
    pdq->CurrentIrp = Irp; 
    KeReleaseSpinLockFromDpcLevel(&pdq->lock); 
    (*pdq->StartIo)(fdo, Irp); 
    KeLowerIrql(oldirql); 
    } 
  } 
 
VOID StartNextPacket(PDEVQUEUE pdq, PDEVICE_OBJECT fdo) 
  { 
  KIRQL oldirql; 
 
  KeAcquireSpinLock(&pdq->lock, &oldirql); 
 
  pdq->CurrentIrp = NULL; 
 
  while (!pdq->stallcount && !pdq->abortstatus 
    && !IsListEmpty(&pdq->head)) 
    { 
 
    PLIST_ENTRY next = RemoveHeadList(&pdq->head); 
    PIRP Irp = CONTAINING_RECORD(next, IRP, Tail.Overlay.ListEntry); 
 
    if (!IoSetCancelRoutine(Irp, NULL)) 
      { 
      InitializeListHead(&Irp->Tail.Overlay.ListEntry); 
      continue; 
      } 
 
    pdq->CurrentIrp = Irp; 
    KeReleaseSpinLockFromDpcLevel(&pdq->lock); 
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    (*pdq->StartIo)(fdo, Irp); 
    KeLowerIrql(oldirql); 
    } 
  KeReleaseSpinLock(&pdq->lock, oldirql); 
  } 
 
VOID CancelRequest(PDEVQUEUE pdq, PIRP Irp) 
   { 
   KIRQL oldirql = Irp->CancelIrql; 
 
   IoReleaseCancelSpinLock(DISPATCH_LEVEL); 
 
   KeAcquireSpinLockAtDpcLevel(&pdq->lock); 
 
   RemoveEntryList(&Irp->Tail.Overlay.ListEntry); 
   KeReleaseSpinLock(&pdq->lock, oldirql); 
 
   Irp->IoStatus.Status = STATUS_CANCELLED; 
   IoCompleteRequest(Irp, IO_NO_INCREMENT); 
   } 

Now I’ll explain in detail how these functions work together to provide cancel-safe queuing. I’ll do this by describing a series 
of scenarios that involve all of the code paths. 

1. The Normal Case for StartPacket 

The normal case for StartPacket occurs in the steady state when an IRP, which we assume has not been cancelled, arrives after 
all PnP processing has taken place and at a time when the device was fully powered. In this situation, stallcount and 
abortstatus will both be 0. The path through StartPacket depends on whether the device is busy, as follows: 

 We first acquire the spin lock associated with the queue. (See point 1.) Nearly all the DEVQUEUE routines acquire this 
lock (see points 8 and 15), so we can be sure that no other code on any other CPU can do anything to the queue that 
would invalidate the decisions we’re about to make. 

 If the device is busy, the if statement at point 3 will find CurrentIrp not set to NULL. The if statement at point 5 will also 
fail (I’ll explain later exactly why), so we’ll get to point 6 to put the IRP in the queue. Releasing the spin lock is the last 
thing we do in this code path. 

 If the device is idle, the if statement at point 3 will find CurrentIrp set to NULL. I’ve already assumed that stallcount is 0, 
so we’ll get to point 7 in order to process this IRP. Note how we manage to call StartIo at DISPATCH_LEVEL after 
releasing the spin lock. 

2. The Normal Case for StartNextPacket 

The normal case for StartNextPacket is similar to that for StartPacket. The stallcount and abortstatus members are 0, and the 
IRP at the head of the queue hasn’t been cancelled. StartNextPacket executes these steps: 

 Acquires the queue spin lock (point 8). This protects the queue from simultaneous access by other CPUs trying to execute 
StartPacket or CancelRequest. No other CPU can be trying to execute StartNextPacket because the only caller of 
StartNextPacket is someone who has just finished processing some other IRP. We allow only one IRP to be active at a 
time, so there should never be more than one such entity. 

 If the list is empty, we just release the spin lock and return. If StartPacket had been waiting for the lock, it will now find 
that the device isn’t busy and will call StartIo. 

 If the list isn’t empty, the if test at point 10 will succeed, and we’ll enter a loop looking for the next uncancelled IRP. 

 The first step in the loop (point 11) is to remove the next IRP from the list. Note that RemoveHeadList returns the address 
of a LIST_ENTRY built into the IRP. We use CONTAINING_RECORD to get the address of the IRP. 

 IoSetCancelRoutine (point 12) will return the non-NULL address of the cancel routine originally supplied to StartPacket. 
This is because nothing, least of all IoCancelIrp, has changed this pointer since StartPacket set it. Consequently, we’ll get 
to point 13, where we’ll send this IRP to the StartIo routine at DISPATCH_LEVEL. 

3. IRP Cancelled Prior to StartPacket; Device Idle 

Suppose StartPacket receives an IRP that was cancelled some time ago. At the time IoCancelIrp executed, there wouldn’t have 
been a cancel routine for the IRP. (If there had been, it would have belonged to a driver higher up the stack than us. That other 
driver would have completed the IRP instead of sending it down to us.) All that IoCancelIrp would have done, therefore, is to 
set the Cancel flag in the IRP. 
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If the device is idle, the if test at point 3 fails and we once again go directly to point 7, where we send the IRP to StartIo. In 
effect, we’re going to ignore the Cancel flag. This is fine so long as we process the IRP “relatively quickly,” which is an 
engineering judgment. If we won’t process the IRP with reasonable dispatch, StartIo and the downstream logic for handling the 
IRP should have code to detect the Cancel flag and to complete the IRP early. 

4. IRP Cancelled During StartPacket; Device Idle 

In this scenario, someone calls IoCancelIrp while StartPacket is running. Just as in scenario 3, IoCancelIrp will set the Cancel 
flag and return. We’ll ignore the flag and send the IRP to StartIo. 

5. IRP Cancelled Prior to StartPacket; Device Busy 

The initial conditions are the same as in scenario 3 except that now the device is busy and the if test at point 3 succeeds. We’ll 
set the cancel routine (point 4) and then test the Cancel flag (point 5). Because the Cancel flag is TRUE, we’ll go on to call 
IoSetCancelRoutine a second time. The function will return the non-NULL address we just installed, whereupon we’ll 
complete the IRP with STATUS_CANCELLED. 

6. IRP Cancelled During StartPacket; Device Busy 

This is the first sticky wicket we encounter in the analysis. Assume the same initial conditions as scenario 3, but now the 
device is busy and someone calls IoCancelIrp at about the same time StartPacket is running. There are several possible 
situations now: 

 Suppose we test the Cancel flag (point 5) before IoCancelIrp manages to set that flag. Since we find the flag set to FALSE, 
we go to point 6 and queue the IRP. What happens next depends on how IoCancelIrp, CancelRequest, and 
StartNextPacket interact. StartPacket is in a not-my-problem field at this point, however, and needn’t worry about this 
IRP any more. 

 Suppose we test the Cancel flag (point 5) after IoCancelIrp sets the flag. We have already set the cancel pointer (point 4). 
What happens next depends on whether IoCancelIrp or we are first to execute the IoSetCancelRoutine call that changes 
the cancel pointer back to NULL. Recall that IoSetCancelRoutine is an atomic operation based on an 
InterlockedExchangePointer. If we execute our call first, we get back a non-NULL value and complete the IRP. 
IoCancelIrp gets back NULL and therefore doesn’t call any cancel routine. 

 On the other hand, if IoCancelIrp executes its IoSetCancelRoutine first, we will get back NULL from our call. We’ll go 
on to queue the IRP (point 6) and to enter that not-my-problem field I just referred to. IoCancelIrp will call our cancel 
routine, which will block (point 15) until we release the queue spin lock. Our cancel routine will eventually complete the 
IRP. 

7. Normal IRP Cancellation 

IRPs don’t get cancelled very often, so I’m not sure it’s really right to use the word normal in this context. But if there were a 
normal scenario for IRP cancellation, this would be it: someone calls IoCancelIrp to cancel an IRP that’s in our queue, but the 
cancel process runs to conclusion before StartNextPacket can possibly try to reach it. The potential race between 
StartNextPacket and CancelRequest therefore can’t materialize. Events will unfold this way: 

 IoCancelIrp acquires the global cancel spin lock, sets the Cancel flag, and executes IoSetCancelRoutine to 
simultaneously retrieve the address of our cancel routine and set the cancel pointer in the IRP to NULL. (Refer to the 
earlier sketch of IoCancelIrp.) 

 IoCancelIrp calls our cancel routine without releasing the lock. The cancel routine locates the correct DEVQUEUE and 
calls CancelRequest. CancelRequest immediately releases the global cancel spin lock (point 14). 

 CancelRequest acquires the queue spin lock (point 15). Past this point, there can be no more races with other 
DEVQUEUE routines. 

 CancelRequest removes the IRP from the queue (point 16) and then releases the spin lock. If StartNextPacket were to run 
now, it wouldn’t find this IRP on the queue. 

 CancelRequest completes the IRP with STATUS_CANCELLED (point 17). 

8. Pathological IRP Cancellation 

The most difficult IRP cancellation scenario to handle occurs when IoCancelIrp tries to cancel the IRP at the head of our queue 
while StartNextPacket is active. At point 12, StartNextPacket will nullify the cancel pointer. If the return value from 
IoSetCancelRoutine is not NULL, we’ve beaten IoCancelIrp to the punch and can go on to process the IRP (point 13). 

If the return value from IoSetCancelRoutine is NULL, however, it means that IoCancelIrp has gotten there first. CancelRequest 
is probably waiting right now on another CPU for us to release the queue spin lock, whereupon it will dequeue the IRP and 
complete it. The trouble is, we’ve already removed the IRP from the queue. I’m a bit proud of the trick I devised for coping 
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with the situation: we simply initialize the linking field of the IRP as if it were the anchor of a list! The call to RemoveEntryList 
at point 16 in CancelRequest will perform several motions with no net result to “remove” the IRP from the degenerate list it 
now inhabits. 

9. Things That Can’t Happen or Won’t Matter 

The preceding list exhausts the possibilities for conflict between these DEVQUEUE routines and IoCancelIrp. (There is still a 
race between IRP_MJ_CLEANUP and IRP cancellation, but I’ll discuss that a bit later in this chapter.) Here is a list of things 
that might be causing you needless worry: 

 Could CancelRoutine be non-NULL when StartPacket gets control? It better not be, because a driver is supposed to 
remove its cancel routine from an IRP before sending the IRP to another driver. StartPacket contains an ASSERT to this 
effect. If you engage the Driver Verifier for your driver, it will verify that you nullify the cancel routine pointer in IRPs 
that you pass down the stack, but it will not verify that the drivers above you have done this for IRPs they pass to you. 

 Could the cancel argument to StartPacket be NULL? It better not be: you might have noticed that much of the cancel 
logic I described hinges on whether the IRP’s CancelRoutine pointer is NULL. StartPacket contains an ASSERT to test 
this assumption. 

 Could someone call IoCancelIrp twice? The thing to think about is that the Cancel flag might be set in an IRP because of 
some number of primeval calls to IoCancelIrp and that someone might call IoCancelIrp one more time (getting a little 
impatient, are we?) while StartPacket is active. This wouldn’t matter because our first test of the Cancel flag occurs after 
we install our cancel pointer. We would find the flag set to TRUE in this hypothetical situation and would therefore 
execute the second call to IoSetCancelRoutine. Either IoCancelIrp or we win the race to reset the cancel pointer to NULL, 
and whoever wins ends up completing the IRP. The residue from the primeval calls is simply irrelevant. 

5.5.5 Cancelling IRPs You Create or Handle  
Sometimes you’ll want to cancel an IRP that you’ve created or passed to another driver. Great care is required to avoid an 
obscure, low-probability problem. Just for the sake of illustration, suppose you want to impose an overall 5-second timeout on 
a synchronous I/O operation. If the time period elapses, you want to cancel the operation. Here is some naive code that, you 
might suppose, would execute this plan: 

SomeFunction() 
  { 
  KEVENT event; 
  IO_STATUS_BLOCK iosb; 
  KeInitializeEvent(&event, ...); 
  PIRP Irp = IoBuildSynchronousFsdRequest(..., &event, &iosb); 
  NTSTATUS status = IoCallDriver(DeviceObject, Irp); 
  if (status == STATUS_PENDING) 
    { 
    LARGE_INTEGER timeout; 
    timeout.QuadPart = -5 * 10000000; 
 
    if (KeWaitForSingleObject(&event, Executive, KernelMode, 
      FALSE, &timeout) == STATUS_TIMEOUT) 
      { 
      IoCancelIrp(Irp);  // <== don't do this! 
 
      KeWaitForSingleObject(&event, Executive, KernelMode, 
        FALSE, NULL); 
      } 
    } 
  } 

The first call (A) to KeWaitForSingleObject waits until one of two things happens. First, someone might complete the IRP, and 
the I/O Manager’s cleanup code will then run and signal event. 

Alternatively, the timeout might expire before anyone completes the IRP. In this case, KeWaitForSingleObject will return 
STATUS_TIMEOUT. The IRP should now be completed quite soon in one of two paths. The first completion path is taken 
when whoever was processing the IRP was really just about done when the timeout happened and has, therefore, already called 
(or will shortly call) IoCompleteRequest. The other completion path is through the cancel routine that, we must assume, the 
lower driver has installed. That cancel routine should complete the IRP. Recall that we have to trust other kernel-mode 
components to do their jobs, so we have to rely on whomever we sent the IRP to complete it soon. Whichever path is taken, the 
I/O Manager’s completion logic will set event and store the IRP’s ending status in iosb. The second call (B) to 
KeWaitForSingleObject makes sure that the event and iosb objects don’t pass out of scope too soon. Without that second call, 
we might return from this function, thereby effectively deleting event and iosb. The I/O Manager might then end up walking on 
memory that belongs to some other subroutine. 
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The problem with the preceding code is truly minuscule. Imagine that someone manages to call IoCompleteRequest for this 
IRP right around the same time we decide to cancel it by calling IoCancelIrp. Maybe the operation finishes shortly after the 5
‐second timeout terminates the first KeWaitForSingleObject, for example. IoCompleteRequest initiates a process that finishes 
with a call to IoFreeIrp. If the call to IoFreeIrp were to happen before IoCancelIrp was done mucking about with the IRP, you 
can see that IoCancelIrp could inadvertently corrupt memory when it touched the CancelIrql, Cancel, and CancelRoutine fields 
of the IRP. It’s also possible, depending on the exact sequence of events, for IoCancelIrp to call a cancel routine, just before 
someone clears the CancelRoutine pointer in preparation for completing the IRP, and for the cancel routine to be in a race with 
the completion process. 

It’s very unlikely that the scenario I just described will happen. But, as someone (James Thurber?) once said in connection with 
the chances of being eaten by a tiger on Main Street (one in a million, as I recall), “Once is enough.” This kind of bug is almost 
impossible to find, so you want to prevent it if you can. I’ll show you two ways of cancelling your own IRPs. One way is 
appropriate for synchronous IRPs, the other for asynchronous IRPs. 

Don’t Do This… 
A once common but now deprecated technique for avoiding the tiger-on-main-street bug described in the text 
relies on the fact that, in earlier versions of Windows, the call to IoFreeIrp happened in the context of an APC 
in the thread that originates the IRP. You could make sure you were in that same thread, raise IRQL to 
APC_LEVEL, check whether the IRP had been completed yet, and (if not) call IoCancelIrp. You could be sure of 
blocking the APC and the problematic call to IoFreeIrp.  

You shouldn’t rely on future releases of Windows always using an APC to perform the cleanup for a synchronous 
IRP. Consequently, you shouldn’t rely on boosting IRQL to APC_LEVEL as a way to avoid a race between 
IoCancelIrp and IoFreeIrp. 

Cancelling Your Own Synchronous IRP  

Refer to the example in the preceding section, which illustrates a function that creates a synchronous IRP, sends it to another 
driver, and then wants to wait no longer than 5 seconds for the IRP to complete. The key thing we need to accomplish in a 
solution to the race between IoFreeIrp and IoCancelIrp is to prevent the call to IoFreeIrp from happening until after any 
possible call to IoCancelIrp. We do this by means of a completion routine that returns 
STATUS_MORE_PROCESSING_REQUIRED, as follows: 

SomeFunction() 
  { 
  KEVENT event; 
  IO_STATUS_BLOCK iosb; 
  KeInitializeEvent(&event, ...); 
  PIRP Irp = IoBuildSynchronousFsdRequest(..., &event, &iosb); 
  IoSetCompletionRoutine(Irp, OnComplete, (PVOID) &event, TRUE, TRUE, TRUE); 
  NTSTATUS status = IoCallDriver(...); 
  if (status == STATUS_PENDING) 
    { 
    LARGE_INTEGER timeout; 
    timeout.QuadPart = -5 * 10000000; 
 
    if (KeWaitForSingleObject(&event, Executive, KernelMode, 
      FALSE, &timeout) == STATUS_TIMEOUT) 
      { 
      IoCancelIrp(Irp);  // <== okay in this context 
 
      KeWaitForSingleObject(&event, Executive, KernelMode, 
        FALSE, NULL); 
      } 
    } 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  } 
 
NTSTATUS OnComplete(PDEVICE_OBJECT junk, PIRP Irp, PVOID pev) 
  { 
  if (Irp->PendingReturned) 
    KeSetEvent((PKEVENT) pev, IO_NO_INCREMENT, FALSE); 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

The new code in boldface prevents the race. Suppose IoCallDriver returns STATUS_PENDING. In a normal case, the operation 
will complete normally, and a lower-level driver will call IoCompleteRequest. Our completion routine gains control and signals 
the event on which our mainline is waiting. Because the completion routine returns 
STATUS_MORE_PROCESSING_REQUIRED, IoCompleteRequest will then stop working on this IRP. We eventually regain 
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control in our SomeFunction and notice that our wait (the one labeled A) terminated normally. The IRP hasn’t yet been cleaned 
up, though, so we need to call IoCompleteRequest a second time to trigger the normal cleanup mechanism. 

Now suppose we decide we want to cancel the IRP and that Thurber’s tiger is loose so we have to worry about a call to 
IoFreeIrp releasing the IRP out from under us. Our first wait (labeled A) finishes with STATUS_TIMEOUT, so we perform a 
second wait (labeled B). Our completion routine sets the event on which we’re waiting. It will also prevent the cleanup 
mechanism from running by returning STATUS_MORE_PROCESSING_REQUIRED. IoCancelIrp can stomp away to its 
heart’s content on our hapless IRP without causing any harm. The IRP can’t be released until the second call to 
IoCompleteRequest from our mainline, and that can’t happen until IoCancelIrp has safely returned. 

Notice that the completion routine in this example calls KeSetEvent only when the IRP’s PendingReturned flag is set to 
indicate that the lower driver’s dispatch routine returned STATUS_PENDING. Making this step conditional is an optimization 
that avoids the potentially expensive step of setting the event when SomeFunction won’t be waiting on the event in the first 
place. 

I want to mention one last fine point in connection with the preceding code. The call to IoCompleteRequest at the very end of 
the subroutine will trigger a process that includes setting event and iosb so long as the IRP originally completed with a success 
status. In the first edition, I had an additional call to KeWaitForSingleObject at this point to make sure that event and iosb 
could not pass out of scope before the I/O Manager was done touching them. A reviewer pointed out that the routine that 
references event and iosb will already have run by the time IoCompleteRequest returns; consequently, the additional wait is not 
needed. 

Cancelling Your Own Asynchronous IRP  

To safely cancel an IRP that you’ve created with IoAllocateIrp or IoBuildAsynchronousFsdRequest, you can follow this 
general plan. First define a couple of extra fields in your device extension structure: 

typedef struct _DEVICE_EXTENSION { 
  PIRP TheIrp; 
  ULONG CancelFlag; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

Initialize these fields just before you call IoCallDriver to launch the IRP: 

pdx->TheIrp = IRP; 
pdx->CancelFlag = 0; 
IoSetCompletionRoutine(Irp, 
  (PIO_COMPLETION_ROUTINE) CompletionRoutine, 
  (PVOID) pdx, TRUE, TRUE, TRUE); 
IoCallDriver(..., Irp); 

If you decide later on that you want to cancel this IRP, do something like the following: 

VOID CancelTheIrp(PDEVICE_EXENSION pdx) 
  { 
 
  PIRP Irp =(PIRP) InterlockedExchangePointer((PVOID*)&pdx->TheIrp, NULL); 
  if (Irp) 
    { 
    IoCancelIrp(Irp); 
 
    if (InterlockedExchange(&pdx->CancelFlag, 1) 
 
      IoFreeIrp(Irp); 
    } 
  } 

This function dovetails with the completion routine you install for the IRP: 

NTSTATUS CompletionRoutine(PDEVICE_OBJECT junk, PIRP Irp,  
  PDEVICE_EXTENSION pdx) 
  { 
 
  if (InterlockedExchangePointer(&pdx->TheIrp, NULL) 
 
  ││ InterlockedExchange(&pdx->CancelFlag, 1)) 
 
    IoFreeIrp(Irp); 
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  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

The basic idea underlying this deceptively simple code is that whichever routine sees the IRP last (either CompletionRoutine or 
CancelTheIrp) will make the requisite call to IoFreeIrp, at point 3 or 6. Here’s how it works: 

 The normal case occurs when you don’t ever try to cancel the IRP. Whoever you sent the IRP to eventually completes it, 
and your completion routine gets control. The first InterlockedExchangePointer (point 4) returns the non-NULL address 
of the IRP. Since this is not 0, the compiler short-circuits the evaluation of the Boolean expression and executes the call to 
IoFreeIrp. Any subsequent call to CancelTheIrp will find the IRP pointer set to NULL at point 1 and won’t do anything 
else. 

 Another easy case to analyze occurs when CancelTheIrp is called long before anyone gets around to completing this IRP, 
which means that we don’t have any actual race. At point 1, we nullify the TheIrp pointer. Because the IRP pointer was 
previously not NULL, we go ahead and call IoCancelIrp. In this situation, our call to IoCancelIrp will cause somebody to 
complete the IRP reasonably soon, and our completion routine runs. It sees TheIrp as NULL and goes on to evaluate the 
second half of the Boolean expression. Whoever executes the InterlockedExchange on CancelFlag first will get back 0 
and skip calling IoFreeIrp. Whoever executes it second will get back 1 and will call IoFreeIrp. 

 Now for the case we were worried about: suppose someone is completing the IRP right about the time CancelTheIrp 
wants to cancel it. The worst that can happen is that our completion routine runs before we manage to call IoCancelIrp. 
The completion routine sees TheIrp as NULL and therefore exchanges CancelFlag with 1. Just as in the previous case, 
the routine will get 0 as the return value and skip the IoFreeIrp call. IoCancelIrp can safely operate on the IRP. (It will 
presumably just return without calling a cancel routine because whoever completed this IRP will undoubtedly have set 
the CancelRoutine pointer to NULL first.) 

The appealing thing about the technique I just showed you is its elegance: we rely solely on interlocked operations and 
therefore don’t need any potentially expensive synchronization primitives. 

Cancelling Someone Else’s IRP  

To round out our discussion of IRP cancellation, suppose someone sends you an IRP that you then forward to another driver. 
Situations might arise where you’d like to cancel that IRP. For example, perhaps you need that IRP out of the way so you can 
proceed with a power-down operation. Or perhaps you’re waiting synchronously for the IRP to finish and you’d like to impose 
a timeout as in the first example of this section. 

To avoid the IoCancelIrp/IoFreeIrp race, you need to have your own completion routine in place. The details of the coding 
then depend on whether you’re waiting for the IRP. 

Canceling Someone Else’s IRP on Which You’re Waiting 

Suppose your dispatch function passes down an IRP and waits synchronously for it to complete. (See usage scenario 7 at the 
end of this chapter for the cookbook version.) Use code like this to cancel the IRP if it doesn’t finish quickly enough to suit 
you: 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  KEVENT event; 
  KeInitializeEvent(&event, NotificationEvent, FALSE); 
  IoSetCompletionRoutine(Irp, OnComplete, (PVOID) &event, TRUE, TRUE, TRUE); 
  NTSTATUS status = IoCallDriver(...); 
  if (status == STATUS_PENDING) 
    { 
    LARGE_INTEGER timeout; 
    timeout.QuadPart = -5 * 10000000; 
    if (KeWaitForSingleObject(&event, Executive, KernelMode, 
      FALSE, &timeout) == STATUS_TIMEOUT) 
      { 
      IoCancelIrp(Irp); 
      KeWaitForSingleObject(&event, Executive, KernelMode, 
        FALSE, NULL); 
      } 
    } 
  status = Irp->IoStatus.Status; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return status; 
  } 
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NTSTATUS OnComplete(PDEVICE_OBJECT junk, PIRP Irp, PVOID pev) 
  { 
  if (Irp->PendingReturned) 
    KeSetEvent((PKEVENT) pev, IO_NO_INCREMENT, FALSE); 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

This code is almost the same as what I showed earlier for canceling your own synchronous IRP. The only difference is that this 
example involves a dispatch routine, which must return a status code. As in the earlier example, we install our own completion 
routine to prevent the completion process from running to its ultimate conclusion before we get past the point where we might 
call IoCancelIrp. 

You might notice that I didn’t say anything about whether the IRP itself was synchronous or asynchronous. This is because the 
difference between the two types of IRP only matters to the driver that creates them in the first place. File system drivers must 
make distinctions between synchronous and asynchronous IRPs with respect to how they call the system cache manager, but 
device drivers don’t typically have this complication. What matters to a lower-level driver is whether it’s appropriate to block a 
thread in order to handle an IRP synchronously, and that depends on the current IRQL and whether you’re in an arbitrary or a 
nonarbitrary thread. 

Canceling Someone Else’s IRP on Which You’re Not Waiting 

Suppose you’ve forwarded somebody else’s IRP to another driver, but you weren’t planning to wait for it to complete. For 
whatever reason, you decide later on that you’d like to cancel that IRP. 

typedef struct _DEVICE_EXTENSION { 
  PIRP TheIrp; 
  ULONG CancelFlag; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) OnComplete,  
    (PVOID) pdx, 
    TRUE, TRUE, TRUE); 
  pdx->CancelFlag = 0; 
  pdx->TheIrp = Irp; 
  IoMarkIrpPending(Irp); 
  IoCallDriver(pdx->LowerDeviceObject, Irp); 
  return STATUS_PENDING; 
  } 
 
VOID CancelTheIrp(PDEVICE_EXTENSION pdx) 
  { 
  PIRP Irp = (PIRP) InterlockedExchangePointer( 
    (PVOID*) &pdx->TheIrp, NULL); 
  if (Irp) 
    { 
    IoCancelIrp(Irp); 
    if (InterlockedExchange(&pdx->CancelFlag, 1)) 
      IoCompleteRequest(Irp, IO_NO_INCREMENT); 
    } 
  } 
 
NTSTATUS OnComplete(PDEVICE_OBJECT fdo, PIRP Irp, 
  PDEVICE_EXTENSION pdx) 
  { 
  if (InterlockedExchangePointer((PVOID*) &pdx->TheIrp, NULL) 
    ││ InterlockedExchange(&pdx->CancelFlag, 1)) 
    return STATUS_SUCCESS; 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

This code is similar to the code I showed earlier for cancelling your own asynchronous IRP. Here, however, allowing 
IoCompleteRequest to finish completing the IRP takes the place of the call to IoFreeIrp we made when we were dealing with 
our own IRP. If the completion routine is last on the scene, it returns STATUS_SUCCESS to allow IoCompleteRequest to finish 
completing the IRP. If CancelTheIrp is last on the scene, it calls IoCompleteRequest to resume the completion processing that 
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the completion routine short-circuited by returning STATUS_MORE_PROCESSING_REQUIRED. 

One extremely subtle point regarding this example is the call to IoMarkIrpPending in the dispatch routine. Ordinarily, it would 
be safe to just do this step conditionally in the completion routine, but not this time. If we should happen to call CancelTheIrp 
in the context of some thread other than the one in which the dispatch routine runs, the pending flag is needed so that 
IoCompleteRequest will schedule an APC to clean up the IRP in the proper thread. The easiest way to make that true is 
simple—always mark the IRP pending. 

5.5.6 Handling IRP_MJ_CLEANUP  
Closely allied to the subject of IRP cancellation is the I/O request with the major function code IRP_MJ_CLEANUP. To 
explain how you should process this request, I need to give you a little additional background. 

When applications and other drivers want to access your device, they first open a handle to the device. Applications call 
CreateFile to do this; drivers call ZwCreateFile. Internally, these functions create a kernel file object and send it to your driver 
in an IRP_MJ_CREATE request. When the entity that opened the handle is done accessing your driver, it will call another 
function, such as CloseHandle or ZwClose. Internally, these functions send your driver an IRP_MJ_CLOSE request. Just 
before sending you the IRP_MJ_CLOSE, however, the I/O Manager sends you an IRP_MJ_CLEANUP so that you can cancel 
any IRPs that belong to the same file object but that are still sitting in one of your queues. From the perspective of your driver, 
the one thing all the requests have in common is that the stack location you receive points to the same file object in every 
instance. 

Figure 5-10 illustrates your responsibility when you receive IRP_MJ_CLEANUP. You should run through your queues of IRPs, 
removing those that are tagged as belonging to the same file object. You should complete those IRPs with 
STATUS_CANCELLED. 

Figure 5-10. Driver responsibility for IRP_MJ_CLEANUP.  

File Objects 
Ordinarily, just one driver (the function driver, in fact) in a device stack implements all three of the following 
requests: IRP_MJ_CREATE, IRP_MJ_CLOSE, and IRP_MJ_CLEANUP. The I/O Manager creates a file object (a 
regular kernel object) and passes it in the I/O stack to the dispatch routines for all three of these IRPs. Anybody 
who sends an IRP to a device should have a pointer to the same file object and should insert that pointer into 
the I/O stack as well. The driver that handles these three IRPs acts as the owner of the file object in some sense, 
in that it’s the driver that’s entitled to use the FsContext and FsContext2 fields of the object. So your 
DispatchCreate routine can put something into one of these context fields for use by other dispatch routines and 
for eventual cleanup by your DispatchClose routine. 

It’s easy to get confused about IRP_MJ_CLEANUP. In fact, programmers who have a hard time understanding IRP 
cancellation sometimes decide (incorrectly) to just ignore this IRP. You need both cancel and cleanup logic in your driver, 
though: 

 IRP_MJ_CLEANUP means a handle is being closed. You should purge all the IRPs that pertain to that handle. 

 The I/O Manager and other drivers cancel individual IRPs for a variety of reasons that have nothing to do with closing 
handles. 

 One of the times the I/O Manager cancels IRPs is when a thread terminates. Threads often terminate because their parent 
process is terminating, and the I/O Manager will also automatically close all handles that are still open when a process 
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terminates. The coincidence between this kind of cancellation and the automatic handle closing contributes to the 
incorrect idea that a driver can get by with support for just one concept. 

In this book, I’ll show you two ways of painlessly implementing support for IRP_MJ_CLEANUP, depending on whether 
you’re using one of my DEVQUEUE objects or one of Microsoft’s cancel-safe queues. 

5.5.7 Cleanup with a DEVQUEUE  
If you’ve used a DEVQUEUE to queue IRPs, your IRP_MJ _CLEANUP routine will be astonishingly simple: 

NTSTATUS DispatchCleanup(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  PFILE_OBJECT fop = stack->FileObject; 
  CleanupRequests(&pdx->dqReadWrite, fop, STATUS_CANCELLED); 
  return CompleteRequest(Irp, STATUS_SUCCESS, 0); 
  } 

CleanupRequests will remove all IRPs from the queue that belong to the same file object and will complete those IRPs with 
STATUS_CANCELLED. Note that you complete the IRP_MJ_CLEANUP request itself with STATUS_SUCCESS. 

CleanupRequests contains a wealth of detail: 

VOID CleanupRequests(PDEVQUEUE pdq, PFILE_OBJECT fop, NTSTATUS status) 
  { 
  LIST_ENTRY cancellist; 
 
  InitializeListHead(&cancellist); 
  KIRQL oldirql; 
  KeAcquireSpinLock(&pdq->lock, &oldirql); 
  PLIST_ENTRY first = &pdq->head; 
  PLIST_ENTRY next; 
 
  for (next = first->Flink; next != first; ) 
    { 
    PIRP Irp = CONTAINING_RECORD(next, IRP, 
      Tail.Overlay.ListEntry); 
 
    PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
 
    PLIST_ENTRY current = next; 
    next = next->Flink; 
    if (fop && stack->FileObject != fop) 
      continue; 
 
    if (!IoSetCancelRoutine(Irp, NULL)) 
      continue; 
 
    RemoveEntryList(current); 
    InsertTailList(&cancellist, current); 
    } 
 
  KeReleaseSpinLock(&pdq->lock, oldirql); 
  while (!IsListEmpty(&cancellist)) 
    { 
    next = RemoveHeadList(&cancellist); 
    PIRP Irp = CONTAINING_RECORD(next, IRP, 
      Tail.Overlay.ListEntry); 
    Irp->IoStatus.Status = status; 
    IoCompleteRequest(Irp, IO_NO_INCREMENT); 
    } 
  } 

1. Our strategy will be to move the IRPs that need to be cancelled into a private queue under protection of the queue’s spin 
lock. Hence, we initialize the private queue and acquire the spin lock before doing anything else. 

2. This loop traverses the entire queue until we return to the list head. Notice the absence of a loop increment step—the 
third clause in the for statement. I’ll explain in a moment why it’s desirable to have no loop increment. 
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3. If we’re being called to help out with IRP_MJ_CLEANUP, the fop argument is the address of a file object that’s about to 
be closed. We’re supposed to isolate the IRPs that pertain to the same file object, which requires us to first find the stack 
location. 

4. If we decide to remove this IRP from the queue, we won’t thereafter have an easy way to find the next IRP in the main 
queue. We therefore perform the loop increment step here. 

5. This especially clever statement comes to us courtesy of Jamie Hanrahan. We need to worry that someone might be trying 
to cancel the IRP that we’re currently looking at during this iteration. They could get only as far as the point where 
CancelRequest tries to acquire the spin lock. Before getting that far, however, they necessarily had to execute the 
statement inside IoCancelIrp that nullifies the cancel routine pointer. If we find that pointer set to NULL when we call 
IoSetCancelRoutine, therefore, we can be sure that someone really is trying to cancel this IRP. By simply skipping the 
IRP during this iteration, we allow the cancel routine to complete it later on. 

6. Here’s where we take the IRP out of the main queue and put it in the private queue instead. 

7. Once we finish moving IRPs into the private queue, we can release our spin lock. Then we cancel all the IRPs we moved. 

5.5.8 Cleanup with a Cancel-Safe Queue  
To easily clean up IRPs that you’ve queued by calling IoCsqInsertIrp, simply adopt the convention that the peek context 
parameter you use with IoCsqRemoveNextIrp, if not NULL, will be the address of a FILE_OBJECT. Your IRP_MJ_CANCEL 
routine will look like this (compare with the Cancel sample in the DDK): 

NTSTATUS DispatchCleanup(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  PFILE_OBJECT fop = stack->FileObject; 
  PIRP qirp; 
  while ((qirp = IoCsqRemoveNextIrp(&pdx->csq, fop))) 
    CompleteRequest(qirp, STATUS_CANCELLED, 0); 
  return CompleteRequest(Irp, STATUS_SUCCESS, 0); 
  } 

Implement your PeekNextIrp callback routine this way: 

PIRP PeekNextIrp(PIO_CSQ csq, PIRP Irp, PVOID PeekContext) 
  { 
  PDEVICE_EXTENSION pdx = GET_DEVICE_EXTENSION(csq); 
  PLIST_ENTRY next = Irp ? Irp->Tail.Overlay.ListEntry.Flink  
    : pdx->IrpQueueAnchor.Flink; 
  while (next != &pdx->IrpQueueAnchor) 
    { 
    PIRP NextIrp = CONTAINING_RECORD(next, IRP, 
      Tail.Overlay.ListEntry); 
    PIO_STACK_LOCATION stack = 
      IoGetCurrentIrpStackLocation(NextIrp); 
    if (!PeekContext ││ (PFILE_OBJECT) PeekContext == stack->FileObject) 
      return NextIrp; 
    next = next->Flink; 
    } 
  return NULL; 
  } 

5.6 Summary—Eight IRP-Handling Scenarios  

Notwithstanding the length of the preceding explanations, IRP handling is actually quite easy. By my reckoning, only eight 
significantly different scenarios are in common use, and the code required to handle those scenarios is pretty simple. In this 
final section of this chapter, I’ve assembled some pictures and code samples to help you sort out all the theoretical knowledge. 

Because this section is intended as a cookbook that you can use without completely understanding every last nuance, I’ve 
included calls to the remove lock functions that I’ll discuss in detail in Chapter 6. I’ve also used the shorthand 
IoSetCompletionRoutine[Ex] to indicate places where you ought to call IoSetCompletionRoutineEx, in a system where it’s 
available, to install a completion routine. I’ve also used an overloaded version of my CompleteRequest helper routine that 
doesn’t change IoStatus.Information in these examples because that would be correct for IRP_MJ_PNP and not incorrect for 
other types of IRP. 
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5.6.1 Scenario 1—Pass Down with Completion Routine  
In this scenario, someone sends you an IRP. You’ll forward this IRP to the lower driver in your PnP stack, and you’ll do some 
postprocessing in a completion routine. See Figure 5-11. Adopt this strategy when all of the following are true: 

 Someone is sending you an IRP (as opposed to you creating the IRP yourself). 

 The IRP might arrive at DISPATCH_LEVEL or in an arbitrary thread (so you can’t block while the lower drivers handle 
the IRP). 

 Your postprocessing can be done at DISPATCH_LEVEL if need be (because completion routines might be called at 
DISPATCH_LEVEL). 

Figure 5-11. Pass down with completion routine.  

Your dispatch and completion routines will have this skeletal form: 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status); 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, 
    (PIO_COMPLETION_ROUTINE) CompletionRoutine, pdx, TRUE, TRUE, TRUE); 
  return IoCallDriver(fdo, Irp); 
  } 
 
NTSTATUS CompletionRoutine(PDEVICE_OBJECT fdo, PIRP Irp,PDEVICE_EXTENSION pdx) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); 
  <whatever post processing you wanted to do> 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return STATUS_SUCCESS; 
  } 

5.6.2 Scenario 2—Pass Down Without Completion Routine  
In this scenario, someone sends you an IRP. You’ll forward the IRP to the lower driver in your PnP stack, but you don’t need to 
do anything with the IRP. See Figure 5-12. Adopt this strategy, which can also be called the “Let Mikey try it” approach, when 
both of the following are true: 

 Someone is sending you an IRP (as opposed to you creating the IRP yourself). 

 You don’t process this IRP, but a driver below you might want to. 
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Figure 5-12. Pass down without completion routine.  

This scenario is often used in a filter driver, which should act as a simple conduit for every IRP that it doesn’t specifically need 
to filter. 

I recommend writing the following helper routine, which you can use whenever you need to employ this strategy. 

NTSTATUS ForwardAndForget(PDEVICE_EXTENSION pdx, PIRP Irp) 
  { 
  //PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status); 
  IoSkipCurrentIrpStackLocation (Irp); 
  status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return status; 
  } 

5.6.3 Scenario 3—Complete in the Dispatch Routine  
In this scenario, you immediately complete an IRP that someone sends you. See Figure 5-13. Adopt this strategy when: 

 Someone is sending you an IRP (as opposed to you creating the IRP yourself), and 

 You can process the IRP immediately. This would be the case for many kinds of I/O control (IOCTL) requests. Or 

 Something is obviously wrong with the IRP, in which case causing it to fail immediately might be the kindest thing to do. 

Figure 5-13. Complete in the dispatch routine.  

Your dispatch routine has this skeletal form: 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  <process the IRP> 
  Irp->IoStatus.Status = STATUS_XXX; 
  Irp->IoStatus.Information = YYY; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return STATUS_XXX; 
  } 
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5.6.4 Scenario 4—Queue for Later Processing  
In this scenario, someone sends you an IRP that you can’t handle right away. You put the IRP on a queue for later processing in 
a StartIo routine. See Figure 5-14. Adopt this strategy when both of the following are true: 

 Someone is sending you an IRP (as opposed to you creating the IRP yourself). 

 You don’t know that you can process the IRP right away. This would frequently be the case for IRPs that require 
serialized hardware access, such as reads and writes. 

Figure 5-14. Queue for later processing.  

Although you have many choices, a typical way of implementing this scenario involves using a DEVQUEUE to manage the 
IRP queue. The following fragments show how various parts of a driver for a programmed I/O interrupt-driven device would 
interact. Only the parts shown in boldface pertain specifically to IRP handling. 

typedef struct _DEVICE_EXTENSION { 

 
  DEVQUEUE dqReadWrite; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo) 
  { 

 
  InitializeQueue(&pdx->dqReadWrite, StartIo); 
  IoInitializeDpcRequest(fdo, (PIO_DPC_ROUTINE) DpcForIsr); 

 
  } 
 
NTSTATUS DispatchReadWrite(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  IoMarkIrpPending(Irp); 
  StartPacket(&pdx->dqReadWrite, fdo, Irp, CancelRoutine); 
  return STATUS_PENDING; 
  } 
 
VOID CancelRoutine(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  CancelRequest(&pdx->dqReadWrite, Irp); 
  } 
VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 

 
  } 
 
BOOLEAN OnInterrupt(PKINTERRUPT junk, PDEVICE_EXTENSION pdx) 
  { 

 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
  Irp->IoStatus.Status = STATUS_XXX; 
  Irp->IoStatus.Information = YYY; 
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  IoRequestDpc(pdx->DeviceObject, NULL, pdx); 
 
  } 
 
VOID DpcForIsr(PKDPC junk1, PDEVICE_OBJECT fdo, PIRP junk2, 
  PDEVICE_EXTENSION pdx) 
  { 
 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
  StartNextPacket(&pdx->dqReadWrite, fdo); 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  } 

5.6.5 Scenario 5—Your Own Asynchronous IRP  
In this scenario, you create an asynchronous IRP, which you forward to another driver. See Figure 5-15. Adopt this strategy 
when the following conditions are true: 

You need another driver to perform an operation on your behalf. 

Either you’re in an arbitrary thread (which you shouldn’t block) or you’re running at DISPATCH_LEVEL (in which case you 
can’t block). 

Figure 5-15. Your own asynchronous IRP.  

You’ll have code like the following in your driver. This won’t necessarily be in an IRP dispatch routine, and the target device 
object won’t necessarily be the next lower one in your PnP stack. Look in the DDK documentation for full details about how to 
call IoBuildAsynchronousFsdRequest and IoAllocateIrp. 

SOMETYPE SomeFunction(PDEVICE_EXTENSION pdx, PDEVICE_OBJECT DeviceObject) 
  { 
 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, (PVOID) 42); 
 
  if (!NT_SUCCESS(status)) 
 
    return <status>; 
  PIRP Irp; 
  Irp = IoBuildAsynchronousFsdRequest(IRP_MJ_XXX, DeviceObject, ...); 

-or- 

Irp = IoAllocateIrp(DeviceObject->StackSize, FALSE); 
  PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
  stack->MajorFunction = IRP_MJ_XXX; 
  <additional initialization) 
  IoSetCompletionRoutine[Ex]([pdx->DeviceObject,] Irp,  
    (PIO_COMPLETION_ROUTINE) CompletionRoutine, pdx, 
    TRUE, TRUE, TRUE); 
 
  ObReferenceObject(DeviceObject); 
  IoCallDriver(DeviceObject, Irp); 
 
  ObDereferenceObject(DeviceObject); 
  } 
 
NTSTATUS CompletionRoutine(PDEVICE_OBJECT junk, PIRP Irp, PDEVICE_EXTENSION pdx) 
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  { 
  <IRP cleanup -- see below> 
  IoFreeIrp(Irp); 
 
  IoReleaseRemoveLock(&pdx->RemoveLock, (PVOID) 42); 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

The calls to IoAcquireRemoveLock and IoReleaseRemoveLock (the points labeled A) are necessary only if the device to which 
you’re sending this IRP is the LowerDeviceObject in your PnP stack. The 42 is an arbitrary tag—it’s simply too complicated to 
try to acquire the remove lock after the IRP exists just so we can use the IRP pointer as a tag in the debug build. 

The calls to ObReferenceObject and ObDereferenceObject that precede and follow the call to IoCallDriver (the points labeled 
B) are necessary only when you’ve used IoGetDeviceObjectPointer to obtain the DeviceObject pointer and when the 
completion routine (or something it calls) will release the resulting reference to a device or file object. 

You do not have both the A code and the B code—you have one set or neither. 

If you use IoBuildAsynchronousFsdRequest to build an IRP_MJ_READ or IRP_MJ_WRITE, you have some relatively 
complex cleanup to perform in the completion routine. 

Cleanup for DO_DIRECT_IO Target  

If the target device object indicates the DO_DIRECT_IO buffering method, you’ll have to release the memory descriptor lists 
that the I/O Manager allocated for your data buffer: 

NTSTATUS CompletionRoutine(...) 
  { 
  PMDL mdl; 
  while ((mdl = Irp->MdlAddress)) 
    { 
    Irp->MdlAddress = mdl->Next; 
    MmUnlockPages(mdl); // <== only if you earlier 
                        // called MmProbeAndLockPages 
    IoFreeMdl(mdl); 
    } 
  IoFreeIrp(Irp); 
  <optional release of remove lock> 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

Cleanup for DO_BUFFERED_IO Target  

If the target device object indicates DO_BUFFERED_IO, the I/O Manager will create a system buffer. Your completion routine 
should theoretically copy data from the system buffer to your own buffer and then release the system buffer. Unfortunately, the 
flag bits and fields needed to do this are not documented in the DDK. My advice is to simply not send reads and writes directly 
to a driver that uses buffered I/O. Instead, call ZwReadFile or ZwWriteFile. 

Cleanup for Other Targets  

If the target device indicates neither DO_DIRECT_IO nor DO_BUFFERED_IO, there is no additional cleanup. Phew! 

5.6.6 Scenario 6—Your Own Synchronous IRP  
In this scenario, you create a synchronous IRP, which you forward to another driver. See Figure 5-16. Adopt this strategy when 
all of the following are true: 

 You need another driver to perform an operation on your behalf. 

 You must wait for the operation to complete before proceeding. 

 You’re running at PASSIVE_LEVEL in a nonarbitrary thread. 
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Figure 5-16. Your own synchronous IRP.  

You’ll have code like the following in your driver. This won’t necessarily be in an IRP dispatch routine, and the target device 
object won’t necessarily be the next lower one in your PnP stack. Look in the DDK documentation for full details about how to 
call IoBuildSynchronousFsdRequest and IoBuildDeviceIoControlRequest. 

SOMETYPE SomeFunction(PDEVICE_EXTENSION pdx, PDEVICE_OBJECT DeviceObject) 
  { 
 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, 
    (PVOID) 42); 
 
  if (!NT_SUCCESS(status)) 
 
    return <status>; 
  PIRP Irp; 
  KEVENT event; 
  IO_STATUS_BLOCK iosb; 
  KeInitializeEvent(&event, NotificationEvent, FALSE); 
  Irp = IoBuildSynchronousFsdRequest(IRP_MJ_XXX, 
    DeviceObject, ..., &event, &iosb); 

-or- 

  Irp = IoBuildDeviceIoControlRequest(IOCTL_XXX, DeviceObject, 
    ..., &event, &iosb); 
  status = IoCallDriver(DeviceObject, Irp); 
  if (status == STATUS_PENDING) 
    { 
    KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); 
    status = iosb.Status; 
    } 
 
  IoReleaseRemoveLock(&pdx->RemoveLock, (PVOID) 42); 

 

  } 

As in scenario 5, the calls to IoAcquireRemoveLock and IoReleaseRemoveLock (the points labeled A) are necessary only if the 
device to which you’re sending this IRP is the LowerDeviceObject in your PnP stack. The 42 is an arbitrary tag—it’s simply 
too complicated to try to acquire the remove lock after the IRP exists just so we can use the IRP pointer as a tag in the debug 
build. 

We’ll use this scenario frequently in Chapter 12 to send USB Request Blocks (URBs) synchronously down the stack. In the 
examples we’ll study there, we’ll usually be doing this in the context of an IRP dispatch routine that independently acquires the 
remove lock. Therefore, you won’t see the extra remove lock code in those examples. 

You do not clean up after this IRP! The I/O Manager does it automatically. 

5.6.7 Scenario 7—Synchronous Pass Down  
In this scenario, someone sends you an IRP. You pass the IRP down synchronously in your PnP stack and then continue 
processing. See Figure 5-17. Adopt this strategy when all of the following are true: 
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 Someone is sending you an IRP (as opposed to you creating the IRP yourself). 

 You’re running at PASSIVE_LEVEL in a nonarbitrary thread. 

 Your postprocessing for the IRP must be done at PASSIVE_LEVEL. 

Figure 5-17. Synchronous pass down.  

A good example of when you would need to use this strategy is while processing an IRP_MN_START_DEVICE flavor of PnP 
request. 

I recommend writing two helper routines to make it easy to perform this synchronous pass-down operation: 

NTSTATUS ForwardAndWait(PDEVICE_EXTENSION pdx, PIRP Irp) 
  { 
  KEVENT event; 
  KeInitialize(&event, NotificationRoutine, FALSE); 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
    ForwardAndWaitCompletionRoutine, &event, TRUE, TRUE, TRUE); 
  NTSTATUS status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
  if (status == STATUS_PENDING) 
    { 
    KeWaitForSingleObject(&event, Executive, KernelMode, 
      FALSE, NULL); 
    status = Irp->IoStatus.Status; 
    } 
  return status; 
  } 
 
NTSTATUS ForwardAndWaitCompletionRoutine(PDEVICE_OBJECT fdo, 
  PIRP Irp, PKEVENT pev) 
  { 
  if (Irp->PendingReturned) 
    KeSetEvent(pev, IO_NO_INCREMENT, FALSE); 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

The caller of this routine needs to call IoCompleteRequest for this IRP and to acquire and release the remove lock. It’s 
inappropriate for ForwardAndWait to contain the remove lock logic because the caller might not want to release the lock so 
soon. 

Note that the Windows XP DDK function IoForwardIrpSynchronously encapsulates these same steps. 

5.6.8 Scenario 8—Asynchronous IRP Handled Synchronously  
In this scenario, you create an asynchronous IRP, which you forward to another driver. Then you wait for the IRP to complete. 
See Figure 5-18. Adopt this strategy when all of the following are true: 

 You need another driver to perform an operation on your behalf. 

 You need to wait for the operation to finish before you can go on. 

 You’re running at APC_LEVEL in a nonarbitrary thread. 
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Figure 5-18. Asynchronous IRP handled synchronously.  

I use this technique when I’ve acquired an executive fast mutex and need to perform a synchronous operation. Your code 
combines elements you’ve seen before (compare with scenarios 5 and 7): 

SOMETYPE SomeFunction(PDEVICE_EXTENSION pdx, PDEVICE_OBJECT DeviceObject) 
  { 
 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, (PVOID) 42); 
 
  if (!NT_SUCCESS(status)) 
 
    return <status>; 
  PIRP Irp; 
  Irp = IoBuildAsynchronousFsdRequest(IRP_MJ_XXX, DeviceObject, ...); 

-or- 

  Irp = IoAllocateIrp(DeviceObject->StackSize, FALSE); 
  PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
  Stack->MajorFunction = IRP_MJ_XXX; 
  <additional initialization) 
  KEVENT event; 
  KeInitializeEvent(&event, NotificationEvent, FALSE); 
  IoSetCompletionRoutine[Ex]([pdx->DeviceObject], Irp, 
    (PIO_COMPLETION_ROUTINE) CompletionRoutine, 
    &event, TRUE, TRUE, TRUE); 
  status = IoCallDriver(DeviceObject, Irp); 
  if (status == STATUS_PENDING) 
    KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); 
 
  IoReleaseRemoveLock(&pdx->RemoveLock, (PVOID) 42); 
  } 
 
NTSTATUS CompletionRoutine(PDEVICE_OBJECT junk, PIRP Irp, PKEVENT pev) 
  { 
  if (Irp->PendingReturned) 
    KeSetEvent(pev, EVENT_INCREMENT, FALSE); 
  <IRP cleanup -- see above> 
  IoFreeIrp(Irp); 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

The portions that differ from scenario 5 are in boldface. 

As in earlier scenarios, the calls to IoAcquireRemoveLock and IoReleaseRemoveLock (the points labeled A) are necessary only 
if the device to which you’re sending this IRP is the LowerDeviceObject in your PnP stack. The 42 is an arbitrary tag—it’s 
simply too complicated to try to acquire the remove lock after the IRP exists just so we can use the IRP pointer as a tag in the 
debug build. 

Note that you must still perform all the same cleanup discussed earlier because the I/O Manager doesn’t clean up after an 
asynchronous IRP. You might also need to provide for cancelling this IRP, in which case you should use the technique  
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Chapter 6  

6 Plug and Play for Function Drivers  

The Plug and Play (PnP) Manager communicates information and requests to device drivers via I/O request packets (IRPs) 
with the major function code IRP_MJ_PNP. This type of request was new with Microsoft Windows 2000 and the Windows 
Driver Model (WDM): previous versions of Microsoft Windows NT required device drivers to do most of the work of 
detecting and configuring their devices. Happily, WDM drivers can let the PnP Manager do that work. To work with the PnP 
Manager, driver authors will have to understand a few relatively complicated IRPs. 

Plug and Play requests play two roles in the WDM. In their first role, these requests instruct the driver when and how to 
configure or deconfigure itself and the hardware. Table 6-1 lists the roughly two dozen minor functions that a PnP request can 
designate. Only a bus driver handles the nine minor functions shown with an asterisk; a filter driver or function driver would 
simply pass these IRPs down the stack. Of the remaining minor functions, three have special importance to a typical filter 
driver or function driver. The PnP Manager uses IRP_MN_START_DEVICE to inform the function driver which I/O resources 
it has assigned to the hardware and to instruct the function driver to do any necessary hardware and software setup so that the 
device can function. IRP_MN_STOP_DEVICE tells the function driver to shut down the device. IRP_MN_REMOVE_DEVICE 
tells the function driver to shut down the device and release the associated device object. I’ll discuss these three minor 
functions in detail in this chapter and the next; along the way, I’ll also describe the purpose of the other unstarred minor 
functions that a filter driver or function driver might need to handle. 

IRP Minor Function Code Description 

IRP_MN_START_DEVICE  Configure and initialize device 

IRP_MN_QUERY_REMOVE_DEVICE  Can device be removed safely? 

IRP_MN_REMOVE_DEVICE  Shut down and remove device 

IRP_MN_CANCEL_REMOVE_DEVICE  Ignore previous QUERY_REMOVE 

IRP_MN_STOP_DEVICE  Shut down device 

IRP_MN_QUERY_STOP_DEVICE  Can device be shut down safely? 

IRP_MN_CANCEL_STOP_DEVICE  Ignore previous QUERY_STOP 

IRP_MN_QUERY_DEVICE_RELATIONS  Get list of devices that are related in some specified way 

IRP_MN_QUERY_INTERFACE  Obtain direct-call function addresses 

IRP_MN_QUERY_CAPABILITIES  Determine capabilities of device 

IRP_MN_QUERY_RESOURCES* Determine boot configuration 

IRP_MN_QUERY_RESOURCE_REQUIREMENTS* Determine I/O resource requirements 

IRP_MN_QUERY_DEVICE_TEXT* Obtain description or location string 

IRP_MN_FILTER_RESOURCE_REQUIREMENTS  Modify I/O resource requirements list 

IRP_MN_READ_CONFIG* Read configuration space 

IRP_MN_WRITE_CONFIG* Write configuration space 

IRP_MN_EJECT* Eject the device 

IRP_MN_SET_LOCK* Lock/unlock device against ejection 

IRP_MN_QUERY_ID* Determine hardware ID of device 

IRP_MN_QUERY_PNP_DEVICE_STATE  Determine state of device 

IRP_MN_QUERY_BUS_INFORMATION* Determine parent bus type 

IRP_MN_DEVICE_USAGE_NOTIFICATION  Note creation or deletion of paging, dump, or hibernate file 

IRP_MN_SURPRISE_REMOVAL  Note fact that device has been removed 

Table 6-1. Minor Function Codes for IRP_MJ_PNP (* Indicates Handled Only by Bus Drivers)  

A second and more complicated purpose of PnP requests is to guide the driver through a series of state transitions, as illustrated 
in Figure 6-1. WORKING and STOPPED are the two fundamental states of the device. The STOPPED state is the initial state 
of a device immediately after you create the device object. The WORKING state indicates that the device is fully operational. 
Two of the intermediate states—PENDINGSTOP and PENDINGREMOVE—arise because of queries that all drivers for a 
device must process before making the transition from WORKING. SURPRISEREMOVED occurs after the sudden and 
unexpected removal of the physical hardware. 

I introduced my DEVQUEUE queue management routines in the preceding chapter. The main reason for needing a custom 
queuing scheme in the first place is to facilitate the PnP state transitions shown in Figure 6-1 and the power state transitions I’ll 
discuss in Chapter 8. I’ll describe the DEVQUEUE routines that support these transitions in this chapter. 
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Figure 6-1. State diagram for a device.  

This chapter also discusses PnP notifications, which provide a way for drivers and user-mode programs to learn 
asynchronously about the arrival and departure of devices. Properly handling these notifications is important for applications 
that work with devices that can be hot plugged and unplugged. 

I’ve devoted a separate chapter (Chapter 11) to bus and multifunction drivers. 

TIP  
You can save yourself a lot of work by copying and using my GENERIC.SYS library. Instead of writing your own 
elaborate dispatch function for IRP_MJ_PNP, simply delegate this IRP to GenericDispatchPnp. See the 
Introduction for a table that lists the callback functions your driver supplies to perform device-specific 
operations. I’ve used the same callback function names in this chapter. In addition, I’m basically using 
GENERIC’s PnP handling code for all of the examples. 

6.1 IRP_MJ_PNP Dispatch Function  

A simplified version of the dispatch function for IRP_MJ_PNP might look like the following: 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
 
  ULONG fcn = stack->MinorFunction; 
 
 
  static NTSTATUS (*fcntab[])(PDEVICE_OBJECT, PIRP) = { 
    HandleStartDevice,         // IRP_MN_START_DEVICE 
    HandleQueryRemove,         // IRP_MN_QUERY_REMOVE_DEVICE 
    <etc.>, 
    }; 
 
 
  if (fcn >= arraysize(fcntab)) 
    return DefaultPnpHandler(fdo, Irp); 
 
  return (*fcntab[fcn])(fdo, Irp); 
  } 
 
NTSTATUS DefaultPnpHandler(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
 
  IoSkipCurrentIrpStackLocation(Irp); 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
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  return IoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 

1. All the parameters for the IRP, including the all-important minor function code, are in the stack location. Hence, we 
obtain a pointer to the stack location by calling IoGetCurrentIrpStackLocation. 

2. We expect the IRP’s minor function code to be one of those listed in Table 6‐1. 

3. A method of handling the two dozen possible minor function codes is to write a subdispatch function for each one we’re 
going to handle and then to define a table of pointers to those subdispatch functions. Many of the entries in the table will 
be DefaultPnpHandler. Subdispatch functions such as HandleStartDevice will take pointers to a device object and an IRP 
as parameters and will return an NTSTATUS code. 

4. If we get a minor function code we don’t recognize, it’s probably because Microsoft defined a new one in a release of the 
DDK after the DDK with which we built our driver. The right thing to do is to pass the minor function code down the 
stack by calling the default handler. By the way, arraysize is a macro in one of my own header files that returns the 
number of elements in an array. It’s defined as #define arraysize(p) (sizeof(p)/sizeof((p)[0])). 

5. This is the operative statement in the dispatch routine, in which we index the table of subdispatch functions and call the 
right one. 

6. The DefaultPnpHandler routine is essentially the ForwardAndForget function I showed in connection with IPR-handling 
scenario 2 in the preceding chapter. We’re passing the IRP down without a completion routine and therefore use 
IoSkipCurrentIrpStackLocation to retard the IRP stack pointer in anticipation that IoCallDriver will immediately advance 
it. 

Using a Function Pointer Table 
Using a table of function pointers to dispatch handlers for minor function codes as I’m showing you in 
DispatchPnp entails some slight danger. A future version of the operating system might change the meaning of 
some of the codes. That’s not a practical worry except during the beta test phase of a system, though, because 
a later change would invalidate an unknown number of existing drivers. I like using a table of pointers to 
subdispatch functions because having separate functions for the minor function codes seems like the right 
engineering solution to me. If I were designing a C++ class library, for instance, I’d define a base class that 
used virtual functions for each of the minor function codes.  

Most programmers would probably place a switch statement in their DispatchPnp routine. You can simply 
recompile your driver to conform to any reassignment of minor function codes. Recompilation will also 
highlight—by producing compilation errors!—name changes that might signal functionality shifts. That 
happened a time or two during the Microsoft Windows 98 and Windows 2000 betas, in fact. Furthermore, an 
optimizing compiler should be able to use a jump table to produce slightly faster code for a switch statement 
than for calls to subdispatch functions. 

I think the choice between a switch statement and a table of function pointers is mostly a matter of taste, with 
readability and modularity winning over efficiency in my own evaluation. You can avoid uncertainty during a 
beta test by placing appropriate assertions in your code. For example, the HandleStartDevice function can 
assert that stack->MinorFunction == IRP_MN_START_DEVICE. If you recompile your driver with each new beta 
DDK, you’ll catch any number reassignments or name changes. 

6.2 Starting and Stopping Your Device  

Working with the bus driver, the PnP Manager automatically detects hardware and assigns I/O resources in Windows XP and 
Windows 98/Me. Most modern devices have PnP features that allow system software to detect them automatically and to 
electronically determine which I/O resources they require. In the case of legacy devices that have no electronic means of 
identifying themselves to the operating system or of expressing their resource requirements, the registry database contains the 
information needed for the detection and assignment operations. 

NOTE  
I find it hard to give an abstract definition of the term I/O resource that isn’t circular (for example, a resource 
used for I/O), so I’ll give a concrete one instead. The WDM encompasses four standard I/O resource types: I/O 
ports, memory registers, direct memory access (DMA) channels, and interrupt requests. 

When the PnP Manager detects hardware, it consults the registry to learn which filter drivers and function drivers will manage 
the hardware. As I discussed in Chapter 2, the PnP Manager loads these drivers (if necessary—one or more of them might 
already be present, having been called into memory on behalf of some other hardware) and calls their AddDevice functions. 
The AddDevice functions, in turn, create device objects and link them into a stack. At this point, the stage is set for the PnP 
Manager, working with all of the device drivers, to assign I/O resources. 

The PnP Manager initially creates a list of resource requirements for each device and allows the drivers to filter that list. I’m 
going to ignore the filtering step for now because not every driver will need to participate in this step. Given a list of 
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requirements, the PnP Manager can then assign resources so as to harmonize the potentially conflicting requirements of all the 
hardware present on the system. Figure 6-2 illustrates how the PnP Manager can arbitrate between two different devices that 
have overlapping requirements for an interrupt request number, for example. 

Figure 6-2. Arbitration of conflicting I/O resource requirements.  

6.2.1 IRP_MN_START_DEVICE  
Once the resource assignments are known, the PnP Manager notifies each device by sending it a PnP request with the minor 
function code IRP_MN_START_DEVICE. Filter drivers are typically not interested in this IRP, so they usually pass the request 
down the stack by using the DefaultPnpHandler technique I showed you earlier in “IRP_MJ_PNP Dispatch Function.” 
Function drivers, on the other hand, need to do a great deal of work on the IRP to allocate and configure additional software 
resources and to prepare the device for operation. This work needs to be done, furthermore, at PASSIVE_LEVELafter the lower 
layers in the device hierarchy have processed this IRP. 

You might implement IRP_MN_START_DEVICE in a subdispatch routine—reached from the DispatchPnp dispatch routine 
shown earlier—that has the following skeletal form: 

NTSTATUS HandleStartDevice(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
 
  NTSTATUS status = ForwardAndWait(fdo, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status); 
 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
 
  status = StartDevice(fdo, <additional args>); 
 
  EnableAllInterfaces (pdx, True); 
 
  return CompleteRequest(Irp, status); 
  } 

1. The bus driver uses the incoming setting of IoStatus.Status to determine whether upper-level drivers have handled this 
IRP. The bus driver makes a similar determination for several other minor functions of IRP_MJ_PNP. We therefore need 
to initialize the Status field of the IRP to STATUS_SUCCESS before passing it down. 

2. ForwardAndWait is the function I showed you in Chapter 5 in connection with IRP-handling scenario 7 (synchronous 
pass down). The function returns a status code. If the status code denotes some sort of failure in the lower layers, we 
propagate the code back to our own caller. Because our completion routine returned STATUS_MORE_PRO-
CESSING_REQUIRED, we halted the completion process inside IoCompleteRequest. Therefore, we have to complete the 
request all over again, as shown here. 

3. Our configuration information is buried inside the stack parameters. I’ll show you where a bit further on. 

4. StartDevice is a helper routine you write to handle the details of extracting and dealing with configuration information. In 
my sample drivers, I’ve placed it in a separate source module named READWRITE.CPP. I’ll explain shortly what 
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arguments you would pass to this routine besides the address of the device object. 

5. EnableAllInterfaces enables all the device interfaces that you registered in your AddDevice routine. This step allows 
applications to find your device when they use SetupDiXxx functions to enumerate instances of your registered interfaces. 

6. Since ForwardAndWait short-circuited the completion process for the START_DEVICE request, we need to complete the 
IRP a second time. In this example, I’m using an overloaded version of CompleteRequest that doesn’t change 
IoStatus.Information, in accordance with the DDK rules for handling PnP requests. 

You might guess (correctly!) that the IRP_MN_START_DEVICE handler has work to do that concerns the transition from the 
initial STOPPED state to the WORKING state. I can’t explain that yet because I need to first explain the ramifications of other 
PnP requests on state transitions, IRP queuing, and IRP cancellation. So I’m going to concentrate for a while on the 
configuration aspects of the PnP requests. 

The I/O stack location’s Parameters union has a substructure named StartDevice that contains the configuration information 
you pass to the StartDevice helper function. See Table 6-2. 

Field Name Description 

AllocatedResources  Contains raw resource assignments 

AllocatedResourcesTranslated  Contains translated resource assignments 

Table 6-2. Fields in the Parameters.StartDevice Substructure of an I/O Stack Location  

Both AllocatedResources and AllocatedResourcesTranslated are instances of the same kind of data structure, called a 
CM_RESOURCE_LIST. This seems like a very complicated data structure if you judge only by its declaration in WDM.H. As 
used in a start device IRP, however, all that remains of the complication is a great deal of typing. The “lists” will have just one 
entry, a CM_PARTIAL_RESOURCE_LIST that describes all of the I/O resources assigned to the device. You can use statements 
like the following to access the two lists: 

PCM_PARTIAL_RESOURCE_LIST raw, translated; 
raw = &stack->Parameters.StartDevice 
  .AllocatedResources->List[0].PartialResourceList; 
translated = &stack->Parameters.StartDevice 
  .AllocatedResourcesTranslated->List[0].PartialResourceList; 

The only difference between the last two statements is the reference to either the AllocatedResources or 
AllocatedResourcesTranslated member of the parameters structure. 

The raw and translated resource lists are the logical arguments to send to the StartDevice helper function, by the way: 

status = StartDevice(fdo, raw, translated); 

There are two different lists of resources because I/O buses and the CPU can address the same physical hardware in different 
ways. The raw resources contain numbers that are bus-relative, whereas the translated resources contain numbers that are 
system-relative. Prior to the WDM, a kernel-mode driver might expect to retrieve raw resource values from the registry, the 
Peripheral Component Interconnect (PCI) configuration space, or some other source, and to translate them by calling routines 
such as HalTranslateBusAddress and HalGetInterruptVector. See, for example, Art Baker’s The Windows NT Device Driver 
Book: A Guide for Programmers (Prentice Hall, 1997), pages 122-62. Both the retrieval and translation steps are done by the 
PnP Manager now, and all a WDM driver needs to do is access the parameters of a start device IRP as I’m now describing. 

What you actually do with the resource descriptions inside your StartDevice function is a subject for Chapter 7. 

6.2.2 IRP_MN_STOP_DEVICE  
The stop device request tells you to shut your device down so that the PnP Manager can reassign I/O resources. At the 
hardware level, shutting down involves pausing or halting current activity and preventing further interrupts. At the software 
level, it involves releasing the I/O resources you configured at start device time. Within the framework of the 
dispatch/subdispatch architecture I’ve been illustrating, you might have a subdispatch function like this one: 

NTSTATUS HandleStopDevice(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
 
  <complicated stuff> 
 
  StopDevice(fdo, oktouch); 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
 
  return DefaultPnpHandler(fdo, Irp); 
  } 
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1. Right about here, you need to insert some more or less complicated code that concerns IRP queuing and cancellation. I’ll 
show you the code that belongs in this spot further on in this chapter in “While the Device Is Stopped.” 

2. In contrast with the start device case, in which we passed the request down and then did device-dependent work, here we 
do our device-dependent stuff first and then pass the request down. The idea is that our hardware will be quiescent by the 
time the lower layers see this request. I wrote a helper function named StopDevice to do the shutdown work. The second 
argument indicates whether it will be OK for StopDevice to touch the hardware if it needs to. Refer to the sidebar 
“Touching the Hardware When Stopping the Device” for an explanation of how to set this argument. 

3. We always pass PnP requests down the stack. In this case, we don’t care what the lower layers do with the request, so we 
can simply use the DefaultPnpHandler code to perform the mechanics. 

The StopDevice helper function called in the preceding example is code you write that essentially reverses the configuration 
steps you took in StartDevice. I’ll show you that function in the next chapter. One important fact about the function is that you 
should code it in such a way that it can be called more than once for a single call to StartDevice. It’s not always easy for a PnP 
IRP handler to know whether you’ve already called StopDevice, but it is easy to make StopDevice proof against duplicative 
calls. 

Touching the Hardware When Stopping the Device 
In the skeleton of HandleStopDevice, I used an oktouch variable that I didn’t show you how to initialize. In the 
scheme I’m teaching you in this book for writing a driver, the StopDevice function gets a BOOLEAN argument 
that indicates whether it should be safe to address actual I/O operations to the hardware. The idea behind this 
argument is that you might want to send certain instructions to your device as part of your shutdown protocol, 
but there might be some reason why you can’t. You might want to tell your Personal Computer Memory Card 
International Association (PCMCIA) modem to hang up the phone, for example, but there’s no point in trying if 
the end user has already removed the modem card from the computer.  

There’s no certain way to know whether your hardware is physically connected to the computer except by trying 
to access it. Microsoft recommends, however, that if you succeeded in processing a START_DEVICE request, 
you should go ahead and try to access your hardware when you process STOP_DEVICE and certain other PnP 
requests. When I discuss how you track PnP state changes later in this chapter, I’ll honor this recommendation 
by setting the oktouch argument to TRUE if we believe that the device is currently working and FALSE 
otherwise. 

6.2.3 IRP_MN_REMOVE_DEVICE  
Recall that the PnP Manager calls the AddDevice function in your driver to notify you about an instance of the hardware you 
manage and to give you an opportunity to create a device object. Instead of calling a function to do the complementary 
operation, however, the PnP Manager sends you a PnP IRP with the minor function code IRP_MN_REMOVE_DEVICE. In 
response to that, you’ll do the same things you did for IRP_MN_STOP_DEVICE to shut down your device, and then you’ll 
delete the device object: 

NTSTATUS HandleRemoveDevice(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  <complicated stuff> 
  DeregisterAllInterfaces(pdx); 
  StopDevice(fdo, oktouch); 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  NTSTATUS status = DefaultPnpHandler(fdo, Irp); 
  RemoveDevice(fdo); 
  return status; 
  } 

This fragment looks similar to HandleStopDevice, with a couple of additions. DeregisterAllInterfaces will disable any device 
interfaces you registered (probably in AddDevice) and enabled (probably in StartDevice), and it will release the memory 
occupied by their symbolic link names. RemoveDevice will undo all the work you did inside AddDevice. For example: 

VOID RemoveDevice(PDEVICE_OBJECT fdo) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  IoDetachDevice(pdx->LowerDeviceObject); 
 
  IoDeleteDevice(fdo); 
  } 

1. This call to IoDetachDevice balances the call AddDevice made to IoAttachDeviceToDeviceStack. 
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2. This call to IoDeleteDevice balances the call AddDevice made to IoCreateDevice. Once this function returns, you should 
act as if the device object no longer exists. If your driver isn’t managing any other devices, it will shortly be unloaded 
from memory too. 

Note, by the way, that you don’t get a stop device request followed by a remove device request. The remove device request 
implies a shutdown, so you do both pieces of work in reply. 

6.2.4 IRP_MN_SURPRISE_REMOVAL  
Sometimes the end user has the physical ability to remove a device without going through any user interface elements first. If 
the system detects that such a surprise removal has occurred, or that the device appears to be broken, it sends the driver a PnP 
request with the minor function code IRP_MN_SURPRISE_REMOVAL. It will later send an IRP_MN_REMOVE_DEVICE. 
Unless you previously set the SurpriseRemovalOK flag while processing IRP_MN_QUERY_CAPABILITIES (as I’ll discuss in 
Chapter 8), some platforms also post a dialog box to inform the user that it’s potentially dangerous to yank hardware out of the 
computer. 

In response to the surprise removal request, a device driver should disable any registered interfaces. This will give applications 
a chance to close handles to your device if they’re on the lookout for the notifications I discuss later in “PnP Notifications.” 
Then the driver should release I/O resources and pass the request down: 

NTSTATUS HandleSurpriseRemoval(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  <complicated stuff> 
  EnableAllInterfaces(pdx, FALSE); 
  StopDevice(fdo, oktouch); 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  return DefaultPnpHandler(fdo, Irp); 
  } 

Whence IRP_MN_SURPRISE_REMOVAL? 
The surprise removal PnP notification doesn’t happen as a simple and direct result of the end user yanking the 
device from the computer. Some bus drivers can know when a device disappears. For example, removing a 
universal serial bus (USB) device generates an electronic signal that the bus driver notices. For many other 
buses, however, there isn’t any signal to alert the bus driver. The PnP Manager therefore relies on other 
methods to decide that a device has disappeared.  

A function driver can signal the disappearance of its device (if it knows) by calling IoInvalidateDeviceState and 
then returning any of the values PNP_DEVICE_FAILED, PNP_DEVICE_REMOVED, or PNP_DEVICE_DISABLED 
from the ensuing IRP_MN_QUERY_PNP_DEVICE_STATE. You might want to do this in your own driver if—to give 
one example of many—your interrupt service routines (ISRs) read all 1 bits from a status port that normally 
returns a mixture of 1s and 0s. More commonly, a bus driver calls IoInvalidateDeviceRelations to trigger a 
re-enumeration and then fails to report the newly missing device. It’s worth knowing that when the end user 
removes a device while the system is hibernating or in another low-power state, when power is restored, the 
driver receives a series of power management IRPs before it receives the IRP_MN_SURPRISE_REMOVAL 
request. 

What these facts mean, practically speaking, is that your driver should be able to cope with errors that might 
arise from having your device suddenly not present. 

6.3 Managing PnP State Transitions  

As I said at the outset of this chapter, WDM drivers need to track their devices through the state transitions diagrammed in 
Figure 6-1. This state tracking also ties in with how you queue and cancel I/O requests. Cancellation in turn implicates the 
global cancel spin lock, which is a performance bottleneck in a multi-CPU system. The standard model of IRP processing with 
Microsoft queuing functions can’t solve all these interrelated problems. In this section, therefore, I’ll describe how my 
DEVQUEUE object helps you cope with the complications Plug and Play creates. 

Figure 6-3 illustrates the states of a DEVQUEUE. In the READY state, the queue accepts and forwards requests to your StartIo 
routine in such a way that the device stays busy. In the STALLED state, however, the queue doesn’t forward IRPs to StartIo, 
even when the device is idle. In the REJECTING state, the queue doesn’t even accept new IRPs. Figure 6-4 illustrates the flow 
of IRPs through the queue. 
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Figure 6-3. States of a DEVQUEUE object.  

Figure 6-4. Flow of IRPs through a DEVQUEUE.  

Table 6-3 lists the support functions you can use with a DEVQUEUE. I discussed how to use InitializeQueue, StartPacket, 
StartNextPacket, and CancelRequest in the preceding chapter. Now it’s time to discuss all the other functions. 

Support Function Description 

AbortRequests  Aborts current and future requests 

AllowRequests  Undoes effect of previous AbortRequests 

AreRequestsBeingAborted  Are we currently aborting new requests? 

CancelRequest  Generic cancel routine 

CheckBusyAndStall  Checks for idle device and stalls requests in one atomic operation 

CleanupRequests  Cancels all requests for a given file object in order to service IRP_MJ_CLEANUP 

GetCurrentIrp  Determines which IRP is currently being processed by associated StartIo routine 

InitializeQueue  Initializes DEVQUEUE object 

RestartRequests  Restarts a stalled queue 

StallRequests  Stalls the queue 

StartNextPacket  Dequeues and starts the next request 

StartPacket  Starts or queues a new request 

WaitForCurrentIrp  Waits for current IRP to finish 

Table 6-3. DEVQUEUE Service Routines  

 The real point of using a DEVQUEUE instead of one of the queue objects defined in the DDK is that a DEVQUEUE makes it 
easier to manage the transitions between PnP states. In all of my sample drivers, the device extension contains a state variable 
with the imaginative name state. I also define an enumeration named DEVSTATE whose values correspond to the PnP states. 
When you initialize your device object in AddDevice, you’ll call InitializeQueue for each of your device queues and also 
indicate that the device is in the STOPPED state: 

NTSTATUS AddDevice(...) 
  { 
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  PDEVICE_EXTENSION pdx = ...; 
  InitializeQueue(&pdx->dqReadWrite, StartIo); 
  pdx->state = STOPPED; 
 
  } 

After AddDevice returns, the system sends IRP_MJ_PNP requests to direct you through the various PnP states the device can 
assume. 

NOTE  
If your driver uses GENERIC.SYS, GENERIC will initialize your DEVQUEUE object or objects for you. Just be sure 
to give GENERIC the addresses of those objects in your call to InitializeGenericExtension. 

6.3.1 Starting the Device  
A newly initialized DEVQUEUE is in a STALLED state, such that a call to StartPacket will queue a request even when the 
device is idle. You’ll keep the queue (or queues) in the STALLED state until you successfully process 
IRP_MN_START_DEVICE, whereupon you’ll execute code like the following: 

NTSTATUS HandleStartDevice(...) 
  { 
  status = StartDevice(...); 
  if (NT_SUCCESS(status)) 
    { 
    pdx->state = WORKING; 
    RestartRequests(&pdx->dqReadWrite, fdo); 
    } 
  } 

You record WORKING as the current state of your device, and you call RestartRequests for each of your queues to release any 
IRPs that might have arrived between the time AddDevice ran and the time you received the IRP_MN_START_DEVICE 
request. 

6.3.2 Is It OK to Stop the Device?  
The PnP Manager always asks your permission before sending you an IRP_MN_STOP_DEVICE. The query takes the form of 
an IRP_MN_QUERY_STOP_DEVICE request that you can cause to succeed or fail as you choose. The query basically means, 
“Would you be able to immediately stop your device if the system were to send you an IRP_MN_STOP_DEVICE in a few 
nanoseconds?” You can handle this query in two slightly different ways. Here’s the first way, which is appropriate when your 
device might be busy with an IRP that either finishes quickly or can be easily terminated in the middle: 

NTSTATUS HandleQueryStop(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  if (pdx->state != WORKING) 
    return DefaultPnpHandler(fdo, Irp); 
 
  if (!OkayToStop(pdx)) 
    return CompleteRequest(Irp, STATUS_UNSUCCESSFUL, 0); 
 
  StallRequests(&pdx->dqReadWrite); 
  WaitForCurrentIrp(&pdx->dqReadWrite); 
 
  pdx->state = PENDINGSTOP; 
  return DefaultPnpHandler(fdo, Irp); 
  } 

1. This statement handles a peculiar situation that can arise for a boot device: the PnP Manager might send you a 
QUERY_STOP when you haven’t initialized yet. You want to ignore such a query, which is tantamount to saying yes. 

2. At this point, you perform some sort of investigation to see whether it will be OK to revert to the STOPPED state. I’ll 
discuss factors bearing on the investigation next. 

3. StallRequests puts the DEVQUEUE in the STALLED state so that any new IRP just goes into the queue. 
WaitForCurrentIrp waits until the current request, if there is one, finishes on the device. These two steps make the device 
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quiescent until we know whether the device is really going to stop or not. If the current IRP won’t finish quickly of its 
own accord, you’ll do something (such as calling IoCancelIrp to force a lower-level driver to finish the current IRP) to 
“encourage” it to finish; otherwise, WaitForCurrentIrp won’t return. 

4. At this point, we have no reason to demur. We therefore record our state as PENDINGSTOP. Then we pass the request 
down the stack so that other drivers can have a chance to accept or decline this query. 

The other basic way of handling QUERY_STOP is appropriate when your device might be busy with a request that will take a 
long time and can’t be stopped in the middle, such as a tape retension operation that can’t be stopped without potentially 
breaking the tape. In this case, you can use the DEVQUEUE object’s CheckBusyAndStall function. That function returns TRUE 
if the device is busy, whereupon you cause the QUERY_STOP to fail with STATUS_UNSUCCESSFUL. The function returns 
FALSE if the device is idle, in which case it also stalls the queue. (The operations of checking the state of the device and 
stalling the queue need to be protected by a spin lock, which is why I wrote this function in the first place.) 

You can cause a stop query to fail for many reasons. Disk devices that are used for paging, for example, cannot be stopped. 
Neither can devices that are used for storing hibernation or crash dump files. (You’ll know about these characteristics as a 
result of an IRP_MN_DEVICE_USAGE_NOTIFICATION request, which I’ll discuss later in “Other Configuration 
Functionality.”) Other reasons may also apply to your device. 

Even if you have the query succeed, one of the drivers underneath you might cause it to fail for some reason. Even if all the 
drivers have the query succeed, the PnP Manager might decide not to shut you down. In any of these cases, you’ll receive 
another PnP request with the minor code IRP_MN_CANCEL_STOP_DEVICE to tell you that your device won’t be shut down. 
You should then clear whatever state you set during the initial query: 

NTSTATUS HandleCancelStop(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  if (pdx->state != PENDINGSTOP) 
    return DefaultPnpHandler(fdo, Irp); 
  NTSTATUS status = ForwardAndWait(fdo, Irp); 
  pdx->state = WORKING; 
  RestartRequests(&pdx->dqReadWrite, fdo); 
  return CompleteRequest(Irp, status); 
  } 

We first check to see whether a stop operation is even pending. Some higher-level driver might have vetoed a query that we 
never saw, so we’d still be in the WORKING state. If we’re not in the PENDINGSTOP state, we simply forward the IRP. 
Otherwise, we send the CANCEL_STOP IRP synchronously to the lower-level drivers. That is, we use our ForwardAndWait 
helper function to send the IRP down the stack and await its completion. We wait for low-level drivers because we’re about to 
resume processing IRPs, and the drivers might have work to do before we send them an IRP. We then change our state variable 
to indicate that we’re back in the WORKING state, and we call RestartRequests to unstall the queues we stalled when we 
caused the query to succeed. 

6.3.3 While the Device Is Stopped  
If, on the other hand, all device drivers have the query succeed and the PnP Manager decides to go ahead with the shutdown, 
you’ll get an IRP_MN_STOP_DEVICE next. Your subdispatch function will look like this one: 

NTSTATUS HandleStopDevice(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  if (pdx->state != PENDINGSTOP); 
    { 
    <complicated stuff> 
    } 
 
  StopDevice(fdo, pdx->state == WORKING); 
 
  pdx->state = STOPPED; 
 
  return DefaultPnpHandler(fdo, Irp); 
  } 

1. We expect the system to send us a QUERY_STOP before it sends us a STOP, so we should already be in the 
PENDINGSTOP state with all of our queues stalled. There is, however, a bug in Windows 98 such that we can sometimes 
get a STOP (without a QUERY_STOP) instead of a REMOVE. You need to take some action at this point that causes you 
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to reject any new IRPs, but you mustn’t really remove your device object or do the other things you do when you really 
receive a REMOVE request. 

2. StopDevice is the helper function I’ve already discussed that deconfigures the device. 

3. We now enter the STOPPED state. We’re in almost the same situation as we were when AddDevice was done. That is, all 
queues are stalled, and the device has no I/O resources. The only difference is that we’ve left our registered interfaces 
enabled, which means that applications won’t have received removal notifications and will leave their handles open. 
Applications can also open new handles in this situation. Both aspects are just as they should be because the stop 
condition won’t last long. 

4. As I previously discussed, the last thing we do to handle IRP_MN_STOP_DEVICE is pass the request down to the lower 
layers of the driver hierarchy. 

6.3.4 Is It OK to Remove the Device?  
Just as the PnP Manager asks your permission before shutting your device down with a stop device request, it also might ask 
your permission before removing your device. This query takes the form of an IRP_MN_QUERY_REMOVE_DEVICE request 
that you can, once again, cause to succeed or fail as you choose. And, just as with the stop query, the PnP Manager will use an 
IRP_MN_CANCEL_REMOVE_DEVICE request if it changes its mind about removing the device. 

NTSTATUS HandleQueryRemove(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  if (OkayToRemove(fdo)) 
    { 
 
    StallRequests(&pdx->dqReadWrite); 
    WaitForCurrentIrp(&pdx->dqReadWrite); 
 
    pdx->prevstate = pdx->state; 
    pdx->state = PENDINGREMOVE; 
    return DefaultPnpHandler(fdo, Irp); 
    } 
  return CompleteRequest(Irp, STATUS_UNSUCCESSFUL, 0); 
  } 
 
NTSTATUS HandleCancelRemove(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  if (pdx->state != PENDINGREMOVE) 
    return DefaultPnpHandler(fdo, Irp); 
  NTSTATUS status = ForwardAndWait(fdo, Irp); 
 
  pdx->state = pdx->prevstate; 
  RestartRequests(&pdx->dqReadWrite, fdo); 
  return CompleteRequest(Irp, status); 
  } 

1. This OkayToRemove helper function provides the answer to the question, “Is it OK to remove this device?” In general, 
this answer includes some device-specific ingredients, such as whether the device holds a paging or hibernation file, and 
so on. 

2. Just as I showed you for IRP_MN_QUERY_STOP_DEVICE, you want to stall the request queue and wait for a short 
period, if necessary, until the current request finishes. 

3. If you look at Figure 6-1 carefully, you’ll notice that it’s possible to get a QUERY_REMOVE when you’re in either the 
WORKING or the STOPPED state. The right thing to do if the current query is later cancelled is to return to the original 
state. Hence, I have a prevstate variable in the device extension to record the prequery state. 

4. We get the CANCEL_REMOVE request when someone either above or below us vetoes a QUERY_REMOVE. If we 
never saw the query, we’ll still be in the WORKING state and don’t need to do anything with this IRP. Otherwise, we 
need to forward it to the lower levels before we process it because we want the lower levels to be ready to process the 
IRPs we’re about to release from our queues. 

5. Here we undo the steps we took when we succeeded the QUERY_REMOVE. We revert to the previous state. We stalled 
the queues when we handled the query and need to unstall them now. 
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6.3.5 Synchronizing Removal  
It turns out that the I/O Manager can send you PnP requests simultaneously with other substantive I/O requests, such as 
requests that involve reading or writing. It’s entirely possible, therefore, for you to receive an IRP_MN_REMOVE_DEVICE at 
a time when you’re still processing another IRP. It’s up to you to prevent untoward consequences, and the standard way to do 
that involves using an IO_REMOVE_LOCK object and several associated kernel-mode support routines. 

The basic idea behind the standard scheme for preventing premature removal is that you acquire the remove lock each time 
you start processing a request that you will pass down the PnP stack, and you release the lock when you’re done. Before you 
remove your device object, you make sure that the lock is free. If not, you wait until all references to the lock are released. 
Figure 6-5 illustrates the process. 

Figure 6-5. Operation of an IO_REMOVE_LOCK.  

To handle the mechanics of this process, you define a variable in the device extension: 

struct DEVICE_EXTENSION { 

 
  IO_REMOVE_LOCK RemoveLock; 
 
  }; 

You initialize the lock object during AddDevice: 

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo) 
  { 
 
  IoInitializeRemoveLock(&pdx->RemoveLock, 0, 0, 0); 

 
  } 

The last three parameters to IoInitializeRemoveLock are, respectively, a tag value, an expected maximum lifetime for a lock, 
and a maximum lock count, none of which is used in the free build of the operating system. 

These preliminaries set the stage for what you do during the lifetime of the device object. Whenever you receive an I/O request 
that you plan to forward down the stack, you call IoAcquireRemoveLock. IoAcquireRemoveLock will return 
STATUS_DELETE_PENDING if a removal operation is under way. Otherwise, it will acquire the lock and return 
STATUS_SUCCESS. Whenever you finish such an I/O operation, you call IoReleaseRemoveLock, which will release the lock 
and might unleash a heretofore pending removal operation. In the context of some purely hypothetical dispatch function that 
synchronously forwards an IRP, the code might look like this: 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status, 0); 
  status = ForwardAndWait(fdo, Irp); 
  if (!NT_SUCCESS(status)) 
    { 
    IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
    return CompleteRequest(Irp, status, 0); 
    } 

 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return CompleteRequest(Irp, <some code>, <info value>); 
  } 
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The second argument to IoAcquireRemoveLock and IoReleaseRemoveLock is just a tag value that a checked build of the 
operating system can use to match up acquisition and release calls, by the way. 

The calls to acquire and release the remove lock dovetail with additional logic in the PnP dispatch function and the remove 
device subdispatch function. First DispatchPnp has to obey the rule about locking and unlocking the device, so it will contain 
the following code, which I didn’t show you earlier in “IRP_MJ_PNP Dispatch Function”: 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status, 0); 

   
  status = (*fcntab[fcn](fdo, Irp); 
  if (fcn != IRP_MN_REMOVE_DEVICE) 
    IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return status; 
  } 

In other words, DispatchPnp locks the device, calls the subdispatch routine, and then (usually) unlocks the device afterward. 
The subdispatch routine for IRP_MN_REMOVE_DEVICE has additional special logic that you also haven’t seen yet: 

NTSTATUS HandleRemoveDevice(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  AbortRequests(&pdx->dqReadWrite, STATUS_DELETE_PENDING); 
  DeregisterAllInterfaces(pdx); 
  StopDevice(fdo, pdx->state == WORKING); 
  pdx->state = REMOVED; 
 
  NTSTATUS status = DefaultPnpHandler(pdx->LowerDeviceObject, Irp); 
 
  IoReleaseRemoveLockAndWait(&pdx->RemoveLock, Irp); 
  RemoveDevice(fdo); 
  return status; 
  } 

1. Windows 98/Me doesn’t send the SURPRISE_REMOVAL request, so this REMOVE IRP may be the first indication you 
have that the device has disappeared. Calling StopDevice allows you to release all your I/O resources in case you didn’t 
get an earlier IRP that caused you to release them. Calling AbortRequests causes you to complete any queued IRPs and to 
start rejecting any new IRPs. 

2. We pass this request to the lower layers now that we’ve done our work. 

3. The PnP dispatch routine acquired the remove lock. We now call the special function IoReleaseRemoveLockAndWait to 
release that lock reference and wait until all references to the lock are released. Once you call 
IoReleaseRemoveLockAndWait, any subsequent call to IoAcquireRemoveLock will elicit a STATUS_DELETE_PENDING 
status to indicate that device removal is under way. 

NOTE  
You’ll notice that the IRP_MN_REMOVE_DEVICE handler might block while an IRP finishes. This is certainly OK 
in Windows 98/Me and Windows XP, which were designed with this possibility in mind—the IRP gets sent in the 
context of a system thread that’s allowed to block. Some WDM functionality (a Microsoft developer even called 
it “embryonic”) is present in OEM releases of Microsoft Windows 95, but you can’t block a remove device 
request there. Consequently, if your driver needs to run in Windows 95, you need to discover that fact and avoid 
blocking. That discovery process is left as an exercise for you. 

It bears repeating that you need to use the remove lock only for an IRP that you pass down the PnP stack. If you have the 
stamina, you can read the next section to understand exactly why this conclusion is true—and note that it differs from the 
conventional wisdom that I and others have been espousing for several years. If someone sends you an IRP that you handle 
entirely inside your own driver, you can rely on whoever sent you the IRP to make sure your driver remains in memory until 
you both complete the IRP and return from your dispatch routine. If you send an IRP to someone outside your PnP stack, you’ll 
use other means (such as a referenced file or device object) to keep the target driver in memory until it both completes the IRP 
and returns from its dispatch routine. 
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6.3.6 Why Do I Need This @#$! Remove Lock, Anyway?  
A natural question at this point is why, in the context of a robust and full-featured modern operating system, you even need to 
worry about somebody unloading a driver when it knows, or should know, that it’s busy handling an IRP. This question is hard 
to answer, but here goes. 

The remove lock isn’t necessary to guard against having your device object removed out from under you while 
you’re processing an IRP. Rather, it protects you from sending an IRP down your PnP stack to a lower device 
object that no longer exists or that might cease to exist before the IRP finishes. To make this clear, I need to 
explain rather fully how the PnP Manager and the Object Manager work together to keep drivers and device 

objects around while they’re needed. I’m grossly oversimplifying here in order to emphasize the basic things you need to 
understand.  

First of all, every object that the Object Manager manages carries a reference count. When someone creates such an object, the 
Object Manager initializes the reference count to 1. Thereafter, anyone can call ObReferenceObject to increment the reference 
count and ObDereferenceObject to decrement it. For each type of object, there is a routine that you can call to destroy the 
object. For example, IoDeleteDevice is the routine you call to delete a DEVICE_OBJECT. That routine never directly releases 
the memory occupied by the object. Instead, it directly or indirectly calls ObDereferenceObject to release the original reference. 
Only when the reference count drops to 0 will the Object Manager actually destroy the object. 

NOTE  
In Chapter 5, I advised you to take an extra reference to a file object or device object discovered via 
IoGetDeviceObjectPointer around the call to IoCallDriver for an asynchronous IRP. The reason for the advice 
may now be clear: you want to be sure the target driver for the IRP is pinned in memory until its dispatch 
routine returns regardless of whether your completion routine releases the reference taken by 
IoGetDeviceObjectPointer. Dang, but this is getting complicated! 

IoDeleteDevice makes some checks before it releases the last reference to a device object. In both operating systems, it checks 
whether the AttachedDevice pointer is NULL. This field in the device object points upward to the device object for the next 
upward driver. This field is set by IoAttachDeviceToDeviceStack and reset by IoDetachDevice, which are functions that WDM 
drivers call in their AddDevice and RemoveDevice functions, respectively. 

You want to think about the entire PnP stack of device objects as being the target of IRPs that the I/O Manager and drivers 
outside the stack send to “your” device. This is because the driver for the topmost device object in the stack is always first to 
process any IRP. Before anyone sends an IRP to your stack, however, they will have a referenced pointer to this topmost device 
object, and they won’t release the reference until after the IRP completes. So if a driver stack contains just one device object, 
there will never be any danger of having a device object or driver code disappear while the driver is processing an IRP: the IRP 
sender’s reference pins the device object in memory, even if someone calls IoDeleteDevice before the IRP completes, and the 
device object pins the driver code in memory. 

WDM driver stacks usually contain two or more device objects, so you have to wonder about the second and lower objects in a 
stack. After all, whoever sends an IRP to the device has a reference only to the topmost device object, not to the objects lower 
down in the stack. Imagine the following scenario, then. Someone sends an IRP_MJ_SOMETHING (a made-up major function 
to keep us focused on the remove lock) to the topmost filter device object (FiDO), whose driver sends it down the stack to your 
function driver. You plan to send this IRP down to the filter driver underneath you. But, at about the same time on another CPU, 
the PnP Manager has sent your driver stack an IRP_MN_REMOVE_DEVICE request. 

Before the PnP Manager sends REMOVE_DEVICE requests, it takes an extra reference to every device object in the stack. 
Then it sends the IRP. Each driver passes the IRP down the stack and then calls IoDetachDevice followed by IoDeleteDevice. 
At each level, IoDeleteDevice sees that AttachedDevice is not (yet) NULL and decides that the time isn’t quite right to 
dereference the device object. When the driver at the next higher level calls IoDetachDevice, however, the time is right, and 
the I/O Manager dereferences the device object. Without the PnP Manager’s extra reference, the object would then disappear, 
and that might trigger unloading the driver at that level of the stack. Once the REMOVE_DEVICE request is complete, the PnP 
Manager will release all the extra references. That will allow all but the topmost device object to disappear because only the 
topmost object is protected by the reference owned by the sender of the IRP_MJ_SOMETHING. 

IMPORTANT  
Every driver I’ve ever seen or written processes REMOVE_DEVICE synchronously. That is, no driver ever pends 
a REMOVE_DEVICE request. Consequently, the calls to IoDetachDevice and IoDeleteDevice at any level of the 
PnP stack always happen after the lower-level drivers have already performed those calls. This fact doesn’t 
impact our analysis of the remove lock because the PnP Manager won’t release its extra reference to the stack 
until after REMOVE_DEVICE actually completes, which requires IoCompleteRequest to run to conclusion. 

Can you see why the Microsoft folks who understand the PnP Manager deeply are fond of saying, “Game Over” at this point? 
We’re going to trust whoever is above us in the PnP stack to keep our device object and driver code in memory until we’re 
done handling the IRP_MJ_SOMETHING that I hypothesized. But we haven’t (yet) done anything to keep the next lower 
device object and driver in memory. While we were getting ready to send the IRP down, the IRP_MN_REMOVE_DEVICE ran 
to completion, and the lower driver is now gone! 

And that’s the problem that the remove lock solves: we simply don’t want to pass an IRP down the stack if we’ve already 
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returned from handling an IRP_MN_REMOVE_DEVICE. Conversely, we don’t want to return from 
IRP_MN_REMOVE_DEVICE (and thereby allow the PnP Manager to release what might be the last reference to the lower 
device object) until we know the lower driver is done with all the IRPs that we’ve sent to it. 

Armed with this understanding, let’s look again at an IRP-handling scenario in which the remove lock is helpful. This is an 
example of my IRP-handling scenario 1 (pass down with completion routine) from Chapter 5: 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
A NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status, 0); 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  IoSetCompletionRoutine(Irp, 
    (PIO_COMPLETION_ROUTINE) CompletionRoutine, pdx, TRUE, TRUE, TRUE); 
  return IoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 
 
NTSTATUS CompletionRoutine(PDEVICE_OBJECT fdo, PIRP Irp, PDEVICE_EXTENSION pdx) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); 
  <desired completion processing> 
B IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return STATUS_SUCCESS; 
  } 

In summary, we acquire the remove lock for this IRP in the dispatch routine, and we release it in the completion routine. 
Suppose this IRP is racing an IRP_MN_REMOVE_DEVICE down the stack. If our HandleRemoveDevice function has gotten 
to the point of calling IoReleaseRemoveLockAndWait before we get to point A, perhaps all the device objects in the stack are 
teetering on the edge of extinction because the REMOVE_DEVICE may have finished long ago. If we’re the topmost device 
object, somebody’s reference is keeping us alive. If we’re lower down the stack, the driver above us is keeping us alive. Either 
way, it’s certainly OK for us to execute instructions. We’ll find that our call to IoAcquireRemoveLock returns 
STATUS_DELETE_PENDING, so we’ll just complete the IRP and return. 

Suppose instead that we win the race by calling IoAcquireRemoveLock before our HandleRemoveDevice function calls 
IoReleaseRemoveLockAndWait. In this case, we’ll pass the IRP down the stack. IoReleaseRemoveLockAndWait will block until 
our completion routine (at point B) releases the lock. At this exact instant, we fall back on the IRP sender’s reference or the 
driver above us to keep us in memory long enough for our completion routine to return. 

At this point in the analysis, I have to raise an alarming point that everyone who writes WDM drivers or writes or lectures 
about them, including me, has missed until now. Passing an IRP down without a completion routine is actually unsafe because 
it allows us to send an IRP down to a driver that isn’t pinned in memory. Anytime you see a call to 
IoSkipCurrentIrpStackLocation (there are 204 of them in the Windows XP DDK), your antennae should twitch. We’ve all been 
getting away with this because some redundant protections are in place and because the coincidence of an 
IRP_MN_REMOVE_DEVICE with some kind of problem IRP is very rare. Refer to the sidebar for a discussion. 

The Redundant Guards Against Early Removal 
As the text says, Windows XP contains some redundant protections against early removal of device objects. In 
both Windows XP and Windows 2000, the PnP Manager won’t send an IRP_MN_REMOVE_DEVICE if any file 
objects exist that point to any device object in the stack. Many IRPs are handle based in that they originate in 
callers that hold a referenced pointer to a file object. Consequently, there is never a concern with these 
handle-based IRPs that your lower device object might disappear. You can dispense with the remove lock 
altogether for these IRPs if you trust all the drivers who send them to you to either have a referenced file object 
or hold their own remove lock while they’re outstanding.  

There is a large class of IRP that device drivers never see because these IRPs involve file system operations on 
volumes. Thus, worrying about what might happen as a device driver handles an 
IRP_MJ_QUERY_VOLUME_INFORMATION, for example, isn’t practical. 

Only a few IRPs aren’t handle based or aimed at file system drivers, and most of them carry their own built-in 
safeguards. To get an IRP_MJ_SHUTDOWN, you have to specifically register with the I/O Manager by calling 
IoRegisterShutdownNotification. IoDeleteDevice automatically deregisters you if you happen to forget, and you 
won’t be getting REMOVE_DEVICE requests while shutdown notifications are in progress. (While we’re on the 
subject, note these additional details about IRP_MJ_SHUTDOWN. Like every other IRP, this one will be sent first 
to the topmost FiDO in the PnP stack if any driver in the stack has called IoRegisterShutdownNotification. 
Furthermore, as many IRPs will be sent as there are drivers in the stack with active notification requests. Thus, 
drivers should take care to do their shutdown processing only once and should pass this IRP down the stack 
after doing their own shutdown processing.) 
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IRP_MJ_SYSTEM_CONTROL is another special case. The Windows Management Instrumentation (WMI) 
subsystem uses this request to perform WMI query and set operations. Part of your StopDevice processing 
ought to be deregistering with WMI, and the deregistration call doesn’t return until all of these IRPs have 
drained through your device. After the deregistration call, you won’t get any more WMI requests. 

The PnP Manager itself is the source of most IRP_MJ_PNP requests, and you can be sure that it won’t overlap 
a REMOVE_DEVICE request with another PnP IRP. You can’t, however, be sure there’s no overlap with PnP IRPs 
sent by other drivers, such as a QUERY_DEVICE_RELATIONS to get the physical device object (PDO) address or 
a QUERY_INTERFACE to locate a direct-call interface. 

Finally, there’s IRP_MJ_POWER, which is a potential problem because the Power Manager doesn’t lock an entire 
device stack and doesn’t hold a file object pointer. 

The window of vulnerability is actually pretty small. Consider the following fragment of dispatch routines in two drivers: 

NTSTATUS DriverA_DispatchSomething(...) 
  { 
 
  NTSTATUS status = IoAcquireRemoveLock(...); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(...); 
  IoSkipCurrentIrpStackLocation(...); 
  status = IoCallDriver(...); 
  IoReleaseRemoveLock(...); 
  return status; 
  } 
 
NTSTATUS DriverB_DispatchSomething(...) 
  { 
 
  return ??; 
  } 

Driver A’s use of the remove lock protects Driver B until Driver B’s dispatch routine returns. Thus, if Driver B completes the 
IRP or itself passes the IRP down using IoSkipCurrentIrpStackLocation, Driver B’s involvement with the IRP will certainly be 
finished by the time Driver A is able to release the remove lock. If Driver B were to pend the IRP, Driver A wouldn’t be 
holding the remove lock by the time Driver B got around to completing the IRP. We can assume, however, that Driver B will 
have some mechanism in place for purging its queues of pending IRPs before returning from its own HandleRemoveDevice 
function. Driver A won’t call IoDetachDevice or return from its own HandleRemoveDevice function until afterwards. 

The only time there will be a problem is if Driver B passes the IRP down with a completion routine installed via the original 
IoSetCompletionRoutine macro. Even here, if the lowest driver that handles this IRP does so correctly, itsHandleRemoveDevice 
function won’t return until the IRP is completed. We’ll have just a slim chance that Driver B could be unloaded before its 
completion routine runs. 

There is, unfortunately, no way for a driver to completely protect itself from being unloaded while processing an IRP. Any 
scheme you or I can devise will inevitably risk executing at least one instruction (a return) after the system removes the driver 
image from memory. You can, however, hope that the drivers above you minimize the risk by using the techniques I’ve 
outlined here. 

6.3.7 How the DEVQUEUE Works with PnP  
In contrast with other examples in this book, I’m going to show you the full implementation of the DEVQUEUE object, even 
though the source code is in the companion content. I’m making an exception in this case because I think an annotated listing 
of the functions will make it easier for you to understand how to use it. We’ve already discussed the major routines in the 
preceding chapter, so I can focus here on the routines that dovetail with IRP_MJ_PNP. 

Stalling the Queue  

Stalling the IRP queue involves two DEVQUEUE functions: 

VOID NTAPI StallRequests(PDEVQUEUE pdq) 
  { 
 
  InterlockedIncrement(&pdq->stallcount); 
  } 
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BOOLEAN NTAPI CheckBusyAndStall(PDEVQUEUE pdq) 
  { 
  KIRQL oldirql; 
 
  KeAcquireSpinLock(&pdq->lock, &oldirql); 
 
  BOOLEAN busy = pdq->CurrentIrp != NULL; 
  if (!busy) 
 
    InterlockedIncrement(&pdq->stallcount); 
  KeReleaseSpinLock(&pdq->lock, oldirql); 
  return busy; 
  } 

1. To stall requests, we just need to set the stall counter to a nonzero value. It’s unnecessary to protect the increment with a 
spin lock because any thread that might be racing with us to change the value will also be using an interlocked increment 
or decrement. 

2. Since CheckBusyAndStall needs to operate as an atomic function, we first take the queue’s spin lock. 

3. CurrentIrp being non-NULL is the signal that the device is busy handling one of the requests from this queue. 

4. If the device is currently idle, this statement starts stalling the queue, thereby preventing the device from becoming busy 
later on. 

Recall that StartPacket and StartNextPacket don’t send IRPs to the queue’s StartIo routine while the stall counter is nonzero. In 
addition, InitializeQueue initializes the stall counter to 1, so the queue begins life in the stalled state. 

Restarting the Queue  

RestartRequests is the function that unstalls a queue. This function is quite similar to StartNextPacket, which I showed you in 
Chapter 5. 

VOID RestartRequests(PDEVQUEUE pdq, PDEVICE_OBJECT fdo) 
  { 
  KIRQL oldirql; 
 
  KeAcquireSpinLock(&pdq->lock, &oldirql); 
 
  if (InterlockedDecrement(&pdq->stallcount) > 0) 
    { 
    KeReleaseSpinLock(&pdq->lock, oldirql); 
    return; 
    } 
 
  while (!pdq->stallcount && !pdq->CurrentIrp && !pdq->abortstatus 
    && !IsListEmpty(&pdq->head)) 
    { 
    PLIST_ENTRY next = RemoveHeadList(&pdq->head); 
    PIRP Irp = CONTAINING_RECORD(next, IRP, Tail.Overlay.ListEntry); 
    if (!IoSetCancelRoutine(Irp, NULL)) 
      { 
      InitializeListHead(&Irp->Tail.Overlay.ListEntry); 
      continue; 
      } 
    pdq->CurrentIrp = Irp; 
    KeReleaseSpinLockFromDpcLevel(&pdq->lock); 
    (*pdq->StartIo)(fdo, Irp); 
    KeLowerIrql(oldirql); 
    return; 
    } 
  KeReleaseSpinLock(&pdq->lock, oldirql); 
  } 

1. We acquire the queue spin lock to prevent interference from a simultaneous invocation of StartPacket. 

2. Here we decrement the stall counter. If it’s still nonzero, the queue remains stalled, and we return. 

3. This loop duplicates a similar loop inside StartNextPacket. We need to duplicate the code here to accomplish all of this 
function’s actions within one invocation of the spin lock. 
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NOTE  
True confession: The first edition described a much simpler—and incorrect—implementation of 
RestartRequests. A reader pointed out a race between the earlier implementation and StartPacket, which was 
corrected on my Web site as shown here. 

Awaiting the Current IRP  

The handler for IRP_MN_STOP_DEVICE might need to wait for the current IRP, if any, to finish by calling 
WaitForCurrentIrp: 

VOID NTAPI WaitForCurrentIrp(PDEVQUEUE pdq) 
  { 
 
  KeClearEvent(&pdq->evStop); 
 
  ASSERT(pdq->stallcount != 0); 
  KIRQL oldirql; 
 
  KeAcquireSpinLock(&pdq->lock, &oldirql); 
  BOOLEAN mustwait = pdq->CurrentIrp != NULL; 
  KeReleaseSpinLock(&pdq->lock, oldirql); 
  if (mustwait) 
    KeWaitForSingleObject(&pdq->evStop, Executive, KernelMode, FALSE, NULL); 
  } 

1. StartNextPacket signals the evStop event each time it’s called. We want to be sure that the wait we’re about to perform 
doesn’t complete because of a now-stale signal, so we clear the event before doing anything else. 

2. It doesn’t make sense to call this routine without first stalling the queue. Otherwise, StartNextPacket will just start the 
next IRP if there is one, and the device will become busy again. 

3. If the device is currently busy, we’ll wait on the evStop event until someone calls StartNextPacket to signal that event. We 
need to protect our inspection of CurrentIrp with the spin lock because, in general, testing a pointer for NULL isn’t an 
atomic event. If the pointer is NULL now, it can’t change later because we’ve assumed that the queue is stalled. 

Aborting Requests  

Surprise removal of the device demands that we immediately halt every outstanding IRP that might try to touch the hardware. 
In addition, we want to make sure that all further IRPs are rejected. The AbortRequests function helps with these tasks: 

VOID NTAPI AbortRequests(PDEVQUEUE pdq, NTSTATUS status) 
  { 
  pdq->abortstatus = status; 
  CleanupRequests(pdq, NULL, status); 
  } 

Setting abortstatus puts the queue in the REJECTING state so that all future IRPs will be rejected with the status value our 
caller supplied. Calling CleanupRequests at this point—with a NULL file object pointer so that CleanupRequests will process 
the entire queue—empties the queue. 

We don’t dare try to do anything with the IRP, if any, that’s currently active on the hardware. Drivers that don’t use the 
hardware abstraction layer (HAL) to access the hardware—USB drivers, for example, which rely on the hub and 
host-controller drivers—can count on another driver to cause the current IRP to fail. Drivers that use the HAL might, however, 
need to worry about hanging the system or, at the very least, leaving an IRP in limbo because the nonexistent hardware can’t 
generate the interrupt that would let the IRP finish. To deal with situations such as this, you call AreRequestsBeingAborted: 

NTSTATUS AreRequestsBeingAborted(PDEVQUEUE pdq) 
  { 
  return pdq->abortstatus; 
  } 

It would be silly, by the way, to use the queue spin lock in this routine. Suppose we capture the instantaneous value of 
abortstatus in a thread-safe and multiprocessor-safe way. The value we return can become obsolete as soon as we release the 
spin lock. 



6.4 Other Configuration Functionality   - 181 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

 

NOTE  
If your device might be removed in such a way that an outstanding request simply hangs, you should also have 
some sort of watchdog timer running that will let you kill the IRP after a specified period of time. See the 
“Watchdog Timers“ section in Chapter 14. 

Sometimes we need to undo the effect of a previous call to AbortRequest. AllowRequests lets us do that: 

VOID NTAPI AllowRequests(PDEVQUEUE pdq) 
  { 
  pdq->abortstatus = (NTSTATUS) 0; 
  } 

6.4 Other Configuration Functionality  

Up to this point, I’ve talked about the important concepts you need to know to write a hardware device driver. I’ll discuss two 
less important minor function codes—IRP_MN_FILTER_RESOURCE_REQUIREMENTS and IRP_MN_DEVICE_ 
USAGE_NOTIFICATION—that you might need to process in a practical driver. Finally I’ll mention how you can register to 
receive notifications about PnP events that affect devices other than your own. 

6.4.1 Filtering Resource Requirements  
Sometimes the PnP Manager is misinformed about the resource requirements of your driver. This can occur because of 
hardware and firmware bugs, mistakes in the INF file for a legacy device, or other reasons. The system provides an escape 
valve in the form of the IRP_MN_FILTER_RESOURCE_REQUIREMENTS request, which affords you a chance to examine 
and possibly alter the list of resources before the PnP Manager embarks on the arbitration and assignment process that 
culminates in your receiving a start device IRP. 

When you receive a filter request, the FilterResourceRequirements substructure of the Parameters union in your stack location 
points to an IO_RESOURCE_REQUIREMENTS_LIST data structure that lists the resource requirements for your device. In 
addition, if any of the drivers above you have processed the IRP and modified the resource requirements, the 
IoStatus.Information field of the IRP will point to a second IO_RESOURCE_REQUIREMENTS_LIST, which is the one from 
which you should work. Your overall strategy will be as follows: If you want to add a resource to the current list of 
requirements, you do so in your dispatch routine. Then you pass the IRP down the stack synchronously—that is, by using the 
ForwardAndWait method you use with a start device request. When you regain control, you can modify or delete any of the 
resource descriptions that appear in the list. 

Here’s a brief and not very useful example that illustrates the mechanics of the filtering process: 

NTSTATUS HandleFilterResources(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
 
  PIO_RESOURCE_REQUIREMENTS_LIST original = stack->Parameters 
    .FilterResourceRequirements.IoResourceRequirementList; 
 
  PIO_RESOURCE_REQUIREMENTS_LIST filtered = 
    (PIO_RESOURCE_REQUIREMENTS_LIST) Irp->IoStatus.Information; 
 
  PIO_RESOURCE_REQUIREMENTS_LIST source = filtered ? filtered : original; 
 
  if (source->AlternativeLists != 1) 
    return DefaultPnpHandler(fdo, Irp); 
 
  ULONG sizelist = source->ListSize; 
  PIO_RESOURCE_REQUIREMENTS_LIST newlist = 
    (PIO_RESOURCE_REQUIREMENTS_LIST) ExAllocatePool(PagedPool, 
    sizelist + sizeof(IO_RESOURCE_DESCRIPTOR)); 
  if (!newlist) 
    return DefaultPnpHandler(fdo, Irp); 
  RtlCopyMemory(newlist, source, sizelist); 
 
  newlist->ListSize += sizeof(IO_RESOURCE_DESCRIPTOR); 
  PIO_RESOURCE_DESCRIPTOR resource =  
    &newlist->List[0].Descriptors[newlist->List[0].Count++]; 
  RtlZeroMemory(resource, sizeof(IO_RESOURCE_DESCRIPTOR)); 
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  resource->Type = CmResourceTypeDevicePrivate; 
  resource->ShareDisposition = CmResourceShareDeviceExclusive; 
  resource->u.DevicePrivate.Data[0] = 42;  
 
  Irp->IoStatus.Information = (ULONG_PTR) newlist; 
  if (filtered && filtered != original) 
    ExFreePool(filtered); 
 
  NTSTATUS status = ForwardAndWait(fdo, Irp); 
  if (NT_SUCCESS(status)) 
    { 
    // stuff 
    } 
 
  Irp->IoStatus.Status = status; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return status; 
  } 

1. The parameters for this request include a list of I/O resource requirements. These are derived from the device’s 
configuration space, the registry, or wherever the bus driver happens to find them. 

2. Higher-level drivers might have already filtered the resources by adding requirements to the original list. If so, they set 
the IoStatus.Information field to point to the expanded requirements list structure. 

3. If there’s no filtered list, we’ll extend the original list. If there’s a filtered list, we’ll extend that. 

4. Theoretically, several alternative lists of requirements could exist, but dealing with that situation is beyond the scope of 
this simple example. 

5. We need to add any resources before we pass the request down the stack. First we allocate a new requirements list and 
copy the old requirements into it. 

6. Taking care to preserve the preexisting order of the descriptors, we add our own resource description. In this example, 
we’re adding a resource that’s private to the driver. 

7. We store the address of the expanded list of requirements in the IRP’s IoStatus.Information field, which is where 
lower-level drivers and the PnP system will be looking for it. If we just extended an already filtered list, we need to 
release the memory occupied by the old list. 

8. We pass the request down using the same ForwardAndWait helper function that we used for IRP_MN_START_DEVICE. 
If we weren’t going to modify any resource descriptors on the IRP’s way back up the stack, we could just call 
DefaultPnpHandler here and propagate the returned status. 

9. When we complete this IRP, whether we indicate success or failure, we must take care not to modify the Information 
field of the I/O status block: it might hold a pointer to a resource requirements list that some driver—maybe even 
ours!—installed on the way down. The PnP Manager will release the memory occupied by that structure when it’s no 
longer needed. 

6.4.2 Device Usage Notifications  
Disk drivers (and the drivers for disk controllers) in particular sometimes need to know extrinsic facts about how they’re being 
used by the operating system, and the IRP_MN_DEVICE_USAGE_NOTIFICATION request provides a means to gain that 
knowledge. The I/O stack location for the IRP contains two parameters in the Parameters.UsageNotification substructure. See 
Table 6-4. The InPath value (a Boolean) indicates whether the device is in the device path required to support that usage, and 
the Type value indicates one of several possible special usages. 

Parameter Description 

InPath  TRUE if device is in the path of the Type usage; FALSE if not 

Type  Type of usage to which the IRP applies 

Table 6-4. Fields in the Parameters.UsageNotification Substructure of an I/O Stack Location  

In the subdispatch routine for the notification, you should have a switch statement (or other logic) that differentiates among the 
notifications you know about. In most cases, you’ll pass the IRP down the stack. Consequently, a skeleton for the subdispatch 
function is as follows: 

NTSTATUS HandleUsageNotification(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
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  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  DEVICE_USAGE_NOTIFICATION_TYPE type = 
    stack->Parameters.UsageNotification.Type; 
  BOOLEAN inpath = stack->Parameters.UsageNotification.InPath; 
  switch (type) 
    { 
  case DeviceUsageTypeHibernation: 
 
    Irp->IoStatus.Status = STATUS_SUCCESS; 
    break; 
  case DeviceUsageTypeDumpFile: 

 
    Irp->IoStatus.Status = STATUS_SUCCESS; 
    break; 
  case DeviceUsageTypePaging: 

 
    Irp->IoStatus.Status = STATUS_SUCCESS; 
    break; 
  default: 
    break; 
    } 
  return DefaultPnpHandler(fdo, Irp); 
  } 

Set the Status field of the IRP to STATUS_SUCCESS for only the notifications that you explicitly recognize, as a signal to the 
bus driver that you’ve processed them. The bus driver will assume that you didn’t know about—and therefore didn’t 
process—a notification for which you don’t set STATUS_SUCCESS. 

You might know that your device can’t support a certain kind of usage. Suppose, for example, that some fact that only you 
know prevents your disk device from being used to store a hibernation file. In such a case, you should have the IRP fail if it 
specifies the InPath value: 

 
  case DeviceUsageTypeHibernation: 
    if (inpath) 
      return CompleteRequest(Irp, STATUS_UNSUCCESSFUL, 0); 

In the remainder of this section, I’ll briefly describe each of the current usage types. 

DeviceUsageTypePaging  

The InPathTRUE notification indicates that a paging file will be opened on the device. The InPathFALSE notification indicates 
that a paging file has been closed. Generally, you should maintain a counter of the number of paging files you’ve been notified 
about. While any paging file remains active, you’ll cause queries for STOP and REMOVE functions to fail. In addition, when 
you receive the first paging notification, make sure that your dispatch routines for READ, WRITE, DEVICE_CONTROL, PNP, 
and POWER requests are locked into memory. (Refer to the information on driver paging in “User-Mode and Kernel-Mode 
Address Spaces” in Chapter 3 for more information.) You should also clear the DO_POWER_PAGABLE flag in your device 
object to force the Power Manager to send you power IRPs at DISPATCH_LEVEL. To be safe, I’d also suggest nullifying any 
idle-notification registration you might have made. (See Chapter 8 for a discussion of idle detection.) 

NOTE  
In Chapter 8, I’ll discuss how to set the DO_POWER_PAGABLE flag in a device object. You need to be sure that 
you never clear this flag while a device object under yours has the flag set. You’ll want to clear the flag only in 
a completion routine, after the lower-level drivers have cleared their own flags. You need a completion routine 
anyway because you must undo anything you did in your dispatch routine if the IRP fails in the lower layers. 

DeviceUsageTypeDumpFile  

The InPathTRUE notification indicates that the device has been chosen as the repository for a crash dump file should one be 
necessary. The InPathFALSE notification cancels that. Maintain a counter of TRUE minus FALSE notifications. While the 
counter is nonzero: 

 Make sure that your power management code—see Chapter 8—will never take the device out of the D0, or fully on, state. 
You can optimize your power behavior by inspecting the ShutdownType specified in system power IRPs in light of other 
usages of which you’ve been notified. Explaining this advanced topic is beyond the scope of this book. 

 Avoid registering the device for idle detection, and nullify any outstanding registration. 

 Make sure that your driver causes stop and remove queries to fail. 
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DeviceUsageTypeHibernation  

The InPathTRUE notification indicates that the device has been chosen to hold the hibernation state file should one be written. 
The InPathFALSE notification cancels that. You should maintain a counter of TRUE minus FALSE notifications. Your response 
to system power IRPs that specify the PowerSystemHibernate state will be different than normal because your device will be 
used momentarily to record the hibernate file. Elaboration of this particular feature of disk drivers is beyond the scope of this 
book. 

6.4.3 PnP Notifications  
Windows XP and Windows 98/Me provide a way to notify both user-mode and kernel-mode components of particular PnP 
events. Windows 95 has a WM_DEVICECHANGE message that user-mode programs can use to monitor, and sometimes 
control, hardware and power changes in the system. The newer operating systems build on WM_DEVICECHANGE to allow 
user-mode programs to easily detect when a driver enables or disables a registered device interface. Kernel-mode drivers can 
also register for similar notifications. 

NOTE  
Refer to the documentation for WM_DEVICECHANGE, RegisterDeviceNotification, and 
UnregisterDeviceNotification in the Platform SDK. I’ll give you examples of using this message and these APIs, 
but I won’t explain all possible uses of them. Some of the illustrations that follow also assume you’re 
comfortable programming with Microsoft Foundation Classes. 

Using WM_DEVICECHANGE  

An application with a window can subscribe for WM_DEVICECHANGE messages related to a specific interface GUID 
(globally unique identifier). For example: 

DEV_BROADCAST_DEVICEINTERFACE filter; 
filter.dbcc_size = sizeof(filter); 
filter.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE; 
filter.dbcc_classguid = GUID_DEVINTERFACE_PNPEVENT; 
m_hInterfaceNotification = RegisterDeviceNotification(m_hWnd, &filter, 0); 

 

NOTE  
The PNPEVENT sample shows how to monitor WM_DEVICECHANGE in order to monitor device insertion and 
removal events. The examples in this section are drawn from the TEST program accompanying that sample. The 
PNPEVENT driver itself is actually not very interesting. 

The key statement here is the call to RegisterDeviceNotification, which asks the PnP Manager to send our window a 
WM_DEVICECHANGE message whenever anyone enables or disables a GUID_DEVINTERFACE_PNPEVENT interface. So 
suppose a device driver calls IoRegisterDeviceInterface with this interface GUID during its AddDevice function. We’re asking 
to be notified when that driver calls IoSetDeviceInterfaceState to either enable or disable that registered interface. 

When an application has a handle to a device, it can register for notifications concerning that specific handle: 

DEV_BROADCAST_HANDLE filter = {0}; 
filter.dbch_size = sizeof(filter); 
filter.dbch_devicetype = DBT_DEVTYP_HANDLE; 
filter.dbch_handle = m_hDevice; 
m_hHandleNotification = RegisterDeviceNotification(m_hWnd, &filter, 0); 

For each of the notification handles you register, you should eventually call UnregisterDeviceNotification. In preparing the 
first edition of this book, I found that this function was destabilizing Windows 98. A reader figured out these undocumented 
rules about how to call this function safely: 

 Call UnregisterDeviceNotification while the window whose handle you specified in the registration call still exists. 

 In Windows 98 (and, presumably, Windows Me), don’t call UnregisterDeviceNotification from within the message 
handler for a notification relating to the same notification handle. Doing so is perfectly safe in Windows 2000 and 
Windows XP, though. 

After your application registers for notifications, the system will send you WM_DEVICECHANGE window messages to alert 
you to various events of possible interest. I’ll discuss here the DBT_DEVICEQUERYREMOVE and 
DBT_DEVICEREMOVECOMPLETE notifications, which are of particular interest to applications. Unless an application 
processes these notifications correctly, the PnP Manager can’t successfully handle the two most common device removal 
scenarios. 
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The QUERYREMOVE and REMOVECOMPLETE notifications relate to a specific handle. The TEST program for PNPEVENT 
handles them this way: 

BEGIN_MESSAGE_MAP(CTestDlg, CDialog) 
  //{{AFX_MSG_MAP(CTestDlg) 

 
  //}}AFX_MSG_MAP 
  ON_WM_DEVICECHANGE()END_MESSAGE_MAP() 
 
BOOL CTestDlg::OnDeviceChange(UINT nEventType, DWORD dwData) 
  { 
  if (!dwData) 
    return TRUE; 
 
  _DEV_BROADCAST_HEADER* p = (_DEV_BROADCAST_HEADER*) dwData; 
 
  if (p->dbcd_devicetype == DBT_DEVTYP_DEVICEINTERFACE) 
    return HandleDeviceChange(nEventType, 
      (PDEV_BROADCAST_DEVICEINTERFACE) p); 
  else if (p->dbcd_devicetype == DBT_DEVTYP_HANDLE) 
    return HandleDeviceChange(nEventType, 
      (PDEV_BROADCAST_HANDLE) p); 
  else 
    return TRUE; 
  } 
 
BOOL CTestDlg::HandleDeviceChange(DWORD evtype, 
  PDEV_BROADCAST_HANDLE dhp) 
  { 
 
  if (dhp->dbch_handle != m_hDevice) 
    return TRUE; 
 
  switch (evtype) 
    { 
 
  case DBT_DEVICEQUERYREMOVE: 
 
    if (!<okay to remove device>) 
      return BROADCAST_QUERY_DENY; 
 
  case DBT_DEVICEREMOVECOMPLETE: 
  case DBT_DEVICEREMOVEPENDING: 
 
    if (m_hHandleNotification && !win98) 
      { 
      UnregisterDeviceNotification(m_hHandleNotification); 
      m_hHandleNotification = NULL; 
      } 
 
    CloseHandle(m_hDevice); 
    break; 
    } 
 
  return TRUE; 
  } 

1. TEST actually displays a message box at this point to ask you whether it will be OK to remove the device. In a real 
application, you might have some reason to demur. If you decide it’s OK to remove the device, the code falls through into 
the next case. I found that it was necessary in Windows 98/Me to close my handle now rather than wait for another 
notification. 

2. As I mentioned earlier, you can close a notification handle while handling a notification in Windows 2000 or XP but not 
in Windows 98/Me. 

3. This is the point of all the machinery: we want to close our handle to the device when it’s about to disappear or has 
already disappeared. 

I suggest that you now try the following experiment to exercise both of these code paths. Launch the test program for 
PNPEVENT and install the PNPEVENT device. (See PNPEVENT.HTM for details of how to do this.) If you’re running 
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DbgView (see http://www.sysinternals.com), you’ll observe the debug trace shown in lines 0 through 12 of Figure 6-6. The 
window for TEST will show an arrival message for the device (the first line in Figure 6-7). Now follow the instructions for 
installing and launching the PNPDTEST applet from the DDK Tools directory, and locate the device entry for PNPEVENT. 
(See Figure 6-8.) You’ll find it indented below the Root node in the device list. Click the Test Surprise Remove button in 
PNPDTEST. 

Figure 6-6. Debug trace from the PNPEVENT experiment.  

Figure 6-7. TEST’s event trace.  

Because of the way PNPDTEST works internally, the first thing that happens is a DBT_DEVICEQUERYREMOVE notification 
so that PNPDTEST can disable the device in order to install a filter driver. TEST presents a dialog asking whether it’s OK to 
remove the device (Figure 6-9). You should answer yes, whereupon TEST will close its handle (Figure 6-10). Thereafter, the 
PnP Manager will send an IRP_MN_QUERY_REMOVE_DEVICE followed by an IRP_MN_REMOVE_DEVICE to the 
PNPEVENT driver. This sequence corresponds to lines 13 through 20 of the debug trace and the second event message in the 
TEST window. 
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Figure 6-8. PNPDTEST window.  

Figure 6-9. TEST asks whether it’s OK to remove the device.  

Figure 6-10. TEST closes its handle.  

PNPDTEST will now restart the device, generating lines 21 through 32 of the debug trace and the third notification in the 
TEST window. Note that TEST opens a new handle in response to the arrival notification. 

Finally PNPDTEST causes an IRP_MN_SURPRISE_REMOVAL request to be sent to the PNPEVENT device. (Actually, it 
causes its associated filter driver to call IoInvalidateDeviceState, which eventually triggers the surprise removal IRP in the way 
I discussed earlier. You can see the trace of this internal magic in lines 33 through 39 of the debug trace.) PNPEVENT 
processes this in the way we’ve discussed in this chapter. See lines 40 through 42 of the debug trace. 

At this point, PNPEVENT will be in the SURPRISEREMOVED state. The driver can’t be unloaded because a handle is still 
open. The test application will receive a WM_DEVICECHANGE with the DBT_DEVICEREMOVECOMPLETE code. The 
application closes its handle (debug trace line 43), whereupon the PnP Manager finishes up by sending an 
IRP_MN_REMOVE_DEVICE to PNPEVENT (debug trace lines 44 through 49). 

You should notice that the application never receives a query in the surprise removal case. 

I want to mention one fine point in connection with the DBT_DEVICEQUERYREMOVE notification. According to the 
Platform SDK documentation for this query, an application might return the special value BROADCAST_QUERY_DENY to 
decline permission to remove the device. This works as expected in Windows XP. That is, if you go to the Device Manager and 
attempt to remove the device, and if the application declines permission, the device will not be removed. In fact, the PnP 
Manager won’t even send the IRP_MN_QUERY_REMOVE_DEVICE request to the driver in this situation. 

In other versions of the operating system, however, BROADCAST_QUERY_DENY doesn’t work as expected. The Device 
Manager will appear to ignore the return code and proceed to remove the device from its window and to mark the device for 
deletion. It will realize that the device can’t yet be removed, however, so it will post a dialog to the effect that you must restart 
the system for the removal to take effect. The driver remains in memory. 

Notifications to Windows XP Services  

Windows XP service programs can also subscribe for PnP notifications. The service should call RegisterServiceCtrlHandlerEx 
to register an extended control handler function. Then it can register for service control notifications about device interface 
changes. For example, take a look at the following code (and see the AUTOLAUNCH sample in Chapter 15): 
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DEV_BROADCAST_DEVICEINTERFACE filter = {0}; 
filter.dbcc_size = sizeof(filter); 
filter.dbcc_devicetype = DBT_DEVTYPE_DEVICEINTERFACE; 
filter.dbcc_classguid = GUID_AUTOLAUNCH_NOTIFY; 
m_hNotification = RegisterDeviceNotification(m_hService, 
  (PVOID) &filter, DEVICE_NOTIFY_SERVICE_HANDLE); 

Here m_hService is a service handle provided by the service manager when it starts your service, and 
DEVICE_NOTIFY_SERVICE_HANDLE indicates that you’re registering for service control notifications instead of window 
messages. After receiving a SERVICE_CONTROL_STOP command, you want to deregister the notification handle: 

UnregisterDeviceNotification(m_hNotification); 

When a PnP event involving the interface GUID occurs, the system calls your extended service control handler function: 

DWORD __stdcall HandlerEx(DWORD ctlcode, DWORD evtype, 
  PVOID evdata, PVOID context) 
  { 
  } 

where ctlcode will equal SERVICE_CONTROL_DEVICEEVENT, evtype will equal DBT_DEVICEARRIVAL or one of the 
other DBT_Xxx codes, evdata will be the address of a Unicode version of the DEV_BROADCAST_DEVICEINTERFACE 
structure, and context will be whatever context value you specified in your call to the RegisterServiceCtrlHandlerEx function. 

Kernel-Mode Notifications  

WDM drivers can use IoRegisterPlugPlayNotification to subscribe for interface and handle notifications. Here’s an exemplary 
statement from the PNPMON sample driver that registers for notifications about the arrival and departure of an interface GUID 
designated by an application—PNPMON’s TEST.EXE in this case—via an I/O control (IOCTL) operation: 

status = IoRegisterPlugPlayNotification 
  (EventCategoryDeviceInterfaceChange, 
  PNPNOTIFY_DEVICE_INTERFACE_INCLUDE_EXISTING_INTERFACES, 
  &p->guid, pdx->DriverObject, 
  (PDRIVER_NOTIFICATION_CALLBACK_ROUTINE) OnPnpNotify, 
  reg, &reg->InterfaceNotificationEntry); 

The first argument indicates that we want to receive notifications whenever someone enables or disables a specific interface 
GUID. The second argument is a flag indicating that we want to receive callbacks right away for all instances of the interface 
GUID that are already enabled. This flag allows our driver to start after some or all of the drivers that export the interface in 
question and still receive notification callbacks about those interfaces. The third argument is the interface GUID in question. In 
this case, it comes to us via an IOCTL from an application. The fourth argument is the address of our driver object. The PnP 
Manager adds a reference to the object so that we can’t be unloaded while we have any notification handles outstanding. The 
fifth argument is the address of a notification callback routine. The sixth argument is a context parameter for the callback 
routine. In this case, I specified the address of a structure (reg) that contains information relative to this registration call. The 
seventh and final argument gives the address of a variable where the PnP Manager should record a notification handle. We’ll 
eventually call IoUnregisterPlugPlayNotification with the notification handle. 

You need to call IoUnregisterPlugPlayNotification to close the registration handle. Because IoRegisterPlugPlayNotification 
adds a reference to your driver object, it won’t do you any particular good to put this call in your DriverUnload routine. 
DriverUnload won’t be called until the reference count drops to 0, which will never happen if DriverUnload itself has the 
deregistration calls. This problem isn’t hard to solve—you just need to pick an appropriate time to deregister, such as when you 
notice the last interface of a particular type being removed or in response to an IOCTL request from an application. 

Given a symbolic link name for an enabled interface, you can also request notifications about changes to the device named by 
the link. For example: 

PUNICODE_STRING SymbolicLinkName; // <== input to this process 
PDEVICE_OBJECT DeviceObject; // <== an output 
PFILE_OBJECT FileObject; // <== another output 
IoGetDeviceObjectPointer(&SymbolicLinkName, 0, &FileObject, &DeviceObject); 
IoRegisterPlugPlayNotification(EventCategoryTargetDeviceChange, 0, 
  FileObject, pdx->DriverObject, 
  (PDRIVER_NOTIFICATION_CALLBACK_ROUTINE) OnPnpNotify, 
  reg, &reg->HandleNotificationEntry); 

You shouldn’t put this code inside your PnP event handler, by the way. IoGetDeviceObjectPointer internally performs an open 
operation for the named device object. A deadlock might occur if the target device were to perform certain kinds of PnP 
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operations. You should instead schedule a work item by calling IoQueueWorkItem. Chapter 14 has more information about 
work items. The PNPMON sample driver illustrates how to use a work item in this particular situation. 

The notifications that result from these registration calls take the form of a call to the callback routine you specified: 

NTSTATUS OnPnpNotify(PPLUGPLAY_NOTIFICATION_HEADER hdr, PVOID Context) 
  { 

 
  return STATUS_SUCCESS; 
  } 

The PLUGPLAY_NOTIFICATION_HEADER structure is the common header for several different structures that the PnP 
Manager uses for notifications: 

typedef struct _PLUGPLAY_NOTIFICATION_HEADER { 
  USHORT Version; 
  USHORT Size; 
  GUID Event; 
  } PLUGPLAY_NOTIFICATION_HEADER, *PPLUGPLAY_NOTIFICATION_HEADER; 

The Event GUID indicates what sort of event is being reported to you. See Table 6‐5. The DDK header file WDMGUID.H 
contains the definitions of these GUIDs. 

GUID Name Purpose of Notification 

GUID_HWPROFILE_QUERY_CHANGE  OK to change to a new hardware profile? 

GUID_HWPROFILE_CHANGE_CANCELLED  Change previously queried about has been cancelled. 

GUID_HWPROFILE_CHANGE_COMPLETE  Change previously queried about has been accomplished. 

GUID_DEVICE_INTERFACE_ARRIVAL  A device interface has just been enabled. 

GUID_DEVICE_INTERFACE_REMOVAL  A device interface has just been disabled. 

GUID_TARGET_DEVICE_QUERY_REMOVE  OK to remove a device object? 

GUID_TARGET_DEVICE_REMOVE_CANCELLED  Removal previously queried about has been cancelled. 

GUID_TARGET_DEVICE_REMOVE_COMPLETE  Removal previously queried about has been accomplished. 

Table 6-5. PnP Notification GUIDs   

If you receive either of the DEVICE_INTERFACE notifications, you can cast the hdr argument to the callback function as a 
pointer to the following structure: 

typedef struct _DEVICE_INTERFACE_CHANGE_NOTIFICATION { 
  USHORT Version; 
  USHORT Size; 
  GUID Event; 
  GUID InterfaceClassGuid; 
  PUNICODE_STRING SymbolicLinkName; 
  } DEVICE_INTERFACE_CHANGE_NOTIFICATION, *PDEVICE_INTERFACE_CHANGE_NOTIFICATION; 

In the interface change notification structure, InterfaceClassGuid is the interface GUID, and SymbolicLinkName is the name of 
an instance of the interface that’s just been enabled or disabled. 

If you receive any of the TARGET_DEVICE notifications, you can cast the hdr argument as a pointer to this structure instead: 

typedef struct _TARGET_DEVICE_REMOVAL_NOTIFICATION { 
  USHORT Version; 
  USHORT Size; 
  GUID Event; 
  PFILE_OBJECT FileObject; 
  } TARGET_DEVICE_REMOVAL_NOTIFICATION, *PTARGET_DEVICE_REMOVAL_NOTIFICATION; 

where FileObject is the file object for which you requested notifications. 

Finally, if you receive any of the HWPROFILE_CHANGE notifications, hdr will really be a pointer to this structure: 

typedef struct _HWPROFILE_CHANGE_NOTIFICATION { 
  USHORT Version; 
  USHORT Size; 
  GUID Event; 
  } HWPROFILE_CHANGE_NOTIFICATION, *PHWPROFILE_CHANGE_NOTIFICATION; 
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This doesn’t have any more information than the header structure itself—just a different typedef name. 

One way to use these notifications is to implement a filter driver for an entire class of device interfaces. (There is a standard 
way to implement filter drivers, either for a single driver or for a class of devices, based on setting entries in the registry. I’ll 
discuss that subject in Chapter 16. Here I’m talking about filtering all devices that register a particular interface, for which 
there’s no other mechanism.) In your driver’s DriverEntry routine, you register for PnP notifications about one or more 
interface GUIDs. When you receive the arrival notification, you use IoGetDeviceObjectPointer to open a file object and then 
register for target device notifications about the associated device. You also get a device object pointer from 
IoGetDeviceObjectPointer, and you can send IRPs to that device by calling IoCallDriver. Be on the lookout for the 
GUID_TARGET_DEVICE_QUERY_REMOVE notification because you have to dereference the file object before the removal 
can continue. 

The PNPMON Sample 
The PNPMON sample illustrates how to register for and process PnP notifications in kernel mode. To give you 
something you can run on your computer and actually see working, I designed PNPMON to simply pass 
notifications back to a user-mode application (named TEST—what else?). This is pretty silly in that a user-mode 
application can get these notifications on its own by calling RegisterDeviceNotification.  

PNPMON is different from the other driver samples in this book. It’s intended to be dynamically loaded as a 
helper for a user-mode application. The other drivers we look at are intended to manage hardware, real or 
imagined. The user-mode application uses service manager API calls to load PNPMON, which creates exactly 
one device object in its DriverEntry routine so that the application can use DeviceIoControl to get things done 
in kernel mode. When the application exits, it closes its handle and calls the service manager to terminate the 
driver. 

PNPMON also includes a Windows 98/Me virtual device driver (VxD) that the test application can dynamically 
load. It’s possible to dynamically load a WDM driver in Windows 98/Me by using an undocumented function 
(_NtKernLoadDriver, if you care), but there’s no way to unload a driver that you’ve loaded in this way. You don’t 
need to resort to undocumented functions, though, because VxDs can call most of the WDM support routines 
directly by means of the WDMVXD import library in the Windows 98 DDK. (This library is missing from the 
Windows Me portion of the Windows XP DDK.) Just about the only extra things you need to do in your VxD 
project are include WDM.H ahead of the VxD header files and add WDMVXD.CLB to the list of inputs to the linker. 
So PNPMON.VXD simply registers for PnP notifications as if it were a WDM driver and supports the same IOCTL 
interface that PNPMON.SYS supports. 

Custom Notifications  

I’ll close this section by explaining how a WDM driver can generate custom PnP notifications. To signal a custom PnP event, 
create an instance of the custom notification structure and call one of IoReportTargetDeviceChange or 
IoReportTargetDeviceChangeAsynchronous. The asynchronous flavor returns immediately. The synchronous flavor waits—a 
long time, in my experience—until the notification has been sent. The notification structure has this declaration: 

typedef struct _TARGET_DEVICE_CUSTOM_NOTIFICATION { 
  USHORT Version; 
  USHORT Size; 
  GUID Event; 
  PFILE_OBJECT FileObject; 
  LONG NameBufferOffset; 
  UCHAR CustomDataBuffer[1]; 
  } TARGET_DEVICE_CUSTOM_NOTIFICATION, *PTARGET_DEVICE_CUSTOM_NOTIFICATION; 

Event is the custom GUID you’ve defined for the notification. FileObject is NULL—the PnP Manager will be sending 
notifications to drivers who opened file objects for the same PDO as you specify in the IoReportXxx call. CustomDataBuffer 
contains whatever binary data you elect followed by Unicode string data. NameBufferOffset is -1 if you don’t have any string 
data; otherwise, it’s the length of the binary data that precedes the strings. You can tell how big the total data payload is by 
subtracting the field offset of CustomDataBuffer from the Size value. 

Here’s how PNPEVENT generates a custom notification when you press the Send Event button in the associated test dialog: 

struct _RANDOM_NOTIFICATION  : public _TARGET_DEVICE_CUSTOM_NOTIFICATION { 
  WCHAR text[14]; 
  }; 

 
_RANDOM_NOTIFICATION notify; 
notify.Version = 1; 
notify.Size = sizeof(notify); 
notify.Event = GUID_PNPEVENT_EVENT; 
notify.FileObject = NULL; 
notify.NameBufferOffset = FIELD_OFFSET(RANDOM_NOTIFICATION, text) 
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  - FIELD_OFFSET(RANDOM_NOTIFICATION, CustomDataBuffer); 
*(PULONG)(notify.CustomDataBuffer) = 42; 
wcscpy(notify.text, L"Hello, world!"); 
IoReportTargetDeviceChangeAsynchronous(pdx->Pdo, &notify, NULL, NULL); 

That is, PNPEVENT generates a custom notification whose data payload contains the number 42 followed by the string Hello, 
world!. 

The notification shows up in any driver that registered for target device notifications pertaining to a file object for the same 
PDO. If your notification callback routine gets a notification structure with a nonstandard GUID in the Event field, you can 
expect that it’s somebody’s custom notification GUID. You need to understand what the GUID means before you go mucking 
about in the CustomDataBuffer! 

User-mode applications are supposed to be able to receive custom event notifications too, but I’ve not been able to get that to 
work. 

6.5 Windows 98/Me Compatibility Notes  

There are a few important differences between Windows 98/Me on the one hand and Windows 2000/XP on the other with 
respect to Plug and Play. 

6.5.1 Surprise Removal  
Windows 98/Me never sends an IRP_MN_SURPRISE_REMOVAL request. Consequently, a WDM driver needs to treat an 
unexpected IRP_MN_REMOVE_DEVICE as indicating surprise removal. The code samples I showed you in this chapter 
accomplish that by calling AbortRequests and StopDevice when they get this IRP out of the blue. 

6.5.2 PnP Notifications  
Windows 98/Me has calls to the IoReportTargetDeviceChange function fail with STATUS_NOT_IMPLEMENTED. It doesn’t 
export the symbol IoReportTargetDeviceChangeAsynchronous at all; a driver that calls that function will simply fail to load in 
Windows 98/Me. Refer to Appendix A for information about how you can stub this and other missing support functions so as 
to be able to ship a single driver binary. 

6.5.3 The Remove Lock  
The original edition of Windows 98 didn’t include any of the remove lock functions. Windows 98, Second Edition, and 
Windows Me include all but IoReleaseRemoveLockAndWait, which is the same as not supporting any of the functions, in my 
view. I mean, the whole point of the remove lock mechanism is to gate IRP_MN_REMOVE_DEVICE, and that hinges on the 
omitted function. 

To make matters worse, a driver that references a function that the Windows 98/Me kernel doesn’t export simply won’t load. 

DDK sample programs cope with this incompatibility in one of two ways. Some samples use a custom-built mechanism 
instead of an IO_REMOVE_LOCK. Others provide functions with names like XxxAcquireRemoveLock, and so on, that mimic 
the names of the standard remove lock functions. 

My sample drivers use a variation of the second of these approaches. By means of #define statements, I substitute my own 
declarations of the IO_REMOVE_LOCK object and support functions for the official ones. Thus, my sample code calls 
IoAcquireRemoveLock, and so on. In the samples that use GENERIC.SYS, preprocessor trickery actually routes these calls to 
functions with names such as GenericAcquireRemoveLock that reside in GENERIC.SYS. In the samples that don’t use 
GENERIC.SYS, the preprocessor trickery routes the calls to functions with names such as AcquireRemoveLock that are located 
in a file named REMOVELOCK.CPP. 

I could have written my samples in such a way that they would call the standard remove lock functions instead of my own in 
Windows XP. To make any of the samples work in Windows 98/Me, I’d have needed to have you install WDMSTUB.SYS 
before you could run any of the samples. (See Appendix A.) I didn’t think this was a good way to explain WDM programming. 
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Chapter 7  

7 Reading and Writing Data  

All the infrastructure I’ve described so far in this book leads up to this chapter, where I finally cover how to read and write data 
from a device. I’ll discuss the service functions you call to perform these important operations on a device plugged in to one of 
the traditional buses, such as Peripheral Component Interconnect (PCI). Since many devices use a hardware interrupt to notify 
system software about I/O completion or exceptional events, I’ll also discuss how to handle an interrupt. Interrupt processing 
normally requires you to schedule a deferred procedure call (DPC), so I’ll describe the DPC mechanism too. Finally I’ll tell 
you how to arrange direct memory access (DMA) transfers between your device and main memory. 

7.1 Configuring Your Device  

In the preceding chapter, I discussed the various IRP_MJ_PNP requests that the Plug and Play (PnP) Manager sends you. 
IRP_MN_START_DEVICE is the vehicle for giving you information about the I/O resources that have been assigned by the 
PnP Manager for your use. I showed you how to obtain parallel lists of raw and translated resource descriptions and how to call 
a StartDevice helper function that would have the following prototype: 

NTSTATUS StartDevice(PDEVICE_OBJECT fdo, 
  PCM_PARTIAL_RESOURCE_LIST raw, 
  PCM_PARTIAL_RESOURCE_LIST translated) 
  { 
 
  } 

The time has now come to explain what to do with these resource lists. In summary, you’ll extract descriptions of your 
assigned resources from the translated list and use those descriptions to create additional kernel objects that give you access to 
your hardware. 

Figure 7-1. Structure of a partial resource list.  

The CM_PARTIAL_RESOURCE_LIST structures contain a count and an array of CM_PARTIAL_RESOURCE_DESCRIPTOR 
structures, as illustrated in Figure 7-1. Each resource descriptor in the array has a Type member that indicates the type of 
resource it describes and some additional members that supply the particulars about some allocated resource. You’re not going 
to be surprised by what you find in this array, by the way: if your device uses an IRQ and a range of I/O ports, you’ll get two 
resource descriptors in the array. One of the descriptors will be for your IRQ, and the other will be for your I/O port range. 
Unfortunately, you can’t predict in advance the order in which these descriptors will happen to appear in the array. 
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Consequently, your StartDevice helper function has to begin with a loop that “flattens” the array by extracting resource values 
into a collection of local variables. You can later use the local variables to deal with the assigned resources in whatever order 
you please (which, it goes without saying, can be different from the order in which the PnP Manager chose to present them to 
you). 

In sketch, then, your StartDevice function looks like this: 

NTSTATUS StartDevice(PDEVICE_OBJECT fdo, PCM_PARTIAL_RESOURCE_LIST raw, 
  PCM_PARTIAL_RESOURCE_LIST translated) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  PCM_PARTIAL_RESOURCE_DESCRIPTOR resource = translated->PartialDescriptors; 
 
  ULONG nres = translated->Count; 
 
  <local variable declarations> 
  for (ULONG i = 0; i < nres; ++i, ++resource) 
    { 
 
    switch (resource->Type) 
      { 
    case CmResourceTypePort: 
      <save port info in local variables> 
      break; 
    case CmResourceTypeInterrupt: 
      <save interrupt info in local variables> 
      break; 
    case CmResourceTypeMemory: 
      <save memory info in local variables> 
      break; 
    case CmResourceTypeDma: 
      <save DMA info in local variables> 
      break; 
      } 
    } 
 
  <use local variables to configure driver & hardware>  return STATUS_SUCCESS; 
  } 

1. I’ll use the resource pointer to point to the current resource descriptor in the variable-length array. By the end of the 
upcoming loop, it will point past the last valid descriptor. 

2. The Count member of a resource list indicates how many resource descriptors are in the PartialDescriptors array. 

3. You should declare appropriate local variables for each of the I/O resources you expect to receive. I’ll detail what these 
should be later on when I discuss how to deal with each of the standard I/O resources. 

4. Within the loop over resource descriptors, you use a switch statement to save resource description information into the 
appropriate local variables. In the text, I posited a device that needed just an I/O port range and an interrupt, and such a 
device would expect to find resource types CmResourceTypePort and CmResourceTypeInterrupt. I’m showing the other 
two standard resource types—CmResourceTypeMemory and CmResourceTypeDma—for thoroughness. 

5. Once outside the loop, the local variables you initialized in the various case labels will hold the resource information you 
need. 

If you have more than one resource of a particular type, you need to invent a way to tell the resource descriptors apart. To give 
a concrete (but entirely fictitious) example, suppose your device uses one 4-KB range of memory for control purposes and a 
different, 16-KB, range of memory as a data capture buffer. You expect to receive two CmResourceTypeMemory resources 
from the PnP Manager. The control memory is the block that’s 4 KB long, whereas the data memory is the block that’s 16 KB 
long. If your device’s resources have a distinguishing characteristic such as the size difference in the example, you’ll be able to 
tell which resource is which. 

When dealing with multiple resources of the same type, don’t assume that the resource descriptors will be in the same order 
that your configuration space lists them in, and don’t assume that the same bus driver will always construct resource 
descriptors in the same order on every platform or every release of the operating system. The first assumption is tantamount to 
assuming that the bus driver programmer adopted a particular algorithm, while the second is tantamount to assuming that all 
bus driver programmers think alike and will never change their minds. 

I’ll explain how to deal with each of the four standard I/O resource types at appropriate places in the remainder of this chapter. 
Table 7-1 presents an overview of the critical step (or steps) for each type of resource. 
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Resource Type Overview 

Port Possibly map port range; save base port address in device extension 

Memory Map memory range; save base address in device extension 

Dma Call IoGetDmaAdapter to create an adapter object 

Interrupt 
Call IoConnectInterrupt to create an interrupt object that points to your interrupt service 
routine (ISR) 

Table 7-1. Overview of Processing Steps for I/O Resources  

7.2 Addressing a Data Buffer  

When an application initiates a read or write operation, it provides a data buffer by giving the I/O Manager a user-mode virtual 
address and length. As I said back in Chapter 3, a kernel driver hardly ever accesses memory using a user-mode virtual address 
because, in general, you can’t pin down the thread context with certainty. MicrosoftWindows XP gives you three ways to 
access a user-mode data buffer: 

1. In the buffered method, the I/O Manager creates a system buffer equal in size to the user-mode data buffer. You work with 
this system buffer. The I/O Manager takes care of copying data between the user-mode buffer and the system buffer. 

2. In the direct method, the I/O Manager locks the physical pages containing the user-mode buffer and creates an auxiliary 
data structure called a memory descriptor list (MDL) to describe the locked pages. You work with the MDL. 

3. In the neither method, the I/O Manager simply passes the user-mode virtual address to you. You work—very 
carefully!—with the user-mode address. 

Figure 7-2 illustrates the first two methods. The last method, of course, is kind of a nonmethod in that the system doesn’t do 
anything to help you reach your data. 

Figure 7-2. Accessing user-mode data buffers.  

7.2.1 Specifying a Buffering Method  
You specify your device’s buffering method for reads and writes by setting certain flag bits in your device object shortly after 
you create it in your AddDevice function: 

NTSTATUS AddDevice(...) 
  { 
  PDEVICE_OBJECT fdo; 
  IoCreateDevice(..., &fdo); 
  fdo->Flags │= DO_BUFFERED_IO; 
           <or> 
  fdo->Flags │= DO_DIRECT_IO; 
           <or> 
  fdo->Flags │= 0; // i.e., neither direct nor buffered 
  } 

You can’t change your mind about the buffering method afterward. Filter drivers might copy this flag setting and will have no 
way of knowing if you do change your mind and specify a different buffering method. 
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The Buffered Method  

When the I/O Manager creates an IRP_MJ_READ or IRP_MJ_WRITE request, it inspects the direct and buffered flags to 
decide how to describe the data buffer in the new I/O request packet (IRP). If DO_BUFFERED_IO is set, the I/O Manager 
allocates nonpaged memory equal in size to the user buffer. It saves the address and length of the buffer in two wildly different 
places, as shown in boldface in the following code fragment. You can imagine the I/O Manager code being something like 
this—this is not the actual Microsoft Windows NT source code. 

PVOID uva;             // <== user-mode virtual buffer address 
ULONG length;          // <== length of user-mode buffer 
 
PVOID sva = ExAllocatePoolWithQuota(NonPagedPoolCacheAligned, length); 
if (writing) 
  RtlCopyMemory(sva, uva, length); 
 
Irp->AssociatedIrp.SystemBuffer = sva; 
PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
if (reading) 
  stack->Parameters.Read.Length = length;else 
  stack->Parameters.Write.Length = length; 
<code to send and await IRP> 
if (reading) 
  RtlCopyMemory(uva, sva, length); 
 
ExFreePool(sva); 

In other words, the system (copy) buffer address is in the IRP’s AssociatedIrp.SystemBuffer field, and the request length is in 
the stack->Parameters union. This process includes additional details that you and I don’t need to know to write drivers. For 
example, the copy that occurs after a successful read operation actually happens during an asynchronous procedure call (APC) 
in the original thread context and in a different subroutine from the one that constructs the IRP. The I/O Manager saves the 
user-mode virtual address (my uva variable in the preceding fragment) in the IRP’s UserBuffer field so that the copy step can 
find it. Don’t count on either of these facts, though—they’re subject to change at any time. 

The I/O Manager also takes care of releasing the free storage obtained for the system copy buffer when somebody eventually 
completes the IRP. 

The Direct Method  

If you specified DO_DIRECT_IO in the device object, the I/O Manager creates an MDL to describe locked pages containing 
the user-mode data buffer. The MDL structure has the following declaration: 

typedef struct _MDL { 
  struct _MDL *Next; 
  CSHORT Size; 
  CSHORT MdlFlags; 
  struct _EPROCESS *Process; 
  PVOID MappedSystemVa; 
  PVOID StartVa; 
  ULONG ByteCount; 
  ULONG ByteOffset; 
  } MDL, *PMDL; 

Figure 7-3 illustrates the role of the MDL. The StartVa member gives the virtual address—valid only in the context of the 
user-mode process that owns the data—of the buffer. ByteOffset is the offset of the beginning of the buffer within a page frame, 
and ByteCount is the size of the buffer in bytes. The Pages array, which isn’t formally declared as part of the MDL structure, 
follows the MDL in memory and contains the numbers of the physical page frames to which the user-mode virtual addresses 
map. 
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Figure 7-3. The memory descriptor list structure.  

e never, by the way, access members of an MDL structure directly. We use macros and support functions instead—see Table 
7-2. 

Macro or Function Description 

IoAllocateMdl  Creates an MDL. 

IoBuildPartialMdl  Builds an MDL for a subset of an existing MDL. 

IoFreeMdl  Destroys an MDL. 

MmBuildMdlForNonPagedPool  Modifies an MDL to describe a region of kernel-mode nonpaged memory. 

MmGetMdlByteCount  Determines byte size of buffer. 

MmGetMdlByteOffset  Gets buffer offset within first page. 

MmGetMdlPfnArray  Locates array of physical page pointers. 

MmGetMdlVirtualAddress  Gets virtual address. 

MmGetSystemAddressForMdl  
Creates a kernel-mode virtual address that maps to the same locations in 
memory. 

MmGetSystemAddressForMdlSafe  
Same as MmGetSystemAddressForMdl but preferred in Windows 2000 and later 
systems. 

MmInitializeMdl  (Re)initializes an MDL to describe a given virtual buffer. 

MmMapLockedPages  
Creates a kernel-mode virtual address that maps to the same locations in 
memory. 

MmMapLockedPagesSpecifyCache  
Similar to MmMapLockedPages but preferred in Windows 2000 and later 
systems. 

MmPrepareMdlForReuse  Reinitializes an MDL. 

MmProbeAndLockPages  Locks pages after verifying address validity. 

MmSizeOfMdl  
Determines how much memory would be needed to create an MDL to describe 
a given virtual buffer. You don’t need to call this routine if you use IoAllocateMdl 
to create the MDL in the first place. 

MmUnlockPages  Unlocks the pages for this MDL. 

MmUnmapLockedPages  Undoes a previous MmMapLockedPages. 

Table 7-2. Macros and Support Functions for Accessing an MDL  

You can imagine the I/O Manager executing code like the following to perform a direct-method read or write: 

KPROCESSOR_MODE mode;   // <== either KernelMode or UserMode 
PMDL mdl = IoAllocateMdl(uva, length, FALSE, TRUE, Irp); 
MmProbeAndLockPages(mdl, mode, reading ? IoWriteAccess : IoReadAccess); 
<code to send and await IRP> 
MmUnlockPages(mdl); 
IoFreeMdl(mdl); 

The I/O Manager first creates an MDL to describe the user buffer. The third argument to IoAllocateMdl (FALSE) indicates that 
this is the primary data buffer. The fourth argument (TRUE) indicates that the Memory Manager should charge the process 
quota. The last argument (Irp) specifies the IRP to which this MDL should be attached. Internally, IoAllocateMdl sets 
Irp->MdlAddress to the address of the newly created MDL, which is how you find it and how the I/O Manager eventually 
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finds it so as to clean up. 

The key event in this code sequence is the call to MmProbeAndLockPages, shown in boldface. This function verifies that the 
data buffer is valid and can be accessed in the appropriate mode. If we’re writing to the device, we must be able to read the 
buffer. If we’re reading from the device, we must be able to write to the buffer. In addition, the function locks the physical 
pages containing the data buffer and fills in the array of page numbers that follows the MDL proper in memory. In effect, a 
locked page becomes part of the nonpaged pool until as many callers unlock it as locked it in the first place. 

The thing you’ll most likely do with an MDL in a direct-method read or write is to pass it as an argument to somebody else. 
DMA transfers, for example, require an MDL for the MapTransfer step you’ll read about later in this chapter in “Performing 
DMA Transfers.” Universal serial bus (USB) reads and writes, to give another example, always work internally with an MDL, 
so you might as well specify DO_DIRECT_IO and pass the resulting MDLs along to the USB bus driver. 

Incidentally, the I/O Manager does save the read or write request length in the stack->Parameters union. It’s nonetheless 
customary for drivers to learn the request length directly from the MDL: 

ULONG length = MmGetMdlByteCount(mdl); 

The Neither Method  

If you omit both the DO_DIRECT_IO and DO_BUFFERED_IO flags in the device object, you get the neither method by 
default. The I/O Manager simply gives you a user-mode virtual address and a byte count (as shown in boldface) and leaves the 
rest to you: 

              
Irp->UserBuffer = uva;PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
if (reading) 
  stack->Parameters.Read.Length = length; 
else 
  stack->Parameters.Write.Length = length; 
<code to send and await IRP> 

Never simply access memory using a pointer you get from user mode. You can use MmProbeAndLockPages to create 
an MDL for user-mode pages. Alternatively, you can call ProbeForRead or ProbeForWrite to verify that a range of 
addresses truly belongs to user mode and then access the memory directly. You should use a structured exception frame 

in either case to avoid a bug check in case there’s some problem with the pointer or the length. For example:  

PVOID buffer = Irp->UserBuffer; 
ULONG length = stack->Parameters.Read.Length; 
if (Irp->RequestorMode != KernelMode) 
  { 
  __try 
    { 
    PMDL mdl = IoAllocateMdl(...); 
    MmProbeAndLockPages(...); 

          -or- 

    ProbeForRead(...); 
    <access memory at buffer> 
    } 
  __except(EXCEPTION_EXECUTE_HANDLER) 
    { 
    return CompleteRequest(Irp, GetExceptionCode(), 0); 
    } 

7.3 Ports and Registers  

Windows XP uses the abstract computer model depicted in Figure 7-4 to provide a unified driver interface in all CPU 
architectures. In this mode, a CPU can have separate memory and I/O address spaces. To access a memory-mapped device, the 
CPU employs a memory-type reference such as a load or a store directed to a virtual address. The CPU translates the virtual 
address to a physical address by using a set of page tables. To access an I/O-mapped device, on the other hand, the CPU 
invokes a special mechanism such as the x86 IN and OUT instructions. 
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Figure 7-4. Accessing ports and registers.  

Devices have bus-specific ways of decoding memory and I/O addresses. In the case of the PCI bus, a host bridge maps CPU 
physical memory addresses and I/O addresses to a bus address space that’s directly accessible to devices. Flag bits in the 
device’s configuration space determine whether the bridge maps the device’s registers to a memory or an I/O address on CPUs 
that have both address spaces. 

As I’ve said, some CPUs have separate memory and I/O address spaces. Intel architecture CPUs have both, for example. Other 
CPUs, such as the Alpha, have just a memory address space. If your device is I/O-mapped, the PnP Manager will give you port 
resources. If your device is memory-mapped, it will give you memory resources instead. 

Rather than have you place reams of conditionally compiled code in your driver for all possible platforms, the Windows NT 
designers invented the hardware abstraction layer (HAL), to which I’ve alluded a few times in this book. The HAL provides 
functions that you use to access port and memory resources. See Table 7-3. As the table indicates, you can READ/WRITE 
either a single UCHAR/USHORT/ULONG or an array of them from or to a PORT/REGISTER. That makes 24 HAL functions 
in all that are used for device access. Since a WDM driver doesn’t directly rely on the HAL for anything else, you might as 
well think of these 24 functions as being the entire public interface to the HAL. 

Access Width Functions for Port Access Functions for Memory Access 

8 bits READ_PORT_UCHAR WRITE_PORT_UCHAR  
READ_REGISTER_UCHAR 
WRITE_REGISTER_UCHAR  

16 bits 
READ_PORT_USHORT 
WRITE_PORT_USHORT  

READ_REGISTER_USHORT 
WRITE_REGISTER_USHORT  

32 bits READ_PORT_ULONG WRITE_PORT_ULONG  
READ_REGISTER_ULONG 
WRITE_REGISTER_ULONG  

String of 8-bit 
bytes 

READ_PORT_BUFFER_UCHAR 
WRITE_PORT_BUFFER_UCHAR  

READ_REGISTER_BUFFER_UCHAR 
WRITE_REGISTER_BUFFER_UCHAR  

String of 16-bit 
words 

READ_PORT_BUFFER_USHORT 
WRITE_PORT_BUFFER_USHORT  

READ_REGISTER_BUFFER_USHORT 
WRITE_REGISTER_BUFFER_USHORT  

String of 32-bit -
doublewords 

READ_PORT_BUFFER_ULONG 
WRITE_PORT_BUFFER_ULONG  

READ_REGISTER_BUFFER_ULONG 
WRITE_REGISTER_BUFFER_ULONG  

Table 7-3. HAL Functions for Accessing Ports and Memory Registers  

What goes on inside these access functions is (obviously!) highly dependent on the platform. The Intel x86 version of 
READ_PORT_CHAR, for example, performs an IN instruction to read 1 byte from the designated I/O port. The Microsoft 
Windows 98/Me implementation goes so far as to overstore the driver’s call instruction with an actual IN instruction in some 
situations. The Alpha version of this routine performs a memory fetch. The Intel x86 version of READ_REGISTER_UCHAR 
performs a memory fetch also; this function is macro’ed as a direct memory reference on the Alpha. The buffered version of 
this function (READ_REGISTER_BUFFER_UCHAR), on the other hand, does some extra work in the Intel x86 environment 
to ensure that all CPU caches are properly flushed when the operation finishes. 

The whole point of having the HAL in the first place is so that you don’t have to worry about platform differences or about the 
sometimes arcane requirements for accessing devices in the multitasking, multiprocessor environment of Windows XP. Your 
job is quite simple: use a PORT call to access what you think is a port resource, and use a REGISTER call to access what you 
think is a memory resource. 
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7.3.1 Port Resources  
I/O-mapped devices expose hardware registers that, on some CPU architectures (including Intel x86), are addressed by 
software using a special I/O address space. On other CPU architectures, no separate I/O address space exists, and these 
registers are addressed using regular memory references. Luckily, you don’t need to understand these addressing complexities. 
If your device requests a port resource, one iteration of your loop over the translated resource descriptors will find a 
CmResourceTypePort descriptor, and you’ll save three pieces of information. 

typedef struct _DEVICE_EXTENSION { 
 
  PUCHAR portbase; 
  ULONG nports; 
  BOOLEAN mappedport; 

 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
PHYSICAL_ADDRESS portbase;    // base address of range 

 
for (ULONG i = 0; i < nres; ++i, ++resource) 
  { 
  switch (resource->Type) 
    { 
  case CmResourceTypePort: 
 
    portbase = resource->u.Port.Start; 
    pdx->nports = resource->u.Port.Length; 
 
    pdx->mappedport = 
     (resource->Flags & CM_RESOURCE_PORT_IO) == 0; 
    break; 
 
    } 

 
if (pdx->mappedport) 
  { 
 
  pdx->portbase = (PUCHAR) MmMapIoSpace(portbase, 
    pdx->nports, MmNonCached); 
  if (!pdx->portbase) 
    return STATUS_NO_MEMORY; 
  } 
else 
 
  pdx->portbase = (PUCHAR) portbase.QuadPart; 

1. The resource descriptor contains a union named u that has substructures for each of the standard resource types. u.Port 
has information about a port resource. u.Port.Start is the beginning address of a contiguous range of I/O ports, and 
u.Port.Length is the number of ports in the range. The start address is a 64-bit PHYSICAL_ADDRESS value. 

2. The Flags member of the resource descriptor for a port resource has the CM_RESOURCE_PORT_IO flag set if the CPU 
architecture has a separate I/O address space to which the given port address belongs. 

3. If the CM_RESOURCE_PORT_IO flag was clear, as it will be on an Alpha and perhaps other RISC platforms, you must 
call MmMapIoSpace to obtain a kernel-mode virtual address by which the port can be accessed. The access will really 
employ a memory reference, but you’ll still call the PORT flavor of HAL routines (READ_PORT_UCHAR and so on) 
from your driver. 

4. If the CM_RESOURCE_PORT_IO flag was set, as it will be on an x86 platform, you do not need to map the port address. 
You’ll call the PORT flavor of HAL routines from your driver when you want to access one of your ports. The HAL 
routines demand a PUCHAR port address argument, which is why we cast the base address to that type. The QuadPart 
reference, by the way, results in your getting a 32-bit or 64-bit pointer, as appropriate to the platform for which you’re 
compiling. 

Whether or not the port address needs to be mapped via MmMapIoSpace, you’ll always call the HAL routines that deal with 
I/O port resources: READ_PORT_UCHAR, WRITE_PORT_UCHAR, and so on. On a CPU that requires you to map a port 
address, the HAL will be making memory references. On a CPU that doesn’t require the mapping, the HAL will be making I/O 
references; on an x86, this means using one of the IN and OUT instruction family. 

Your StopDevice helper routine has a small cleanup task to perform if you happen to have mapped your port resource: 
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VOID StopDevice(...) 
  { 

 
  if (pdx->portbase && pdx->mappedport) 
    MmUnmapIoSpace(pdx->portbase, pdx->nports); 
  pdx->portbase = NULL; 
 
  } 

7.3.2 Memory Resources  
Memory-mapped devices expose registers that software accesses using load and store instructions. The translated resource 
value you get from the PnP Manager is a physical address, and you need to reserve virtual addresses to cover the physical 
memory. Later on, you’ll be calling HAL routines that deal with memory registers, such as READ_REGISTER_UCHAR, 
WRITE_REGISTER_UCHAR, and so on. Your extraction and configuration code will look like the fragment below. 

typedef struct _DEVICE_EXTENSION { 

 
  PUCHAR membase; 
  ULONG nbytes; 

 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
PHYSICAL_ADDRESS membase;     // base address of range 
 
for (ULONG i = 0; i < nres; ++i, ++resource) 
  { 
  switch (resource->Type) 
    { 
  case CmResourceTypeMemory: 
 
    membase = resource->u.Memory.Start; 
    pdx->nbytes = resource->u.Memory.Length; 
    break; 

 
    } 
 
 
pdx->membase = (PUCHAR) MmMapIoSpace(membase, pdx->nbytes, 
  MmNonCached); 
if (!pdx->membase) 
  return STATUS_NO_MEMORY; 

1. Within the resource descriptor, u.Memory has information about a memory resource. u.Memory.Start is the beginning 
address of a contiguous range of memory locations, and u.Memory.Length is the number of bytes in the range. The start 
address is a 64-bit PHYSICAL_ADDRESS value. It’s not an accident that the u.Port and u.Memory substructures are 
identical—it’s on purpose, and you can rely on it being true if you want to. 

2. You must call MmMapIoSpace to obtain a kernel-mode virtual address by which the memory range can be accessed. 

Your StopDevice function unconditionally unmaps your memory resources: 

VOID StopDevice(...) 
  { 
 
  if (pdx->membase) 
    MmUnmapIoSpace(pdx->membase, pdx->nbytes); 
  pdx->membase = NULL; 

 
  } 

7.4 Servicing an Interrupt  

Many devices signal completion of I/O operations by asynchronously interrupting the processor. In this section, I’ll discuss 
how you configure your driver for interrupt handling and how you service interrupts when they occur. 
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7.4.1 Configuring an Interrupt  
You configure an interrupt resource in your StartDevice function by calling IoConnectInterrupt using parameters that you can 
simply extract from a CmResourceTypeInterrupt descriptor. Your driver and device need to be entirely ready to work correctly 
when you call IoConnectInterrupt—you might even have to service an interrupt before the function returns—so you normally 
make the call near the end of the configuration process. Some devices have a hardware feature that allows you to prevent them 
from interrupting. If your device has such a feature, disable interrupts before calling IoConnectInterrupt and enable the 
interrupts afterward. The extraction and configuration code for an interrupt would look like this: 

typedef struct _DEVICE_EXTENSION { 
 
  PKINTERRUPT InterruptObject; 
 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
ULONG vector;             // interrupt vector 
KIRQL irql;               // interrupt level 
KINTERRUPT_MODE mode;     // latching mode 
KAFFINITY affinity;       // processor affinity 
BOOLEAN irqshare;         // shared interrupt? 
 
for (ULONG i = 0; i < nres; ++i, ++resource) 
  { 
  switch (resource->Type) 
    { 
  case CmResourceTypeInterrupt: 
 
    irql = (KIRQL) resource->u.Interrupt.Level; 
 
    vector = resource->u.Interrupt.Vector; 
 
    affinity = resource->u.Interrupt.Affinity; 
 
    mode = (resource->Flags == CM_RESOURCE_INTERRUPT_LATCHED) 
      ? Latched : LevelSensitive; 
 
    irqshare = resource->ShareDisposition == CmResourceShareShared; 
    break; 
 
  } 
 
status = IoConnectInterrupt(&pdx->InterruptObject, 
  (PKSERVICE_ROUTINE) OnInterrupt, (PVOID) pdx, NULL,  vector, irql, irql, mode, 
irqshare, affinity, FALSE); 

1. The Level parameter specifies the interrupt request level (IRQL) for this interrupt. 

2. The Vector parameter specifies the hardware interrupt vector for this interrupt. We don’t care what this number is because 
we’re just going to act as a conduit between the PnP Manager and IoConnectInterrupt. All that matters is that the HAL 
understand what the number means. 

3. Affinity is a bit mask that indicates which CPUs will be allowed to handle this interrupt. 

4. We need to tell IoConnectInterrupt whether our interrupt is edge-triggered or level-triggered. If the resource Flags field is 
CM_RESOURCE_INTERRUPT_LATCHED, we have an edge-triggered interrupt. Otherwise, we have a level-triggered 
interrupt. 

5. Use this statement to discover whether your interrupt is shared. 

In the call to IoConnectInterrupt at the end of this sequence, we will simply regurgitate the values we pulled out of the 
interrupt resource descriptor. The first argument (&pdx->InterruptObject) indicates where to store the result of the connection 
operation—namely, a pointer to a kernel interrupt object that describes your interrupt. The second argument (OnInterrupt) is 
the name of your interrupt service routine; I’ll discuss ISRs a bit further on in this chapter. The third argument (pdx) is a 
context value that will be passed as an argument to the ISR each time your device interrupts. I’ll have more to say about this 
context parameter later as well in “Selecting an Appropriate Context Argument.” 

The fifth and sixth arguments (vector and irql) specify the interrupt vector number and interrupt request level, respectively, for 
the interrupt you’re connecting. The eighth argument (mode) is either Latched or LevelSensitive to indicate whether the 
interrupt is edge-triggered or level-triggered. The ninth argument is TRUE if your interrupt is shared with other devices and 
FALSE otherwise. The tenth argument (affinity) is the processor affinity mask for this interrupt. The eleventh and final 
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argument indicates whether the operating system needs to save the floating-point context when the device interrupts. Because 
you’re not allowed to do floating-point calculations in an ISR on an x86 platform, a portable driver will always set this flag to 
FALSE. 

I haven’t yet described two other arguments to IoConnectInterrupt. These become important when your device uses more than 
one interrupt. In such a case, you create a spin lock for your interrupts and initialize it by calling KeInitializeSpinLock. You 
also calculate the largest IRQL needed by any of your interrupts before connecting any of them. In each call to 
IoConnectInterrupt, you specify the address of the spin lock for the fourth argument (which is NULL in my example), and you 
specify the maximum IRQL for the seventh argument (which is irql in my example). This seventh argument indicates the IRQL 
used for synchronizing the interrupts, which you should make the maximum of all your interrupt IRQLs so that you’re troubled 
by only one of your interrupts at a time. 

If, however, your device uses only a single interrupt, you won’t need a special spin lock (because the I/O Manager 
automatically allocates one for you), and the synchronization level for your interrupt will be the same as the interrupt IRQL. 

7.4.2 Handling Interrupts  
Your device can interrupt on any of the CPUs specified in the affinity mask you specify in your call to IoConnectInterrupt. 
When an interrupt occurs, the system raises the CPU’s IRQL to the appropriate synchronization level and claims the spin lock 
associated with your interrupt object. Then it calls your ISR, which will have the following skeletal form: 

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject, PVOID Context) 
  { 
  if (<device not interrupting>) 
    return FALSE; 
  <handle interrupt> 
  return TRUE; 
  } 

Windows NT’s interrupt-handling mechanism assumes that hardware interrupts can be shared by many devices. Thus your first 
job in the ISR is to determine whether your device is interrupting at the present moment. If not, you return FALSE right away 
so that the kernel can send the interrupt to another device driver. If so, you clear the interrupt at the device level and return 
TRUE. Whether the kernel then calls other drivers’ ISRs depends on whether the device interrupt is edge-triggered or 
level-triggered and on other platform details. 

Your main job in the ISR is to service your hardware to clear the interrupt. I’ll have some general things to say about this job, 
but the details pretty much depend on how your hardware works. Once you’ve performed this major task, you return TRUE to 
indicate to the HAL that you’ve serviced a device interrupt. 

Programming Restrictions in the ISR  

ISRs execute at an IRQL higher than DISPATCH_LEVEL. All code and data used in an ISR must therefore be in nonpaged 
memory. Furthermore, the set of kernel-mode functions that an ISR can call is very limited. 

Since an ISR executes at an elevated IRQL, it freezes out other activities on its CPU that require the same or a lower IRQL. 
For best system performance, therefore, your ISR should execute as quickly as is reasonably possible. Basically, do the 
minimum amount of work required to service your hardware and return. If there is additional work to do (such as completing 
an IRP), schedule a DPC to handle that work. 

Despite the admonition you usually receive to do the smallest amount of work possible in your ISR, you don’t want to carry 
that idea to the extreme. For example, if you’re dealing with a device that interrupts to signal its readiness for the next output 
byte, go ahead and send the next byte directly from your ISR. It’s fundamentally silly to schedule a DPC just to transfer a 
single byte. Remember that the end user wants you to service your hardware (or else he or she wouldn’t have the hardware 
installed on the computer), and you’re entitled to your fair share of system resources to provide that service. 

But don’t go crazy calculating pi to a thousand decimal places in your ISR, either (unless your device requires you to do 
something that ridiculous, and it probably doesn’t). Good sense should tell you what the right balance of work between an ISR 
and a DPC routine should be. 

Selecting an Appropriate Context Argument  

In the call to IoConnectInterrupt, the third argument is an arbitrary context value that eventually shows up as the second 
argument to your ISR. You want to choose this argument so as to allow your ISR to execute as rapidly as possible; the address 
of your device object or of your device extension would be a good choice. The device extension is where you’ll be storing 
items—such as your device’s base port address—that you’ll use in testing whether your device is currently asserting an 
interrupt. To illustrate, suppose that your device, which is I/O-mapped, has a status port at its base address and that the 
low-order bit of the status value indicates whether the device is currently trying to interrupt. If you adopt my suggestion, the 
first few lines of your ISR will read like this: 
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BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject, 
  PDEVICE_EXTENSION pdx) 
  { 
  UCHAR devstatus = READ_PORT_UCHAR(pdx->portbase); 
  if ((devstatus & 1)) 
    return FALSE; 
  <etc.> 
  } 

The fully optimized code for this function will require only a few instructions to read the status port and test the low-order bit. 

TIP  
If you have any say in the hardware design, arrange matters so that your status port returns a 0 bit to indicate 
the pendency of an interrupt. Reads from ports to which nothing is connected usually return a 1 bit, and this 
simple design choice can prevent an infinite loop of calls to your ISR. 

If you elect to use the device extension as your context argument, be sure to supply a cast when you call IoConnectInterrupt: 

IoConnectInterrupt(..., (PKSERVICE_ROUTINE) OnInterrupt, ...); 

If you omit the cast, the compiler will generate an exceptionally obscure error message because the second argument to your 
OnInterrupt routine (a PDEVICE_EXTENSION) won’t match the prototype of the function pointer argument to 
IoConnectInterrupt, which demands a PVOID. 

Synchronizing Operations with the ISR  

As a general rule, the ISR shares data and hardware resources with other parts of the driver. Anytime you hear the word share, 
you should immediately start thinking about synchronization problems. For example, a standard universal asynchronous 
receiver-transmitter (UART) device has a data port the driver uses for reading and writing data. You’d expect a serial port 
driver’s ISR to access this port from time to time. Changing the baud rate also entails setting a control flag called the divisor 
latch, performing two single-byte write operations—one of which involves this same data port—and then clearing the divisor 
latch. If the UART were to interrupt in the middle of changing the baud rate, you can see that a data byte intended to be 
transmitted could easily end up in the baud-rate divisor register or that a byte intended for the divisor register could end up 
being transmitted as data. 

The system guards the ISR with a spin lock and with a relatively high IRQL—the device IRQL (DIRQL). To simplify the 
mechanics of obtaining the same spin lock and raising IRQL to the same level as an interrupt, the system provides this service 
function: 

BOOLEAN result = KeSynchronizeExecution(InterruptObject,  SynchRoutine, Context); 

where InterruptObject (PKINTERRUPT) is a pointer to the interrupt object describing the interrupt we’re trying to 
synchronize with, SynchRoutine (PKSYNCHRONIZE_ROUTINE) is the address of a callback function in our driver, and 
Context (PVOID) is an arbitrary context parameter to be sent to the SynchRoutine as an argument. We use the generic term 
synch critical section routine to describe a subroutine that we call by means of KeSynchronizeExecution. The synch critical 
section routine has the following prototype: 

BOOLEAN SynchRoutine(PVOID Context); 

That is, it receives a single argument and returns a BOOLEAN result. When it gets control, the current CPU is running at the 
synchronization IRQL that the original call to IoConnectInterrupt specified, and it owns the spin lock associated with the 
interrupt. Consequently, interrupts from the device are temporarily blocked out, and the SynchRoutine can freely access data 
and hardware resources that it shares with the ISR. 

KeSynchronizeExecution returns whatever value SynchRoutine returns, by the way. This gives you a way of providing a little 
bit of feedback from SynchRoutine to whomever calls KeSynchronizeExecution. 

If you’re designing a driver to run only in Windows XP and later systems, you can use KeAcquireInterruptSpinLock and 
KeReleaseInterruptSpinLock to avoid the sometimes cumbersome coding that KeSynchronizeExecution requires. 

7.4.3 Deferred Procedure Calls  
Completely servicing a device interrupt often requires you to perform operations that aren’t legal inside an ISR or that are too 
expensive to carry out at the elevated IRQL of an ISR. To avoid these problems, the designers of Windows NT provided the 
deferred procedure call mechanism. The DPC is a general-purpose mechanism, but you use it most often in connection with 
interrupt handling. In the most common scenario, your ISR decides that the current request is complete and requests a DPC. 
Later on, the kernel calls your DPC routine at DISPATCH_LEVEL. Although restrictions on the service routines you can call 
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and on paging still apply, there are fewer such restrictions because you’re now running at a lower IRQL than inside the ISR. In 
particular, it’s legal to call routines such as IoCompleteRequest and StartNextPacket that are logically necessary at the end of 
an I/O operation. 

Every device object gets a DPC object “for free.” That is, the DEVICE_OBJECT has a DPC object—named, prosaically 
enough, Dpc—built in. You need to initialize this built-in DPC object shortly after you create your device object: 

NTSTATUS AddDevice(...) 
  { 
  PDEVICE_OBJECT fdo; 
  IoCreateDevice(..., &fdo); 
  IoInitializeDpcRequest(fdo, DpcForIsr); 
   
  } 

IoInitializeDpcRequest is a macro in WDM.H that initializes the device object’s built-in DPC object. The second argument is 
the address of the DPC procedure that I’ll show you presently. 

With your initialized DPC object in place, your ISR can request a DPC by using the following macro: 

BOOLEAN OnInterrupt(...) 
  { 
 
  IoRequestDpc(pdx->DeviceObject, NULL, (PVOID) pdx); 
 
  } 

This call to IoRequestDpc places your device object’s DPC object in a systemwide queue, as illustrated in Figure 7-5. 

Figure 7-5. Processing DPC requests.  

The NULL and pdx parameters are context values. Later on, when no other activity is occurring at DISPATCH_LEVEL, the 
kernel removes your DPC object from the queue and calls your DPC routine, which has the following prototype: 

VOID DpcForIsr(PKDPC Dpc, PDEVICE_OBJECT fdo, PIRP junk, PDEVICE_EXTENSION pdx) 
  { 
  } 

What you do inside the DPC routine depends in great measure on how your device works. A likely task would be to complete 
the current IRP and release the next IRP from the queue. If you use one of my DEVQUEUE objects for IRP queuing, the code 
will be as follows: 

VOID DpcForIsr(...) 
  { 
  PIRP Irp = GetCurrentIrp(&pdx->dqRead); 
  StartNextPacket(&pdx->dqRead, fdo); 
  IoCompleteRequest(Irp, <boost value>); 
  } 

In this code fragment, we rely on the fact that the DEVQUEUE package remembers the IRP it sends to our StartIo routine. The 
IRP we want to complete is the one that’s current when we commence the DPC routine. It’s customary to call StartNextPacket 
before IoCompleteRequest so that we can get our device busy with a new request before we start the potentially long process of 
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completing the current IRP. 

DPC Scheduling  

I’ve glossed over two fairly important details and a minor one about DPCs until now. The first important detail is implicit in 
the fact that you have a DPC object that gets put in a queue by IoRequestDpc. If your device generates an additional interrupt 
before the DPC routine actually runs, and if your ISR requests another DPC, the kernel will simply ignore the second request. 
In other words, your DPC object will be in the queue one time no matter how many DPCs are requested by successive 
invocations of your ISR, and the kernel will call your callback routine only once. During that one invocation, your DPC 
routine needs to accomplish all the work related to all the interrupts that have occurred since the last DPC. 

As soon as the DPC dispatcher dequeues your DPC object, it’s possible for somebody to queue it again, even while your DPC 
routine executes. This won’t cause you any grief if the object happens to be queued on the same CPU both times. The second 
important detail about DPC processing, therefore, has to do with CPU affinity. Normally, the kernel queues a DPC object for 
handling on the same processor that requests the DPC—for example, the processor that just handled an interrupt and called 
IoRequestDpc. As soon as the DPC dispatcher dequeues the DPC object and calls your callback routine on one CPU, it’s 
theoretically possible for your device to interrupt on a different CPU, which might end up requesting a DPC that could execute 
simultaneously on that different CPU. Whether simultaneous execution of your DPC routine poses a problem or not depends, 
obviously, on the details of your coding. 

You can avoid the potential problems that might come from having your DPC routine simultaneously active on multiple CPUs 
in several ways. One way, which isn’t the best, is to designate a particular CPU for running your DPC by calling 
KeSetTargetProcessorDpc. Also, you can theoretically restrict the CPU affinity of your interrupt when you first connect it; if 
you never queue the DPC except from your ISR, you’ll never be executing the DPC on any different CPU. The real reason 
you’d specify the CPU affinity of a DPC or an interrupt, however, is to improve performance by allowing the code and data 
accessed during your DPC or ISR routines to remain in a cache. 

You can also use a spin lock or other synchronization primitive to prevent interference between two instances of your DPC 
routine. Be careful of using a spin lock here: you often need to coordinate the hypothetical multiple instances of your DPC 
routine with your ISR, and an ISR runs at too high an IRQL to use an ordinary spin lock. An interlocked list—that is, one you 
manipulate by using support functions in the same family as ExInterlockedInsertHeadList—might help you because (so long as 
you never explicitly acquire the same spin lock that you use to guard the list) you can use the list at any IRQL. The 
InterlockedOr, InterlockedAnd, and InterlockedXor functions may also help by allowing you to manage a bit mask (such as a 
mask indicating recent interrupt conditions) that controls what your DPC routine is supposed to accomplish. 

Most simply, you can just make sure that your device won’t interrupt in between the time you request a DPC and the time your 
DPC routine finishes its work. (“Yo, hardware guys, stop flooding me with interrupts!”) 

The third DPC detail, which I consider less crucial than the two I’ve just explained, concerns the importance of the DPC. By 
calling KeSetImportanceDpc, you can designate one of three importance levels for your DPC: 

 MediumImportance is the default and indicates that the DPC should be queued after all currently queued DPCs. If the 
DPC is queued to another processor, that other processor won’t necessarily be interrupted right away to service the DPC. 
If it’s queued to the current processor, the kernel will request a DPC interrupt as soon as possible to begin servicing 
DPCs. 

 HighImportance causes the DPC to be queued first. If two or more high-importance DPCs get requested at about the 
same time, the last one queued gets serviced first. 

 LowImportance causes the DPC to be queued last. In addition, the kernel won’t necessarily request a DPC interrupt for 
whichever processor is destined to service the DPC. 

The net effect of a DPC’s importance level is to influence, but not necessarily control, how soon the DPC occurs. Even a DPC 
that has low importance might trigger a DPC interrupt on another CPU if that other CPU reaches some threshold for queued 
DPCs or if DPCs haven’t been getting processed fast enough on it. If your device is capable of interrupting again before your 
DPC routine runs, changing your DPC to low importance will increase the likelihood that you’ll have multiple work items to 
perform. If your DPC has an affinity for some CPU other than the one that requests the DPC, choosing high importance for 
your DPC will increase the likelihood that your ISR will still be active when your DPC routine begins to run. But neither of 
these possibilities is a certainty; conversely, altering or not altering your importance can’t prevent either of them from 
happening. 

Custom DPC Objects  

You can create other DPC objects besides the one named Dpc in a device object. Simply reserve storage—in your device 
extension or some other persistent place that isn’t paged—for a KDPC object, and initialize it: 

typedef struct _DEVICE_EXTENSION { 
 
  KDPC CustomDpc; 
 
  }; 
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KeInitializeDpc(&pdx->CustomDpc,(PKDEFERRED_ROUTINE) DpcRoutine, fdo); 

In the call to KeInitializeDpc, the second argument is the address of a DPC routine in nonpaged memory, and the third 
argument is an arbitrary context parameter that will be sent to the DPC routine as its second argument. 

To request a deferred call to a custom DPC routine, call KeInsertQueueDpc: 

BOOLEAN inserted = KeInsertQueueDpc(&pdx->CustomDpc, arg1, arg2); 

Here arg1 and arg2 are arbitrary context pointers that will be passed to the custom DPC routine. The return value is FALSE if 
the DPC object was already in a processor queue and TRUE otherwise. 

Also, you can remove a DPC object from a processor queue by calling KeRemoveQueueDpc. 

7.4.4 A Simple Interrupt-Driven Device  
I wrote the PCI42 sample driver (available in the companion content) to illustrate how to write the various driver routines that 
a typical interrupt-driven non-DMA device might use. The method used to handle such a device is often called programmed 
I/O (PIO) because program intervention is required to transfer each unit of data. 

PCI42 is a dumbed-down driver for the S5933 PCI chip set from Applied Micro Circuits Corporation (AMCC). The S5933 acts 
as a matchmaker between the PCI bus and an add-on device that implements the actual function of a device. The S5933 is very 
flexible. In particular, you can program nonvolatile RAM so as to initialize the PCI configuration space for your device in any 
desired way. PCI42 uses the S5933 in its factory default state, however. 

To grossly oversimplify matters, a WDM driver communicates with the add-on device connected to an S5933 either by doing 
DMA (which I’ll discuss in the next major section of this chapter) or by sending and receiving data through a set of mailbox 
registers. PCI42 will be using 1 byte in one of the mailbox registers to transfer data 1 byte at a time. 

The AMCC development kit for the S5933 (part number S5933DK1) includes two breadboard cards and an ISA (Industry 
Standard Architecture) interface card that connects to the S5933 development board via a ribbon cable. The ISA card allows 
you to access the S5933 from the add-on device side in order to provide software simulation of the add-on device. One 
component of the PCI42 sample is a driver (S5933DK1.SYS) for the ISA card that exports an interface for use by test 
programs. 

Hardware people will snicker at the simplicity of the way PCI42 manages the device. The advantage of using such a trivial 
example is that you’ll be able to see each step in the process of handling an I/O operation unfold at human speed. So chortle 
right back if your social dynamics allow it. 

Initializing PCI42  

The StartDevice function in PCI42 handles a port resource and an interrupt resource. The port resource describes a collection 
of sixteen 32-bit operation registers in I/O space, and the interrupt resource describes the host manifestation of the device’s 
INTA# interrupt capability. At the end of StartDevice, we have the following device-specific code: 

NTSTATUS StartDevice(...) 
  { 
 
  ResetDevice(pdx); 
  status = IoConnectInterrupt(...); 
  KeSynchronizeExecution(pdx->InterruptObject, 
    (PKSYNCHRONIZE_ROUTINE) SetupDevice, pdx); 
  return STATUS_SUCCESS; 
  } 

That is, we invoke a helper routine (ResetDevice) to reset the hardware. One of the tasks for ResetDevice is to prevent the 
device from generating any interrupts, insofar as that’s possible. Then we call IoConnectInterrupt to connect the device 
interrupt to our ISR. Even before IoConnectInterrupt returns, it’s possible for our device to generate an interrupt, so everything 
about our driver and the hardware has to be ready to go beforehand. After connecting the interrupt, we invoke another helper 
routine named SetupDevice to program the device to act the way we want it to. We must synchronize this step with our ISR 
because it uses the same hardware registers that our ISR would use, and we don’t want any possibility of sending the device 
inconsistent instructions. The SetupDevice call is the last step in PCI42’s StartDevice because—contrary to what I told you in 
Chapter 2—PCI42 hasn’t registered any device interfaces and therefore has none to enable at this point. 

ResetDevice is highly device-specific and reads as follows: 

VOID ResetDevice(PDEVICE_EXTENSION pdx) 
  { 
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  PAGED_CODE(); 
 
 
  WRITE_PORT_ULONG((PULONG) (pdx->portbase + MCSR), MCSR_RESET); 
 
  LARGE_INTEGER timeout; 
  timeout.QuadPart = -10 * 10000; // i.e., 10 milliseconds 
 
 
  KeDelayExecutionThread(KernelMode, FALSE, &timeout); 
  WRITE_PORT_ULONG((PULONG) (pdx->portbase + MCSR), 0); 
 
 
  WRITE_PORT_ULONG((PULONG) (pdx->portbase + INTCSR), 
    INTCSR_INTERRUPT_MASK); 
  } 

1. The S5933 has a master control/status register (MCSR) that controls bus-mastering DMA transfers and other actions. 
Asserting 4 of these bits resets different features of the device. I defined the constant MCSR_RESET to be a mask 
containing all four of these reset flags. This and other manifest constants for S5933 features are in the S5933.H file that’s 
part of the PCI42 project. 

2. Three of the reset flags pertain to features internal to the S5933 and take effect immediately. Setting the fourth flag to 1 
asserts a reset signal for the add-on device. To deassert the add-on reset, you have to explicitly reset this flag to 0. In 
general, you want to give the hardware a little bit of time to recognize a reset pulse. KeDelayExecutionThread, which I 
discussed in Chapter 4, puts this thread to sleep for about 10 milliseconds. You can raise or lower this constant if your 
hardware has different requirements, but don’t forget that the timeout will never be less than the granularity of the system 
clock. Since we’re blocking our thread, we need to be running at PASSIVE_LEVEL in a nonarbitrary thread context. 
Those conditions are met because our ultimate caller is the PnP Manager, which has sent us an 
IRP_MN_START_DEVICE in the full expectation that we’d be blocking the system thread we happen to be in. 

3. The last step in resetting the device is to clear any pending interrupts. The S5933 has six interrupt flags in an interrupt 
control/status register (INTCSR). Writing 1 bits in these six positions clears all pending interrupts. (If we write back a 
mask value that has a 0 bit in one of the interrupt flag positions, the state of that interrupt isn’t affected. This kind of flag 
bit is called read/write-clear or just R/WC.) Other bits in the INTCSR enable interrupts of various kinds. By writing 0 
bits in those locations, we’re disabling the device to the maximum extent possible. 

Our SetupDevice function is quite simple: 

VOID SetupDevice(PDEVICE_EXTENSION pdx) 
  { 
  WRITE_PORT_ULONG((PULONG) (pdx->portbase + INTCSR), 
    INTCSR_IMBI_ENABLE 
    │ (INTCSR_MB1 << INTCSR_IMBI_REG_SELECT_SHIFT) 
    │ (INTCSR_BYTE0 << INTCSR_IMBI_BYTE_SELECT_SHIFT) 
    ); 
  } 

This function reprograms the INTCSR to specify that we want an interrupt to occur when there’s a change to byte 0 of inbound 
mailbox register 1. We could have specified other interrupt conditions for this chip, including the emptying of a particular byte 
of a specified outbound mailbox register, the completion of a read DMA transfer, and the completion of a write DMA transfer. 

Starting a Read Operation  

PCI42’s StartIo routine follows the pattern we’ve already studied: 

VOID StartIo(IN PDEVICE_OBJECT fdo, IN PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
 
  if (!stack->Parameters.Read.Length) 
    { 
    StartNextPacket(&pdx->dqReadWrite, fdo); 
    CompleteRequest(Irp, STATUS_SUCCESS, 0); 
    return; 
    } 
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  pdx->buffer = (PUCHAR) Irp->AssociatedIrp.SystemBuffer; 
  pdx->nbytes = stack->Parameters.Read.Length; 
  pdx->numxfer = 0; 
 
 
  KeSynchronizeExecution(pdx->InterruptObject,  
    (PKSYNCHRONIZE_ROUTINE) TransferFirst, pdx); 
  } 

1. Here we save parameters in the device extension to describe the ongoing progress of the input operation we’re about to 
undertake. PCI42 uses the DO_BUFFERED_IO method, which isn’t typical but helps make this driver simple enough to 
be used as an example. 

2. Because our interrupt is connected, our device can interrupt at any time. The ISR will want to transfer data bytes when 
interrupts happen, but we want to be sure that the ISR is never confused about which data buffer to use or about the 
number of bytes we’re trying to read. To restrain our ISR’s eagerness, we put a flag in the device extension named busy 
that’s ordinarily FALSE. Now is the time to set that flag to TRUE. As usual when dealing with a shared resource, we need 
to synchronize the setting of the flag with the code in the ISR that tests it, and we therefore need to invoke a 
SynchCritSection routine as I previously discussed. It might also happen that a data byte is already available, in which 
case the first interrupt will never happen. TransferFirst is a helper routine that checks for this eventuality and reads the 
first byte. The add-on function has ways of knowing that we emptied the mailbox, so it will presumably send the next 
byte in due course. Here’s TransferFirst: 

VOID TransferFirst(PDEVICE_EXTENSION pdx) 
  { 
  pdx->busy = TRUE; 
  ULONG mbef = READ_PORT_ULONG((PULONG) (pdx->portbase + MBEF)); 
  if (!(mbef & MBEF_IN1_0)) 
    return; 
 
  *pdx->buffer = READ_PORT_UCHAR(pdx->portbase + IMB1); 
  ++pdx->buffer; 
  ++pdx->numxfer; 
  if (—pdx->nbytes == 0) 
    { 
    pdx->busy = FALSE; 
    PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
    Irp->IoStatus.Status = STATUS_SUCCESS; 
    Irp->IoStatus.Information = pdx->numxfer; 
    IoRequestDpc(pdx->DeviceObject, NULL, pdx); 
    } 
  } 

The S5933 has a mailbox empty/full register (MBEF) whose bits indicate the current status of each byte of each mailbox 
register. Here we check whether the register byte we’re using for input (inbound mailbox register 1, byte 0) is presently unread. 
If so, we read it. That might exhaust the transfer count. We already have a subroutine (DpcForIsr) that knows what to do with a 
complete request, so we request a DPC if this first byte turns out to satisfy the request. (Recall that we’re executing at DIRQL 
under protection of an interrupt spin lock because we’ve been invoked as a SynchCritSection routine, so we can’t just complete 
the IRP right now.) 

Handling the Interrupt  

In normal operation with PCI42, the S5933 interrupts when a new data byte arrives in mailbox 1. The following ISR then gains 
control: 

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject, 
  PDEVICE_EXTENSION pdx) 
  { 
 
  ULONG intcsr = 
    READ_PORT_ULONG((PULONG) (pdx->portbase + INTCSR)); 
  if (!(intcsr & INTCSR_INTERRUPT_PENDING)) 
    return FALSE; 
 
  BOOLEAN dpc = FALSE; 
 
 
PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
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  if (pdx->busy) 
    { 
    if (Irp->Cancel) 
      status = STATUS_CANCELLED; 
    else 
      status = AreRequestsBeingAborted(&pdx->dqReadWrite); 
    if (!NT_SUCCESS(status)) 
      dpc = TRUE, pdx->nbytes = 0; 
    } 
 
 
  while (intcsr & INTCSR_INTERRUPT_PENDING) 
    { 
 
    if (intcsr & INTCSR_IMBI) 
      { 
      if (pdx->nbytes && pdx->busy) 
        { 
        *pdx->buffer = READ_PORT_UCHAR(pdx->portbase + IMB1); 
        ++pdx->buffer; 
        ++pdx->numxfer; 
        if (!--pdx->nbytes) 
          { 
          Irp->IoStatus.Information = pdx->numxfer; 
          dpc = TRUE; 
          status = STATUS_SUCCESS; 
          } 
        } 
      } 
 
 
    WRITE_PORT_ULONG((PULONG) (pdx->portbase + INTCSR), intcsr); 
         
 
    intcsr = READ_PORT_ULONG((PULONG) (pdx->portbase + INTCSR)); 
    } 
 
 
  if (dpc) 
    { 
    pdx->busy = FALSE; 
    Irp->IoStatus.Status = status; 
    IoRequestDpc(pdx->DeviceObject, NULL, NULL); 
    } 
 
  return TRUE; 
  } 

1. Our first task is to discover whether our own device is trying to interrupt now. We read the S5933’s INTCSR and test a bit 
(INTCSR_INTERRUPT_PENDING) that summarizes all pending causes of interrupts. If this bit is clear, we return 
immediately. The reason I chose to use the device extension pointer as the context argument to this routine—back when I 
called IoConnectInterrupt—should now be clear: we need immediate access to this structure to get the base port address. 

2. When we use a DEVQUEUE, we rely on the queue object to keep track of the current IRP. This interrupt might be one 
that we don’t expect because we’re not currently servicing any IRP. In that case, we still have to clear the interrupt but 
shouldn’t do anything else. 

3. It’s also possible that a Plug and Play or power event has occurred that will cause any new IRPs to be rejected by the 
dispatch routine. The DEVQUEUE’s AreRequestsBeingAborted function tells us that fact so that we can abort the current 
request right now. Aborting an active request is a reasonable thing to do with a device such as this that proceeds byte by 
byte. Similarly, it’s a good idea to check whether the IRP has been cancelled if it will take a long time to finish the IRP. If 
your device interrupts only when it’s done with a long transfer, you can leave this test out of your ISR. 

4. We’re now embarking on a loop that will terminate when all of our device’s current interrupts have been cleared. At the 
end of the loop, we’ll reread the INTCSR to determine whether any more interrupt conditions have arisen. If so, we’ll 
repeat the loop. We’re not being greedy with CPU time here—we want to avoid letting interrupts cascade into the system 
because servicing an interrupt is by itself relatively expensive. 

5. If the S5933 has interrupted because of a mailbox event, we’ll read a new data byte from the mailbox into the I/O buffer 
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for the current IRP. If you were to look in the MBEF register immediately after the read, you’d see that the read clears the 
bit corresponding to inbound mailbox register 1, byte 0. Note that we needn’t test the MBEF to determine whether our 
byte has actually changed because we programmed the device to interrupt only upon a change to that single byte. 

6. Writing the INTCSR with its previous contents has the effect of clearing the six R/WC interrupt bits, not changing a few 
read-only bits, and preserving the original setting of all read/write control bits. 

7. Here we read the INTCSR to determine whether additional interrupt conditions have arisen. If so, we’ll repeat this loop to 
service them. 

8. As we progressed through the preceding code, we set the BOOLEANdpc variable to TRUE if a DPC is now appropriate to 
complete the current IRP. 

The DPC routine for PCI42 is as follows: 

VOID DpcForIsr(PKDPC Dpc, PDEVICE_OBJECT fdo, PIRP junk, 
  PDEVICE_EXTENSION pdx) 
  { 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
  StartNextPacket(&pdx->dqReadWrite, fdo); 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  } 

Testing PCI42  

If you want to examine PCI42 in operation, you need to do several things. First obtain and install an S5933DK1 development 
board, including the ISA add-in interface card. Use the Add Hardware wizard to install the S5933DK1.SYS driver and the 
PCI42.SYS driver. (I found that Windows 98 initially identified the development board as a nonworking sound card and that I 
had to remove it in the Device Manager before I could install PCI42 as its driver. Windows XP handled the board normally.) 

Then run both the ADDONSIM and TEST programs, which are in the PCI42 directory tree in the companion content. 
ADDONSIM writes a data value to the mailbox via the ISA interface. TEST reads a data byte from PCI42. Determining the 
value of the data byte is left as an exercise for you. 

7.5 Direct Memory Access  

Windows XP supports direct memory access transfers based on the abstract model of a computer depicted in Figure 7-6. In this 
model, the computer is considered to have a collection of map registers that translate between physical CPU addresses and bus 
addresses. Each map register holds the address of one physical page frame. Hardware accesses memory for reading or writing 
by means of a logical, or bus-specific, address. The map registers play the same role as page table entries for software by 
allowing hardware to use different numeric values for their addresses than the CPU understands. 

Figure 7-6. Abstract computer model for DMA transfers.  

Some CPUs, such as the Alpha, have actual hardware map registers. One of the steps in initializing a DMA 
transfer—specifically, the MapTransfer step I’ll discuss presently—reserves some of these registers for your use. Other CPUs, 
such as the Intel x86, don’t have map registers, but you write your driver as if they did. The MapTransfer step on such a 
computer might end up reserving use of physical memory buffers that belong to the system, in which case the DMA operation 
will proceed using the reserved buffer. Obviously, somebody has to copy data to or from the DMA buffer before or after the 
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transfer. In certain cases—for example, when dealing with a bus-master device that has scatter/gather capability—the 
MapTransfer phase might do nothing at all on an architecture without map registers. 

The Windows XP kernel uses a data structure known as an adapter object to describe the DMA characteristics of a device and 
to control access to potentially shared resources, such as system DMA channels and map registers. You get a pointer to an 
adapter object by calling IoGetDmaAdapter during your StartDevice processing. The adapter object has a pointer to a structure 
named DmaOperations that, in turn, contains pointers to all the other functions you need to call. See Table 7‐4. These 
functions take the place of global functions (such as IoAllocateAdapter, IoMapTransfer, and the like) that you would have used 
in previous versions of Windows NT. In fact, the global names are now macros that invoke the DmaOperations functions. 

DmaOperations Function Pointer Description 

PutDmaAdapter  Destroys adapter object 

AllocateCommonBuffer  Allocates a common buffer 

FreeCommonBuffer  Releases a common buffer 

AllocateAdapterChannel  Reserves adapter and map registers 

FlushAdapterBuffers  Flushes intermediate data buffers after transfer 

FreeAdapterChannel  Releases adapter object and map registers 

FreeMapRegisters  Releases map registers only 

MapTransfer  Programs one stage of a transfer 

GetDmaAlignment  Gets address alignment required for adapter 

ReadDmaCounter  Determines residual count 

GetScatterGatherList  Reserves adapter and constructs scatter/gather list 

PutScatterGatherList  Releases scatter/gather list 

Table 7-4. DmaOperations Function Pointers for DMA Helper Routines  

7.5.1 Transfer Strategies  
How you perform a DMA transfer depends on several factors: 

 If your device has bus-mastering capability, it has the necessary electronics to access main memory if you tell it a few 
basic facts, such as where to start, how many units of data to transfer, whether you’re performing an input or an output 
operation, and so on. You’ll consult with your hardware designers to sort out these details, or else you’ll be working from 
a specification that tells you what to do at the hardware level. 

 A device with scatter/gather capability can transfer large blocks of data to or from noncontiguous areas of physical 
memory. Using scatter/gather is advantageous for software because it eliminates the need to acquire large blocks of 
contiguous page frames. Pages can simply be locked wherever they’re found in physical memory, and the device can be 
told where they are. 

 If your device is not a bus master, you’ll be using the system DMA controller on the motherboard of the computer. This 
style of DMA is sometimes called slave DMA. The system DMA controller associated with the ISA bus has some 
limitations on what physical memory it can access and how large a transfer it can perform without reprogramming. The 
controller for an Extended Industry Standard Architecture (EISA) bus lacks these limits. You won’t have to know—at 
least, not in Windows XP—which type of bus your hardware plugs in to because the operating system is able to take 
account of these different restrictions automatically. 

 Ordinarily, DMA operations involve programming hardware map registers or copying data either before or after the 
operation. If your device needs to read or write data continuously, you don’t want to do either of these steps for each I/O 
request—they might slow down processing too much to be acceptable in your particular situation. You can, therefore, 
allocate what’s known as a common buffer, which your driver and your device can simultaneously access at any time. 

Notwithstanding the fact that many details will be different depending on how these four factors interplay, the steps you 
perform will have many common features. Figure 7-7 illustrates the overall operation of a transfer. You start the transfer in 
your StartIo routine by requesting ownership of your adapter object. Ownership has meaning only if you’re sharing a system 
DMA channel with other devices, but the Windows XP DMA model demands that you perform this step anyway. When the I/O 
Manager is able to grant you ownership, it allocates some map registers for your temporary use and calls back to an adapter 
control routine you provide. In your adapter control routine, you perform a transfer mapping step to arrange the first (maybe 
the only) stage of the transfer. Multiple stages can be necessary if sufficient map registers aren’t available; your device must be 
capable of handling any delay that might occur between stages. 
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Figure 7-7. Flow of ownership during DMA.  

Once your adapter control routine has initialized the map registers for the first stage, you signal your device to begin operation. 
Your device will instigate an interrupt when this initial transfer completes, whereupon you’ll schedule a DPC. The DPC routine 
will initiate another staged transfer if necessary, or else it will complete the request. 

Somewhere along the way, you’ll release the map registers and the adapter object. The timing of these two events is one of the 
details that differ based on the factors I summarized earlier in this section. 

7.5.2 Performing DMA Transfers  
Now I’ll go into detail about the mechanics of what’s often called a packet-based DMA transfer, wherein you transfer a 
discrete amount of data by using the data buffer that accompanies an I/O request packet. Let’s start simply and suppose that 
you face what will be a very common case nowadays: your device is a PCI bus master but doesn’t have scatter/gather 
capability. 

To start with, when you create your device object, you’ll ordinarily indicate that you want to use the direct method of data 
buffering by setting the DO_DIRECT_IO flag. You choose the direct method because you’ll eventually be passing the address 
of a memory descriptor list as one of the arguments to the MapTransfer function you’ll be calling. This choice poses a bit of a 
problem with regard to buffer alignment, though. Unless the application uses the FILE_FLAG_NO_BUFFERING flag in its 
call to CreateFile, the I/O Manager won’t enforce the device object’s AlignmentRequirement on user-mode data buffers. (It 
doesn’t enforce the requirement for a kernel-mode caller at all except in the checked build.) If your device or the HAL requires 
DMA buffers to begin on some particular boundary, therefore, you might end up copying a small portion of the user data to a 
correctly aligned internal buffer to meet the alignment requirement—either that or cause to fail any request that has a 
misaligned buffer. 

In your StartDevice function, you create an adapter object by using code like the following: 

DEVICE_DESCRIPTION dd; 
RtlZeroMemory(&dd, sizeof(dd)); 
dd.Version = DEVICE_DESCRIPTION_VERSION; 
dd.Master = TRUE; 
dd.InterfaceType = InterfaceTypeUndefined; 
dd.MaximumLength = MAXTRANSFER; 
dd.Dma32BitAddresses = TRUE; 
 
pdx->AdapterObject = IoGetDmaAdapter(pdx->Pdo, &dd, &pdx->nMapRegisters); 

The last statement in this code fragment is the important one. IoGetDmaAdapter will communicate with the bus driver or the 
HAL to create an adapter object, whose address it returns to you. The first parameter (pdx->Pdo) identifies the physical device 
object (PDO) for your device. The second parameter points to a DEVICE_DESCRIPTION structure that you initialize to 
describe the DMA characteristics of your device. The last parameter indicates where the system should store the maximum 
number of map registers you’ll ever be allowed to attempt to reserve during a single transfer. You’ll notice that I reserved two 
fields in the device extension (AdapterObject and nMapRegisters) to receive the two outputs from this function. 

TIP  
If you specify InterfaceTypeUndefined for the InterfaceType member of the DEVICE_DESCRIPTION structure, 
the I/O Manager will internally query the bus driver to find out what type of bus your device happens to be 
connected to. This relieves you of the burden of hard-coding the bus type or calling IoGetDeviceProperty to 
determine it yourself. 
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In your StopDevice function, you destroy the adapter object with this call: 

VOID StopDevice(...) 
  { 
 
  if (pdx->AdapterObject) 
    (*pdx->AdapterObject->DmaOperations->PutDmaAdapter) 
      (pdx->AdapterObject); 
  pdx->AdapterObject = NULL; 
 
  } 

You can request DMA verification in the Driver Verifier settings. If you do, the verifier will make sure that you follow 
the correct protocol, as described here, all the way from creating the adapter object through finally deleting it with a 

call to PutDmaAdapter. If you’re porting a driver from Windows NT version 4, expect to encounter several verifier bug checks 
as you switch to using the newer protocol in Windows XP.  

You won’t expect to receive an official DMA resource when your device is a bus master. That is, your resource extraction loop 
won’t need a CmResourceTypeDma case label. The PnP Manager doesn’t assign you a DMA resource because your hardware 
itself contains all the necessary electronics for performing DMA transfers, so nothing additional needs to be assigned to you. 

Previous versions of Windows NT relied on a service function named HalGetAdapter to acquire the DMA adapter object. That 
function still exists for compatibility, but new WDM drivers should call IoGetDmaAdapter instead. The difference between the 
two is that IoGetDmaAdapter first issues an IRP_MN_QUERY_INTERFACE Plug and Play IRP to determine whether the 
physical device object supports the GUID_BUS_INTERFACE_STANDARD direct call interface. If so, IoGetDmaAdapter uses 
that interface to allocate the adapter object. If not, it simply calls HalGetAdapter. 

Table 7-5 summarizes the fields in the DEVICE_DESCRIPTION structure you pass to IoGetDmaAdapter. The only fields that 
are relevant for a bus-master device are those shown in the preceding StartDevice code fragment. The HAL might or might not 
need to know whether your device recognizes 32-bit or 64-bit addresses—the Intel x86 HAL uses this flag only when you 
allocate a common buffer or when the machine employs Physical Memory Extensions (PME), for example—but you should 
indicate that capability anyway to retain portability. By zeroing the entire structure, we set ScatterGather to FALSE. Since we 
won’t be using a system DMA channel, none of DmaChannel, DmaPort, DmaWidth, DemandMode, AutoInitialize, 
IgnoreCount, and DmaSpeed will be examined by the routine that creates our adapter object. 

Field Name Description 
Relevant to 
Device 

Version  Version number of structure—initialize to DEVICE_DESCRIPTION_VERSION All 

Master  Bus-master device—set based on your knowledge of device All 

ScatterGather  Device supports scatter/gather list—set based on your knowledge of device All 

DemandMode  
Use system DMA controller’s demand mode—set based on your knowledge 
of device 

Slave 

AutoInitialize  
Use system DMA controller’s autoinitialize mode—set based on your 
knowledge of device 

Slave 

Dma32BitAddresses  Can use 32-bit physical addresses All 

IgnoreCount  
Controller doesn’t maintain an accurate transfer count—set based on your 
knowledge of device 

Slave 

Reserved1  Reserved—must be FALSE  

Dma64BitAddresses  Can use 64-bit physical addresses All 

DoNotUse2  Reserved—must be 0  

DmaChannel  
DMA channel number—initialize from Channel attribute of resource 
descriptor 

Slave 

InterfaceType  Bus type—initialize to InterfaceTypeUndefined All 

DmaWidth  
Width of transfers—set based on your knowledge of device to Width8Bits, 
Width16Bits, or Width32Bits 

Slave 

DmaSpeed  
Speed of transfers—set based on your knowledge of device to Compatible, -
TypeA, TypeB, TypeC, or TypeF 

Slave 

MaximumLength  
Maximum length of a single transfer—set based on your knowledge of 
device (and round up to a multiple of PAGE_SIZE) 

All 

DmaPort  
Microchannel-type bus port number—initialize from Port attribute of 
resource descriptor 

Slave 

Table 7-5. Device Description Structure Used with IoGetDmaAdapter   

To initiate an I/O operation, your StartIo routine first has to reserve the adapter object by calling the object’s 
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AllocateAdapterChannel routine. One of the arguments to AllocateAdapterChannel is the address of an adapter control routine 
that the I/O Manager will call when the reservation has been accomplished. Here’s an example of code you would use to 
prepare and execute the call to AllocateAdapterChannel: 

typedef struct _DEVICE_EXTENSION { 
 
 
  PADAPTER_OBJECT AdapterObject; // device's adapter object 
  ULONG nMapRegisters; // max # map registers 
  ULONG nMapRegistersAllocated; // # allocated for this xfer 
  ULONG numxfer;       // # bytes transferred so far 
  ULONG xfer;          // # bytes to transfer during this stage 
  ULONG nbytes;        // # bytes remaining to transfer 
  PVOID vaddr;         // virtual address for current stage 
  PVOID regbase;       // map register base for this stage 

 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
 
  PMDL mdl = Irp->MdlAddress; 
  pdx->numxfer = 0; 
  pdx->xfer = pdx->nbytes = MmGetMdlByteCount(mdl); 
  pdx->vaddr = MmGetMdlVirtualAddress(mdl); 
 
 
  ULONG nregs = ADDRESS_AND_SIZE_TO_SPAN_PAGES(pdx->vaddr, pdx->nbytes); 
  if (nregs > pdx->nMapRegisters) 
    { 
    nregs = pdx->nMapRegisters; 
    pdx->xfer = nregs * PAGE_SIZE - MmGetMdlByteOffset(mdl); 
    } 
  pdx->nMapRegistersAllocated = nregs; 
 
 
  NTSTATUS status = (*pdx->AdapterObject->DmaOperations 
    ->AllocateAdapterChannel)(pdx->AdapterObject, fdo, nregs, 
    (PDRIVER_CONTROL) AdapterControl, pdx); 
  if (!NT_SUCCESS(status)) 
    { 
    CompleteRequest(Irp, status, 0); 
    StartNextPacket(&pdx->dqReadWrite, fdo); 
    } 
  } 

1. Your device extension needs several fields related to DMA transfers. The comments indicate the uses for these fields. 

2. These few statements initialize fields in the device extension for the first stage of the transfer. 

3. Here we calculate how many map registers we’ll ask the system to reserve for our use during this transfer. We begin by 
calculating the number required for the entire transfer. The ADDRESS_AND_SIZE _TO_SPAN_PAGES macro takes into 
account that the buffer might span a page boundary. The number we end up with might, however, exceed the maximum 
allowed us by the original call to IoGetDmaAdapter. In that case, we need to perform the transfer in multiple stages. We 
therefore scale back the first stage so as to use only the allowable number of map registers. We also need to remember 
how many map registers we’re allocating (in the nMapRegistersAllocated field of the device extension) so that we can 
release exactly the right number later on. 

4. In this call to AllocateAdapterChannel, we specify the address of the adapter object, the address of our own device object, 
the calculated number of map registers, and the address of our adapter control procedure. The last argument (pdx) is a 
context parameter for the adapter control procedure. 

In general, several devices can share a single adapter object. Adapter object sharing happens in real life only when you rely on 
the system DMA controller; bus-master devices own dedicated adapter objects. But because you don’t need to know how the 
system decides when to create adapter objects, you shouldn’t make any assumptions about it. In general, then, the adapter 
object might be busy when you call AllocateAdapterChannel, and your request might therefore be put in a queue until the 
adapter object becomes available. Also, all DMA devices on the computer share a set of map registers. Further delay can ensue 
until the requested number of registers becomes available. Both of these delays occur inside AllocateAdapterChannel, which 
calls your adapter control procedure when the adapter object and all the map registers you asked for are available. 
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Even though a PCI bus-mastering device owns its own adapter object, if the device doesn’t have scatter/gather capability, it 
requires the use of map registers. On CPUs such as Alpha that have map registers, AllocateAdapterChannel will reserve them 
for your use. On CPUs such as Intel that don’t have map registers, AllocateAdapterChannel will reserve use of a software 
surrogate, such as a contiguous area of physical memory. 

What Gets Queued in AllocateAdapterChannel? 
The object that AllocateAdapterChannel puts in queues to wait for the adapter object or the necessary number 
of map registers is your device object. Some device architectures allow you to perform more than one DMA 
transfer simultaneously. Since you can put only one device object in an adapter object queue at a time (without 
crashing the system, that is), you need to create dummy device objects to take advantage of that multiple-DMA 
capability. 

As I’ve been discussing, AllocateAdapterChannel eventually calls your adapter control routine (at DISPATCH_LEVEL, just as 
your StartIo routine does). You have two tasks to accomplish. First you should call the adapter object’s MapTransfer routine to 
prepare the map registers and other system resources for the first stage of your I/O operation. In the case of a bus-mastering 
device, MapTransfer will return a logical address that represents the starting point for the first stage. This logical address might 
be the same as a CPU physical memory address, and it might not be. All you need to know about it is that it’s the right address 
to program into your hardware. MapTransfer might also trim the length of your request to fit the map registers it’s using, which 
is why you need to supply the address of the variable that contains the current stage length as an argument. 

Your second task is to perform whatever device-dependent steps are required to inform your device of the physical address and 
to start the operation on your hardware: 

IO_ALLOCATION_ACTION AdapterControl(PDEVICE_OBJECT fdo, 
  PIRP junk, PVOID regbase, PDEVICE_EXTENSION pdx) 
  { 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
 
  PMDL mdl = Irp->MdlAddress; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
 
  BOOLEAN isread = stack->MajorFunction == IRP_MJ_READ; 
 
  pdx->regbase = regbase; 
 
  KeFlushIoBuffers(mdl, isread, TRUE); 
 
  PHYSICAL_ADDRESS address = 
    (*pdx->AdapterObject->DmaOperations->MapTransfer) 
    (pdx->AdapterObject, mdl, regbase, pdx->vaddr, pdx->xfer, 
    !isread); 
 
 
 
  return DeallocateObjectKeepRegisters; 
  } 

1. The second argument—which I named junk—to AdapterControl is whatever was in the CurrentIrp field of the device 
object when you called AllocateAdapterChannel. When you use a DEVQUEUE for IRP queuing, you need to ask the 
DEVQUEUE object which IRP is current. If you use the Microsoft queuing routines IoStartPacket and IoStartNextPacket 
to manage the queue, junk would be the right IRP. In that case, I’d have named it Irp instead. 

2. There are few differences between code to handle input and output operations using DMA, so it’s often convenient to 
handle both operations in a single subroutine. This line of code examines the major function code for the IRP to decide 
whether a read or write is occurring. 

3. The regbase argument to this function is an opaque handle that identifies the set of map registers that have been reserved 
for your use during this operation. You’ll need this value later, so you should save it in your device extension. 

4. KeFlushIoBuffers makes sure that the contents of all processor memory caches for the memory buffer you’re using are 
flushed to memory. The third argument (TRUE) indicates that you’re flushing the cache in preparation for a DMA 
operation. The CPU architecture might require this step because, in general, DMA operations proceed directly to or from 
memory without necessarily involving the caches. 

5. The MapTransfer routine programs the DMA hardware for one stage of a transfer and returns the physical address where 
the transfer should start. Notice that you supply the address of an MDL as the second argument to this function. Because 
you need an MDL at this point, you would ordinarily have opted for the DO_DIRECT_IO buffering method when you 
first created your device object, and the I/O Manager would therefore have automatically created the MDL for you. You 
also pass along the map register base address (regbase). You indicate which portion of the MDL is involved in this stage 
of the operation by supplying a virtual address (pdx->vaddr) and a byte count (pdx->xfer). MapTransfer will use the 
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virtual address argument to calculate an offset into the buffer area, from which it can determine the physical page 
numbers containing your data. 

6. This is the point at which you program your hardware in the device-specific way that is required. You might, for example, 
use one of the WRITE_Xxx HAL routines to send the physical address and byte count values to registers on your card, and 
you might thereafter strobe a command register to begin transferring data. 

7. We return the constant DeallocateObjectKeepRegisters to indicate that we’re done using the adapter object but are still 
using the map registers. In this particular example (PCI bus master), there will never be any contention for the adapter 
object in the first place, so it hardly matters that we’ve released the adapter object. In other bus-mastering situations, 
though, we might be sharing a DMA controller with other devices. Releasing the adapter object allows those other 
devices to begin transfers by using a disjoint set of map registers from the ones we’re still using. 

An interrupt usually occurs shortly after you start the transfer, and the interrupt service routine usually requests a DPC to deal 
with completion of the first stage of the transfer. Your DPC routine will look something like this: 

VOID DpcForIsr(PKDPC Dpc, PDEVICE_OBJECT fdo, 
  PIRP junk, PDEVICE_EXTENSION pdx) 
  { 
 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
  PMDL mdl = Irp->MdlAddress; 
  BOOLEAN isread = IoGetCurrentIrpStackLocation(Irp) 
    ->MajorFunction == IRP_MJ_READ; 
 
  (*pdx->AdapterObject->DmaOperations->FlushAdapterBuffers) 
    (pdx->AdapterObject, mdl, pdx->regbase, pdx->vaddr, pdx->xfer, !isread); 
 
  pdx->nbytes -= pdx->xfer; 
  pdx->numxfer += pdx->xfer; 
  NTSTATUS status = STATUS_SUCCESS; 
 
 
  if (pdx->nbytes && NT_SUCCESS(status)) 
    { 
 
    pdx->vaddr = (PVOID) ((PUCHAR) pdx->vaddr + pdx->xfer); 
    pdx->xfer = pdx->nbytes; 
 
    ULONG nregs = ADDRESS_AND_SIZE_TO_SPAN_PAGES(pdx->vaddr, pdx->nbytes); 
    if (nregs > pdx->nMapRegistersAllocated) 
      { 
      nregs = pdx->nMapRegistersAllocated; 
      pdx->xfer = nregs * PAGE_SIZE; 
      } 
    PHYSICAL_ADDRESS address = 
      (*pdx->AdapterObject->DmaOperations->MapTransfer) 
      (pdx->AdapterObject, mdl, pdx->regbase, pdx->vaddr, pdx->xfer, !isread); 

 
    } 
  else 
    { 
    ULONG numxfer = pdx->numxfer; 
 
    (*pdx->AdapterObject->DmaOperations->FreeMapRegisters) 
      (pdx->AdapterObject, pdx->regbase,  
      pdx->nMapRegistersAllocated); 
 
    StartNextPacket(&pdx->dqReadWrite, fdo); 
    CompleteRequest(Irp, status, numxfer); 
    } 
  } 

1. When you use a DEVQUEUE for IRP queuing, you rely on the queue object to keep track of the current IRP. 

2. The FlushAdapterBuffers routine handles the situation in which the transfer required use of intermediate buffers owned 
by the system. If you’ve done an input operation that spanned a page boundary, the input data is now sitting in an 
intermediate buffer and needs to be copied to the user-mode buffer. 

3. Here we update the residual and cumulative data counts after the transfer stage that just completed. 
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4. At this point, you determine whether the current stage of the transfer completed successfully or with an error. You might, 
for example, read a status port or inspect the results of a similar operation performed by your interrupt routine. In this 
example, I set the status variable to STATUS_SUCCESS with the expectation that you’d change it if you discovered an 
error here. 

5. If the transfer hasn’t finished yet, you need to program another stage. The first step in this process is to calculate the 
virtual address of the next portion of the user-mode buffer. Bear in mind that this calculation is merely working with a 
number—we’re not actually trying to access memory by using this virtual address. Accessing the memory would be a bad 
idea, of course, because we’re currently executing in an arbitrary thread context. 

6. The next few statements are almost identical to the ones we performed in the first stage for StartIo and AdapterControl. 
The end result will be a logical address that can be programmed into your device. It might or might not correspond to a 
physical address as understood by the CPU. One slight wrinkle is that we’re constrained to use only as many map 
registers as were allocated by the adapter control routine; StartIo saved that number in the nMapRegistersAllocated field 
of the device extension. 

7. If the entire transfer is now complete, we need to release the map registers we’ve been using. 

8. The remaining few statements in the DPC routine handle the mechanics of completing the IRP that got us here in the first 
place. 

Transfers Using Scatter/Gather Lists  

If your hardware has scatter/gather support, the system has a much easier time doing DMA transfers to and from your device. 
The scatter/gather capability permits the device to perform a transfer involving pages that aren’t contiguous in physical 
memory. 

Your StartDevice routine creates its adapter object in just about the same way I’ve already discussed, except (of course) that 
you’ll set the ScatterGather flag to TRUE. 

The traditional method—that is, the method you would have used in previous versions of Windows NT—to program a DMA 
transfer involving scatter/gather functionality is practically identical to the packet-based example considered in the section on 
Performing DMA Transfers. The only difference is that instead of making one call to MapTransfer for each stage of the transfer, 
you need to make multiple calls. Each call gives you the information you need for a single element in a scatter/gather list that 
contains a physical address and length. When you’re done with the loop, you can send the scatter/gather list to your device by 
using some device-specific method, and you can then initiate the transfer. 

I’m going to make some assumptions about the framework into which you’ll fit the construction of a scatter/gather list. First, 
I’ll assume that you’ve defined a manifest constant named MAXSG that represents the maximum number of scatter/gather list 
elements your device can handle. To make life as simple as possible, I’m also going to assume that you can just use the 
SCATTER_GATHER_LIST structure defined in WDM.H to construct the list: 

typedef struct _SCATTER_GATHER_ELEMENT { 
  PHYSICAL_ADDRESS Address; 
  ULONG Length; 
  ULONG_PTR Reserved; 
  } SCATTER_GATHER_ELEMENT, *PSCATTER_GATHER_ELEMENT; 
 
typedef struct _SCATTER_GATHER_LIST { 
  ULONG NumberOfElements; 
  ULONG_PTR Reserved; 
  SCATTER_GATHER_ELEMENT Elements[]; 
  } SCATTER_GATHER_LIST, *PSCATTER_GATHER_LIST; 

Finally, I’m going to suppose that you can simply allocate a maximum-size scatter/gather list in your AddDevice function and 
leave it lying around for use whenever you need it: 

pdx->sglist = (PSCATTER_GATHER_LIST) 
  ExAllocatePool(NonPagedPool, sizeof(SCATTER_GATHER_LIST) +  
  MAXSG * sizeof(SCATTER_GATHER_ELEMENT)); 

With this infrastructure in place, your AdapterControl procedure will look like this: 

IO_ALLOCATION_ACTION AdapterControl(PDEVICE_OBJECT fdo, 
  PIRP junk, PVOID regbase, PDEVICE_EXTENSION pdx) 
  { 
 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
  PMDL mdl = Irp->MdlAddress; 
  BOOLEAN isread = IoGetCurrentIrpStackLocation(Irp) 
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    ->MajorFunction == IRP_MJ_READ; 
  pdx->regbase = regbase; 
  KeFlushIoBuffers(mdl, isread, TRUE); 
  PSCATTER_GATHER_LIST sglist = pdx->sglist; 
 
 
  ULONG xfer = pdx->xfer; 
  PVOID vaddr = pdx->vaddr; 
  pdx->xfer = 0; 
  ULONG isg = 0; 
 
  while (xfer && isg < MAXSG) 
    { 
    ULONG elen = xfer; 
 
    sglist->Elements[isg].Address = 
      (*pdx->AdapterObject->DmaOperations->MapTransfer) 
      (pdx->AdapterObject, mdl, regbase, pdx->vaddr, &elen, !isread); 
    sglist->Elements[isg].Length = elen; 
 
    xfer -= elen; 
    pdx->xfer += elen; 
    vaddr = (PVOID) ((PUCHAR) vaddr + elen); 
 
    ++isg; 
    } 
  sglist->NumberOfElements = isg; 
 
 
 
  return DeallocateObjectKeepRegisters; 
  } 

1. See the earlier discussion of how to get a pointer to the correct IRP in an adapter control procedure. 

2. We previously (in StartIo) calculated pdx->xfer based on the allowable number of map registers. We’re going to try to 
transfer that much data now, but the allowable number of scatter/gather elements might further limit the amount we can 
transfer during this stage. During the following loop, xfer will be the number of bytes that we haven’t yet mapped, and 
we’ll recalculate pdx->xfer as we go. 

3. Here’s the loop I promised you, where we call MapTransfer to construct scatter/gather elements. We’ll continue the loop 
until we’ve mapped the entire stage of this transfer or until we run out of scatter/gather elements, whichever happens 
first. 

4. When we call MapTransfer for a scatter/gather device, it will modify the length argument (elen) to indicate how much of 
the MDL starting at the given virtual address (vaddr) is physically contiguous and can therefore be mapped by a single 
scatter/gather list element. It will also return the physical address of the beginning of the contiguous region. 

5. Here’s where we update the variables that describe the current stage of the transfer. When we leave the loop, xfer will be 
down to 0 (or else we’ll have run out of scatter/gather elements), pdx->xfer will be up to the total of all the elements we 
were able to map, and vaddr will be up to the byte after the last one we mapped. We don’t update the pdx->vaddr field in 
the device extension—we’re doing that in our DPC routine. Just another one of those pesky details…. 

6. Here’s where we increment the scatter/gather element index to reflect the fact that we’ve just used one up. 

7. At this point, we have isg scatter/gather elements that we should program into our device in whatever 
hardware-dependent way is appropriate. Then we should start the device working on the request. 

8. Returning DeallocateObjectKeepRegisters is appropriate for a bus-mastering device. You can theoretically have a 
nonmaster device with scatter/gather capability, and it would return KeepObject instead. 

Your device now performs its DMA transfer and, presumably, interrupts to signal completion. Your ISR requests a DPC, and 
your DPC routine initiates the next stage in the operation. The DPC routine will perform a MapTransfer loop like the one I just 
showed you as part of that initiation process. I’ll leave the details of that code as an exercise for you. 

Using GetScatterGatherList  

Windows 2000 and Windows XP provide a shortcut to avoid the relatively cumbersome loop of calls to MapTransfer in the 
common case in which you can accomplish the entire transfer by using either no map registers or no more than the maximum 
number of map registers returned by IoGetDmaAdapter. The shortcut, which is illustrated in the SCATGATH sample in the 
companion content, involves calling the GetScatterGatherList routine instead of AllocateAdapterChannel. Your StartIo routine 
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looks like this: 

VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  NTSTATUS status; 
  PMDL mdl = Irp->MdlAddress; 
  ULONG nbytes = MmGetMdlByteCount(mdl); 
  PVOID vaddr = MmGetMdlVirtualAddress(mdl); 
  BOOLEAN isread = stack->MajorFunction == IRP_MJ_READ; 
  pdx->numxfer = 0; 
  pdx->nbytes = nbytes; 
  status = 
    (*pdx->AdapterObject->DmaOperations->GetScatterGatherList) 
    (pdx->AdapterObject, fdo, mdl, vaddr, nbytes, 
    (PDRIVER_LIST_CONTROL) DmaExecutionRoutine, pdx, !isread); 
  if (!NT_SUCCESS(status)) 
    { 
    CompleteRequest(Irp, status, 0); 
    StartNextPacket(&pdx->dqReadWrite, fdo); 
    } 
  } 

The call to GetScatterGatherList, shown in bold in the preceding code fragment, is the main difference between this StartIo 
routine and the one we looked at in the preceding section. GetScatterGatherList waits if necessary until you can be granted use 
of the adapter object and all the map registers you need. Then it builds a SCATTER_GATHER_LIST structure and passes it to 
the DmaExecutionRoutine. You can then program your device by using the physical addresses in the scatter/gather elements 
and initiate the transfer: 

VOID DmaExecutionRoutine(PDEVICE_OBJECT fdo, PIRP junk, 
  PSCATTER_GATHER_LIST sglist, PDEVICE_EXTENSION pdx) 
  { 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
 
  pdx->sglist = sglist; 
 

 
  } 

1. You’ll need the address of the scatter/gather list in the DPC routine, which will release the list by calling 
PutScatterGatherList. 

2. At this point, program your device to do a read or write using the address and length pairs in the scatter/gather list. If the 
list has more elements than your device can handle at one time, you’ll need to perform the whole transfer in stages. If you 
can program a stage fairly quickly, I’d recommend adding logic to your interrupt service routine to initiate the additional 
stages. If you think about it, your DmaExecutionRoutine is probably going to be synchronizing with your ISR anyway to 
start the first stage, so this extra logic is probably not large. I programmed the SCATGATH sample with this idea in mind. 

When the transfer finishes, call the adapter object’s PutScatterGatherList to release the list and the adapter: 

VOID DpcForIsr(PKDPC Dpc, PDEVICE_OBJECT fdo, PIRP junk, 
  PVOID Context) 
  { 
 
  (*pdx->AdapterObject->DmaOperations->PutScatterGatherList) 
    (pdx->AdapterObject, pdx->sglist, !isread); 
 
  } 

To decide whether you can use GetScatterGatherList, you need to be able to predict whether you’ll meet the preconditions for 
its use. First of all, your driver will have to run on Windows 2000 or a later system only because this function isn’t available in 
Windows 98/Me. On an Intel 32-bit platform, scatter/gather devices on a PCI or EISA bus can be sure of not needing any map 
registers. Even on an ISA bus, you’ll be allowed to request up to 16 map register surrogates (8 if you’re also a bus-mastering 
device) unless physical memory is so tight that the I/O system can’t allocate its intermediate I/O buffers. In that case, you 
won’t be able to do DMA using the traditional method either, so there’s no point in worrying about it. 

If you can’t predict with certainty at the time you code your driver that you’ll be able to use GetScatterGatherList, my advice 
is to just fall back on the traditional loop of MapTransfer calls. You’ll need to put that code in place anyway to deal with cases 
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in which GetScatterGatherList won’t work, and having two pieces of logic in your driver is just unnecessary complication. 

Transfers Using the System Controller  

If your device is not a bus master, DMA capability requires that it use the system DMA controller. As I’ve said, people often 
use the phrase slave DMA, which emphasizes that such a device is not master of its own DMA fate. The system DMA 
controllers have several characteristics that affect the internal details of how DMA transfers proceed: 

 There are a limited number of DMA channels that all slave devices must share. AllocateAdapterChannel has real 
meaning in a sharing situation because only one device can be using a particular channel at a time. 

 You can expect to find a CmResourceTypeDma resource in the list of I/O resources delivered to you by the PnP Manager. 

 Your hardware is wired, either physically or logically, to the particular channel it uses. If you can configure the DMA 
channel connection, you’ll need to send the appropriate commands at StartDevice time. 

 The system DMA controllers for an ISA bus computer are able to access data buffers in only the first 16 megabytes of 
physical memory. Four channels for transferring data 8 bits at a time and three channels for transferring data 16 bits at a 
time exist. The controller for 8-bit channels doesn’t correctly handle a buffer that crosses a 64-KB boundary; the 
controller for 16-bit channels doesn’t correctly handle a buffer that crosses a 128-KB boundary. 

Notwithstanding these factors, your driver code will be similar to the bus-mastering code we’ve just discussed. Your 
StartDevice routine just works a little harder to set up its call to IoGetDmaAdapter, and your AdapterControl and DPC routines 
apportion the steps of releasing the adapter object and map registers differently. 

In StartDevice, you have a little bit of additional code to determine which DMA channel the PnP Manager has assigned for you, 
and you also need to initialize more of the fields of the DEVICE_DESCRIPTION structure for IoGetDmaAdapter: 

NTSTATUS StartDevice(...) 
  { 
  ULONG dmachannel;   // system DMA channel # 
  ULONG dmaport;      // MCA bus port number 

 
  for (ULONG i = 0; i < nres; ++i, ++resource) 
    { 
    switch (resource->Type) 
      { 
    case CmResourceTypeDma: 
 
      dmachannel = resource->u.Dma.Channel; 
      dmaport = resource->u.Dma.Port; 
      break; 
      } 
    } 

 
 
  DEVICE_DESCRIPTION dd; 
  RtlZeroMemory(&dd, sizeof(dd)); 
  dd.Version = DEVICE_DESCRIPTION_VERSION; 
  dd.InterfaceType = InterfaceTypeUndefined; 
  dd.MaximumLength = MAXTRANSFER; 
 
 
  dd.DmaChannel = dmachannel; 
  dd.DmaPort = dmaport; 
  dd.DemandMode = ??; 
  dd.AutoInitialize = ??; 
  dd.IgnoreCount = ??; 
  dd.DmaWidth = ??; 
  dd.DmaSpeed = ??; 
 
  pdx->AdapterObject = IoGetDmaAdapter(...); 
  } 

1. The I/O resource list will have a DMA resource, from which you need to extract the channel and port numbers. The 
channel number identifies one of the DMA channels supported by a system DMA controller. The port number is relevant 
only on a Micro Channel Architecture (MCA)-bus machine. 

2. Beginning here, you have to initialize several fields of the DEVICE_DESCRIPTION structure based on your knowledge 
of your device. See Table 7-5. 
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Everything about your adapter control and DPC procedures will be identical to the code we looked at earlier for handling a 
bus-mastering device without scatter/gather capability except for two small details. First, AdapterControl returns a different 
value: 

IO_ALLOCATION_ACTION AdapterControl(...) 
  { 

 
  return KeepObject; 
  } 

The return value KeepObject indicates that we want to retain control over the map registers and the DMA channel we’re using. 
Second, since we didn’t release the adapter object when AdapterControl returned, we have to do so in the DPC routine by 
calling FreeAdapterChannel instead of FreeMapRegisters: 

VOID DpcForIsr(...) 
  { 

 
  (*pdx->AdapterObject->DmaOperations->FreeAdapterChannel) 
    (pdx->AdapterObject); 

 
  } 

7.5.3 Using a Common Buffer  
As I mentioned in “Transfer Strategies,” you might want to allocate a common buffer for your device to use in performing 
DMA transfers. A common buffer is an area of nonpaged, physically contiguous memory. Your driver uses a fixed virtual 
address to access the buffer. Your device uses a fixed logical address to access the same buffer. 

You can use the common buffer area in several ways. You can support a device that continuously transfers data to or from 
memory by using the system DMA controller’s autoinitialize mode. In this mode of operation, completion of one transfer 
triggers the controller to immediately reinitialize for another transfer. 

Another use for a common buffer area is as a means to avoid extra data copying. The MapTransfer routine often copies the 
data you supply into auxiliary buffers owned by the I/O Manager and used for DMA. If you’re stuck with doing slave DMA on 
an ISA bus, it’s especially likely that MapTransfer will copy data to conform to the 16-MB address and buffer alignment 
requirements of the ISA DMA controller. But if you have a common buffer, you’ll avoid the copy steps. 

Allocating a Common Buffer  

You’d normally allocate your common buffer at StartDevice time after creating your adapter object: 

typedef struct _DEVICE_EXTENSION { 

 
  PVOID vaCommonBuffer; 
  PHYSICAL_ADDRESS paCommonBuffer; 

 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
dd.Dma32BitAddresses = ??; 
dd.Dma64BitAddresses = ??; 
pdx->AdapterObject = IoGetDmaAdapter(...); 
pdx->vaCommonBuffer = 
  (*pdx->AdapterObject->DmaOperations->AllocateCommonBuffer) 
  (pdx->AdapterObject, <length>, &pdx->paCommonBuffer, FALSE); 

Prior to calling IoGetDmaAdapter, you set the Dma32BitAddresses and Dma64BitAddresses flags in the 
DEVICE_DESCRIPTION structure to state the truth about your device’s addressing capabilities. That is, if your device can 
address a buffer using any 32-bit physical address, set Dma32BitAddresses to TRUE. If it can address a buffer using any 64-bit 
physical address, set Dma64BitAddresses to TRUE. 

In the call to AllocateCommonBuffer, the second argument is the byte length of the buffer you want to allocate. The fourth 
argument is a BOOLEAN value that indicates whether you want the allocated memory to be capable of entry into the CPU 
cache (TRUE) or not (FALSE). 

AllocateCommonBuffer returns a virtual address. This address is the one you use within your driver to access the allocated 
buffer area. AllocateCommonBuffer also sets the PHYSICAL_ADDRESS pointed to by the third argument to be the logical 
address used by your device for its own buffer access. 
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NOTE  
The DDK carefully uses the term logical address to refer to the address value returned by MapTransfer and the 
address value returned by the third argument of AllocateCommonBuffer. On many CPU architectures, a logical 
address will be a physical memory address that the CPU understands. On other architectures, it might be an 
address that only the I/O bus understands. Perhaps bus address would have been a better term. 

Slave DMA with a Common Buffer  

If you’re going to be performing slave DMA, you must create an MDL to describe the virtual addresses you receive. The actual 
purpose of the MDL is to occupy an argument slot in an eventual call to MapTransfer. MapTransfer won’t end up doing any 
copying, but it requires the MDL to discover that it doesn’t need to do any copying! You’ll normally create the MDL in your 
StartDevice function just after allocating the common buffer: 

pdx->vaCommonBuffer = ...; 
pdx->mdlCommonBuffer = IoAllocateMdl(pdx->vaCommonBuffer, 
  <length>, FALSE, FALSE, NULL); 
MmBuildMdlForNonPagedPool(pdx->mdlCommonBuffer); 

To perform an output operation, first make sure by some means (such as an explicit memory copy) that the common buffer 
contains the data you want to send to the device. The other DMA logic in your driver will be essentially the same as I showed 
you earlier (in “Performing DMA Transfers”). You’ll call AllocateAdapterChannel. It will call your adapter control routine, 
which will call KeFlushIoBuffers—if you allocated a cacheable buffer—and then call MapTransfer. Your DPC routine will call 
FlushAdapterBuffers and FreeAdapterChannel. In all of these calls, you’ll specify the common buffer’s MDL instead of the 
one that accompanied the read or write IRP you’re processing. Some of the service routines you call won’t do as much work 
when you have a common buffer as when you don’t, but you must call them anyway. At the end of an input operation, you 
might need to copy data out of your common buffer to some other place. 

To fulfill a request to read or write more data than fits in your common buffer, you might need to periodically refill or empty 
the buffer. The adapter object’s ReadDmaCounter function allows you to determine the progress of the ongoing transfer to help 
you decide what to do. 

Bus-Master DMA with a Common Buffer  

If your device is a bus master, allocating a common buffer allows you to dispense with calling AllocateAdapterChannel, 
MapTransfer, and FreeMapRegisters. You don’t need to call those routines because AllocateCommonBuffer also reserves the 
map registers, if any, needed for your device to access the buffer. Each bus-master device has an adapter object that isn’t shared 
with other devices and for which you therefore need never wait. Because you have a virtual address you can use to access the 
buffer at any time, and because your device’s bus-mastering capability allows it to access the buffer by using the physical 
address you’ve received back from AllocateCommonBuffer, no additional work is required. 

Cautions About Using Common Buffers  

A few cautions are in order with respect to common buffer allocation and usage. Physically contiguous memory is scarce in a 
running system—so scarce that you might not be able to allocate the buffer you want unless you stake your claim quite early in 
the life of a new session. The Memory Manager makes a limited effort to shuffle memory pages around to satisfy your request, 
and that process can delay the return from AllocateCommonBuffer for a period of time. But the effort might fail, and you must 
be sure to handle the failure case. Not only does a common buffer tie up potentially scarce physical pages, but it can also tie up 
map registers that could otherwise be used by other devices. For both these reasons, you should use a common-buffer strategy 
advisedly. 

Another caution about common buffers arises from the fact that the Memory Manager necessarily gives you one or more full 
pages of memory. Allocating a common buffer that’s just a few bytes long is wasteful and should be avoided. On the other 
hand, it’s also wasteful to allocate several pages of memory that don’t actually need to be physically contiguous. As the DDK 
suggests, therefore, it’s better to make several requests for smaller blocks if the blocks don’t have to be contiguous. 

Releasing a Common Buffer  

You would ordinarily release the memory occupied by your common buffer in your StopDevice routine just before you destroy 
the adapter object: 

(*pdx->AdapterObject->DmaOperations->FreeCommonBuffer) 
  (pdx->AdapterObject, <length>, pdx->paCommonBuffer, pdx->vaCommonBuffer, FALSE); 

The second parameter to FreeCommonBuffer is the same length value you used when you allocated the buffer. The last 
parameter indicates whether the memory is cacheable, and it should be the same as the last argument you used in the call to 
AllocateCommonBuffer. 
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7.5.4 A Simple Bus-Master Device  
The PKTDMA sample driver in the companion content illustrates how to perform bus-master DMA operations without 
scatter/gather support using the AMCC S5933 PCI matchmaker chip. I’ve already discussed details of how this driver 
initializes the device in StartDevice and how it initiates a DMA transfer in StartIo. I’ve also discussed nearly all of what 
happens in this driver’s AdapterControl and DpcForIsr routines. I indicated earlier that these routines would have some 
device-dependent code for starting an operation on the device; I wrote a helper function named StartTransfer for that purpose: 

VOID StartTransfer(PDEVICE_EXTENSION pdx, 
  PHYSICAL_ADDRESS address, BOOLEAN isread) 
  { 
  ULONG mcsr = READ_PORT_ULONG((PULONG)(pdx->portbase + MCSR); 
  ULONG intcsr = 
    READ_PORT_ULONG((PULONG)(pdx->portbase + INTCSR); 
  if (isread) 
    { 
    mcsr │= MCSR_WRITE_NEED4 │ MCSR_WRITE_ENABLE; 
    intcsr │= INTCSR_WTCI_ENABLE; 
 
    WRITE_PORT_ULONG((PULONG)(pdx->portbase + MWTC), pdx->xfer); 
    WRITE_PORT_ULONG((PULONG)(pdx->portbase + MWAR), 
      address.LowPart); 
    } 
  else 
    { 
    mcsr │= MCSR_READ_NEED4 │ MCSR_READ_ENABLE; 
    intcsr │= INTCSR_RTCI_ENABLE; 
 
    WRITE_PORT_ULONG((PULONG)(pdx->portbase + MRTC), pdx->xfer); 
    WRITE_PORT_ULONG((PULONG)(pdx->portbase + MRAR), 
      address.LowPart); 
    } 
 
  WRITE_PORT_ULONG((PULONG)(pdx->portbase + INTCSR), intcsr); 
 
  WRITE_PORT_ULONG((PULONG)(pdx->portbase + MCSR), mcsr); 
  } 

This routine sets up the S5933 operations registers for a DMA transfer and then starts the transfer running. The steps in the 
process are as follows: 

1. Program the address (MxAR) and transfer count (MxTC) registers appropriate to the direction of data flow. AMCC chose 
to use the term read to describe an operation in which data moves from memory to the device. Therefore, when we’re 
implementing an IRP_MJ_WRITE, we program a read operation at the chip level. The address we use is the logical 
address returned by MapTransfer. 

2. Enable an interrupt when the transfer count reaches 0 by writing to the INTCSR. 

3. Start the transfer by setting one of the transfer-enable bits in the MCSR. 

It’s not obvious from this fragment of code, but the S5933 is actually capable of doing a DMA read and a DMA write at the 
same time. I wrote PKTDMA in such a way that only one operation (either a read or a write) can be occurring. To generalize 
the driver to allow both kinds of operation to occur simultaneously, you would need to (a) implement separate queues for read 
and write IRPs and (b) create two device objects and two adapter objects—one pair for reading and the other for writing—so as 
to avoid the embarrassment of trying to queue the same object twice inside AllocateAdapterChannel. I thought putting that 
additional complication into the sample would end up confusing you. (I know I’m being pretty optimistic about my expository 
skills to imply that I haven’t already confused you, but it could have been worse.) 

Handling Interrupts in PKTDMA  

PCI42 included an interrupt routine that did a small bit of work to move some data. PKTDMA’s interrupt routine is a little 
simpler: 

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject, PDEVICE_EXTENSION pdx) 
  { 
  ULONG intcsr = READ_PORT_ULONG((PULONG) (pdx->portbase + INTCSR)); 
  if (!(intcsr & INTCSR_INTERRUPT_PENDING)) 
    return FALSE; 
  ULONG mcsr = READ_PORT_ULONG((PULONG) (pdx->portbase + MCSR)); 
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  WRITE_PORT_ULONG((PULONG) (pdx->portbase + MCSR),  
    mcsr & ~(MCSR_WRITE_ENABLE │ MCSR_READ_ENABLE)); 
 
 
  intcsr &= ~(INTCSR_WTCI_ENABLE │ INTCSR_RTCI_ENABLE); 
 
  BOOLEAN dpc = GetCurrentIrp(&pdx->dqReadWrite) != NULL; 
 
  while (intcsr & INTCSR_INTERRUPT_PENDING) 
    { 
    InterlockedOr(&pdx->intcsr, intcsr); 
    WRITE_PORT_ULONG((PULONG) (pdx->portbase + INTCSR), intcsr); 
    intcsr = READ_PORT_ULONG((PULONG) (pdx->portbase + INTCSR)); 
    } 
 
  if (dpc) 
    IoRequestDpc(pdx->DeviceObject, NULL, NULL); 
 
  return TRUE; 
  } 

I’ll discuss only the ways in which this ISR differs from the one in PCI42: 

1. The S5933 will keep trying to transfer data—subject to the count register, that is—so long as the enable bits are set in the 
MCSR. This statement clears both bits. If your driver were handling simultaneous reads and writes, you’d determine 
which kind of operation had just finished by testing the interrupt flags in the INTCSR, and then you’d disable just the 
transfer in that direction. 

2. We’ll shortly write back to the INTCSR to clear the interrupt. This statement ensures that we’ll also disable the 
transfer-count-0 interrupts so that they can’t occur anymore. Once again, a driver that handles simultaneous reads and 
writes would disable only the interrupt that just occurred. 

Testing PKTDMA  

You can test PKTDMA if you have an S5933DK1 development board. If you ran the PCI42 test, you already installed the 
S5933DK1.SYS driver to handle the ISA add-on interface card. If not, you’ll need to install that driver for this test. Then install 
PKTDMA.SYS as the driver for the S5933 development board itself. You can then run the TEST.EXE test program that’s in 
the PKTDMA\TEST\DEBUG directory. TEST will perform a write for 8192 bytes to PKTDMA. It will also issue a 
DeviceIoControl to S5933DK1 to read the data back from the add-on side, and it will verify that it read the right values. 

7.6 Windows 98/Me Compatibility Notes  

MmGetSystemAddressForMdlSafe is a macro that invokes a function (MmMapLockedPagesSpecifyCache) that Windows 
98/Me doesn’t export. The older macro, MmGetSystemAddressForMdl, is now deprecated. The Driver Verifier will flag a 
runtime call to the older macro. The difference between the two is that MmGetSystemAddressForMdl will bug check if there 
aren’t enough page table entries to map the specified memory, whereas MmGetSystemAddressForMdlSafe will simply return a 
NULL pointer. 

There is a portable workaround to the problem posed by MmGetSystemAddressForMdlSafe:  

CSHORT oldfail = mdl->MdlFlags & MDL_MAPPING_CAN_FAIL; 
mdl->MdlFlags │= MDL_MAPPING_CAN_FAIL; 
PVOID address = MmMapLockedPages(mdl, KernelMode); 
if (!oldfail) 
  mdl->MdlFlags &= ~MDL_MAPPING_CAN_FAIL; 

Setting the MDL_MAPPING_CAN_FAIL flag causes Windows 2000 and XP to take the same internal code path as does 
MmMapLockedPagesSpecifyCache, thereby fulfilling the spirit of the injunction to use the new macro. Windows 98/Me ignore 
the flag (and they’ve always returned NULL in the failure case anyway, so there was never a need for the flag or the new 
macro). 

If you’re using my GENERIC.SYS, simply call GenericGetSystemAddressForMdl, which contains the foregoing code. I did 
not attempt to add MmMapLockedPagesSpecifyCache to WDMSTUB.SYS (see Appendix A) because Windows 98/Me doesn’t 
provide all the infrastructure needed to fully support that function.
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Chapter 8  

8 Power Management  

Technophobes may take solace in the fact that they retain ultimate control over their electronic servants so long as they control 
the power switch. Power is, of course, the sine qua non of computing, but personal computers haven’t done an especially good 
job of managing it until quite recently. 

More effective power management is important for at least three reasons. First, as a matter of sound ecology, using less power 
helps minimize the impact of computing on the environment. Not only do computers require power, but so do the 
air-conditioning systems for the rooms where the computers reside. A second reason better power management is needed is 
familiar to many travelers: battery technology simply hasn’t kept pace with the demand for mobile computing of all kinds. And 
finally, greater consumer acceptance of PCs as home appliances depends on improving power management. Current machines 
have noisy fans and squealing disk drives when they’re on, and they take a long time to start up from the power-off state. 
Decreasing the power-up latency and eliminating unnecessary noise—which also means minimizing power consumption so 
that less cooling is required—will be necessary before PCs can comfortably occupy consumer niches. 

In this chapter, I’ll discuss the role WDM drivers play in power management in the MicrosoftWindows XP and Microsoft 
Windows 98/Me operating systems. The first major section of the chapter, “The WDM Power Model,” presents an overview of 
the concepts you need to know about. The second section, “Managing Power Transitions,” is the meat of the chapter: I’ll 
describe there the very complicated tasks a typical function driver carries out. I’ll finish the chapter with a discussion of some 
ancillary responsibilities a WDM function driver has with respect to power management. 

8.1 The WDM Power Model  

In Windows XP and Windows 98/Me, the operating system takes over most of the job of managing power. This makes sense 
because only the operating system really knows what’s going on, of course. A system BIOS charged with power management, 
for example, can’t tell the difference between an application’s use of the screen and a screen saver’s. But the operating system 
can tell the difference and thus can determine whether it’s OK to turn off the display. 

As the global power policy owner for the computer, the operating system supports user interface elements that give the end 
user ultimate control over power decisions. These elements include the control panel, commands in the Start menu, and APIs 
for controlling device wake-up features. The Power Manager component of the kernel implements the operating system’s 
power policies by sending I/O request packets (IRPs) to devices. WDM drivers have the primarily passive role of responding 
to these IRPs, although you’ll probably find this passivity to incorporate a lot of active motion when I show you how much 
code is involved. 

8.1.1 The Roles of WDM Drivers  
One of the drivers for a device acts as the power policy owner for the device. Since the function driver most often fills this role, 
I’ll continue discussing power management as though that were invariably the case. Just bear in mind that your device might 
have unique requirements that mandate giving the responsibilities of policy owner to a filter driver or to the bus driver instead. 

The function driver receives IRPs (system IRPs) from the Power Manager that pertain to changes in the overall power state of 
the system. Acting as policy owner for the device, it translates these instructions into device terms and originates new IRPs 
(device IRPs). When responding to the device IRPs, the function driver worries about the details that pertain to the device. 
Devices might carry onboard context information that you don’t want to lose during a period of low power. Keyboard drivers, 
for example, might hold the state of locking keys (such as Caps Lock, Num Lock, and Scroll Lock), LEDs, and so on. The 
function driver is responsible for saving and restoring that context. Some devices have a wake-up feature that allows them to 
wake up a sleeping system when external events occur; the function driver works together with the end user to make sure that 
the wake-up feature is available when needed. Many function drivers manage queues of substantive IRPs—that is, IRPs that 
read or write data to the device, and they need to stall or release those queues as power wanes and waxes. 

The bus driver at the bottom of the device stack is responsible for controlling the flow of current to your device and for 
performing the electronic steps necessary to arm or disarm your device’s wake-up feature. 

A filter driver normally acts as a simple conduit for power requests, passing them down to lower-level drivers by using the 
special protocol I’ll describe a bit further on. 

8.1.2 Device Power and System Power States  
The Windows Driver Model uses the same terms to describe power states as does the Advanced Configuration and Power 
Interface (ACPI) specification. (See http://www.acpi.info.) Devices can assume the four states illustrated in Figure 8-1. In the 

http://www.acpi.info./
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D0 state, the device is fully functional. In the D3 state, the device is using no (or minimal) power and is therefore not 
functioning (or is functioning at a very low level). The intermediate D1 and D2 states denote two different somnolent states for 
the device. As a device moves from D0 to D3, it consumes less and less power. In addition, it remembers less and less context 
information about its current state. Consequently, the latency period needed for the device’s transition back to D0 increases. 

Figure 8-1. ACPI device power states.  

Microsoft has formulated class-specific requirements for different types of devices. I found these requirements on line at 
http://www.microsoft.com/hwdev/resources/specs/PMref/. The specifications mandate, for example, that every device support 
at least the D0 and D3 states. Input devices (keyboards, mice, and so on) should also support the D1 state. Modem devices, 
moreover, should additionally support D2. These differences in specifications for device classes stem from likely usage 
scenarios and industry practice. 

The operating system doesn’t deal directly with the power states of devices—that’s exclusively the province of device drivers. 
Rather, the system controls power by using a set of system power states that are analogous to the ACPI device states. See 
Figure 8-2. The Working state is the full-power, fully functional state of the computer. Programs are able to execute only when 
the system is in the Working state. 

Figure 8-2. System power states.  

The other system power states correspond to reduced power configurations in which no instructions execute. The Shutdown 
state is the power-off state. (Discussing the Shutdown state seems like discussing an unanswerable question such as, “What’s 
inside a black hole?” Like the event horizon surrounding a black hole, though, the transition to Shutdown is something you’ll 
need to know about as your device spirals in.) The Hibernate state is a variant of Shutdown in which the entire state of the 
computer is recorded on disk so that a live session can be restarted when power comes back. The three sleeping states between 
Hibernate and Working encompass gradations in power consumption. 

8.1.3 Power State Transitions  
The system initializes in the Working state. This almost goes without saying because the computer is, by definition, in the 
Working state whenever it’s executing instructions. Most devices start out in the D0 state, although the policy owner for the 
device might put it into a lower power state when it’s not actually in use. After the system is up and running, then, it reaches a 
steady state in which the system power level is Working and devices are in various states depending on activity and capability. 

End user actions and external events cause subsequent transitions between power states. A common transition scenario arises 
when the user uses the Stand By command in the Turn Off Computer dialog box to put the machine into standby. In response, 
the Power Manager first asks each driver whether the prospective loss of power will be OK by sending an IRP_MJ_POWER 
request with the minor function code IRP_MN_QUERY_POWER. If all drivers acquiesce, the Power Manager sends a second 
power IRP with the minor function code IRP_MN_SET_POWER. Drivers put their devices into lower power states in response 

http://www.microsoft.com/hwdev/resources/specs/PMref/
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to this second IRP. If any driver vetoes the query, the Power Manager still sends an IRP_MN_SET_POWER request, but it 
usually specifies the current power level instead of the one originally proposed. 

The system doesn’t always send IRP_MN_QUERY_POWER requests, by the way. Some events (such as the end user 
unplugging the computer or the battery expiring) must be accepted without demur, and the operating system won’t issue a 
query when they occur. But when a query is issued, and when a driver accepts the proposed state change by passing the request 
along, the driver undertakes that it won’t start any operation that might interfere with the expected set-power request. A tape 
driver, for example, will make sure that it’s not currently retensioning a tape—the interruption of which might break the 
tape—before allowing a query for a low-power state to succeed. In addition, the driver will reject any subsequent retension 
command until (and unless) a countervailing set-power request arrives to signal abandonment of the state change. 

8.1.4 Handling IRP_MJ_POWER Requests  
The Power Manager communicates with drivers by means of an IRP_MJ_POWER I/O request packet. Four minor function 
codes are currently possible. See Table 8-1. 

Minor Function Code Description 

IRP_MN_QUERY_POWER  Determines whether prospective change in power state can safely occur 

IRP_MN_SET_POWER  Instructs driver to change power state 

IRP_MN_WAIT_WAKE  
Instructs bus driver to arm wake-up feature; provides way for function driver to 
know when wake-up signal occurs 

IRP_MN_POWER_SEQUENCE  Provides optimization for context saving and restoring 

Table 8-1. Minor Function Codes for IRP_MJ_POWER  

The Power substructure in the IO_STACK_LOCATION’s Parameters union has four parameters that describe the request, of 
which only two will be of interest to most WDM drivers. See Table 8-2. 

Field Name Description 

SystemContext  A context value used internally by the Power Manager 

Type  DevicePowerState or SystemPowerState (values of POWER_STATE_TYPE enumeration) 

State  
Power state—either a DEVICE_POWER_STATE enumeration value or a SYSTEM_POWER_STATE 
enumeration value 

ShutdownType  A code indicating the reason for a transition to PowerSystemShutdown 

Table 8-2. Fields in the Parameters.Power Substructure of an IO_STACK_LOCATION  

All drivers—both filter drivers and the function driver—generally pass every power request down the stack to the driver 
underneath them. The only exceptions are an IRP_MN_QUERY_POWER request that the driver wants to cause to fail and an 
IRP that arrives while the device is being deleted. 

Figure 8-3. Handling IRP_MJ_POWER requests.  

Special rules govern how you pass power requests down to lower-level drivers. Refer to Figure 8-3 for an overview of the 
process in the three possible variations you might use. First, before releasing control of a power IRP, you must call 
PoStartNextPowerIrp. You do so even if you are completing the IRP with an error status. The reason for this call is that the 
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Power Manager maintains its own queue of power requests and must be told when it will be OK to dequeue and send the next 
request to your device. In addition to calling PoStartNextPowerIrp, you must call the special routine PoCallDriver (instead of 
IoCallDriver) to send the request to the next driver. 

NOTE  
Not only does the Power Manager maintain a queue of power IRPs for each device, but it maintains two such 
queues. One queue is for system power IRPs (that is, IRP_MN_SET_POWER requests that specify a system 
power state). The other queue is for device power IRPs (that is, IRP_MN_SET_POWER requests that specify a 
device power state). One IRP of each kind can be simultaneously active. Your driver might also be handling a 
Plug and Play (PnP) request and any number of substantive IRPs at the same time too, by the way. 

The following function illustrates the mechanical aspects of passing a power request down the stack: 

NTSTATUS DefaultPowerHandler(IN PDEVICE_OBJECT fdo, IN PIRP Irp) 
  { 
 
  PoStartNextPowerIrp(Irp); 
 
  IoSkipCurrentIrpStackLocation(Irp); 
 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  return PoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 

1. PoStartNextPowerIrp tells the Power Manager that it can dequeue and send the next power IRP. You must make this call 
for every power IRP you receive at a time when you own the IRP. In other words, the call must occur either in your 
dispatch routine before you send the request to PoCallDriver or in a completion routine. 

2. We use IoSkipCurrentIrpStackLocation to retard the IRP’s stack pointer by one position in anticipation that PoCallDriver 
will immediately advance it. This is the same technique I’ve already discussed for passing a request down and ignoring 
what happens to it afterwards. 

3. You use PoCallDriver to forward power requests. Microsoft implemented this function to forestall the minimal, but 
nonetheless measurable, impact on performance that might result from adding conditional logic to IoCallDriver to handle 
power management. 

The function driver takes the two steps of passing the IRP down and performing its device-specific action in a neatly nested 
order, as shown in Figure 8-4: When removing power—that is, when changing to a lower power state—it performs the 
device-dependent step first and then passes the request down. When adding power—when changing to a higher power state—it 
passes the request down and performs the device-dependent step in a completion routine. This neat nesting of operations 
guarantees that the pathway leading to the hardware has power while the driver manipulates the hardware. 

Figure 8-4. Handling system power requests.  

Power IRPs come to you in the context of a system thread that you must not block. There are several reasons why you can’t 
block the thread. If your device has the INRUSH characteristic, or if you’ve cleared the DO_POWER_PAGABLE flag in your 
device object, the Power Manager will send you IRPs at DISPATCH_LEVEL. You remember, of course, that you can’t block a 
thread while executing at DISPATCH_LEVEL. Even if you’ve set DO_POWER_PAGABLE, however, so that you get power 
IRPs at PASSIVE_LEVEL, you can cause a deadlock by requesting a device power IRP while servicing a system IRP and then 
blocking: the Power Manager might not send you the device IRP until your system IRP dispatch routine returns, so you’ll wait 
forever. 
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The function driver normally needs to perform several steps that require time to finish as part of handling some power requests. 
The DDK points out that you can delay the completion of power IRPs by periods that the end user won’t find perceptible under 
the circumstances, but being able to delay doesn’t mean being able to block. The requirement that you can’t block while these 
operations finish means lavish use of completion routines to make the steps asynchronous. 

Implicit in the notion that IRP_MN_QUERY_POWER poses a question for you to answer yes or no is the fact that you can 
cause an IRP to fail with that minor function code. Having the IRP fail is how you say no. You don’t have any such freedom 
with IRP_MN_SET_POWER requests, however: you must carry out the instructions they convey. 

8.2 Managing Power Transitions  

Performing power-management tasks correctly requires very accurate coding, and there are many complicating factors. For 
example, your device might have the ability to wake up the system from a sleeping state. Deciding whether to have a query 
succeed or fail, and deciding which device power state corresponds to a given new system power state, depend on whether 
your wake-up feature is currently armed. You may have powered down your own device because of inactivity, and you need to 
provide for restoring power when a substantive IRP comes along. Maybe your device is an “inrush” device that needs a large 
spike of current to power on, in which case the Power Manager treats you specially. And so on. 

I regret being unable to offer a simple explanation of how to handle power management in a driver. It seems to me that a 
feature like this, which every driver must implement for the system to work properly, ought to have a simple explanation that 
any programmer can understand. But it doesn’t. I recommend, therefore, that you simply adopt someone else’s proven 
power-management code wholesale. If you build your driver to use GENERIC.SYS, you can delegate IRP_MJ_POWER 
requests like this: 

NTSTATUS DispatchPower(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  return GenericDispatchPower(pdx->pgx, Irp); 
  } 

GENERIC will then call back to your driver to handle certain device-dependent details. The power callback functions, all of 
which are entirely optional, are shown in Table 8-3. 

Callback Function Purpose 

FlushPendingIo  “Encourage” any pending operations to finish. 

GetDevicePowerState  Get the device power state to use for a specified system power state. 

QueryPowerChange  Determine whether a proposed change in device power state will be permissible. 

RestoreDeviceContext  Initiate nonblocking process to prepare device for use following restoration of power. 

SaveDeviceContext  Initiate nonblocking process to prepare device for loss of power. 

Table 8-3. Power-Management Callbacks Used by GENERIC.SYS  

If you use my WDMWIZ wizard to generate a skeleton driver that doesn’t use GENERIC, you’ll get a source file 
(POWER.CPP) that implements the same power-handling model as GENERIC. Instead of callback routines, however, this 
code contains several “if (FALSE)” blocks with TODO comments where you should insert code to do what the GENERIC 
callbacks do. 

In the following sections, I’ll describe the requirements for handling IRP_MN_QUERY_POWER and IRP_MN_SET_POWER 
requests, and I’ll also describe the finite state machine I built to carry out those requirements. I’m not going to show you all of 
the code, but I will show you enough fragments to cover the many fine points you must be aware of to understand anybody’s 
code. If you wanted to implement your own power code, you wouldn’t have to use a finite state machine as I’ve done. You 
could, for example, use a traditional set of I/O completion routines. I believe, however, that you would pretty much have to 
arrange those completion routines in such a way that they would actually be equivalent to the state machine I’ll describe. 
That’s why I feel justified in describing what might otherwise seem like an idiosyncratic implementation. 
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Debugging Power Management 
Debugging power-management code in a driver is uncommonly hard. The problems start with the fact that 
many desktop machines don’t actually support standby power states. The reason for that isn’t hard to 
understand: most driver programmers are unable to successfully implement power management (it’s just too 
hard!), and their drivers are running on your development machines and getting in the way. Not only do the 
machines not support the power states you need for testing, but the operating system also silently decides to 
suppress the power-management choices on the start menu. There’s no way to find out why your machine 
won't support standby or hibernate choices—you just find out that it won’t.  

For Windows 98/Me only, Microsoft publishes a tool named PMTSHOOT that will help you find out why your 
machine doesn’t support standby. When I ran this program on one of my machines, I discovered that I needed 
to disable my network cards—never mind how they got a logo if their drivers didn’t support power management 
correctly—and to shut down Internet Connection Sharing. Now, really! I think I could just tell the other users on 
my home office network (that would be me, myself, and I on a typical day) that the Internet will be temporarily 
inaccessible, couldn’t I? This seems to me to be a case in which automation has run rampant into an area better 
left to humans. 

You may have to purchase a recent vintage laptop if you want to do serious power-management testing. This 
is a lousy alternative if you’re dealing with a Peripheral Component Interconnect (PCI) card because laptops 
typically lack expansion slots. Power management will work differently, and might not work at all, when the 
laptop is docked. Thus, any expansion capabilities offered by your docking station might still fall short of what 
you need. Universal serial bus (USB) host controllers vary widely in their support of power management too, so 
you may find it hard to buy a laptop that lets you test USB devices. 

Supposing you manage to find suitable hardware for testing, you’ll then run into problems trying to actually 
debug your driver. On my previous laptop, the serial port was inaccessible to WinDbg and Soft-Ice alike, 
apparently because of power-management features (!) associated with the infrared port that I didn’t want 
originally and never used. Whenever there was a problem in my driver, it seemed that the serial port, network 
adapter, and display had all been turned off already, so I couldn’t use any of my normal debugging techniques 
to investigate failures. Writing messages to log files was also useless because of when the file systems decided 
to shut down. All failures looked alike from this perspective: the system hung going into standby or resuming 
afterward, and the screen was black. Good luck drawing deductions from that! 

(Notwithstanding that the disk system may not be powered up at the times you need to capture debug prints 
related to power management, the POWTRACE filter driver in the companion content will log to a disk file. Check 
out POWTRACE.HTM for hints on how to use it.) 

I’ve finally stumbled into a laborious procedure that nevertheless has let me debug power management in my 
drivers. I use Soft-Ice, so I’m not dependent on having very many peripherals working. The keyboard and the 
parallel port appear to keep power longer than my own devices—I don’t know whether this is on purpose or just 
accidental, but I’m grateful that it’s true. So I wait for the system to hang, and I press the Print Screen key. If 
I’m lucky, Soft-Ice has gained control because of some bug check or ASSERT, and I can use the printer as a 
surrogate for the display. I can type a command and do another Print Screen to see the result. And so on. 
Tedious, but better than trial and error. 

A much better solution to the whole problem of power testing and debugging would be a test program that 
would feed IRPs through a driver to perform a black box test. I’ve been lobbying Microsoft to write such a tool 
for a while now, and I hope that persistence eventually pays off. 

8.2.1 Required Infrastructure  
Whoever actually processes power requests in your driver needs to maintain several data values in the device extension 
structure: 

typedef struct _DEVICE_EXTENSION { 
 
  DEVICE_POWER_STATE devpower; 
 
  SYSTEM_POWER_STATE syspower; 
 
  BOOLEAN StalledForPower; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

1. The value devpower is the current device power state. You probably initialize this to PowerDeviceD0 at AddDevice time. 

2. The value syspower is the current system power state. You always initialize this to PowerSystemWorking at AddDevice 
time because the computer is self-evidently in the Working state. (You’re executing instructions.) 

3. StalledForPower will be TRUE if your power-management code has stalled your substantive IRP queues across a period 
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of low power. 

Note that GENERIC.SYS, if you use it, maintains these variables in its own private portion of the device extension structure; 
you won’t need to declare them yourself. 

8.2.2 Initial Triage  
Your IRP_MJ_POWER dispatch function should initially distinguish between IRP_MN_QUERY_POWER and 
IRP_MN_SET_POWER requests on the one hand and other minor function codes on the other. In nearly every case, you will 
pend the query and set requests by calling IoMarkIrpPending and returning STATUS_PENDING. This is how you obey the rule, 
stated earlier, that you can’t block the system thread in which you receive power IRPs. You will also want to examine the stack 
parameters to distinguish three basic cases: 

 A system power IRP that increases system power. That is, an IRP for which Parameters.Power.Type is SystemPowerState 
and for which Parameters.Power.State.SystemState is numerically less than the remembered syspower value. Note that 
increasing values of the SYSTEM_POWER_STATE enumeration denote less power. 

 A system power IRP that decreases system power or leaves it the same. 

 A device power IRP. That is, an IRP for which Parameters.Power.Type is DevicePowerState, regardless of whether it 
indicates more or less power than your device currently has. 

You’ll handle power set and query operations in just about the same way up to a certain point, which is why you needn’t 
initially distinguish between them. 

Since I’m going to be showing you diagrams of my state machine, I have to explain just a bit more terminology. I put the code 
for the state machine into a subroutine (HandlePowerEvent), the arguments to which are a context structure containing all of 
the state information about the machine and an event code that indicates what has happened to cause the state machine to be 
invoked. There are only three event codes. The dispatch routine uses NewIrp in the first call to the state machine. 
MainIrpComplete indicates that an I/O completion routine is invoking the state machine to resume processing after a 
lower-level driver has completed an IRP, and AsyncNotify means that some other asynchronous process has completed. The 
state machine performs one or more actions based on the state and event codes. The machine initially occupies the InitialState 
state, and it performs the TriageNewIrp action when called to process a NewIrp event, for example. I’ll explain the other states 
and actions as they come up in the following narrative. 

8.2.3 System Power IRPs That Increase Power  
If a system power IRP implies an increase in the system power level, you’ll forward it immediately to the next lower driver 
after installing a completion routine. In the completion routine, you’ll request the corresponding device power IRP. You’ll 
select the return value from your completion routine as follows: 

 In Windows 2000 and later systems, if the system power IRP is IRP_MN_SET_POWER for PowerSystemWorking, you’ll 
return STATUS_SUCCESS to allow the Power Manager to immediately send similar IRPs to other drivers. Doing this 
speeds up restart from suspend by allowing drivers to overlap their device IRP processing. 

 In every other case, you’ll return STATUS_MORE_PROCESSING_REQUIRED to defer the completion of the system IRP. 
You’ll complete the IRP after the device IRP completes. 

Figure 8-5. IRP flow when increasing system power.  

Figure 8-5 diagrams the flow of the IRP through all of the drivers. 
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Figure 8-6 illustrates the path taken by my finite state machine. 

Figure 8-6. State transitions when increasing system power.  

 TriageNewIrp, as noted earlier, is the first action for every power IRP. It discovers that we’re dealing with a system 
power IRP that increases power, and it therefore arranges to perform the ForwardMainIrp action next. 

 ForwardMainIrp installs an I/O completion routine and sends the system IRP down the driver stack after changing the 
machine state to SysPowerUpPending. At this point, the state machine subroutine returns to the IRP_MJ_POWER 
dispatch routine, which returns STATUS_PENDING. 

 When the bus driver completes the system power IRP, the I/O completion routine reinvokes the state machine with the 
MainIrpComplete event code. 

 The SysPowerUpComplete action first tests the completion status for the IRP. If the bus driver failed the IRP, we arrange 
to return STATUS_SUCCESS from the completion routine. That allows the IRP to finish completing with an error status. 
This is also the point in the code where we test to see whether we’re dealing with an IRP_MN_SET_POWER for the 
PowerSystemWorking state in Windows 2000 or later. If so, we’ll also allow the IRP to finish completing. 

 Unless the system IRP has failed in the bus driver, we go on to perform SelectDState to select the device power state that 
corresponds to this IRP’s system power state and to perform SendDeviceIrp to request a device power IRP with the same 
minor function code. I’ll discuss the mechanics of doing both of these actions in detail in a moment. It’s possible for the 
SendDeviceIrp step to fail, in which case we’ll want to change the ending status for the system IRP to a failure code and 
allow that IRP to complete. We then exit the finite state machine, whereupon our I/O completion routine will return 
whatever status (STATUS_SUCCESS or STATUS_MORE_PROCESSING_REQUIRED) we’ve decided on after putting 
the state machine into the SubPowerUpPending state. 

 Time will pass while our own driver handles the device power IRP we’ve just requested. Eventually, the Power Manager 
will call a callback routine in our driver to inform us that the device power IRP has completed. The callback routine in 
turn reinvokes the state machine with the AsyncNotify event code. 

 The SubPowerUpComplete action doesn’t actually do much in the retail build of my state machine except chain to the 
CompleteMainIrp event. 

 CompleteMainIrp arranges to complete the system IRP if we haven’t already done that when performing 
SysPowerUpComplete. Because the state machine has been invoked this time by an asynchronous event instead of an I/O 
completion routine, we have to actually call IoCompleteRequest. We might, however, be running at DISPATCH_LEVEL. 
In Windows 98/Me, we must be at PASSIVE_LEVEL when we complete power IRPs, so we might need to schedule a 
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work item (see Chapter 14) and return without destroying the state machine. The work-item callback routine then 
reinvokes the state machine at PASSIVE_LEVEL to finish up. 

 DestroyContext is the last action performed by the state machine for any given power IRP. It releases the context structure 
that the machinery has been using to keep track of state information. 

I want you to notice what the net result of all of this motion has been: we have requested a device power IRP. I don’t want to 
negatively characterize the kernel power-management architecture because I surely lack encyclopedic knowledge of all the 
constituencies it serves and all the problems it solves. But all this motion does seem a trifle complex given the net result. 

Mapping the System State to a Device State  

Our obligation as power policy owner for a device is to originate a device power IRP, either a set or a query, with an 
appropriate device power state. I broke this into two steps: SelectDState and SendDeviceIrp. I’ll discuss the first of these steps 
now. 

In general, we always want to put our device into the lowest power state that’s consistent with current device activity, with our 
own wake-up feature (if any), with device capabilities, and with the impending state of the system. These factors can interplay 
in a relatively complex way. To explain them fully, I need to digress briefly and talk about a PnP IRP that I avoided discussing 
in Chapter 6: IRP_MN_QUERY_CAPABILITIES. 

The PnP Manager sends a capabilities query shortly after starting your device and perhaps at other times. The parameter for the 
request is a DEVICE_CAPABILITIES structure that contains several fields relevant to power management. Since this is the 
only time in this book I’m going to discuss this structure, I’m showing you the entire declaration: 

typedef struct _DEVICE_CAPABILITIES { 
    USHORT Size; 
    USHORT Version; 
    ULONG DeviceD1:1; 
    ULONG DeviceD2:1; 
    ULONG LockSupported:1; 
    ULONG EjectSupported:1; 
    ULONG Removable:1; 
    ULONG DockDevice:1; 
    ULONG UniqueID:1; 
    ULONG SilentInstall:1; 
    ULONG RawDeviceOK:1; 
    ULONG SurpriseRemovalOK:1; 
    ULONG WakeFromD0:1; 
    ULONG WakeFromD1:1; 
    ULONG WakeFromD2:1; 
    ULONG WakeFromD3:1; 
    ULONG HardwareDisabled:1; 
    ULONG NonDynamic:1; 
    ULONG Reserved:16; 
 
    ULONG Address; 
    ULONG UINumber; 
 
    DEVICE_POWER_STATE DeviceState[PowerSystemMaximum]; 
    SYSTEM_POWER_STATE SystemWake; 
    DEVICE_POWER_STATE DeviceWake; 
    ULONG D1Latency; 
    ULONG D2Latency; 
    ULONG D3Latency; 
} DEVICE_CAPABILITIES, *PDEVICE_CAPABILITIES; 

Table 8-4 describes the fields in this structure that relate to power management. 
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Field Description 

DeviceState  Array of highest device states possible for each system state 

SystemWake  
Lowest system power state from which the device can generate a wake-up signal for the 
system—PowerSystemUnspecified indicates that the device can’t wake up the system 

DeviceWake  
Lowest power state from which the device can generate a wake-up signal—PowerDeviceUnspecified 
indicates that the device can’t generate a wake-up signal 

D1Latency  
Approximate worst-case time (in 100-microsecond units) required for the device to switch from D1 
to D0 state 

D2Latency  
Approximate worst-case time (in 100-microsecond units) required for the device to switch from D2 
to D0 state 

D3Latency  
Approximate worst-case time (in 100-microsecond units) required for the device to switch from D3 
to D0 state 

WakeFromD0  
Flag indicating whether the device’s system wake-up feature is operative when the device is in the 
indicated state 

WakeFromD1  Same as above 

WakeFromD2  Same as above 

WakeFromD3  Same as above 

Table 8-4. Power-Management Fields in the DEVICE_CAPABILITIES Structure  

You normally handle the query capabilities IRP synchronously by passing it down and waiting for the lower layers to complete 
it. After the pass-down, you’ll make any desired changes to the capabilities recorded by the bus driver. Your subdispatch 
routine will look like this one: 

NTSTATUS HandleQueryCapabilities(IN PDEVICE_OBJECT fdo, IN PIRP Irp) 
  { 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PDEVICE_CAPABILITIES pdc = stack-> Parameters.DeviceCapabilities.Capabilities; 
 
  if (pdc->Version < 1) 
    return DefaultPnpHandler(fdo, Irp); 
 
    <stuff> 
  NTSTATUS status = ForwardAndWait(fdo, Irp); 
  if (NT_SUCCESS(status)) 
    { 
    stack = IoGetCurrentIrpStackLocation(Irp); 
    pdc = stack->Parameters.DeviceCapabilities.Capabilities; 
 
    <stuff> 
 
    AdjustDeviceCapabilities(pdx, pdc); 
 
    pdx->devcaps = *pdc; 
    } 
  return CompleteRequest(Irp, status); 
  } 

1. The device capabilities structure has a version number member, which is currently always equal to 1. The structure is 
designed to always be upward compatible, so you’ll be able to work with the version defined in the DDK that you build 
your driver with and with any later incarnation of the structure. If, however, you’re confronted with a structure that’s 
older than you’re able to work with, you should just ignore this IRP by passing it along. 

2. Here’s where the DDK says you add capabilities. 

3. Here’s where the DDK says you should remove capabilities set by the bus driver. 

4. Depending on which platform you’re running on and which bus your device is connected to, the bus driver may have 
incorrectly completed the power-related portions of the capabilities structure. AdjustDeviceCapabilities compensates for 
that shortcoming. 

5. It’s a good idea to make a copy of the capabilities structure. You’ll use the DeviceState map when you receive a system 
power IRP. You might have occasion to consult other fields in the structure too. 

It’s just not clear what the distinction is between “adding” and “removing” capabilities, unfortunately, and certain bus drivers 
have had bugs that cause them to erase whatever changes you make in the capabilities structure as the IRP travels down the 
stack. My advice, therefore, is to make your changes at both points 2 and 3 in the preceding code snippet—that is, both before 
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and after passing the IRP down. 

You can modify SystemWake and DeviceWake to specify a higher power state than the bus driver thought was appropriate. You 
can’t specify a lower power state for the wake-up fields, and you can’t override the bus driver’s decision that your device is 
incapable of waking the system. If your device is ACPI-compliant, the ACPI filter will set the LockSupported, EjectSupported, 
and Removable flags automatically based on the ACPI Source Language (ASL) description of the device—you won’t need to 
worry about these capabilities. 

You might want to set the SurpriseRemovalOK flag. Setting the flag suppresses the dialog box that earlier versions of Windows 
presented when they detected the sudden and unexpected removal of a device. It’s normally OK for the end user to remove a 
USB or 1394 device without first telling the system, and the function driver should set this flag to avoid annoying the user. 

As noted (point 4), some bus drivers don’t correctly set the power-related fields in the capabilities structure, so it’s up to you to 
tweak the structure somewhat. My AdjustDeviceCapabilities function, which is based on a talk given at WinHEC 2002 and on 
an example in the DDK TOASTER sample, does the following: 

 Examines the DeviceState map in the capabilities structure. If D1 or D2 appears in that map, we can infer that the 
DeviceD1 and DeviceD2 flags ought to have been set. 

 Uses the reported DeviceWake value, and the DeviceState value corresponding to the reported SystemWake value, to infer 
the settings of the WakeFromDx flags and the DeviceD1 or DeviceD2 flag. 

 Infers SystemWake from the fact that some entry in the DeviceState map must allow the device to be at least as powered 
as the lowest D-state from which wake-up is possible. 

To return to our discussion of how to select a power state, GENERIC will calculate minimum and maximum values and choose 
the lower of the two. The minimum is D3 unless you have an enabled wake-up feature and the system is in a state from which 
your device can wake it, in which case the minimum is the remembered DeviceWake capability. The maximum is the 
remembered DeviceState capability for the current system state. Then GENERIC calls your GetDevicePowerState callback, if 
you have one, to allow you to override the selection by picking a higher state. You can decide, for example, to put the device 
into D0 when system power is restored, but only if an application has a handle open to your device. For example: 

DEVICE_POWER_STATE GetDevicePowerState(PDEVICE_OBJECT fdo, 
  SYSTEM_POWER_STATE sstate, DEVICE_POWER_STATE dstate) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  if (sstate > SystemPowerWorking ││ !pdx->handles) 
    return dstate; 
  return PowerDeviceD0; 
  } 

Requesting a Device Power IRP  

To submit an IRP_MN_SET_POWER or IRP_MN_QUERY_POWER request, you call the special function shown here: 

PSOMETHING_OR_ANOTHER ctx; 
POWER_STATE devstate; 
devstate.DeviceState = PowerDeviceDx; 
NTSTATUS postatus = PoRequestPowerIrp(pdx->Pdo, IRP_MN_XXX_POWER, devstate, 
  (PREQUEST_POWER_COMPLETE) PoCallbackRoutine, ctx, NULL); 

The first argument to PoRequestPowerIrp is the address of the physical device object (PDO) at the bottom of your device’s 
PnP stack. The second argument is the minor function code for the IRP we want to submit. Insofar as concerns us right now, 
this would be the same minor function code as the system power IRP that we happen to be processing. That is, it’s either 
IRP_MN_QUERY_POWER or IRP_MN_SET_POWER. The third argument is a power state derived as described in the 
preceding section. PoCallbackRoutine is a callback routine (not a standard I/O completion routine), and ctx is a context 
parameter for that function. The final argument (NULL in this example) is the address of a variable where PoRequestPowerIrp 
will store the address of the IRP it creates. You don’t use this particular capability for SET and QUERY requests. 

PoRequestPowerIrp creates a device power IRP of the specified type and with the specified power level, and sends it to the 
topmost driver in your PnP stack. If PoRequestPowerIrp returns with STATUS_PENDING, you can infer that it actually created 
and sent the IRP. The Power Manager will then eventually call your callback routine. If PoRequestPowerIrp returns anything 
except STATUS_PENDING, however, the Power Manager will not call your callback routine. This possibility is why the 
SendDeviceIrp action in my finite state machine might exit through the CompleteMainIrp action in order to complete the 
system IRP. 

You mustn’t request a device power IRP if your device is already in the state you’re requesting. There is a bug in Windows 
98/Me such that PoRequestPowerIrp will appear to succeed in this case, but the CONFIGMG driver won’t actually send a 
configuration event to NTKERN. In this situation, your power code will deadlock waiting for a call to your PoCallbackRoutine 
that will never happen. It has also been my experience that Windows 2000 and Windows XP will hang while resuming from 
standby if you ask to set the state that currently obtains. 
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8.2.4 System Power IRPs That Decrease Power  
If the system power IRP implies no change or a reduction in the system power level, you’ll request a device power IRP with 
the same minor function code (set or query) and a device power state that corresponds to the system state. When the device 
power IRP completes, you’ll forward the system power IRP to the next lower driver. You’ll need a completion routine for the 
system power IRP so that you can make the requisite call to PoStartNextPowerIrp and so that you can perform some additional 
cleanup. See Figure 8-7 for an illustration of how the IRPs flow through the system in this case. 

It’s not strictly necessary to issue the device-dependent power request as the system IRP is traveling down the stack. That is, 
we can issue the request from the I/O completion routine for the system power IRP, just as we did in the case of a system 
power IRP that increases power (studied earlier). In fact, the DDK says to do exactly this. Performing the steps in the order I 
suggest has the virtue of having been tested and proven to work in many drivers on many WDM platforms since the first 
edition was published, however. Here, therefore, I follow the admonition “If it ain’t broke, don’t fix it.” 

Figure 8-7. IRP flow when decreasing system power.  

Figure 8-8 diagrams how my finite state machine handles this type of IRP. TriageNewIrp puts the state machine into the 
SubPowerDownPending state and jumps to the SelectDState action. You already saw that SelectDState selects a device power 
state and leads to a SendDeviceIrp action to request a device power IRP. In the system power-down scenario, we’ll be 
specifying a lower power state in this device IRP. 

8.2.5 Device Power IRPs  
All we actually do with system power IRPs is act as a conduit for them and request a device IRP either as the system IRP 
travels down the driver stack or as it travels back up. We have more work to do with device power IRPs, however. 

To begin with, we don’t want our device occupied by any substantive I/O operations while a change in the device power state 
is under way. As early as we can in a sequence that leads to powering down our device, therefore, we wait for any outstanding 
operation to finish, and we stop processing new operations. Since we’re not allowed to block the system thread in which we 
receive power IRPs, an asynchronous mechanism is required. Once the current IRP finishes, we’ll continue processing the 
device IRP. Each of the next four state diagrams (Figures 8-11 through 8-14), therefore, begins with the same sequence. 
TriageNewIrp tests the StalledForPower flag to see whether the substantive IRP queues have already been stalled for a power 
operation. If not, GENERIC does two things: 

 It calls the DEVQUEUE routine named StallAllRequestsAndNotify. That routine stalls all your substantive IRP queues and 
returns an indication of whether your device is currently busy servicing an IRP from one of them. In the latter case, 
GENERIC will end up deferring further processing of the IRP until someone calls StartNextPacket for each currently 
busy queue. 

 It calls your FlushPendingIo callback routine if you have specified one. This function solves a problem reported by a 
reader of the first edition, as follows: Your StartIo routine might have started a time-consuming operation that won’t 
finish of its own accord. For example, you might have repackaged the IRP as an IRP_MJ_INTER-
NAL_DEVICE_CONTROL and sent it to the USB bus driver, and you’re planning to call StartNextPacket from a 
completion routine when the USB device completes the repackaged IRP. This won’t necessarily happen soon without 
some sort of “encouragement” (which, in this case, would be a pipe abort command) that your callback can supply. 
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Figure 8-8. State transitions when decreasing system power.  

Figure 8-9. IRP flow when increasing device power.  

If the device power IRP implies an increase in the device power level, we’ll forward it to the next lower driver. Refer to Figure 
8-9 for an illustration of how the IRP flows through the system. The bus driver will process a device set-power IRP by, for 
example, using whatever bus-specific mechanism is appropriate to turn on the flow of electrons to your device, and it will 
complete the IRP. Your completion routine will initiate the operations required to restore context information to the device, and 
it will return STATUS_MORE_PROCESSING_REQUIRED to interrupt the completion process for the device IRP. When the 
context-restore operation finishes, you’ll resume processing substantive IRPs and finish completing the device IRP. 

If the device power IRP implies no change or a reduction in the device power level, you perform any device-specific 
processing (asynchronously, as we’ve discussed) and then forward the device IRP to the next lower driver. See Figure 8-10. 
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The “device-specific processing” for a query operation involves stalling your queues and waiting for all current substantive 
IRPs to finish. The device-specific processing for a set operation includes saving device context information, if any, in memory 
so that you can restore it later. The bus driver completes the request. In the case of a query operation, you can expect the bus 
driver to complete the request with STATUS_SUCCESS to indicate acquiescence in the proposed power change. In the case of a 
set operation, you can expect the bus driver to take the bus-dependent steps required to put your device into the specified 
device power state. Your completion routine cleans up by calling PoStartNextPowerIrp, among other things. 

Figure 8-10. IRP flow when decreasing device power. 

Setting a Higher Device Power State  

Figure 8-11 diagrams the state transitions that occur for an IRP_MN_SET_POWER that specifies a higher device power state 
than that which is current. 

The state transitions and actions are as follows: 

 TriageNewIrp makes sure that your substantive IRP queues are stalled. QueueStallComplete picks up the processing of 
the device power IRP once this is accomplished. 

 ForwardMainIrp sends the device IRP down the PnP stack. The bus driver turns on the flow of current to the device and 
completes the IRP. 

 When the device IRP completes, our completion routine reinvokes the state machine to perform the 
DevPowerUpComplete action. If the device IRP failed (I’ve never seen this happen, by the way), we’ll exit via 
CompleteMainIrp. 

 At this point, GENERIC will call your RestoreDeviceContext callback routine, if any, to allow you to initiate a 
nonblocking process to prepare your device for operation in the new, higher power state. I’ll discuss this aspect of the 
processing in more detail shortly. 

 When the context-restore operation finishes (or immediately if there’s no RestoreDeviceCallback), 
ContextRestoreComplete unstalls the substantive IRP queues (which have presumably been stalled while power was off) 
and hands off control to CompleteMainIrp. 

 CompleteMainIrp arranges to complete the device IRP. We sometimes get here from the I/O completion routine we’ve 
installed for the device IRP, in which case we only need to return STATUS_SUCCESS to allow the completion process to 
continue. In other cases, our I/O completion routine long ago returned STATUS_MORE_PROCESSING_REQUIRED, and 
we need to call IoCompleteRequest to resume the completion process. In either case, since we’re usually processing a 
device IRP that we requested while handling a system IRP, the next thing that will happen is that the Power Manager will 
call our PoCompletionRoutine to indicate that the device IRP is truly finished. We then go on to destroy this instance of 
the state machine, and another (earlier) instance picks up its own processing of a system IRP. 
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Figure 8-11. State transitions when setting a higher device power state.  

The RestoreDeviceContext callback is an important part of how GENERIC helps you manage power for your device. As 
indicated, you have the opportunity in this routine to initiate any sort of nonblocking process that you need to perform before 
your device will be ready to operate with the new, higher power state. When GENERIC calls this routine, the bus driver has 
already restored power to your device. The function has this skeleton: 

VOID RestoreDeviceContext(PDEVICE_OBJECT fdo,  
  DEVICE_POWER_STATE oldstate, DEVICE_POWER_STATE newstate,  
  PVOID context) 
  { 
 
  } 

Here oldstate and newstate are the previous and new states of your device, and context is an opaque parameter that you’ll 
supply in an eventual call to GenericSaveRestoreComplete. Inside this function, you can perform any nonblocking activity 
needed to prepare your device. That is, you can read and write hardware registers or call any other kernel routine that doesn’t 
block the current thread. You can’t do something such as send a synchronous IRP to another driver because you would need to 
block the current thread until that IRP completes. You can, however, send asynchronous IRPs to other drivers. When your 
device is completely ready to go, make the following call back to GENERIC: 

GenericSaveRestoreComplete(context); 

where context is the context parameter you got in your RestoreDeviceContext call. GENERIC will then resume handling the 
device power IRP as previously discussed. Note that you can call GenericSaveRestoreComplete from within your 
RestoreDeviceContext function if you’ve finished all desired power-up operations. 
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NOTE  
For whatever reason, I’ve written many drivers for SmartCard readers. My RestoreDeviceContext function for 
these drivers completes any outstanding card-absent tracking IRP (a requirement for safely dealing with the 
possibility that someone has replaced a card while power was off). In addition, with devices that require 
continuous polling to detect card insertion and removal events, I restart the polling thread. 

Note that you don’t need to supply a RestoreDeviceContext function if there’s no work to do at power-up time. 

The net result of all the motion for a device set higher power request is that the bus driver repowers our device and we 
thereafter prepare it for reuse. This is still a lot of motion, but at least something useful comes from it. 

Querying for a Higher Device Power State  

You shouldn’t expect to receive an IRP_MN_QUERY_POWER that refers to a higher power state than your device is already in, 
but you shouldn’t crash the system if you do happen to receive one. Figure 8-12 illustrates the state changes my finite state 
machine goes through in such a case. The machine simply stalls the IRP queues if they didn’t happen to have been stalled when 
power was removed earlier. 

Figure 8-12. State transitions for a query about a higher device power state.  

Setting a Lower Device Power State  

If the IRP is an IRP_MN_SET_POWER for the same or a lower device power state than current, the finite state machine goes 
through the state transitions diagrammed in Figure 8-13. 
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Figure 8-13. State transitions when setting a lower device power state.  

The actions and state transitions in this case are as follows: 

 TriageNewIrp makes sure that your substantive IRP queues are stalled. QueueStallComplete picks up the processing of 
the device power IRP once this is accomplished. 

 At this point, GENERIC will call your SaveDeviceContext callback routine, if any, to allow you to initiate a nonblocking 
process to prepare your device for operation in the new, lower power state. I’ll discuss this aspect of the processing in 
more detail shortly. 

 When the context-save operation finishes (or immediately if there’s no SaveDeviceCallback), ContextSaveComplete 
hands off control to ForwardMainIrp. 

 ForwardMainIrp sends the device IRP down the PnP stack. The bus driver turns off the flow of current to the device and 
completes the IRP. 

 When the device IRP completes, our completion routine reinvokes the state machine to perform the CompleteMainIrp 
action. 

 CompleteMainIrp arranges to complete the device IRP. We always get here from the I/O completion routine we’ve 
installed for the device IRP, so we only need to return STATUS_SUCCESS to allow the completion process to continue. 
Since we’re usually processing a device IRP that we requested while handling a system IRP, the next thing that will 
happen is that the Power Manager will call our PoCompletionRoutine to indicate that the device IRP is truly finished. We 
then go on to destroy this instance of the state machine, and another (earlier) instance picks up its own processing of a 
system IRP. 

GENERIC’s context-save protocol is exactly complementary to the context-restore protocol discussed previously. If you’ve 
supplied a SaveDeviceContext function, GENERIC will call it: 

VOID SaveDeviceContext(PDEVICE_OBJECT fdo, 
  DEVICE_POWER_STATE oldstate, 
  DEVICE_POWER_STATE newstate, PVOID context) 
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  { 
 
  } 

You initiate any desired nonblocking operation to prepare your device for low power operation, and you call 
GenericSaveRestoreComplete when you finish. GENERIC then resumes handling the device power IRP as just described. Note 
that your device still has power at the time GENERIC calls your callback routine. 

You don’t need to supply a SaveDeviceContext function if there’s no work to do at power-down time. 

NOTE  
To finish the story about my SmartCard drivers, I use SaveDeviceContext to halt any polling thread that I might 
have for detecting card insertions and removals. Since this operation requires blocking the current thread until 
the polling thread exits, I ordinarily need to schedule a work item that can block a different system thread, wait 
for the polling thread to terminate, and then call GenericSaveRestoreComplete. 

Querying for a Lower Device Power State  

An IRP_MN_QUERY_POWER that specifies the same or a lower device power state than current is the basic vehicle by which 
a function driver gets to vote on changes in power levels. Figure 8-14 shows how my state machine handles such a query. 

 TriageNewIrp makes sure that your substantive IRP queues are stalled. QueueStallComplete picks up the processing of 
the device power IRP once this is accomplished. 

 At this point (DevQueryDown), GENERIC will call your QueryPower callback routine, if any, to allow you to decide 
whether to accept the proposed change. If your function returns FALSE, GENERIC then short-circuits around a couple of 
actions to DevQueryDownComplete and thence to CompleteMainIrp. 

 ForwardMainIrp sends the device IRP down the PnP stack. The bus driver usually just completes the IRP with a success 
status. 

 When the device IRP completes, our completion routine reinvokes the state machine to perform the 
DevQueryDownComplete action. If the query has failed, we’ll unstall our queues just in case we don’t later get a 
set-power IRP to make us do that. 

 CompleteMainIrp arranges to complete the device IRP. Since we’re usually processing a device IRP that we requested 
while handling a system IRP, the next thing that will happen is that the Power Manager will call our 
PoCompletionRoutine to indicate that the device IRP is truly finished. We then go on to destroy this instance of the state 
machine, and another (earlier) instance picks up its own processing of a system IRP. 

The net effect of these actions is to stall our substantive IRP queues if the query succeeds. 

8.2.6 Flags to Set in AddDevice  
Two flag bits in a device object—see Table 8-5—control various aspects of power management. After you call IoCreateDevice 
in your AddDevice function, both of these bits will be set to 0, and you can set one or the other of them depending on 
circumstances. 

Flag Description 

DO_POWER_PAGABLE  Driver’s IRP_MJ_POWER dispatch routine must run at PASSIVE_LEVEL. 

DO_POWER_INRUSH  Powering on this device requires a large amount of current. 

Table 8-5. Power-Management Flags in DEVICE_OBJECT  

Set the DO_POWER_PAGABLE flag if your dispatch function for IRP_MJ_POWER requests must run at PASSIVE_LEVEL. 
The flag has the name it does because, as you know, paging is allowed at PASSIVE_LEVEL only. If you leave this flag set to 0, 
the Power Manager is free to send you power requests at DISPATCH_LEVEL. In fact, it always will do so in the current release 
of Windows XP. 
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Figure 8-14. State transitions for a query about a lower device power state.  

8.3 Additional Power-Management Details  

In this section, I’ll describe some additional details about power management, including flags you might need to set in your 
device object, controlling your device’s wake-up feature, arranging for power-down requests after your device has been idle for 
a predetermined time, and optimizing context-restore operations. 

Set the DO_POWER_INRUSH flag if your device draws so much current when powering up that other devices should not be 
allowed to power up simultaneously. The problem solved by this flag is familiar to people who’ve experienced multiple 
simultaneous spikes of electricity demand at the end of a power outage—having all your appliances trying to cycle on at the 
same time can blow the main breaker. The Power Manager guarantees that only one inrush device at a time will be powered up. 
Furthermore, it sends power requests to inrush devices at DISPATCH_LEVEL, which implies that you should not also set the 
DO_POWER_PAGABLE flag. 

The system’s ACPI filter driver will set the INRUSH flag in the PDO automatically if the ASL description of the device so 
indicates. All that’s required for the system to properly serialize inrush power is that some device object in the stack have the 
INRUSH flag; you won’t need to set the flag in your own device object too. If the system can’t automatically determine that 
you require inrush treatment, however, you’ll need to set the flag yourself. 

The settings of the PAGABLE and INRUSH flags need to be consistent in all the device objects for a particular device. If the 
PDO has the PAGABLE flag set, every device object should also have PAGABLE set. Otherwise, a bug check with the code 
DRIVER_POWER_STATE_FAILURE can occur. (It’s legal for a PAGABLE device to be layered on top of a non-PAGABLE 
device, just not the other way around.) If a device object has the INRUSH flag set, neither it nor any lower device objects 
should be PAGABLE, or else an INTERNAL_POWER_ERROR bug check will occur. If you’re writing a disk driver, don’t 
forget that you may change back and forth from time to time between pageable and nonpageable status in response to device 
usage PnP notifications about paging files. 

8.3.1 Device Wake-Up Features  
Some devices have a hardware wake-up feature, which allows them to wake up a sleeping computer when an external event 
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occurs. See Figure 8-15. The power switch on the current crop of PCs is such a device. So are many modems and network 
cards, which are able to listen for incoming calls and packets, respectively. USB devices ordinarily claim wake-up capability, 
and many hubs and host controllers implement the wake-up signaling needed to support that claim. 

Figure 8-15. Examples of devices that wake the system.  

If your device has a wake-up feature, your function driver has additional power-management responsibilities beyond the ones 
we’ve already discussed. The additional responsibilities revolve around the IRP_MN_WAIT_WAKE flavor of 
IRP_MJ_POWER: 

 You’ll inspect the device capabilities to determine whether and under what circumstances, in the opinion of the bus driver 
and the ACPI filter driver, your device will be capable of waking the system. 

 You’ll maintain some persistent setting to indicate whether the end user wants you to arm your device’s wake-up feature. 

 At a time when your device stack isn’t in the middle of a power transition, you’ll use PoRequestPowerIrp to originate an 
IRP_MN_WAIT_WAKE request, which the bus driver will ordinarily pend. 

 When you have a choice about which power state to put your device into, you’ll try to choose the lowest available state 
consistent with your device’s wake-up capabilities. 

 If your device causes the system to wake from a standby state, the bus driver will complete your WAIT_WAKE request. 
Thereafter, the Power Manager will call your power callback routine, from within which you should originate a device 
set-power request to restore your device to the D0 state. 

NOTE  
The WAKEUP sample in the companion content illustrates how to implement wake-up functionality using 
GENERIC.SYS. GENERIC itself, also in the companion content, contains the code discussed throughout this 
section. Note that WDMWIZ will generate exactly the same code (but with slightly different function names) if 
you use it to generate a skeleton project that doesn’t use GENERIC. 

Giving the End User Control  

The end user has ultimate control over whether your device’s wake-up feature, if any, should actually be armed. The standard 
way to provide this control is to support a Windows Management Instrumentation (WMI) class named 
MSPower_DeviceWakeEnable. (See Chapter 10 for more information about WMI.) The Device Manager automatically 
generates a Power Management tab in the device properties if the driver supports either MSPower_DeviceWakeEnable or 
MSPower_DeviceEnable. See Figure 8-16. 

Your driver should remember the current state of MSPower_DeviceWakeEnable’s Enable member in both your device 
extension structure and in a registry key. You’ll probably want to initialize your device extension variable from the registry at 
AddDevice time. 



8.3 Additional Power-Management Details   - 247 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

Figure 8-16. Power Management tab in device properties.  

WAIT_WAKE Mechanics  

As the power policy owner for your device, your driver originates a WAIT_WAKE request by calling PoRequestPowerIrp: 

if (InterlockedExchange(&pdx->wwoutstanding, 1)) 
  <skip remaining statements>pdx->wwcancelled = 0; 
POWER_STATE junk; 
junk.SystemState = pdx->devcaps.SystemWake 
status = PoRequestPowerIrp(pdx->Pdo, IRP_MN_WAIT_WAKE, 
  junk, (PREQUEST_POWER_COMPLETE) WaitWakeCallback, 
  pdx, &pdx->WaitWakeIrp);if (!NT_SUCCESS(status)) 
  { 
  pdx->WakeupEnabled = FALSE; 
  pdx->wwoutstanding = 0; 
 
  } 

PoRequestPowerIrp creates an IRP_MJ_POWER with the minor function IRP_MN_WAIT_WAKE and sends it to the topmost 
driver in your own PnP stack. (I’ll explain the other statements shortly.) This fact means that your own POWER dispatch 
function will see the IRP as it travels down the stack. You should install a completion routine and pass it further down the 
stack: 

IoCopyCurrentIrpStackLocationToNext(Irp); 
IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)  
  WaitWakeCompletionRoutine, pdx, TRUE, TRUE, TRUE); 
PoStartNextPowerIrp(Irp); 
status = PoCallDriver(pdx->LowerDeviceObject, Irp); 
 
return status; 

The bus driver will normally pend the IRP and return STATUS_PENDING. That status code will percolate back up through the 
dispatch routines of all the drivers in your stack and will eventually cause PoRequestPowerIrp to return STATUS_PENDING. 
Several other actions are possible, however: 

 If you send more than one WAIT_WAKE request, the bus driver will complete the second and subsequent ones with 
STATUS_DEVICE_BUSY. In other words, you can have only one WAIT_WAKE outstanding. 

 If the device is already in too low a power state (less than the DeviceWake capability, in other words), the bus driver 
completes a WAIT_WAKE with STATUS_INVALID_DEVICE_STATE. 

 If the device capabilities indicate that your device doesn’t support wake-up in the first place, the bus driver completes a 
WAIT_WAKE with STATUS_NOT_SUPPORTED. 

Note that if the bus driver immediately causes the IRP to fail, your I/O completion routine (WaitWakeCompletionRoutine in the 
preceding example) will be called. Your power callback routine (WaitWakeCallback) will not. 
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Completing IRP_MN_WAIT_WAKE  

In the normal case, when the bus driver returns STATUS_PENDING, you simply leave the IRP sitting there, waiting for one of 
several things to happen: 

 The system goes into standby and, still later, wakes up because your device asserts its wake-up signal. The computer 
hardware repowers automatically. The bus driver detects that your device is responsible and completes your WAIT_WAKE 
with STATUS_SUCCESS. Later on, you and all other drivers receive a PowerSystemWorkingSET_POWER request. In 
response, you originate a device power IRP to put your device into an appropriate power state. Since your device is 
attempting to communicate with the computer, you’ll probably want to put the device into the D0 state at this point. 

 The system stays in (or returns to) the PowerSystemWorking state, but your device ends up in a low power state. 
Thereafter, your device asserts its wake-up signal, and the bus driver completes your WAIT_WAKE. In this case, the 
Power Manager won’t send you a system power IRP because the system is already in the working state, but your device 
is still in its low power state. To handle this case properly, your power callback routine (WaitWakeCallback in the 
example) needs to originate a device power IRP to put your device into (probably) the D0 state. 

 Your device or the system enters a power state inconsistent with your wake-up signaling. That is, your device goes to a 
state less powered than DeviceWake, or the system goes to a state less powered than SystemWake. The bus driver realizes 
that your wake-up signal can no longer occur, and it completes your WAIT_WAKE with 
STATUS_INVALID_DEVICE_STATE. 

 You decide to abandon the WAIT_WAKE yourself, so you call IoCancelIrp. The bus driver’s cancel routine completes the 
IRP with STATUS_CANCELLED. You should cancel your WAIT_WAKE (at least) when you process an 
IRP_MN_STOP_DEVICE, IRP_MN_SURPRISE_REMOVAL, or IRP_MN_REMOVE_DEVICE request. 

In all of these situations, the I/O Manager calls your I/O completion routine (WaitWakeCompletionRoutine) as a normal part of 
completing the IRP. In addition, the Power Manager calls your power callback routine (WaitWakeCallback) once the IRP is 
totally complete. 

Your I/O Completion Routine  

Cancelling an IRP_MN_WAIT_WAKE exposes the same race condition we discussed in Chapter 5 between your call to 
IoCancelIrp and the bus driver’s call to IoCompleteRequest. To safely cancel the IRP, you can use a variation of the technique I 
showed you for cancelling asynchronous IRPs. This technique relies on interlocking your cancel logic with your completion 
routine in a special way, as shown here: 

VOID CancelWaitWake(PDEVICE_EXTENSION pdx) 
  { 
  PIRP Irp = (PIRP) InterlockedExchangePointer((PVOID*) &pdx->WaitWakeIrp, NULL); 
  if (Irp) 
    { 
    IoCancelIrp(Irp); 
    if (InterlockedExchange(&pdx->wwcancelled, 1)) 
      IoCompleteRequest(Irp, IO_NO_INCREMENT); 
    } 
  } 
 
NTSTATUS WaitWakeCompletionRoutine(PDEVICE_OBJECT junk, PIRP Irp, 
  PDEVICE_EXTENSION pdx) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); 
  if (InterlockedExchangePointer( 
    (PVOID*) &pdx->WaitWakeIrp, NULL)) 
    return STATUS_SUCCESS; 
  if (InterlockedExchange(&pdx->wwcancelled, 1)) 
    return STATUS_SUCCESS; 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

In the example I showed you in Chapter 5, we were dealing with an asynchronous IRP that we had created. We had the 
responsibility for calling IoFreeIrp to delete the IRP when it was finally complete. In this situation, the Power Manager has 
created the WAIT_WAKE IRP and will make its own call to IoFreeIrp when the IRP completes. To avoid the cancel/complete 
race condition, therefore, we need to delay completion until we’re past the point where we might want to cancel the request. 

The cancel logic depends partly on an undocumented but essential side effect of how PoRequestPowerIrp works internally. 
Recall that the last argument to PoRequestPowerIrp is the address of a PIRP variable that will receive the address of the IRP 
that gets created. PoRequestPowerIrp sets that variable before it sends the IRP to the topmost driver. In the example, I used 
pdx->WaitWakeIrp for that parameter. This is the same data member used in the I/O completion routine and in the 
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CancelWaitWake routine. I’m deliberately relying on the fact that PoRequestPowerIrp will set this member before sending the 
IRP rather than after so that my completion and cancel logic will work correctly, even if invoked before the topmost dispatch 
routine returns to PoRequestPowerIrp. Note that it would be a mistake to write your code this way: 

PIRP foo; 
status = PoRequestPowerIrp(pdx->Pdo, IRP_MN_WAIT_WAKE, junk, 
  (PREQUEST_POWER_COMPLETE) WaitWakeCallback, pdx, &foo); 
pdx->WaitWakeIrp = foo; // <== don't do this 

This sequence risks setting WaitWakeIrp to the address of a completed IRP. Havoc would occur were you to later try to cancel 
that IRP. 

Your Callback Routine  

Your power callback routine for WAIT_WAKE will look something like this one: 

VOID WaitWakeCallback(PDEVICE_OBJECT junk, UCHAR MinorFunction, 
  POWER_STATE state, PDEVICE_EXTENSION pdx, 
  PIO_STATUS_BLOCK pstatus) 
  { 
  InterlockedExchange(&pdx->wwoutstanding, 0); 
  if (!NT_SUCCESS(pstatus->Status)) 
    return; 
  else 
    { 
    SendDeviceSetPower(pdx, PowerDeviceD0, FALSE); 
    } 
  } 

Here I imagine that you’ve written (or copied!) a subroutine named SendDeviceSetPower that will originate a device 
SET_POWER request. I don’t want to show you that function here because it needs to dovetail with your other power logic. 
There’s a routine by that name in GENERIC.SYS or in any driver you build using WDMWIZ, so you can check out my 
implementation of that function. You call SendDeviceSetPower to put your device into the D0 state to deal with the possibility 
that the system is already in the working state when your wake-up signal occurs. As I discussed earlier, you need to bring your 
own device out of its sleep state because you won’t get a system SET_POWER in the near future. 

A Modest Proposal  

System wake-up appears to have been afflicted with very many bugs across the different releases of WDM operating system 
platforms, different buses, and different chip sets. Here is some anecdotal evidence that wake-up is pretty well broken on 
platforms earlier than Windows XP: 

 Not long ago, I tested several brands and models of laptop computer, all of them running Windows XP Home or Windows 
XP Professional, at a superstore before finding one that actually supported system wake-up from a USB device. This 
feature is supposed to be standardized in the USB specification, and all the machines should have behaved the same way. 
Not only did just one computer actually work, but it also stopped working when I upgraded from Windows XP Home to 
Windows XP Professional. My developer contacts at Microsoft said, basically, “Gee, that shouldn’t have happened.” 

 I have an old Advanced Power Management (APM)-based laptop on which I installed Windows 2000 as an upgrade. If I 
plug in a USB mouse and put the machine into standby, the system hangs trying to resume. This occurs because the USB 
hub driver forces the system into a power state that the BIOS doesn’t actually honor, in order not to dishonor a pending 
WAIT_WAKE that wouldn’t work anyway because the USB controller on the machine doesn’t support wake-up signaling. 
There are no user interface choices that would let me disable the default behavior of issuing the WAIT_WAKE either. 
Nothing in the DDK suggests cancelling a pending WAIT_WAKE before sending a system power query down the stack, 
but that’s the only action that would actually forestall the incorrect choice of standby state. Of course, it wasn’t my driver 
requesting the wake-up either: it was the MOUCLASS driver crafted by a large software company near Seattle. I’m sure 
that there’s plenty of blame to share between the operating system vendor, the laptop vendor, and the various 
manufacturers of components in the laptop. 

 On the same laptop, Windows 98 Second Edition (the operating system installed by the manufacturer) doesn’t hang when 
resuming from standby. Instead, it (surprise!) removes the driver for the mouse, reenumerates the USB bus, and reloads 
the same driver. It does the same with any USB device that has wake-up enabled when the machine was put into standby. 
Not issuing the WAIT_WAKE causes the system to behave sensibly and not reload the driver. Note that if you had an 
application using the device when the machine went into standby, the surprise removal would orphan the application’s 
handle. I can predict a flurry of very confusing support calls about something like this. 

 On a different machine, a defect in the ACPI description of the machine causes SystemWakeup to be set to 
PowerSystemWorking, which in turn causes USBHUB to assign a DeviceState mapping of PowerDeviceD2 for 
PowerSystemWorking to any USB device. In other words, any driver that believes the device capabilities will find it 
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impossible to power the device on since it can apparently never rise above D2, even when the system is working! 

 Windows 98 Second Edition never seems to complete a WAIT_WAKE. Windows Me does, but only long after the 
wake-up has occurred. 

 Prior to Windows XP, HIDCLASS, the standard driver for human input devices such as mice and keyboards (see Chapter 
13) issued its WAIT_WAKE with the silly PowerState value PowerSystemWorking. Taken at face value, this means that 
the system shouldn’t wake from any of the standby states. Obviously, no one lower down the stack is paying any attention 
because the system manifestly will wake up from lower states. Apropos of this observation is a comment in the DDK 
toaster sample to the effect that the PowerState parameter of WAIT_WAKE is ignored. So what’s a driver writer to do? Set 
the parameter to PowerSystemWorking, set it to the SystemWake value from the capabilities, or simply ignore it? Anyway, 
how could you tell that a mistake in this regard affected the behavior of your driver without exhaustively testing on every 
conceivable permutation of hardware? 

Faced with an apparently insoluble puzzle, I have formulated the following bit of advice: Never arm your device’s wake-up 
feature without providing a user interface element (such as the Device Manager’s Power Management tab) that gives the user 
control over whether you’re actually going to use the feature. Set the default for this feature to off (that is, no wake-up) in all 
platforms prior to Windows XP. In Windows 98/Me, you’ll need to provide your own user interface for controlling your 
wake-up feature since the Device Manager doesn’t generate the property page even if you support the WMI controls. At the 
very least, provide for a registry setting that your tech support people know about. 

There! I feel much better having gotten that off my chest! 

8.3.2 Powering Off When Idle  
As a general matter, the end user would prefer that your device not draw any power if it isn’t being used. Your driver might use 
two schemes (at least) to implement such a policy. You can register with the Power Manager to be sent a low-power device IRP 
when your device remains idle for a specified period. Alternatively, you can decide to keep your device in a low power state if 
no handles happen to be open. 

Powering Off After an Idle Period  

The mechanics of the time-based idle detection scheme involve two service functions: PoRegisterDeviceForIdleDetection and 
PoSetDeviceBusy. 

To register for idle detection, make this service function call: 

pdx->idlecount = PoRegisterDeviceForIdleDetection(pdx->Pdo, 
  ulConservationTimeout, ulPerformanceTimeout, PowerDeviceD3); 

The first argument to PoRegisterDeviceForIdleDetection is the address of the PDO for your device. The second and third 
arguments specify timeout periods measured in seconds. The conservation period will apply when the system is trying to 
conserve power, such as when running on battery power. The performance period will apply when the system is trying to 
maximize performance, such as when running on AC power. The fourth argument specifies the device power state into which 
you want your device to be forced if it’s idle for longer than whichever of the timeout periods applies. 

Indicating That You’re Not Idle 

The return value from PoRegisterDeviceForIdleDetection is the address of a long integer that the system uses as a counter. 
Every second, the Power Manager increments that integer. If it reaches the appropriate timeout value, the Power Manager 
sends you a device set-power IRP indicating the power state you registered. At various places in your driver, you’ll reset this 
counter to 0 to restart the idle detection period: 

if (pdx->idlecount) 
  PoSetDeviceBusy(pdx->idlecount); 

PoSetDeviceBusy is a macro in the WDM.H header file that uncritically dereferences its pointer argument to store a 0. It turns 
out that PoRegisterDeviceForIdleDetection can return a NULL pointer, so you should check for NULL before calling 
PoSetDeviceBusy. 

Now that I’ve described what PoSetDeviceBusy does, you can see that its name is slightly misleading. It doesn’t tell the Power 
Manager that your device is “busy,” in which case you’d expect to have to make another call later to indicate that your device 
is no longer “busy.” Rather, it indicates that, at the particular instant you use the macro, your device isn’t idle. I’m not making 
this point as a mere semantic quibble. If your device is busy with some sort of active request, you’ll want to have logic that 
forestalls idle detection. So you might want to call PoSetDeviceBusy from many places in your driver: from various dispatch 
routines, from your StartIo routine, and so on. Basically, you want to make sure that the detection period is longer than the 
longest time that can elapse between the calls to PoSetDeviceBusy that you make during the normal processing of a request. 



8.3 Additional Power-Management Details   - 251 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

NOTE  
PoRegisterSystemState allows you to prevent the Power Manager from changing the system power state, but 
you can’t use it to forestall idle timeouts. Besides, it isn’t implemented in Windows 98/Me, so calling it is 
contraindicated for drivers that need to be portable between Windows XP and Windows 98/Me. 

Choosing Idle Timeouts 

Picking the idle timeout values isn’t necessarily simple. Certain kinds of devices can specify -1 to indicate the standard power 
policy timeout for their class of device. At the time of this writing, only FILE_DEVICE_DISK and 
FILE_DEVICE_MASS_STORAGE devices are in this category. While you’ll probably want to have default values for the 
timeout constants, their values should ultimately be under end user control. Underlying the method by which a user gives you 
these values is a tale of considerable complexity. 

Unless your device is one for which the system designers planned a generic idle detection scheme, you’ll need to provide a 
user-mode component that allows the end user to specify timeout values. To fit in best with the rest of the operating system, 
that piece should be a property page extension of the Power control panel applet. That is, you should provide a user-mode DLL 
that implements the IShellPropSheetExt and IShellExtInit COM interfaces. This DLL will fit the general description of a shell 
extension DLL, which is the topic you’ll research if you want to learn all the ins and outs of writing this particular piece of 
user interface software. 

NOTE  
Learning about COM in general and shell extension DLLs in particular seems to me like a case of the tail wagging 
the dog insofar as driver programming goes. You can download a free Visual Studio application wizard from my 
Web site (http://www.oneysoft.com) and use it to construct a property-page extension DLL for the Power applet 
in the Control Panel. You could define a private IOCTL interface between your DLL and your driver for specifying 
idle timeout constants and other policy values. Alternatively, you could define a custom WMI schema that 
includes idle timeout functionality. As you’ll see in Chapter 10, it’s exceptionally easy to use WMI from a 
scripting language. 

Restoring Power 

If you implement idle detection, you’ll also have to provide a way to restore power to your device at some later time—for 
example, when you next receive an IRP that requires power. You’ll need some relatively complex coding to make this feature 
work: 

 Often you receive substantive IRPs in an arbitrary thread or at an elevated interrupt request level (IRQL), so you can’t 
block the dispatch thread while you restore power to the device. 

 Other power or PnP operations can be going on when you receive an IRP that would require you to restore power to your 
device. 

 You might receive more than one IRP requiring power in quick succession. You want to restore power only once, and you 
don’t want to handle the IRPs out of order. 

 The IRP that triggers you to restore power might be cancelled while you’re waiting for power to come back. 

I think the best way to handle all of these complications is to always route IRPs that require power through a DEVQUEUE. A 
skeletal dispatch routine might look like this one: 

NTSTATUS DispatchReadWrite(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  if (pdx->powerstate > PowerDeviceD0) 
    SendDeviceSetPower(pdx, PowerDeviceD0, FALSE); 
  IoMarkIrpPending(Irp); 
  StartPacket(&pdx->dqReadWrite, fdo, Irp, OnCancel); 
  return STATUS_PENDING; 
  } 

The idea is to unconditionally queue the IRP after starting a power operation that will finish asynchronously. The 
power-management code elsewhere in your driver will unstall the queue when power finally comes back, and that will release 
the IRP. 

Powering Off When Handles Close  

The other basic strategy for idle power management involves keeping your device in a low power state except while an 
application has a handle open. Your driver should honor the MSPower_DeviceEnable WMI control to decide whether to 
implement this strategy and should maintain a persistent registry entry that records the end user’s most recent specification of 

http://www.oneysoft.com/
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the value of this control. Let’s suppose you define a member of your device extension structure to record the value of 
MSPower_DeviceEnable and another to record the number of open handles: 

typedef struct _DEVICE_EXTENSION { 
 
  LONG handles; 
  BOOLEAN autopower; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
Your IRP_MJ_CREATE and IRP_MJ_CLOSE dispatch functions will do something like this: 
NTSTATUS DispatchCreate(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DevicExtension; 
  if (InterlockedIncrement(&pdx->handles) == 1) 
    SendDeviceSetPower(fdo, PowerDeviceD0, TRUE); 
 
  } 
 
NTSTATUS DispatchClose(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DevicExtension; 
  if (InterlockedDecrement(&pdx->handles) == 0 && pdx->autopower) 
    SendDeviceSetPower(fdo, PowerDeviceD3, TRUE); 
 

  } 

These are synchronous calls to SendDeviceSetPower, so we don’t have to worry about race conditions between the power-up 
operation initiated by DispatchCreate and the power-down operation initiated by the matching call to DispatchClose. 

When you employ this strategy, you rely on the DEVQUEUE or an equivalent package to stall delivery of substantive IRPs to a 
StartIo routine while power is off. 

NOTE  
A USB driver running in Windows XP or later should use the Selective Suspend protocol instead of directly 
sending a device IRP to idle the device. Refer to Chapter 12 for details about Selective Suspend. The only 
change to the sample code shown above is that you don’t just call SendDeviceSetPower. Instead, you send a 
special idle registration IRP down the PnP stack with a pointer to a callback routine. The parent driver calls you 
back when it’s time for you to actually put your device into a low power state, whereupon you make the call to 
SendDeviceSetPower. The WAKEUP sample driver illustrates the necessary mechanics. 

8.3.3 Using Sequence Numbers to Optimize State Changes  
You might want to use an optimization technique in connection with removing and restoring power to your device. Two 
background facts will help you make sense of the optimization technique. First, the bus driver doesn’t always power down a 
device, even when it receives a device set-power IRP. This particular bit of intransigence arises because of the way computers 
are wired together. There might be one or more power channels, and any random collection of devices might be wired to any 
given channel. These devices are said to share a power relation. A particular device can’t be powered down unless all the other 
devices on the same power channel are powered down as well. So to use the macabre example that I sometimes give my 
seminar students, suppose the modem you want to power down happens to share a power channel with your computer’s 
heart-lung machine—the system can’t power down your modem until the bypass operation is over. 

The second background fact is that some devices require a great deal of time to change power. To return to the preceding 
example, suppose your modem were such a device. At some point, you received and passed along a device set-power request 
to put your modem to sleep. Unbeknownst to you, however, the bus driver didn’t actually power down the modem. When the 
time came to restore power, you could have saved some time if you had known that your modem hadn’t lost power. That’s 
where this particular optimization comes into play. 

At the time you remove power, you can create and send a power request with the minor function code 
IRP_MN_POWER_SEQUENCE to the drivers underneath yours. Even though this IRP is technically an IRP_MJ_POWER, 
you use IoBuildAsynchronousFsdRequest instead of PoRequestPowerIrp to create it. You still use PoStartNextPowerIrp and 
PoCallDriver when you handle it, though. The request completes after the bus driver stores three sequence numbers in an array 
you provide. The sequence numbers indicate how many times your device has been put into the D1, D2, and D3 states. When 
you’re later called upon to restore power, you create and send another IRP_MN_POWER_SEQUENCE request to obtain a new 
set of sequence numbers. If the new set is the same as the set you captured at power-down time, you know that no state change 
has occurred and that you can bypass whatever expensive process would be required to restore power. 

Since IRP_MN_POWER_SEQUENCE simply optimizes a process that will work without the optimization, you needn’t use it. 
Furthermore, the bus driver needn’t support it, and you shouldn’t treat failure of a power-sequence request as indicative of any 
sort of error. The GENERIC sample in the companion content actually includes code to use the optimization, but I didn’t want 
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to further complicate the textual discussion of the state machine by showing it here. 

8.4 Windows 98/Me Compatibility Notes  

Windows 98/Me incompletely implements many power-management features. Consequently, the Windows 98/Me environment 
will forgive your mistakes more readily than Windows XP will, facilitating the initial development of a driver. But since 
Windows 98/Me tolerates mistakes that Windows XP won’t tolerate, you must be sure to test all of your driver’s power 
functionality under Windows XP. 

8.4.1 The Importance of DO_POWER_PAGABLE  
The DO_POWER_PAGABLE flag has additional and unexpected significance in Windows 98/Me. Unless every device object, 
including the PDO and all filter devices, in your particular stack has this flag set, the I/O Manager tells the Windows 98/Me 
Configuration Manager that the device supports only the D0 power state and is incapable of waking the system. Thus, an 
additional consequence of not setting the DO_POWER_PAGABLE flag is that any idle notification request you make by calling 
PoRegisterDeviceForIdleDetection is effectively ignored—that is, you’ll never receive a power IRP as a result of being idle 
too long. Another consequence is that your device’s wake-up feature, if any, won’t be used. 

8.4.2 Completing Power IRPs  
You must complete power set and query requests in Windows 98/Me at PASSIVE_LEVEL only. If you look carefully at the 
power-management code for GENERIC in the companion content, you’ll find it scheduling a work item instead of completing 
the IRP at DISPATCH_LEVEL. 

If you copy my code, or if you use GENERIC.SYS, you may have a bit of explaining to do when you submit your driver to 
Windows Hardware Quality Lab (WHQL). Windows 98/Me does not support the IoXxxWorkItem functions that Windows 2000 
and later systems provide, so it’s necessary to use the older ExXxxWorkItem functions. Unfortunately, the WHQL tests spot the 
symbol import from your driver instead of performing a run-time test to see which function you actually call. My sample code 
has a run-time test and therefore completely meets the spirit of the test, just not the letter of the law. If enough of my readers 
ask for exceptions, maybe WHQL will change the tests. See Chapter 14 for information about work items and Chapter 15 for 
information about WHQL. 

8.4.3 Requesting Device Power IRPs  
As previously discussed, Windows 98/Me has a bug whereby PoRequestPowerIrp can appear to succeed—that is, it returns 
STATUS_PENDING—without actually causing you to receive a device set-power IRP. The problem arises when you ask for a 
set-power IRP that specifies the same device state that your device is already in—the Windows 98/Me Configuration Manager 
“knows” that there’s no news to report by sending a configuration event to the configuration function that NTKERN operates 
on your behalf. Mind you, if you’re waiting for a device IRP to complete, your device will simply stop responding at this point. 

I used an obvious workaround to overcome this problem: if we detect that we’re about to request a device power IRP for the 
same power state that the device already occupies, I simply pretend that the device IRP succeeded. In terms of the state 
transitions that HandlePowerEvent goes through, I jump from SendDeviceIrp directly to whichever action 
(SubPowerUpComplete or SubPowerDownComplete) is appropriate. 

8.4.4 PoCallDriver  
PoCallDriver just calls IoCallDriver in Windows 98/Me. Consequently, it would be easy for you to make the mistake of using 
IoCallDriver to forward power IRPs. There is, however, an even worse problem in Windows 98/Me. 

The Windows XP version of PoCallDriver makes sure that it sends power IRPs to DO_POWER_PAGABLE drivers at 
PASSIVE_LEVEL and to INRUSH or nonpaged drivers at DISPATCH_LEVEL. I took advantage of that fact in GENERIC to 
forward power IRPs in situations in which HandlePowerEvent is called at DISPATCH_LEVEL from an I/O completion routine. 
The Windows 98/Me version, since it’s just IoCallDriver under a different name, doesn’t switch IRQL. As it happens, all 
power IRPs in Windows 98/Me should be sent at PASSIVE_LEVEL. So I wrote a helper routine named SafePoCallDriver for 
use in GENERIC that queues an executive work item to send the IRP at PASSIVE_LEVEL. The implications of using a work 
item in this situation are the same as discussed just above in connection with completing Power IRPs. 

8.4.5 Other Differences  
You should know about a few other differences between the way Windows 98/Me and Windows XP handle 
power-management features. I’ll describe them briefly and indicate how they might affect the development of your drivers. 

When you call PoRegisterDeviceForIdleDetection, you must supply the address of the PDO rather than your own device 
object. That’s because, internally, the system needs to find the address of the DEVNODE that the Windows 98/Me 
Configuration Manager works with, and that’s accessible only from the PDO. You can also use the PDO as the argument in 
Windows XP, so you might as well write your code that way in the first place. 
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The PoSetPowerState support routine is a no-operation in Windows 98/Me. Furthermore, although it’s documented as 
returning the previous device or system power state, the Windows 98/Me version returns whatever state argument you happen 
to supply. This is the new state rather than the old state—or maybe just a random number that occupies an uninitialized 
variable that you happened to use as an argument to the function: no one checks. 

PoStartNextPowerIrp is a no-operation in Windows 98/Me, so it’s easy for you to forget to call it if you do your development 
in Windows 98/Me. 

The service routines having to do with device power relations (PoRegisterDeviceNotify and PoCancelDeviceNotify) aren’t 
defined in Windows 98/Me. As far as I can tell, Windows 98/Me also doesn’t issue a PowerRelations query to gather the 
information needed to support the callbacks in the first place. The service routines PoRegisterSystemState, PoSetSystemState, 
and PoUnregisterSystemState are also not implemented in Windows 98/Me. To load a driver in Windows 98/Me that calls these 
or other undefined service functions, you’ll need to employ a technique, like the WDMSTUB.SYS filter driver described in 
Appendix A, for defining the missing functions. 
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Chapter 9  

9 I/O Control Operations  

If you look at the various types of requests that come to a device, most of them involve reading or writing data. On occasion, 
however, an application needs to communicate “out of band” with the driver. For most types of device, the application can use 
the standard MicrosoftWin32 API function DeviceIoControl. On the driver side, an application’s call to DeviceIoControl turns 
into an I/O request packet (IRP) with the major function code IRP_MJ_DEVICE_CONTROL. 

I’ll discuss the user-mode and kernel-mode sides of DeviceIoControl in this chapter. With several specific types of device, 
however, an application isn’t supposed to (or can’t) use DeviceIoControl to talk to a driver. See Table 9-1. 

Driver Type Alternative to DeviceIoControl 

Human Interface Device (HID) minidriver (see 
Chapter 13) 

HidD_GetFeature, HidD_SetFeature 

SCSI miniport driver IOCTL_SCSI_PASS_THROUGH  

Network Driver Interface Specification (NDIS) 
miniport driver 

WMI request using custom GUID. You’re on your own for Win98 
Gold, where WMI doesn’t work. 

SmartCard reader driver (Interface Device 
[IFD] Handler in PC/SC terms) 

ScardControl  

Table 9-1. Alternatives to DeviceIoControl for Certain Types of Driver  

There is also a special problem associated with using DeviceIoControl to communicate with a filter driver. I’ll discuss that 
problem and its solution in Chapter 16. 

9.1 The DeviceIoControl API  

The user-mode DeviceIoControl API has the following prototype: 

result = DeviceIoControl(Handle, Code, InputData, InputLength, 
  OutputData, OutputLength, &Feedback, &Overlapped); 

Handle (HANDLE) is an open handle open to the device. You obtain this handle by calling CreateFile in the following manner: 

Handle = CreateFile("\\\\.\\IOCTL", GENERIC_READ │ GENERIC_WRITE,  
  0, NULL, OPEN_EXISTING, flags, NULL); 
if (Handle == INVALID_HANDLE_VALUE) 
  <error>  
CloseHandle(Handle); 

The flags argument to CreateFile is either FILE_FLAG_OVERLAPPED or 0 to indicate whether you’ll be performing 
asynchronous operations with this file handle. While you have the handle open, you can make calls to ReadFile, WriteFile, or 
DeviceIoControl. When you’re done accessing the device, you should explicitly close the handle by calling CloseHandle. Bear 
in mind, though, that the operating system automatically closes any handles that are left open when your process terminates. 

The Code (DWORD) argument to DeviceIoControl is a control code that indicates the control operation you want to perform. 
I’ll discuss how you define these codes a bit further on (in “Defining I/O Control Codes”). The InputData (PVOID) and 
InputLength (DWORD) arguments describe a data area that you’re sending to the device driver. (That is, this data is input from 
the perspective of the driver.) The OutputData (PVOID) and OutputLength (DWORD) arguments describe a data area that the 
driver can completely or partially fill with information that it wants to send back to you. (That is, this data is output from the 
perspective of the driver.) The driver will update the Feedback variable (a DWORD) to indicate how many bytes of output data 
it gave you back. Figure 9-1 illustrates the relationship of these buffers with the application and the driver. The Overlapped 
(OVERLAPPED) structure is used to help control an asynchronous operation, which is the subject of the next section. If you 
specified FILE_FLAG_OVERLAPPED in the call to CreateFile, you must specify the OVERLAPPED structure pointer. If you 
didn’t specify FILE_FLAG_OVERLAPPED, you might as well supply NULL for this last argument because the system is 
going to ignore it anyway. 
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Figure 9-1. Input and output buffers for DeviceIoControl.  

Whether a particular control operation requires an input buffer or an output buffer depends on the function being performed. 
For example, an I/O control (IOCTL) that retrieves the driver’s version number probably requires an output buffer only. An 
IOCTL that merely notifies the driver of some fact pertaining to the application probably requires only an input buffer. You can 
imagine still other operations that require either both or neither of the input and output buffers—it all depends on what the 
control operation does. 

The return value from DeviceIoControl is a Boolean value that indicates success (if TRUE) or failure (if FALSE). In a failure 
situation, the application can call GetLastError to find out why the call failed. 

9.1.1 Synchronous and Asynchronous Calls to DeviceIoControl  
When you make a synchronous call to DeviceIoControl, the calling thread blocks until the control operation completes. For 
example: 

HANDLE Handle = CreateFile("\\\\.\\IOCTL", ..., 0, NULL); 
DWORD version, junk; 
if (DeviceIoControl(Handle, IOCTL_GET_VERSION_BUFFERED, 
  NULL, 0, &version, sizeof(version), &junk, NULL)) 
  printf("IOCTL.SYS version %d.%2.2d\n", HIWORD(version), 
    LOWORD(version)); 
else 
  printf("Error %d in IOCTL_GET_VERSION_BUFFERED call\n", GetLastError()); 

Here we open the device handle without the FILE_FLAG_OVERLAPPED flag. Our subsequent call to DeviceIoControl 
therefore doesn’t return until the driver supplies the answer we’re asking for. 

When you make an asynchronous call to DeviceIoControl, the calling thread doesn’t block immediately. Instead, it continues 
processing until it reaches the point where it requires the result of the control operation. At that point, it calls an API that will 
block the thread until the driver completes the operation. For example: 

HANDLE Handle = CreateFile("\\\\.\\IOCTL", ..., 
  FILE_FLAG_OVERLAPPED, NULL); 
DWORD version, junk; 
OVERLAPPED Overlapped; 
 
Overlapped.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); 
DWORD code; 
 
if (DeviceIoControl(Handle, ..., &Overlapped)) 
  code = 0; 
else 
  code = GetLastError(); 
 
<continue processing> 
if (code == ERROR_IO_PENDING) 
  { 
  if (GetOverlappedResult(Handle, &Overlapped, &junk, TRUE)) 
    code = 0; 
  else 
    code = GetLastError(); 
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  } 
CloseHandle(Overlapped.hEvent); 
if (code != 0) 
  <error> 

Two major differences exist between this asynchronous example and the earlier synchronous example. First, we specify the 
FILE_FLAG_OVERLAPPED flag in the call to CreateFile. Second, the call to DeviceIoControl specifies the address of an 
OVERLAPPED structure, within which we’ve initialized the hEvent event handle to describe a manual reset event. (For more 
information about events and thread synchronization in general, see Jeffrey Richter’s Programming Applications for Microsoft 
Windows, Fourth Edition [Microsoft Press, 1999].) 

The asynchronous call to DeviceIoControl will have one of three results. First, it might return TRUE, meaning that the device 
driver’s dispatch routine was able to complete the request right away. Second, it might return FALSE, and GetLastError might 
retrieve the special error code ERROR_IO_PENDING. This result indicates that the driver’s dispatch routine returned 
STATUS_PENDING and will complete the control operation later. Note that ERROR_IO_PENDING isn’t really an error—it’s 
one of the two ways in which the system indicates that everything is proceeding normally. The third possible result from the 
asynchronous call to DeviceIoControl is a FALSE return value coupled with a GetLastError value other than 
ERROR_IO_PENDING. Such a result would be a real error. 

At the point at which the application needs the result of the control operation, it calls one of the Win32 synchronization 
primitives—GetOverlappedResult, WaitForSingleObject, or the like. GetOverlappedResult, the synchronization primitive I use 
in this example, is especially convenient because it also retrieves the bytes-transferred feedback value and sets the 
GetLastError result to indicate the result of the I/O operation. Although you can call WaitForSingleObject or a related 
API—passing the Overlapped.hEvent event handle as an argument—you won’t be able to learn the results of the 
DeviceIoControl operation; you’ll just learn that the operation has finished. 

9.1.2 Defining I/O Control Codes  
The Code argument to DeviceIoControl is a 32-bit numeric constant that you define using the CTL_CODE preprocessor macro 
that’s part of both the DDK and the Platform SDK. Figure 9-2 illustrates the way in which the operating system partitions one 
of these 32-bit codes into subfields. 

Figure 9-2. Fields in an I/O control code.  

The fields have the following interpretation: 

 The device type (16 bits, first argument to CTL_CODE) indicates the type of device that implements this control 
operation. You should use the same value (for example, FILE_DEVICE_UNKNOWN) that you use in the driver when you 
call IoCreateDevice. (File system device type codes cause the I/O Manager to use a different major function code for the 
IRP it sends you.) 

 The access code (2 bits, fourth argument to CTL_CODE) indicates the access rights an application needs to its device 
handle to issue this control operation. 

 The function code (12 bits, second argument to CTL_CODE) indicates precisely which control operation this code 
describes. Microsoft reserves the first half of the range of this field—that is, values 0 through 2047—for standard control 
operations. You and I therefore assign values in the range 2048 through 4095. The main purpose of this convention is to 
allow you to define private control operations for standard devices. 

 The buffering method (2 bits, third argument to CTL_CODE) indicates how the I/O Manager is to handle the input and 
output buffers supplied by the application. I’ll have a great deal to say about this field in the next section, when I describe 
how to implement IRP_MJ_DEVICE_CONTROL in a driver. 

I want to clarify one point of possible confusion. When you create your driver, you’re free to design a series of IOCTL 
operations that applications can use in talking to your driver. Although some other driver author might craft a set of IOCTL 
operations that uses exactly the same numeric values for control codes, the system will never be confused by the overlap 
because IOCTL codes are interpreted by only the driver to which they’re addressed. Mind you, if you opened a handle to a 
device belonging to that hypothetical other driver and then tried to send what you thought was one of your own IOCTLs to it, 
confusion would definitely ensue. 

The access code in an I/O control code gives you the ability to divide the world of users into four parts, based on a 
security descriptor you attach to your device object:  

 Users to whom the security descriptor denies all access can’t open a handle, so they can’t issue any IOCTLs at all. 

 Users whom the security descriptor allows to open handles for reading but not writing can issue IOCTLs whose function 
code specifies FILE_READ_ACCESS or FILE_ANY_ACCESS, but not those whose code specifies 
FILE_WRITE_ACCESS. 
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 Users whom the security descriptor allows to open handles for writing but not reading can issue IOCTLs whose function 
code specifies FILE_WRITE_ACCESS or FILE_ANY_ACCESS, but not those whose code specifies 
FILE_READ_ACCESS. 

 Users whom the security descriptor allows to open handles for both reading and writing can issue any IOCTL. 

Mechanically, your life and the life of application programmers who need to call your driver will be easier if you place all of 
your IOCTL definitions in a dedicated header file. In the samples in the companion content, the projects each have a header 
named IOCTLS.H that contains these definitions. For example: 

#ifndef CTL_CODE 
  #pragma message ( \ 
    "CTL_CODE undefined. Include winioctl.h or wdm.h") 
#endif 
 
#define IOCTL_GET_VERSION_BUFFERED \ 
  CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_BUFFERED, \ 
  FILE_ANY_ACCESS) 
#define IOCTL_GET_VERSION_DIRECT \ 
  CTL_CODE(FILE_DEVICE_UNKNOWN, 0x801, METHOD_OUT_DIRECT, \ 
  FILE_ANY_ACCESS) 
#define IOCTL_GET_VERSION_NEITHER \ 
  CTL_CODE(FILE_DEVICE_UNKNOWN, 0x802, METHOD_NEITHER, \ 
  FILE_ANY_ACCESS) 

The reason for the message #pragma, by the way, is that I’m forever forgetting to include the header file (WINIOCTL.H) that 
defines CTL_CODE for user-mode programs, and I also tend to forget the name. Better a message that will tell me what I’m 
doing wrong than a few minutes grep’ing through the include directory, I always say. 

9.2 Handling IRP_MJ_DEVICE_CONTROL  

Each user-mode call to DeviceIoControl causes the I/O Manager to create an IRP with the major function code 
IRP_MJ_DEVICE_CONTROL and to send that IRP to the driver dispatch routine at the top of the stack for the addressed 
device. The top stack location contains the parameters listed in Table 9-2. Filter drivers might interpret some private codes 
themselves but will—if correctly coded, that is—pass all others down the stack. A dispatch function that understands how to 
handle the IOCTL will reside somewhere in the driver stack—most likely in the function driver, in fact. 

Parameters.DeviceIoControl Field Description 

OutputBufferLength  Length of the output buffer—sixth argument to DeviceIoControl 

InputBufferLength  Length of the input buffer—fourth argument to DeviceIoControl 

IoControlCode  Control code—second argument to DeviceIoControl 

Type3InputBuffer  User-mode virtual address of input buffer for METHOD_NEITHER 

Table 9-2. Stack Location Parameters for IRP_MJ_DEVICE_CONTROL  

A skeletal dispatch function for control operations looks like this: 

#pragma PAGEDCODE 
 
NTSTATUS DispatchControl(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
 
  PAGED_CODE(); 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status = STATUS_SUCCESS; 
  ULONG info = 0; 
 
 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  ULONG cbin = 
    stack->Parameters.DeviceIoControl.InputBufferLength; 
  ULONG cbout = 
    stack->Parameters.DeviceIoControl.OutputBufferLength; 
  ULONG code = 
    stack->Parameters.DeviceIoControl.IoControlCode; 
 
  switch (code) 
    { 
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  default: 
    status = STATUS_INVALID_DEVICE_REQUEST; 
    break; 
 
    } 
 
  return CompleteRequest(Irp, status, info); 
  } 

1. You can be sure of being called at PASSIVE_LEVEL, so there’s no particular reason for a simple dispatch function to be 
anywhere but paged memory. 

2. The next few statements extract the function code and buffer sizes from the parameters union in the I/O stack. You often 
need these values no matter which specific IOCTL you’re processing, so I find it easier always to include these 
statements in the function. 

3. This is where you get to exercise your own creativity by inserting case labels for the various IOCTL operations you 
support. 

4. It’s a good idea to return a meaningful status code if you’re given an IOCTL operation you don’t understand. 

IMPORTANT  
Always switch on the full 32 bits of the I/O control code to prevent a user-mode program from sneaking 
past the access checks or causing the I/O Manager to prepare the parameters using the wrong buffering 

method. 

The way you handle each IOCTL depends on two factors. The first and most important of these is the actual purpose of the 
IOCTL in your scheme of things. (Duh.) The second factor, which is critically important to the mechanics of your code, is the 
method you selected for buffering user-mode data. 

In Chapter 7, I discussed how you work with a user-mode program sending you a buffer load of data for output to your device 
or filling a buffer with input from your device. As I indicated there, when it comes to read and write requests, you have to 
make up your mind at AddDevice time whether you’re going to use the so-called buffered method or the direct method (or 
neither of them) for accessing user-mode buffers in all read and write requests. Control requests also use one of these 
addressing methods, but they work a little differently. Rather than specify a global addressing method via device-object flags, 
you specify the addressing method for each IOCTL by means of the 2 low-order bits of the function code. Consequently, you 
can have some IOCTLs that use the buffered method, some that use a direct method, and some that use neither method. 
Moreover, the methods you pick for IOCTLs don’t affect in any way how you address buffers for read and write IRPs. 

You choose one or the other buffering method based on several factors. Most IOCTL operations transfer much less than a page 
worth of data in either direction and therefore use the METHOD_BUFFERED method. Operations that will transfer more than 
a page of data should use one of the direct methods. The names of the direct methods seem to oppose common sense: you use 
METHOD_IN_DIRECT if the application is sending data to the driver and METHOD_OUT_DIRECT if it’s the other way 
around. If the application needn’t transfer any data at all, METHOD_NEITHER would be your best choice. 

9.3 METHOD_BUFFERED  

With METHOD_BUFFERED, the I/O Manager creates a kernel-mode copy buffer big enough for the larger of the user-mode 
input and output buffers. When your dispatch routine gets control, the user-mode input data is sitting in the copy buffer. Before 
completing the IRP, you fill the copy buffer with the output data you want to send back to the application. When you complete 
the IRP, you set the IoStatus.Information field equal to the number of output bytes you put into the copy buffer. The I/O 
Manager then copies that many bytes of data back to user mode and sets the feedback variable equal to that same count. Figure 
9-3 illustrates these copy operations. 

Inside the driver, you access both buffers at the same address—namely, the AssociatedIrp.SystemBuffer pointer in the IRP. 
Once again, this is a kernel-mode virtual address that points to a copy of the input data. It obviously behooves you to finish 
processing the input data before you overwrite this buffer with output data. (I hardly need to tell you—it’s the kind of mistake 
you’ll make only once.) 
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Figure 9-3. Buffer management with METHOD_BUFFERED.  

Here’s a simple example, drawn from the IOCTL sample program, of the code-specific handling for a METHOD_BUFFERED 
operation: 

case IOCTL_GET_VERSION_BUFFERED: 
  { 
  if (cbout < sizeof(ULONG)) 
    { 
    status = STATUS_INVALID_BUFFER_SIZE; 
    break; 
    } 
  PULONG pversion = (PULONG) Irp->AssociatedIrp.SystemBuffer; 
  *pversion = 0x0004000A; 
  info = sizeof(ULONG); 
  break; 
  } 

We first verify that we’ve been given an output buffer at least long enough to hold the doubleword we’re going to store there. 
Then we use the SystemBuffer pointer to address the system copy buffer, in which we store the result of this simple operation. 
The info local variable ends up as the IoStatus.Information field when the surrounding dispatch routine completes this IRP. The 
I/O Manager copies that much data from the system copy buffer back to the user-mode buffer. 

Always check the length of the buffers you’re given with an IRP_MJ_DEVICE_CONTROL, at least when the IRP’s 
RequestorMode isn’t equal to KernelMode. With METHOD_BUFFERED and the two METHOD_XXX_DIRECT 
methods, the I/O Manager will verify that the address and the length of the input and output buffers are valid, but you 

are the only one who knows how long the buffers should be.  

9.3.1 The DIRECT Buffering Methods  
Both METHOD_IN_DIRECT and METHOD_OUT_DIRECT are handled the same way in the driver. They differ only in the 
access rights required for the user-mode buffer. METHOD_IN_DIRECT needs read access; METHOD_OUT_DIRECT needs 
read and write access. With both of these methods, the I/O Manager provides a kernel-mode copy buffer (at 
AssociatedIrp.SystemBuffer) for the input data and an MDL for the output data buffer. Refer to Chapter 7 for all the gory 
details about MDLs and to Figure 9-4 for an illustration of this method of managing the buffers. 

Figure 9-4. Buffer management with METHOD_XXX_DIRECT.  
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Here’s an example of a simple handler for a METHOD_XXX_DIRECT request: 

case IOCTL_GET_VERSION_DIRECT: 
  { 
  if (cbout < sizeof(ULONG)) 
    { 
    status = STATUS_INVALID_BUFFER_SIZE; 
    break; 
    } 
  PULONG pversion = (PULONG) 
    MmGetSystemAddressForMdlSafe(Irp->MdlAddress); 
  *pversion = 0x0004000B; 
  info = sizeof(ULONG); 
  break; 
  } 

The only substantive difference between this example and the previous one is the bold line. (I also altered the reported version 
number so that I could easily know I was invoking the correct IOCTL from the test program.) With either DIRECT-method 
request, we use the MDL pointed to by the MdlAddress field of the IRP to access the user-mode output buffer. You can do 
direct memory access (DMA) using this address. In this example, I just called MmGetSystemAddressForMdlSafe to get a 
kernel-mode alias address pointing to the physical memory described by the MDL. 

TIP  
To achieve binary portability, use the portable workaround for MmGetSystemAddressForMdlSafe that I 
described in Chapter 7. 

9.3.2 METHOD_NEITHER  
With METHOD_NEITHER, the I/O Manager doesn’t try to translate the user-mode virtual addresses in any way. Consequently, 
you most often use METHOD_NEITHER when you don’t need to transfer any data into or out of the driver. 
IOCTL_SERIAL_SET_DTR, for example, is a standard serial port IOCTL for setting the Data Terminal Ready (DTR) signal 
line. It’s defined to use METHOD_NEITHER because it has no data. 

It’s possible to use METHOD_NEITHER when you do have data, however, provided you follow some rules about pointer 
validation. You get (in the Type3InputBuffer parameter in the stack location) the user-mode virtual address of the input buffer, 
and you get (in the UserBuffer field of the IRP) the user-mode virtual address of the output buffer. Neither address is of any use 
unless you know you’re running in the same process context as the user-mode caller. If you do know you’re in the right process 
context, you can just directly dereference the pointers: 

case IOCTL_GET_VERSION_NEITHER: 
  { 
  if (cbout < sizeof(ULONG)) 
    { 
    status = STATUS_INVALID_BUFFER_SIZE; 
    break; 
    } 
  PULONG pversion = (PULONG) Irp->UserBuffer; 
  if (Irp->RequestorMode != KernelMode) 
    { 
    __try 
      { 
      ProbeForWrite(pversion, sizeof(ULONG), 1); 
      *pversion = 0x0004000A; 
      } 
    __except(EXCEPTION_EXECUTE_HANDLER) 
      { 
      status = GetExceptionCode(); 
      break; 
      } 
    } 
  else 
    *pversion = 0x0004000A; 
  info = sizeof(ULONG); 
  break; 
  } 

As shown in the preceding code in boldface, the only real glitch here is that you want to make sure that it’s OK to write 
into any buffer you get from an untrusted source. Refer to Chapter 3 if you’re rusty about structured exceptions. 
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ProbeForWrite is a standard kernel-mode service routine for testing whether a given user-mode virtual address can be written. 
The second argument indicates the length of the data area you want to probe, and the third argument indicates the alignment 
you require for the data area. In this example, we want to be sure that we can access 4 bytes for writing, but we’re willing to 
tolerate single-byte alignment for the data area itself. What ProbeForWrite (and its companion function ProbeForRead) 
actually tests is whether the given address range has the correct alignment and occupies the user-mode portion of the address 
space—it doesn’t actually try to write to (or read from) the memory in question.  

Additionally, you must perform the access within a structured exception frame. If any portion of the buffer happens to belong 
to nonexistent pages at the time of the access, the memory manager will raise an exception instead of immediately 
bugchecking. Your exception handler will backstop the exception and prevent the system from crashing. 

9.3.3 Designing a Safe and Secure IOCTL Interface  
How you design the IOCTL interface to your driver can have a big impact on the security and robustness of systems that 
eventually run your code. You’ve probably noticed that this chapter has a lot of the little Security icons we’re using to flag 
potential security problems. That’s because it’s pretty easy for sloppy coding to open unforeseen security holes or to 
unintentionally compromise system integrity. 

So, in addition to all the other things I’m pointing out in this chapter, here are some more things to consider as you design an 
IOCTL interface for your driver. 

 Don’t assume that the only caller of your IOCTL interface will be your own application, which you have (of course!) 
crafted to supply only valid parameters. Cyberterrorists use the same technique that a housefly uses to break in: they buzz 
around the screen door until they find a hole. If your driver has a hole, hackers will find it and publicize it so widely that 
everyone who cares will know. 

 Don’t pass null-terminated strings as arguments to an IOCTL. Provide a count instead. That way, the driver won’t risk 
walking off the end of a page looking for a null terminator that happens not to be there. 

 Don’t put pointers inside the structures you use in IOCTL calls. Instead, package all the data for a particular call into a 
single buffer that contains internal offset pointers. Take the time in the driver to validate the offsets and lengths with 
respect to the overall length of the parameter structure. 

 Don’t write the equivalent of IOCTL_POKE_KERNEL_MEMORY. That is, don’t invent some sort of utility control 
operation whose job is to write to kernel memory. Really—don’t do this, even in the debug version of your driver, 
because debug versions have been known to make it out of the lab. 

 Be careful with hardware pass-through IOCTLs. Maybe your application has a need to directly communicate with 
dedicated hardware, and maybe some sort of pass-through operation is the best way to provide this functionality. Just be 
careful how much functionality you open up. 

 Avoid making one IOCTL dependent on state information left over from some preceding operation. The one invariant 
rule about persistent state information is that it isn’t. Persistent, that is. Something always goes wrong to clobber the data 
you were sure would stay put, so try to design IOCTL operations to be as nearly self-contained as you can. 

 It’s better not to use METHOD_NEITHER for control operations that involve data transfer because of two risks. First, 
you might forget to do all the buffer validation that’s required to avoid security holes. Second, somewhere down the road, 
someone might forget that the IOCTL used METHOD_NEITHER and call you in the wrong thread context. If you and the 
programmers that follow in your footsteps are supremely well organized, these problems won’t arise, but one component 
of successful engineering is to take account of human foibles. 

 Above all, don’t assume that no one will try to compromise the system through your driver. There need be only one 
supremely evil person in the world for it to be dangerous to trust everyone, and there are many more than just one. It’s not 
an exaggeration to suggest that actual lives may be on the line when the enemies of civilization systematically exploit 
weaknesses in the world’s most prevalent operating system. 

You can use the DEVCTL tool in the DDK to help you test your IOCTL interface for robustness, by the way. This tool will 
send random IOCTLs and well-formed IOCTLs with bad parameters to your driver in an attempt to provoke a failure. This sort 
of attack mimics what a script kiddie will do as soon as he or she lays hands on your driver, so you should run this test yourself 
anyway. 

Since there are limits on how cunning a generic tool such as DEVCTL can be, I also recommend that you build your own test 
program to thoroughly explore all the boundary conditions in your IOCTL interface. Here are some ideas for things to test: 

 Invalid function codes. Don’t go nutty here since DEVCTL will do this type of testing exhaustively. 

 Function codes with mistakes in one or more of the four fields (device type, access mask, function code, and buffering 
method). 

 Missing or extraneous input or output buffers. 

 Buffers that are too short but not altogether missing. 
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 Simultaneous operations from different threads using the same handle and using different handles. 

9.4 Internal I/O Control Operations  

The system uses IRP_MJ_DEVICE_CONTROL to implement a DeviceIoControl call from user mode. Drivers sometimes need 
to talk to each other too, and they use the related IRP_MJ_INTERNAL_DEVICE_CONTROL to do so. A typical code sequence 
is as follows: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
KEVENT event; 
KeInitializeEvent(&event, NotificationEvent, FALSE); 
IO_STATUS_BLOCK iostatus; 
PIRP Irp = IoBuildDeviceIoControlRequest(IoControlCode, 
  DeviceObject, pInBuffer, cbInBuffer, pOutBuffer, cbOutBuffer, 
  TRUE, &event, &iostatus); 
NTSTATUS status = IoCallDriver(DeviceObject, Irp); 
if (NT_SUCCESS(status)) 
  KeWaitForSingleObject(&event, Executive, KernelMode, 
    FALSE, NULL); 

Being at PASSIVE_LEVEL is a requirement for calling IoBuildDeviceIoControlRequest as well as for blocking on the event 
object as shown here. 

The IoControlCode argument to IoBuildDeviceIoControlRequest is a control code expressing the operation you want the target 
device driver to perform. This code is the same kind of code you use with regular control operations. DeviceObject is a pointer 
to the DEVICE_OBJECT whose driver will perform the indicated operation. The input and output buffer parameters serve the 
same purpose as their counterparts in a user-mode DeviceIoControl call. The seventh argument, which I specified as TRUE in 
this fragment, indicates that you’re building an internal control operation. (You could say FALSE here to create an 
IRP_MJ_DEVICE_CONTROL instead.) I’ll describe the purpose of the event and iostatus arguments in a bit. 

IoBuildDeviceIoControlRequest builds an IRP and initializes the first stack location to describe the operation code and buffers 
you specify. It returns the IRP pointer to you so that you can do any additional initialization that might be required. In Chapter 
12, for example, I’ll show you how to use an internal control request to submit a USB request block (URB) to the USB driver. 
Part of that process involves setting a stack parameter field to point to the URB. You then call IoCallDriver to send the IRP to 
the target device. If the return value passes the NT_SUCCESS test, you wait on the event object you specified as the eighth 
argument to IoBuildDeviceIoControlRequest. The I/O Manager will set the event when the IRP finishes, and it will also fill in 
your iostatus structure with the ending status and information values. Finally it will call IoFreeIrp to release the IRP. 
Consequently, you don’t want to access the IRP pointer at all after you call IoCallDriver. 

CAUTION  
 
When you use automatic variables for the event and status-block arguments to 

IoBuildDeviceIoControlRequest or IoBuildSynchronousFsdRequest, you must wait for the event to be signaled 
if IoCallDriver returns STATUS_PENDING. Otherwise, you risk allowing the event and status block to pass out of 
scope before the I/O Manager finishes completing the IRP. You can wait if IoCallDriver returns a success code, 
but the wait ought to complete immediately because, in that case, the IRP has already been totally completed. 
Don’t wait, however, if IoCallDriver returns an error code because, in an error case, the I/O Manager doesn’t set 
the event and doesn’t touch the status block when it completes the IRP. 

Since internal control operations require cooperation between two drivers, fewer rules about sending them exist than you’d 
guess from what I’ve just described. You don’t have to use IoBuildDeviceIoControlRequest to create one of them, for example: 
you can just call IoAllocateIrp and perform your own initialization. Provided the target driver isn’t expecting to handle internal 
control operations solely at PASSIVE_LEVEL, you can also send one of these IRPs at DISPATCH_LEVEL, say, from inside an 
I/O completion or a deferred procedure call (DPC) routine. (Of course, you can’t use IoBuildDeviceIoControlRequest in such a 
case, and you can’t wait for the IRP to finish. But you can send the IRP because IoAllocateIrp and IoCallDriver can run at 
DISPATCH_LEVEL or below.) You don’t even have to use the I/O stack parameter fields exactly as you would for a regular 
IOCTL. In fact, calls to the USB driver use the field that would ordinarily be the output buffer length to hold the URB pointer. 
So if you’re designing an internal control protocol for two of your own drivers, just think of 
IRP_MJ_INTERNAL_DEVICE_CONTROL as being an envelope for whatever kind of message you want to send. 

It’s not a good idea to use the same dispatch routine for internal and external control operations, by the way, at least not 
without checking the major function code of the IRP. Here’s an example of why not: Suppose your driver has an 
external control interface that allows an application to query the version number of your driver and an internal control 

interface that allows a trusted kernel-mode caller to determine a vital secret that you don’t want to share with user-mode 
programs. Then suppose you use one routine to handle both interfaces, as in this example:  

NTSTATUS DriverEntry(...) 
  { 
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  DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = 
    DispatchControl; 
  DriverObject->MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL] = 
    DispatchControl; 
 
  } 
 
NTSTATUS DispatchControl(...) 
  { 
 
  switch (code) 
    { 
  case IOCTL_GET_VERSION: 
 
  case IOCTL_INTERNAL_GET_SECRET: 
           // <== exposed for user-mode calls 
    } 
  } 

If an application is able to somehow determine the numeric value of IOCTL_INTERNAL_GET_SECRET, it can issue a regular 
DeviceIoControl call and bypass the intended security on that function. 

9.5 Notifying Applications of Interesting Events  

One extremely important use of IOCTL operations is to give a WDM driver a way to notify an application that an interesting 
event (however you define “interesting,” that is) has occurred. To motivate this discussion, suppose you had an application that 
needed to work closely with your driver in such a way that whenever a certain kind of hardware event occurred your driver 
would alert the application so that it could take some sort of user-visible action. For example, a button press on an instrument 
might trigger an application to begin collecting and displaying data. Whereas Windows 98/Me provides a couple of ways for a 
driver to signal an application in this kind of situation—namely, asynchronous procedure calls or posted window 
messages—those methods don’t work in Windows XP because the operating system lacks (or doesn’t expose) the necessary 
infrastructure to make them work. 

A WDM driver can notify an application about an interesting event in two ways: 

 The application can create an event that it shares with the driver. An application thread waits on the event, and the driver 
sets the event when something interesting happens. 

 The application can issue a DeviceIoControl that the driver pends by returning STATUS_PENDING. The driver completes 
the IRP when something interesting happens. 

In either case, the application typically dedicates a thread to the task of waiting for the notification. That is, when you’re 
sharing an event, you have a thread that spends most of its life asleep on a call to WaitForSingleObject. When you use a 
pending IOCTL, you have a thread that spends most of its life waiting for DeviceIoControl to return. This thread doesn’t do 
anything else except, perhaps, post a window message to a user interface thread to make something happen that will be visible 
to the end user. 

How to Organize Your Notification Thread 
When using either notification method, you can avoid some “plumbing” problems by not having the notification 
thread block simply on the event or the IOCTL, as the case may be. Instead, proceed as follows: First define a 
“kill” event that your main application thread will set when it’s time for the notification thread to exit.  

If you’re using the shared event scheme for notification, call WaitForMultipleObjects to wait for either the kill 
event or the event you’re sharing with the driver. 

If you’re using the pending IOCTL scheme, make asynchronous calls to DeviceIoControl. Instead of calling 
GetOverlappedResult to block, call WaitForMultipleObjects to wait for either the kill event or the event 
associated with the OVERLAPPED structure. If the return code indicates that the DeviceIoControl operation has 
finished, you make a nonblocking call to GetOverlappedResult to get the return code and bytes-transferred 
values. If the return code indicates that the kill event has been signaled, you call CancelIo to knock down the 
DeviceIoControl, and you then exit from the thread procedure. Leave out the call to CancelIo if your application 
has to run in Windows 98 Second Edition. 

These two methods of solving the notification problem have the relative strengths and weaknesses shown in Table 9-3. 
Notwithstanding that it appears superficially as though the pending IOCTL method has all sorts of advantages over the shared 
event method, I recommend you use the shared event method because of the complexity of the race conditions you must 
handle with the pending IOCTL method. 
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Sharing an Event Pending an IRP_MJ_DEVICE_CONTROL 

Application needs to create an object by calling 
CreateEvent. 

No object needed. 

Driver has to convert handle to object pointer. No conversion needed. 

No cancel logic needed; trivial cleanup. 
Cancel and cleanup logic needed; usual horrible race 
conditions. 

Application knows only that “something happened” 
when event gets signaled. 

Driver can provide arbitrary amount of data when it 
completes the IRP. 

9.5.1 Using a Shared Event for Notification  
The basic idea behind the event sharing method is that the application creates an event by calling CreateEvent and then uses 
DeviceIoControl to send the event handle to the driver: 

DWORD junk; 
HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); 
DeviceIoControl(hdevice, IOCTL_REGISTER_EVENT, &hEvent, 
  sizeof(hEvent), NULL, 0, &junk, NULL); 

 

NOTE  
The EVWAIT sample driver illustrates the shared event method of notifying an application about an interesting 
event. You generate the “interesting” event by pressing a key on the keyboard, thereby causing the test 
program to call a back-door IOCTL in the driver. In real life, an actual hardware occurrence would generate the 
event. 

The call to CreateEvent creates a kernel-mode KEVENT object and makes an entry into the application process’s handle table 
that points to the KEVENT. The HANDLE value returned to the application is essentially an index into the handle table. The 
handle isn’t directly useful to a WDM driver, though, for two reasons. First of all, there isn’t a documented kernel-mode 
interface for setting an event, given just a handle. Second, and most important, the handle is useful only in a thread that 
belongs to the same process. If driver code runs in an arbitrary thread (as it often does), it will be unable to reference the event 
by using the handle. 

To get around these two problems with the event handle, the driver has to “convert” the handle to a pointer to the underlying 
KEVENT object. To handle a METHOD_BUFFERED control operation that the application uses to register an event with the 
driver, use code like this: 

HANDLE hEvent = *(PHANDLE) Irp->AssociatedIrp.SystemBuffer; 
PKEVENT pevent; 
NTSTATUS status = ObReferenceObjectByHandle(hEvent, 
  EVENT_MODIFY_STATE, *ExEventObjectType, Irp->RequestorMode, 
  (PVOID*) &pevent, NULL); 

ObReferenceObjectByHandle looks up hEvent in the handle table for the current process and stores the address of the 
associated kernel object in the pevent variable. If the RequestorMode in the IRP is UserMode, this function also verifies that 
hEvent really is a handle to something, that the something is an event object, and that the handle was opened in a way that 
includes the EVENT_MODIFY_STATE privilege. 

Whenever you ask the object manager to resolve a handle obtained from user mode, request access and type checking 
by indicating UserMode for the accessor mode argument to whichever object manager function you’re calling. After all, 
the number you get from user mode might not be a handle at all, or it might be a handle to some other type of object. In 

addition, avoid the undocumented ZwSetEvent function in order not to create the following security hole: even if you’ve made 
sure that some random handle is for an event object, your user-mode caller could close the handle and receive back the same 
numeric handle for a different type of object. You’d then unwittingly cause something bad to happen because you’re a trusted 
caller of ZwSetEvent.  

The application can wait for the event to happen: 

WaitForSingleObject(hEvent, INFINITE); 

The driver signals the event in the usual way: 

KeSetEvent(pevent, EVENT_INCREMENT, FALSE); 

Eventually, the application cleans up by calling CloseHandle. The driver has a separate reference to the event object, which it 
must release by calling ObDereferenceObject. The object manager won’t destroy the event object until both these things occur. 
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9.5.2 Using a Pending IOCTL for Notification  
The central idea in the pending IOCTL notification method is that when the application wants to receive event notifications 
from the driver, it calls DeviceIoControl: 

HANDLE hDevice = CreateFile("\\\\.\\<driver-name>", ...); 
BOOL okay = DeviceIoControl(hDevice, IOCTL_WAIT_NOTIFY, 
); 

(IOCTL_WAIT_NOTIFY, by the way, is the control code I used in the NOTIFY sample in the companion content.) 

The driver will pend this IOCTL and complete it later. If other considerations didn’t intrude, the code in the driver might be as 
simple as this: 

NTSTATUS DispatchControl(...) 
  { 
 
  switch (code) 
    { 
  case IOCTL_WAIT_NOTIFY: 
    IoMarkIrpPending(Irp); 
    pdx->NotifyIrp = Irp; 
    return STATUS_PENDING; 
 
    } 
  } 
 
VOID OnInterestingEvent(...) 
  { 
 
  CompleteRequest(pdx->NotifyIrp, 
    STATUS_SUCCESS, 0); // <== don't do this! 
  } 

The “other considerations” I just so conveniently tucked under the rug are, of course, all-important in crafting a working driver. 
The originator of the IRP might decide to cancel it. The application might call CancelIo, or termination of the application 
thread might cause a kernel-mode component to call IoCancelIrp. In either case, we must provide a cancel routine so that the 
IRP gets completed. If power is removed from our device, or if our device is suddenly removed from the computer, we may 
want to abort any outstanding IOCTL requests. In general, any number of IOCTLs might need to be aborted. Consequently, 
we’ll need a linked list of them. Since multiple threads might be trying to access this linked list, we’ll also need a spin lock so 
that we can access the list safely. 

Helper Routines  

To simplify my own life, I wrote a set of helper routines for managing asynchronous IOCTLs. The two most important of these 
routines are named CacheControlRequest and UncacheControlRequest. They assume that you’re willing to accept only one 
asynchronous IOCTL having a particular control code per device object and that you can, therefore, reserve a pointer cell in the 
device extension to point to the IRP that’s currently outstanding. In NOTIFY, I call this pointer cell NotifyIrp. You accept the 
asynchronous IRP this way: 

switch (code) 
  { 
case IOCTL_WAIT_NOTIFY: 
  if (<parameters invalid in some way>) 
    status = STATUS_INVALID_PARAMETER; 
  else 
    status = CacheControlRequest(pdx, Irp, &pdx->NotifyIrp); 
  break; 
  } 
 
return status == STATUS_PENDING ? status : CompleteRequest(Irp, status, info); 

The important statement here is the call to CacheControlRequest, which registers this IRP in such a way that we’ll be able to 
cancel it later if necessary. It also records the address of this IRP in the NotifyIrp member of our device extension. We expect it 
to return STATUS_PENDING, in which case we avoid completing the IRP and simply return STATUS_PENDING to our caller. 



9.5 Notifying Applications of Interesting Events   - 267 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

 

NOTE  
You can easily generalize the scheme I’m describing to permit an application to have an IRP of each type 
outstanding for each open handle. Instead of putting the current IRP pointers in your device extension, put 
them instead into a structure that you associate with the FILE_OBJECT that corresponds to the handle. You’ll 
get a pointer to this FILE_OBJECT in the I/O stack location for IRP_MJ_CREATE, IRP_MJ_CLOSE, and, in fact, all 
other IRPs generated for the file handle. You can use either the FsContext or FsContext2 field of the file object 
for any purpose you choose. 

Later, when whatever event the application is waiting for occurs, we execute code like this: 

PIRP nfyirp = UncacheControlRequest(pdx, &pdx->NotifyIrp);if (nfyirp) 
  { 
  <do something> 
  CompleteRequest(nfyirp, STATUS_SUCCESS, <info value>); 
  } 

This logic retrieves the address of the pending IOCTL_WAIT_NOTIFY request, does something to provide data back to the 
application, and then completes the pending I/O request packet. 

How the Helper Routines Work  

I hid a wealth of complications inside the CacheControlRequest and UncacheControlRequest functions. These two functions 
provide a thread-safe and multiprocessor-safe mechanism for keeping track of asynchronous IOCTL requests. They use a 
variation on the techniques we’ve discussed elsewhere in the book for safely queuing and dequeuing IRPs at times when 
someone else might be flitting about trying to cancel the IRP. I actually packaged these routines in GENERIC.SYS, and the 
NOTIFY sample in the companion content shows how to call them. Here’s how those functions work (but note that the 
GENERIC.SYS versions have ‘Generic’ in their names): 

typedef struct _DEVICE_EXTENSION { 
  KSPIN_LOCK IoctlListLock; 
  LIST_ENTRY PendingIoctlList; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
NTSTATUS CacheControlRequest(PDEVICE_EXTENSION pdx, PIRP Irp, PIRP* pIrp) 
  { 
  KIRQL oldirql; 
 
  KeAcquireSpinLock(&pdx->IoctlListLock, &oldirql); 
  NTSTATUS status; 
 
  if (*pIrp) 
    status = STATUS_UNSUCCESSFUL; 
 
  else if (pdx->IoctlAbortStatus) 
    status = pdx->IoctlAbortStatus; 
  else 
    { 
 
    IoSetCancelRoutine(Irp, OnCancelPendingIoctl); 
    if (Irp->Cancel && IoSetCancelRoutine(Irp, NULL)) 
      status = STATUS_CANCELLED; 
    else 
       { 
 
       IoMarkIrpPending(Irp); 
       status = STATUS_PENDING; 
 
       Irp->Tail.Overlay.DriverContext[0] = pIrp; 
       *pIrp = Irp; 
       InsertTailList(&pdx->PendingIoctlList, &Irp->Tail.Overlay.ListEntry); 
       } 
    } 
  KeReleaseSpinLock(&pdx->IoctlListLock, oldirql); 
  return status; 
  } 
 
VOID OnCancelPendingIoctl(PDEVICE_OBJECT fdo, PIRP Irp) 
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  { 
  KIRQL oldirql = Irp->CancelIrql; 
  IoReleaseCancelSpinLock(DISPATCH_LEVEL); 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  KeAcquireSpinLockAtDpcLevel(&pdx->IoctlListLock); 
  RemoveEntryList(&Irp->Tail.Overlay.ListEntry); 
  PIRP* pIrp = (PIRP*) Irp->Tail.Overlay.DriverContext[0]; 
  InterlockedCompareExchange((PVOID*) pIrp, Irp, NULL); 
  KeReleaseSpinLock(&pdx->IoctlListLock, oldirql); 
  Irp->IoStatus.Status = STATUS_CANCELLED; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  } 
 
PIRP UncacheControlRequest(PDEVICE_EXTENSION pdx, PIRP* pIrp) 
  { 
  KIRQL oldirql; 
  KeAcquireSpinLock(&pdx->IoctlListLock, &oldirql); 
 
  PIRP Irp = (PIRP) InterlockedExchangePointer(pIrp, NULL); 
  if (Irp) 
    { 
 
    if (IoSetCancelRoutine(Irp, NULL)) 
      { 
      RemoveEntryList(&Irp->Tail.Overlay.ListEntry); 
      } 
    else 
      Irp = NULL; 
    } 
  KeReleaseSpinLock(&pdx->IoctlListLock, oldirql); 
  return Irp; 
  } 

1. We use a spin lock to guard the list of pending IOCTLs and also to guard all of the pointer cells that are reserved to point 
to the current instance of each different type of asynchronous IOCTL request. 

2. This is where we enforce the rule—it’s more of a design decision, really—that only one IRP of each type can be 
outstanding at one time. 

3. This if statement accommodates the fact that we may need to start failing incoming IRPs at some point because of PnP or 
power events. 

4. Since we’ll pend this IRP for what might be a long time, we should have a cancel routine for it. I’ve discussed cancel 
logic so many times in this book that I feel sure you’d rather not read about it once more. 

5. Here we’ve decided to go ahead and cache this IRP so that we can complete it later. Since we’re going to end up 
returning STATUS_PENDING from our DispatchControl function, we need to call IoMarkIrpPending. 

6. We need to have a way to NULL out the cache pointer cell when we cancel the IRP. Since there’s no way to get a context 
parameter passed to our cancel routine, I decided to co-opt one of the DriverContext fields in the IRP to hold a pointer to 
the cache pointer cell. 

7. In the normal course of events, this statement uncaches an IRP. 

8. Now that we’ve uncached our IRP, we don’t want it to be cancelled any more. If IoSetCancelRoutine returns NULL, 
however, we know that this IRP is currently in the process of being cancelled. We return a NULL IRP pointer in that case. 

NOTIFY also has an IRP_MJ_CLEANUP handler for pending IOCTLs that looks just about the same as the cleanup handlers 
I’ve discussed for read and write operations. Finally, it includes an AbortPendingIoctls helper function for use at power-down 
or surprise removal time, as follows: 

VOID AbortPendingIoctls(PDEVICE_EXTENSION pdx, NTSTATUS status) 
  { 
  InterlockedExchange(&pdx->IoctlAbortStatus, status); 
  CleanupControlRequests(pdx, status, NULL); 
  } 

CleanupControlRequests is the handler for IRP_MJ_CLEANUP. I wrote it in such a way that it cancels all outstanding IRPs if 
the third argument—normally a file object pointer—is NULL. 

NOTIFY is a bit too simple to serve as a complete model for a real-world driver. Here are some additional considerations for 
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you to mull over in your own design process: 

 A driver might have several types of events that trigger notifications. You could decide to deal with these by using a 
single IOCTL code, in which case you’d indicate the type of event by some sort of output data, or by using multiple 
IOCTL codes. 

 You might want to allow multiple threads to register for events. If that’s the case, you certainly can’t have a single IRP 
pointer in the device extension—you need a way of keeping track of all the IRPs that relate to a particular type of event. 
If you use only a single type of IOCTL for all notifications, one way to keep track is to queue them on the 
PendingIoctlList shown earlier. Then, when an event occurs, you execute a loop in which you call 
ExInterlockedRemoveHeadList and IoCompleteRequest to empty the pending list. (I avoided this complexity in NOTIFY 
by fiat—I decided I’d run only one instance of the test program at a time.) 

 Your IOCTL dispatch routine might be in a race with the activity that generates events. For example, in the USBINT 
sample I’ll discuss in Chapter 12, we have a potential race between the IOCTL dispatch routine and the pseudointerrupt 
routine that services an interrupt endpoint on a USB device. To avoid losing events or taking inconsistent actions, you 
need a spin lock. Refer to the USBINT sample in the companion content for an illustration of how to use the spin lock 
appropriately. (Synchronization wasn’t an issue in NOTIFY because by the time a human being is able to perform the 
keystroke that unleashes the event signal, the notification request is almost certainly pending. If not, the signal request 
gets an error.) 

9.6 Windows 98/Me Compatibility Notes  

The VxD service that NTKERN must use to complete an overlapped IOCTL operation (VWIN32_DIOCCompletionRoutine) 
doesn’t provide for an error code. Thus, if an application performs an overlapped call to a WDM driver, the eventual call to 
GetOverlappedResult will appear to succeed even if the driver failed the operation. 

A Win32 application can use DeviceIoControl to communicate with a Windows 98/Me virtual device driver (VxD) as well as a 
WDM driver. Three subtle and minor differences exist between IOCTLs for WDM drivers and IOCTLs for VxDs. The most 
important difference has to do with the meaning of the device handle you obtain from CreateFile. When you’re working with a 
WDM driver, the handle is for a specific device, whereas you get a handle for the driver when you’re talking to a VxD. In 
practice, a VxD might need to implement a pseudohandle mechanism (embedded within the IOCTL data flow) to allow 
applications to refer to specific instances of the hardware managed by the VxD. 

Another difference between VxD and WDM control operations concerns the assignment of numeric control codes. As I 
discussed earlier, you define a control code for a WDM driver by using the CTL_CODE macro, and you can’t define more than 
2048 codes. For a VxD, all 32-bit values except 0 and -1 are available. If you want to write an application that can work with 
either a VxD or a WDM driver, use CTL_CODE to define your control codes because a VxD will be able to work with the 
resulting numeric values. 

The last difference is a pretty minor one: the second-to-last argument to DeviceIoControl—a PDWORD pointing to a feedback 
variable—is required when you call a WDM driver but not when you call a VxD. In other words, if you’re calling a WDM 
driver, you must supply a non-NULL value pointing to a DWORD. If you’re calling a VxD, however, you can specify NULL if 
you’re not interested in knowing how many data bytes are going into your output buffer. It shouldn’t hurt to supply the 
feedback variable when you call a VxD, though. Furthermore, the fact that this pointer can be NULL is something that a VxD 
writer might easily overlook, and you might provoke a bug if your application takes advantage of the freedom to say NULL. 
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Chapter 10  

10 Windows Management 

Instrumentation  

Microsoft Windows XP supports a facility named Windows Management Instrumentation (WMI) as a way to manage the 
computer system. WMI is Microsoft’s implementation of a broader industry standard called Web-Based Enterprise 
Management (WBEM). The goal of WMI is to provide a model for system management and the description of management 
data in an enterprise network that’s as independent as possible from a specific API set or data object model. Such independence 
facilitates the development of general mechanisms for creating, transporting, and displaying data and for exercising control 
over individual system components. 

WDM drivers fit into WMI in three ways. See Figure 10-1. First, WMI responds to requests for data that conveys system 
management information. Second, controller applications of various kinds can use the facilities of WMI to control generic 
features of conforming devices. Finally, WMI provides an event-signalling mechanism that allows drivers to notify interested 
applications of important events. I’ll discuss all three of these aspects of driver programming in this chapter. 

Figure 10-1. The role of a WDM driver in WMI.  

The WMI and WBEM Names 
The Common Information Model (CIM) is a specification for Web-based enterprise management supported by 
the Distributed Management Task Force (DMTF), formerly named the Desktop Management Task Force. 
Microsoft named its implementation of the Common Information Model WBEM, which was essentially CIM for 
Windows. The kernel-mode portion of CIM for Windows was called WMI. To get CIM more widely adopted, DMTF 
started a marketing initiative and used WBEM as the name of CIM. Microsoft then renamed its implementation 
of WBEM to WMI and renamed WMI (the kernel-mode portion) to WMI extensions for WDM. That being said, 
WMI is compliant with the CIM and WBEM specification.  

I’m afraid my usage of the various different terms in this chapter won’t go very far to resolve the confusion you 
might feel at this point. I’d suggest that you think WMI whenever you see CIM or WBEM in this book and any 
documentation Microsoft provides. You’ll probably then at least be thinking about the same concept that I and 
Microsoft are trying to write about—until something with a name like “Windows Basic Extensions for Mortals” or 
“Completely Integrated Mouse” comes along, that is. Then you’re on your own. 

10.1 WMI Concepts  

Figure 10-2 diagrams the overall architecture of WMI. In the WMI model, the world is divided into consumers and providers 
of data and events. Consumers consume, and providers provide, blocks of data that are instances of abstract classes. The 
concept involved here is no different from that of a class in the C++ language. Just like C++ classes, WMI classes have data 
members and methods that implement behaviors for objects. What goes inside a data block isn’t specified by WMI—that 
depends on who’s producing the data and for what purpose. 
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Figure 10-2. The world of WMI.  

WMI allows for multiple namespaces, each of which contains classes belonging to one or more providers. A namespace 
contains attributes and classes, each of which must have a unique name within that namespace. Each namespace can have its 
own security descriptor, which an administrator can specify in the Computer Management applet. Consumers and providers 
alike specify the namespace within which they will operate. Table 10-1 lists some of the namespaces that exist on one of my 
computers. The WMI namespace is the one we’re concerned with in this chapter since it’s where the classes are located that 
drivers work with. 

Namespace Name Description 

root\CIMV2 Industry-standard classes 

root\DEFAULT Registry access and monitoring 

root\Directory\LDAP Active Directory objects 

root\MSAPPS Microsoft application classes 

root\WMI WDM device driver classes 

Table 10-1. WMI Namespaces on One of the Author’s Computers  

A WDM driver can provide instances of one or more WMI classes in the root\wmi namespace. Many drivers support standard 
classes defined by Microsoft in the DDK file named WMICORE.MOF. Drivers can also implement a customschema that 
includes vendor-specific or device-specific classes. You define a schema by using a language named the Managed Object 
Format, or MOF. The system maintains a data dictionary known as the repository that contains the definitions of all known 
schemas. Assuming you do all the right things in your driver, the system will automatically put your schema into the repository 
when it initializes your driver. 

More Info  
Another way of thinking about WMI is in terms of a classical relational database. A WMI class is the same thing 
as a table. Instances of a class correspond to records, and the class members to fields in a record. The 
repository plays the same role as a traditional data dictionary. There is even a query language associated with 
WMI that includes concepts drawn from Structured Query Language (SQL), which database programmers are 
familiar with. 

10.1.1 A Sample Schema  
Later in this chapter, I’ll show you a sample named WMI42.SYS, which is available in the companion content. This sample 
has the following MOF schema: 

 
 
[Dynamic, Provider("WMIProv"), 
 WMI,  
 Description("Wmi42 Sample Schema"), 
 guid("A0F95FD4-A587-11d2-BB3A-00C04FA330A6"), 
 locale("MS\\0x409")] 
 
 
class Wmi42 
{ 
    [key, read]  
     string InstanceName; 
 
    [read] boolean Active; 
 
    [WmiDataId(1), 
     Description("The Answer to the Ultimate Question") 
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     ] 
    uint32 TheAnswer; 
}; 

I don’t propose to describe all the details of the MOF syntax; that information is available as part of the Platform SDK and 
WMI SDK documentation. You can either construct your MOF by hand, as I did for this simple example, or use a tool named 
WBEM CIM Studio that comes with the WMI SDK. Here, however, is a brief explanation of the contents of this MOF file: 

1. The provider named WMIProv is the system component that knows how to instantiate this class. It understands, for 
example, how to call into kernel mode and send an I/O request packet (IRP) to an appropriate driver. It can find the right 
driver by means of the globally unique identifier (GUID) that appears near the beginning of the file. 

2. This schema declares a class named WMI42, which coincidentally has the same name as our driver. Instances of the class 
have properties named InstanceName, Active, and TheAnswer. 

As developers, we run the MOF compiler on this schema definition to produce a binary file that eventually ends up as a 
resource in our driver executable file. Resource in this sense is the same concept that application developers have in mind 
when they build dialog box templates, string tables, and other things that are part of their project’s resource script. 

10.1.2 Mapping WMI Classes to C Structures  
The WMI42 class is especially simple because it has just a single data member that happens to be a 32-bit integer. The mapping 
from the class data structure used by WMI to the C structure used by the driver is therefore completely obvious. The mapping 
of a more complex WMI class is harder to determine, especially if you declare the data items in a different order than the 
WmiDataId ordinals. Rather than trying to predict how WMI will map a class, I recommend that you ask WMIMOFCK to 
create a header file containing the declarations you’ll need. You can issue commands like these at a command prompt: 

mofcomp -wmi -b:wmi42.bmf wmi42.mof 
wmimofck -hwmi42.h -m wmi42.bmf 

The mofcomp step yields a binary MOF file (wmi42.bmf). Among other things, the wmimofck step creates a header file 
(wmi42.h) like this one: 

#ifndef _wmi42_h_ 
#define _wmi42_h_ 
 
// Wmi42 - Wmi42 
// Wmi42 Sample Schema 
#define Wmi42Guid \ 
  { 0xa0f95fd4,0xa587,0x11d2, \ 
  { 0xbb,0x3a,0x00,0xc0,0x4f,0xa3,0x30,0xa6 } } 
 
DEFINE_GUID(Wmi42_GUID,  
  0xa0f95fd4,0xa587,0x11d2,0xbb,0x3a,  
  0x00,0xc0,0x4f,0xa3,0x30,0xa6); 
 
 
typedef struct _Wmi42 
{ 
  // The Answer to the Ultimate Question of Life, 
  // the Universe, and Everything 
  ULONG TheAnswer; 
  #define Wmi42_TheAnswer_SIZE sizeof(ULONG) 
  #define Wmi42_TheAnswer_ID 1 
 
} Wmi42, *PWmi42; 
 
#define Wmi42_SIZE (FIELD_OFFSET(Wmi42, TheAnswer) \ 
  + Wmi42_TheAnswer_SIZE) 
 
#endif 

Note that the size of the structure is not simply sizeof(Wmi42). The reason for the curious definition of Wmi42_SIZE is that 
WMI class structures aren’t padded to a multiple of the most stringent interior alignment as are C structures. 

TIP  
All of the examples in this chapter rely on the version of WMIMOFCK that is part of beta versions of the 
Windows .NET Server DDK. If you try to use an earlier DDK to build and test these samples, you’ll probably have 
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to make some source changes to the driver code. 

10.2 WDM Drivers and WMI  

The kernel-mode support for WMI is based primarily on IRPs with the major code IRP_MJ_SYSTEM_CONTROL. You must 
register your desire to receive these IRPs by making the following call: 

IoWMIRegistrationControl(fdo, WMI_ACTION_REGISTER); 

The appropriate time to make the registration call is in the AddDevice routine at a point when it would be safe for the system to 
send the driver a system control IRP. In due course, the system will send you an IRP_MJ_SYSTEM_CONTROL request to 
obtain detailed registration information about your device. You’ll balance the registration call with another call at 
RemoveDevice time: 

IoWMIRegistrationControl(fdo, WMI_ACTION_DEREGISTER); 

If any WMI requests are outstanding at the time you make the deregistration call, IoWMIRegistrationControl waits until they 
complete. It’s therefore necessary to make sure that your driver is still capable of responding to IRPs when you deregister. You 
can have new IRPs fail with STATUS_DELETE_PENDING, but you have to respond. 

Before explaining how to service the registration request, I’ll describe how you handle system control IRPs in general. An 
IRP_MJ_SYSTEM_CONTROL request can have any of the minor function codes listed in Table 10-2. 

Minor Function Code Description 

IRP_MN_QUERY_ALL_DATA  Gets all instances of every item in a data block 

IRP_MN_QUERY_SINGLE_INSTANCE  Gets every item in a single instance of a data block 

IRP_MN_CHANGE_SINGLE_INSTANCE  Replaces every item in a single instance of a data block 

IRP_MN_CHANGE_SINGLE_ITEM  Changes one item in a data block 

IRP_MN_ENABLE_EVENTS  Enables event generation 

IRP_MN_DISABLE_EVENTS  Disables event generation 

IRP_MN_ENABLE_COLLECTION  Starts collecting “expensive” statistics 

IRP_MN_DISABLE_COLLECTION  Stops collecting “expensive” statistics 

IRP_MN_REGINFO_EX  Gets detailed registration information 

IRP_MN_EXECUTE_METHOD  Executes a method function 

Table 10-2. Minor Function Codes for IRP_MJ_SYSTEM_CONTROL  

The Parameters union in the stack location includes a WMI substructure with parameters for the system control request: 

struct { 
  ULONG_PTR ProviderId; 
  PVOID DataPath; 
  ULONG BufferSize; 
  PVOID Buffer; 
  } WMI; 

ProviderId is a pointer to the device object to which the request is directed. Buffer is the address of an input/output area where 
the first several bytes are mapped by the WNODE_HEADER structure. BufferSize gives the size of the buffer area. Your 
dispatch function will extract some information from this buffer and will also return results in the same memory area. For all 
the minor functions except IRP_MN_REGINFO, DataPath is the address of a 128-bit GUID that identifies a class of data 
block. The DataPath field is either WMIREGISTER or WMIUPDATE (0 or 1, respectively) for an IRP_MN_REGINFO request, 
depending on whether you’re being told to provide initial registration information or just to update the information you 
supplied earlier. 

When you design your driver, you must choose between two ways of handling system control IRPs. One method is relying on 
the facilities of the WMILIB support “driver.” WMILIB is really a kernel-mode DLL that exports services you can call from 
your driver to handle some of the annoying mechanics of IRP processing. The other method is simply handling the IRPs 
yourself. If you use WMILIB, you’ll end up writing less code but you won’t be able to use every last feature of WMI to its 
fullest—you’ll be limited to the subset supported by WMILIB. Furthermore, your driver won’t run under the original retail 
release of Microsoft Windows 98 because WMILIB wasn’t available then. Before you let the lack of WMILIB in original 
Windows 98 ruin your day, consult the compatibility notes at the end of this chapter. 

WMILIB suffices for most drivers, so I’m going to limit my discussion to using WMILIB. The DDK documentation describes 
how to handle system control IRPs yourself if you absolutely have to. 
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10.2.1 Delegating IRPs to WMILIB  
In your dispatch routine for system control IRPs, you delegate most of the work to WMILIB with code like the following: 

WMIGUIDREGINFO guidlist[] = { 
  {&Wmi42_GUID, 1, 0}, 
  }; 
 
 
WMILIB_CONTEXT libinfo = { 
  arraysize(guidlist), 
  guidlist, 
  QueryRegInfo, 
  QueryDataBlock, 
  SetDataBlock, 
  SetDataItem, 
  ExecuteMethod, 
  FunctionControl, 
  }; 
 
NTSTATUS DispatchWmi(IN PDEVICE_OBJECT fdo, IN PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status; 
  SYSCTL_IRP_DISPOSITION disposition; 
 
  status = WmiSystemControl(&libinfo, fdo, Irp, &disposition); 
 
  switch (disposition) 
    { 
 
  case IrpProcessed: 
 
    break; 
 
  case IrpNotCompleted: 
 
    IoCompleteRequest(Irp, IO_NO_INCREMENT); 
    break; 
 
 
  default: 
  case IrpNotWmi: 
  case IrpForward: 
 
    IoSkipCurrentIrpStackLocation(Irp); 
    status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
    break; 
    } 
 
  return status; 
  } 

1. The WMILIB_CONTEXT structure declared at file scope describes the class GUIDs your driver supports and lists several 
callback functions that WMILIB uses to handle WMI requests in the appropriate device-dependent and driver-dependent 
way. It’s OK to use a static context structure if the information in it doesn’t change from one IRP to the next. 

2. This statement calls WMILIB to handle the IRP. We pass the address of our WMILIB_CONTEXT structure. 
WmiSystemControl returns two pieces of information: an NTSTATUS code and a SYSCTL_IRP_DISPOSITION value. 

3. Depending on the disposition code, we might have additional work to perform on this IRP. If the code is IrpProcessed, 
the IRP has already been completed and we need do nothing more with it. This case would be the normal one for minor 
functions other than IRP_MN_REGINFO. 

4. If the disposition code is IrpNotCompleted, completing the IRP is our responsibility. This case would be the normal one 
for IRP_MN_REGINFO. WMILIB has already filled in the IoStatus block of the IRP, so we need only call 
IoCompleteRequest. 

5. The default and IrpNotWmi cases shouldn’t arise in Windows XP. We’d get to the default label if we weren’t handling all 
possible disposition codes; we’d get to the IrpNotWmi case label if we sent an IRP to WMILIB that didn’t have one of the 
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minor function codes that specifies WMI functionality. 

6. The IrpForward case occurs for system control IRPs that are intended for some other driver. Recall that the ProviderId 
parameter indicates the driver that is supposed to handle this IRP. WmiSystemControl compares that value with the device 
object pointer we supply as the second function argument. If they’re not the same, it returns IrpForward so that we’ll 
send the IRP down the stack to the next driver. 

The way a WMI consumer matches up to your driver in your driver’s role as a WMI provider is based on the GUID or GUIDs 
you supply in the context structure. When a consumer wants to retrieve data, it (indirectly) accesses the data dictionary in the 
WMI repository to translate a symbolic object name into a GUID. The GUID is part of the MOF syntax I showed you earlier. 
You specify the same GUID in your context structure, and WMILIB takes care of the matching. 

WMILIB will call routines in your driver to perform device-dependent or driver-dependent processing. Most of the time, the 
callback routines will perform the requested operation synchronously. However, except in the case of IRP_MN_REGINFO, 
you can defer processing by returning STATUS_PENDING and completing the request later. 

The QueryRegInfo Callback  

The first system control IRP we’ll receive after making our registration call has the minor function code IRP_MN_REGINFO. 
When we pass this IRP to WmiSystemControl, it turns around and calls the QueryRegInfo function—it finds the function’s 
address in our WMILIB_CONTEXT structure. Here’s how WMI42.SYS handles this callback: 

NTSTATUS QueryRegInfo(PDEVICE_OBJECT fdo, PULONG flags,  
  PUNICODE_STRING instname, PUNICODE_STRING* regpath, 
  PUNICODE_STRING resname, PDEVICE_OBJECT* pdo) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  *flags = WMIREG_FLAG_INSTANCE_PDO; 
  *regpath = &servkey; 
  RtlInitUnicodeString(resname, L"MofResource"); 
  *pdo = pdx->Pdo; 
  return STATUS_SUCCESS; 
  } 

We set regpath to the address of a UNICODE_STRING structure that contains the name of the service registry key describing 
our driver. This key is the one below …\System\CurrentControlSet\Services. Our DriverEntry routine received the name of 
this key as an argument and saved it in the global variable servkey. We set resname to the name we chose to give our schema in 
our resource script. Here’s the resource file for WMI42.SYS so that you can see where this name comes from: 

#include <windows.h> 
 
LANGUAGE LANG_ENGLISH, SUBLANG_NEUTRAL 
MofResource MOFDATA wmi42.bmf 

WMI42.BMF is where our build script puts the compiled MOF file. You can name this resource anything you want to, but 
MofResource is traditional (in a tradition stretching back to, uh, last Tuesday). All that matters about the name is that you 
specify the same name when you service the QueryRegInfo call. 

How we set the remaining values depends on how our driver wants to handle instance naming. I’ll come back to the subject of 
instance naming later in this chapter (in “Instance Naming”). The simplest choice, and the one Microsoft strongly recommends, 
is the one I adopted in WMI42.SYS: have the system automatically generate names that are static based on the name the bus 
driver gave to the physical device object (PDO). When we make this choice of naming method, we do the following tasks in 
QueryRegInfo: 

 Set the WMIREG_FLAG_INSTANCE_PDO flag in the flags value we’re returning to WMILIB. Setting the flag here tells 
WMILIB that at least one of our objects uses PDO naming. 

 Set the pdo value we’re returning to WMILIB. In my sample drivers, my device extension has a field named Pdo that I 
set at AddDevice time to make it available at times like this. 

Apart from making your life easier, basing your instance names on the PDO allows viewer applications to automatically 
determine your device’s friendly name and other properties without you doing anything more in your driver. 

When you return a successful status from QueryRegInfo, WMILIB goes on to create a complicated structure called a 
WMIREGINFO that includes your GUID list, your registry key, your resource name, and information about your instance 
names. It returns to your dispatch function, which then completes the IRP and returns. Figure 10-3 diagrams this process. 
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Figure 10-3. Control flow for IRP_MN_REGINFO.  

The QueryDataBlock Callback  

The information you provide in your answer to the initial registration query allows the system to route relevant data operations 
to you. User-mode code can use various COM interfaces to get and set data values at several levels of aggregation. Table 10‐
3 summarizes the four possibilities. 

IRP Minor Function WMILIB Callback Description 

IRP_MN_QUERY_ALL_DATA  QueryDataBlock  Gets all items of all instances 

IRP_MN_QUERY_SINGLE_INSTANCE  QueryDataBlock  Gets all items of one instance 

IRP_MN_CHANGE_SINGLE_INSTANCE  SetDataBlock  Sets all items of one instance 

IRP_MN_CHANGE_SINGLE_ITEM  SetDataItem  Sets one item in one instance 

Table 10-3. Forms of Data Queries  

When someone wants to learn the value or values of the data you’re keeping, he or she sends you a system control IRP with 
one of the minor function codes IRP_MN_QUERY_ALL_DATA or IRP_MN_QUERY_SINGLE_INSTANCE. If you’re using 
WMILIB, you’ll delegate the IRP to WmiSystemControl, which will then call your QueryDataBlock callback routine. You’ll 
provide the requested data, call another WMILIB routine named WmiCompleteRequest to complete the IRP, and then return to 
WMILIB to unwind the process. In this situation, WmiSystemControl will return the IrpProcessed disposition code because 
you’ve already completed the IRP. Refer to Figure 10-4 for a diagram of the overall control flow. 

Your QueryDataBlock callback can end up being a relatively complex function if your driver is maintaining multiple instances 
of a data block that varies in size from one instance to the next. I’ll discuss the complications later in “Dealing with Multiple 
Instances.” The WMI42 sample shows how to handle a simpler case in which your driver maintains only one instance of the 
WMI class: 

NTSTATUS QueryDataBlock(PDEVICE_OBJECT fdo, PIRP Irp,  
  ULONG guidindex, ULONG instindex, ULONG instcount,  
  PULONG instlength, ULONG bufsize, PUCHAR buffer) 
  { 
 
  if (quidindex > arraysize(guidlist)) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_GUID_NOT_FOUND, 0, IO_NO_INCREMENT); 
  if (instindex != 0 ││ instcount != 1) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_INSTANCE_NOT_FOUND, 0, IO_NO_INCREMENT); 
 
  if (!instlength ││ bufsize < Wmi42_SIZE) 
    return WmiCompleteRequest(fdo, Irp, STATUS_BUFFER_TOO_SMALL, 
      Wmi42_SIZE, IO_NO_INCREMENT); 
 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
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  PWmi42 pvalue = (PWmi42) buffer; 
  pvalue->TheAnswer = pdx->TheAnswer; 
  instlength[0] = Wmi42_SIZE; 
 
 
  return WmiCompleteRequest(fdo, Irp, STATUS_SUCCESS, 
    Wmi42_SIZE, IO_NO_INCREMENT); 
  } 

1. The WMI subsystem should already have verified that we’re being queried for an instance of a class that we actually 
support. Thus, guidindex should ordinarily be within the bounds of the GUID list, and instindex and instcount ought not 
to exceed the number of instances we’ve said we own. If, however, we’ve just changed our registration information, we 
might be servicing a request that was already “in flight,” and these tests would be needed to avoid mistakes. 

2. We’re obliged to make this check to verify that the buffer area is large enough to accommodate the data and data length 
values we’re going to put there. The first part of the test—is there an instlength array?—is boilerplate. The second part of 
the test—is the buffer big enough for a Wmi42 structure?—is where we verify that all of our data values will fit. 

3. The buffer parameter points to a memory area where we can put our data. The instlength parameter points to an array 
where we’re supposed to place the length of each data instance we’re returning. Here we install the single data value our 
schema calls for—the value of the TheAnswer property—and its length. Figuring out what TheAnswer actually is 
numerically is left as an exercise for the reader. 

4. The WMILIB specification requires us to complete the IRP by calling the WmiCompleteRequest helper routine. The 
fourth argument indicates how much of the buffer area we used for data values. By now, the other arguments should be 
self-explanatory. 

Figure 10-4. Control flow for data queries.  

The SetDataBlock Callback  

The system might ask you to change an entire instance of one of your classes by sending you an 
IRP_MN_CHANGE_SINGLE_INSTANCE request. WmiSystemControl processes this IRP by calling your SetDataBlock 
callback routine. A simple version of this routine might look like this: 

NTSTATUS SetDataBlock(PDEVICE_OBJECT fdo, PIRP Irp, 
   ULONG guidindex, ULONG instindex, ULONG bufsize, 
   PUCHAR buffer) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
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  if (quidindex > arraysize(guidlist)) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_GUID_NOT_FOUND, 0, IO_NO_INCREMENT); 
  if (instindex != 0) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_INSTANCE_NOT_FOUND, 0, IO_NO_INCREMENT); 
 
  if (bufsize == Wmi42_SIZE) 
    { 
    pdx->TheAnswer = ((PWmi42) buffer)->TheAnswer; 
    status = STATUS_SUCCESS; 
    info = Wmi42_SIZE; 
    } 
  else 
    status = STATUS_INFO_LENGTH_MISMATCH, info = 0; 
 
  return WmiCompleteRequest(fdo, Irp, status, info, IO_NO_INCREMENT); 
  } 

1. These are the same sanity checks I showed earlier for the QueryDataBlock callback function. 

2. The system should already know—based on the MOF declaration—how big an instance of each class is and should give 
us a buffer that’s exactly the right size. If it doesn’t, we’ll end up causing this IRP to fail. Otherwise, we’ll copy a new 
value for the data block into the place where we keep our copy of that value. 

3. We’re responsible for completing the IRP by calling WmiCompleteRequest. 

The SetDataItem Callback  

Sometimes consumers want to change just one field in one of the WMI objects we support. Each field has an identifying 
number that appears in the WmiDataId property of the field’s MOF declaration. (The Active and InstanceName properties 
aren’t changeable and don’t have identifiers. Furthermore, they’re implemented by the system and don’t even appear in the 
data blocks we work with.) To change the value of one field, the consumer references the field’s ID. We then receive an 
IRP_MN_CHANGE_SINGLE_ITEM request, which WmiSystemControl processes by calling our SetDataItem callback routine: 

NTSTATUS SetDataItem(PDEVICE_OBJECT fdo, PIRP Irp, ULONG guidindex,  
  ULONG instindex, ULONG id, ULONG bufsize, PUCHAR buffer) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status; 
  ULONG info; 
 
  if (quidindex > arraysize(guidlist)) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_GUID_NOT_FOUND, 0, IO_NO_INCREMENT); 
  if (instindex != 0 ││ instcount != 1) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_INSTANCE_NOT_FOUND, 0, IO_NO_INCREMENT); 
  if (id != Wmi42_TheAnswer_ID) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_ITEMID_NOT_FOUND, 0, IO_NO_INCREMENT); 
 
  if (bufsize == Wmi42_SIZE) 
    { 
    pdx->TheAnswer = (PWmi42) buffer)->TheAnswer; 
    status = STATUS_SUCCESS; 
    info = Wmi42_SIZE; 
    } 
  else 
    status = STATUS_INFO_LENGTH_MISMATCH, info = 0; 
 
  return WmiCompleteRequest(fdo, Irp, status, info, IO_NO_INCREMENT); 
  } 

In this example, the only difference between the SetDataItem and SetDataBlock callbacks is the additional test of the field 
identifier, shown in boldface. 

You can use the “-c” option when you run WMIMOFCK. This option generates a C-language source file with a number of 
TODO items that you can complete in order to end up with pretty much all the code you need. I don’t use this feature myself, 
because WDMWIZ generates skeleton code that fits better into my own framework and actually requires fewer changes. I do, 
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however, use the “-h” option of WMIMOFCK as described earlier in this chapter, because there’s no good alternative for 
getting the correct structure mapping. 

10.2.2 Advanced Features  
The preceding discussion covers much of what you need to know to provide meaningful performance information for metering 
applications. Use your imagination here: instead of providing just a single statistic (TheAnswer), you can accumulate and 
return any number of performance measures that are relevant to your specific device. You can support some additional WMI 
features for more specialized purposes. I’ll discuss these features now. 

Dealing with Multiple Instances  

WMI allows you to create multiple instances of a particular class data block for a single device object. You might want to 
provide multiple instances if your device is a controller or some other device in to which other devices plug; each instance 
might represent data about one of the child devices. Mechanically, you specify the number of instances of a class in the 
WMIGUIDREGINFO structure for the GUID associated with the class. If WMI42 had three different instances of its standard 
data block, for example, it would have used the following GUID list in its WMILIB_CONTEXT structure: 

WMIGUIDREGINFO guidlist[] = { 
  {&Wmi42_GUID, 3, 0}, 
  }; 

The only difference between this GUID list and the one I showed you earlier is that the instance count here is 3 instead of 1. 
This list declares that there will be three instances of the WMI42 data block, each with its own value for the three properties 
(that is, InstanceName, Active, and TheAnswer) that belong in that block. 

If the number of instances changes over time, you can call IoWmiRegistrationControl with the action code 
WMIREG_ACTION_UPDATE_GUID to cause the system to send you another registration request, which you’ll process using 
an updated copy of your WMILIB_CONTEXT structure. If you’re going to be changing your registration information, you 
should probably allocate the WMILIB_CONTEXT structure and GUID list from the free pool rather than use static variables, by 
the way. 

If user-mode code were to enumerate all instances of GUID_WMI42_SCHEMA, it would find three instances. This result might 
present a confusing picture to user-mode code, though. Depending on which WDM platform you’re running on, it may be 
difficult to tell a priori that the three instances disclosed by the enumeration belong to a single device, as opposed to a situation 
in which three WMI42 devices each expose a single instance of the same class. To allow WMI clients to sort out the difference 
between the two situations, your schema should include a property (a device name or the like) that can function as a key. 

Once you allow for the possibility of multiple instances, several of your WMILIB callbacks will require changes from the 
simple examples I showed you earlier. In particular: 

 QueryDataBlock should be able to return the data block for a single instance or for any number of instances beginning at 
a specific index. 

 SetDataBlock should interpret its instance number argument to decide which instance to change. 

 SetDataItem should likewise interpret its instance number argument to locate the instance within which the affected data 
item will be found. 

Figure 10-5. Getting multiple data block instances.  

Figure 10-5 illustrates how your QueryDataBlock function uses the output buffer when it’s asked to provide more than one 
instance of a data block. Imagine that you were asked to provide data for two instances beginning at instance number 2. You’ll 
copy the data values, which I’ve shown as being of different sizes, into the data buffer. You start each instance on an 8-byte 
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boundary. You indicate the total number of bytes you consume when you complete the query, and you indicate the lengths of 
each individual instance by filling in the instlength array, as shown in the figure. 

Instance Naming  

Each instance of a WMI class has a unique name. Consumers who know the name of an instance can perform queries and 
invoke method routines. Consumers who don’t know the name or names of the instance or instances you provide can learn 
them by enumerating the class. In any case, you’re responsible for generating the names that consumers use or discover. 

I showed you the simplest way—from the driver’s perspective, that is—of naming instances of a custom data block, which is 
to request that WMI automatically generate a static, unique name based on the name of the PDO for your device. If your PDO 
has the name Root\SAMPLE\0000, for example, a PDO-based name for a single instance of a given data block will be 
Root\SAMPLE\0000_0.  

Basing instance names on the PDO name is obviously convenient because all you need to do in the driver is set the 
WMIREG_FLAG_INSTANCE_PDO flag in the flags variable that WMILIB passes to your QueryRegInfo callback routine. The 
author of a consumer application can’t know what this name will be, however, because the name will vary depending on how 
your device was installed. To make the instance names slightly more predictable, you can elect to use a constant base name for 
object instances instead. You indicate this choice by responding in the following way to the registration query: 

NTSTATUS QueryRegInfo(PDEVICE_OBJECT fdo, PULONG flags, 
  PUNICODE_STRING instname, PUNICODE_STRING* regpath, 
  PUNICODE_STRING resname, PDEVICE_OBJECT* pdo) 
  { 
  *flags = WMIREG_FLAG_INSTANCE_BASENAME; 
  *regpath = &servkey; 
  RtlInitUnicodeString(resname, L"MofResource"); 
  static WCHAR basename[] = L"WMIEXTRA"; 
  instname->Buffer = (PWCHAR) ExAllocatePool(PagedPool, sizeof(basename)); 
  if (!instname->Buffer) 
    return STATUS_INSUFFICIENT_RESOURCES; 
  instname->MaximumLength = sizeof(basename); 
  instname->Length = sizeof(basename) - 2; 
  RtlCopyMemory(instname->Buffer, basename, sizeof(basename)); 
  } 

The parts of this function that differ from the previous example of QueryRegInfo are in boldface. In the WMIEXTRA sample, 
only one instance of each data block exists, and each receives the instance name WMIEXTRA with no additional decoration. 

If you elect to use a base name, try to avoid generic names such as Toys because of the confusion that can ensue. The purpose 
of this feature is to let you use specific names such as TailspinToys. 

In some circumstances, static instance names won’t suit your needs. If you maintain a population of data blocks that changes 
frequently, using static names means that you have to request a registration update each time the population changes. The 
update is relatively expensive, and you should avoid requesting one often. You can assign dynamic instance names to the 
instances of your data blocks instead of static names. The instance names then become part of the queries and replies that you 
deal with in your driver. Unfortunately, WMILIB doesn’t support the use of dynamic instance names. To use this feature, 
therefore, you’ll have to fully implement support for the IRP_MJ_SYSTEM_CONTROL requests that WMILIB would 
otherwise interpret for you. Describing how to handle these IRPs yourself is beyond the scope of this book, but the DDK 
documentation contains detailed information about how to go about it. 

Dealing with Multiple Classes  

WMI42 deals with only one class of data block. If you want to support more than one class, you need to have a bigger array of 
GUID information structures, as WMIEXTRA does: 

WMIGUIDREGINFO guidlist[] = { 
  {&wmiextra_event_GUID, 1, WMIREG_FLAG_EVENT_ONLY_GUID}, 
  {&wmiextra_expensive_GUID, 1, WMIREG_FLAG_EXPENSIVE }, 
  {&wmiextra_method_GUID, 1, 0}, 
  }; 

Before calling one of your callback routines, WMILIB looks up the GUID accompanying the IRP in your list. If the GUID 
isn’t in the list, WMILIB causes the IRP to fail. If it’s in the list, WMILIB calls your callback routine with the guidindex 
parameter set equal to the index of the GUID in your list. By inspecting this parameter, you can tell which data block you’re 
being asked to work with. 

You can use the special flag WMIREG_FLAG_REMOVE_GUID in a GUID information structure. The purpose of this flag is 
to remove a particular GUID from the list of supported GUIDs during a registration update. Using this flag also prevents 
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WMILIB from calling you to perform an operation on a GUID that you’re trying to remove. 

Expensive Statistics  

It can sometimes be burdensome to collect all of the statistics that are potentially useful to an end user or administrator. For 
example, it would be possible for a disk driver (or, more likely, a filter driver sitting in the same stack as a disk driver) to 
collect histogram data showing how often I/O requests reference a particular sector of the disk. This data would be useful to a 
disk-defragmenting program because it would allow the most frequently accessed sectors to be placed in the middle of a disk 
for optimal seek time. You wouldn’t want to routinely collect this data, though, because of the amount of memory needed for 
the collection. That memory would have to be nonpaged too because of the possibility that a particular I/O request would be 
for page swapping. 

WMI allows you to declare a particular data block as being expensive so that you don’t need to collect it except on demand, as 
shown in this excerpt from the WMIEXTRA sample program: 

WMIGUIDREGINFO guidlist[] = { 
 
  {&wmiextra_expensive_GUID, 1, 
    WMIREG_FLAG_EXPENSIVE}, 
 
}; 

The WMIREG_FLAG_EXPENSIVE flag indicates that the data block identified by wmiextra_expensive_GUID has this 
expensive characteristic. 

When an application expresses interest in retrieving values from an expensive data block, WMI sends you a system control IRP 
with the minor function code IRP_MN_ENABLE_COLLECTION. When no applications are interested in an expensive data 
block anymore, WMI sends you another IRP with the minor function code IRP_MN_DISABLE_COLLECTION. If you 
delegate these IRPs to WMILIB, it will turn around and call your FunctionControl callback routine to either enable or disable 
collection of the values in the data block: 

NTSTATUS FunctionControl(PDEVICE_OBJECT fdo, PIRP Irp, 
  ULONG guidindex, WMIENABLEDISABLECONTROL fcn, BOOLEAN enable) 
  { 
 
  return WmiCompleteRequest(fdo, Irp, STATUS_SUCCESS, 0, IO_NO_INCREMENT); 
  } 

In these arguments, guidindex is the index of the GUID for the expensive data block in your list of GUIDs, fcn will equal the 
enumeration value WmiDataBlockControl to indicate that collection of an expensive statistic is being either enabled or disabled, 
and enable will be TRUE or FALSE to indicate whether you should or should not collect the statistic, respectively. As shown in 
this fragment, you call WmiCompleteRequest prior to returning from this function. 

An application “expresses interest” in a data block, by the way, by retrieving an IWbemClassObject interface pointer bound to 
a particular instance of your data block’s WMI class. Notwithstanding the fact that an application has to discover an instance of 
the class, no instance index appears in the call to your FunctionControl callback. The instruction to collect or not collect the 
expensive statistic therefore applies to all instances of your class. 

WMI Events  

WMI provides a way for providers to notify consumers of interesting or alarming events. A device driver might use this facility 
to alert a user to some facet of device operation that requires user intervention. For example, a disk driver might notice that an 
unusually large number of bad sectors have accumulated on a disk. Logging such an event as described in Chapter 14 is one 
way to inform the human world of this fact, but an administrator has to actively look at the event log to see the entry. If 
someone were to write an event monitoring applet, however, and if you were to fire a WMI event when you noticed the 
degradation, the event could be brought immediately to the user’s attention. 

NOTE  
The network connection tray icon responds to a kernel-mode driver (namely NDIS.SYS) signalling a WMI event. 

WMI events are just regular WMI classes used in a special way. In MOF syntax, you must derive the data block from the 
abstract WMIEvent class, as illustrated in this excerpt from WMIEXTRA’s MOF file: 

[Dynamic, Provider("WMIProv"), 
 WMI,  
 Description("Event Info from WMIExtra"), 
 guid("c4b678f6-b6e9-11d2-bb87-00c04fa330a6"), 
 locale("MS\\0x409")] 
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class wmiextra_event : WMIEvent 
{ 
    [key, read]  
     string InstanceName; 
 
    [read] boolean Active; 
 
    [WmiDataId(1), read] uint32 EventInfo; 
 
}; 

Although events can be normal data blocks, you might not want to allow applications to read and write them separately. If not, 
use the EVENT_ONLY flag in your declaration of the GUID: 

WMIGUIDREGINFO guidlist[] = { 
 
  {&wmiextra_event_GUID, 1,  
    WMIREG_FLAG_EVENT_ONLY_GUID}, 
 
  }; 

When an application expresses interest in knowing about a particular event, WMI sends your driver a system control IRP with 
the minor function code IRP_MN_ENABLE_EVENTS. When no application is interested in an event anymore, WMI sends you 
another IRP with the minor function code IRP_MN_DISABLE_EVENTS. If you delegate these IRPs to WMILIB, you’ll receive 
a call in your FunctionControl callback to specify the GUID index in your list of GUIDs, the fcn code WmiEventControl, and a 
Boolean enable flag. 

To fire an event, construct an instance of the event class in nonpaged memory and call WmiFireEvent. For example: 

Pwmiextra_event junk = (Pwmiextra_event)  
  ExAllocatePool(NonPagedPool, wmiextra_event_SIZE); 
junk->EventInfo = 42; 
WmiFireEvent(fdo, (LPGUID) &wmiextra_event_GUID, 0, 
  sizeof(wmiextra_event), junk); 

The WMI subsystem will release the memory that’s occupied by the event object in due course. 

WMI Method Routines  

In addition to defining mechanisms for transferring data and signalling events, WMI prescribes a way for consumers to invoke 
method routines implemented by providers. WMIEXTRA defines the following class, which includes a method routine: 

[Dynamic, Provider("WMIProv"), 
 WMI,  
 Description("WMIExtra class with method"), 
 guid("cd7ec27d-b6e9-11d2-bb87-00c04fa330a6"), 
 locale("MS\\0x409")] 
 
class wmiextra_method 
{ 
    [key, read]  
     string InstanceName; 
 
    [read] boolean Active; 
 
    [Implemented, WmiMethodId(1)] void  
     AnswerMethod([in,out] uint32 TheAnswer); 
 
}; 

This declaration indicates that AnswerMethod accepts an input/output argument named TheAnswer (a 32-bit unsigned integer). 
Note that all method functions exposed by WDM drivers must be void functions because there’s no way to indicate a return 
value. You can still have output arguments or input/output arguments. 

When you delegate system control IRPs to WMILIB, a method routine call manifests itself in a call to your ExecuteMethod 
callback routine: 
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NTSTATUS ExecuteMethod(PDEVICE_OBJECT fdo, PIRP Irp, 
  ULONG guidindex, ULONG instindex, ULONG id, 
  ULONG cbInbuf, ULONG cbOutbuf, PUCHAR buffer) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  NTSTATUS status = STATUS_SUCCESS; 
  ULONG bufused = 0; 
  if (guidindex != INDEX_WMIEXTRA_METHOD) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_GUID_NOT_FOUND, 0, IO_NO_INCREMENT); 
  if (instindex != 0) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_INSTANCE_NOT_FOUND, 0, IO_NO_INCREMENT); 
  if (id != AnswerMethod) 
    return WmiCompleteRequest(fdo, Irp, 
      STATUS_WMI_ITEMID_NOT_FOUND, 0, IO_NO_INCREMENT); 
  if (cbInbuf < AnswerMethod_IN_SIZE) 
    status = STATUS_INVALID_PARAMETER; 
  else if (cbOutbuf < AnswerMethod_OUT_SIZE) 
    status = STATUS_BUFFER_TOO_SMALL; 
  else 
    { 
    PAnswerMethod_IN in = (PAnswerMethod_IN) buffer; 
    PAnswerMethod_OUT out = (PAnswerMethod_OUT) buffer; 
    out->TheAnswer = in->TheAnswer + 1; 
    bufused = AnswerMethod_OUT_SIZE; 
    } 
  return WmiCompleteRequest(fdo, Irp, status, bufused, IO_NO_INCREMENT); 
  } 

WMI method calls use an input class to contain the input arguments and a potentially different output class to contain the 
returned values. The buffer area contains an image of the input class, whose length is cbInbuf. Your job is to perform the 
method and overstore the buffer area with an image of the output class. You complete the request with the byte size (bufused) 
of the output class. 

This particular method routine simply adds 1 to its input argument. 

Simply enumerating an instance of a class such as wmiextra_method triggers a request for the data block. You must cause the 
data query to succeed even if the class that contains the method routine has no data members. In such a case, you can just 
complete the query with a 0 data length. 

Be very circumspect in the functionality you expose through WMI methods. This advice is exceptionally important 
because scripts coming from unverified sources can run with the privileges of any logged-in user and can therefore 
make calls to your methods.  

Standard Data Blocks  

Microsoft has defined some standardized data blocks for various types of devices. If your device belongs to a class for which 
standardized data blocks are defined, you should support those blocks in your driver. Consult WMICORE.MOF in the DDK to 
see the class definitions, and see Table 10-4. 

To implement your support for a standard data block, include the corresponding GUID in the list you report back from the 
registration query. Implement supporting code for getting and putting data, enabling and disabling events, and so on, using the 
techniques I’ve already discussed. Don’t include definitions of the standard data blocks in your own schema; those class 
definitions are already in the repository, and you don’t want to override them. 

You can include the DDK header file WMIDATA.H in your driver to get GUID definitions and class structure layouts. 

In many cases, by the way, a Microsoft class driver will be providing the actual WMI support for these standard classes—you 
might not have any work to do. 
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Device Type Standard Class Description 

Keyboard MSKeyboard_PortInformation  Configuration and performance information 

 MSKeyboard_ExtendedID  Extended type and subtype identifiers 

 MSKeyboard_ClassInformation  Device identification number 

Mouse MSMouse_PortInformation  Configuration and performance information 

 MSMouse_ClassInformation  Device identification number 

Disk MSDiskDriver_Geometry  Format information 

 MSDiskDriver_Performance  Performance information and internal device name 

 MSDiskDriver_PerformanceData  Performance information alone 

Storage MSStorageDriver_FailurePredictStatus  Determines whether drive is predicting a failure 

 MSStorageDriver_FailurePredictData  Failure prediction data 

 MSStorageDriver_FailurePredictEvent  Event fired when failure is predicted 

 MSStorageDriver_FailurePredictFunction  Methods related to failure prediction 

 MSStorageDriver_ATAPISmartData  ATAPI failure prediction data 

 
MSStorageDriver_FailurePredict-
Thresholds  

Vendor-specific information 

 MSStorageDriver_ScsiInfoExceptions  
Flags and options relative to reporting informational -
exceptions 

Serial MSSerial_PortName  Name of port 

 MSSerial_CommInfo  Communication parameters 

 MSSerial_HardwareConfiguration  I/O resource information 

 MSSerial_PerformanceInformation  Performance information 

 MSSerial_CommProperties  Communication parameters 

Parallel MSParallel_AllocFreeCounts  Counts of allocation and free operations 

 MSParallel_DeviceBytesTransferred  Transfer counts 

IDE MSIde_PortDeviceInfo  Pseudo-SCSI identification for an IDE port 

Redbook MSRedbook_DriverInformation  
Configuration information about a device used for 
Redbook audio 

 MSRedbook_Performance  Performance info about Redbook audio driver 

Tape MSTapeDriveParam  Feature information about tape drive 

 MSTapeMediaCapacity  Information about current media 

 MSTapeSymbolicName  Symbolic name (e.g., Tape0) of drive 

 MSTapeDriveProblemEvent  Event used to signal a problem 

 MSTapeProblemIoError  Statistics about I/O errors 

 MSTapeProblemDeviceError  Summary of drive problems 

Changer MSChangerParameters  Feature information about CD changer 

 MSChangerProblemEvent  Event used to signal a problem 

 MSChangerProblemDeviceError  Summary of device problems 

All device 
types 

MSPower_DeviceEnable  
Controls whether driver automatically powers device 
down 

 MSPower_DeviceWakeEnable  Enables or disables system wake-up feature 

 MSDeviceUI_FirmwareRevision  Revision level of device firmware 

Table 10-4. Standard Data Blocks   

10.3 Windows 98/Me Compatibility Notes  

Since a well-crafted driver should support WMI, and since WMILIB isn’t available in the original Windows 98, you might 
need to provide a virtual device driver (VxD) stub for the WMILIB functions so that your driver will load. Consult Appendix A 
for more information about writing a VxD stub. (The WDMSTUB filter driver discussed in the appendix doesn’t include the 
WMILIB functions, but the appendix describes how you might invent them.) 

A number of bugs afflicted the WMI support in the original retail release of Windows 98. The updates to Windows 98 (Second 
Edition and Service Pack 1) fixed these bugs. Even so, the standard setup procedure doesn’t install WMI by default. To install 
it yourself, open Add/Remove Programs in the Control Panel, select the Windows Setup tab, and request installation of 
Web-Based Enterprise Mgmt within the Internet Tools category. 
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Chapter 11  

11 Controller and Multifunction 

Devices  

Two categories of devices don’t fit neatly into the PnP framework I described in Chapter 6. These categories are controller 
devices, which manage a collection of child devices, and multifunction devices, which have several functions on one card. 
These kinds of devices are similar in that their correct management entails the creation of multiple device objects with 
independent I/O resources. 

It’s very easy in Windows XP to support Peripheral Component Interconnect (PCI), Personal Computer Memory Card 
International Association (PCMCIA), and USB devices that conform to their respective bus standards for multifunction devices. 
The PCI bus driver automatically recognizes PCI multifunction cards. For PCMCIA multifunction devices, you can follow the 
detailed instructions in the DDK for designating MF.SYS as the function driver for your multifunction card; MF.SYS will 
enumerate the functions on your card and thereby cause the PnP Manager to load individual function drivers. The USB Generic 
Parent driver will normally load separate function drivers for each interface on a one-configuration device. 

Except for USB, the original release of Windows 98 lacks the multifunction support that Windows XP provides. In Windows 
98/Me, to deal with controller or multifunction devices, or to deal with nonstandard devices, you’ll need to resort to more 
heroic means. You’ll supply a function driver for your main device and supply separate function drivers for the child devices 
that connect to the main device. The main device’s function driver will act like a miniature bus driver by enumerating the child 
devices and providing default handling for PnP and power requests. Writing a full-fledged bus driver is a large undertaking, 
and I don’t intend to attempt a description of the process here. I will, however, describe the basic mechanisms you use for 
enumerating child devices. This information will allow you to write drivers for controller or multifunction devices that don’t fit 
the standard molds provided by Microsoft. 

11.1 Overall Architecture  

In Chapter 2, Figure 2-6 illustrates the topology of device objects when a parent device, such as a bus driver, has children. 
Controller and multifunction devices use a similar topology. The parent device plugs in to a standard bus. The driver for the 
standard bus detects the parent, and the PnP Manager configures it just like any ordinary device—up to a point. After it starts 
the parent device, the PnP Manager sends a Plug and Play request with the minor function code 
IRP_MN_QUERY_DEVICE_RELATIONS to learn the so-called bus relations of the parent device. This query occurs for all 
devices, actually, because the PnP Manager doesn’t know yet whether the device has children. 

In response to the bus relations query, the parent device’s function driver locates or creates additional device objects. Each of 
these objects becomes the physical device object (PDO) at the bottom of the stack for one of the child devices. The PnP 
Manager will go on to load the function and filter drivers for the child devices, whereupon you end up with a picture like that 
in Figure 2-6. 

The driver for the parent device has to play two roles. In one role, it’s the function device object (FDO) driver for the controller 
or the multifunction device. In the other role, it’s the PDO driver for its child devices. In its FDO role, it handles PnP and 
power requests in the way function drivers normally handle them. In its PDO role, however, it acts as the driver of last resort 
for PnP and power requests. 

11.1.1 Child Device Objects  
The parent device driver for a multifunction device is responsible for creating PDOs for its child devices. There are two basic 
ways to do this task: 

 A driver for a bus or device with hot-plug capability for child devices keeps a list of PDOs that it refreshes each time the 
PnP Manager sends a bus relations query. Such a driver will perform a hardware enumeration to detect the then-current 
population of devices, create new PDOs for newly detected devices, and discard PDOs for devices that no longer exist. 

 A driver for a device with a fixed number of child functions creates its list of PDOs as soon as possible and reports the 
same list each time the PnP Manager performs a bus relations query. It destroys the PDOs at the same time it destroys its 
own FDO. 
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Device Extension Structures  

A minor complication for a multifunction driver is that both the FDO and all the PDOs belong to the same driver object. This 
means that I/O request packets (IRPs) directed to any of these device objects will come to one set of dispatch routines. The 
driver needs to handle PnP and power IRPs differently for FDOs and PDOs. Consequently, you need to provide a way for a 
dispatch function to easily distinguish between an FDO and one of the child PDOs. One way to deal with this complication is 
to define two device extension structures with a common beginning, as follows: 

// The FDO extension: 
 
typedef struct _DEVICE_EXTENSION { 
  ULONG flags; 
 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
// The PDO extension: 
 
typedef struct _PDO_EXTENSION { 
  ULONG flags; 
 
  } PDO_EXTENSION, *PPDO_EXTENSION; 
 
// The common part: 
 
typedef struct _COMMON_EXTENSION { 
  ULONG flags; 
  } COMMON_EXTENSION, *PCOMMON_EXTENSION; 
 
#define ISPDO 0x00000001 
The dispatch routines in the driver then look like this: 
NTSTATUS DispatchSomething(PDEVICE_OBJECT DeviceObject, PIRP Irp) 
  { 
  PCOMMON_EXTENSION pcx = (PCOMMON_EXTENSION) DeviceObject->DeviceExtension; 
  if (pcx->flags & ISPDO) 
    return DispatchSomethingPdo(DeviceObject, Irp); 
  else 
    return DispatchSomethingFdo(DeviceObject, Irp); 
  } 

That is, you distinguish between FDO and PDO roles by examining the header that both types of device extension have in 
common, and then you call an FDO-specific or PDO-specific routine to handle the IRP. 

Example of Creating Child Device Objects  

MULFUNC, which is available in the companion content, is a very lame multifunction device: it has just two children, and we 
always know what they are. I just called them A and B. MULFUNC executes the following code—with more error checking 
than I’m showing you here—at IRP_MN_START_DEVICE time to create PDOs for A and B: 

NTSTATUS StartDevice(PDEVICE_OBJECT fdo, ...) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  CreateChild(pdx, CHILDTYPEA, &pdx->ChildA); 
  CreateChild(pdx, CHILDTYPEB, &pdx->ChildB); 
  return STATUS_SUCCESS; 
  } 
 
NTSTATUS CreateChild(PDEVICE_EXTENSION pdx, ULONG flags, PDEVICE_OBJECT* ppdo) 
  { 
  PDEVICE_OBJECT child; 
 
  IoCreateDevice(pdx->DriverObject, sizeof(PDO_EXTENSION), 
    NULL, FILE_DEVICE_UNKNOWN, FILE_AUTOGENERATED_DEVICE_NAME, FALSE, &child); 
  PPDO_EXTENSION px = (PPDO_EXTENSION) child->DeviceExtension; 
  px->flags = ISPDO │ flags; 
  px->DeviceObject = child; 
  px->Fdo = pdx->DeviceObject; 
  child->Flags &= ~DO_DEVICE_INITIALIZING; 
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  *ppdo = child; 
  return STATUS_SUCCESS; 
  } 

1. CHILDTYPEA and CHILDTYPEB are additional flag bits for the flags member that begins the common device extension. 
If you were writing a true bus driver, you wouldn’t create the child PDOs here—you’d enumerate your actual hardware in 
response to an IRP_MN_QUERY_DEVICE_RELATIONS and create the PDOs then. 

2. We’re creating a named device object here, but we’re asking the system to automatically generate the name by supplying 
the FILE_AUTOGENERATED_DEVICE_NAME flag in the DeviceCharacteristics argument slot. 

The end result of the creation process is two pointers to device objects (ChildA and ChildB) in the device extension for the 
parent device’s FDO. 

11.2 Handling PnP Requests  

A controller or a multifunction parent driver has two subdispatch routines for IRP_MJ_PNP requests—one to handle requests 
it receives while wearing its FDO hat and another to handle requests it receives while wearing its PDO hat. Table 11-1 
indicates the actions that the parent driver takes for each type of PnP request in its two roles. I’ll explain the “Parent Vote” 
column later on. 

PnP Request “FDO Hat” “PDO Hat” 
Parent 
Vote? 

IRP_MN_START_DEVICE  Normal Succeed N/A 

IRP_MN_QUERY_REMOVE_ DEVICE  Normal Succeed N/A 

IRP_MN_REMOVE_DEVICE  Normal Succeed N/A 

IRP_MN_CANCEL_REMOVE_ DEVICE  Normal Succeed N/A 

IRP_MN_STOP_DEVICE  Normal Succeed N/A 

IRP_MN_QUERY_STOP_ DEVICE  Normal Succeed N/A 

IRP_MN_CANCEL_STOP_ DEVICE  Normal Succeed N/A 

IRP_MN_QUERY_DEVICE_ 
RELATIONS  

Special pro- cessing 
for BusRelations query; 
other- wise normal 

Special process- ing for Target- 
Relations query; otherwise ignore 

No 

IRP_MN_QUERY_INTERFACE  Normal Special process- ing No 

IRP_MN_QUERY_CAPABILITIES  Normal Delegate No 

IRP_MN_QUERY_RESOURCES  Normal Succeed N/A 

IRP_MN_QUERY_RESOURCE_ 
REQUIREMENTS  

Normal Succeed N/A 

IRP_MN_QUERY_DEVICE_ TEXT  Normal Succeed N/A 

IRP_MN_FILTER_RESOURCE_ 
REQUIREMENTS  

Normal Succeed N/A 

IRP_MN_READ_CONFIG  Normal Delegate Yes 

IRP_MN_WRITE_CONFIG  Normal Delegate Yes 

IRP_MN_EJECT  Normal Delegate Yes 

IRP_MN_SET_LOCK  Normal Delegate Yes 

IRP_MN_QUERY_ID  Normal Special processing N/A 

IRP_MN_QUERY_PNP_DEVICE 
_STATE  

Normal Special processing No 

IRP_MN_QUERY_BUS_INFOR- -
MATION  

Normal Delegate Yes 

IRP_MN_DEVICE_USAGE_ 
NOTIFICATION  

Normal Delegate No 

IRP_MN_SURPRISE_REMOVAL  Normal Succeed N/A 

IRP_MN_QUERY_LEGACY_ 
BUS_INFORMATION  

Normal Delegate Yes 

Any other Normal Ignore Yes 

Table 11-1. Parent Driver Handling of PnP Requests   

I used a shorthand notation in this table to indicate the action, as follows: 

 Normal means “normal processing for a function driver.” In other words, when wearing its FDO hat, the parent driver 
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handles nearly every PnP request the same way a function driver would. Chapter 6 discusses a function driver’s 
responsibilities in detail. For example, you pass all requests down the parent device stack except for a query you are 
causing to fail. You configure your device in response to IRP_MN_START_DEVICE. And so on. 

 Succeed means to complete the IRP with STATUS_SUCCESS. 

 Ignore means to complete the IRP with whatever status is already in the IRP’s IoStatus field. 

 Delegate means to repeat the IRP on the parent device’s FDO stack and return the same results back on the PDO stack. 

I’ll discuss the mechanics of these actions in the next few sections of this chapter. 

11.2.1 Telling the PnP Manager About Our Children  
The PnP Manager inquires about the children of every device by sending an IRP_MN_QUERY_DEVICE_RELATIONS request 
with the type code BusRelations. Wearing its FDO hat, the parent driver responds to this request with code like the following: 

NTSTATUS HandleQueryRelations(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = ...; 
  PIO_STACK_LOCATION stack = ...; 
 
  if (stack->Parameters.QueryDeviceRelations.Type != BusRelations) 
    return DefaultPnpHandler(fdo, Irp); 
 
  PDEVICE_RELATIONS newrel = (PDEVICE_RELATIONS) 
    ExAllocatePool(PagedPool, sizeof(DEVICE_RELATIONS) + sizeof(PDEVICE_OBJECT)); 
  newrel->Count = 2; 
  newrel->Objects[0] = pdx->ChildA; 
  newrel->Objects[1] = pdx->ChildB; 
 
  ObReferenceObject(pdx->ChildA); 
  ObReferenceObject(pdx->ChildB); 
 
  Irp->IoStatus.Information = (ULONG_PTR) newrel; 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  return DefaultPnpHandler(fdo, Irp); 
  } 

1. This IRP can concern several types of relations besides the bus relations we’re interested in here. We simply delegate 
these other queries to the bus driver for the underlying hardware bus. 

2. Here we allocate a structure that will contain two device object pointers. The DEVICE_RELATIONS structure ends in an 
array with a dimension of 1, so we need only add on the size of an additional pointer when we calculate the amount of 
memory to allocate. 

3. We call ObReferenceObject to increment the reference counts associated with each of the device objects we put into the 
DEVICE_RELATIONS array. The PnP Manager will dereference the objects at an appropriate time. 

4. We need to pass this request down to the real bus driver in case it or a lower filter knows additional facts that we didn’t 
know. This IRP uses an unusual protocol for pass down and completion. You set the IoStatus as shown here if you 
actually handle the IRP; otherwise, you leave the IoStatus alone. Note the use of the Information field to contain a pointer 
to the DEVICE_RELATIONS structure. In other situations we’ve encountered in this book, the Information field has 
always held a number. 

I glossed over an additional complication in the preceding code fragment that you’ll notice in the code sample. An upper filter 
might have already installed a list of device objects in the IoStatus.Information field of the IRP. We must not lose that list. 
Rather, we must extend it by adding our own two device object pointers. 

The PnP Manager automatically sends a query for bus relations at start time. You can force the query to be sent by calling this 
service function: 

IoInvalidateDeviceRelations(pdx->Pdo, BusRelations); 

A bus driver with hot-plug capability uses this function when it detects the insertion or removal of a child device. A controller 
or a multifunction driver with a fixed population of child devices wouldn’t need to make this call. 

11.2.2 PDO Handling of PnP Requests  
In this section, I’ll illustrate the mechanics of the “PDO Hat” column of Table 11-1. You already know from Chapter 6 and 
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from the preceding section how to handle IRPs in the FDO role. 

The Succeed Action  

The parent should simply have many PnP IRPs succeed without doing any particular processing: 

NTSTATUS SucceedRequest(PDEVICE_OBJECT pdo, PIRP Irp) 
  { 
  Irp->IoStatus.Status = STATUS_SUCCESS; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return STATUS_SUCCESS; 
  } 

The only remarkable feature of this short subroutine is that it doesn’t change the IoStatus.Information field of the IRP. The PnP 
Manager always initializes this field in some way before launching an IRP. In some cases, the field might be altered by a filter 
driver or the function driver to point to some data structure or another. It would be incorrect for the PDO driver to alter the 
field. 

The Ignore Action  

The parent driver can ignore certain IRPs. Ignoring an IRP is similar to causing it to fail with an error code except that the 
driver doesn’t change the IRP’s status fields: 

NTSTATUS IgnoreRequest(PDEVICE_OBJECT pdo, PIRP Irp) 
  { 
  NTSTATUS status = Irp->IoStatus.Status; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return status; 
  } 

Evidently, you’re completing the IRP with whatever values already happen to be in IoStatus.Status and IoStatus.Information. 
The reason this strategy makes sense is that whoever originates a PnP request initializes these values to 
STATUS_NOT_SUPPORTED and 0, respectively. The PnP Manager gleans information from the fact that an IRP completes 
with these same values still in place, namely, that none of the drivers in the stack actually did anything with the IRP. The DDK 
instructions for function and filter drivers indicate that a driver that processes certain types of IRP is supposed to change the 
status to STATUS_SUCCESS before passing the IRP down the stack. Those instructions dovetail with “ignore” handling in 
some of Microsoft’s bus drivers and in a controller or a multifunction driver built according to the pattern I’m describing in 
this chapter. 

The Delegate Action  

The parent driver can simply delegate some PnP requests to the real bus driver that lies underneath the parent device’s FDO. 
Delegation in this case is not quite as simple as just calling IoCallDriver because by the time we receive an IRP as a PDO 
driver, the I/O stack is generally exhausted. We must therefore create what I call a repeater IRP that we can send to the driver 
stack we occupy as FDO driver: 

NTSTATUS RepeatRequest(PDEVICE_OBJECT pdo, PIRP Irp) 
  { 
  PPDO_EXTENSION pdx = (PPDO_EXTENSION) pdo->DeviceExtension; 
  PDEVICE_OBJECT fdo = pdx->Fdo; 
  PDEVICE_EXTENSION pfx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
   
 
  PDEVICE_OBJECT tdo = IoGetAttachedDeviceReference(fdo); 
 
  PIRP subirp = IoAllocateIrp(tdo->StackSize + 1, FALSE); 
 
  PIO_STACK_LOCATION substack = IoGetNextIrpStackLocation(subirp); 
  substack->DeviceObject = tdo; 
  substack->Parameters.Others.Argument1 = (PVOID) Irp; 
 
  IoSetNextIrpStackLocation(subirp); 
  substack = IoGetNextIrpStackLocation(subirp); 
  RtlCopyMemory(substack, stack, 
    FIELD_OFFSET(IO_STACK_LOCATION, CompletionRoutine)); 
  substack->Control = 0; 
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  BOOLEAN needsvote = <I'll explain later>; 
  IoSetCompletionRoutine(subirp, OnRepeaterComplete, 
    (PVOID) needsvote, TRUE, TRUE, TRUE); 
 
  subirp->IoStatus.Status = STATUS_NOT_SUPPORTED; 
  IoMarkIrpPending(Irp); 
  IoCallDriver(tdo, subirp); 
  return STATUS_PENDING 
  } 
 
NTSTATUS OnRepeaterComplete(PDEVICE_OBJECT tdo, PIRP subirp, PVOID needsvote) 
  { 
 
  ObDereferenceObject(tdo); 
  PIO_STACK_LOCATION substack = IoGetCurrentIrpStackLocation(subirp); 
 
  PIRP Irp = (PIRP) substack->Parameters.Others.Argument1; 
 
  if (subirp->IoStatus.Status == STATUS_NOT_SUPPORTED) 
    { 
    if (needsvote) 
      Irp->IoStatus.Status = STATUS_UNSUCCESSFUL; 
    } 
  else 
    Irp->IoStatus = subirp->IoStatus; 
 
  IoFreeIrp(subirp); 
 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

1. We’re going to send the repeater IRP to the topmost filter driver in the stack to which our FDO belongs. This service 
routine returns the address of the topmost device object, and it also adds a reference to the object to prevent the Object 
Manager from deleting the object for the time being. 

2. When we allocate the IRP, we create an extra stack location in which we can record some context information for the 
completion routine we’re going to install. The DeviceObject pointer we place in this extra location becomes the first 
argument to the completion routine. 

3. Here we initialize the first real stack location, which is the one that the topmost driver in the FDO stack will receive. 
Then we install our completion routine. This is an instance in which we can’t use the standard 
IoCopyCurrentIrpStackLocationToNext macro to copy a stack location: we’re dealing with two separate I/O stacks. 

4. We need to plan ahead for how we’re going to deal with the possibility that the parent device stack doesn’t actually 
handle this repeater IRP. Our later treatment will depend on exactly which minor function of IRP we’re repeating in a 
way I’ll describe later on. Mechanically, what we do is calculate a Boolean value—I called it needsvote—and pass it as 
the context argument to our completion routine. 

5. You always initialize the status field of a new PnP IRP to hold the special value STATUS_NOT_SUPPORTED. The 
Driver Verifier will bugcheck if you don’t. 

6. This statement is how we release our reference to the topmost device object in the FDO stack. 

7. We saved the address of the original IRP here. 

8. This short section sets the completion status for the original IRP. Refer to the following main text for an explanation of 
what’s going on here. 

9. We allocated the repeater IRP, so we need to delete it. 

10. We can complete the original IRP now that the FDO driver stack has serviced its clone. 

11. We must return STATUS_MORE_PROCESSING_REQUIRED because the IRP whose completion we dealt with—the 
repeater IRP—has now been deleted. 

The preceding code deals with a rather complex problem that afflicts the various PnP IRPs that a parent driver repeats on its 
FDO stack. The PnP Manager initializes PnP IRPs to contain STATUS_NOT_SUPPORTED. It can tell whether any driver 
actually handled one of these IRPs by examining the ending status. If the IRP completes with STATUS_NOT_SUPPORTED, 
the PnP Manager can deduce that no driver did anything with the IRP. If the IRP completes with any other status, the PnP 
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Manager knows that some driver deliberately caused the IRP either to fail or to succeed but didn’t simply ignore it. 

A driver that creates a PnP IRP must follow the same convention by initializing IoStatus.Status to 
STATUS_NOT_SUPPORTED. As I remarked, the Driver Verifier will bugcheck if you forget to do this. But this initialization 
gives rise to the following problem: suppose one of the devices in the child stack (that is, above the PDO for the child device) 
changes IoStatus.Status to another value before passing a particular IRP down to us in our role as PDO driver. We will create a 
repeater IRP, preinitialized with STATUS_NOT_SUPPORTED, and pass it down the parent stack (that is, the stack to which we 
belong in our role as FDO driver). If the repeater IRP completes with STATUS_NOT_SUPPORTED, what status should we use 
in completing the original IRP? It shouldn’t be STATUS_NOT_SUPPORTED because that would imply that none of the 
child-stack drivers processed the IRP (but one did, and it changed the main IRP’s status). That’s where the needsvote flag 
comes in. 

For some of the IRPs we repeat, we don’t care whether a parent driver actually processes the IRP. We say (actually, the 
Microsoft developers say) that the parent drivers don’t need to “vote” on the IRP. If you look carefully at OnRepeaterComplete, 
you’ll see that we don’t change the main IRP’s ending status in this case. For other of the IRPs we repeat, we can’t provide a 
real answer if the parent-stack drivers ignore the IRP. For these IRPs, on which the parent must “vote,” we have the main IRP 
fail with STATUS_UNSUCCESSFUL. To see which IRPs belong to the “needs vote” class and which IRPs don’t, take a look at 
the last column in Table 11-1. The minor functions for which the table indicates N/A are ones that the parent driver never 
repeats on the parent stack in the first place, by the way. 

If one of the parent drivers actually does process the repeater IRP, however, we copy the entire IoStatus field, which includes 
both the Status and Information values, into the main IRP. The Information field might contain the answer to a query, and this 
copy step is how we pass the answer upward. 

I did one other slightly subtle thing in RepeatRequest—I marked the IRP pending and returned STATUS_PENDING. Most PnP 
IRPs complete synchronously so that the call to IoCallDriver will most likely cause immediate completion of the IRP. So why 
mark the IRP pending and cause the I/O Manager unnecessary pain in the form of needing to schedule an asynchronous 
procedure call (APC) as part of completing the main IRP? The reason is that if we don’t return STATUS_PENDING from our 
dispatch function—recall that RepeatRequest is running as a subroutine below the dispatch function for IRP_MJ_PNP—we 
must return exactly the same value that we use when we complete the IRP. Only our completion routine knows which value 
this will actually be after checking for STATUS_NOT_SUPPORTED and checking the needsvote flag, and there’s no good way 
for our completion routine to communicate its decision back to the dispatch routine. 

11.2.3 Handling Device Removal  
The PnP Manager is aware of the parent-child relationship between a parent’s FDO and its child PDOs. Consequently, when 
the user removes the parent device, the PnP Manager automatically removes all the children. Oddly enough, though, the parent 
driver should not normally delete a child PDO when it receives an IRP_MN_REMOVE_DEVICE. The PnP Manager expects 
PDOs to persist until the underlying hardware is gone. A multifunction driver will therefore not delete the children PDOs until 
it’s told to delete the parent FDO. A bus driver for a hot-pluggable device, however, will delete a child PDO when it receives 
IRP_MN_REMOVE_DEVICE after failing to report the device during an enumeration. 

11.2.4 Handling IRP_MN_QUERY_ID  
The most important of the PnP requests that a parent driver handles is IRP_MN_QUERY_ID. The PnP Manager issues this 
request in several forms to determine which device identifiers it will use to locate the INF file for a child device. You respond 
by returning (in IoStatus.Information) a MULTI_SZ value containing the requisite device identifiers. The MULFUNC device 
has two children with the (bogus) device identifiers *WCO1104 and *WCO1105. It handles the query in the following way: 

NTSTATUS HandleQueryId(PDEVICE_OBJECT pdo, PIRP Irp) 
  { 
  PPDO_EXTENSION pdx = (PPDO_EXTENSION) pdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  PWCHAR idstring; 
  switch (stack->Parameters.QueryId.IdType) 
    { 
 
  case BusQueryInstanceID: 
    idstring = L"0000"; 
    break; 
 
  case BusQueryDeviceID: 
    if (pdx->flags & CHILDTYPEA) 
      idstring = LDRIVERNAME L"\\*WCO1104"; 
    else 
      idstring = LDRIVERNAME L"\\*WCO1105"; 
    break; 
 
  case BusQueryHardwareIDs: 
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    if (pdx->flags & CHILDTYPEA) 
      idstring = L"*WCO1104"; 
    else 
      idstring = L"*WCO1105"; 
    break; 
  default: 
    return CompleteRequest(Irp, STATUS_NOT_SUPPORTED, 0); 
    } 
  ULONG nchars = wcslen(idstring); 
  ULONG size = (nchars + 2) * sizeof(WCHAR); 
  PWCHAR id = (PWCHAR) ExAllocatePool(PagedPool, size); 
  wcscpy(id, idstring); 
  id[nchars + 1] = 0; 
  return CompleteRequest(Irp, STATUS_SUCCESS, (ULONG_PTR) id); 
  } 

1. The instance identifier is a single string value that uniquely identifies a device of a particular type on a bus. Using a 
constant such as “0000” won’t work if more than one device of the parent type can appear in the computer. 

2. The device identifier is a single string of the form “enumerator\type” and basically supplies two components in the name 
of the hardware registry key. Our ChildA device’s hardware key will be in …\Enum\Mulfunc\*WCO1104\0000, for 
example. 

3. The hardware identifiers are strings that uniquely identify a type of device. In this case, I just made up the pseudo-EISA 
(Extended Industry Standard Architecture) identifiers *WCO1104 and *WCO1105. 

NOTE  
Be sure to use your own name in place of MULFUNC if you construct a device identifier in the manner I showed 
you here. To emphasize that you shouldn’t just copy my sample program’s name in a hard-coded constant, I 
wrote the code to use the manifest constant LDRIVERNAME, which is defined in the DRIVER.H file in the 
MULFUNC project. 

The Windows 98/Me PnP Manager will tolerate your supplying the same string for a device identifier that you supply for a 
hardware identifier, but the Windows XP PnP Manager won’t. I learned the hard way to supply a made-up enumerator name in 
the device ID. Calling IoGetDeviceProperty to get the PDO’s enumerator name leads to a bug check because the PnP Manager 
ends up working with a NULL string pointer. Using the parent’s enumerator name—ROOT in the case of the MULFUNC 
sample—leads to the bizarre result that the PnP Manager brings the child devices back after you delete the parent! 

11.2.5 Handling IRP_MN_QUERY_DEVICE_RELATIONS  
The last PnP request to consider is IRP_MN_QUERY_DEVICE_RELATIONS. Recall that the FDO driver answers this request 
by providing a list of child PDOs for a bus relations query. Wearing its PDO hat, however, the parent driver need only answer a 
request for the so-called target device relation by providing the address of the PDO: 

NTSTATUS HandleQueryRelations(PDEVICE_OBJECT pdo, PIRP Irp) 
  { 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  NTSTATUS status = Irp->IoStatus.Status; 
  if (stack->Parameters.QueryDeviceRelations.Type == TargetDeviceRelation) 
    { 
    PDEVICE_RELATIONS newrel = (PDEVICE_RELATIONS) 
      ExAllocatePool(PagedPool, sizeof(DEVICE_RELATIONS)); 
    newrel->Count = 1; 
    newrel->Objects[0] = pdo; 
    ObReferenceObject(pdo); 
    status = STATUS_SUCCESS; 
    Irp->IoStatus.Information = (ULONG_PTR) newrel; 
    } 
  Irp->IoStatus.Status = status; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return 

11.2.6 Handling IRP_MN_QUERY_INTERFACE  
IRP_MN_QUERY_INTERFACE allows any driver in a PnP device stack to locate a direct-call interface in any lower driver in 
the same stack. A direct-call interface allows a driver to call directly one or more functions in another driver without first 
constructing an IRP. The basic concepts involved in the direct call interface mechanism are these: 
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 A GUID identifies each unique direct-call interface. The interface itself is embodied in a structure that contains pointers 
to the functions that implement the interface’s methods. 

 A driver that wants to use a particular interface originates a QUERY_INTERFACE request that includes the identifying 
GUID and an instance of the interface structure. Thereafter, such a driver can directly call functions pointed to by 
members of the interface structure. When the driver is done using the direct-call interface, it calls the 
InterfaceDereference function to release its reference to the exporting driver. 

 The driver that exports a particular interface looks for QUERY_INTERFACE requests that specify that interface’s GUID. 
To handle such a request, the exporting driver fills in fields in an interface structure provided by the caller with pointers 
to functions inside that driver. That driver also undertakes not to unload from memory until the caller releases its 
reference to the interface. 

I’ll explain these concepts in more detail now. Refer to the MULFUNC sample in the companion content for a fully worked 
out example that uses these concepts in a real driver. 

Identifying an Interface  

You identify a direct-call interface by creating and publishing a GUID and a structure. Conventionally, the symbolic name of 
the GUID will be of the form GUID_XXX_STANDARD, to match the pattern established by the DDK header WDMGUID.H. 
For example, MULFUNC exports a direct-call interface with the following GUID: 

DEFINE_GUID(GUID_RESOURCE_SUBALLOCATE_STANDARD, 0xaa04540, 
  0x6fd1, 0x11d3, 0x81, 0xb5, 0x0, 0xc0, 0x4f, 0xa3, 
  0x30, 0xa6); 

The purpose of the RESOURCE_SUBALLOCATE interface is to permit child devices to divvy up I/O resources that technically 
belong to the parent device; I’ll discuss how this works at the end of this chapter. 

The structure associated with the RESOURCE_SUBALLOCATE interface is as follows (note that INTERFACE is declared in a 
DDK header because it’s the base class of every direct-call interface): 

typedef struct _INTERFACE { 
    USHORT Size; 
    USHORT Version; 
    PVOID Context; 
    PINTERFACE_REFERENCE InterfaceReference; 
    PINTERFACE_DEREFERENCE InterfaceDereference; 
    // interface specific entries go here 
} INTERFACE, *PINTERFACE; 
 
struct _RESOURCE_SUBALLOCATE_STANDARD : public INTERFACE { 
  PGETRESOURCES GetResources; 
  }; 
typedef struct _RESOURCE_SUBALLOCATE_STANDARD 
  RESOURCE_SUBALLOCATE_STANDARD, 
  *PRESOURCE_SUBALLOCATE_STANDARD; 

In other words, the RESOURCE_SUBALLOCATE interface includes a GetResources function as well as the InterfaceReference 
and InterfaceDereference functions from the base class. 

Locating and Using a Direct-Call Interface  

A driver that wants to use a direct-call interface exported by a driver below it in the PnP stack constructs and sends a 
QUERY_INTERFACE request. Table 11-2 indicates the parameters in Parameters.QueryInterface for this request. 

Parameter Meaning 

InterfaceType  Pointer to GUID that identifies the interface 

Size  Size of the interface structure pointed to by the Interface parameter 

Version  Version of the interface structure 

Interface  Address of interface structure to be filled in by the exporting driver 

InterfaceSpecificData  Additional data expected by the driver that exports the interface—depends on the interface 

Table 11-2. Parameters for IRP_MN_QUERY_INTERFACE  

Here’s an example of one way to issue the QUERY_INTERFACE request: 

RESOURCE_SUBALLOCATE_STANDARD suballoc; // <== the eventual result 
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KEVENT event; 
KeInitializeEvent(&event, NotificationEvent, FALSE); 
IO_STATUS_BLOCK iosb; 
PIRP Irp = IoBuildSynchronousFsdRequest(IRP_MJ_PNP, 
  pdx->LowerDeviceObject, NULL, 0, NULL, &event, &iosb); 
PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
stack->MinorFunction = IRP_MN_QUERY_INTERFACE; 
stack->Parameters.QueryInterface.InterfaceType =  
  &GUID_RESOURCE_SUBALLOCATE_STANDARD; 
stack->Parameters.QueryInterface.Size = sizeof(suballoc); 
stack->Parameters.QueryInterface.Version =  
  RESOURCE_SUBALLOCATE_STANDARD_VERSION; 
stack->Parameters.QueryInterface.Interface = &suballoc; 
stack->Parameters.QueryInterface.InterfaceSpecificData = NULL; 
NTSTATUS status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
if (status == STATUS_PENDING) 
  { 
  KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); 
  status = Irp->IoStatus.Status; 
  } 

In this example, we use a synchronous IRP to communicate down the stack. We expect somebody underneath to fill in the 
suballoc structure and complete the IRP with a success status. 

If the interface query succeeds, we can then directly call the functions to which members of the interface structure point. 
Ordinarily, each interface function requires a context argument taken from the returned interface structure, as in this example 
(see the SUBALLOC filter that’s part of the MULFUNC sample): 

PCM_RESOURCE_LIST raw, translated; 
status = suballoc.GetResources(suballoc.Context, pdx->Pdo, &raw, &translated); 

The other arguments to an interface function, and the meaning of the return value, are matters to be decided by the designer of 
the interface. 

When you’re done using a direct-call interface, make the following call: 

suballoc.InterfaceDereference(suballoc.Context); 
Exporting a Direct-Call Interface  

To export a direct-call interface, you need to handle the IRP_MN_QUERY_INTERFACE request. The first step will be to 
examine the interface GUID in the stack parameters to see whether the caller is trying to locate an interface you support. For 
example: 

if (*stack->Parameters.QueryInterface.InterfaceType !=  
  GUID_RESOURCE_SUBALLOCATE_STANDARD) 
  <default handling> 

 

NOTE  
The DDK headers contain operator statements to define C++ comparison operators for GUIDs. If you’re writing 
your driver exclusively in C, use the IsEqualGuid function instead. 

The DDK implies that a bus driver should fail a query for an unknown interface that it receives in its PDO role: “[A] driver 
that handles this IRP should avoid passing the IRP to another device stack to get the requested interface. Such a design would 
create dependencies between the device stacks that are difficult to manage. For example, the device represented by the second 
device stack cannot be removed until the appropriate driver in the first stack dereferences the interface.” I’ll have to disagree 
and advise you to do the contrary in a controller or a multifunction parent driver. There is no other way for a child device 
driver to get access to functionality exported by the real bus. For the record, the parent device stack can’t be removed until all 
child device stacks have been removed anyway, and child drivers should be clever enough to release their references to 
direct-call interfaces as part of their shutdown processing. 

If the interface has evolved through more than one version, the next step in handling the interface query will be to decide 
which version of the interface to provide. A convenient convention is to begin numbering interface versions with 1 and 
increment the version number by 1 each time something important in the interface changes. Provide a manifest constant for the 
current version in the same header file that defines the interface GUID and structure. Callers will specify their desired version 
number in the IRP parameters by using this manifest constant, which effectively pinpoints the version of the structure with 
which they were compiled. You can then negotiate down to the oldest of the requested version and the newest version 
supported by your driver. For example: 
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USHORT version = RESOURCE_SUBALLOCATE_STANDARD_VERSION; 
if (version > stack->Parameters.QueryInterface.Version) 
  version = stack->Parameters.QueryInterface.Version; 
if (version == 0) 
  return CompleteRequest(Irp, Irp->IoStatus.Status); 

If you start your version numbering with 1, the version number 0 can occur only if the caller has asked for version number 0. 
The correct response in that case is to complete the IRP with whatever initial status is in the IRP—this value will usually be 
STATUS_NOT_SUPPORTED. 

The third step is to initialize the interface structure provided by the caller. For example: 

if (stack->Parameters.QueryInterface.Size < 
  sizeof(RESOURCE_SUBALLOCATE_STANDARD)) 
  return CompleteRequest(Irp, STATUS_INVALID_PARAMETER); 
PRESOURCE_SUBALLOCATE_STANDARD ifp = (PRESOURCE_SUBALLOCATE_STANDARD) 
  stack->Parameters.QueryInterface.Interface; 
ifp->Size = sizeof(RESOURCE_SUBALLOCATE_STANDARD); 
ifp->Version = 1; 
ifp->Context = (PVOID) fdx; 
ifp->InterfaceReference = (PINTERFACE_REFERENCE) 
  SuballocInterfaceReference; 
ifp->InterfaceDereference = (PINTERFACE_DEREFERENCE) 
  SuballocInterfaceDereference; 
ifp->GetResources = (PGETRESOURCES) GetChildResources; 

Finally you should reference the interface in such a way that your driver will stay loaded until the caller calls the 
InterfaceDereference function. 

11.2.7 Handling IRP_MN_QUERY_PNP_DEVICE_STATE  
In some situations, you’ll want to suppress the Device Manager display of some or all child devices. To suppress the display, 
add the flag PNP_DEVICE_DONT_DISPLAY_IN_UI to the device flags reported in response to 
IRP_MN_QUERY_PNP_DEVICE_STATE. Apart from this optional step, you should delegate the IRP to the parent stack, as 
described earlier. 

11.3 Handling Power Requests  

Wearing its FDO hat, a controller or a multifunction driver handles IRP_MJ_POWER requests exactly as described in Chapter 
8, with one small exception that I’ll discuss presently in connection with IRP_MN_WAIT_WAKE. Wearing its PDO hat, the 
controller or the driver unconditionally causes to succeed power requests, other than IRP_MN_WAIT_WAKE, for which special 
processing is required. Table 11-3 summarizes these actions. 

PnP Request “FDO Hat” “PDO Hat” 

IRP_MN_POWER_SEQUENCE  Normal Complete 

IRP_MN_QUERY_POWER  Normal Succeed 

IRP_MN_SET_POWER  Normal Special handling 

IRP_MN_WAIT_WAKE  Complete child IRPs; otherwise normal Special handling 

Other  Normal Complete 

In the remainder of this section, I’ll describe the mechanics of handling power requests, insofar as they’re different from 
standard function driver handling. 

The Complete Action  

Wearing the PDO hat, the parent driver completes any power IRP it doesn’t understand with whatever Status and 
Information value are already in the IRP. Part of the Driver Verifier’s initialization for I/O Verification is to make sure 

you do this. 

NTSTATUS DefaultPowerHandler(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PoStartNextPowerIrp(Irp); 
  NTSTATUS status = Irp->IoStatus.Information; 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  return status; 
  } 
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The Succeed Action  

When the parent driver causes an IRP_MJ_POWER request for a child PDO to succeed, it calls PoStartNextPowerIrp and then 
completes the IRP, as in this fragment: 

NTSTATUS HandleQueryPower(PDEVICE_OBJECT pdo, PIRP Irp) 
  { 
  PoStartNextPowerIrp(Irp); 
  return CompleteRequest(Irp, STATUS_SUCCESS, 0); 
  } 

The way this fragment differs from what a function driver would do is that the parent driver, being the end of the line, has no 
one to pass the IRP down to and must, therefore, complete the request. 

You should not repeat an IRP_MN_QUERY_POWER on the parent device stack. Doing so in Windows 98/Me causes the 
Configuration Manager to query the child devices recursively in an infinite loop that eventually exhausts the execution stack. 
In either system, the Power Manager is already aware of the parent-child relationships between devices and orchestrates the 
necessary queries on its own. 

Handling Device IRP_MN_SET_POWER  

An IRP_MN_SET_POWER for a child PDO requires extra work if it specifies a device power state. If it’s possible for the 
parent device to independently control the power state of a child device, the parent driver needs to make that happen. 
Regardless of whether the child device has a power state independent of the parent, the parent driver should call 
PoSetPowerState to notify the Power Manager of the new power state. Then it should call PoStartNextPowerIrp and complete 
the IRP. 

NTSTATUS HandleSetPower(IN PDEVICE_OBJECT pdo, IN PIRP Irp) 
  { 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  if (stack->Parameters.Power.Type == DevicePowerState) 
    { 
    <set child power level> 
    PoSetPowerState(pdo, DevicePowerState, 
      stack->Parameters.Power.State); 
    } 
  PoStartNextPowerIrp(pdo); 
  CompleteRequest(Irp, STATUS_SUCCESS, 0); 
  <possibly change parent power level> 
  return STATUS_SUCCESS; 
  } 

In addition, the parent driver might want to change the power level of the parent device to the lowest level consistent with the 
power levels of all the child devices. For example, if all child devices are in the D3 state, it’s likely that the parent device 
should be in D3 as well. If any child device is in the D0 state, it’s likely that the parent device should be in D0 as well. Note 
that MULFUNC doesn’t illustrate this behavior. 

Handling IRP_MN_WAIT_WAKE  

A child device’s system wake-up feature will likely depend on the parent device having wake-up capability too. For this reason, 
a controller or a multifunction driver has additional responsibilities for handling IRP_MN_WAIT_WAKE that an ordinary 
function driver wouldn’t have. 

When a parent driver receives an IRP_MN_WAIT_WAKE for a child PDO, it should take the following actions: 

 If the device capabilities indicate that the parent device is incapable of waking the system under any circumstances, the 
parent should cause the request to fail with STATUS_NOT_SUPPORTED. (This is what MULFUNC does.) 

 If an IRP_MN_WAIT_WAKE is already outstanding for the same child device, the parent should have the new request fail 
with STATUS_DEVICE_BUSY. 

 If the child device is already in so low a power state that it couldn’t wake the system, or if the device can’t wake the 
system from the power state specified in the IRP, the parent driver should cause the IRP to fail with 
STATUS_INVALID_DEVICE_STATE. Strictly speaking, the function driver shouldn’t originate a WAIT_WAKE request if 
either of these predicates is true, but it’s still up to the parent driver to enforce these rules. 

 Otherwise, the parent driver should mark the IRP pending, cache the IRP in a cancel-safe way, and return 
STATUS_PENDING. You can, for example, adapt the I/O control (IOCTL) caching scheme discussed in Chapter 9, or 
you can use a cancel-safe queue (see Chapter 5) as a parking place. This case will be the normal one for a device that 
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actually supports wake-up. 

In the last case, the parent driver should also originate its own WAIT_WAKE request on the parent device stack if it hasn’t 
already done so. In this respect, the parent driver is simply doing what any wake-up-capable function driver would do except 
that it treats the pendency of a child WAIT_WAKE as an additional trigger for sending its own IRP. 

If the parent driver’s WAIT_WAKE subsequently completes with a success status, the parent should complete one or more of 
the outstanding child WAIT_WAKE requests. If the parent can determine that a particular child woke up, the parent should 
complete just that child’s IRP. Otherwise, it should complete the IRPs belonging to all children. This step ensures that affected 
child function drivers handle the wake-up signal appropriately. 

If the parent’s WAIT_WAKE subsequently completes with an error, the parent driver should ordinarily complete all child 
WAIT_WAKE requests with the same code. This advice sounds like a more all-encompassing rule than it really is. Only two 
failure codes should occur in practice. STATUS_CANCELLED means that the parent driver itself has decided to cancel its 
outstanding WAIT_WAKE in preparation for shutting down or because the end user has disabled the parent device’s wake-up 
feature. STATUS_INVALID_DEVICE_STATE indicates that the system or parent device power state is too low to support 
wake-up. In either case, the parent should alert all children that their own wake-up features are being disabled by causing their 
WAIT_WAKE requests to fail. 

Case Study in Multifunction Wake-Up 
I once wrote a driver for the standard USB SmartCard reader (CCID) class. The CCID specification allows for 
multiple card slots, and the natural way to implement that functionality is by means of a multifunction driver 
that creates multiple, identical, child SmartCard reader devices. Many reader manufacturers decided to add 
system wake-up to their feature set, such that inserting or removing a card would bring the computer out of 
standby.  

I deemed it unlikely that an end user would want to exercise independent control over each of the slots in a 
multislot reader. Accordingly, I decided to hide the child devices in the Device Manager using the technique 
described earlier in this chapter. Consequently, the Device Manager property page for the parent device would 
be the only way for the end user to control whether the wake-up feature was enabled or disabled. 

In this driver, then, the primary responsibility for wake-up rested with the parent driver in its FDO role. The child 
function driver (which was actually embedded in the same executable file as the parent driver) went through 
the motions of creating and handling WAIT_WAKE requests, but the parent driver essentially ignored these 
requests beyond simply caching and completing them. 

The only quirk in this driver related to how the child driver picked a power state. Since the standard Device 
Manager hookup for enabling the children’s wake-up feature was missing, the child driver had to find out 
through a back door that the parent was enabled for wake-up and select a compatible device power state. 
Because I decided to package the child function driver in the same executable with the parent driver, this was 
easy to arrange. 

11.4 Handling Child Device Resources  

If your device is a controller type, the child devices that plug in to it presumably claim their own I/O resources. If you have an 
automated way to discover the devices’ resource requirements, you can return a list of them in response to an 
IRP_MN_QUERY_RESOURCE_REQUIREMENTS request. If there is no automated way to discover the resource requirements, 
the child device’s INF file should have a LogConfig section to establish them. 

If you’re dealing with a multifunction device, chances are that the parent device claims all the I/O resources that the child 
functions use. If the child functions have separate WDM drivers, you have to devise a way to separate the resources by 
function and let each function driver know which ones belong to it. This task is not simple. The PnP Manager normally tells a 
function driver about its resource assignments in an IRP_MN_START_DEVICE request. (See the detailed discussion in Chapter 
7.) There’s no normal way for you to force the PnP Manager to use some of your resources instead of the ones it assigns, 
though. Note that responding to a requirements query or a filter request doesn’t help because those requests deal with 
requirements that the PnP Manager will then go on to satisfy using new resources. 

Microsoft’s MF.SYS driver deals with resource subdivision by using some internal interfaces with the system’s resource 
arbitrators that aren’t accessible to us as third-party developers. There are two different ways of subdividing resources: one that 
works in Windows XP and another one that works in Windows 98/Me. Since we can’t do what MF.SYS does, we need to find 
some other way to suballocate resources owned by the parent device. 

If you can control all of the child device function drivers, your parent driver can export a direct-call interface. In this case, 
child drivers obtain a pointer to the interface descriptor by sending an IRP_MN_QUERY_INTERFACE request to the parent 
driver. They call functions in the parent driver at start device and stop device time to obtain and release resources that the 
parent actually owns. 

If you can’t modify the function drivers for your child devices, you can solve the resource subdivision problem by installing a 
tiny upper filter—see Chapter 16—above each of the child device’s FDOs. The only purpose of the filter is to plug a list of 
assigned resources in to each IRP_MN_START_DEVICE. The filter can communicate via a direct-call interface with the parent 
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driver. MULFUNC actually works this way, and you can study it to learn more about the mechanics. 
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Chapter 12  

12 The Universal Serial Bus  

End user convenience is the keynote of the universal serial bus (USB). The Plug and Play (PnP) concept has simplified the 
process of installing certain types of hardware on existing PCs. However, configuration issues continue to plague end users 
with respect to legacy devices such as serial and parallel ports, keyboards, and mice. Port availability is one of the factors that 
have historically limited proliferation of peripherals, including modems, answering machines, scanners, and personal digital 
assistants. USB helps solve these problems by providing a uniform method of connecting a potentially large number of 
self-identifying devices through a single PC port. 

Although this book concerns software, a discussion of some of the electrical and mechanical aspects of USB is in order 
because they’re important to software developers. From the end user’s point of view, USB’s main feature is the use by every 
device of an identical 4-conductor wire with a standardized plug that fits into a socket on the back of the PC or on a hub device 
plugged in to the PC. Furthermore, you can attach or remove USB devices at will without explicitly opening or closing the 
applications that use them and without worrying about electrical damage. 

This chapter covers two broad topics. In the first part of the chapter, I’ll describe the programming architecture of USB. This 
architecture encompasses several ideas, including a hierarchical method for attaching devices to a computer, a generic scheme 
for power management, and a standard for self-identification that relies on a hierarchy of descriptors on board the hardware. 
The USB architecture also employs a scheme for subdividing fixed-duration frames and microframes into packets that convey 
data to and from devices. Finally, USB allows for four different ways of transporting data between the host computer and 
endpoints on devices. One method, named isochronous, permits a fixed amount of data to be moved without error correction at 
regular intervals—possibly as frequently as three times in every microframe. The other methods, named control, bulk, and 
interrupt, allow data to be transmitted with automatic error correction. 

In the second part of this chapter, I’ll describe the additional features of a Windows Driver Model driver for a USB device over 
and above the features you already know about. Rather than communicate directly with hardware by using hardware 
abstraction layer (HAL) function calls, a USB driver relies heavily on the bus driver and a kernel-mode library named 
USBD.SYS. To send a request to its device, the driver creates a USB request block (URB), which it submits to the bus driver. 
Configuring a USB device, for example, requires the driver to submit several URBs for reading descriptors and sending 
commands. The bus driver in turn schedules requests onto the bus according to demand and available bandwidth. 

The ultimate source for information about USB is the official specification, which was at revision level 2.0 when this book 
went to press. The specification and various other documents produced by the USB committee and its working groups were 
available on line at http://www.usb.org/developers/. 

Note on Sample Programs 
Anchor Chips, Incorporated, kindly provided me one of their EZ-USB development kits that I used to develop 
the sample drivers for the first edition. Anchor Chips was subsequently acquired by Cypress Semiconductor 
(www.cypress.com). The Cypress Semiconductor USB chip set revolves around a modified 8051 microprocessor 
and additional core logic to perform some of the low-level protocol functions mandated by the USB specification. 
The development board also contains additional external memory, a UART and serial connector, a set of push 
buttons, and an LED readout to facilitate development and debugging of 8051 firmware using Cypress 
Semiconductor’s software framework. One of the key features of the Cypress Semiconductor chip set is that you 
can download firmware over the USB connection easily. For a programmer like me with a phobia for hardware 
in general and EEPROM programming in particular, that feature is a godsend.  

The USB sample drivers in the companion content illustrate the simplest possible USB devices and stand alone 
as examples of how to perform various tasks. If you happen to have a Cypress Semiconductor development kit, 
however, you can also try out these samples with real firmware. Each sample contains a WDM driver in a SYS 
subdirectory, a MicrosoftWin32 test program in a TEST subdirectory, and a firmware program in an EZUSB 
directory. You can follow the directions in the HTM files included with each sample to build these components or 
simply to install the prebuilt versions that are in the companion content. 

12.1 Programming Architecture  

The authors of the USB specification anticipated that programmers would need to understand how to write host and device 
software without necessarily needing or wanting to understand the electrical characteristics of the bus. Chapter 5, “USB Data 
Flow Model,” and Chapter 9, “USB Device Framework,” of the specification describe the features most useful to driver 
authors. In this section, I’ll summarize those chapters. 

http://www.usb.org/developers/
http://www.cypress.com/


- 302 - The Universal Serial Bus | Chapter 12 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

12.1.1 Device Hierarchy  
Figure 12-1 illustrates the topology of a simple USB setup. A host controller unit connects to the system bus in the same way 
other I/O devices might. The operating system communicates with the host controller by means of I/O ports or memory 
registers, and it receives event notifications from the host controller through an ordinary interrupt signal. The host controller in 
turn connects to a tree of USB devices. One kind of device, called a hub, serves as a connection point for other devices. The 
host controller includes a root hub. Hubs can be daisy chained together to a maximum depth defined by the USB specification. 
Currently up to five hubs can be chained from the root hub, for an overall tree depth of seven. Other kinds of devices, such as 
cameras, mice, keyboards, and so on, plug in to hubs. For the sake of precision, USB uses the term function to describe a 
device that isn’t a hub. The specification currently allows for up to 127 functions and hubs to be attached to the bus. 

Figure 12-1. Hierarchy of USB devices.  

High-Speed, Full-Speed, and Low-Speed Devices  

The USB specification categorizes devices by communication speed. A USB 2.0 controller drives the bus at 480 megabits per 
second. Devices (both hubs and functions) can operate at high speed (480 megabits per second), full speed (12 megabits per 
second), or low speed (1.5 megabits per second). In USB 2.0, hubs are responsible for communicating with full-speed and 
low-speed devices using a scheme that interferes as little as possible with the high-speed signaling employed by the bus and 
high-speed devices. 

The previous version of the USB specification (1.1) provided just for full-speed and low-speed devices. Communication 
normally occurs on a 1.1 bus at full speed, and hubs normally don’t send data to low-speed devices. The operating system 
prefaces any message destined for a low-speed device with a special preamble packet that causes the hubs to temporarily 
enable the low-speed devices. 

Power  

The USB cable carries power as well as data signals. Each hub can supply electrical power to the devices attached to it and, in 
the case of subsidiary hubs, to downstream devices as well. USB imposes limits on how much power a bus-powered device 
can consume. These limits vary depending on whether the device is plugged in to a powered hub, how far the device is from 
the nearest powered hub, and so on. In addition, USB allows devices to operate in a suspended state and consume very little 
power—just enough to support wake-up and configuration signalling. Instead of relying on bus power, you can build 
independently powered hubs and devices. (In fact, the Windows Hardware Quality Lab (WHQL) accepts bus-powered hub 
devices for testing only when they’re part of a composite device rather than being real hubs with ports for plugging devices in 
to.) 

USB devices are able to awaken the system from a low-power state. When the system goes to low power, the operating system 
places the USB in the low-power state as well. A device possessing an enabled remote wake-up feature can later signal 
upstream to awaken upstream hubs, the USB host controller, and eventually the entire system. 

USB device designers should be aware of some limitations on wake-up signalling. First, remote system wake-up works only on 
a computer with an Advanced Configuration and Power Interface (ACPI)-enabled BIOS. Older systems support either 
Advanced Power Management (APM) or no power-management standard at all. I’ve also found tremendous variability among 
PCs in their ability to support USB wake-up. On a trip to a computer superstore in mid-2002, I found only one notebook 
computer that would respond to a USB device’s wake-up signal. I know of no principled way except by experimentation to 
find out when a given computer and operating system combination will work in this regard. 
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USB hubs can support a power-management feature called selective suspend. This feature allows a hub to suspend ports 
individually and has the overall purpose of facilitating power management in battery-operated devices. Windows XP supports 
this feature by means of a special I/O control (IOCTL) that I’ll discuss later in this chapter. 

12.1.2 What’s in a Device?  
In general, each USB device can have one or more configurations that govern how it behaves. See Figure 12-2. Configurations 
of a single device can differ in their power consumption, their ability to remotely wake the computer, and in their populations 
of interfaces. Microsoft drivers invariably work with just the first configuration of a device. The Microsoft support for 
composite devices won’t engage if the device has multiple configurations. Consequently, multiconfiguration devices seem to 
be rare in practice, and Microsoft discourages people from designing new ones. I’ve heard of just these few scenarios in which 
multiple configurations would make sense: 

 An Integrated Services Digital Network (ISDN) communications device that presents either two 56-Kb channels or one 
128-Kb channel 

 A device that presents a simple configuration for use by the BIOS and a more complex one for use by Windows drivers 

 A trackball that can be configured as either a mouse or a joystick 

Figure 12-2. Device configurations, interfaces, and endpoints.  

Each configuration of a device embodies one or more interfaces that prescribe how software should access the hardware. This 
concept of an interface is similar to the concept I discussed in Chapter 2 in connection with naming devices. That is, devices 
that support the same interface are essentially interchangeable in terms of software because they respond to the same 
commands in the same specified way. Also, interfaces frequently have alternate settings that correspond to different bandwidth 
requirements. 

Figure 12-3. Layered model for USB communication.  
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A device interface exposes one or more endpoints, each of which serves as a terminus for a communications pipe. Figure 12-3 
diagrams a layered communication model that illustrates the role of a pipe and an endpoint. At the lowest level, the USB wire 
connects the host bus controller to the bus interface on a device. At the second level, a control pipe connects system software to 
a logical device. At the third and highest level, a bundle of pipes connects client software with the collection of interfaces that 
constitutes the device’s function. Information actually flows vertically up and down both sides of the diagram, but it’s useful to 
think of the pipes as carrying information horizontally between the corresponding layers. 

A set of drivers provided by Microsoft occupies the lower edge of the system software box in the figure. These drivers include 
a host controller driver (USBOHCI.SYS, USBUHCD.SYS, or USBEHCI.SYS), a hub driver (USBHUB.SYS), and a library 
used by all the system and client drivers (USBD.SYS). For convenience, I’ll lump all of these drivers together under the name 
parent driver. Collectively, these drivers manage the hardware connection and the mechanics of communicating over the 
various pipes. WDM drivers, such as the ones you and I might write, occupy the upper edge of the system software box. 
Broadly speaking, the job of a WDM driver is to translate requests from client software into transactions that the parent driver 
can carry out. Client software deals with the actual functionality of the device. For example, an image-rendering application 
might occupy the client software slot opposite a still-image function such as that of a digital camera. 

12.1.3 Information Flow  
USB defines four methods of transferring data, as summarized in Table 12-1. The methods differ in the amount of data that can 
be moved in a single transaction—see the next section for an explanation of the term transaction—in whether any particular 
periodicity or latency can be guaranteed, and in whether errors will be automatically corrected. Each method corresponds to a 
particular type of endpoint. In fact, endpoints of a given type (that is, control, bulk, interrupt, or isochronous) always 
communicate with the host by using the corresponding transfer type. 

Transfer 
Type 

Description Lossless? Latency Guarantee? 

Control 
Used to send and receive structured information of a 
control nature 

Yes Best effort 

Bulk Used to send or receive blocks of unstructured data Yes No 

Interrupt Like a bulk pipe but includes a maximum latency Yes 
Polled at guaranteed 
minimum rate 

Isochronous 
Used to send or receive blocks of unstructured data with 
guaranteed periodicity 

No 
Read or written at regular 
intervals 

Table 12-1. Data Transfer Types  

Endpoints have several attributes in addition to their type. One endpoint attribute is the maximum amount of data that the 
endpoint can provide or consume in a single transaction. Table 12-2 indicates the maximum values for each endpoint type for 
each speed of device. In general, any single transfer can involve less than the maximum amount of data that the endpoint is 
capable of handling. Another attribute of an endpoint is its direction, described as either input (information moves from the 
device to the host) or output (information moves from the host to the device). Finally, each endpoint has a number that 
functions along with the input/output direction indicator as the address of the endpoint. 

Transfer Type High Speed Full Speed Low Speed 

Control 64 8, 16, 32, or 64 8 

Bulk ≤ 512 8, 16, 32, or 64 NA (Low-speed devices can’t have bulk endpoints.) 

Interrupt ≤ 1024 ≤ 64 ≤ 8 

Isochronous ≤ 3072 ≤ 1023 NA (Low-speed devices can’t have isochronous endpoints.) 

Table 12-2. Allowable Endpoint Maximum Packet Sizes  

USB uses a polling protocol in which the host requests the device to carry out some function on a more or less regular basis. 
When a device needs to send data to the host, the host must somehow note this and issue a request to the device to send the 
data. In particular, USB devices don’t interrupt the host computer in the traditional sense. In place of an asynchronous interrupt, 
USB provides interrupt endpoints that the host polls periodically. The host polls interrupt and isochronous endpoints at a 
frequency specified by an option in the endpoint descriptor, as follows: 

 For a USB 2.0 device operating at high speed, the polling interval, bInterval, must be in the range 1 through 16, inclusive, 
and specifies polling every 2bInterval-1 microframes. 

 For a USB 2.0 device operating at full speed, the polling interval must be in the range 1 through 16, inclusive, and 
specifies polling every 2bInterval-1 frames. 

 For a USB 1.1 device operating at full speed, an isochronous endpoint must specify a polling interval of 1 and an 
interrupt endpoint can specify a polling interval of 1 through 255, inclusive. Note that a USB 2.0 host driver need not 
distinguish between 2.0 and 1.1 devices when interpreting the polling interval for an isochronous device, since 21-1 == 1. 

 For a USB 1.1 device operating at low speed, an interrupt endpoint must specify a polling interval of 10 through 255. 
There are no isochronous endpoints in a low-speed device. 
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Information Packaging  

When a client program sends or receives data over a USB pipe, it first calls a Win32 API that ultimately causes the function 
driver (that’s us) to receive an I/O request packet (IRP). The driver’s job is to direct the client request into a pipe ending at the 
appropriate endpoint on the device. It submits the requests to the bus driver, which breaks the requests into transactions. The 
bus driver schedules the transactions for presentation to the hardware. Information flows on a USB 2.0 bus in microframes that 
occur once every 125 microseconds and on a USB 1.1 bus in frames that occur once every millisecond. The bus driver must 
correlate the duration of all outstanding transactions so as to fit them into frames and microframes. Figure 12-4 illustrates the 
result of this process. 

Figure 12-4. Transaction and frame model for information flow.  

When a host communicates over a USB 2.0 bus to a full-speed or low-speed device, the transaction translation feature of a 
hub provides intermediate buffering to allow the upstream bus (that is, the bus on the host side of the hub) to continue running 
at high speed. In effect, a USB 2.0 hub operates full-speed and low-speed downstream ports (that is, ports on the side of the 
hub away from the host) as a USB 1.1 bus, with frames scheduled every millisecond. 

When a host communicates over a USB 1.1 bus to a low-speed device, it introduces a special preamble packet to switch the 
bus signalling to low speed for the duration of a single transaction. Except at these times, low-speed devices are out of the 
signalling circuit. 

In USB, a transaction has one or more phases. A phase is a token, data, or handshake packet. Depending on the type, a 
transaction consists of a token phase, an optional data phase, and an optional handshake phase, as shown in Figure 12-5. 
During the token phase, the host transmits a packet of data to all currently configured devices. The token packet includes a 
device address and (often) an endpoint number. Only the addressed device will process the transaction; devices neither read 
nor write data on the bus for the duration of transactions addressed to other devices. During the data phase, data is placed on 
the bus. For output transactions, the host puts data on the bus and the addressed device consumes it. For input transactions, the 
roles are reversed and the device places data on the bus for consumption by the host. During the handshake phase, either the 
device or the host places a packet on the bus that provides status information. When a device provides the handshake packet, it 
can send an ACK packet to indicate successful receipt of information, a NAK packet to indicate that it’s busy and didn’t attempt 
to receive information, or a STALL packet to indicate that the transaction was correctly received but logically invalid in some 
way. When the host provides the handshake, it can send only an ACK packet. 

Figure 12-5. Phases of a bus transaction.  

USB 2.0 uses an additional handshaking packet for output operations to bulk endpoints, called NYET. This is either the Russian 
word for no or a contraction of not yet. NYET is part of a flow-control scheme called PING, and it means that the endpoint 
cannot accept another full packet. The host is expected to defer sending additional output for a period of time governed by the 
endpoint’s bInterval attribute (which was not used for bulk endpoints in USB 1.1). The purpose of the PING protocol and the 
NYET handshake is to avoid tying up the bus with data packets that are going to be NAK’ed by a busy device. 

You’ll notice that there’s no handshake packet that means, “I found a transmission error in this transaction.” Whoever is 
waiting for an acknowledgment is expected to realize that lack of acknowledgment implies an error and to retry the transaction. 
The USB designers believe that errors will be infrequent, by the way, which means that any occasional delay because of retries 
won’t have a big effect on throughput. 
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More About Device Addressing 
The previous text says that all configured devices receive the electrical signals associated with every 
transaction. This is almost true, but a true renaissance programmer should know another detail. When a USB 
device first comes on line, it responds to a default address (which happens to be numerically 0, but you don’t 
need to know that). Certain electrical signalling occurs to alert the host bus driver that a new device has arrived 
on the scene, whereupon the bus driver assigns a device address and sends a control transaction to tell “device 
number 0” what its real address is. From then on, the device answers only to the real address. 

States of an Endpoint  

In general, an endpoint can be in any of the states illustrated in Figure 12-6. In the Idle state, the endpoint is ready to process a 
new transaction initiated by the host. In the Busy state, the endpoint is busy processing a transaction and can’t handle a new 
one. If the host tries to initiate a transaction to a busy endpoint (other than a control endpoint, as described in the next section), 
the device will respond with a NAK handshake packet to cause the host to retry later. Errors that the device detects in its own 
functionality (not including transmission errors) cause the device to send a STALL handshake packet for its current transaction 
and to enter the Stalled state. Control endpoints automatically unstall when they get a new transaction, but the host must send a 
clear feature control request to  any other kind of endpoint before addressing another request to a stalled endpoint. 

Figure 12-6. States of an endpoint.  

Control Transfers  

A control transfer conveys control information to or from a control endpoint on a device. For example, one part of the overall 
process by which the operating system configures a USB device is performing input control transfers to read various descriptor 
structures kept on board the device. Another part of the configuration process involves an output control transfer to establish 
one of the many possible configurations as current and to enable one or more interfaces. Control transfers are lossless in that 
the bus driver retries erroneous transfers up to three times before giving up and reporting an error status to upstream software. 
As indicated in Table 12-2, control endpoints must specify a maximum data transfer length of 8, 16, 32, or 64 bytes. An 
individual transaction can involve less data than the indicated maximum but not more. 

Control transactions are a high priority in USB. A device isn’t allowed to claim business as an excuse to avoid handling a 
control transaction. Moreover, the bus driver reserves up to 10 percent of each frame time (20 percent of each microframe for a 
high-speed device) for control transactions. 

Every device has at least one control endpoint numbered 0 that responds to input and output control transactions. Strictly 
speaking, endpoints belong to interfaces configurations, but endpoint 0 is an exception in that it terminates the default control 
pipe for a device. Endpoint 0 is active even before the device receives its configuration and no matter which other endpoints (if 
any) are available. A device need not have additional control endpoints besides endpoint 0 (although the USB specification 
allows for the possibility) because endpoint 0 can service most control requests perfectly well. If you define a vendor-specific 
request that can’t complete within the frame, however, you should create an additional control endpoint to forestall having your 
on-board handler preempted by a new transaction. 

Each control transfer includes a setup stage, which can be followed by an optional data stage in which additional data moves to 
or from the device, and a status stage, in which the device either responds with an ACK packet or a STALL packet or doesn’t 
respond at all. Figure 12-7 diagrams the setup stage, which includes a SETUP token, a data phase (not to be confused with the 
data stage of the transfer), and a handshake phase. The data and status stages of a control transfer follow the same protocol 
rules as a bulk transfer, as shown in the next subsection. Devices are required to accept control transfers at all times and can 
therefore not respond with NAK to indicate a busy endpoint. Sending an invalid request to a control endpoint elicits a STALL 
response, but the device automatically clears the stall condition when it receives the next SETUP packet. This special case of 
stalling is called protocol stall in the USB specification—see Section 8.5.3.4. 

The SETUP token that prefaces a control transfer consists of 8 data bytes, as illustrated in Figure 12-8. In this and other data 
layout figures, I’m showing data bytes in the order in which they’re transmitted over the USB wire, but I’m showing bits 
within individual bytes starting with the high-order bit. Bits are transmitted over the wire starting with the least-significant bit, 
but host software and device firmware typically work with data after the bits have been reversed. Intel computers and the USB 
bus protocols employ the little-endian data representation, in which the least-significant byte of a multibyte data item occupies 
the lowest address. The 8051 microprocessor used in several USB chip sets, including the Cypress Semiconductor chip set, is 
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actually a big-endian computer. Firmware must therefore take care to reverse data bytes appropriately. 

Figure 12-7. Phases of the setup stage of a control transfer.  

Figure 12-8. Contents of a SETUP token.  

Request Code Symbolic Name Description Possible Recipients 

0 GET_STATUS  Gets status information Any 

1 CLEAR_FEATURE  Clears a two-state feature Any 

2  (Reserved)  

3 SET_FEATURE  Sets a two-state feature Any 

4  (Reserved)  

5 SET_ADDRESS  Sets device address Device 

6 GET_DESCRIPTOR  Gets device, configuration, or string descriptor Device 

7 SET_DESCRIPTOR  Sets a descriptor (optional) Device 

8 GET_CONFIGURATION  Gets current configuration index Device 

9 SET_CONFIGURATION  Sets new current configuration Device 

10 GET_INTERFACE  Gets current alternate setting index Interface 

11 SET_INTERFACE  Enables alternate setting Interface 

12 SYNCH_FRAME  Reports synchronization frame number (Isochronous) Endpoint 

Table 12-3. Standard Device Requests   

Notice in Figure 12-8 that the first byte of a SETUP token indicates the direction of information flow, a request type, and the 
type of entity that is the target of the control transfer. The request types are standard (defined as part of the USB specification), 
class (defined by the USB working group responsible for a given class of device), and vendor (defined by the maker of the 
device). Control requests can be addressed to the device as a whole, to a specified interface, to a specified endpoint, or to some 
other vendor-specific entity on the device. The second byte of the SETUP token indicates which request of the type indicated 
in the first byte is being made. Table 12-3 lists the standard requests that are currently defined. For information about 
class-specific requests, consult the appropriate device class specification. (See the first URL I gave you at the beginning of this 
chapter for information on how to find these specifications.) Device manufacturers are free to define their own vendor-specific 
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request codes. For example, Cypress Semiconductor uses the request code A0h to download firmware from the host. 

NOTE  
Remember that control requests that affect the state of a particular endpoint are sent to a control endpoint and 
not to the endpoint whose state is affected. 

The remainder of the SETUP packet contains a value code whose meaning depends on which request is being made, an index 
value with similarly mutable meaning, and a length field that indicates how many bytes of data are to be transferred during the 
data stage of the control transaction. The index field contains the endpoint or interface number when a control request 
addresses an endpoint or an interface. A 0 value for the data length implies that this particular transaction has no data phase. 

I’m not going to exhaustively describe all of the details of the various standard control requests; you should consult Section 9.4 
of the USB specification for full information. I do want to briefly discuss the concept of a device feature, however. USB 
envisages that any of the addressable entities belonging to a device can have features that can be represented by the state of a 
single bit. Two such features are standardized for all devices, and one additional feature is standardized for controllers, hubs, 
and high-speed-capable functions. 

The DEVICE_REMOTE_WAKEUP feature—a feature belonging to the device as a whole—indicates whether the device 
should use its ability (if any) to remotely wake up the computer when external events occur. Host software (specifically, the 
bus driver) enables or disables this feature by addressing a SET_FEATURE or CLEAR_FEATURE command to the device and 
specifying the value code 1 to designate the wake-up feature. The DDK uses the symbolic name 
USB_FEATURE_REMOTE_WAKEUP for this feature code. 

CAUTION  
Be sure your device really will signal a wake-up before turning on the DEVICE_REMOTE_WAKEUP bit in the 
configuration descriptor. The WHQL tests for USB devices specifically verify that the feature works if it’s 
advertised. 

The ENDPOINT_HALT feature—a feature belonging to an endpoint—indicates whether the endpoint is in the functional stall 
state. Host software can force an endpoint to stall by sending the endpoint a SET_FEATURE command with the value code 0 
to designate ENDPOINT_HALT. The firmware that manages the endpoint might independently decide to stall too. Host 
software (once again, the bus driver) clears the stall condition by sending a CLEAR_FEATURE command with the value code 
0. The DDK uses the symbolic name USB_FEATURE_ENDPOINT_STALL for this feature code. 

Setting the TEST_MODE feature—a feature belonging to the device—places the device in a special test mode to facilitate 
compliance testing. Apart from hubs and controllers, only devices that can operate at high speed support this feature. You don’t 
clear the TEST_MODE feature to exit from test mode; you power cycle the device instead. 

The USB specification doesn’t prescribe ranges of device or endpoint feature codes for vendor use. To avoid possible 
standardization issues later, you should avoid defining device-level or endpoint-level features. Instead, define your own 
vendor-type control transactions. Notwithstanding this advice, later in this chapter I’ll show you a sample driver (FEATURE) 
that controls the 7-segment LED display on the Cypress Semiconductor development board. For purposes of that sample, I 
defined an interface-level feature numbered 42. (USB currently defines a few interface-level features for power management, 
so you wouldn’t want to emulate my example except for learning about how features work.) 

Bulk Transfers  

A bulk transfer conveys up to 512 bytes of data to or from a bulk endpoint on a high-speed device or up to 64 bytes of data to 
or from a bulk endpoint on a full-speed device. Like control transfers, bulk transfers are lossless. Unlike control transfers, bulk 
transfers don’t have any particular guaranteed latency. If the host has room left over in a frame or microframe after 
accommodating other bandwidth reservations, it will schedule pending bulk transfers. 

Figure 12-9 illustrates the phases that make up a bulk transfer. The transfer begins with either an IN or an OUT token that 
addresses the device and the endpoint. In the case of an output transaction, a data phase follows in which data moves from the 
host to the device and then a handshake phase in which the device provides status feedback. If the endpoint is busy and unable 
to accept new data, it generates a NAK packet during the handshake phase—the host will retry the output transaction later. If 
the endpoint is stalled, it generates a STALL packet during the handshake phase—the host must later clear the halt condition 
before retrying the transmission. If the endpoint receives and processes the data correctly, it generates an ACK packet in the 
handshake phase. The only remaining case is the one in which the endpoint doesn’t correctly receive the data for some reason 
and simply doesn’t generate a handshake—the host will detect the absence of any acknowledgment and automatically retry up 
to three times. 

Following the IN token that introduces an input bulk transfer, the device performs one of two operations. If it can, it sends data 
to the host, whereupon the host either generates an ACK handshake packet to indicate error-free receipt of the data or stays 
mute to indicate some sort of error. If the host detects an error, the absence of an ACK to the device causes the data to remain 
available—the host will retry the input operation later on. If the endpoint is busy or halted, however, the device generates a 
NAK or STALL handshake instead of sending data. The NAK indicates that the host should retry the input operation later, and 
the STALL requires the host to eventually send a clear feature command to reset the halt condition. 

High-speed bulk output endpoints use a flow control protocol designed to minimize the amount of bus time wasted in fruitless 
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attempts to send data that the endpoint can’t accept. In USB 1.1, an endpoint sends a NAK regarding a transfer it can’t accept. 
In USB 2.0, however, a high-speed bulk endpoint descriptor’s bInterval value indicates the NAK rate. If this value is 0, the 
endpoint never sends a NAK. Otherwise, it specifies the frequency (in microframes) with which the endpoint can send a NAK 
regarding an output transaction. The host can use a special PING packet to determine whether the endpoint is ready for output, 
and the endpoint can respond with either an ACK or a NAK. After a NAK, the host can then choose to wait bInterval packets 
before sending a PING again. After an ACK, the host sends an output packet. If the endpoint receives this normally, it replies 
with an ACK if it can accept another packet or with a NYET if it cannot. 

Figure 12-9. Phases of a bulk or an interrupt transfer.  

Interrupt Transfers  

An interrupt transfer is similar to a bulk transfer insofar as the operation of the bus and the device is concerned. It moves up to 
1024 bytes (high speed), 64 bytes (full speed), or 8 bytes (low speed) of data losslessly to or from an interrupt endpoint. The 
main difference between interrupt and bulk transfers has to do with latency. An interrupt endpoint specifies a polling interval as 
described earlier in this chapter. The host reserves sufficient bandwidth to make sure of performing an IN or OUT transaction 
directed toward the endpoint at least as frequently as the polling interval. 

NOTE  
USB devices don’t generate asynchronous interrupts: they always respond to a poll. You might need to know 
that the Microsoft host controller drivers effectively round the polling interval specified in an interrupt endpoint 
descriptor down to a power of 2 no greater than 32. For example, an endpoint that specifies a polling interval 
of 31 milliseconds will actually be polled every 16 milliseconds. A specified polling interval between 32 and 255 
milliseconds results in an actual polling interval of 32 milliseconds. 

Isochronous Transfers  

An isochronous transfer moves up to 3072 data bytes to or from a high-speed endpoint during each microframe or up to 1023 
data bytes to or from a full-speed endpoint during every bus frame. Because of the guaranteed periodicity of isochronous 
transfers, they’re ideal for time-sensitive data such as audio signals. The guarantee of periodicity comes at a price, however: 
isochronous transfers that fail because of data corruption don’t get retried automatically—in fact, with an isochronous transfer, 
“late” is just as bad as “wrong,” so there’s no point in doing in a retry. 

An isochronous transaction consists of an IN or OUT token followed by a data phase in which data moves to or from the host. 
No handshake phase occurs because no errors are retried. See Figure 12-10. 
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Figure 12-10. Phases of an isochronous transfer.  

The host reserves up to 80 percent of the bus bandwidth (90 percent in the case of a USB 1.1 bus) for isochronous and interrupt 
transfers. In fact, system software needs to reserve bandwidth in advance to make sure that all active devices can be 
accommodated. In USB 1.1, the available bandwidth translates to approximately 1500 bytes per 1-millisecond frame, or 
roughly 1.5 maximum-size endpoints. In USB 2.0, the available bandwidth translates to about 7400 bytes per 125-microsecond 
microframe, or roughly 2.5 maximum-size endpoints. Taking account of the higher data rate, USB 2.0 has almost 20 times the 
isochronous capacity of USB 1.1. 

12.1.4 Descriptors  
USB devices maintain on-board data structures known as descriptors to allow for self-identification to host software. Table 
12-4 lists the different descriptor types. Each descriptor begins with a 2-byte header containing the byte count of the entire 
descriptor (including the header) and a type code. As a matter of fact, if you ignore the special case of a string 
descriptor—concerning which, see “String Descriptors” a bit further on—the length of a descriptor is implied by its type 
because all descriptors of a given type have the same length. The explicit length is nonetheless present in the header to provide 
for future extensibility. Additional, type-specific data follows the fixed header. 

In the remainder of this section, I’ll describe the layout of each type of descriptor by using the data structures defined in the 
DDK (specifically, in USB100.H). The official rendition of this information is in Section 9.6 of the USB specification. 

Descriptor Type Description 

Device Describes an entire device 

Device Qualifier Device configuration information for the other speed of operation 

Configuration Describes one of the configurations of a device 

Other Speed 
Configuration 

Configuration descriptor for the other speed of operation 

Interface Describes one of the interfaces that’s part of a configuration 

Endpoint Describes one of the endpoints belonging to an interface 

String 
Contains a human-readable Unicode string describing the device, a configuration, an 
interface, or an endpoint 

Table 12-4. Descriptor Types  

Device Descriptors  

Each device has a single device descriptor that identifies the device to host software. The host uses a GET_DESCRIPTOR 
control transaction directed to endpoint 0 to read this descriptor. The device descriptor has the following definition in the 
DDK: 

typedef struct _USB_DEVICE_DESCRIPTOR { 
  UCHAR bLength; 
  UCHAR bDescriptorType; 
  USHORT bcdUSB; 
  UCHAR bDeviceClass; 
  UCHAR bDeviceSubClass; 
  UCHAR bDeviceProtocol; 
  UCHAR bMaxPacketSize0; 
  USHORT idVendor; 
  USHORT idProduct; 
  USHORT bcdDevice; 
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  UCHAR iManufacturer; 
  UCHAR iProduct; 
  UCHAR iSerialNumber; 
  UCHAR bNumConfigurations; 
} USB_DEVICE_DESCRIPTOR, *PUSB_DEVICE_DESCRIPTOR; 

The bLength field in a device descriptor will equal 18, and the bDescriptorType field will equal 1 to indicate that it’s a device 
descriptor. The bcdUSB field contains a version code (in binary-coded decimal) indicating the version of the USB specification 
to which this descriptor conforms. New devices use the value 0x0200 here to indicate conformance with the 2.0 specification, 
whether they support high-speed, full-speed, or low-speed operation. 

The values bDeviceClass, bDeviceSubClass, and bDeviceProtocol identify the type of device. Possible device class codes are 
defined by the USB specification and at the time of this writing include the codes listed in Table 12-5. Individual device class 
working groups within the USB committee define subclass and protocol codes for each device class. For example, the audio 
class has subclass codes for control, streaming, and MIDI streaming interfaces. And the mass storage class defines protocol 
codes for various methods of using endpoints for data transfer. 

You can specify a class for an entire device or at the interface level, but in practice the device class, subclass, and protocol 
codes are often in an interface descriptor rather than in the device descriptor. (The device descriptor contains 0 for these codes 
in such cases.) USB also provides an escape valve for unusual types of devices in the form of the device class code 255. A 
vendor can use this type code to designate a nonstandard device for which the subclass and protocol codes provide the 
vendor-specific description. For example, a device built around the Cypress Semiconductor chip set comes on line with a 
device descriptor having class, subclass, and protocol codes all equal to 255. (The device has an extensive collection of 
endpoints and is also capable of accepting a vendor-specific control request to download firmware that will change the 
personality of the device to something else having its own [new] set of descriptors.) 

The bMaxPacketSize0 field of the device descriptor gives the maximum size of a data packet for a control transfer over 
endpoint 0. There isn’t a separate endpoint descriptor for this endpoint (which every device has to implement), so this field is 
the only place where the number can be presented. Since this field is at offset 7 within the descriptor, the host can always read 
enough of the descriptor to retrieve this value, even if endpoint 0 is capable only of the minimum size transfer (8 bytes). Once 
the host knows how big endpoint 0 transfers can be, it can structure subsequent requests appropriately. 

The idVendor and idProduct fields specify a vendor code and a vendor-specific product identifier for the device. bcdDevice 
specifies a release number (such as 0x0100 for version 1.0) for the device. These three fields determine which driver the host 
software will load when it detects the device. The USB organization assigns vendor codes, and each vendor assigns its own 
product codes. 

Symbolic Name in DDK Header 
Class 
Code 

Description 

USB_DEVICE_CLASS_RESERVED  0 Indicates that class codes are in the interface descriptors 

USB_DEVICE_CLASS_AUDIO  1 
Devices used to manipulate analog or digital audio, voice, 
and other sound-related data (but not including transport 
mechanisms) 

USB_DEVICE_CLASS_COMMUNICATIONS  2 
Telecommunications devices, such as modems, 
telephones, and answering machines 

USB_DEVICE_CLASS_HUMAN_INTERFACE  3 
Human interface devices (HID devices), such as 
keyboards and mice 

USB_DEVICE_CLASS_MONITOR  4 Display monitors 

USB_DEVICE_CLASS_PHYSICAL_INTERFACE  5 
HID devices involving real-time physical feedback, such as 
force-feedback joysticks 

USB_DEVICE_CLASS_POWER  6 
HID devices that perform power management, such as 
batteries, chargers, and so on 

USB_DEVICE_CLASS_PRINTER  7 Printers 

USB_DEVICE_CLASS_STORAGE  8 Mass storage devices, such as disk and CD-ROM 

USB_DEVICE_CLASS_HUB  9 USB hubs 

 10 Communications data 

 11 SmartCard reader 

 12 Content security 

 220 Diagnostic device 

 224 Wireless controller (e.g., Bluetooth) 

 254 
Application-specific (firmware update, Infrared Data 
Association [IrDA] bridge) 

USB_DEVICE_CLASS_VENDOR_SPECIFIC  255 Vendor-defined device class 

Table 12-5. USB Device Class Codes   
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Device Version Numbering 
Microsoft strongly encourages vendors to increment the device version number for each revision of hardware or 
firmware to facilitate downstream software updates. Often a vendor releases a new version of hardware along 
with a revised driver. Also, hardware updates sometimes invalidate software patches or filter drivers that were 
present so as to address earlier hardware bugs. An automatic update mechanism might therefore have trouble 
updating a system if it can’t determine which revision of the hardware it’s working with. 

The iManufacturer, iProduct, and iSerialNumber fields identify string descriptors that provide a human-readable description of 
the manufacturer, the product, and the unit serial number. These strings are optional, and a 0 value in one of these fields 
indicates the absence of the descriptor. If you put a serial number on a device, Microsoft recommends that you make it unique 
for each physical device. If you do so, and if your driver is digitally signed, the end user will be able to move the device around 
to different ports on the same computer and have it recognized as being the same device. 

Lastly, the bNumConfigurations field indicates how many configurations the device is capable of. Microsoft drivers work only 
with the first configuration of a device. I’ll explain later, in “Configuration,” what you might do for a device that has multiple 
configurations. 

Device Qualifier Descriptor  

High-speed-capable USB 2.0 devices can operate at either high speed or full speed. They deliver a device descriptor 
corresponding to the speed at which they are actually operating. They also deliver a Device Qualifier Descriptor that describes 
the device-level information that might be different if the device were operating at the other speed: 

typedef struct _USB_DEVICE_QUALIFIER_DESCRIPTOR { 
  UCHAR bLength; 
  UCHAR bDescriptorType; 
  USHORT bcdUSB; 
  UCHAR bDeviceClass; 
  UCHAR bDeviceSubClass; 
  UCHAR bDeviceProtocol; 
  UCHAR bMaxPacketSize0; 
  UCHAR bNumConfigurations; 
  UCHAR bReserved; 
  } USB_DEVICE_QUALIFIER_DESCRIPTOR, *PUSB_DEVICE_QUALIFIER_DESCRIPTOR; 

Apart from bLength (10) and bDescriptorType (6), all of these fields have exactly the same meaning as in a device descriptor. 
This descriptor doesn’t repeat the vendor, product, device, manufacturer, product, and serial number fields of the device 
descriptor, which is constant for a device for all supported speeds. 

Configuration Descriptors  

Each device has one or more configuration descriptors that describe the various configurations of which the device is capable. 
System software reads a configuration descriptor by performing a GET_DESCRIPTOR control transaction addressed to 
endpoint 0. The DDK defines the configuration descriptor structure as follows: 

typedef struct _USB_CONFIGURATION_DESCRIPTOR { 
  UCHAR bLength; 
  UCHAR bDescriptorType; 
  USHORT wTotalLength; 
  UCHAR bNumInterfaces; 
  UCHAR bConfigurationValue; 
  UCHAR iConfiguration; 
  UCHAR bmAttributes; 
  UCHAR MaxPower; 
} USB_CONFIGURATION_DESCRIPTOR, *PUSB_CONFIGURATION_DESCRIPTOR; 

The bLength and bDescriptorType fields will be 9 and 2, respectively, to indicate a configuration descriptor 9 bytes in length. 
The wTotalLength field contains the total length of this configuration descriptor plus the interface and endpoint descriptors that 
are part of the configuration. In general, the host performs one GET_DESCRIPTOR request to retrieve the 9-byte configuration 
descriptor proper and then anotherGET_DESCRIPTOR request specifying this total length. The second request, therefore, 
transfers the grand unified descriptor. (It’s impossible to retrieve interface and endpoint descriptors except as part of a 
configuration descriptor.) 

The bNumInterfaces field indicates how many interfaces are part of the configuration. The count includes just the interfaces 
themselves, not each alternate setting of an interface. The purpose of this field is to allow for multifunction devices such as 
keyboards that have embedded locator (mouse and the like) functionality. 

The bConfigurationValue field is an index that identifies the configuration. You use this value in a SET_CONFIGURATION 
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control request to select the configuration. The first configuration descriptor for a device has a nonzero value here. (Selecting 
configuration 0 puts the device in an unconfigured state in which only endpoint 0 is active.) 

The iConfiguration field is an optional string descriptor index pointing to a Unicode description of the configuration. The value 
0 indicates the absence of a string description. 

The bmAttributes byte contains a bit mask describing power and perhaps other characteristics of this configuration. See Table 
12-6. The unmentioned bits are reserved for future standardization. A configuration supporting remote wake-up will have the 
remote wake-up attribute set. The high-order 2 bits interact with the MaxPower field of the configuration descriptor to describe 
the power characteristics of the configuration. Basically, every configuration sets the high-order bit (which used to mean the 
device was powered from the bus) and also sets MaxPower to the maximum number of two milliamp power units that it will 
draw from the bus. A configuration that uses some local power will also set the self-powered attribute bit. 

Bit Mask Symbolic Name Description 

80h USB_CONFIG_BUS_POWERED  Obsolete—should always be set to 1 

40h USB_CONFIG_SELF_POWERED  Configuration is self-powered 

20h USB_CONFIG_REMOTE_WAKEUP  Configuration has a remote wake-up feature 

Table 12-6. Configuration Attribute Bits  

Other Speed Configuration Descriptors  

An Other Speed Configuration Descriptor is identical to the corresponding Configuration Descriptor except that it uses a 
different type code—7. A high-speed-capable device supplies this descriptor to describe a configuration as it would appear if 
the device were operating at the other speed of which it is capable. 

Interface Descriptors  

Each configuration has one or more interface descriptors that describe the interface or interfaces that provide device 
functionality. System software can fetch an interface descriptor only as part of a GET_DESCRIPTOR control request that 
retrieves the entire configuration descriptor of which the interface descriptor is a part. The DDK defines the interface 
descriptor structure as follows: 

typedef struct _USB_INTERFACE_DESCRIPTOR { 
  UCHAR bLength; 
  UCHAR bDescriptorType; 
  UCHAR bInterfaceNumber; 
  UCHAR bAlternateSetting; 
  UCHAR bNumEndpoints; 
  UCHAR bInterfaceClass; 
  UCHAR bInterfaceSubClass; 
  UCHAR bInterfaceProtocol; 
  UCHAR iInterface; 
} USB_INTERFACE_DESCRIPTOR, *PUSB_INTERFACE_DESCRIPTOR; 

The bLength and bDescriptorType fields will be 9 and 4, respectively, to indicate an interface descriptor 9 bytes in length. 
bInterfaceNumber and bAlternateSetting are index values that can be used in a SET_INTERFACE control transaction to specify 
activation of the interface. You should number the interfaces within a configuration, and the alternate settings within an 
interface, starting with 0 because system software and firmware will often treat an interface number as an index into an array. 

The bNumEndpoints field indicates how many endpoints—other than 0, which is assumed to always be present—are part of 
the interface. 

The bInterfaceClass, bInterfaceSubClass, and bInterfaceProtocol fields describe the functionality provided by the interface. A 
nonzero class code should be one of the device class codes I discussed earlier, in which case the subclass and protocol codes 
will have the same meaning as well. Zero values in these fields are not allowed at the present time—0 is reserved for future 
standardization. 

Finally, iInterface is the index of a string descriptor containing a Unicode description of the interface. The value 0 indicates 
that no string is present. You’ll want to supply interface string descriptors for a composite device since the parent driver will 
use those strings when enumerating the interfaces as child devices. 

Endpoint Descriptors  

Each interface has zero or more endpoint descriptors that describe the endpoint or endpoints that handle transactions with the 
host. System software can fetch an endpoint descriptor only as part of a GET_DESCRIPTOR control request that retrieves the 
entire configuration descriptor of which the endpoint descriptor is a part. The DDK defines the endpoint descriptor structure as 
follows: 
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typedef struct _USB_ENDPOINT_DESCRIPTOR { 
  UCHAR bLength; 
  UCHAR bDescriptorType; 
  UCHAR bEndpointAddress; 
  UCHAR bmAttributes; 
  USHORT wMaxPacketSize; 
  UCHAR bInterval; 
} USB_ENDPOINT_DESCRIPTOR, *PUSB_ENDPOINT_DESCRIPTOR; 

The bLength and bDescriptorType fields will be 7 and 5, respectively, to indicate an endpoint descriptor of length 7 bytes. 
bEndpointAddress encodes the directionality and number of the endpoint, as illustrated in Figure 12-11. For example, the 
address value 0x82 denotes an IN endpoint numbered 2, and the address 0x02 denotes an OUT endpoint that’s also numbered 2. 
Except for endpoint 0, the USB specification allows you to have two different endpoints that share the same number but 
perform transfers in the opposite direction. Many USB chip sets don’t support this overloading of endpoint number, though. 

Figure 12-11. Bit assignments within an endpoint descriptor’s address field.  

Figure 12-12 illustrates the layout of bits within an endpoint descriptor’s bmAttributes field. Bits 0 through 1 define the 
endpoint type, corresponding to the data transfer types listed in Table 12-1. Bits 2 through 5 define additional attributes for 
isochronous endpoints. 

Figure 12-12. Bit assignments within an endpoint descriptor’s attributes field.  

Figure 12-13. Bit assignments within an endpoint descriptor’s packet size field.  

The wMaxPacketSize value indicates the largest amount of data the endpoint can transfer during one transaction. Consult 
Figure 12-13 for a bit layout of this field. Table 12-2 lists the possible values for this field for each type of endpoint. For 
example, a control or bulk endpoint on a full-speed device specifies the value 8, 16, 32, or 64. High-speed interrupt and 
isochronous endpoints can perform 1, 2, or 3 transactions in a microframe, as indicated by the coding in bits 11 through 12 of 
this field. The additional transactions allow additional data to be transferred in a microframe. See Table 12-7. 
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Number of  
Additional Transactions 

Allowable wMaxPacketSize  
Values (Bits 0-10) 

Total Amount of Data per Microframe 

0 1-1024 ≤1024 

1 513-1024 ≤ 2048 

2 683-1024 ≤ 3072 

Table 12-7. Effect of Additional Transactions on Packet and Transfer Sizes  

Interrupt and isochronous endpoint descriptors specify a polling interval in the bInterval field. As discussed earlier in this 
chapter, this number indicates how often the host should poll the endpoint for a possible data transfer. A high-speed bulk 
endpoint descriptor specifies its NAK rate in the bInterval field. 

String Descriptors  

A device, configuration, or endpoint descriptor contains optional string indexes that identify human-readable strings. The 
strings themselves are stored on the device in Unicode in the form of USB string descriptors. System software can read a string 
descriptor by addressing a GET_DESCRIPTOR control request to endpoint 0. The DDK declares the string descriptor structure 
as follows: 

typedef struct _USB_STRING_DESCRIPTOR { 
  UCHAR bLength; 
  UCHAR bDescriptorType; 
  WCHAR bString[1]; 
} USB_STRING_DESCRIPTOR, *PUSB_STRING_DESCRIPTOR; 

The bLength value is variable, depending on how long the string data is. The bDescriptorType field will be 3 to indicate that 
this is a string descriptor. The bString data contains the string data itself without a null terminator. 

USB devices can support strings in multiple languages. String number 0 is an array of supported language identifiers rather 
than a character string. (The string index 0 used in another descriptor denotes the absence of a string reference. Thus, index 
number 0 is available for this special use.) The language identifiers are of the same LANGID type that Win32 programs use. 
For example, 0x0409 is the code for American English. The USB specification prescribes that a device should return an error 
when asked for a string descriptor for a language that the device doesn’t advertise supporting, so you should read the 
string-zero array before issuing requests for string descriptors. Consult Section 9.6.7 of the USB specification for more 
information about language identifiers. 

Other Descriptors  

USB is an evolving specification, and I can present only a snapshot of its evolution at the time of writing. Many USB class 
specifications define one or more class-specific descriptors that appear within the block of data returned by a request to read a 
configuration descriptor. Discussing these class-specific descriptors is beyond the scope of this work, except to mention that 
class-specific descriptors will follow the interface descriptor to which they apply and precede the endpoint descriptors for that 
interface. 

12.2 Working with the Bus Driver  

In contrast with drivers for devices that attach to traditional PC buses such as Peripheral Component Interconnect (PCI), a USB 
device driver never talks directly to its hardware. Instead, it creates an instance of the data structure known as the USB request 
block, which it then submits to the parent driver. 

You submit USB request blocks (URBs) to the parent driver using an IRP with the major function code 
IRP_MJ_INTERNAL_DEVICE_CONTROL. In some situations, you can directly call a function using the parent driver’s 
direct-call interface. The parent driver in turn schedules bus time in some frame or another to carry out the operation encoded 
in the URB. 

In this section, I’ll describe the mechanics of working with the parent driver to carry out the typical operations a USB function 
driver performs. I’ll first describe how to build and submit a URB. Then I’ll discuss the mechanics of configuring and 
reconfiguring your device. Finally I’ll outline how your driver can manage each of the four types of communication pipes. 

12.2.1 Initiating Requests  
To create a URB, you allocate memory for the URB structure and invoke an initialization routine to fill in the appropriate fields 
for the type of request you’re about to send. Suppose, for example, that you were beginning to configure your device in 
response to an IRP_MN_START_DEVICE request. One of your first tasks might be to read the device descriptor. You might use 
the following snippet of code to accomplish this task: 

USB_DEVICE_DESCRIPTOR dd; 
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URB urb; 
UsbBuildGetDescriptorRequest(&urb,  
  sizeof(_URB_CONTROL_DESCRIPTOR_REQUEST), 
  USB_DEVICE_DESCRIPTOR_TYPE, 0, 0, &dd, NULL, 
  sizeof(dd), NULL); 

We first declare a local variable (named urb) to hold a URB data structure. The URB is declared (in USBDI.H) as a union of 
several substructures, one for each of the requests you might want to make of a USB device. We’re going to be using the 
UrbControlDescriptorRequest substructure of the URB union, which is declared as an instance of struct 
_URB_CONTROL_DESCRIPTOR_REQUEST. Using an automatic variable like this is fine if you know the stack has enough 
room to hold the largest possible URB and if you’ll await completion of the URB before allowing the variable to pass out of 
scope. 

You can, of course, dynamically allocate the memory for a URB from the heap if you want: 

PURB urb = (PURB) ExAllocatePool(NonPagedPool, 
  sizeof(_URB_CONTROL_DESCRIPTOR_REQUEST)); 
if (!urb) 
  return STATUS_INSUFFICIENT_RESOURCES; 
UsbBuildGetDescriptorRequest(urb, ...); 
 
ExFreePool(urb); 

UsbBuildGetDescriptorRequest is documented like a normal service routine, but it’s actually a macro (declared in 
USBDLIB.H) that generates inline statements to initialize the fields of the get descriptor request substructure. The DDK 
headers define one of these macros for most types of URBs you might want to build. See Table 12-8. As is true of preprocessor 
macros in general, you should avoid using expressions that have side effects in the arguments to this macro. 

Helper Macro Type of Transaction 

UsbBuildInterruptOrBulkTransferRequest  Input or output to an interrupt or bulk endpoint 

UsbBuildGetDescriptorRequest  GET_DESCRIPTOR control request for endpoint 0 

UsbBuildGetStatusRequest  GET_STATUS request for a device, an interface, or an endpoint 

UsbBuildFeatureRequest  
SET_FEATURE or CLEAR_FEATURE request for a device, an interface, or an 
endpoint 

UsbBuildSelectConfigurationRequest  SET_CONFIGURATION  

UsbBuildSelectInterfaceRequest  SET_INTERFACE  

UsbBuildVendorRequest  Any vendor-defined control request 

Table 12-8. Helper Macros for Building URBs  

In the preceding code fragment, we specify that we want to retrieve the device descriptor information in a local variable (dd) 
whose address and length we supply. URBs that involve data transfer allow you to specify a nonpaged data buffer in either of 
two ways. You can specify the virtual address and length of the buffer, as I did in the fragment. Alternatively, you can supply a 
memory descriptor list (MDL) for which you’ve already done the probe-and-lock step by calling MmProbeAndLockPages. 

More About URBs 
Internally, the bus driver always uses an MDL to describe data buffers. If you specify a buffer address, the 
parent driver creates the MDL itself. If you happen to already have an MDL, it would be counterproductive to call 
MmGetSystemAddressForMdlSafe and pass the resulting virtual address to the parent driver: the parent driver 
will turn around and create another MDL to describe the same buffer!  

The URB also has a chaining field named Urblink that the parent driver uses internally to submit a series of URBs all at once 
to the host controller driver. The various macro functions for initializing URBs also have an argument in which you can 
theoretically supply a value for this linking field. You and I should always supply NULL because the concept of linked URBs 
hasn’t been fully implemented—trying to link data transfer URBs will lead to system crashes, in fact. 

Sending a URB  

Having created a URB, you need to create and send an internal IOCTL request to the parent driver, which is sitting somewhere 
lower in the driver hierarchy for your device. In many cases, you’ll want to wait for the device’s answer, and you’ll use a 
helper routine like this one: 

NTSTATUS SendAwaitUrb(PDEVICE_OBJECT fdo, PURB urb) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  KEVENT event; 
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  KeInitializeEvent(&event, NotificationEvent, FALSE); 
  IO_STATUS_BLOCK iostatus; 
  PIRP Irp = IoBuildDeviceIoControlRequest 
    (IOCTL_INTERNAL_USB_SUBMIT_URB, pdx->LowerDeviceObject, 
    NULL, 0, NULL, 0, TRUE, &event, &iostatus); 
  PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
  stack->Parameters.Others.Argument1 = (PVOID) urb; 
  NTSTATUS status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
  if (status  == STATUS_PENDING) 
    { 
    KeWaitForSingleObject(&event, Executive, KernelMode, 
      FALSE, NULL); 
    status = iostatus.Status; 
    } 
  return status; 
  } 

This is simply an example of creating and sending a synchronous IRP to another driver (scenario 6 from Chapter 5). The only 
wrinkle is the precise way the URB “letter” is stuffed into the INTERNAL_DEVICE_CONTROL “envelope”: by setting the 
stack Parameters.Others.Argument1 field to point to the URB. 

NOTE  
It bears emphasizing that drivers package URBs into normal IRPs with the major function code 
IRP_MJ_INTERNAL_DEVICE_CONTROL. To provide for an upper filter driver to send its own URBs, every driver 
for a USB device should have a dispatch function that passes this IRP down to the next layer. 

Status Returns from URBs  

When you submit a URB to the USB bus driver, you eventually receive back an NTSTATUS code that describes the result of 
the operation. Internally, the bus driver uses another set of status codes with the typedef name USBD_STATUS. These codes are 
not NTSTATUS codes. 

When the parent driver completes a URB, it sets the URB’s UrbHeader.Status field to one of these USBD_STATUS values. You 
can examine this value in your driver to glean more information about how your URB fared. The URB_STATUS macro in the 
DDK simplifies accessing: 

NTSTATUS status = SendAwaitUrb(fdo, &urb); 
USBD_STATUS ustatus = URB_STATUS(&urb); 
 

There’s no particular protocol for preserving this status and passing it back to an application, however. You’re pretty much free 
to do what you will with it. 

12.2.2 Configuration  
The USB bus driver automatically detects attachment of a new USB device. It then reads the device descriptor structure to 
determine what sort of device has suddenly appeared. The vendor and product identifier fields of the descriptor, together with 
other descriptors, determine which driver needs to be loaded. 

The Configuration Manager calls the driver’s AddDevice function in the normal way. AddDevice does all the tasks you’ve 
already heard about: it creates a device object, links the device object into the driver hierarchy, and so on. The Configuration 
Manager eventually sends the driver an IRP_MN_START_DEVICE Plug and Play request. Back in Chapter 6, I showed you 
how to handle that request by calling a helper function named StartDevice with arguments describing the translated and 
untranslated resource assignments for the device. One piece of good news is that you needn’t worry about I/O resources at all 
in a USB driver because you have none. So you can write a StartDevice helper function with the following skeletal form: 

NTSTATUS StartDevice(PDEVICE_OBJECT fdo) 
  { 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  <configure device> 
  return STATUS_SUCCESS; 
  } 

I glibly said configure device where you’ll write rather a lot of code to configure the hardware. But as I said, you needn’t 
concern yourself with I/O ports, interrupts, direct memory access (DMA) adapter objects, or any of the other resource-oriented 
elements I described in Chapter 7. 
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Where’s the Driver? 
I’ll discuss the mechanics of installing WDM drivers in Chapter 15. It will help to understand some of those 
details right now, however. Let’s suppose that your device has the vendor ID 0x0547 and the product ID 
0x102A. I’ve borrowed the vendor ID belonging to Cypress Semiconductor (with their permission) for purposes 
of this illustration. I’m using the product ID for the USB42 sample (the Answer Device) that you’ll find in the 
companion content.  

USB describes many methods for the operating system to locate a device driver (or set of drivers) based on the 
device, configuration, and interface descriptors on a device. See Universal Serial Bus Common Class 
Specification (Rev. 1.0, December 16, 1997), Section 3.10. My samples all rely on the second-highest priority 
method, whereby the vendor and product identifiers alone determine the driver. 

Confronted with a device having the vendor and product identifiers I just mentioned, the PnP Manager will look 
for a registry entry that contains information about a device named USB\VID_0547&PID_102A. If no such entry 
exists in the registry, the PnP Manager will trigger the new hardware wizard to locate an INF file describing such 
a device. The wizard might prompt the end user for a disk, or it might find the INF file already present on the 
computer. The wizard will then install the driver and populate the registry. Once the PnP Manager locates the 
registry entries, it can dynamically load the driver. That’s where we come in. 

The executive overview of what you need to accomplish in StartDevice is as follows. First you’ll select a configuration for the 
device. If your device is like most devices, it has just one configuration. Once you select the configuration, you choose one or 
more of the interfaces that are part of that configuration. It’s not uncommon for a device to support multiple interfaces, by the 
way. Having chosen a configuration and a set of interfaces, you send a select configuration URB to the bus driver. The bus 
driver in turn issues commands to the device to enable the configuration and interfaces. The bus driver creates pipes that allow 
you to communicate with the endpoints in the selected interfaces and provides handles by which you can access the pipes. It 
also creates handles for the configuration and the interfaces. You extract the handles from the completed URB and save them 
for future use. That accomplished, you’re done with the configuration process. 

Composite Devices 
If your device has one configuration and multiple interfaces, the Microsoft generic parent driver will handle it 
automatically as a composite, or multifunction, device. You supply function drivers for each of the interfaces on 
the device by using INF files that specify the subfunction index along with a vendor and product ID. The generic 
parent driver creates a physical device object (PDO) for each interface, whereupon the PnP Manager loads the 
separate function drivers you’ve provided. When one of these function drivers reads a configuration descriptor, 
the generic parent driver provides an edited version of the descriptor that describes just one interface.  

Refer to Chapter 15 for more information about the possible forms of device identifier in an INF file. 

Reading a Configuration Descriptor  

It’s best to think of a fixed-size configuration descriptor as the header for a variable-length structure that describes a 
configuration, all its interfaces, and all the interfaces’ endpoints. See Figure 12-14. 

Figure 12-14. Structure of a configuration descriptor.  

You must read the entire variable-length structure into a contiguous area of memory because the hardware won’t allow you to 
directly access the interface and endpoint descriptors. Unfortunately, you don’t initially know how long the combined structure 
is. The following fragment of code shows how you can use two URBs to read a configuration descriptor: 

ULONG iconfig = 0; 
URB urb; 
USB_CONFIGURATION_DESCRIPTOR tcd; 
UsbBuildGetDescriptorRequest(&urb, 
  sizeof(_URB_CONTROL_DESCRIPTOR_REQUEST), 
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  USB_CONFIGURATION_DESCRIPTOR_TYPE, 
  iconfig, 0, &tcd, NULL, sizeof(tcd), NULL); 
SendAwaitUrb(fdo, &urb); 
ULONG size = tcd.wTotalLength; 
PUSB_CONFIGURATION_DESCRIPTOR pcd = 
  (PUSB_CONFIGURATION_DESCRIPTOR) ExAllocatePool( 
  NonPagedPool, size); 
UsbBuildGetDescriptorRequest(&urb, 
  sizeof(_URB_CONTROL_DESCRIPTOR_REQUEST), 
  USB_CONFIGURATION_DESCRIPTOR_TYPE, 
  iconfig, 0, pcd, NULL, size, NULL); 
SendAwaitUrb(fdo, &urb); 
 
ExFreePool(pcd); 

In this fragment, we issue one URB to read a configuration descriptor—I specified an index of 0 to get the first one—into a 
temporary descriptor area named tcd. This descriptor contains the length (wTotalLength) of the combined structure, which 
includes configuration, interface, and endpoint descriptors. We allocate that much memory and issue a second URB to read the 
entire descriptor. At the end of the process, the pcd variable points to the whole shebang. (Don’t leave out the error checking as 
I just did—see the code samples in the companion content for examples of how to handle the many errors that might arise in 
this short sequence.) 

TIP  
You read configuration descriptors using a zero-based index. When the bus driver eventually issues a control 
transaction to enable that configuration, it uses the bConfigurationValue from the configuration descriptor. 
Usually, there’s just one configuration descriptor numbered 1 that you read using index 0. Are there any readers 
who aren’t dizzy yet? 

If your device has a single configuration, go ahead to the next step using the descriptor set you’ve just read. Otherwise, you’ll 
need to enumerate the configurations (that is, step the iconfig variable from 0 to 1 less than the bNumConfigurations value in 
the device descriptor) and apply some sort of algorithm to pick from among them. 

Selecting the Configuration  

You eventually have to select a configuration by sending a series of control commands to the device to set the configuration 
and enable the desired interfaces. We’ll be using a function named USBD_CreateConfigurationRequestEx to create the URB 
for this series of commands. One of its arguments is an array of pointers to descriptors for the interfaces you intend to enable. 
Your next step in configuration after settling on the configuration you want to use, therefore, is to prepare this array. 

Reading a String Descriptor 
For reporting or other purposes, you might want to retrieve some of the string descriptors that your device 
might provide. In the USB42 sample, for example, the device contains English-language descriptors for the 
vendor, product, and serial number as well as for the single configuration and interface supported by the device. 
I wrote the following helper function for reading string descriptors:  

NTSTATUS GetStringDescriptor(PDEVICE_OBJECT fdo, UCHAR istring, 
  PUNICODE_STRING s) 
  { 
  NTSTATUS status; 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  URB urb; 
 
  UCHAR data[256]; 
 
  if (!pdx->langid) 
    { 
    UsbBuildGetDescriptorRequest(&urb, 
      sizeof(_URB_CONTROL_DESCRIPTOR_REQUEST),  
      USB_STRING_DESCRIPTOR_TYPE, 
      0, 0, data, NULL, sizeof(data), NULL); 
    status = SendAwaitUrb(fdo, &urb); 
    if (!NT_SUCCESS(status)) 
      return status; 
    pdx->langid = *(LANGID*)(data + 2); 
    } 
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  UsbBuildGetDescriptorRequest(&urb,  
    sizeof(_URB_CONTROL_DESCRIPTOR_REQUEST),  
    USB_STRING_DESCRIPTOR_TYPE, 
    istring, pdx->langid, data, NULL, sizeof(data), NULL); 
  status = SendAwaitUrb(fdo, &urb); 
  if (!NT_SUCCESS(status)) 
    return status; 
 
  ULONG nchars = (data[0] - sizeof(WCHAR)) / sizeof(WCHAR); 
  if (nchars > 257) 
    nchars = 257; 
  PWSTR p = (PWSTR) ExAllocatePool(PagedPool, 
    (nchars + 1) * sizeof(WCHAR)); 
  if (!p) 
    return STATUS_INSUFFICIENT_RESOURCES; 
  RtlCopyMemory(p, data + 2, nchars * sizeof(WCHAR)); 
  p[nchars] = 0; 
  s->Length = (USHORT) (sizeof(WCHAR) * nchars); 
  s->MaximumLength = (USHORT) ((sizeof(WCHAR) * nchars) 
    + sizeof(WCHAR)); 
  s->Buffer = p; 
 
  return STATUS_SUCCESS; 
  } 

The new and interesting part of this function—given that you already know a lot about kernel-mode 
programming if you’ve been reading this book sequentially—is the initialization of the URB to fetch a string 
descriptor. In addition to supplying the index of the string we want to get, we also supply a standard LANGID 
language identifier. This is the same kind of language identifier that you use in a Win32 application. As I 
mentioned earlier, devices can provide strings in multiple languages, and string descriptor 0 contains a list of 
the supported language identifiers. To be sure to always ask for a supported language, I read string 0 the first 
time this routine executes and arbitrarily choose the first language as the one to ask for. In the actual sample 
drivers, the identifier will always be 0x0409, which identifies American English. The parent driver passes this 
language identifier along with the string index as a parameter for the get descriptor request it sends to the 
device. The device itself is responsible for deciding which string to return. 

The output from my GetStringDescriptor function is a UNICODE_STRING that you use in the normal way. You 
would eventually call RtlFreeUnicodeString to release the string buffer. 

I used GetStringDescriptor in the USB42 sample to generate extra debugging output about the device. For 
example, StartDevice contains code similar to this fragment: 

UNICODE_STRING sd; 
if (pcd->iConfiguration  
  && NT_SUCCESS(GetStringDescriptor(fdo, 
  pcd->iConfiguration, &sd))) 
  { 
  KdPrint(("USB42 - Selecting configuration named %ws\n", 
    sd.Buffer)); 
  RtlFreeUnicodeString(&sd); 
  } 

I actually used a macro so that I wouldn’t have to type this same code a bunch of times, but you get the idea. 

Recall that when we read the configuration descriptor, we also read all of its interface descriptors into adjacent memory. This 
memory therefore contains a series of descriptors: a configuration descriptor, an interface descriptor followed by all of its 
endpoints, another interface descriptor followed by all of its endpoints, and so on. One way of choosing interfaces is to parse 
through this collection of descriptors and remember the addresses of the interface descriptors you’re interested in. The bus 
driver provides a routine named USBD_ParseConfigurationDescriptorEx to simplify that task: 

PUSB_INTERFACE_DESCRIPTOR pid; 
pid = USBD_ParseConfigurationDescriptorEx(pcd, StartPosition, 
  InterfaceNumber, AlternateSetting, InterfaceClass, 
  InterfaceSubclass, InterfaceProtocol); 

In this function, pcd is the address of the grand unified configuration descriptor. StartPosition is either the address of the 
configuration descriptor (the first time you make this call) or the address of a descriptor at which you want to begin searching. 
The remaining parameters specify criteria for a descriptor search. The value -1 indicates that you don’t want the corresponding 
criterion to be employed in the search. You can look for the next interface descriptor that has zero or more of these attributes: 

 The given InterfaceNumber 
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 The given AlternateSetting index 

 The given InterfaceClass index 

 The given InterfaceSubclass index 

 The given InterfaceProtocol index 

When USBD_ParseConfigurationDescriptorEx returns an interface descriptor to you, you save it as the InterfaceDescriptor 
member of an element in an array of USBD_INTERFACE_LIST_ENTRY structures, and then you advance past the interface 
descriptor so that you can parse the next one. The array of interface list entries will be one of the parameters to the eventual 
call to USBD_CreateConfigurationRequestEx, so I need to say a little more about it. Each entry in the array is an instance of 
the following structure: 

typedef struct _USBD_INTERFACE_LIST_ENTRY { 
    PUSB_INTERFACE_DESCRIPTOR InterfaceDescriptor; 
    PUSBD_INTERFACE_INFORMATION Interface; 
} USBD_INTERFACE_LIST_ENTRY, *PUSBD_INTERFACE_LIST_ENTRY; 

When you initialize an entry in the array, you set the InterfaceDescriptor member equal to the address of an interface 
descriptor that you want to enable and you set the Interface member to NULL. You define one entry for each interface, and 
then you add another entry whose InterfaceDescriptor is NULL to mark the end. For example, in my USB42 sample, I know in 
advance that only one interface exists, so I use the following code to create the interface list: 

PUSB_INTERFACE_DESCRIPTOR pid =  
  USBD_ParseConfigurationDescriptorEx(pcd, pcd, -1, -1, 
  -1, -1, -1); 
USBD_INTERFACE_LIST_ENTRY interfaces[2] = { 
  {pid, NULL}, 
  {NULL, NULL}, 
  }; 

That is, I parse the configuration descriptor to locate the first (and only) interface descriptor. Then I define a two-element array 
to describe that one interface. 

If you need to enable more than one interface because you’re providing your own composite device support, you’ll repeat the 
parsing call in a loop. For example: 

 
 
ULONG size = (pcd->bNumInterfaces + 1) * 
    sizeof(USBD_INTERFACE_LIST_ENTRY); 
  PUSBD_INTERFACE_LIST_ENTRY interfaces = 
    (PUSBD_INTERFACE_LIST_ENTRY) ExAllocatePool(NonPagedPool, 
    size); 
  RtlZeroMemory(interfaces, size); 
  ULONG i = 0; 
  PUSB_INTERFACE_DESCRIPTOR pid = 
    (PUSB_INTERFACE_DESCRIPTOR) pcd; 
 
  while ((pid = USBD_ParseConfigurationDescriptorEx(pcd, 
    pid, ...))) 
 
    interfaces[i++].InterfaceDescriptor = pid++; 

1. We first allocate memory to hold as many interface list entries as there are interfaces in this configuration, plus one. We 
zero the entire array. Wherever we leave off in filling the array during the subsequent loop, the next entry will be NULL 
to mark the end of the array. 

2. The parsing call includes whatever criteria are relevant to your device. In the first iteration of the loop, pid points to the 
configuration descriptor. In later iterations, it points just past the interface descriptor returned by the preceding call. 

3. Here we initialize the pointer to an interface descriptor. The postincrement of i causes the next iteration to initialize the 
next element in the array. The postincrement of pid advances past the current interface descriptor so that the next iteration 
parses the next interface. (If you call USBD_ParseConfigurationDescriptorEx with the second argument pointing to an 
interface descriptor that meets your criteria, you’ll get back a pointer to that same descriptor. If you don’t advance past 
that descriptor before making the next call, you’re doomed to repeat the loop forever.) 

The next step in the configuration process is to create a URB that we’ll submit—soon, I promise—to configure the device: 
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PURB selurb = USBD_CreateConfigurationRequestEx(pcd, interfaces); 

In addition to creating a URB (to which selurb points at this moment), USBD_CreateConfigurationRequestEx also initializes 
the Interface members of your USBD_INTERFACE_LIST entries to point to USBD_INTERFACE_INFORMATION structures. 
These information structures are physically located in the same memory block as the URB and will, therefore, be released back 
to the heap when you eventually call ExFreePool to return the URB. An interface information structure has the following 
declaration: 

typedef struct _USBD_INTERFACE_INFORMATION { 
  USHORT Length; 
  UCHAR InterfaceNumber; 
  UCHAR AlternateSetting; 
  UCHAR Class; 
  UCHAR SubClass; 
  UCHAR Protocol; 
  UCHAR Reserved; 
  USBD_INTERFACE_HANDLE InterfaceHandle; 
  ULONG NumberOfPipes; 
  USBD_PIPE_INFORMATION Pipes[1]; 
  } USBD_INTERFACE_INFORMATION, *PUSBD_INTERFACE_INFORMATION; 

The array of pipe information structures is what we’re really interested in at this point since the other fields of the structure will 
be filled in by the parent driver when we submit this URB. Each of them looks like this: 

typedef struct _USBD_PIPE_INFORMATION { 
  USHORT MaximumPacketSize; 
  UCHAR EndpointAddress; 
  UCHAR Interval; 
  USBD_PIPE_TYPE PipeType; 
  USBD_PIPE_HANDLE PipeHandle; 
  ULONG MaximumTransferSize; 
  ULONG PipeFlags; 
  } USBD_PIPE_INFORMATION, *PUSBD_PIPE_INFORMATION; 

So we have an array of USBD_INTERFACE_LIST entries, each of which points to a USBD_INTERFACE_INFORMATION 
structure that contains an array of USBD_PIPE_INFORMATION structures. Our immediate task is to fill in the Maximum-
TransferSize member of each of those pipe information structures if we don’t want to accept the default value chosen by the 
parent driver. The default value is USBD_DEFAULT_MAXIMUM_TRANSFER_SIZE, which was equal to PAGE_SIZE in the 
DDK I was using at the time I wrote this book. The value we specify isn’t directly related either to the maximum packet size 
for the endpoint (which governs how many bytes can be moved in a single bus transaction) or to the amount of data the 
endpoint can absorb in a series of transactions (which is determined by the amount of memory available on the device). Instead, 
it represents the largest amount of data we’ll attempt to move with a single URB. This can be less than the largest amount of 
data that an application might send to the device or receive from the device, in which case our driver must be prepared to break 
application requests into pieces no bigger than this maximum size. I’ll discuss how that task can be accomplished later in 
“Managing Bulk Transfer Pipes.” 

The reason that we have to supply a maximum transfer size is rooted in the scheduling algorithm that the host controller 
drivers use to divide URB requests into transactions within bus frames. If we send a large amount of data, it’s possible for our 
data to hog a frame to the exclusion of other devices. We therefore want to moderate our demands on the bus by specifying a 
reasonable maximum size for the URBs that we’ll send at once. 

The code needed to initialize the pipe information structures is something like this: 

for (ULONG ii = 0; ii < <number of interfaces>; ++ii) 
  { 
  PUSBD_INTERFACE_INFORMATION pii = interfaces[ii].Interface; 
  for (ULONG ip = 0; ip < pii->NumberOfPipes; ++ip) 
    pii->Pipes[ip].MaximumTransferSize = <some constant>; 
  } 

 

NOTE  
The USBD_CreateConfigurationRequestEx function initializes the MaximumTransferSize member of each pipe 
information structure to USBD_DEFAULT_MAXIMUM_TRANSFER_SIZE and the PipeFlags member to 0. Bear 
this in mind when you look at older driver samples and when you write your own driver. 

Once you’ve initialized the pipe information structures, you’re finally ready to submit the configuration URB: 
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SendAwaitUrb(fdo, selurb); 

Finding the Handles  

Successful completion of the select configuration URB leaves behind various handle values that you should record for later 
use: 

 The UrbSelectConfiguration.ConfigurationHandle member of the URB is a handle for the configuration. 

 The InterfaceHandle member of each USBD_INTERFACE_INFORMATION structure contains a handle for the interface. 

 Each of the USBD_PIPE_INFORMATION structures has a PipeHandle for the pipe ending in the corresponding 
endpoint. 

For example, the USB42 sample records two handle values (in the device extension): 

typedef struct _DEVICE_EXTENSION { 
 
  USBD_CONFIGURATION_HANDLE hconfig; 
  USBD_PIPE_HANDLE hpipe; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
pdx->hconfig = selurb->UrbSelectConfiguration.ConfigurationHandle; 
pdx->hpipe = interfaces[0].Interface->Pipes[0].PipeHandle; 
ExFreePool(selurb); 

At this point in the program, the select configuration URB is no longer needed and can be discarded. 

Shutting Down the Device  

When your driver receives an IRP_MN_STOP_DEVICE request, you should place the device in its unconfigured state by 
creating and submitting a select configuration request with a NULL configuration pointer: 

URB urb; 
UsbBuildSelectConfigurationRequest(&urb, 
  sizeof(_URB_SELECT_CONFIGURATION), NULL); 
SendAwaitUrb(fdo, &urb); 

12.2.3 Managing Bulk Transfer Pipes  
The companion content has two sample programs that illustrate bulk transfers. The first and simplest is named USB42. It has 
an input bulk endpoint that delivers back the constant value 42 each time you read it. (I call this the Answer device because the 
number 42 is Douglas Adams’s answer to the Ultimate Question of Life, the Universe and Everything in The Hitchhiker’s 
Guide to the Galaxy.) The code to do the reading is as follows: 

URB urb; 
UsbBuildInterruptOrBulkTransferRequest(&urb, 
  sizeof(_URB_BULK_OR_INTERRUPT_TRANSFER), 
  pdx->hpipe, Irp->AssociatedIrp.SystemBuffer, NULL, cbout, 
  USBD_TRANSFER_DIRECTION_IN │ USBD_SHORT_TRANSFER_OK, NULL); 
status = SendAwaitUrb(fdo, &urb); 

This code runs in the context of the handler for a DeviceIoControl call that uses the buffered method for data access, so the 
SystemBuffer field of the IRP points to the place to which data should be delivered. The cbout variable is the size of the data 
buffer we’re trying to fill. 

There’s not much to explain about this request. You indicate with a flag whether you’re reading 
(USBD_TRANSFER_DIRECTION_IN) or writing (USBD_TRANSFER_DIRECTION_OUT) the endpoint. You can optionally 
indicate with another flag bit (USBD_SHORT_TRANSFER_OK) whether you’re willing to tolerate having the device provide 
less data than the maximum for the endpoint. The pipe handle is something you capture at IRP_MN_START_DEVICE time in 
the manner already illustrated. 

Design of the LOOPBACK Sample  

The LOOPBACK sample is considerably more complicated than USB42. The device it manages has two bulk transfer 
endpoints, one for input and another for output. You can feed up to 4096 bytes into the output pipe, and you can retrieve what 
you put in from the input pipe. The driver itself uses standard IRP_MJ_READ and IRP_MJ_WRITE requests for data 
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movement. 

LOOPBACK allows the application to read or write more than the pipe MaximumTransferSize during a single operation. This 
fact imposes constraints on how the driver works: 

 Each read or write IRP might require several stages to accomplish. In keeping with the USB specification (specifically, 
section 5.8.3), each stage except the last must be a multiple of the endpoint’s maximum packet size. 

 It would obviously not do for the stages of different read or write requests to be intermixed at the device level. Therefore, 
LOOPBACK queues read and write requests to serialize access to the endpoint. 

 To avoid hassles related to IRP cancellation, LOOPBACK piggybacks its read and write URBs on the same 
IRP_MJ_READ or IRP_MJ_WRITE it receives from above. 

LOOPBACK’s StartIo Routine  

The interesting routines in LOOPBACK are the StartIo routine that handles a single read or write request and the I/O 
completion routine for URB requests sent down to the bus driver. Both read and write IRPs feed into the same StartIo routine. 
The major reason why a single StartIo routine is appropriate in this driver is that we want to be doing either a read or a write, 
but not both simultaneously. Using a single routine is practical because there’s very little difference in the way we handle reads 
and writes: 

VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  BOOLEAN read = stack->MajorFunctionCode == IRP_MJ_READ; 
  USBD_PIPE_HANDLE hpipe = read ? pdx->hinpipe : pdx->houtpipe; 
  ULONG urbflags =  USBD_SHORT_TRANSFER_OK  
    │ (read ? USBD_TRANSFER_DIRECTION_IN 
    : USBD_TRANSFER_DIRECTION_OUT); 
 
  } 

LOOPBACK sets the DO_DIRECT_IO flag in its device object. Consequently, the data buffer is described by an MDL whose 
address is at Irp->MdlAddress. We can determine the length of the requested transfer in two ways. We can fetch 
stack->Parameters.Read.Length or stack->Parameters.Write.Length. (Both Read and Write are identical substructures of the 
IO_STACK_LOCATION, by the way.) Alternatively, we can rely on the MDL: 

ULONG length = Irp->MdlAddress ? 
  MmGetMdlByteCount(Irp->MdlAddress) : 0; 

Personally, I hate it when there are two ways of doing the same thing because then I worry that one of them will stop working 
in some future release of the operating system. I’ve developed the habit of picking the most popular of alternatives in the belief 
that it’s least likely to break over time. Most drivers I’ve seen that use MDLs get the buffer length from the MDL. Therefore, I 
do too. 

The next logical step in StartIo is to calculate the length of the first segment of a potentially multisegment transfer: 

ULONG seglen = length; 
if (seglen > pdx->maxtransfer) 
  seglen = pdx->maxtransfer; 

(LOOPBACK’s StartDevice function sets maxtransfer to the MaximumTransferSize for the input and output pipes. I made that 
equal to 1024 in this driver in order to exercise the multisegment transfer logic. The device firmware itself has a limit of 4096 
bytes for a single logical transfer.) 

Our call to UsbBuildInterruptOrBulkTransferRequest will be a bit more complicated than in the USB42 example because 
we’re using DO_DIRECT_IO and because the transfer may require several stages. In preparation for that call, LOOPBACK 
creates a partial MDL, which describes just a portion of the entire buffer: 

ULONG_PTR va = 
  (ULONG_PTR) MmGetMdlVirtualAddress(Irp->MdlAddress); 
PMDL mdl = IoAllocateMdl((PVOID) (PAGE_SIZE - 1), seglen, FALSE, 
  FALSE, NULL); 
IoBuildPartialMdl(Irp->MdlAddress, mdl, (PVOID) va, seglen); 

This is the point in coding StartIo where you face a major decision. How will you create and send the one or more URBs that 
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are required to perform this operation? One alternative, which I don’t think is the best, is to create a series of 
IRP_MJ_INTERNAL_DEVICE_CONTROL requests, each with its own URB, and send them down the PnP stack to the USB 
bus driver. The reason I don’t like this choice is that it requires a bunch of extra bookkeeping to control when you complete the 
main IRP and how you deal with cancellation of the main IRP. I actually followed this plan in the USBISO sample discussed 
later in this chapter, but there wasn’t any sensible alternative in that case because of timing requirements. 

The easier choice for a bulk transfer operation is to simply use and reuse the main IRP—the one passed into StartIo, in other 
words—as an envelope within which to stuff the URBs for successive stages. All we need to do is to initialize the next stack 
location by hand instead of by calling IoCopyCurrentIrpStackLocationToNext. Our StartIo routine then installs a completion 
routine and sends the main IRP down to the bus driver. Our completion routine recycles the IRP and the URB to perform the 
next stage of the transfer. When the last stage completes, our completion routine releases the memory occupied by the USB 
and arranges to set IoStatus.Information equal to the number of bytes actually transferred, as required by the specifications for 
IRP_MJ_READ and IRP_MJ_WRITE. 

Our completion routine actually needs a bit more information than just the URB address, however. I define the following 
context structure in LOOPBACK: 

struct _RWCONTEXT : public _URB 
  { 
  ULONG_PTR va;         // virtual address for next 
                        // segment of transfer 
  ULONG length;         // length remaining to transfer 
  PMDL mdl;             // partial MDL 
  ULONG numxfer;        // cumulative transfer count 
 
  }; 
typedef struct _RWCONTEXT RWCONTEXT, *PRWCONTEXT; 

(This declaration relies on the fact that my drivers use C++ syntax, so I can derive one structure from another.) The 
initialization of the context structure is along these lines: 

PRWCONTEXT ctx = (PRWCONTEXT) ExAllocatePool(NonPagedPool, 
  sizeof(RWCONTEXT)); 
UsbBuildInterruptOrBulkTransferRequest(ctx, 
  sizeof(_URB_BULK_OR_INTERRUPT_TRANSFER), 
  hpipe, NULL, mdl, seglen, urbflags, NULL); 
 
ctx->va = va + seglen; 
ctx->length = length - seglen; 
ctx->mdl = mdl; 
ctx->numxfer = 0; 

Notice that no cast operator is needed for ctx because it’s derived from the URB structure. The MDL pointer for the URB is the 
partial MDL we created earlier, and the length is the chosen segment length. 

After all of this initialization, we can finally prepare and send the IRP down to the bus driver: 

stack = IoGetNextIrpStackLocation(Irp); 
stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL; 
stack->Parameters.Others.Argument1 = (PVOID) (PURB) ctx; 
stack->Parameters.DeviceIoControl.IoControlCode = 
  IOCTL_INTERNAL_USB_SUBMIT_URB; 
 
IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
  OnReadWriteComplete, (PVOID) ctx, TRUE, TRUE, TRUE); 
 
IoCallDriver(pdx->LowerDeviceObject, Irp); 

It’s useful to know that the USB bus driver will accept read/write URBs at DISPATCH_LEVEL. This is just as well, 
considering that StartIo will be running at DISPATCH_LEVEL. 

LOOPBACK’s Read/Write Completion Routine  

Here’s the essential part of the completion routine: 

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo, 
  PIRP Irp, PRWCONTEXT ctx) 
  { 
  PDEVICE_EXTENSION pdx = 
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    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  BOOLEAN read = (ctx->UrbBulkOrInterruptTransfer.TransferFlags & 
    USBD_TRANSFER_DIRECTION_IN) != 0; 
 
  ctx->numxfer += ctx->UrbBulkOrInterruptTransfer.TransferBufferLength; 
 
  NTSTATUS status = Irp->IoStatus.Status; 
 
  if (NT_SUCCESS(status) && ctx->length && !Irp->Cancel) 
    { 
 
    ULONG seglen = ctx->length; 
    if (seglen > pdx->maxtransfer) 
      seglen = pdx->maxtransfer; 
    PMDL mdl = ctx->mdl; 
 
    MmPrepareMdlForReuse(mdl); 
    IoBuildPartialMdl(Irp->MdlAddress, mdl, 
      (PVOID) ctx->va, seglen); 
 
 
    ctx->UrbBulkOrInterruptTransfer.TransferBufferLength = 
      seglen; 
 
 
    PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
    stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL; 
    stack->Parameters.Others.Argument1 = (PVOID) (PURB) ctx; 
    stack->Parameters.DeviceIoControl.IoControlCode = 
      IOCTL_INTERNAL_USB_SUBMIT_URB; 
    IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)  
      OnReadWriteComplete, (PVOID) ctx, TRUE, TRUE, TRUE); 
 
 
    ctx->va += seglen; 
    ctx->length -= seglen; 
 
 
    IoCallDriver(pdx->LowerDeviceObject, Irp); 
    return STATUS_MORE_PROCESSING_REQUIRED 
    } 
 
  if (NT_SUCCESS(status)) 
 
    Irp->IoStatus.Information = ctx->numxfer; 
  else 
    <recover from error> 
 
  IoFreeMdl(ctx->mdl); 
  ExFreePool(ctx); 
  StartNextPacket(&pdx->dqReadWrite, fdo); 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
 
  return STATUS_SUCCESS; 
  } 

1. We’ll eventually need to set IoStatus.Information to the total number of bytes transferred. This statement is where we 
cumulate the total at the end of a stage. 

2. Here we test to see whether there’s another stage to do: Did the previous stage complete OK? Is the residual length 
nonzero? Did someone try to cancel the previous stage? 

3. As was true for the first stage, each stage is limited by the maximum transfer size for the pipe. Furthermore, each stage 
but the last must be a multiple of the endpoint packet size. I didn’t mention it earlier, but the maximum transfer size 
should be chosen to be such a multiple (as I have done here). 

4. We’re going to reuse the partial MDL for the next stage. MmPrepareMdlForReuse resets flag bits and pointers. 
IoBuildPartialMdl initializes the fields in the MDL structure to describe the data to be transferred to or from the main 
buffer in the next stage. Note that the virtual address (va field of the context structure) isn’t being used as an address but 
rather as an index into the buffer described by the main MDL. 
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5. The URB hasn’t been altered. The only thing that’s different is the length. 

6. The I/O Manager has, however, zeroed most of the next stack location to prevent us from relying on its contents. We 
therefore need to completely reinitialize the next stack location. 

7. Here’s where we update the virtual address and the residual length for the next time this completion routine gets called. 

8. We call IoCallDriver to recycle the IRP. What we do next doesn’t depend on the status returned by the bus driver. 

9. One of the rules for IRP_MJ_READ and IRP_MJ_WRITE is that, on successful completion, IoStatus.Information should 
equal the number of bytes actually transferred. We’ve been keeping track of this in numxfer, so this is where we finally 
obey the rule. 

10. The remainder of the completion routine is just straightforward cleanup after StartIo. 

Just to see if you’ve been paying really close attention to everything I’ve been saying in this book, here are three more silly 
contest questions about the completion routine: 

1. Why doesn’t the completion routine call IoReuseIrp before recycling the IRP? 

2. Why does the completion routine always return STATUS_MORE_PROCESSING_REQUIRED after sending the recycled 
IRP down the stack? 

3. What deduction can you make from the fact that the author did read absolutely everything in the book (several times, in 
fact), returned STATUS_SUCCESS from the completion routine, and yet omitted the boilerplate call to 
IoMarkIrpPending? 

Answers to Silly Contest Questions 

1.IoReuseIrp completely reinitializes an IRP and is appropriate when the originator of an IRP wants to use it 
again. We want only to reinitialize the next stack location. The only thing about this IRP that would actually 
require resetting would be the Cancel flag. If we found that set, it would imply that someone called 
IoCancelIrp on the main IRP. In that case, we don’t try to perform the next stage. 

2.If the bus driver pended the stage IRP, it’s clearly the right thing to do to return 
STATUS_MORE_PROCESSING_REQUIRED. There will be another call to IoCompleteRequest from the bus 
driver later on, and the system will call this completion routine again then. If the bus driver completed the 
stage transfer synchronously, this completion routine has already been called recursively. We don’t want this 
invocation of IoCompleteRequest to do any more work on this IRP in either case. 

3.You could deduce that the author is a sanctimonious twit. Either that or the dispatch routine marked the IRP 
pending and returned STATUS_PENDING as part of the normal protocol for queuing the IRP. Or both—these 
choices are not mutually exclusive. 

Error Recovery in LOOPBACK  

When you send or receive data to or from a bulk transfer endpoint, the bus and bus driver take care of retrying garbled 
transmissions. Consequently, if your URB appears to complete successfully, you can be confident that the data you intended to 
transfer has in fact been transferred correctly. When an error occurs, however, your driver needs to attempt some sort of 
recovery. There is a well-defined protocol for recovering from an error, illustrated by additional code in LOOPBACK (a 
subroutine named RecoverFromError) that I didn’t show you earlier: 

First issue an IOCTL_INTERNAL_USB_GET_PORT_STATUS request to determine the status of the hub port to which your 
device is connected. 

If the status flags indicate that the port is not enabled but is still connected (that is, you’re not dealing with a surprise removal), 
perform a URB_FUNCTION_ABORT_PIPE operation on the failed endpoint to flush all pending I/O, and then reset the port 
by issuing an IOCTL_INTERNAL_USB_RESET_PORT. 

In any case, issue a URB_FUNCTION_RESET_PIPE to reset the endpoint. Among other things, this clears an endpoint stall 
condition. 

Retry or allow to fail the request that previously failed, depending on the semantics of your device. 

An annoyance about these steps is that many of them have to be done at PASSIVE_LEVEL, yet you discover the need for them 
in a completion routine running (perhaps) at DISPATCH_LEVEL. To deal with the restrictions, you need to schedule a work 
item as shown here (see Chapter 14 for an explanation of the mechanics): 

struct _RWCONTEXT : public _URB 
  { 
 
  PIO_WORKITEM rcitem;  // work item created for recovery 



- 328 - The Universal Serial Bus | Chapter 12 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

  PIRP Irp;             // the main IRP that we're going to fail 
  }; 
 
NTSTATUS OnReadWriteComplete(...) 
  { 
 
  if (NT_SUCCESS(status)) 
    Irp->IoStatus.Information = ctx->numxfer; 
  else if (status != STATUS_CANCELLED) 
    { 
    ctx->rcitem = IoAllocateWorkItem(fdo); 
    ctx->Irp = Irp; 
    IoQueueWorkItem(ctx->rcitem, 
      (PIO_WORKITEM_ROUTINE) RecoverFromError, 
      CriticalWorkQueue, (PVOID) ctx); 
    return STATUS_MORE_PROCESSING_REQUIRED; 
    } 
 
  } 

The actual error recovery routine is as follows: 

VOID RecoverFromError(PDEVICE_OBJECT fdo, PRWCONTEXT ctx) 
  { 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fdo->DeviceExtension; 
  BOOLEAN read = (ctx->UrbBulkOrInterruptTransfer.TransferFlags  
    & USBD_TRANSFER_DIRECTION_IN) != 0; 
  ULONG portstatus = GetStatus(fdo); 
  USBD_PIPE_HANDLE hpipe = read ? pdx->hinpipe : pdx->houtpipe; 
  if (!(portstatus & USBD_PORT_ENABLED) && 
    (portstatus & USBD_PORT_CONNECTED)) 
    { 
    AbortPipe(fdo, hpipe); 
    ResetDevice(fdo); 
    } 
  ResetPipe(fdo, hpipe); 
  IoFreeWorkItem(ctx->rcitem); 
  PIRP Irp = ctx->Irp; 
  IoFreeMdl(ctx->mdl); 
  ExFreePool(ctx); 
  StartNextPacket(&pdx->dqReadWrite, fdo); 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
  } 

AbortPipe, ResetDevice, and ResetPipe are helper routines that issue the internal control operations and URBs that I described 
earlier. Note that when RecoverFromError calls IoCompleteRequest, our own completion routine isn’t called. Therefore, all the 
cleanup that would normally be done by the completion routine has to be repeated. 

It crossed my mind to be tricky in the way I called RecoverFromError. If the completion routine happens to be running at 
PASSIVE_LEVEL, it looks as if you can just bypass queuing a work item. This would be a mistake, though, unless you use 
IoSetCompletionRoutineEx to install the completion routine. The problem that can occur otherwise is that whoever sent you the 
IRP can remove its guard against you being unloaded as soon as RecoverFromError calls IoCompleteRequest. That leaves a 
few instructions in RecoverFromError and OnReadWriteComplete to execute at a time when the driver has been unloaded. 
Using IoSetCompletionRoutineEx prevents the driver from unloading until the completion routine returns. It’s much more 
costly to call IoSetCompletionRoutineEx every time than it is to queue a work item in the unlikely case of an I/O error that 
needs recovery, so I elected to use the work item approach. 

The LOOPBACK firmware exhibits a real-world problem that I didn’t attempt to solve in the driver. If a failure occurs in a 
read or write operation, the write and read-back operations might get out of synchronization. You might see this happen if you 
turn on the Driver Verifier’s Low Resources Simulation option for LOOPBACK because pool allocations will start randomly 
failing. Subsequent invocations of the test program will ordinarily fail because the device firmware is returning the wrong data 
from its ring buffer. 

To solve a problem like the one I just described, somebody—either the driver or an application—has to be aware of the way 
the device works and has to issue some sort of command to resynchronize the firmware. LOOPBACK is already complicated 
enough, and the solution is so peculiar to this one device and its firmware that I didn’t want to burden the sample with code to 
deal with it. 
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12.2.4 Managing Interrupt Pipes  
From the device side of the bus, an interrupt pipe is practically identical to a bulk transfer pipe. The only important difference 
from that perspective is that the host will be polling an interrupt endpoint with a guaranteed frequency. The device will respond 
with NAK except at instants when it will present an interrupt to the host. To report an interrupt event, the device sends an ACK 
to the host after providing whatever morsel of data is supposed to accompany the interrupt. 

From the driver’s perspective, managing an interrupt pipe is quite a bit more complicated than managing a bulk pipe. When the 
driver needs to read or write data to a bulk pipe, it just creates an appropriate URB and sends it to the bus driver. But for an 
interrupt pipe to serve its intended purpose of notifying the host of interesting hardware events, the driver basically needs to 
keep a read request outstanding at all times. A way to keep a read request active is to use the same idea I showed you in 
LOOPBACK, wherein we have a completion routine that keeps recycling a URB. 

The USBINT sample illustrates how to manage an interrupt pipe with a URB that’s always active. Rather than discuss the 
sample point by point, I just want to go briefly over a couple of key areas: 

 You mustn’t have a read active when you stop or power down the device. Therefore, USBINT goes to some trouble to 
knock down its interrupt read when removing power and to restart it when restoring power. Since these steps have to be 
done asynchronously to avoid violating the rule against blocking during power transitions, the driver uses the arcane 
SaveDeviceContext and RestoreDeviceContext callbacks from GENERIC.SYS. 

 The completion routine for the interrupt read is, in effect, the interrupt service routine for the driver. You can expect it to 
run at DISPATCH_LEVEL because it’s an I/O completion routine. One of its jobs is to reinitialize and reissue the interrupt 
read so that one is always outstanding. 

 As usual, there can be a race condition between the driver cancelling the interrupt read at StopDevice or power-down time 
and the bus driver completing that IRP. Avoiding these races should be old hat to my readers by this point in the book. 

12.2.5 Control Requests  
If you refer back to Table 12-3, you’ll notice that there are 11 standard types of control requests. You and I will never explicitly 
issue SET_ADDRESS requests. The bus driver does that when a new device initially comes on line; by the time we ever get 
control in a WDM driver, the bus driver has assigned an address to the device and read the device descriptor to learn that we’re 
the device driver. I’ve already discussed how to create the URBs that cause the bus driver to send control requests for getting 
descriptors or for setting a configuration or an interface in the “Initiating Requests” and “Configuration” sections. In this 
section, I’ll fill in the blanks related to the remaining kinds of control transactions. 

Controlling Features  

If we want to set or clear a feature of a device, an interface, or an endpoint, we submit a feature URB. For example, the 
following code (which appears in the FEATURE sample driver in the companion content) sets a vendor-defined interface 
feature: 

URB urb; 
UsbBuildFeatureRequest(&urb, 
  URB_FUNCTION_SET_FEATURE_TO_INTERFACE, 
  FEATURE_LED_DISPLAY, 1, NULL); 
status = SendAwaitUrb(fdo, &urb); 

The second argument to UsbBuildFeatureRequest indicates whether we want to set or clear a feature belonging to the device, 
an interface, an endpoint, or another vendor-specific entity on the device. This parameter takes eight possible values, and you 
can guess without me telling you that they’re formed according to the following formula: 

URB_FUNCTION_ [SET │ CLEAR] _FEATURE_TO_  
  [DEVICE │ INTERFACE │ ENDPOINT │ OTHER] 

The third argument to UsbBuildFeatureRequest identifies the feature in question. In the FEATURE sample, I invented a feature 
named FEATURE_LED_DISPLAY. The fourth argument identifies a particular entity of whatever type is being addressed. In 
this example, I wanted to address interface 1, so I coded 1. 

USB defines two standard features that you might be tempted to control using a feature URB: the remote wake-up feature and 
the endpoint stall feature. You don’t, however, need to set or clear these features yourself because the bus driver does so 
automatically. When you issue an IRP_MN_WAIT_WAKE request—see Chapter 8—the bus driver ensures that the device’s 
configuration allows for remote wake-up, and it also automatically enables the remote wake-up feature for the device. The bus 
driver issues a clear feature request to unstall a device when you issue a RESET_PIPE URB. 
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About the FEATURE Sample 
The FEATURE sample in the companion content illustrates how to set or clear a feature. The device firmware (in 
the EZUSB subdirectory) defines a device with no endpoints. The device supports an interface-level feature 
numbered 42, which is the FEATURE_LED_DISPLAY referenced symbolically in the driver. When the feature is 
set, the Cypress Semiconductor development board’s seven-segment LED display becomes illuminated and 
shows how many times the feature has been set since the device was attached (modulo 10). When the feature 
is clear, the LED display shows only the decimal point.  

The FEATURE device driver (in the SYS subdirectory) contains code to set and clear the feature and to exercise a few other 
control commands in response to IOCTL requests. Refer to CONTROL.CPP to see this code, which isn’t much more 
complicated than the code fragments displayed in the text. 

The test program (in the TEST subdirectory) is a Win32 console application that performs a DeviceIoControl to set the custom 
feature; issues additional DeviceIoControl calls to obtain status masks, the configuration number, and the alternate setting for 
the single interface; waits five seconds; and then performs another DeviceIoControl to clear the feature. Each time you run the 
test, you should see the development board’s display light up for five seconds, showing successively larger decimal integers. 

Determining Status  

If you want to obtain the current status of the device, an interface, or an endpoint, you formulate a get status URB. For 
example: 

URB urb; 
USHORT epstatus; 
UsbBuildGetStatusRequest(&urb, 
  URB_FUNCTION_GET_STATUS_FROM_ENDPOINT, 
  <index>, &epstatus, NULL, NULL); 
SendAwaitUrb(fdo, &urb); 

You can use four different URB functions in a get status request, and they allow you to retrieve the current status mask for the 
device as a whole, for a specified interface, for a specified endpoint, or for a vendor-specific entity. See Table 12-9. 

The status mask for a device indicates whether the device is self-powered and whether its remote wake-up feature is enabled. 
See Figure 12-15. The mask for an endpoint indicates whether the endpoint is currently stalled. See Figure 12-16. USB 
previously defined interface-level status bits related to power management in the Interface Power Management specification 
that was withdrawn while this book was at press. USB should never prescribe vendor-specific status bits since they’re by 
definition up to vendors to specify. 

Operation Code Retrieve Status From… 

URB_FUNCTION_GET_STATUS_FROM_DEVICE  Device as a whole 

URB_FUNCTION_GET_STATUS_FROM_INTERFACE  Specified interface 

URB_FUNCTION_GET_STATUS_FROM_ENDPOINT  Specified endpoint 

URB_FUNCTION_GET_STATUS_FROM_OTHER  Vendor-specific object 

Table 12-9. URB Function Codes Used for Getting Status  

Figure 12-15. Bits in device status.  

Figure 12-16. Bits in endpoint status.  
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12.2.6 Managing Isochronous Pipes  
The purpose of an isochronous pipe is to allow the host and the device to exchange time-critical data with guaranteed regularity. 
The bus driver will devote up to 80 percent of the bus bandwidth to isochronous and interrupt transfers. What this means is that 
every 125-ms microframe will include reserved time slots long enough to accommodate maximum-size transfers to or from 
each of the isochronous and interrupt endpoints that are currently active. Figure 12-17 illustrates this concept for three different 
devices. Devices A and B each have an isochronous endpoint, for which a fixed and relatively large amount of time is reserved 
in every microframe. Device C has an interrupt endpoint whose polling frequency is once every two microframes; it has a 
reservation for a small portion of every second microframe. During microframes that don’t include a poll of Device C’s 
interrupt endpoint, additional bandwidth is available, perhaps for bulk transfers or other purposes. 

Figure 12-17. Allocation of bandwidth to isochronous and interrupt endpoints.  

Reserving Bandwidth  

The bus driver reserves bandwidth for you when you enable an interface by examining the endpoint descriptors that are part of 
the interface. Reserving bandwidth is just like buying a theater ticket, though: you don’t get a refund if you don’t use the space. 
Consequently, it’s important to enable an interface that contains an isochronous endpoint only when you’ll be using the 
bandwidth you thereby reserve, and it’s important that the endpoint’s declared maximum transfer size be approximately the 
amount you intend to use. Normally, a device with isochronous capability has a default interface that doesn’t have any 
isochronous or interrupt endpoints. When you know you’re about to access that capability, you enable an alternate setting of 
the same interface that does have the isochronous or interrupt endpoints. 

An example will clarify the mechanics of reserving bandwidth. The USBISO sample in the companion content has an interface 
with a default and an alternate setting. The default setting has no endpoints. The alternate setting has an isochronous endpoint 
with a maximum transfer size of 256 bytes. See Figure 12-18. 

Figure 12-18. Descriptor structure for the USBISO device.  

At StartDevice time, we select a configuration based on the default interface. Since the default interface doesn’t have an 
isochronous or interrupt endpoint in it, we don’t reserve any bandwidth just yet. When someone opens a handle to the device, 
however, we invoke the following SelectAlternateInterface helper function to switch to the alternate setting for our interface. 
(Again, I’ve omitted the error checking.) 

NTSTATUS SelectAlternateInterface(PDEVICE_OBJECT fdo) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
 
  PUSB_INTERFACE_DESCRIPTOR pid = 
    USBD_ParseConfigurationDescriptorEx(pdx->pcd, pdx->pcd, 0, 1, -1, -1, -1); 
  ULONG npipes = pid->bNumEndpoints; 
 
  ULONG size = GET_SELECT_INTERFACE_REQUEST_SIZE(npipes); 
  PURB urb = (PURB) ExAllocatePool(NonPagedPool, size); 
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  RtlZeroMemory(urb, size); 
 
 
 
  UsbBuildSelectInterfaceRequest(urb, size, pdx->hconfig, 0, 1); 
  urb->UrbSelectInterface.Interface.Length = GET_USBD_INTERFACE_SIZE(npipes); 
  urb->UrbSelectInterface.Interface.Pipes[0].MaximumTransferSize = PAGE_SIZE; 
 
  NTSTATUS status = SendAwaitUrb(fdo, &urb); 
 
 
  if (NT_SUCCESS(status)) 
    { 
    pdx->hinpipe = 
      urb.UrbSelectInterface.Interface.Pipes[0].PipeHandle; 
    status = STATUS_SUCCESS; 
    } 
  ExFreePool(urb); 
  return status; 
  } 

1. Before we can allocate space for the URB, we need to know how many pipe descriptors it will contain. The most 
common way to find this number is to go back to the grand unified configuration descriptor and find the descriptor for 
interface 0, alternate setting 1. That descriptor contains a count of endpoints, which is the same as the number of pipes 
that we’re about to open. 

2. GET_SELECT_INTERFACE_REQUEST_SIZE calculates the number of bytes needed to hold a select interface request 
that will open the specified number of pipes. We can then allocate memory for the URB and initialize it to 0. The real 
code sample in the companion content checks to make sure that the call to ExAllocatePool succeeded, by the way. 

3. Here we build a URB to select alternate setting 1 (the last argument) of interface number 0 (the next-to-last argument). 

4. We must do these two additional initialization steps to finish setting up the URB. Failing to set the interface information 
structure’s length earns you a STATUS_BUFFER_TOO_SMALL failure right away. Failing to set the 
MaximumTransferSize fields of the pipe descriptors earns you a STATUS_INVALID_PARAMETER when you try to read 
or write the pipe. 

5. When we submit this URB, the parent driver automatically closes the current setting of this interface, including all of its 
endpoints. Then the parent driver tells the device to enable the alternate setting, and it creates pipe descriptors for the 
endpoints that are part of the alternate setting. If opening the new interface fails for some reason, the parent driver 
reopens the previous interface, and all your previous interface and pipe handles remain valid. 

6. My SendAwaitUrb helper function simply returns an error if it’s unable to select the one and only alternate setting for this 
interface. I’ll have a bit more to say about how you should handle errors after this numbered list. 

7. In addition to selecting the new interface at the device level, the parent driver also creates an array of pipe descriptors 
from which we can extract handles for later use. 

The select interface call might fail because not enough free bandwidth exists to accommodate our endpoint. We find out about 
the failure by examining the URB status: 

if (URB_STATUS(&urb) == USBD_STATUS_NO_BANDWIDTH) 
 

Dealing with lack of bandwidth poses a bit of a problem. The operating system doesn’t currently provide a convenient way for 
competing drivers to negotiate a fair allocation. Neither does it provide for any sort of notification that some other driver has 
failed to acquire needed bandwidth so that we might give up some of ours. In this state of affairs, therefore, you have two basic 
choices. One choice is to provide multiple alternate interface settings, each of which has a different maximum transfer size for 
its isochronous endpoint or endpoints. When you detect an allocation failure, you can try to select progressively less 
demanding settings until you finally succeed. 

A savvy end user who’s able to launch the Windows XP Device Manager applet can display a property page for the USB host 
controller—see Figure 12-19—that displays information about the current allocation of bandwidth. Double-clicking one of the 
devices listed in the page brings up the property display for the device in question. A well-crafted page can perhaps 
communicate with the associated device driver to scale back its demand for bandwidth. This whole area seems ripe for a more 
automatic Microsoft-driven solution, though. 

Your other choice for handling lack of bandwidth is to allow an IRP to fail in such a way that an application can alert the end 
user to the problem. Perhaps the end user can unplug something so that your device can be accommodated. This is the option I 
chose in the USBISO sample except that I didn’t bother to put code in the test application that would respond to a bandwidth 
allocation failure—TEST.EXE will just fail. To adopt this option, you need to know how the failure shows up back in user 
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mode. If the URB fails with USBD_STATUS_NO_BANDWIDTH, the NTSTATUS code you get back from the internal control 
IRP is STATUS_DEVICE_DATA_ERROR, which isn’t very specific. An application call to GetLastError will retrieve 
ERROR_CRC as the error code. There’s no easy way for an application to discover that the real cause of the error is a lack of 
bandwidth, unfortunately. If you’re interested in diving down this particular rat hole to reach a conclusion, read the sidebar. 

Figure 12-19. A property page for the USB host controller.  

How an Application Discovers You’re out of Bandwidth 
Suppose you do what USBISO does and try to select the high-bandwidth alternate interface when you receive 
an IRP_MJ_CREATE. Further suppose you complete the IRP with the status code you get back when there’s not 
enough bandwidth—namely, STATUS_DEVICE_DATA_ERROR. Your application caller will eventually see 
ERROR_CRC, as I said in the main text. What now? The application can’t send you an IOCTL to find out the real 
cause of the error because it doesn’t have a handle to your device. You allowed the IRP_MJ_CREATE to fail, 
remember? So maybe you need to have a way for people to open handles to your device that doesn’t try to 
reserve bandwidth. Then you need some other way for an application to ask for bandwidth, perhaps by means 
of an IOCTL operation. Or perhaps your application just interprets ERROR_CRC from a call to CreateFile as 
meaning there’s no bandwidth. Actual data errors are pretty unlikely, after all, so that interpretation would be 
correct much of the time.  

But the best solution would be a specific NTSTATUS code and matching Win32 error code that mean “no 
bandwidth.” Keep your eyes on NTSTATUS.H and WINERROR.H for future developments. 

USBISO performs the converse operation of selecting the original default interface when it receives the IRP_MJ_CLOSE for 
the last remaining open handle. That operation entails issuing another select interface URB, but with the value 0 for the 
alternate interface index. 

Initiating a Series of Isochronous Transfers  

You can use an isochronous pipe either to read or write data in discrete chunks or to provide or consume data in a continuous 
stream. Data streaming is probably the most frequent occupation for an isochronous pipe, actually. But in addition to 
understanding the mechanics of working with the USB bus driver, you must understand and solve additional problems related 
to data buffering, rate matching, and so on if you want to operate a streaming pipe. The kernel-streaming component of the 
operating system deals with all these additional problems. Unfortunately, we didn’t have time to include a chapter on kernel 
streaming in this book, even in the second edition. I’m therefore going to show you only how to program a discrete transfer 
over an isochronous pipe. 

To read from or write to an isochronous pipe, you’ll of course use a URB with the appropriate function code. But there are a 
few wrinkles that you haven’t seen yet associated with creating and submitting the isochronous URB. First, you must be aware 
of how the device will break up a transfer into packets. In general, the device is free to accept or deliver any amount of data 
less than the endpoint’s declared maximum. (Any leftover bandwidth on the bus simply won’t be used.) The packet size the 
device will use doesn’t have any other necessary relationship with the endpoint maximum, with the maximum amount of data 
you said you’d transfer in a URB, or with the amount of data the device and the application can exchange in a series of 
transactions. The firmware for the USBISO device, for example, works with 16-byte packets, even though the isochronous 
endpoint in question can handle up to 256 bytes per frame, according to its descriptor. You must have a priori knowledge of 
how big these packets will be before you construct a URB because the URB must include an array of descriptors for each 
packet that will be exchanged, and each of these descriptors must indicate how big the packet will be. 

In an impractical simple situation, you can allocate an isochronous URB in the following way: 
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ULONG length = MmGetMdlByteCount(Irp->MdlAddress); 
ULONG packsize = 16; // a constant in USBISO 
ULONG npackets = (length + packsize - 1) / packsize; 
ASSERT(npackets <= 255); 
ULONG size = GET_ISO_URB_SIZE(npackets); 
PURB urb = (PURB) ExAllocatePool(NonPagedPool, size); 
RtlZeroMemory(urb, size); 

The key step in this fragment is the use of the GET_ISO_URB_SIZE macro to calculate the total size needed for an 
isochronous URB to transfer a given number of data packets. A single URB can accommodate a maximum of 255 isochronous 
packets (1024 in the case of a high-speed device), by the way, which is why I put the ASSERT statement in this code. Limiting 
the application to just 255 packets is not practical, as I said, so we will do something more complex in the real USBISO sample 
driver. For the time being, though, I just want to describe the mechanics of building a single URB for an isochronous (ISO) 
transfer. 

NOTE  
As indicated in the text, a single URB can transfer up to 255 packets to a full-speed device in the course of that 
many 1-ms frames. For a high-speed device, the maximum packet count is 1024 in the course of up to 128 
1-ms frames. Furthermore, each URB should contain a multiple of 8 packets. This makes sense because there 
are 8 microframes in one frame. 

There being no UsbBuildXxxRequest macro for building an isochronous URB, we go on to initialize the new URB by hand: 

urb->UrbIsochronousTransfer.Hdr.Length = (USHORT) size; 
urb->UrbIsochronousTransfer.Hdr.Function = 
  URB_FUNCTION_ISOCH_TRANSFER; 
urb->UrbIsochronousTransfer.PipeHandle = pdx->hinpipe; 
urb->UrbIsochronousTransfer.TransferFlags =  
  USBD_TRANSFER_DIRECTION_IN │ USBD_SHORT_TRANSFER_OK; 
urb->UrbIsochronousTransfer.TransferBufferLength = length; 
urb->UrbIsochronousTransfer.TransferBufferMDL = 
  Irp->MdlAddress; 
urb->UrbIsochronousTransfer.NumberOfPackets = npackets; 
urb->UrbIsochronousTransfer.StartFrame = frame; 
for (ULONG i = 0; i < npackets; ++i, length -= packsize) 
  { 
  urb->UrbIsochronousTransfer.IsoPacket[i].Offset = i * packsize; 
  } 

The array of packet descriptors collectively describes the entire data buffer that we’ll read in to or write out from. This buffer 
has to be contiguous in virtual memory, which basically means that you need a single MDL to describe it. It would be pretty 
hard to violate this rule. Reinforcing the idea of contiguity, each packet descriptor contains just the offset and the length for a 
portion of the entire buffer and not an actual pointer. The host controller driver is responsible for setting the length; you’re 
responsible for setting the offset. 

The second wrinkle with starting an isochronous transfer involves timing. USB uniquely identifies each frame or microframe, 
as the case may be, with an ever-increasing number. It’s sometimes important that a transfer begin in a specific frame. The 
parent driver allows you to indicate this fact by explicitly setting the StartFrame field of the URB. USBISO doesn’t depend on 
timing, however. You might therefore think it could set the USBD_START_ISO_TRANSFER_ASAP flag to indicate that the 
transfer should be started as soon as possible. Setting the flag would, in fact, work in versions of Windows prior to Windows 
XP. Unfortunately, Windows XP introduced a bug such that an ASAP transfer that would start more than 256 frames in the 
future gets scheduled right away. In the context of this sample, this bug causes the packets to be transferred 0, 256, 2, 3, …. To 
avoid this problem, I revised USBISO to use a specific frame number calculated as follows: 

ULONG frame = GetCurrentFrame(pdx) + 2; 
Where the GetCurrentFrame function is this one: 
ULONG GetCurrentFrame(PDEVICE_EXTENSION pdx) 
  { 
  URB urb; 
  urb.UrbGetCurrentFrameNumber.Hdr.Length =  
    sizeof(struct _URB_GET_CURRENT_FRAME_NUMBER); 
  urb.UrbGetCurrentFrameNumber.Hdr.Function =  
    URB_FUNCTION_GET_CURRENT_FRAME_NUMBER; 
 
  NTSTATUS status = SendAwaitUrb(pdx->DeviceObject, &urb); 
  if (!NT_SUCCESS(status)) 
    return 0; 
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  return urb.UrbGetCurrentFrameNumber.FrameNumber; 
  } 

I don’t necessarily recommend that you always get the current frame number for an ISO transfer. USBISO has to do so because 
it’s reading 256 packets. In a more usual situation, you have a streaming driver that issues a few read or write URBs for just a 
few packets, and you’re continually recycling these URBs as time goes on. You won’t run afoul of the 256-frames-in-the-future 
problem in that case and can just use the USBD_START_ISO_TRANSFER_ASAP flag. 

The final wrinkle in isochronous processing has to do with how the transfer ends. The URB itself will succeed overall, even 
though one or more packets had data errors. The URB has a field named ErrorCount that indicates how many packets 
encountered errors. If this ends up nonzero, you can loop through the packet descriptors to examine their individual status 
fields. 

Achieving Acceptable Performance  

Achieving acceptable performance with isochronous transfers will be something of a challenge in a streaming environment or 
in a situation in which you have a multistage transfer to orchestrate. One strategy is to arrange to run in a real-time thread at 
DISPATCH_LEVEL and submit URBs nearly directly to the bus driver via the SubmitIsoOutUrb function in the bus driver’s 
direct-call interface. If you’re doing input operations, however, or if you need to support platforms earlier than Windows XP, 
you need to submit multiple URBs, such that the bus driver has one to work with as soon as an earlier one finishes. 

The USBISO sample in the companion content illustrates how to manage a large block transfer using multiple subsidiary 
URBs. The basic idea behind USBISO’s read/write logic is to have the completion routine for subsidiary IRPs complete the 
main read/write IRP when the last subsidiary IRP finishes. To make this idea work, I declared the following special-purpose 
context structure: 

typedef struct _RWCONTEXT { 
  PDEVICE_EXTENSION pdx; 
  PIRP mainirp; 
  NTSTATUS status; 
  ULONG numxfer; 
  ULONG numirps; 
  LONG numpending; 
  LONG refcnt; 
  struct { 
    PIRP irp; 
    PURB urb; 
    PMDL mdl; 
    } sub[1]; 
  } RWCONTEXT, *PRWCONTEXT; 

The dispatch routine for IRP_MJ_READ—USBISO doesn’t handle IRP_MJ_WRITE requests—calculates the number of 
subsidiary IRPs required for the complete transfer and allocates one of these context structures, as follows: 

ULONG packsize = 16; 
ULONG segsize = USBD_DEFAULT_MAXIMUM_TRANSFER_SIZE; 
if (segsize / packsize > 255) 
  segsize = 255 * packsize; 
ULONG numirps = (length + segsize - 1); 
ULONG ctxsize = sizeof(RWCONTEXT) + 
  (numirps - 1) * sizeof(((PRWCONTEXT) 0)->sub); 
PRWCONTEXT ctx = (PRWCONTEXT) ExAllocatePool(NonPagedPool, 
  ctxsize); 
RtlZeroMemory(ctx, ctxsize); 
ctx->numirps = ctx->numpending = numirps; 
ctx->pdx = pdx; 
ctx->mainirp = Irp; 
ctx->refcnt = 2; 
Irp->Tail.Overlay.DriverContext[0] = (PVOID) ctx; 

I’ll explain the purpose of the last two statements in this sequence when I discuss USBISO’s cancellation logic in the 
“Handling Cancellation of the Main IRP” section. We now perform a loop to construct 
numirpsIRP_MJ_INTERNAL_DEVICE_CONTROL requests. At each iteration of the loop, we call IoAllocateIrp to create an 
IRP with one more stack location than is required by the device object immediately under us. We also allocate a URB to 
control one stage of the transfer and a partial MDL to describe the current stage’s portion of the main I/O buffer. We record the 
address of the IRP, the URB, and the partial MDL in an element of the RWCONTEXT structure’s sub array. We initialize the 
URB in the same way as I showed you earlier. Then we initialize the subsidiary IRP’s first two I/O stack locations, as follows: 
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IoSetNextIrpStackLocation(subirp); 
PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(subirp); 
stack->DeviceObject = fdo; 
stack->Parameters.Others.Argument1 = (PVOID) urb; 
stack->Parameters.Others.Argument2 = (PVOID) mdl; 
 
stack = IoGetNextIrpStackLocation(subirp); 
stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL; 
stack->Parameters.Others.Argument1 = (PVOID) urb; 
stack->Parameters.DeviceIoControl.IoControlCode =  
  IOCTL_INTERNAL_USB_SUBMIT_URB; 
 
IoSetCompletionRoutine(subirp, (PIO_COMPLETION_ROUTINE) 
  OnStageComplete, (PVOID) ctx, TRUE, TRUE, TRUE); 

The first stack location is for use by the OnStageComplete completion routine we install. The second is for use by the 
lower-level driver. 

Once we’ve built all the IRPs and URBs, it’s time to submit them to the bus driver. Before we do so, however, it’s prudent to 
check whether the main IRP has been cancelled, and it’s necessary to install a completion routine for the main IRP. The logic at 
the end of the dispatch routine looks like the following code: 

IoSetCancelRoutine(Irp, OnCancelReadWrite); 
if (Irp->Cancel) 
  { 
  status = STATUS_CANCELLED; 
  if (IoSetCancelRoutine(Irp, NULL)) 
    —ctx->refcnt; 
  } 
else 
  status = STATUS_SUCCESS; 
 
IoSetCompletionRoutine(Irp, 
  (PIO_COMPLETION_ROUTINE) OnReadWriteComplete, 
  (PVOID) ctx, TRUE, TRUE, TRUE); 
IoMarkIrpPending(Irp); 
IoSetNextIrpStackLocation(Irp); 
 
if (!NT_SUCCESS(status)) 
  { 
  for (i = 0; i < numirps; ++i) 
    { 
    if (ctx->sub[i].urb) 
      ExFreePool(ctx->sub[i].urb); 
    if (ctx->sub[i].mdl) 
      IoFreeMdl(ctx->sub[i].mdl); 
    } 
  CompleteRequest(Irp, status, 0); 
  return STATUS_PENDING; 
  } 
 
for (i = 0; i < numirps; ++i) 
  IoCallDriver(pdx->LowerDeviceObject, ctx->sub[i].irp); 
 
return STATUS_PENDING; 

Handling Cancellation of the Main IRP  

To explain the two completion routines that I’m using in this example—that is, OnReadWriteComplete for the main IRP and 
OnStageComplete for each subsidiary IRP—I need to explain how USBISO handles cancellation of the main IRP. Cancellation 
is a concern because we’ve submitted a potentially large number of subsidiary IRPs that might take some time to finish. We 
can’t complete the main IRP until all of the subsidiary IRPs complete. We should, therefore, provide a way to cancel the main 
IRP and all outstanding subsidiary IRPs. 

I’m sure you recall from Chapter 5 that IRP cancellation implicates a number of knotty synchronization issues. If anything, the 
situation in this driver is worse than usual. 

USBISO’s cancellation logic is complicated by the fact that we can’t control the timing of calls to the subsidiary IRPs’ 
completion routine—those IRPs are owned by the bus driver once we submit them. Suppose you wrote the following cancel 
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routine: 

VOID OnCancelReadWrite(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  IoReleaseCancelSpinLock(Irp->CancelIrql); 
 
  PRWCONTEXT ctx = (PRWCONTEXT) 
    Irp->Tail.Overlay.DriverContext[0]; 
 
  for (ULONG i = 0; i < ctx->numirps; ++i) 
    IoCancelIrp(ctx->sub[i].irp); 
    <additional steps> 
  } 

1. We saved the address of the RWCONTEXT structure in the DriverContext area of the IRP precisely so that we could 
retrieve it here. DriverContext is ours to use so long as we own the IRP. Since we returned STATUS_PENDING from the 
dispatch routine, we never relinquished ownership. 

2. Here we cancel all the subsidiary IRPs. If a subsidiary IRP has already completed or is currently active on the device, the 
corresponding call to IoCancelIrp won’t do anything. If a subsidiary IRP is still in the host controller driver’s queue, the 
host controller driver’s cancel routine will run and complete the subsidiary IRP. In all three cases, therefore, we can be 
sure that all subsidiary IRPs will be completed sometime soon. 

This version of OnCancelReadWrite is almost complete, by the way, but it needs an additional step that I’ll show you after I’ve 
explained the synchronization problem we need to solve. I can illustrate the problem by showing the completion routines we’ll 
use with two naive mistakes built in. Here’s the completion routine for one stage of the total transfer: 

NTSTATUS OnStageComplete(PDEVICE_OBJECT fdo, PIRP subirp, 
  PRWCONTEXT ctx) 
  { 
 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  PIRP mainirp = ctx->mainirp; 
  PURB urb = (PURB) stack->Parameters.Others.Argument1; 
  if (NT_SUCCESS(Irp->IoStatus.Status)) 
    { 
 
    InterlockedExchangeAdd((PLONG) &ctx->numxfer,  
      (LONG) urb->UrbIsochronousTransfer.TransferBufferLength); 
    } 
  else 
 
    ctx->status = Irp->IoStatus.Status; 
 
  ExFreePool(urb); 
  IoFreeMdl((PMDL) stack->Parameters.Others.Argument2); 
 
  IoFreeIrp(subirp);  // <== don't do this 
  if (InterlockedDecrement(&ctx->numpending) == 0) 
    { 
    IoSetCancelRoutine(mainirp, NULL); // <== also needs some work 
    mainirp->IoStatus.Status = ctx->status; 
 
    IoCompleteRequest(mainirp, IO_NO_INCREMENT); 
    } 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

1. This stack location is the extra one that the dispatch routine allocated. We need the address of the URB for this stage, and 
the stack was the most convenient place to save that address. 

2. When a stage completes normally, we update the cumulative transfer count for the main IRP here. The final value of 
numxfer will end up in the main IRP’s IoStatus.Information field. 

3. We initialized status to STATUS_SUCCESS by zeroing the entire context structure. If any stage completes with an error, 
this statement will record the error status. The final value will end up in the main IRP’s IoStatus.Status field. 

4. We no longer need the URB or the partial MDL for this stage, so we release the memory they occupied here. 

5. This call to IoFreeIrp is the naive part of this completion routine, as I’ll explain shortly. 
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6. When the last stage completes, we’ll also complete the main IRP. Once we’ve submitted the subsidiary IRPs, this is the 
only place where we complete the main IRP, so we can be sure that the main IRP pointer is valid. 

Here’s the naive version of the completion routine for the main IRP: 

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo, PIRP Irp, 
  PRWCONTEXT ctx) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) ctx->pdx; 
 
  if (Irp->Cancel) 
    Irp->IoStatus.Status = STATUS_CANCELLED; 
  else if (NT_SUCCESS(Irp->IoStatus.Status)) 
    Irp->IoStatus.Information = ctx->numxfer; 
 
 
  ExFreePool(ctx);    // <== don't do this 
  return STATUS_SUCCESS; 
  } 

1. If someone tried to cancel the main IRP, this statement will set the corresponding ending status. 

2. Releasing the context structure’s memory is a problem, as I’ll explain. 

I’ve been building up to a big and dramatic exposé of a synchronization problem associated with IRP cancellation, and here it 
finally is: Suppose our cancel routine gets called after one or more of the calls to IoFreeIrp has already happened inside 
OnStageComplete. You can see that we might call IoCancelIrp with an invalid pointer in such a case. Or suppose the cancel 
routine gets called more or less simultaneously with OnReadWriteComplete. In that case, we might have the cancel routine 
accessing the context structure after it gets deleted. 

You might attempt to solve these problems with various subterfuges. Can OnStageComplete nullify the appropriate subsidiary 
IRP pointer in the context structure, and can OnCancelReadWrite check before calling IoCancelIrp? (Yes, but there’s still no 
way to guarantee that the call to IoFreeIrp doesn’t squeeze in between whatever test OnCancelReadWrite makes and the 
moment when IoCancelIrp is finally done modifying the cancel-related fields of the IRP.) Can you protect the various cleanup 
steps with a spin lock? (That’s a horrible idea because you’ll be holding the spin lock across calls to time-consuming functions.) 
Can you take advantage of knowing that the current release of Windows XP always cleans up completed IRPs in an 
asynchronous procedure call (APC) routine? (No, for the reasons I discussed back in Chapter 5.) 

I struggled long and hard with this problem before inspiration finally struck. Why not, I finally realized, protect the context 
structure and the subsidiary IRP pointers with a reference count so that both the cancel routine and the main completion 
routines can share responsibility for cleaning them up? That’s what I ended up doing. I put a reference count field (refcnt) in 
the context structure and initialized it to the value 2. One reference is for the cancel routine; the other is for the main 
completion routine. I wrote the following helper function to release the memory objects that are the source of the problem: 

BOOLEAN DestroyContextStructure(PRWCONTEXT ctx) 
  { 
  if (InterlockedDecrement(&ctx->refcnt) > 0) 
    return FALSE; 
  for (ULONG i = 0; i < ctx->numirps; ++i) 
    if (ctx->sub[i].irp) 
      IoFreeIrp(ctx->sub[i].irp); 
  ExFreePool(ctx); 
  return TRUE; 
  } 

I call this routine at the end of the cancel routine: 

VOID OnCancelReadWrite(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  IoReleaseCancelSpinLock(Irp->CancelIrql); 
  PRWCONTEXT ctx = (PRWCONTEXT) 
    Irp->Tail.Overlay.DriverContext[0]; 
  for (ULONG i = 0; i < ctx->numirps; ++i) 
    IoCancelIrp(ctx->sub[i].irp); 
  PDEVICE_EXTENSION pdx = ctx->pdx; 
  if (DestroyContextStructure(ctx)) 
    { 
    CompleteRequest(Irp, STATUS_CANCELLED, 0); 
    IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
    } 
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  } 

I omitted the call to IoFreeIrp in the stage completion routine and added one more line of code to decrement the reference 
count once it’s certain that the cancel routine hasn’t been, and can no longer, be called: 

NTSTATUS OnStageComplete(PDEVICE_OBJECT fdo, PIRP subirp, 
  PRWCONTEXT ctx) 
  { 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  PIRP mainirp = ctx->mainirp; 
  PURB urb = (PURB) stack->Parameters.Others.Argument1; 
  if (NT_SUCCESS(Irp->IoStatus.Status)) 
    ctx->numxfer += 
    urb->UrbIsochronousTransfer.TransferBufferLength; 
  else 
    ctx->status = Irp->IoStatus.Status; 
  ExFreePool(urb); 
  IoFreeMdl((PMDL) stack->Parameters.Others.Argument2); 
  if (InterlockedDecrement(&ctx->numpending) == 0) 
    { 
    if (IoSetCancelRoutine(mainirp, NULL)) 
      InterlockedDecrement(&ctx->refcnt); 
    mainirp->IoStatus.Status = ctx->status; 
    IoCompleteRequest(mainirp, IO_NO_INCREMENT); 
    } 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

Recall that IoSetCancelRoutine returns the previous value of the cancel pointer. If that’s NULL, the cancel routine has already 
been called and will call DestroyContextStructure. If that’s not NULL, however, it will no longer be possible for the cancel 
routine ever to be called, and we must use up the cancel routine’s claim on the context structure. 

I also replaced the unconditional call to ExFreePool in the main completion routine with a call to DestroyContextStructure: 

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo, PIRP Irp, 
  PRWCONTEXT ctx) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) ctx->pdx; 
  if (Irp->Cancel) 
    Irp->IoStatus.Status = STATUS_CANCELLED; 
  else if (NT_SUCCESS(Irp->IoStatus.Status)) 
    Irp->IoStatus.Information = ctx->numxfer; 
 
  if (DestroyContextStructure(ctx)) 
    { 
    IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
    return STATUS_SUCCESS; 
    } 
  else 
    return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

Here’s how this extra logic works. If the cancel routine ever gets called, it will run through the context structure calling 
IoCancelIrp for each of the subsidiary IRPs. Even if all of them have already completed, these calls will still be safe because 
we won’t have called IoFreeIrp yet. The reference to the context structure will also be safe because we won’t have called 
ExFreePool yet. The cancel routine finishes up by calling DestroyContextStructure, which will decrement the reference counter. 
If the main completion routine hasn’t run yet, DestroyContextStructure will return FALSE, whereupon the cancel routine will 
return. The context structure still exists at this point, which is good because the main completion routine will reference it soon. 
The completion routine’s eventual call to DestroyContextStructure will release the subsidiary IRPs and the context structure 
itself. The completion routine will then return STATUS_SUCCESS to allow the main IRP to finish completing. 

Suppose calls to the cancel and main completion routines happen in the other order. In that case, OnReadWriteComplete’s call 
to DestroyContextStructure will simply decrement the reference count and return FALSE, whereupon OnReadWriteComplete 
will return STATUS_MORE_PROCESSING_REQUIRED. The context structure still exists. We can also be sure that we still 
own the IRP and the DriverContext field from which the cancel routine will fetch the context pointer. The cancel routine’s call 
to DestroyContextStructure will, however, reduce the reference count to 0, release the memory, and return TRUE. The cancel 
routine will then release the remove lock and call IoCompleteRequest for the main IRP. That adds up to two calls to 
IoCompleteRequest for the same IRP. You know that you’re not allowed to complete the same IRP twice, but the prohibition is 
not against calling IoCompleteRequest twice per se. If the first invocation of IoCompleteRequest results in calling a completion 
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routine that returns STATUS_MORE_PROCESSING_REQUIRED, a subsequent, duplicate call is perfectly OK. 

The only remaining case in this analysis occurs when the cancel routine never gets called at all. This is, of course, the normal 
case because IRPs don’t usually get cancelled. We discover this fact when we call IoSetCancelRoutine in preparation for 
completing the main IRP. If IoSetCancelRoutine returns a non-NULL value, we know that IoCancelIrp has not yet been called 
for the main IRP. (Had it been, the cancel pointer would already be NULL, and IoSetCancelRoutine would have returned 
NULL.) Furthermore, we know that our own cancel routine can now never be called and will therefore not have a chance to 
reduce the reference count. Consequently, we reduce the reference count by hand so that OnReadWriteComplete’s call to 
DestroyContextStructure will release the memory. 

Where’s the Synchronization? 
You’ll notice that I didn’t use a spin lock to guard the code I just showed you for testing for cancellation inside 
the dispatch routine. Synchronization between that code and some hypothetical caller of IoCancelIrp is implicit 
in the facts that IoSetCancelRoutine is an interlocked exchange operation and that IoCancelIrp sets the Cancel 
flag before calling IoSetCancelRoutine. Refer to the discussion in Chapter 5 for a sketch of how IoCancelIrp 
works.  

Our dispatch routine’s first call to IoSetCancelRoutine might occur after IoCancelIrp sets the Cancel flag but 
before IoCancelIrp does its own call to IoSetCancelRoutine. Our dispatch routine will see that the Cancel flag is 
set and make a second call to IoSetCancelRoutine. If this second call happens to precede IoCancelIrp’s call to 
IoSetCancelRoutine, the cancel routine won’t be called. We’ll also decrement the reference count on the context 
structure so that it gets released on the first call to DestroyContextStructure. 

If our dispatch routine’s second call to IoSetCancelRoutine follows IoCancelIrp’s, we won’t decrement the 
reference count. Either the cancel routine or the completion routine will end up releasing the context structure. 

If our dispatch routine tests the Cancel flag before IoCancelIrp sets it, or if IoCancelIrp has never even been 
called for this IRP, we’ll go ahead and start the subsidiary IRPs. If IoCancelIrp was called in the distant past 
before we installed a cancel routine, it will have simply set the Cancel flag and returned. What happens after 
that is just the same as when our dispatch routine nullifies the cancel pointer before IoCancelIrp calls 
IoSetCancelRoutine. 

So you see, you don’t always need a spin lock to give you multiprocessor safety: sometimes an atomic 
interlocked operation will do the trick by itself. 

 

Associated IRPs? 
At first blush, IoMakeAssociatedIrp looks like an alternative way to create the subsidiary IRPs that USBISO 
needs. The idea behind IoMakeAssociatedIrp is that you can create a number of associated IRPs to fulfill a 
master IRP. When the last associated IRP completes, the I/O Manager automatically completes the master IRP.  

Unfortunately, associated IRPs aren’t a good way to solve any of the problems that USBISO grapples with. Most 
important, WDM drivers aren’t supposed to use IoMakeAssociatedIrp. Indeed, the completion logic for 
associated IRPs is incorrect in Windows 98/Me—it doesn’t call any completion routines for the master IRP when 
the last associated IRP finishes. Even in Windows XP, however, the I/O Manager won’t cancel associated IRPs 
when the master IRP is cancelled. Furthermore, the call to IoFreeIrp for an associated IRP occurs inside 
IoCompleteRequest, in whatever thread context happens to be current. This fact makes it harder to safely 
cancel the associated IRPs. 

12.2.7 Idle Power Management for USB Devices  
I’m sure you’ll agree with me that power management in a WDM driver isn’t complicated enough. (Not!) In Chapter 8, I 
discussed strategies for keeping a device in a low-power state when it’s not in use, whatever “in use” means for your particular 
device. Beginning with Windows XP, there is a special protocol for USB devices called selective suspend. In this final section 
of the chapter, I’ll describe the mechanics a function driver should use to implement this protocol. 

NOTE  
The Chapter 8 WAKEUP sample in the companion content contains the code discussed in this section. 

The selective suspend feature introduced in Windows XP solves a wake-up problem that arises in composite devices. Suppose 
you have a two-function device, with each function being managed by a separate function driver. Now suppose one of the 
function drivers issues both an IRP_MN_WAIT_WAKE and an IRP_MN_SET_POWER to put its interface in the D2 state, but 
the other function driver leaves its interface in the D0 state. The first function driver might be relying on a wake-up signal to 
repower its interface. If the physical device were not composite, the parent driver would have armed its wake-up feature and 
put it in D2. Resuming the device would then generate a wake-up signal, and the parent driver would complete the 
WAIT_WAKE. 

But wake-up signaling doesn’t happen in the composite device. The parent driver doesn’t power down the real device (and 
doesn’t arm its wake-up signaling) unless all function drivers independently ask to have their interfaces powered down. In the 
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example I gave, only one out of two function drivers powered its interface down. Since the real device never suspends, it has 
no reason ever to generate a wake-up signal. The function driver for the interface that was supposed to have been suspended 
doesn’t realize this, however, and is therefore not trying to communicate with the device. The end result is a dead function on 
the device. 

Selective suspend provides coordination between the function drivers to solve the problem. Here’s how this works. Instead of 
directly powering down its interface, a function driver issues an IOCTL to the parent driver. The import of the IOCTL is, “I’m 
ready to be suspended, and here’s a function you can call so I can do that.” When all function drivers for a particular composite 
device issue this IOCTL, the parent driver can call all of the callback routines. Each callback routine depowers its own 
interface. The parent driver then depowers the real device. A subsequent wake-up signal reactivates each function driver that 
issued an IRP_MN_WAIT_WAKE. Voilà! No more dead functions. 

Most USB function drivers manage a single interface. You shouldn’t assume that a particular interface will never be part of a 
composite device, and you should assume that function drivers for other interfaces on the same device will be relying on 
wake-up signalling even if you don’t. Therefore, you should follow the selective suspend protocol I’m about to describe. If 
your driver happens to run on a platform earlier than Windows XP, you should disable your own wake-up and 
automatic-suspend features by default. You can provide instructions to allow the end user to enable one or both of such features 
in situations in which you won’t trip on the dead-interface problem. 

Note that even if your driver manages all the interfaces on a particular device, you should invoke the selective suspend 
protocol because the Microsoft drivers also rely on it to help them compensate for hardware bugs in various chip sets. 

The first thing you need to do is declare some additional members in your device extension structure: 

typedef struct _DEVICE_EXTENSION { 
 
  PIRP SuspendIrp; 
  LONG SuspendIrpCancelled; 
  USB_IDLE_CALLBACK_INFO cbinfo; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

Then, when you decide it’s time to put your device in a low-power state because you consider it to be idle, you issue an 
internal control request to your parent driver to register a callback routine (SelectiveSuspendCallback): 

NTSTATUS IssueSelectiveSuspendRequest(PDEVICE_EXTENSION pdx) 
  { 
  PIRP Irp = IoAllocateIrp(pdx->LowerDeviceObject->StackSize, 
    FALSE); 
  pdx->cbinfo.IdleCallback = 
    (USB_IDLE_CALLBACK) SelectiveSuspendCallback; 
  pdx->cbinfo.IdleContext = (PVOID) pdx; 
  PIO_STACK_LOCATION stack = IoGetNextIrpStackLocation(Irp); 
  stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL; 
  stack->Parameters.DeviceIoControl.IoControlCode = 
    IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION; 
  stack->Parameters.DeviceIoControl.Type3InputBuffer = 
    &pdx->cbinfo; 
  pdx->SuspendIrp = Irp; 
  pdx->SuspendIrpCancelled = 0; 
  IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
    SelectiveSuspendCompletionRoutine, (PVOID) pdx, 
    TRUE, TRUE, TRUE); 
  IoCallDriver(pdx->LowerDeviceObject, Irp); 
  return STATUS_SUCCESS; 
  } 

You use an asynchronous IRP for this control operation because it might remain outstanding for a long period, and you might, 
therefore, need to cancel it. I followed my own advice from Chapter 5 in orchestrating the cancellation and completion 
routines: 

VOID CancelSelectiveSuspend(PDEVICE_EXTENSION pdx) 
  { 
  PIRP Irp = (PIRP) InterlockedExchangePointer( 
    (PVOID*) &pdx->SuspendIrp, NULL); 
  if (Irp) 
    { 
    IoCancelIrp(Irp); 
    if (InterlockedExchange(&pdx->SuspendIrpCancelled, 1)) 
      IoFreeIrp(Irp); 



- 342 - The Universal Serial Bus | Chapter 12 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

    } 
  } 
 
NTSTATUS SelectiveSuspendCompletionRoutine(PDEVICE_OBJECT junk, 
  PIRP Irp, PDEVICE_EXTENSION pdx) 
  { 
  NTSTATUS status = Irp->IoStatus.Status; 
  if (InterlockedExchangePointer((PVOID*) &pdx->SuspendIrp, NULL) 
    ││ InterlockedExchange(&pdx->SuspendIrpCancelled, 1)) 
    IoFreeIrp(Irp); 
 
  if (!NT_SUCCESS(status) && status != STATUS_POWER_STATE_INVALID) 
    GenericWakeupFromIdle(pdx->pgx, FALSE); 
 
  return STATUS_MORE_PROCESSING_REQUIRED; 
  } 

(I’ll explain in a moment why there’s a call to GenericWakeupFromIdle here.) 

In a normal case, the parent driver pends the idle-notification IRP until all devices attached to the same hub ask to be idled. 
When that occurs, the parent driver calls the callback routine, whereupon you carry out two steps. First you make sure that 
your wake-up feature (if any) is armed and that a WAIT_WAKE request is outstanding. Second you request a power IRP to put 
your device in your desired low-power state. For example, in a driver that uses GENERIC.SYS for power management, your 
callback routine could be this simple: 

VOID SelectiveSuspendCallback(PDEVICE_EXTENSION pdx) 
  { 
  GenericWakeupControl(pdx->pgx, ManageWaitWake); 
  GenericIdleDevice(pdx->pgx, PowerDeviceD2, TRUE); 
  } 

The TRUE argument to GenericIdleDevice makes the power operation synchronous, which is a requirement in this situation. In 
fact, returning from the callback routine before your device is in its low-power state would cause the parent driver to 
incorrectly believe you couldn’t power down, whereupon the whole hub and all attached devices would stay powered. 

If the parent driver allows the idle notification request to fail, your device may have ended up in a low-power state, and you 
should repower it from your completion routine—hence the call to GenericWakeupFromIdle in the example. The only 
exception will be if the request completes with STATUS_POWER_STATE_INVALID, which happens if you put the device in 
the D3 state while the IRP is outstanding. That can happen, for example, if the system is hibernating. 

Finally, don’t forget to cancel your outstanding idle notification IRP at StopDevice time. 
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Chapter 13  

13 Human Interface Devices  

A Human Interface Device (HID) is one that communicates with the host computer using structured reports. The HID class of 
devices consists primarily of devices that end users use to interact with computers. The class includes keyboards, mice, and 
game controllers of all kinds, but it can include any imaginable knob, switch, button, slider, exoskeletal device, or other type of 
control that a user might use to control a computer. Noninteractive devices such as bar code readers and measuring instruments 
might also be designed to fit into the HID class. In addition, HID devices can incorporate user-information components such as 
lights, displays, force feedback, and other indicators. 

HID devices built for the Universal Serial Bus conform to the Device Class Definition for Human Input Devices. Additional 
specifications relevant to force feedback are in the USB Device Class Definition for Physical Interface Devices. HID relies on 
extensive sets of numeric constants, whose definition can be found in the HID Usage Tables specification. All of these 
specifications are available for free download from www.usb.org. 

Although the HID specifications are oriented toward USB implementations, any sort of device can function, in whole or in part, 
as a HID device. The important characteristic of a HID device, once again, is that the host is able to perform input and output 
operations using report packets that conform to an extremely flexible structure definition, called the report descriptor. 

Applications access HID-compliant keyboards and mice only indirectly, by handling window messages whose character and 
content haven’t fundamentally changed in over twenty years. Applications access other sorts of HID device through COM 
interfaces that are part of the DirectX component of Windows and through Win32 API calls. 

13.1 Drivers for HID Devices  

The Microsoft class driver for HID devices, HIDCLASS.SYS, provides the overall framework for WDM drivers that manage 
HID devices on all the Windows platforms. Microsoft also supplies a HIDCLASS minidriver named HIDUSB.SYS to handle 
USB devices whose device or interface descriptor indicates that they belong to the HID class. Consequently, if your USB 
device belongs to the HID class, you may not have to write a special-purpose driver at all because the Microsoft class driver 
and minidriver fully support the USB specifications. 

If you’re designing a USB device that includes some HID-like functionality, don’t forget that you can make it a composite 
device by defining several interfaces. The generic parent driver will separate the functions of your device so that the system 
will load the standard Microsoft drivers for the HID function. 

Microsoft also provides drivers for standard PS2 keyboards and mice, and for serial-port mice. These drivers, along with 
HIDCLASS, sit below class filter drivers named KBDCLASS and MOUCLASS, which present a consistent interface to 
higher-level components. 

You might need to write a custom minidriver to replace HIDUSB.SYS if your USB device or interface provides or consumes 
structured reports but doesn’t belong to the HID class. In such a case, your minidriver will furnish a faux HID descriptor to 
HIDCLASS, and it will also create structured reports matching that descriptor in response to input events. 

Even with a true HID-class USB device, you might have to write your own minidriver to support custom functionality. I’ve 
used this approach to build drivers for several specialized devices, including a gaming mouse with lots of buttons and lights 
and a head-tracking device that delivers sensor values that must be transformed into position reports. In these cases, the 
devices are nominally HID-class USB devices, but my clients want the devices to deliver different reports from the ones 
generated by the firmware. It was not practical in these cases to put the custom functionality into firmware. 

Finally, if you have a non-USB device (other than a standard keyboard or mouse) that includes HID-like functionality, a 
custom HIDCLASS minidriver is the only practical way to make that device accessible to DirectX and thence to existing 
applications. 

13.2 Reports and Report Descriptors  

A HID device transfers information in a block known as a report. The report contains bit and integer fields formatted according 
to a report descriptor. Much of the HID specification and related documents describe the contents of reports and report 
descriptors in great detail. I’ll analyze two sample report descriptors here to help you understand the specifications. 

13.2.1 Sample Keyboard Descriptor  
To start with, I suggest that you download the so-called HID Descriptor Tool (DT.EXE) from http://www.usb.org. The tool 

http://www.usb.org/
http://www.usb.org/
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allows you to create and edit report descriptors using symbolic names. Figure 13-1 illustrates the user interface and one of the 
example descriptors that come with the tool. 

Figure 13-1. Using the HID Tool to define a keyboard report descriptor.  

The first item in the sample report descriptor establishes the usage page, which essentially specifies a namespace for 
interpreting certain numeric constants in subsequent elements of the descriptor. You need the HID Usage Tables document to 
interpret the numbers. For example, the usage code 6 means keyboard in the generic desktop page but sailing simulation device 
in the simulation controls page. 

The second item specifies the usage for the next top-level collection in the descriptor. In the HID specification, a collection 
serves to group related data items. For example, a physical collection groups items collected at one geometric point, whereas 
an application collection groups items that might be familiar to applications. A further concept, the logical collection, allows 
related items to be grouped into a composite data structure, such as a byte count followed by data. These concepts are so 
abstract as to be nearly meaningless, and Microsoft assigns additional meaning, as follows: 

 A top-level collection, such as the one beginning with the third item in the keyboard sample, corresponds to an 
individually addressable entity. Acting as a bus driver, HIDCLASS creates a physical device object (PDO) for each 
top-level collection. The device identifier for the collection includes a generic compatible ID, based on the usage code. 
See Table 13-1. If the collection has any other usage, HIDCLASS won’t create a compatible ID. Refer to Chapter 15 for 
more information about the importance of a compatible ID in locating a driver. The PDO then becomes the base of a PnP 
device stack for some type of device. Note that multiple top-level collections give rise to multiple device stacks. For this 
to work in practice, the device must use report identifiers to distinguish between the different collections. 

 A link collection is one nested within a top-level collection. Link collections provide an organizational hierarchy that 
applications can use to group related controls in a complex device. On a game pad, for example, one can use link 
collections to distinguish between buttons actuated by the left and right hands. There seems little point to this generality, 
however, when applications typically require end users to assign meanings to controls based on numbers rather than 
position in a hierarchy. But perhaps I just haven’t seen enough applications and HID devices to make a comprehensive 
judgment. 

Usage Page Usage Compatible ID 

Generic desktop Pointer or mouse HID_DEVICE_SYSTEM_MOUSE  

 Keyboard or keypad HID_DEVICE_SYSTEM_KEYBOARD  

 Joystick or game pad HID_DEVICE_SYSTEM_GAME  

 System control HID_DEVICE_SYSTEM_CONTROL  

Consumer (Any) HID_DEVICE_SYSTEM_CONSUMER  

Table 13-1. HIDCLASS-Compatible ID for Each Supported Usage  

Within the single top-level collection for the sample keyboard, the most important items are the main items named INPUT and 
OUTPUT. An INPUT item corresponds to a field in an input report, whereas an OUTPUT item corresponds to a field in an 
output report. There can also be FEATURE items that define fields in a feature report, but the keyboard sample doesn’t include 
any of them. A number of global items precede the main items in order to describe the presentation and meaning of the data 
itself. 

It’s important to realize that INPUT, OUTPUT, and FEATURE report items can be interleaved in the report descriptor. The 
logical collection structure within a top-level collection isn’t important in determining which data items appear together in a 
given report. Rather, the type of the items governs. Thus, the example keyboard descriptor mixes INPUT and OUTPUT items 
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in a way that might suggest that there are five reports, or else a single bidirectional report. In reality, there is a single input 
report defined by the INPUT items and a single output report defined by the OUTPUT items. 

The main items, along with all the qualifying global items, define the bit layout of a structured report. To visualize the report, 
assign bits from right to left and don’t leave any unused bits for alignment purposes. Treat multibit values, including those that 
span byte boundaries, as little-endian (least significant bit on the right of the resulting picture). Subdivide the result into bytes, 
which the device transmits from right to left. 

In the keyboard report, we have five data items in the collection, and they define an input report and an output report (see 
Figure 13-2): 

 An input item consisting of eight (REPORT_COUNT) single-bit values (REPORT_SIZE 1), each of which can vary from 
0 (LOGICAL_MINIMUM) to 1 (LOGICAL_MAXIMUM). The meaning of the bits corresponds to keyboard usages 
(USAGE_PAGE) E0 through E7 (USAGE_MINIMUM and USAGE_MAXIMUM). In other words, byte 0 of the input 
report contains flag bits to indicate which of the shift-type keys on the keyboard are currently depressed. 

 A constant input item consisting of one (REPORT_COUNT) 8-bit value (REPORT_SIZE). This is byte 1 of the input 
report, and it’s simply a placeholder that contains no valid data. 

 An output item consisting of five (REPORT_COUNT) single-bit (REPORT_SIZE) values. The LOGICAL_MINIMUM 
and LOGICAL_MAXIMUM values previously specified apply to these values because they haven’t been overridden. The 
meaning of the bits is different, however: they correspond to LEDs (USAGE_PAGE) with labels such as Num Lock 
(USAGE_MINIMUM and USAGE_MAXIMUM). In other words, the low-order 5 bits of byte 0 of the output report 
contain flags to control LEDs for the toggling keys. 

 A constant output item consisting of one (REPORT_COUNT) 3-bit (REPORT_SIZE) value. These 3 bits pad out the 
output report to a full byte. 

 An input item consisting of six (REPORT_COUNT) 8-bit values (REPORT_SIZE), ranging from 0 through 101 
(LOGICAL_MINIMUM and LOGICAL_MAXIMUM) and corresponding to keys on a standard 101-key keyboard 
(USAGE_PAGE, USAGE_MINIMUM, and USAGE_MAXIMUM). In other words, bytes 2 through 7 of the input report 
contain the codes for up to six keys that are being simultaneously held down. 

Figure 13-2. Layout of keyboard input and output reports.  

13.2.2 HIDFAKE Descriptor  
Figure 13-3 illustrates the report descriptor used in the HIDFAKE sample driver in the companion content. This report 
descriptor has a few features that are different from the keyboard sample: 

 The top-level application’s usage is “Gun Device” from the Gaming Controls page. This was an artificial choice that I 
made to avoid difficulty installing the sample driver. For any usage listed in Table 13-1, HIDCLASS will supply a 
compatible device identifier along with the device’s specific ID. Windows XP will then prefer a signed driver matching 
the compatible ID to an unsigned driver (such as HIDFAKE.SYS) matching the device’s specific ID. (See Chapter 15 for 
more information about how Windows XP chooses drivers.) It’s nearly impossible to switch to the specific driver. 

 I used three logical collections within the main collection. The logical collections merely serve to highlight the 
three-report structure of the descriptor. The sample would work perfectly well without them. 

 The descriptor includes an input report and two feature reports. The input report (1) contains a single button usage. The 
first feature report (2) is for returning a driver version number, and the second feature report (3) is to allow the test applet 
to control the state of the fake button. 
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Figure 13-3. Using the HID Tool to define the HIDFAKE report descriptor.  

HIDFAKE illustrates one fine point about report descriptors. Feature reports pretty much need to have identifying numbers 
because the HID specification calls for them in the Get_Report_Request and Set_Report_Request control pipe commands. If 
any report in a top-level collection has an identifier, all reports in that collection must. In reality, though, HIDFAKE models a 
notional device that has a real button report and no feature reports. I defined the feature reports as a way for the test applet to 
communicate “out of band” with the driver. If we were dealing with a real device, therefore, the driver would have to insert a 
report identifier in each input report that it read from the device. 

13.3 HIDCLASS Minidrivers  

As previously discussed, Microsoft supplies a driver (HIDUSB.SYS) for any USB device built according to the HID 
specification. This section describes how you can build a HIDCLASS minidriver for some other type of device that you want to 
have masquerade as HID. 

13.3.1 DriverEntry  
The DriverEntry function for a HIDCLASS minidriver is similar to that in a regular WDM driver, but only up to a point. In this 
routine, you initialize the DRIVER_OBJECT data structure with pointers to AddDevice and DriverUnload routines as well as to 
dispatch routines for just three types of I/O request packet (IRP): IRP_MJ_PNP, IRP_MJ_POWER, and 
IRP_MJ_INTERNAL_DEVICE_CONTROL. Then you build a HID_MINIDRIVER_REGISTRATION structure and call 
HidRegisterMinidriver, which is one of the functions exported by HIDCLASS.SYS. Table 13-2 describes the fields in the 
HID_MINIDRIVER_REGISTRATION structure. 

Field Name Description 

Revision  (ULONG) Minidriver sets this field to HID_REVISION, which currently equals 1. 

DriverObject  
(PDRIVER_OBJECT) Minidriver sets this field to the same value passed as the DriverObject 
argument to DriverEntry. 

RegistryPath  
(PUNICODE_STRING) Minidriver sets this field to the same value passed as the RegistryPath 
argument to DriverEntry. 

DeviceExtensionSize  (ULONG) Size in bytes of the device extension structure used by the minidriver. 

DevicesArePolled  
(BOOLEAN) TRUE if the minidriver’s devices need to be polled for reports. FALSE if the 
devices spontaneously send reports when data becomes available. 

The only field whose meaning isn’t completely straightforward is the DevicesArePolled flag. Most devices will spontaneously 
generate a report whenever the end user does something, and they’ll notify the host via some sort of interrupt. For this kind of 
device, you set the DevicesArePolled flag to FALSE. HIDCLASS will then attempt to keep two IRPs (called ping-pong IRPs) 
active to read reports. Your minidriver is expected to queue the IRPs and complete them in order when the device interrupts. 

Some devices don’t spontaneously generate reports. For that kind of device, set the DevicesArePolled flag to TRUE. 
HIDCLASS will then issue IRPs to read reports in a timing loop. Your minidriver reads report data from the device only in 
response to each IRP. Higher-level components, such as an application using DirectX interfaces, can specify the polling 
interval. Think twice before setting DevicesArePolled to TRUE: most devices require it to be FALSE. 

Here’s a nearly complete example of the DriverEntry function in a HIDCLASS minidriver: 
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extern "C" NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, 
  PUNICODE_STRING RegistryPath) 
  { 
  DriverObject->DriverExtension->AddDevice = AddDevice; 
  DriverObject->DriverUnload = DriverUnload; 
  DriverObject->MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL] = 
    DispatchInternalControl; 
  DriverObject->MajorFunction[IRP_MJ_PNP] = DispatchPnp; 
  DriverObject->MajorFunction[IRP_MJ_POWER] = DispatchPower; 
 
  HID_MINIDRIVER_REGISTRATION reg; 
  RtlZeroMemory(&reg, sizeof(reg)); 
  reg.Revision = HID_REVISION; 
  reg.DriverObject = DriverObject; 
  reg.RegistryPath = RegistryPath; 
  reg.DeviceExtensionSize = sizeof(DEVICE_EXTENSION); 
  reg.DevicesArePolled = FALSE;  // <== depends on your hardware 
 
  return HidRegisterMinidriver(&reg); 
  } 

13.3.2 Driver Callback Routines  
Most of the class/minidriver interfaces in Windows XP involve a set of callback routines that the minidriver specifies in a 
registration call made from DriverEntry. Most class drivers completely take over the management of the DRIVER_OBJECT 
while handling the registration call. This means that the class drivers each install their own AddDevice and DriverUnload 
functions and their own IRP dispatch routines. The class drivers then make calls to the minidriver callback routines to carry out 
vendor-specific actions. 

HIDCLASS operates this way as well, but with a twist. When you call HidRegisterMinidriver, HIDCLASS installs its own 
function pointers in your DRIVER_OBJECT, just as most class drivers would. Instead of using a set of callback routines whose 
addresses your minidriver provides in the HID_MINIDRIVER_REGISTRATION structure (there are none), it remembers the 
AddDevice and DriverUnload pointers and the addresses of your dispatch routines for PNP, POWER, and 
INTERNAL_DEVICE_CONTROL requests. These minidriver routines do not have exactly the same functions as like-named 
routines in regular WDM drivers, though. I’ll explain in this section how to write these callback routines. 

AddDevice Callback  

The AddDevice callback in a HIDCLASS minidriver has a prototype similar to that of a regular AddDevice function: 

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT fdo); 

There are two important differences between the minidriver callback and the regular function: 

 The device object argument refers to a function device object (FDO) that HIDCLASS has already created. 

 Prior to Windows XP, HIDCLASS ignored the return code from the minidriver callback. 

Since HIDCLASS creates the FDO before calling your minidriver AddDevice callback, you don’t need to call IoCreateDevice 
or, indeed, to do practically any of the things that you normally do in a WDM AddDevice function. Rather, you just need to 
initialize your device extension structure and return. Versions of Windows prior to Windows XP will ignore the return code 
from this callback. Consequently, if an error arises in your AddDevice callback, you need to set a flag in your device extension 
that you can inspect at StartDevice time: 

typedef struct _DEVICE_EXTENSION { 
 
  NTSTATUS AddDeviceStatus; 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

Another issue to be aware of is that the FDO’s DeviceExtension pointer is the address of an extension structure that’s private to 
HIDCLASS. The first few members of that private structure are mapped by the HID_DEVICE_EXTENSION structure in the 
DDK: 

typedef struct _HID_DEVICE_EXTENSION { 
  PDEVICE_OBJECT PhysicalDeviceObject; 
  PDEVICE_OBJECT NextDeviceObject; 
  PVOID MiniDeviceExtension; 
  } HID_DEVICE_EXTENSION, *PHID_DEVICE_EXTENSION; 
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To find your device extension, you must follow this pointer chain: 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) ((PHID_DEVICE_EXTENSION) 
  (fdo->DeviceExtension))->MiniDeviceExtension; 

You use similar constructions to get the PDO address and to get what I call the LowerDeviceObject in this book. (HIDCLASS 
calls it the NextDeviceObject.) Being such a lazy typist, I usually define macros to make my life easier while I’m writing the 
minidriver: 

#define PDX(fdo) ((PDEVICE_EXTENSION) ((PHID_DEVICE_EXTENSION) \ 
  ((fdo)->DeviceExtension))->MiniDeviceExtension) 
#define PDO(fdo) (((PHID_DEVICE_EXTENSION) ((fdo)->DeviceExtension)) \ 
  ->PhysicalDeviceObject) 
#define LDO(fdo) (((PHID_DEVICE_EXTENSION) ((fdo)->DeviceExtension)) \ 
  ->NextDeviceObject) 
Using these macros and the preceding fragment of a DEVICE_EXTENSION structure, your 
minidriver’s AddDevice callback might look like this: 
NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT fdo) 
  { 
  PDEVICE_EXTENSION pdx = PDX(fdo); 
  NTSTATUS status = STATUS_SUCCESS; 
  <initialization code for DEVICE_EXTENSION members> 
  pdx->AddDeviceStatus = status;  // <== whatever is left over 
  return status; // in case you're running in >= XP 
  } 

The point of returning a real status code from AddDevice is that in Windows XP and later systems, HIDCLASS will fail its 
own AddDevice call if you do, and that will short-circuit the initialization of your device. But since HIDCLASS ignores the 
code in earlier versions of the operating system, you need to provide a way for your StartDevice function to return an error 
code. 

DriverUnload Callback  

HIDCLASS calls your minidriver DriverUnload callback as a subroutine from its own DriverUnload routine. If you created 
any global objects in your DriverEntry routine, you’ll clean those up in the DriverUnload callback. 

DispatchPnp Callback  

You specify the DispatchPnp callback as if it were the dispatch function for IRP_MJ_PNP, by setting an array element in the 
driver object’s MajorFunction table. HIDCLASS calls your callback as a subroutine while handling Plug and Play IRPs of 
various types. Your callback routine can perform most of the same operations that a function driver would perform for this type 
of IRP. See Chapter 6 for full details. There are two exceptions: 

 Your IRP_MN_START_DEVICE handler needs to test the error flag set by your AddDevice callback (I called it 
AddDeviceStatus in the earlier fragment) and to fail the IRP if the flag indicates an error. This is how you cope with the 
fact that HIDCLASS ignores the return code from AddDevice in versions of Windows prior to Windows XP. 

 Your IRP_MN_REMOVE_DEVICE handler does not call IoDetachDevice or IoDeleteDevice. Instead, it should simply 
release any resources that were allocated by the AddDevice callback. HIDCLASS itself will take care of detaching and 
deleting the FDO. 

The HIDFAKE sample driver uses GENERIC.SYS. Its DispatchPnp routine therefore looks like this: 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  return GenericDispatchPnp(PDX(fdo)->pgx, Irp); 
  } 

Apart from using the PDX macro to locate the device extension structure, this code is the same as would appear in a regular 
function driver that uses GENERIC.SYS. The RemoveDevice, StartDevice, and StopDevice functions are different from regular 
ones, though: 

VOID RemoveDevice(PDEVICE_OBJECT fdo) 
  { 
 
 
  } 
 
NTSTATUS StartDevice(PDEVICE_OBJECT fdo, 
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  PCM_PARTIAL_RESOURCE_LIST raw, 
  PCM_PARTIAL_RESOURCE_LIST translated) 
  { 
  PDEVICE_EXTENSION pdx = PDX(fdo); 
  if (!NT_SUCCESS(pdx->AddDeviceStatus)) 
    return pdx->AddDeviceStatus; 
 
 
  return STATUS_SUCCESS; 
  } 
 
VOID StopDevice(PDEVICE_OBJECT fdo, BOOLEAN oktouch) 
  { 
 
 
  } 

HIDFAKE itself has no code at the points labeled A, B, and C. If you use this sample as a template for your own minidriver, 
you’ll write code to do the following: 

A. Clean up any resources (such as memory, lookaside lists, and so on) allocated in AddDevice. HIDFAKE has no such 
resources. 

B. Configure the device as discussed in previous chapters. HIDFAKE has no hardware and therefore has nothing to do in this 
step. 

C. Deconfigure the device by reversing the steps done in StartDevice. Since HIDFAKE does nothing in StartDevice, it 
doesn’t need to do anything here either. 

DispatchPower Callback  

You specify the DispatchPower callback as if it were the dispatch routine for IRP_MJ_POWER, by setting an array element in 
the driver object’s MajorFunction table. HIDCLASS calls your callback as a subroutine while handling power IRPs of various 
types. In most cases, your callback should simply pass the IRP down to the next driver without performing any other actions 
because HIDCLASS contains all the power-management support needed by typical devices (including WAIT_WAKE support). 

If you set the DevicesArePolled flag to FALSE in your call to HidRegisterMinidriver, HIDCLASS will cancel its ping-pong 
IRPs before forwarding a power request that reduces power. If you have simply piggybacked on these IRPs to send requests 
further down the PnP stack, you therefore won’t need to worry about cancelling them. If you have cached pointers to these 
IRPs somewhere, you should provide a cancel routine. 

NOTE  
If your minidriver uses GENERIC.SYS, consider using the GenericCacheControlRequest and 
GenericUncacheControlRequest functions to keep track of IRPs that you pend. These functions include race-safe 
cancel logic. 

Here’s an example of the DispatchPower callback in a HIDCLASS minidriver: 

NTSTATUS DispatchPower(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = PDX(fdo); 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
 
  if (stack->MinorFunction == IRP_MN_SET_POWER  
    && stack->Parameters.Power.Type == DevicePowerState) 
    { 
    DEVICE_POWER_STATE newstate = 
      stack->Parameters.Power.State.DeviceState; 
    if (newstate == PowerDeviceD0) 
      { 
 
      IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
        PowerUpCompletionRoutine, (PVOID) pdx, TRUE, TRUE, TRUE); 
      } 
    else if (pdx->devpower == PowerDeviceD0) 
      { 
 
      // TODO save context information, if any 
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      pdx->devpower = newstate; 
      } 
    } 
 
  return PoCallDriver(LDO(fdo), Irp); 
  } 
 
NTSTATUS PowerUpCompletionRoutine(PDEVICE_OBJECT fdo, PIRP Irp, 
  PDEVICE_EXTENSION pdx) 
  { 
 
  // TODO restore device context without blocking this thread 
  pdx->devpower = PowerDeviceD0; 
  return STATUS_SUCCESS; 
  } 

1. You needn’t do anything special with any power IRP except a SET_POWER for a device power state. 

2. When restoring power, you install a completion routine before forwarding the IRP down the stack. 

3. When removing power, you save any context information before forwarding the IRP. To deal with the possibility that 
HIDCLASS might lower power in steps (for example, first D2 and later D3), you also need to keep track of the current 
device power state. Whether or not your device has context information to save, this is also the time to cancel any 
subsidiary IRPs that your driver has issued, terminate polling threads, and so on. HIDCLASS will be calling you at 
PASSIVE_LEVEL in a system thread that you’re allowed to block if necessary while performing these tasks. 

4. As usual, you call PoCallDriver to forward the IRP. You need not call PoStartNextPowerIrp because HIDCLASS has 
already done so. 

5. The completion routine is called only after the bus driver completes a Set-D0 operation. Your device has now been 
repowered, and you can reverse the steps you performed when you removed power. Since you’re potentially running at 
DISPATCH_LEVEL and in an arbitrary thread, however, you must perform these steps without blocking the current 
thread. 

DispatchInternalControl Callback  

You specify the DispatchInternalControl callback as if it were the dispatch routine for 
IRP_MJ_INTERNAL_DEVICE_CONTROL, by setting an array element in the driver object’s MajorFunction table. HIDCLASS 
calls your callback routine as a subroutine in order to obtain reports and other information or to provide instructions to your 
minidriver. You can program this callback as if it were an ordinary IRP dispatch routine handling the control codes listed in 
Table 13-3. 

Internal Control Code Description 

IOCTL_GET_PHYSICAL_DESCRIPTOR  Gets USB-standard physical descriptor 

IOCTL_HID_GET_DEVICE_ATTRIBUTES  Returns information about device as if it were USB 

IOCTL_HID_GET_DEVICE_DESCRIPTOR  Returns a USB-standard HID descriptor 

IOCTL_HID_GET_FEATURE  Reads a feature report 

IOCTL_HID_GET_INDEXED_STRING  Returns a USB-standard string descriptor 

IOCTL_HID_GET_STRING  Returns a USB-standard string descriptor 

IOCTL_HID_GET_REPORT_DESCRIPTOR  Returns a USB-standard report descriptor 

IOCTL_HID_READ_REPORT  Reads a report conforming to the report descriptor 

IOCTL_HID_SEND_IDLE_NOTIFICATION  Idles the device (new in Windows XP) 

IOCTL_HID_SET_FEATURE  Writes a feature report 

IOCTL_HID_WRITE_REPORT  Writes a report 

Table 13-3. HIDCLASS Minidriver Control Operations  

NOTE  
The list of minidriver control operations in the DDK differs from the one presented here. I relied on a particular 
version of the source code for HIDCLASS in compiling this list. It’s possible that the DDK documentation is based 
on earlier versions or on support that was originally planned but never implemented. 

I’ll discuss these control operations in detail in the next section of this chapter. They all share several common features, 
however: 

 In general, HIDCLASS can call your DispatchInternalControl callback at any interrupt request level (IRQL) less than or 
equal to DISPATCH_LEVEL and in an arbitrary thread. These facts imply that your callback, and all the data objects it 
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uses, must be in nonpaged memory. Furthermore, you cannot block the calling thread. If you create subsidiary IRPs to 
communicate with your hardware, you must use asynchronous IRPs. Finally, any driver to which you send an IRP 
directly from this callback must be able to tolerate receiving the IRP at DISPATCH_LEVEL. As a point of information, 
the standard SERIAL.SYS driver allows IRPs at DISPATCH_LEVEL, and the USB bus driver allows you to send USB 
request blocks (URBs) at DISPATCH_LEVEL as well. 

 Most of the control operations use METHOD_NEITHER, which means that the input and output data buffers are found in 
the stack Parameters.DeviceIoControl.Type3InputBuffer and the IRP UserBuffer fields, respectively. 

 The control operations are heavily oriented toward the USB specification for HID devices. If you’re writing a HIDCLASS 
minidriver, it’s probably because you have either a nonstandard USB device or some other type of device altogether. 
You’ll therefore have to fit your device into the USB model. For example, you’ll have to come up with dummy vendor 
and product identifier values, dummy string descriptors, and so on. 

 The IRPs you receive in this callback have sufficient IO_STACK_LOCATION slots for you to pass the IRP down the PnP 
stack to your own bus driver. This fact allows you to piggyback on the control IRP to carry out a device-specific function 
that requires an IRP. 

Here’s a skeleton for coding this callback function in a minidriver: 

#pragma LOCKEDCODE 
 
NTSTATUS DispatchInternalControl(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = PDX(fdo); 
  NTSTATUS status = STATUS_SUCCESS; 
  ULONG info = 0; 
 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  ULONG cbin = stack->Parameters.DeviceIoControl.InputBufferLength; 
  ULONG cbout = stack->Parameters.DeviceIoControl.OutputBufferLength; 
  ULONG code =  stack->Parameters.DeviceIoControl.IoControlCode; 
  PVOID buffer = Irp->UserBuffer; 
 
  switch (code) 
    { 
  case IOCTL_HID_XXX: 
 
    break; 
  default: 
    status = STATUS_NOT_SUPPORTED; 
    break; 
    } 
 
  if (status != STATUS_PENDING) 
    CompleteRequest(Irp, status, info); 
  return status; 
  } 

13.3.3 Internal IOCTL Interface  
The major interface between HIDCLASS and a minidriver is through the DispatchInternalControl callback summarized at the 
end of the preceding section on callback routines. In this section, I’ll describe how to perform each of the control operations, in 
the order in which HIDCLASS normally presents them. Note that HIDCLASS doesn’t invoke this callback at all until after the 
minidriver successfully completes an IRP_MN_START_DEVICE request. 

IOCTL_HID_GET_DEVICE_ATTRIBUTES  

HIDCLASS sends an IOCTL_HID_GET_DEVICE_ATTRIBUTES request as part of its processing of the 
IRP_MN_START_DEVICE request and conceivably, at other times, to obtain information that a USB device records in its 
device descriptor. The UserBuffer field of the IRP points to an instance of the following structure, which you should complete: 

typedef struct _HID_DEVICE_ATTRIBUTES { 
  ULONG  Size; 
  USHORT VendorID; 
  USHORT ProductID; 
  USHORT VersionNumber; 
  USHORT Reserved[11]; 
  } HID_DEVICE_ATTRIBUTES, * PHID_DEVICE_ATTRIBUTES; 
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For example, you can complete the structure in the context of the skeletal DispatchInternalControl routine shown earlier: 

case IOCTL_HID_GET_DEVICE_ATTRIBUTES: 
  { 
  if (cbout < sizeof(HID_DEVICE_ATTRIBUTES)) 
    { 
    status = STATUS_BUFFER_TOO_SMALL; 
    break; 
    } 
  #define p ((PHID_DEVICE_ATTRIBUTES) buffer) 
  RtlZeroMemory(p, sizeof(HID_DEVICE_ATTRIBUTES)); 
  p->Size = sizeof(HID_DEVICE_ATTRIBUTES); 
  p->VendorID = 0; 
  p->ProductID = 0; 
  p->VersionNumber = 1; 
  #undef p 
  info = sizeof(HID_DEVICE_ATTRIBUTES); 
  break; 
  } 

If your device is simply a nonstandard USB device, it’s obvious which values you should supply for the VendorID, ProductID, 
and VersionNumber fields of this structure: the idVendor, idProduct, and bcdDevice fields from the real device descriptor. If 
your device isn’t a USB device, you have to come up with dummy values. I used 0, 0, and 1, respectively, in this code 
fragment, and those choices will suffice for every type of HID device except a joystick. For a joystick device, you need to pick 
unique values that match what you specify in the OEM registry subkey you create for the joystick. I have no advice about how 
to pick those values. 

Opening a HID Collection in User Mode 
Opening a HID collection handle in user mode is simplicity itself if you assign unique values to the VendorID and 
ProductID fields of the HID_DEVICE_ATTRIBUTES structure. Suppose, for example, that your company owns 
USB vendor ID 0x1234 and that you have assigned product ID 0x5678 to your device. You’ll use those values 
when answering the IOCTL_HID_GET_DEVICE_ATTRIBUTES request.  

An MFC application that uses the CDeviceList class mentioned in Chapter 2 can open a handle to one of the 
collections exposed by your driver with code like the following (see the TEST program accompanying the 
HIDFAKE sample driver): 

HANDLE CtestDlg::FindFakeDevice() 
  { 
  GUID hidguid; 
 
  HidD_GetHidGuid(&hidguid); 
  CDeviceList devlist(hidguid); 
  int ndevices = devlist.Initialize(); 
 
  for (int i = 0; i < ndevices; ++i) 
    { 
 
    HANDLE h = CreateFile(devlist.m_list[i].m_linkname, 0, 
      FILE_SHARE_READ │ FILE_SHARE_WRITE, NULL, 
      OPEN_EXISTING, 0, NULL); 
 
    if (h == INVALID_HANDLE_VALUE) 
      continue; 
3 
    HIDD_ATTRIBUTES attr = {sizeof(HIDD_ATTRIBUTES)}; 
 
    BOOLEAN okay = HidD_GetAttributes(h, &attr); 
    CloseHandle(h); 
 
    if (!okay) 
      continue; 
 
 
    if (attr.VendorID != HIDFAKE_VID ││ 
      attr.ProductID != HIDFAKE_PID) 
      continue; 
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    return CreateFile(devlist.m_list[i].m_linkname, 
      GENERIC_READ │ GENERIC_WRITE, 0, NULL, 
      OPEN_EXISTING, 0, NULL); 
    } 
 
  return INVALID_HANDLE_VALUE; 
  } 

1. Use HidD_GetHidGuid to determine the interface globally unique identifier (GUID) for HID devices. 

2. We enumerate all HID devices. In practice, the enumeration doesn’t include standard devices such as mice 
and keyboards. 

3. Opening a handle this way (with no access rights and allowing full sharing) allows us to issue queries. Unlike 
most device drivers, HIDCLASS pays close attention to the access rights and sharing attributes specified 
with IRP_MJ_CREATE, and we’re taking advantage of the flexibility that that behavior creates by opening a 
handle to a device that might not actually be accessible with a normal open. 

4. HidD_GetAttributes returns an attribute structure derived from the HID_DEVICE_ATTRIBUTES filled in by 
the minidriver. 

5. This is the crucial statement in this example. If the device and product ID match what we’re looking for, we’ll 
quit scanning devices and open a real handle to this one. 

This call to CreateFile opens an exclusive, nonoverlapped handle for reading and writing. This is the right action 
for HIDFAKE’s test applet to perform. You may have different requirements for sharing, access rights, and 
overlapped I/O. Note that the call to CreateFile might fail, even if the earlier one succeeded, if another 
application has snuck in to open a handle. 

(continue) 

Your application logic can get more complicated if your device has more than one top-level collection or if you 
need to provide for more than one instance of your hardware. 

An entirely different approach to reading input from HID devices is available through the WM_INPUT window 
message and related user-mode APIs. This facility is new with Windows XP, and I didn’t try it out. Maybe for the 
third edition…. 

It isn’t possible to open a handle to a mouse or keyboard collection because the system input thread has opened 
these devices exclusively. Furthermore, these devices don’t appear in the enumeration of the HID interface 
GUID. (HIDCLASS doesn’t advertise the HID interface GUID for keyboard and mice so as to prevent some 
random user-mode program from opening those devices before the system’s own raw input thread can do so.) 
It does you no good to register a private interface GUID for your device because HIDCLASS will fail an 
IRP_MJ_CREATE directed to the main device object. Consequently, there is no way to communicate with a 
custom mouse or keyboard driver using standard methods. 

13.3.4 IOCTL_HID_GET_DEVICE_DESCRIPTOR  
HIDCLASS sends an IOCTL_HID_GET_DEVICE_DESCRIPTOR request as part of its processing of the 
IRP_MN_START_DEVICE request and conceivably, at other times, in order to obtain a description of the device’s HID 
characteristics. The UserBuffer field of the IRP points to an instance of a USB-standard HID descriptor structure, which you 
should complete: 

typedef struct _HID_DESCRIPTOR { 
  UCHAR   bLength; 
  UCHAR   bDescriptorType; 
  USHORT  bcdHID; 
  UCHAR   bCountry; 
  UCHAR   bNumDescriptors; 
  struct _HID_DESCRIPTOR_DESC_LIST { 
    UCHAR   bReportType; 
    USHORT  wReportLength; 
    } DescriptorList [1]; 
  } HID_DESCRIPTOR, * PHID_DESCRIPTOR; 

Notwithstanding the apparent generality of this structure, HIDCLASS currently reserves sufficient space for only one element 
in the DescriptorList array, and it has to be the report descriptor. The Microsoft developers recommend that you nevertheless 
inspect the size of the output buffer and arrange your code to copy any additional descriptors—such as a physical 



- 354 - Human Interface Devices | Chapter 13 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

descriptor—that you might have. 

Your job in the minidriver is to fill in the descriptor structure as if you were a USB-standard HID device. For example: 

case IOCTL_HID_GET_DEVICE_DESCRIPTOR: 
  { 
  #define p ((PHID_DESCRIPTOR) buffer) 
  if (cbout < sizeof(HID_DESCRIPTOR)) 
    { 
    status = STATUS_BUFFER_TOO_SMALL; 
    break; 
    } 
  RtlZeroMemory(p, sizeof(HID_DESCRIPTOR)); 
  p->bLength = sizeof(HID_DESCRIPTOR); 
  p->bDescriptorType = HID_HID_DESCRIPTOR_TYPE; 
  p->bcdHID = HID_REVISION; 
  p->bCountry = 0; 
  p->bNumDescriptors = 1; 
  p->DescriptorList[0].bReportType = HID_REPORT_DESCRIPTOR_TYPE; 
  p->DescriptorList[0].wReportLength = sizeof(ReportDescriptor); 
  #undef p 
  info = sizeof(HID_DESCRIPTOR); 
  break; 
  } 

The only aspect of this code that isn’t going to be the same from one driver to the next is the length you specify for the 
wReportLength member of the single DescriptorList entry you provide. This value should be the length of whatever real or 
dummy report descriptor you’ll deliver in response to the IOCTL_HID_GET_REPORT_DESCRIPTOR request. 

NOTE  
The bCountry code in the HID descriptor is the language, if any, to which the device is localized. According to 
section 6.2.1 of the HID specification, this value is entirely optional. If you were imitating a keyboard with 
localized keycaps, for example, you might specify a nonzero value for this field. 

IOCTL_HID_GET_REPORT_DESCRIPTOR  

HIDCLASS sends an IOCTL_HID_GET_REPORT_DESCRIPTOR request as part of its processing of the 
IRP_MN_START_DEVICE request and conceivably, at other times, in order to obtain a USB-standard HID report descriptor. 
The UserBuffer field of the IRP points to a buffer as large as you indicated would be necessary in your reply to an 
IOCTL_HID_GET_DEVICE_DESCRIPTOR request. 

Suppose you have a static data area named ReportDescriptor that contains a report descriptor in standard format. You could 
handle this request this way: 

case IOCTL_HID_GET_REPORT_DESCRIPTOR: 
  { 
  if (cbout < sizeof(ReportDescriptor)) 
    { 
    status = STATUS_BUFFER_TOO_SMALL; 
    break; 
    } 
  RtlCopyMemory(buffer, ReportDescriptor, 
    sizeof(ReportDescriptor)); 
  info = sizeof(ReportDescriptor); 
  break; 
  } 

Your first step in building the report descriptor is to design the report layout. The USB specification for HID devices makes it 
seem that you’re pretty much free to design any sort of report you want, with the implication that Windows will somehow just 
figure out what to do with the resulting data. In my experience, however, you really don’t have that much freedom. The 
Windows components that process keyboard and mouse input are used to receiving reports that meet certain expectations. 
Applications, such as games, differ greatly in their ability to decode joystick reports. I’ve also found that the HIDPARSE driver, 
which HIDCLASS uses to parse a HID descriptor, is rather fussy about which apparently conforming descriptors it will actually 
accept. Consequently, my advice is to closely mimic an existing Microsoft device when designing reports for common devices. 

One of the options when you save your work in the HID Tool is to create a C-language header file, like this one (corresponding 
to the descriptor shown in Figure 13-3): 
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char ReportDescriptor[64] = { 
  0x05, 0x05,  // USAGE_PAGE (Gaming Controls) 
  0x09, 0x03,  // USAGE (Gun Device ) 
  0xa1, 0x01,  // COLLECTION (Application) 
  0xa1, 0x02,  //   COLLECTION (Logical) 
  0x85, 0x01,  //     REPORT_ID (1) 
  0x05, 0x09,  //     USAGE_PAGE (Button) 
  0x09, 0x01,  //     USAGE (Button 1) 
  0x15, 0x00,  //     LOGICAL_MINIMUM (0) 
  0x25, 0x01,  //     LOGICAL_MAXIMUM (1) 
  0x75, 0x01,  //     REPORT_SIZE (1) 
  0x95, 0x01,  //     REPORT_COUNT (1) 
  0x81, 0x02,  //     INPUT (Data,Var,Abs) 
  0x75, 0x07,  //     REPORT_SIZE (7) 
  0x81, 0x03,  //     INPUT (Cnst,Var,Abs) 
  0xc0,        //   END_COLLECTION 
  0xa1, 0x02,  //   COLLECTION (Logical) 
  0x85, 0x02,  //     REPORT_ID (2) 
  0x05, 0x01,  //     USAGE_PAGE (Generic Desktop) 
  0x09, 0x30,  //     USAGE (X) 
  0x25, 0xff,  //     LOGICAL_MAXIMUM (-1) 
  0x75, 0x20,  //     REPORT_SIZE (32) 
  0xb1, 0x02,  //     FEATURE (Data,Var,Abs) 
  0xc0,        //   END_COLLECTION 
  0xa1, 0x02,  //   COLLECTION (Logical) 
  0x85, 0x03,  //     REPORT_ID (3) 
  0x05, 0x09,  //     USAGE_PAGE (Button) 
  0x09, 0x01,  //     USAGE (Button 1) 
  0x25, 0x01,  //     LOGICAL_MAXIMUM (1) 
  0x75, 0x01,  //     REPORT_SIZE (1) 
  0xb1, 0x02,  //     FEATURE (Data,Var,Abs) 
  0x75, 0x07,  //     REPORT_SIZE (7) 
  0xb1, 0x03,  //     FEATURE (Cnst,Var,Abs) 
  0xc0,        //   END_COLLECTION 
  0xc0         // END_COLLECTION 
}; 

You can simply include this header file in your driver to define the ReportDescriptor you return from 
IOCTL_HID_GET_REPORT_DESCRIPTOR. 

IOCTL_HID_READ_REPORT  

IOCTL_HID_READ_REPORT is the workhorse operation of a HIDCLASS minidriver. HIDCLASS issues this request to obtain 
a raw HID report. HIDCLASS uses the raw reports to satisfy IRP_MJ_READ and IOCTL_HID_GET_INPUT_REPORT 
requests issued to it from higher-level components, including user-mode applications that call ReadFile, HidD_GetInputReport, 
IDirectInputDevice8::GetDeviceData, or IDirectInputDevice8::Poll. 

A minidriver can employ any of several strategies to provide reports: 

 If your device is a programmed I/O (PIO) type of device attached to a traditional bus such as Peripheral Component 
Interconnect (PCI), you can perhaps perform hardware abstraction layer (HAL) function calls to derive data for a 
structured report. You’ll then immediately complete the IOCTL_HID_READ_REPORT request. 

 If your device attaches to a traditional bus and uses a hardware interrupt to notify the host when report data is available, 
you need to implement a scheme for satisfying requests with reports when they become available. Using an interlocked 
list lets you read and save report data in an interrupt service routine (ISR). Other schemes would require your ISR to 
queue a deferred procedure call (DPC), which would then read and save report data. 

 If your device is a nonstandard USB device, you can perhaps submit a single URB to derive data from which you can 
compose a structured report. You can piggyback the URB on the IOCTL_HID_READ_REPORT request if your device’s 
raw report is no bigger than the report HIDCLASS is expecting. In this case, your dispatch routine will presumably 
allocate memory for the URB from nonpaged memory, install a completion routine, and forward the IRP down the PnP 
stack to the USB bus driver. Your completion routine will free the URB, reformat the report data and set 
IoStatus.Information equal to the size of the reformatted report, and return STATUS_SUCCESS to allow the IRP to 
complete. 

 In still other situations, you may need to pend the IOCTL_HID_READ_REPORT request while you perform one or more 
I/O operations to fetch raw data from your device, which you then reformat into the desired report packet. With this 
design, you have the usual issues associated with caching a pointer to the IOCTL_HID_READ_REPORT request in a 
cancel-safe way and with cancelling whatever subsidiary IRPs you create. 



- 356 - Human Interface Devices | Chapter 13 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

No matter what scheme you devise, your driver will implement this IRP by filling the UserBuffer buffer with a report. For 
example: 

case IOCTL_HID_READ_REPORT: 
  { 
  if (cbout < <size of report>) 
    { 
    status = STATUS_BUFFER_TOO_SMALL; 
    break; 
    } 
  <obtain report data> 
  RtlCopyMemory(buffer, <report>, <size of report>); 
  info = <size of report>; 
  break; 
  } 

Bear in mind that if your report descriptor includes more than one report, the report data you return to HIDCLASS begins with 
a 1-byte report identifier. 

IOCTL_HID_WRITE_REPORT  

HIDCLASS issues the IOCTL_HID_WRITE_REPORT request to service IRP_MJ_WRITE and 
IOCTL_HID_SET_OUTPUT_REPORT requests issued from a higher-level component, such as a user-mode application that 
calls WriteFile, HidD_SetOutputReport, or IDirectInputDevice8::SendDeviceData. 

Output reports are commonly used to set indicators of various kinds, such as LEDs and panel displays. Your job in a minidriver 
is to transmit the output report data to the device or to simulate the operation of a HID device receiving such a report by some 
means. USB devices implement the class-specific control-pipe command Set_Report_Request (or else they define an 
interrupt-out endpoint) for receiving output reports, but your architecture may call for a different approach. 

Unlike other HIDCLASS internal control operations, IOCTL_HID_WRITE_REPORT uses METHOD_BUFFERED. This 
means that the AssociatedIrp.SystemBuffer field of the IRP contains the address of the output data and that the 
Parameters.DeviceIoControl.OutputBufferLength field of the IO_STACK_LOCATION contains its length. 

IOCTL_HID_GET_FEATURE and IOCTL_HID_SET_FEATURE  

HIDCLASS issues the IOCTL_HID_GET_FEATURE and IOCTL_HID_SET_FEATURE requests in order to read or write a 
so-called feature report. An application might trigger these requests by calling HidD_GetFeature or HidD_SetFeature, 
respectively. 

You can embed feature reports within a report descriptor. According to the HID specification, feature reports are useful for 
getting and setting configuration information rather than for polling the device on a regular basis. With a USB-standard device, 
the driver uses Get_Report_Request and Set_Report_Request class-specific commands to implement this functionality. In the 
minidriver for some other kind of HID device, you need to provide some sort of analogue if your report descriptor includes 
feature reports. 

These I/O control (IOCTL) operations are also the way Microsoft would prefer you perform out-of-band communication 
between an application and a HID minidriver. Bear in mind that HIDCLASS doesn’t allow anyone to open a handle to the 
device itself (handles may be opened only to top-level collections) and fails any nonstandard control operations that it happens 
to receive. Without resorting to sleazy methods, as to which I won’t say anything, there is actually no other way for an 
application and a HIDCLASS minidriver to communicate. 

The “output” buffer for this request is an instance of the following structure: 

typedef struct _HID_XFER_PACKET { 
  PUCHAR reportBuffer; 
  ULONG  reportBufferLen; 
  UCHAR  reportId; 
  } HID_XFER_PACKET, *PHID_XFER_PACKET; 

HIDCLASS uses the same structure for both GET_FEATURE and SET_FEATURE requests, and it sets Irp->UserBuffer to 
point to it in both cases too. In fact, the only difference between the two requests is that the length of the structure (a constant) 
is in the InputBufferLength parameter for SET_FEATURE and in the OutputBufferLength parameter for GET_FEATURE. (You 
won’t even care about this difference. Since HIDCLASS is a trusted kernel-mode caller, there’s no particular reason to validate 
the length of this parameter structure.) 

Your job when handling one of these requests is to decode the reportId value, which designates one of the feature reports your 
driver supports. For a GET_FEATURE request, you should place up to reportBufferLen bytes of data in the reportBuffer buffer 
and complete the IRP with IoStatus.Information set to the number of bytes you copy. For a SET_FEATURE request, you should 
extract reportBufferLen bytes of data from the reportBuffer buffer. 
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Here’s a skeleton for handling these two requests: 

case IOCTL_HID_GET_FEATURE: 
  { 
  #define p ((PHID_XFER_PACKET) buffer) 
  switch (p->reportId) 
    { 
  case FEATURE_CODE_XX: 
    if (p->reportBufferLen < sizeof(FEATURE_REPORT_XX)) 
      { 
      status = STATUS_BUFFER_TOO_SMALL; 
      break; 
      } 
    RtlCopyMemory(p->reportBuffer, FeatureReportXx, 
      sizeof(FEATURE_REPORT_XX)); 
    info = sizeof(FEATURE_REPORT_XX); 
    break; 
 
    } 
  break; 
  #undef p 
  } 
 
case IOCTL_HID_SET_FEATURE: 
  { 
  #define p ((PHID_XFER_PACKET) buffer) 
  switch (p->reportId) 
    { 
  case FEATURE_CODE_YY: 
    if (p->reportBufferLen > sizeof(FEATURE_REPORT_YY)) 
      { 
      status = STATUS_INVALID_PARAMETER; 
      break; 
      } 
    RtlCopyMemory(FeatureReportYy, p->reportBuffer, 
      p->reportBufferLen); 
    break; 
 
    } 
  break; 
  #undef p 
  } 

 

CAUTION  
When your driver supports feature reports, you’ll normally be using report identification bytes to identify the 
different feature reports and your input and output reports. In that case, the reportBuffer buffer begins with a 
single-byte identifier, which will equal the reportId value in the HID_XFER_PACKET structure—HIDCLASS 
makes that so. The count in reportBufferLen includes the identifier byte. When you don’t use report identifiers, 
however, reportId will be 0, reportBuffer won’t have room for an identifier byte, and the reportBufferLen count 
won’t include an identifier byte. This arrangement is true even though the caller of HidD_GetFeature or 
HidD_SetFeature supplies a buffer that does include a zero identification byte. To put it another way, you copy 
the actual feature report data beginning at reportBuffer + 1 if you’re using report identifiers but beginning at 
reportBuffer if you’re not using report identifiers. 

In these fragments, FEATURE_CODE_XX and FEATURE_CODE_YY are placeholders for manifest constants that you would 
define to correspond to feature report identifiers in your device’s scheme. FEATURE_REPORT_XX and 
FEATURE_REPORT_YY are structures that include an identifier byte and the actual report data, and FeatureReportXx and 
FeatureReportYy are instances of those structures. 

IOCTL_GET_PHYSICAL_DESCRIPTOR  

HIDCLASS sends an IOCTL_GET_PHYSICAL_DESCRIPTOR when a higher-level component requests the physical descriptor 
for a device. Physical descriptors provide information about which part or parts of the body activate one or more controls on a 
device. If you have a nonstandard HID device for which this request is relevant, you’ll need to support the request by returning 
a dummy descriptor meeting the HID specification, Section 6.2.3. For example: 
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case IOCTL_GET_PHYSICAL_DESCRIPTOR: 
  { 
  if (cbout < sizeof(PhysicalDescriptor)) 
    { 
    status = STATUS_BUFFER_TOO_SMALL; 
    break; 
    } 
  PUCHAR p = 
    (PUCHAR) MmGetSystemAddressForMdlSafe(Irp->MdlAddress); 
  if (!p) 
    { 
    status = STATUS_INSUFFICIENT_RESOURCES; 
    break; 
    } 
  RtlCopyMemory(p, 
    PhysicalDescriptor, sizeof(PhysicalDescriptor)); 
  info = sizeof(PhysicalDescriptor); 
  break; 
  } 

Note that this IOCTL uses METHOD_OUT_DIRECT instead of METHOD_NEITHER. 

In addition, bear in mind the following statement in the HID specification: “Physical descriptors are entirely optional. They 
add complexity and offer very little in return for most devices.” 

IOCTL_HID_GET_STRING  

HIDCLASS sends an IOCTL_HID_GET_STRING to retrieve a string describing the manufacturer, product, or serial number of 
a device. A user-mode application can trigger this IOCTL by calling HidD_GetManufacturerString, HidD_GetProductString, 
or HidD_GetSerialNumberString. The strings correspond to optional strings specified by the device descriptor of a standard 
USB device. A parameter to the operation indicates which string you should return, and in which language. 

A skeleton for handling this control operation is as follows: 

case IOCTL_HID_GET_STRING: 
  { 
  #define p ((PUSHORT) \ 
    &stack->Parameters.DeviceIoControl.Type3InputBuffer) 
  USHORT istring = p[0]; 
  LANGID langid = p[1]; 
  #undef p 
 
  PWCHAR string = NULL; 
  switch (istring) 
    { 
  case HID_STRING_ID_IMANUFACTURER: 
    string = <manufacturer name>; 
    break; 
  case HID_STRING_ID_IPRODUCT: 
    string = <product name>; 
    break; 
  case HID_STRING_ID_ISERIALNUMBER: 
    string = <serial number>; 
    break; 
    } 
  if (!string) 
    { 
    status = STATUS_INVALID_PARAMETER; 
    break; 
    } 
  ULONG lstring = wcslen(string); 
  if (cbout < lstring * sizeof(WCHAR)) 
    { 
    status = STATUS_INVALID_BUFFER_SIZE; 
    break; 
    } 
  RtlCopyMemory(buffer, string, lstring * sizeof(WCHAR)); 
  info = lstring * sizeof(WCHAR); 
  if (cbout >= info + sizeof(WCHAR)) 
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    { 
    ((PWCHAR) buffer)[lstring] = UNICODE_NULL; 
    info += sizeof(WCHAR); 
    } 
  break; 
  } 

Some of the key points about this code fragment are these: 

 Like most other minidriver IOCTL requests, this one uses METHOD_NEITHER. In the context of the 
DispatchInternalControl callback presented earlier, buffer is the output buffer to be filled. 

 The serial number, if there is one, should be unique for each device. 

 The minidriver should fail the request with STATUS_INVALID_PARAMETER if an invalid string index appears and 
STATUS_INVALID_BUFFER_SIZE if a buffer is supplied but is too small to hold the entire string. 

 The minidriver returns the whole string or nothing. It appends a null terminator to the string if the output buffer is big 
enough. 

The DDK doesn’t specify what to do if the requested language isn’t one of the ones your device or minidriver happens to 
support. I would suggest failing the request with STATUS_DEVICE_DATA_ERROR to mimic what a real USB device is 
supposed to do. If, however, the unsupported language is 0x0409 (American English), I recommend returning a default string 
of some kind—perhaps even the first language in your list of supported languages—because HIDCLASS always uses 0x0409 
for the language id parameter in Windows XP and earlier versions of the system. 

IOCTL_HID_GET_INDEXED_STRING  

HIDCLASS sends an IOCTL_HID_GET_INDEXED_STRING to retrieve a string whose USB-standard index and language 
identifiers are specified. A user-mode program can trigger this IOCTL by calling HidD_GetIndexedString. You handle this 
request much like IOCTL_HID_GET_STRING except for these two points: 

 This control operation uses a curious mix of two buffering methods: the input data containing the string index and the 
language id is in stack->Parameters.DeviceIoControl.Type3InputBuffer (as would be true of a METHOD_NEITHER 
request), and the output buffer is described by the memory descriptor list (MDL) at Irp->MdlAddress, as would be true of 
a METHOD_OUT_DIRECT request. 

 The string index in the low-order 16 bits of the Type3InputBuffer is a USB-standard string index instead of a constant 
such as HID_STRING_ID_IMANUFACTURER. 

The purpose of this request is to allow applications to retrieve string values corresponding to string usages in a HID report. 
USB devices may make up to 255 string values accessible in this way. With a nonstandard USB device or a non-USB device, 
your minidriver needs to provide an analogue if the report descriptor contains string usages. 

IOCTL_HID_SEND_IDLE_NOTIFICATION_REQUEST  

HIDCLASS sends an IOCTL_HID_SEND_IDLE_NOTIFICATION_REQUEST to power down an idle device. With a real USB 
device, this request dovetails with the USB selective suspend feature discussed in the preceding chapter. 

The input buffer for this METHOD_NEITHER request is an instance of the following structure: 

typedef struct _HID_SUBMIT_IDLE_NOTIFICATION_CALLBACK_INFO { 
  HID_SEND_IDLE_CALLBACK IdleCallback; 
  PVOID IdleContext; 
  } HID_SUBMIT_IDLE_NOTIFICATION_CALLBACK_INFO, 
    *PHID_SUBMIT_IDLE_NOTIFICATION_CALLBACK_INFO; 
where HID_SEND_IDLE_CALLBACK is declared as follows: 
typedef void (*HID_IDLE_CALLBACK)(PVOID Context); 

Note that this structure is identical in layout and meaning to the one used with USB selective suspend. In fact, if your device 
happened to be a USB device, you could just forward the IRP down the stack after changing the function code: 

case IOCTL_HID_SEND_IDLE_NOTIFICATION_REQUEST: 
  { 
  IoCopyCurrentIrpStackLocationToNext(Irp); 
  stack = IoGetNextIrpStackLocation(Irp); 
  stack->Parameters.DeviceIoControl.IoControlCode = 
    IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION; 
  return IoCallDriver(pdx->LowerDeviceObject, Irp); 
  } 
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If your device is not a USB device, however, you should call back right away to HIDCLASS 
and complete the IRP, as shown here: 
case IOCTL_HID_SEND_IDLE_NOTIFICATION_REQUEST: 
  { 
  PHID_SUBMIT_IDLE_NOTIFICATION_CALLBACK_INFO p = 
    (PHID_SUBMIT_IDLE_NOTIFICATION_CALLBACK_INFO) 
    stack->Parameters.DeviceIoControl.Type3InputBuffer; 
  (*p->IdleCallback)(p->IdleContext); 
  break; 
  } 

Calling back tells HIDCLASS that it can immediately power the device down. 

13.4 Windows 98/Me Compatibility Notes  

The footprint of history is heavy on the HID architecture in Windows 98/Me because of the necessity of supporting legacy 
methods of handling keyboards, mice, and joysticks. In general, it’s been my experience that each new attempt to port a 
working HID minidriver from Windows XP has provided new opportunities for learning and reverse engineering. I plainly 
don’t know everything there is to know in this area, but I’ll describe two situations I encountered and how I dealt with them. 

13.4.1 Handling IRP_MN_QUERY_ID  
If you’re writing a minidriver for fake hardware, such as HIDFAKE attempts to do, you must special-case the handling of 
IRP_MN_QUERY_ID. Left to itself, the root enumerator succeeds this IRP but provides a NULL list of identifiers. HIDCLASS 
then induces a crash deep in the Virtual Machine Manager (VMM). Here’s the code in HIDFAKE to cope with this problem: 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = PDX(fdo); 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  if (win98  
    && stack->MinorFunction == IRP_MN_QUERY_ID  
    && !NT_SUCCESS(Irp->IoStatus.Status)) 
    { 
    PWCHAR idstring; 
 
    switch (stack->Parameters.QueryId.IdType) 
      { 
 
    case BusQueryInstanceID: 
      idstring = L"0000"; 
      break; 
 
    case BusQueryDeviceID: 
      idstring = L"ROOT\\*WCO0D01"; 
      break; 
 
    case BusQueryHardwareIDs: 
      idstring = L"*WCO0D01"; 
      break; 
 
    default: 
      return CompleteRequest(Irp); 
      } 
 
    ULONG nchars = wcslen(idstring); 
    ULONG size = (nchars + 2) * sizeof(WCHAR); 
    PWCHAR id = (PWCHAR) ExAllocatePool(PagedPool, size); 
    if (!id) 
      return CompleteRequest(Irp, STATUS_INSUFFICIENT_RESOURCES); 
    wcscpy(id, idstring); 
    id[nchars + 1] = 0; 
    return CompleteRequest(Irp, STATUS_SUCCESS, (ULONG_PTR) id); 
    } 
 
  return GenericDispatchPnp(PDX(fdo)->pgx, Irp); 
  } 
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(Note the use of two override versions of my CompleteRequest helper here.) 

Actually, you need to do something special with the BusQueryHardwareIDs even in Windows XP because HIDCLASS omits 
the creation of compatible IDs if the bus driver fails the request, which the root enumerator will do. You can’t create a fake 
device of one of the standard classes unless you know this trick. 

13.4.2 Joysticks  
In Windows, there are two different code paths for interpreting the axis and button information for a joystick. One code path 
relies on the HID descriptor. Another relies on settings in the OEM registry key. If these code paths don’t produce consistent 
results, you end up with a nonfunctional joystick in that every attempt to read its position generates an error. I know of no way 
except trial and error to get past this problem. The one time I had to do it for a client, I ended up writing an elaborate HID 
simulator that we could quickly program to create new joystick devices with specified attributes. After some number of 
iterations, we ended up with a working device. I’d be hard pressed to reproduce the effort. 
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Chapter 14  

14 Specialized Topics  

In the first eight chapters, I described most of the features of a full-blown WDM driver suitable for any random sort of 
hardware device. But you should understand a few more general-purpose techniques, and I’ll describe them in this chapter. In 
the chapter’s first section, I’ll explain how to log errors for eventual viewing by a system administrator. In addition, I’ll provide 
instructions about how to create your own system threads, how to queue work items for execution within the context of 
existing system threads, and how to set up watchdog timers for unresponsive devices. 

14.1 Logging Errors  

In the discussions of error handling up until now, I’ve been concerned only with detecting (and propagating) status codes and 
with doing various things in the checked build to help debug problems that show up as errors. Even in the free build of a driver, 
however, some errors are serious enough that we want to be sure the system administrator knows about them. For example, 
maybe a disk driver discovers that the disk’s physical surface has an unusually large number of bad sectors. Or maybe a driver 
is encountering unexpectedly frequent data errors or some sort of difficulty configuring or starting the device. 

To deal with these types of situations, a driver can write an entry to the system error log. The Event Viewer applet—one of the 
administrative tools on a MicrosoftWindows XP system—can later display this entry so that an administrator can learn about 
the problem. See Figure 14-1 for an illustration of the Event Viewer. Another way to indicate sudden errors is by signaling a 
Windows Management Instrumentation (WMI) event. I’ll discuss event logging in this section; WMI was the subject of 
Chapter 10. 

Figure 14-1. The Windows XP Event Viewer.  

Production of an administrative report from the error log involves the steps diagrammed in Figure 14-2. A driver uses the 
kernel-mode service function IoWriteErrorLogEntry to send an error log packet data structure to the event logger service. The 
packet contains a numeric code instead of message text. As time permits, the event logger writes packets to a logging file on 
disk. Later the Event Viewer combines the packets in the log file with message text drawn from a collection of message files to 
produce the report. The message files are ordinary 32-bit DLLs containing text appropriate to all possible logged events in the 
local language. 

Your job as a driver author is to create appropriate error log packets when noteworthy events occur. As a practical matter, 
you’ll probably also be the person who has to build the message file in at least one natural language. I’ll describe both aspects 
of error logging in the next two sections. 
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Figure 14-2. Overview of event logging and reporting.  

14.1.1 Creating an Error Log Packet  
To log an error, a driver creates an IO_ERROR_LOG_PACKET data structure and sends it to the kernel-mode logger. The 
packet is a variable-length structure—see Figure 14-3—with a fixed-size header containing general information about the 
event you’re logging. ErrorCode indicates the event you’re logging; it correlates with the message text file I’ll describe shortly. 
After the fixed header comes an array of doublewords named DumpData, which contains DumpDataSize bytes of data that the 
Event Viewer will display in hexadecimal notation when asked for detailed information about this event. The size is in bytes 
even though the array is declared as consisting of 32-bit integers. After DumpData, the packet can contain zero or more 
null-terminated Unicode strings that will end up being substituted into the formatted message text by the Event Viewer. The 
string area begins StringOffset bytes from the start of the packet and contains NumberOfStrings strings. 

Figure 14-3. The IO_ERROR_LOG_PACKET structure.  

You don’t have to fill in any of the fixed-header members besides the ones I just mentioned. But they add, perhaps, diagnostic 
utility to the log entries, which might help you track down problems. 

Since the logging packet is of variable length, your first job is to determine how much memory is needed for the packet you 
want to create. Add the size of the fixed header to the number of bytes of DumpData to the number of bytes occupied by the 
substitution strings (including their null terminators). For example, the following code fragment, taken from the EVENTLOG 
sample in the companion content, allocates an error log packet big enough to hold 4 bytes of dump data plus a single string: 

VOID LogEvent(NTSTATUS code, PDEVICE_OBJECT fdo) 
  { 
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  PWSTR myname = L"EventLog"; 
  ULONG packetlen = (wcslen(myname) + 1) * sizeof(WCHAR) 
    + sizeof(IO_ERROR_LOG_PACKET) + 4; 
  if (packetlen > ERROR_LOG_MAXIMUM_SIZE) 
    return; 
  PIO_ERROR_LOG_PACKET p = (PIO_ERROR_LOG_PACKET) 
    IoAllocateErrorLogEntry(fdo, (UCHAR) packetlen); 
  if (!p) 
    return; 
 
  } 

One trap for the unwary in this sequence is that error log packets have a maximum length of 152 bytes, the value of 
ERROR_LOG_MAXIMUM_SIZE. Furthermore, the size argument to IoAllocateErrorLogEntry is a UCHAR, which is only 8 
bits wide. It would be very easy to ask for a packet that was, say, 400 bytes long and be embarrassed when only 144 bytes get 
allocated. (400 is 0x190; 144 is 0x90, which is what you’d get after the truncation to 8 bits.) 

Notice that the first argument to IoAllocateErrorLogEntry is the address of a device object. The name, if any, of that device 
object will appear in eventual log entries in place of the %1 substitution escape, which I will discuss more in the next section. 

This code fragment also illustrates the action you should take in response to a problem allocating a log entry: none. It’s not 
considered an error if you can’t log some other error, so you don’t want to fail any I/O request packet, generate a bug check, or 
do anything else that will cause your processing to terminate. In fact, you’ll notice that this LogEvent helper function is VOID 
because no programmer should be concerned enough about whether it succeeds or fails to have to put a check in his or her 
code. 

After successfully allocating the log packet, your next job is to initialize the structure and hand off control of it to the logger. 
For example: 

 
  memset(p, 0, sizeof(IO_ERROR_LOG_PACKET)); 
  p->ErrorCode = code; 
 
  p->DumpDataSize = 4; 
  p->DumpData[0] = <whatever>; 
 
  p->StringOffset = sizeof(IO_ERROR_LOG_PACKET) + p->DumpDataSize; 
  p->NumberOfStrings = 1; 
  wcscpy((PWSTR) ((PUCHAR) p + p->StringOffset), myname); 
 
  IoWriteErrorLogEntry(p); 
  } 

When logging a device error, you’d fill in more of the fields in the header than just the error code. For information about these 
other fields, consult the IoAllocateErrorLogEntry function in the DDK documentation. 

Error log entries remain in system memory until the logger service gets around to writing them to disk. A system crash might 
intervene and prevent them from showing up later when you run the Event Viewer. If you’re running a kernel debugger at the 
time, or if you have a crash dump, the !errorlog command will let you see the queued entries. 

14.1.2 Creating a Message File  

Figure 14-4. Creating a message file.  
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The Event Viewer uses the ErrorCode in an error packet to locate the text of an appropriate message in one of the message 
files associated with your driver. A message file is just a DLL with a message resource containing text in one or more natural 
languages. Since a WDM driver uses the same executable file format as a DLL, the message file for your private messages can 
just be your driver file itself. I’ll give you an introduction here to building a message file. You can find additional information 
on MSDN and in James D. Murray’s Windows NT Event Logging (O’Reilly & Associates, 1998) at pages 125-57. 

Figure 14-4 illustrates the process by which you attach message text to your driver. You begin by creating a message source 
file with the file extension MC. Your build script uses the message compiler (MC.EXE) to translate the messages. One of the 
outputs of the message compiler is a header file containing symbolic constants for your messages; you include that file in your 
driver, and the constants end up being the ErrorCode values for the events you log. The other outputs from the message 
compiler are a set of intermediate files containing message text in one or more natural languages and a resource script file (.RC) 
that lists those intermediate files. Your build script goes on to compile the resource file and to specify the translated resources 
as input to the linkage editor. At the end of the build, your driver contains the message resources required to support the Event 
Viewer. 

The following is an example of a simple message source file. (This code is part of the EVENTLOG sample program.) 

 
MessageIdTypedef = NTSTATUS 
 
 
  SeverityNames = ( 
    Success        = 0x0:STATUS_SEVERITY_SUCCESS 
    Informational  = 0x1:STATUS_SEVERITY_INFORMATIONAL 
    Warning        = 0x2:STATUS_SEVERITY_WARNING 
    Error          = 0x3:STATUS_SEVERITY_ERROR 
    ) 
 
 
  FacilityNames = ( 
    System      = 0x0 
    Eventlog    = 0x2A:FACILITY_EVENTLOG_ERROR_CODE 
    ) 
 
 
  LanguageNames = ( 
    English    = 0x0409:msg00001 
    German     = 0x0407:msg00002 
    French     = 0x040C:msg00003 
    Spanish    = 0x040A:msg00004 
    ) 
 
 
  MessageId = 0x0001 
  Facility = Eventlog 
  Severity = Informational 
  SymbolicName = EVENTLOG_MSG_TEST 
 
 
  Language = English 
  %2 said, "Hello, world!" 
  . 
  Language = German 
  %2 hat gesagt, «Wir sind nicht mehr in Kansas!» 
  . 
  Language = French 
  %2 a dit, «Mon chien a mangé mon devoir!» 
  . 
  Language = Spanish 
  %2 habló, ¡La lluvia en España permanece principalmente en el llano! 
  . 

1. The MessageIdTypedef statement allows you to specify a symbol that will appear as a cast operator in the definition of 
each of the message identifier constants generated by this message file. For example, later we’ll define a message with 
the symbolic name EVENTLOG_MSG_TEST. The presence of the MessageIdTypedef statement causes the header file 
generated by the message compiler to define this symbol as ((NTSTATUS)0x602A0001L). 

2. The SeverityNames statement allows you to define your own names for the four possible severity codes. The names on 
the left side of the equal signs (Success, Informational, and so on) appear in the definition of messages elsewhere in this 
very file. The symbol after the colon ends up being defined—in the header output file—as equal to the number before the 
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colon. For example, #define STATUS_SEVERITY_SUCCESS 0x0. 

3. The FacilityNames statement allows you to define your own names for the facility codes that will be included in the 
message identifier definitions. Here we’ve said we’ll use the name Eventlog in Facility statements later. The message 
compiler generates the statement #define FACILITY_EVENTLOG_ERROR_CODE 0x2A as a result of the third line of the 
FacilityNames statement. 

4. The LanguageNames statement allows you to define your own names for the languages into which you’ve translated your 
messages. Here we’ve said we’ll use the name English elsewhere in the file when we mean to specify LANGID 0x0409, 
which is Standard English in the normal Microsoft Windows NT scheme of languages. The name after the colon is the 
name of the intermediate binary file that receives the compiled messages for this particular language. 

5. Each individual message definition contains some header statements followed by the text of the message in each of the 
languages supported by this message source file. The MessageId statement can specify an absolute number, as in this 
example, or it can specify a delta from the last message (such as MessageId = +1). You specify the facility code and 
severity by using names defined at the start of the message source file. You also specify, with the SymbolicName 
statement, a symbolic name for this message. The message compiler will define this symbol in the header file it 
generates. 

6. For each language you specified in the LanguageNames statement, you have a message text definition like this one. It 
begins with a Language statement that uses one of the language names you defined. Text for the message follows. Each 
message text definition ends with a line containing just a period. 

Within the message texts, you can indicate by means of a percent symbol followed by an integer the places where you want 
string substitution to occur. %1 refers to the name of the device object that generated the message. That name is an implicit 
parameter when you create an error log entry; you don’t have to specify it directly. %2, %3, and so on correspond to the first, 
second, and so on Unicode strings you append to the log entry. In the example we’ve been following, %2 will be replaced by 
EventLog because we put that string in our error packet. 

This way of indicating substitution is especially useful in that you’re free to put strings in the text in whatever order is 
appropriate for the language you’re dealing with. So if your message text read “The %1 %2 fox jumped over the %3 dog” in 
English, it might read “Der %3 Hund wurde vom %1 %2 Fuchs übergesprungen” in German. (This is a silly example, of 
course. If the driver supplied “quick”, “brown”, and “lazy” for the substitution strings, they’d appear in English in all displayed 
versions of the message. But I think you get the point I’m trying to make about word order.) 

The Event Viewer can’t find your message file without a little bit of help in the form of some registry entries. A key named 
EventLog resides in the services branch of the Windows NT registry—that is, the collection of subkeys below 
HKLM\System\CurrentControlSet\Services. Each driver or other service that logs events has its own subkey below that. Each 
service-specific subkey has values named EventMessageFile and TypesSupported. The EventMessageFile value is a REG_SZ 
or REG_EXPAND_SZ type that names all of the message files that the Event Viewer might need to access to format the 
messages your driver generates. This value would have a data string like “%SystemRoot%\System32\iologmsg.dll; 
%SystemRoot%\System32\Drivers\EventLog.sys”. IOLOGMSG.DLL contains the text of all the standard NTSTATUS.H codes, 
by the way. Consult the following sidebar for some tantalizing hints about how to automatically set these registry entries when 
you install your driver. The TypesSupported value should just be a REG_DWORD type equaling 7 to indicate that your driver 
can generate all possible events—that is, errors, warnings, and informational messages. (The fact that you even need to specify 
this value seems like a historical artifact of some kind.) 

A Practical Note About Message Files 
Two practical facts about putting message resources into your driver are difficult to discover: how precisely you 
make your build script compile your messages, and how you convince the system’s hardware installer to put the 
necessary entries in the registry so the Event Viewer will find your messages.  

Like the other sample programs in this book, the EVENTLOG sample is based on a Microsoft Visual C++ 6.0 
project file. I modified the project definition to include a custom build step for EVENTLOG.MC and to include the 
resulting RC file in the build. If you open the project settings, you’ll see what I mean. It’s even easier if you use 
the DDK BUILD utility, with which you can just list your MC file as one of the SOURCES. 

Later in this book (in Chapter 15), I’ll discuss the general topic of how you use an INF file to install drivers. To 
see how you specify your message file in an INF file, take a look at DEVICE.INF in the EVENTLOG project 
directory and, specifically, at its AddService statement. You’ll see that the AddService line points to an 
EventLogLogging section that, in turn, uses the AddReg statement to point to an EventLogAddReg section. The 
latter section adds EventMessageFile and TypesSupported values to the service-specific subkey of the event 
logger service. 

14.2 System Threads  

In all the device drivers considered so far in the book, we haven’t been overly concerned about the thread context in which our 
driver subroutines have executed. Much of the time, our subroutines run in an arbitrary thread context, which means we can’t 
block and can’t directly access user-mode virtual memory. Some devices are difficult to program when faced with the first of 
these constraints. 
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Some devices are best handled by polling. A device that can’t asynchronously interrupt the CPU, for example, needs to be 
interrogated from time to time to check its state. In other cases, the natural way to program the device might be to perform an 
operation in steps with waits in between. A floppy disk driver, for example, goes through a series of steps to perform an 
operation. In general, the driver has to command the drive to spin up to speed, wait for the spin-up to occur, commence the 
transfer, wait a short while, and then spin the drive back down. You can design a driver that operates as a finite state machine to 
allow a callback function to properly sequence operations. It would be much easier, though, if you could just insert event and 
timer waits at the appropriate spots of a straight-line program. 

Dealing with situations that require you to periodically interrogate a device is easy with the help of a system thread belonging 
to the driver. A system thread is a thread that operates within the overall umbrella of a process belonging to the operating 
system as a whole. I’ll be talking exclusively about system threads that execute solely in kernel mode. In the next section, I’ll 
describe the mechanism by which you create and destroy your own system threads. Then I’ll give an example of how to use a 
system thread to manage a polled input device. 

14.2.1 Creating and Terminating System Threads  
To launch a system thread, you call PsCreateSystemThread. One of the arguments to this service function is the address of a 
thread procedure that acts as the main program for the new thread. When the thread procedure is going to terminate the thread, 
it calls PsTerminateSystemThread, which does not return. Generally speaking, you need to provide a way for a PnP event to tell 
the thread to terminate and to wait for the termination to occur. Combining all these factors, you’ll end up with code that 
performs the functions of these three subroutines: 

typedef struct _DEVICE_EXTENSION { 
 
 
  KEVENT evKill; 
  PKTHREAD thread; 
  }; 
 
NTSTATUS StartThread(PDEVICE_EXTENSION pdx) 
  { 
  NTSTATUS status; 
  HANDLE hthread; 
 
  OBJECT_ATTRIBUTES oa; 
  InitializeObjectAttributes(&oa, NULL, OBJ_KERNEL_HANDLE, 
    NULL, NULL); 
 
  status = PsCreateSystemThread(&hthread, THREAD_ALL_ACCESS, 
    &oa, NULL, NULL, (PKSTART_ROUTINE) ThreadProc, pdx); 
  if (!NT_SUCCESS(status)) 
    return status; 
 
  ObReferenceObjectByHandle(hthread, THREAD_ALL_ACCESS, NULL, 
    KernelMode, (PVOID*) &pdx->thread, NULL); 
 
  ZwClose(hthread); 
  return STATUS_SUCCESS; 
  } 
 
VOID StopThread(PDEVICE_EXTENSION pdx) 
  { 
 
  KeSetEvent(&pdx->evKill, 0, FALSE); 
 
  KeWaitForSingleObject(pdx->thread, Executive, 
    KernelMode, FALSE, NULL); 
 
  ObDereferenceObject(pdx->thread); 
  } 
 
VOID ThreadProc(PDEVICE_EXTENSION pdx) 
  { 
 
 
  KeWaitForXxx(<at least pdx->evKill>); 
 
 
  PsTerminateSystemThread(STATUS_SUCCESS); 
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  } 

1. Declare a KEVENT named evKill in the device extension to provide a way for a PnP event to signal the thread to 
terminate. Initialize the event in your AddDevice function. 

2. It’s important to create the thread using the OBJ_KERNEL_HANDLE. If you happen to be running in the context of a 
user thread, failing to do so exposes you briefly to allowing the application to close the handle from user mode. 

3. This statement launches the new thread. The return value for a successful call is a thread handle that appears at the 
location pointed to by the first argument. The second argument specifies the access rights you require to the thread; 
THREAD_ALL_ACCESS is the appropriate value to supply here. The next two arguments pertain to threads that are part 
of user-mode processes and should be NULL when a WDM driver calls this function. The next-to-last argument 
(ThreadProc) designates the main program for the thread. The last argument (pdx) is a context argument that will be the 
one and only argument to the thread procedure. 

4. To wait for the thread to terminate, you need the address of the underlying KTHREAD object instead of the handle you 
get back from PsCreateSystemThread. This call to ObReferenceObjectByHandle gives you that address. 

5. We don’t actually need the handle once we have the address of the KTHREAD, so we call ZwClose to close that handle. 

6. A routine such as StopDevice—which performs the device-specific part of IRP_MN_STOP_DEVICE in my scheme of 
driver modularization—can call StopThread to halt the system thread. The first step is to set the evKill event. 

7. This call illustrates how to wait for the thread to finish. A kernel thread object is one of the dispatcher objects on which 
you can wait. It assumes the signalled state when the thread finally finishes. In Windows XP, you always perform this 
wait to avoid the embarrassment of having your driver’s image unmapped while one of your system threads executes the 
last few instructions of its shutdown processing. That is, don’t just wait for a special “kill acknowledgment” event that 
the thread sets just before it exits—the thread has to execute PsTerminateSystemThread before your driver can safely 
unload. Refer also to an important Windows 98/Me compatibility note (“Waiting for System Threads to Finish”) at the 
end of this chapter. 

8. This call to ObDereferenceObject balances the call to ObReferenceObjectByHandle that we made when we created the 
thread in the first place. It’s necessary to allow the Object Manager to release the memory used by the KTHREAD object 
that formerly described our thread. 

9. The thread procedure will contain miscellaneous logic that depends on the exact goal you’re trying to accomplish. If you 
block while waiting for some external event, you should call KeWaitForMultipleObjects and specify the evKill event as 
one of the objects. 

10. When you detect that evKill has been signalled, you call the PsTerminateSystemThread function, which terminates the 
thread. Consequently, it doesn’t return. Note that you can’t terminate a system thread except by calling this function in 
the context of the thread itself. 

14.2.2 Using a System Thread for Device Polling  
If you have to write a driver for a device that can’t interrupt the CPU to demand service, a system thread devoted to polling the 
device may be the way to go. I’ll show you one way to use a system thread for this purpose. This example is based on a 
hypothetical device with two input ports. One port acts as a control port; it delivers a 0 byte when no input data is ready and a 
1 byte when input data is ready. The other port delivers a single byte of data and resets the control port. 

In the sample I’ll show you, we spawn the system thread when we process the IRP_MN_START_DEVICE request. We 
terminate the thread when we receive a Plug and Play request such as IRP_MN_STOP_DEVICE or 
IRP_MN_REMOVE_DEVICE that requires us to release our I/O resources. The thread spends most of its time blocked. When 
the StartIo routine begins to process an IRP_MJ_READ request, it sets an event that the polling thread has been waiting for. 
The polling thread then enters a loop to service the request. In the loop, the polling thread first blocks for a fixed polling 
interval. After the interval expires, the thread reads the control port. If the control port is 1, the thread reads a data byte. The 
thread then repeats the loop until the request is satisfied, whereupon it goes back to sleep until StartIo receives another request. 

The thread routine in the POLLING sample is as follows: 

VOID PollingThreadRoutine(PDEVICE_EXTENSION pdx) 
  { 
  NTSTATUS status; 
 
  KTIMER timer; 
  KeInitializeTimerEx(&timer, SynchronizationTimer); 
 
 
  PVOID mainevents[] = { 
    (PVOID) &pdx->evKill, 
    (PVOID) &pdx->evRequest, 
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    }; 
 
  PVOID pollevents[] = { 
    (PVOID) &pdx->evKill, 
    (PVOID) &timer, 
    }; 
 
  C_ASSERT(arraysize(mainevents) <= THREAD_WAIT_OBJECTS); 
  C_ASSERT(arraysize(pollevents) <= THREAD_WAIT_OBJECTS); 
 
  BOOLEAN kill = FALSE; 
 
 
  while (!kill) 
    {    // until told to quit 
 
    status = KeWaitForMultipleObjects(arraysize(mainevents), 
      mainevents, WaitAny, Executive, KernelMode, FALSE, 
      NULL, NULL); 
    if (!NT_SUCCESS(status) ││ status == STATUS_WAIT_0) 
      break; 
    ULONG numxfer = 0; 
    LARGE_INTEGER duetime = {0}; 
    #define POLLING_INTERVAL 500 
 
    KeSetTimerEx(&timer, duetime, POLLING_INTERVAL, NULL); 
 
    PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
 
 
    while (TRUE) 
      {    // read next byte 
 
      if (Irp->Cancel) 
        { 
        status = STATUS_CANCELLED; 
        break; 
        } 
      status = AreRequestsBeingAborted(&pdx->dqReadWrite); 
      if (!status) 
        break; 
 
      status = KeWaitForMultipleObjects(arraysize(pollevents), 
        pollevents, WaitAny, Executive, KernelMode, FALSE, 
        NULL, NULL); 
      if (!NT_SUCCESS(status)) 
        { 
        kill = TRUE; 
        break; 
        { 
      if (status == STATUS_WAIT_0) 
        { 
        status = STATUS_DELETE_PENDING; 
        kill = TRUE; 
        break; 
        } 
 
      if (pdx->nbytes) 
        { 
        if (READ_PORT_UCHAR(pdx->portbase) == 1) 
          { 
          *pdx->buffer++ = READ_PORT_UCHAR(pdx->portbase + 1); 
          --pdx->nbytes; 
          ++numxfer; 
          } 
        } 
      if (!pdx->nbytes) 
        break; 
      }    // read next byte 
    KeCancelTimer(&timer); 
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    StartNextPacket(&pdx->dqReadWrite, pdx->DeviceObject); 
    if (Irp) 
      { 
      IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
      CompleteRequest(Irp, STATUS_SUCCESS, numxfer); 
      } 
    }    // until told to quit 
 
  PsTerminateSystemThread(STATUS_SUCCESS); 
  } 

1. We’ll be using this kernel timer later to control the frequency with which we poll the device. This timer has to be a 
SynchronizationTimer so that it automatically goes into the not-signalled state each time we wait for it to expire. 

2. We’ll call KeWaitForMultipleObjects twice in this function to block the polling thread until something of note happens. 
These two arrays provide the addresses of the dispatcher objects on which we’ll wait. The C_ASSERT statements verify 
that we’re waiting for few enough events that we can use the array of wait blocks that’s built into the thread object. 

3. This loop terminates when an error occurs or when evKill becomes signalled. We’ll then terminate the entire polling 
thread. 

4. This wait terminates when either evKill or evRequest becomes signalled. Our StartIo routine will signal evRequest to 
indicate that an IRP exists for us to service. 

5. The call to KeSetTimerEx starts our timer counting. This is a repetitive timer that expires once based on the due time and 
periodically thereafter. We’re specifying a 0 due time, which will cause us to poll the device immediately. The 
POLLING_INTERVAL is measured in milliseconds. 

6. This inner loop terminates when either the kill event becomes signalled or we’re done with the current IRP. 

7. While we’re going about our business in this loop, the current IRP might get cancelled, or we might receive a PnP or 
power IRP that requires us to abort this IRP. 

8. In this call to KeWaitForMultipleObjects, we take advantage of the fact that a kernel timer acts like an event object. The 
call finishes when either evKill is signalled (meaning we should terminate the polling thread altogether) or the timer 
expires (meaning we should execute another poll). 

9. This is the actual polling step in this driver. We read the control port, whose address is the base port address given to us 
by the PnP Manager. If the value indicates that data is available, we read the data port. 

The StartIo routine that works with this polling routine first sets the buffer and nbytes fields in the device extension; you saw 
the polling routine use them to sequence through an input request. Then it sets the evRequest event to wake up the polling 
thread. 

You can organize a polling driver in other ways besides the one I just showed you. For example, you can spawn a new polling 
thread each time an arriving request finds the device idle. The thread services requests until the device becomes idle, 
whereupon it terminates. This strategy is better than the one I illustrated if long periods elapse between spurts of activity on the 
device, because the polling thread isn’t occupying virtual memory during the long intervals of quiescence. If, however, your 
device is more or less continuously busy, the first strategy might be better because it avoids repeating the overhead of starting 
and stopping the polling thread. 

You can also organize a polling driver to use a cancel-safe queue instead of a DEVQUEUE and StartIo routine, as does 
POLLING. It’s six of one, half a dozen of the other. 

14.3 Work Items  

From time to time, you might wish that you could temporarily lower the processor’s interrupt request level (IRQL) to carry out 
some task or another that must be done at PASSIVE_LEVEL. Lowering IRQL is, of course, a definite no-no. So long as you’re 
running at or below DISPATCH_LEVEL, however, you can queue a work item to request a callback into your driver later. The 
callback occurs at PASSIVE_LEVEL in the context of a worker thread owned by the operating system. Using a work item can 
save you the trouble of creating your own thread that you only occasionally wake up. 

NOTE  
Don’t hijack one of the system worker threads by scheduling a work item that takes a long time to execute. 
There aren’t a great number of worker threads, and you can lock up the system by preventing other drivers’ 
work items from executing. 

You would ordinarily declare a context structure of some sort to tell your work item callback routine what to do. Whatever else 
it contains, it will need a pointer to an IO_WORKITEM structure, as shown here: 
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typedef struct _RANDOM_JUNK { 
 
  PIO_WORKITEM item; 
  } RANDOM_JUNK, *PRANDOM_JUNK; 
At the point where you want to queue the work item, you create an instance of the context 
structure, and an IO_WORKITEM: 
PRANDOM_JUNK stuff = (PRANDOM_JUNK) ExAllocatePool(NonPagedPool, 
  sizeof(RANDOM_JUNK)); 
stuff->item = IoAllocateWorkItem(fdo); 

where fdo is the address of a DEVICE_OBJECT, ordinarily one with which the work item is associated in some way. 
You now initialize the context structure and issue the following call to actually place the work item in the queue for a system 
worker thread: 

IoQueueWorkItem(stuff->item, (PIO_WORKITEM_ROUTINE) Callback, 
  QueueIdentifier, stuff); 

QueueIdentifier can be either of these two values: 

 DelayedWorkQueue indicates that you want your work item executed in the context of a system worker thread that 
executes at variable priority—that is, not at a real-time priority level. 

 CriticalWorkQueue indicates that you want your work item executed in the context of a system worker thread that 
executes at a real-time priority. 

You choose the delayed or the critical work queue depending on the urgency of the task you’re trying to perform. Putting your 
item in the critical work queue will give it priority over all noncritical work in the system at the possible cost of reducing the 
CPU time available for other critical work. In any case, the activities you perform in your callback can always be preempted by 
activities that run at an elevated IRQL. 

After you queue the work item, the operating system will call you back in the context of a system worker thread having the 
characteristics you specified as the third argument to IoQueueWorkItem. You’ll be at IRQL PASSIVE_LEVEL. What you do 
inside the callback routine is pretty much up to you except for one requirement: you must release or otherwise reclaim the 
memory occupied by the work queue item. Here’s a skeleton for a work-item callback routine: 

VOID Callback(PDEVICE_OBJECT fdo,PRANDOM_JUNK stuff) 
  { 
  PAGED_CODE(); 
 
  IoFreeWorkItem(stuff->item); 
  ExFreePool(stuff); 
  } 

This callback receives a single argument (stuff), which is the context parameter you supplied earlier in the call to 
IoQueueWorkItem. This fragment also shows the calls to ExFreePool and IoFreeWorkItem that balance the allocations we did 
earlier. 

In between the time you call IoQueueWorkItem and the time your callback routine returns, the I/O Manager owns an extra 
reference to the device object you specified in the original call to IoAllocateWorkItem. The extra reference pins your driver in 
memory at least until the callback routine returns. Without this protection, it would be perfectly possible for your driver to 
queue a work item and then unload before the callback finished executing. A bug check would then occur because the system 
would attempt to execute code at a suddenly invalid address. There is nothing you can do inside your own driver to totally 
avoid this kind of problem because you have to execute at least a return instruction to get out of your own code and back to the 
system. 

In Windows versions prior to Windows 2000, there was a routine named ExQueueWorkItem and a macro named 
ExInitializeWorkItem for creating and queuing work items. These functions are now deprecated because of the driver unload 
problem. In fact, the Windows Hardware Quality Lab (WHQL) test suite flags calls to ExQueueWorkItem. This actually poses 
a bit of an obstacle to creating a binary-compatible driver for all WDM platforms, as discussed in “Windows 98/Me 
Compatibility Notes” at the end of this chapter. 

On the CD   The WORKITEM sample in the companion content illustrates the mechanics of using the 
IoXxxWorkItem functions discussed in the text. 

14.3.1 Watchdog Timers  
Some devices won’t notify you when something goes wrong—they simply don’t respond when you talk to them. Each device 
object has an associated IO_TIMER object that you can use to avoid indefinitely waiting for an operation to finish. While the 
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timer is running, the I/O Manager will call a timer callback routine once a second. Within the timer callback routine, you can 
take steps to terminate any outstanding operations that should have finished but didn’t. 

You initialize the timer object at AddDevice time: 

NTSTATUS AddDevice(...) 
  { 
 
  IoInitializeTimer(fdo, (PIO_TIMER_ROUTINE) OnTimer, pdx); 
 
  } 

where fdo is the address of your device object, OnTimer is the timer callback routine, and pdx is a context argument for the I/O 
Manager’s calls to OnTimer. 

You start the timer counting by calling IoStartTimer, and you stop it from counting by calling IoStopTimer. In between, your 
OnTimer routine is called once a second. 

The PIOFAKE sample in the companion content illustrates one way of using the IO_TIMER as a watchdog. I put a timer 
member in the device extension for this fake device. I also defined a BOOLEAN flag to indicate when the driver is actually 
busy handling an IRP: 

typedef struct _DEVICE_EXTENSION { 
 
  LONG timer; 
  BOOLEAN busy; 
 

  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

When I process an IRP_MJ_CREATE after a period with no handles open to the device, I start the timer counting. When I 
process the IRP_MJ_CLOSE that closes the last handle, I stop the timer: 

NTSTATUS DispatchCreate(...) 
  { 
 
  if (InterlockedIncrement(&pdx->handles == 1)) 
    { 
    pdx->timer = -1; 
    IoStartTimer(fdo); 
    } 
 
  } 
 
NTSTATUS DispatchClose(...) 
  { 
 
  if (InterlockedDecrement(&pdx->handles) == 0) 
    IoStopTimer(fdo); 
 
  } 

The timer cell begins life with the value -1. I set it to 10 (meaning 10 seconds) in the StartIo routine and again after each 
interrupt. Thus, I allow 10 seconds for the device to digest an output byte and to generate an interrupt that indicates readiness 
for the next byte. The work to be done by the OnTimer routine at each 1-second tick of the timer needs to be synchronized with 
the interrupt service routine (ISR). Consequently, I use KeSynchronizeExecution to call a helper routine (CheckTimer) at device 
IRQL (DIRQL) under protection of the interrupt spin lock. The timer-tick routines dovetail with the ISR and deferred 
procedure call (DPC) routines as shown in this excerpt: 

VOID OnTimer(PDEVICE_OBJECT fdo, PDEVICE_EXTENSION pdx) 
  { 
  KeSynchronizeExecution(pdx->InterruptObject, 
    (PKSYNCHRONIZE_ROUTINE) CheckTimer, pdx); 
  } 
 
VOID CheckTimer(PDEVICE_EXTENSION pdx) 
  { 
 
  if (pdx->timer <= 0 ││ --pdx->timer > 0) 
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    return; 
  if (!pdx->busy) 
    return; 
 
  PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
  if (!Irp) 
    return; 
 
  pdx->busy = FALSE; 
  Irp->IoStatus.Status = STATUS_IO_TIMEOUT; 
  Irp->IoStatus.Information = 0; 
  IoRequestDpc(pdx->DeviceObject, Irp, NULL); 
  } 
 
BOOLEAN OnInterrupt(...) 
  { 
 
  if (!pdx->busy) 
    return TRUE; 
  if (!pdx->nbytes) 
    { 
    pdx->busy = FALSE; 
    Irp->IoStatus.Status = STATUS_SUCCESS; 
    Irp->IoStatus.Information = pdx->numxfer; 
    IoRequestDpc(pdx->DeviceObject, Irp, NULL); 
    } 
 
 
  pdx->timer = 10; 
  } 
 
VOID DpcForIsr(...) 
  { 
 
  PIRP Irp = StartNextPacket(&pdx->dqReadWrite, fdo); 
 
  IoCompleteRequest(Irp, IO_NO_INCREMENT); 
 
  } 

1. The timer value -1 means that no request is currently pending. The value 0 means that the current request has timed out. 
In either case, we don’t want or need to do any more work in this routine. The second part of the if expression decrements 
the timer. If it hasn’t counted down to 0 yet, we return without doing anything else. 

2. This driver uses a DEVQUEUE, so we call the DEVQUEUE routine GetCurrentIrp to get the address of the request we’re 
currently processing. If this value is NULL, the device is currently idle. 

3. At this point, we’ve decided we want to terminate the current request because nothing has happened for 10 seconds. We 
request a DPC after filling in the IRP status fields. This particular status code (STATUS_IO_TIMEOUT) turns into a 
Win32 error code (ERROR_SEM_TIMEOUT) for which the standard error text (“The semaphore timeout period has 
expired”) doesn’t really indicate what’s gone wrong. If the application that has requested this operation is under your 
control, you should provide a more meaningful explanation. 

4. If the busy flag is FALSE, this interrupt is not expected and will be ignored. The flag might be FALSE if the device has 
generated a spurious interrupt. (PIOFAKE is for fake hardware, so the “device” is really a dialog box with an Interrupt 
button that you can press at a time when no test program is trying to write a string to the device.) Or else a request might 
have timed out, and CheckTimer would have cleared the flag precisely to prevent the ISR from doing anything. 

5. We allow 10 seconds between interrupts. 

6. Whatever requested this DPC also filled in the IRP’s status fields. We therefore need to call only IoCompleteRequest. 

The busy flag plays an important role in guarding against a race between the interrupt service routine (OnInterrupt) and the 
timeout routine (CheckTimer). The StartIo routine sets busy. One or the other of OnInterrupt or CheckTimer will clear the flag 
before requesting the DPC that completes the current IRP. Once either of these routines sets the flag, the other will start 
returning immediately until StartIo starts a new IRP. To properly synchronize access, all routines that touch the busy flag must 
run in synchrony with the interrupt routine. Hence the use of KeSynchronizeExecution to call CheckTimer and to call the 
routine (not shown here in the text) that initially sets busy to TRUE. 
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14.4 Windows 98/Me Compatibility Notes  

Some minor differences exist between Windows 98/Me and Windows XP insofar as the material discussed in this chapter goes. 

14.4.1 Error Logging  
Windows 98/Me doesn’t implement an error-logging file or an Event Viewer. When you call IoWriteErrorLogEntry in 
Windows 98/Me, all that happens is that several lines of data appear on your debugging terminal. I find the formatting of this 
information unaesthetic, so I prefer simply not to use the error-logging facility under Windows 98/Me. Refer to Appendix A for 
suggestions about how to determine whether you’re running Windows 98/Me or Windows XP. 

14.4.2 Waiting for System Threads to Finish  
Windows 98/Me doesn’t support the use of a pointer to a thread object (a PKTHREAD) as an argument to 
KeWaitForSingleObject or KeWaitForMultipleObjects. Those support functions simply pass their object pointer arguments 
through to VWIN32.VXD without any sort of validity checking, and VWIN32 crashes because the thread objects don’t have 
the structure members needed to support synchronization use. 

If you need to wait for a kernel-mode thread to complete in Windows 98/Me, therefore, you’ll need to have the thread signal an 
event just before it calls PsTerminateSystemThread. It’s possible that signalling this event will cause the terminating thread to 
lose control to a thread waiting for the same event. The terminating thread will then still be alive technically, but I don’t think 
anything awful can happen as a result in Windows 98/Me. The POLLING sample shows how to elevate the priority of the 
terminating thread to diminish the risk. 

14.4.3 Work Items  
Windows 98 and Windows Me don’t export the IoXxxWorkItem routines. This fact doesn’t pose any particular reliability 
problem since these systems are not likely to invalidate or overstore driver program code before a queued work item executes. 
If you have a driver that calls ExQueueWorkItem in order to run in Windows 98/Me, you can’t currently pass WHQL tests, 
even if you have a run-time check so as to avoid calling ExQueueWorkItem in Windows 2000 or later systems. But if your 
driver calls the IoXxxWorkItem routines that are needed for robustness in Windows 2000 and later, Window 98 and Windows 
Me won’t load your driver because of the unresolved import. This situation is tailor-made for the WDMSTUB.SYS solution 
discussed in Appendix A. WDMSTUB defines the IoXxxWorkItem routines so you can load your driver. 

My own GENERIC.SYS also contains calls to ExQueueWorkItem in order to work around the fact that power IRPs must be 
sent and completed at PASSIVE_LEVEL in Windows 98 and Windows Me. By the time you read this, I hope to have persuaded 
WHQL to move their work item tests into the Driver Verifier so as to allow safe uses of the older routine to pass muster. 
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Chapter 15  

15 Distributing Device Drivers  

Early in the device driver development process, it’s important to devote some thought to how you’ll distribute your driver and 
how an end user will install your driver and the hardware it serves. MicrosoftWindows XP and Microsoft Windows 98/Me use 
a text file with the file extension INF to control most of the activities associated with installing drivers. You provide the INF 
file. It goes either on a diskette or on a disc that you package with the hardware, or else Microsoft makes it available on line or 
on a setup disc. In the INF file, you tell the operating system which file or files to copy onto the end user’s hard disk, which 
registry entries to add or modify, and so on. 

In this chapter, I’ll discuss several aspects of installing your driver. I’ll discuss the important role played by the registry in 
driver installation and initialization. I’ll lead you through the important parts of a simple INF file to help you tie together the 
DDK documentation about INF file syntax. I’ll explain in detail the format of device identifiers used for various types of 
devices. Since I had to define a custom device class for all the sample “devices” used in this book, I thought it would help you 
to see how I did that. 

Microsoft operates the Windows Hardware Quality Lab (WHQL) to help ensure the quality of the hardware and device drivers 
that end users purchase for use with Windows operating systems. WHQL provides a Hardware Compatibility Test kit (HCT) 
for use with many common classes of device. You should aim to pass these tests to qualify for Microsoft’s logo licensing 
programs and to obtain a digital signature file that will greatly simplify installation on end user machines. I’ll guide you 
through the process of putting together a WHQL submission in this chapter. 

15.1 The Role of the Registry  

The PnP Manager and setup subsystems rely heavily on four keys in the HKEY_LOCAL_MACHINE branch of the registry. 
These are called the hardware key, the class key, the driver key, and the service key. (See Figure 15-1.) To be clear, these are 
not the proper names of specific subkeys: they are generic names of four keys whose pathnames depend on the device to which 
they belong. Broadly speaking, the hardware and driver keys contain information about a single device, the class key concerns 
all devices of the same type, and the service key contains information about the driver. People sometimes use the name 
instance key to refer to the hardware key and software key to refer to the driver key. The multiplicity of names derives from the 
fact that Windows 95/98/Me and Windows XP were written (mostly) by different people. A fifth key, the hardware parameters 
key, might also exist; it contains nonstandard parameter information about the device. 

Figure 15-1. Meaningful registry keys for a device.  

In this section, I’ll describe the contents of these registry keys. You’ll never alter these keys directly on an end user system. 
The keys and the values in them are created or maintained automatically by the setup program, the Device Manager, and the 
PnP Manager. I’ll show you later how you can inspect and modify these values using user-mode and kernel-mode APIs. You 
should plan to use those APIs instead of directly tampering with the registry. In fact, even administrator accounts lack 
permission to write to some of these keys. 

When you’re developing and debugging drivers, though, and especially when you’re debugging your installation procedures, 
you often need to directly muck about with registry settings using REGEDIT. In Windows XP, REGEDIT allows you to alter 
the security permissions in the registry. (In Windows 2000, you would use REGEDT32 for this purpose. In Windows 98/Me, of 
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course, the registry isn’t secured in the first place.) 

15.1.1 The Hardware (Instance) Key  
Device hardware keys appear in the \System\CurrentControlSet\Enum subkey of the local machine branch of the registry. 
Figure 15-2 illustrates the hardware key for a sample device (namely, the USB42 sample from Chapter 12). The subkeys on the 
first level below the Enum key correspond to the different bus enumerators in the system. The description of all past or present 
USB devices is in the …\Enum\USB subkey. I’ve expanded the key for the USB42 sample to show you how the device’s 
hardware ID (vendor 0547, product 102A) has turned into the name of a key (Vid_0547&Pid_102A) and how a particular 
instance of the device that has that ID appears as a further subkey named 6&16f0a439&0&2. The 6&16f0a439&0&2 key is the 
hardware, or instance, key for this device. 

Figure 15-2. A hardware key in the registry.  

Some of the values in the hardware key provide descriptive information that user-mode components such as the Device 
Manager can use. Figure 15-3 shows how the Device Manager portrays the properties of USB42. If you compare Figures 15-2 
and 15-3, you’ll notice some common things. In particular, the DeviceDesc string in the hardware key is the title of the device 
(unless there happens to be a FriendlyName property in the registry, which isn’t the case here), and the Mfg property appears as 
the Manufacturer name in the property page. I’ll explain later where some of the other property information comes from. I’ll 
also explain later how you can access these properties from a user-mode application or from a WDM driver. 

TIP  
You can open the Device Manager from the Hardware page of My Computer properties or the System control 
panel applet, or from the Computer Management console under Administrative Tools. Since I use the Device 
Manager so frequently, I created a desktop shortcut to devmgmt.msc, which is normally in the 
\windows\system32 directory. 

Figure 15-3. Device Manager properties for the USB42 device.  

The hardware key also contains several values that identify the class of device to which the device belongs and the drivers for 
the device. ClassGUID is the ASCII representation of a globally unique identifier (GUID) that uniquely identifies a device 
setup class; in effect, it’s a pointer to the class key for this device. Class is the name of the setup class. Driver names the driver 
key, which is a subkey of the class key. Service is a pointer to the service key in HKLM\System\CurrentControlSet\Services. 
Optional values (which USB42 doesn’t have) named LowerFilters and UpperFilters, if present, would identify the service 
names for any lower or upper filter drivers. 
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A hardware key might have overriding values named Security, Exclusive, DeviceType, and DeviceCharacteristics that force the 
device object the driver will create to have certain attributes. USB42 doesn’t have these overrides. 

Finally, the hardware key might contain a subkey named Device Parameters, which contains nonstandard configuration 
information about the hardware. See Figure 15-4. SampleInfo, the only property in the figure for USB42, specifies the help file 
for the sample driver. (The other values in the figure are artifacts of a failed run of one of the Hardware Compatibility Tests. 
Their presence does no harm.) 

Figure 15-4. A device parameters key in the registry.  

15.1.2 The Class Key  
The class keys for all classes of device appear in the HKLM\System\CurrentControlSet\Control\Class key. Figure 15-5 
illustrates the class key for SAMPLE devices, which is the class to which the USB42 sample and all the other sample drivers in 
this book belong. The values in this key serve these purposes: 

Figure 15-5. A class key in the registry.  

 (Default) specifies the friendly name of the class. This is the class title that the Device Manager uses. (Refer back to 
Figure 15-3.) 

 Class is the name of the class. The class name and the GUID go together here and in the hardware keys for devices 
belonging to this class. 

 EnumPropPages32 specifies a property-page provider DLL that provides custom property pages for the Device Manager 
to use when displaying properties for this class of device. The provider for this class, samclass.dll, presents the page 
labeled “Sample Information.” In general, this value can include a DLL name and the name of an entry point. If the entry 
point name is omitted, as in this example, the system assumes it is EnumPropPages. 

 Install32 specifies the class installer DLL that the setup system uses whenever it performs setup actions on devices 
belonging to the class. This value can include a DLL name and the name of an entry point. If the DLL name is omitted, as 
in this example, the system assumes it is the same as the property-page DLL. 

 Icon specifies the resource identifier for an icon in the class installer DLL. The Device Manager and the setup system use 
this icon whenever they display information about the class. The DDK suggests that an icon will be taken from the 
property page DLL if no class installer is present, but that was not the case in Windows 2000, and I’ve been in the habit 
of providing at least a degenerate class installer entry point just so I can have a custom icon. 

The SAMPLE class lacks some of the optional values that might be present, such as the following: 

 NoInstallClass, if present and not equal to 0, indicates that some enumerator will automatically detect any device 
belonging to this class. If the class has this attribute, the hardware wizard won’t include this class in the list of device 
classes it presents to the end user. 

 SilentInstall, if present and not equal to 0, causes the PnP manager to install devices of this class without presenting any 
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dialog boxes to the end user. 

 UpperFilters and LowerFilters specify service names for filter drivers. The PnP Manager loads these filters for every 
device belonging to the class. (You specify filter drivers that apply to just one device in the device’s hardware key.) 

 NoDisplayClass, if present and not equal to 0, suppresses devices of this class from the Device Manager display. 

There can be a Properties subkey of the class key, which can contain values named Security, Exclusive, DeviceType, and 
DeviceCharacteristics. These values override default settings of certain device object parameters for all devices of this class. 
Refer to the subsection “Device Object Properties” a bit further on for information about these settings. 

15.1.3 The Driver Key  
Each device also has its own subkey below the class key. The name of this key (actually, the name of this key relative to 
CurrentControlSet\Control\Class) is the Driver value in the device’s hardware key. Refer to Figure 15-6 for an illustration of 
the contents of this subkey, the purpose of which is to correlate all these registry entries with the INF file used to install the 
device and to provide a repository for driver-specific configuration information that concerns this device. 

Figure 15-6. A driver key in the registry.  

Both the driver key and the hardware parameters key can contain parameter information about a device. The difference 
between the two keys is a bit subtle. The DDK says that the driver key contains “driver-specific information,” whereas the 
hardware parameters key contains “device-specific information.” In both cases, the “information” in question pertains to a 
particular instance of the device. Microsoft’s concept is that the driver-specific information would be peculiar to a given driver 
and not relevant to some other driver for the same hardware. I confess that this distinction pretty much escapes me, inasmuch 
as I’m used to thinking that any given device will have just one driver. 

15.1.4 The Service (Software) Key  
The last key that’s important for a device driver is the service key. It indicates where the driver’s executable file is on disk and 
contains some other parameters that govern the way the driver is loaded. Service keys appear in the 
HKLM\System\CurrentControlSet\Services key. Refer to Figure 15-7 for USB42’s service key. 

Figure 15-7. A service key in the registry.  

I won’t rehash all the possible settings in the service key, which is splendidly documented in several places, including under 
the heading “Service Install” in the Platform Software Development Kit (Platform SDK). In this particular case, the values 
have the following significance: 

 ImagePath indicates that the executable file for the driver is named USB42.SYS and can be found in 
%SystemRoot%\system32\drivers. Note that the registry setting in this case is a relative pathname starting from the 
system root directory. 

 Type (1) indicates that this entry describes a kernel-mode driver. 

 Start (3) indicates that the system should load this driver when it’s needed to support a newly arrived device. (This 
numeric value corresponds to the SERVICE_DEMAND_START constant in a call to CreateService. When applied to a 
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kernel-mode driver, it has the meaning I just described—it’s not necessary to explicitly call StartService or issue a NET 
START command to start the driver.) 

 ErrorControl (1) indicates that a failure to load this driver should cause the system to log the error and display a message 
box. 

15.1.5 Accessing the Registry from a Program  
As I said earlier, you should plan to use a set of kernel-mode and user-mode APIs for accessing the registry rather than 
accessing it directly. In this subsection, I’ll discuss the relevant APIs. 

Accessing the Registry from a Driver  

Table 15-1 shows which kernel-mode functions you should use to access information in the various registry keys I’ve just 
discussed. In most cases, you only need to use a special way to open the key. Thereafter, you use regular ZwXxx functions to 
read and write values and ZwClose to close the key. Refer to the examples in Chapter 3 for full details. 

Registry Key Function to Use for Access 

Hardware  
Read individual standard properties via IoGetDeviceProperty. You can’t change these properties 
from a driver, and you shouldn’t try to figure out the name of this key in order to open it directly. 

Hardware 
Parameters  

IoOpenDeviceRegistryKey (PLUGPLAY_REGKEY_DEVICE option) 

Driver  IoOpenDeviceRegistryKey (PLUGPLAY_REGKEY_DRIVER option) 

Class  
No access method provided, and you shouldn’t try to figure out the name of this key in order to 
open it directly. 

Service  ZwOpenKey using RegistryPath parameter to DriverEntry. 

To access “standard” parameters kept in the hardware key, you call IoGetDeviceProperty with one of the property codes listed 
in Table 15-2. The entries in the Source column refer to items in the INF file, which I’ll discuss in the next major section of 
this chapter. Note that this function has still more property codes than shown in the table, but they refer to property values that 
the PnP Manager maintains elsewhere than in the registry. 

Property Name Value Name Source Description 

DeviceProperty-
DeviceDescription  

DeviceDesc  
First parameter in model 
statement 

Description of device 

DevicePropertyHardwareId  HardwareID  
Second parameter in model 
statement 

Identifies device 

DevicePropertyCompatibleIDs  CompatibleIDs  
Created by bus driver during 
detection 

Device types that can be 
considered to match 

DevicePropertyClassName  Class  
Class parameter in Version 
section of INF 

Name of device class 

DevicePropertyClassGuid  ClassGUID  
ClassGuid parameter in Version 
section of INF 

Unique identifier of device class 

DevicePropertyDriverKeyName  Driver  
First parameter in AddService 
statement 

Name of service key that 
specifies driver 

DevicePropertyManufacturer  Mfg  
Manufacturer in whose model 
section device was found 

Name of hardware 
manufacturer 

DevicePropertyFriendlyName  FriendlyName  
Explicit AddReg in INF file, or 
class installer 

“Friendly” name suitable for 
presentation to the user 

Table 15-2. Standard Device Properties in the Hardware Key   

For example, to retrieve the description of a device, use the following code. (See the AddDevice function in the DEVPROP 
sample.) 

WCHAR name[256]; 
ULONG junk; 
status = IoGetDeviceProperty(pdo,  
  DevicePropertyDeviceDescription, sizeof(name), name, &junk); 
KdPrint((DRIVERNAME " - AddDevice has succeeded for '%ws' device\n", name)); 

On the CD   The DEVPROP sample in the companion content illustrates how to obtain standard property 
information from kernel mode and user mode. 
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Accessing the Registry from User Mode  

Table 15-3 lists the user-mode APIs you would use to access the registry keys we’ve just discussed. Most of these functions are 
oriented toward setup programs, including class installers and co-installers. To use them successfully, you need to have an 
HDEVINFO handle and an SP_DEVINFO_DATA structure that refers to the specific device you’re interested in. 

Registry Key Function to Use for Access 

Hardware  
Read or write individual standard properties via SetupDiGetDeviceRegistryProperty and 
SetupDiSetDeviceRegistryProperty. 

Hardware 
Parameters  

SetupDiOpenDevRegKey (DIREG_DEV option). 

Driver  SetupDiOpenDevRegKey (DIREG_DRV option). 

Class  
SetupDiOpenClassRegKey. Starting in Windows XP, read or write device object properties via 
SetupDiGetClassRegistryProperty and SetupDiSetClassRegistryProperty.  

Service  QueryServiceConfig, ChangeServiceConfig. 

Table 15-3. User-Mode Interfaces to the Registry   

For example, within the context of an enumeration of registered interfaces using the setup APIs, you can retrieve the friendly 
name of a device: 

HDEVINFO info = SetupDiGetClassDevs(...); 
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)}; 
SetupDiGetDeviceInterfaceDetail(info, ..., &did); 
TCHAR fname[256]; 
SetupDiGetDeviceRegistryProperty(info, &did, 
  SPDRP_FRIENDLYNAME, NULL, (PBYTE) fname,  
  sizeof(fname), NULL); 

Refer to the DDK documentation of SetupDiGetDeviceRegistryProperty for a list of the SPDRP_XXX values you can specify 
to retrieve the various properties. 

If all you have is the symbolic name of the device, you can use the following trick: 

LPCTSTR devname;   // <== someone gives you this 
HDEVINFO info = SetupDiCreateDeviceInfoList(NULL, NULL); 
SP_DEVICE_INTERFACE_DATA ifdata = {sizeof(SP_DEVICE_INTERFACE_DATA)}; 
SetupDiOpenDeviceInterface(info, devname, 0, &ifdata); 
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)}; 
SetupDiGetDeviceInterfaceDetail(info, &ifdata, NULL, 0, NULL, &did); 

You can go on to call routines such as SetupDiGetDeviceRegistryProperty in the normal way at this point. 

NOTE  
In Windows 98 and Windows NT version 4, application programs used the CFGMGR32 set of APIs to obtain 
information about devices and to interact with the PnP Manager. These APIs continue to be supported for 
purposes of compatibility in Windows 98/Me and Windows XP, but Microsoft discourages their use in new code. 
For that reason, I’m not even showing you examples of calling them. 

15.1.6 Device Object Properties  
As you know, you call IoCreateDevice to create a device object. In a WDM driver, your AddDevice function ordinarily creates 
a single device object and links it into the PnP driver stack by calling IoAttachDeviceToDeviceStack. Once the function driver 
and all filter drivers have finished these steps, the PnP Manager consults the registry to apply optional overrides to some of the 
settings in the device objects. The settings in question are these few: 

 The security descriptor attached to the physical device object (PDO), which can be overridden by a Security value in the 
registry. 

 The device type (FILE_DEVICE_XXX) for the PDO, which can be overridden by a DeviceType value in the registry. 

 The device characteristics flags, which can be overridden by a DeviceCharacteristics value. 

 The exclusivity option for the PDO, which can be overridden by an Exclusive value. 

The PnP Manager looks first in the hardware key and then in the Properties subkey of the class key to find these overrides. 
After modifying the PDO, the PnP Manager then merges the characteristics flags from all device objects in the stack and sets 
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certain ones (selected by the FILE_CHARACTERISTICS_PROPAGATED mask in ntddk.h) to be the same in all the device 
objects. At the present time, the characteristics flags that are propagated are these: 

 FILE_REMOVABLE_MEDIA  

 FILE_READ_ONLY_DEVICE  

 FILE_FLOPPY_DISKETTE  

 FILE_WRITE_ONCE_MEDIA  

 FILE_DEVICE_SECURE_OPEN  

For the security and exclusivity overrides to be effective, none of the filter or function drivers in the PnP stack should name 
their device objects. They should instead use IoRegisterDeviceInterface as the only method of establishing a symbolic link. 
The registered interface approach forces the I/O and Object Managers to refer to the PDO when opening a handle to the device, 
thereby giving effect to these two overrides. 

The overriding values come to exist in the registry in one of two ways. You can specify them with special syntax in your INF 
file. Alternatively, you or some standard management application can use the SetupDiSetXxxRegistryProperty functions to 
change them in the hardware or class keys. 

15.2 The INF File  

With the preceding background in how the PnP Manager and setup subsystem use the registry, we can begin to make sense of 
the INF file you supply. The purpose of an INF file is to instruct the setup subsystem how to install device-related files on an 
end user system and how to modify the registry. The DDK contains a very thorough discussion of INF-file syntax, which I 
won’t repeat here. I would, however, like to provide a guide to the most commonly used portions of an INF. 

An INF file contains a collection of sections introduced by a section name in brackets. Most sections contain a series of 
directives of the form “keyword = value.” The INF file begins with a Version section that identifies the type of device 
described by entries in the file and that specifies other global characteristics of a driver installation package. The following 
Version section contains the minimum of required information: 

[Version] 
 
Signature=$CHICAGO$ 
 
Class=Sample 
 
ClassGuid={894A7460-A033-11d2-821E-444553540000} 
CatalogFile=whatever.cat 
DriverVer=mm/dd/yyyy 
; Copyright 2002 by Proseware, Inc. 

Signature can be one of several magic values. I use $Chicago$, which works on all WDM platforms. Class identifies the class 
of device. Table 15-4 lists the predefined classes that Windows XP already supports. ClassGuid uniquely identifies the device 
class. The DDK header file DEVGUID.H defines the GUIDs for standard device classes, and the DDK documentation entry 
for the Version section documents them as well. CatalogFile names the digital signature file that WHQL will send you after 
certifying your driver package; do your testing with an empty file. DriverVer specifies the date of the driver package and, 
optionally, a version number. The system uses the version information in ranking digitally signed drivers. You should also have 
a comment (that is, any line that starts with a semicolon) containing the word copyright. Note that you don’t have to specify 
any actual copyright information, but you probably want to. 

The setup subsystem will process an INF file whose Version section contains just the Signature and Class values. The other 
values shown in the preceding example are needed, however, if you want to have WHQL certify your driver. 

I find it useful to think of the bulk of an INF file as the linear description of a tree structure. Each section is a node in the tree, 
and each directive is a pointer to another section. Figure 15-8 illustrates the concept. 
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INF Class Name Description 

1394  IEEE 1394 host bus controllers (but not peripherals) 

Battery  Battery devices 

CDROM  CD-ROM drives, including SCSI and IDE 

DiskDrive  Hard disk drives 

Display  Video adapters 

FDC  Floppy disk controllers 

FloppyDisk  Floppy disk drives 

HDC  Hard disk controllers 

HIDClass  Human input devices 

Image  Still-image capture devices, including cameras and scanners 

Infrared  Network Driver Interface Specification (NDIS) miniport drivers for Serial-IR and Fast-IR ports 

Keyboard  Keyboards 

MediumChanger  SCSI media changer devices 

Media  Multimedia devices, including audio, DVD, joysticks, and full-motion video capture devices 

Modem  Modems 

Monitor  Display monitors 

Mouse  Mouse and other pointing devices 

MTD  Memory technology driver for memory devices 

Multifunction  Combination devices 

MultiportSerial  Intelligent multiport serial cards 

Net  Network adapter cards 

NetClient  Network file system and print providers (client side) 

NetService  Server-side support for network file systems 

NetTrans  Network protocol drivers 

PCMCIA  
Personal Computer Memory Card International Association (PCMCIA) and CardBus host 
controllers (but not peripherals) 

PNPPrinter  Bus-specific print class driver 

Ports  Serial and parallel ports 

Printer  Printers 

SCSIAdapter  SCSI and RAID controllers, host bus adapter miniports, and disk array controllers 

SmartCardReader  Smart card readers 

System  System devices 

TapeDrive  Tape drives 

USB  USB host controllers and hubs (but not peripherals) 

Volume  Logical storage volume drivers 

Table 15-4. Device Setup Classes   

Figure 15-8. Tree structure of an INF file.  
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At the apex of the tree is a Manufacturer section that lists all the companies with hardware described in the file. For example: 

[manufacturer] 
"Walter Oney Software"=DeviceList 
"Finest Organization On Earth Yet"=FOOEY 
 
[DeviceList] 
 
 
[FOOEY] 
 
Each individual manufacturer’s model section (DeviceList and FOOEY in the example) 
describes one or more devices: 
[DeviceList] 
Description=InstallSectionName,DeviceId,CompatibleIds  

where Description is a human-readable description of the device and DeviceId identifies a hardware device. CompatibleIds, if 
present, is a list of other device identifiers with which the same driver will work. The InstallSectionName parameter identifies 
(or points to, in my tree metaphor) another section of the INF file that contains instructions for installing the software for a 
particular device. An example of an entry for a single type of device might be this (drawn from the PKTDMA sample in 
Chapter 7): 

[DeviceList] 
"AMCC S5933 Development Board (DMA)"=DriverInstall,PCI\VEN_10E8&DEV_4750 

The information in the Manufacturer section and in the model section (or sections) for individual manufacturers comes into 
play when the system needs to install a driver for a piece of hardware. A Plug and Play (PnP) device announces its presence 
and identity electronically. A bus driver detects it automatically and constructs a device identifier using on-board data. The 
system then attempts to locate preinstalled INF files that describe that particular device. INF files reside in the INF 
subdirectory of the Windows directory. If the system can’t find a suitable INF file, it asks the end user to specify one. 

A legacy device can’t announce its own presence or identity. The end user therefore launches the add hardware wizard to 
install a legacy device and helps the wizard locate the right INF file. Key steps in this process include specifying the type of 
device being installed and the name of the manufacturer. See Figure 15-9. 

The hardware wizard constructs dialog boxes such as the one shown in Figure 15-9 by enumerating all the INF files for a 
particular type of device, all of the statements in their Manufacturer sections, and all of the model statements for each of the 
manufacturers. You can guess that the manufacturer names that appear in the left pane of the dialog box come from the left 
sides of Manufacturer statements and that the model names that appear in the right pane come from the left sides of model 
statements. 

Figure 15-9. Selecting a device during installation.  

More About Hardware Wizard Dialog Boxes 
Once the wizard is past the stage of looking for PnP devices, it builds a list of device classes and uses various 
SetupDiXxx routines from SETUPAPI.DLL to retrieve icons and descriptions. The information that SETUPAPI 
uses to implement these routines ultimately comes from the registry, where it was placed by entries in 
ClassInstall32 sections. Not every device class will be represented in the list—the wizard will suppress 
information about classes that have the NoInstallClass attribute.  

After the end user selects a device class, the wizard calls SETUPAPI functions to construct lists of manufacturers and devices 
as described in the text. Devices mentioned in ExcludeFromSelect statements will be absent from these lists. 
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15.2.1 Install Sections  
An install section contains the actual instructions that the installer needs to install software for a device. We’ve been 
considering the PKTDMA sample. For that device, the DeviceList model section specifies the name DriverInstall. I find it 
useful to think of this name as identifying an array of sections, one for each Windows platform. The “zero” element in this 
array has the base name of the section (DriverInstall). You can have platform-specific array elements whose names start with 
the base name and contain one of the decorations listed in Table 15-5. The device installer looks for the install section having 
the most specialized decoration. Suppose, for example, that you have install sections with no decoration and with the .NTx86 
decoration. If you’re installing into Windows XP on an Intel x86 platform, the installer will use the .NTx86 section. If you’re 
installing into Windows 98/Me, it will use the section without a decoration. 

Platform Install Section Decoration 

Any platform, including Windows 98/Me [none] 

Any Windows XP platform .NT 

Windows XP on Intel x86 .NTx86 

Windows XP on Intel 64-bit processor .NTIA64 

Table 15-5. Install Section Decorations for Each Platform  

Because of the search rules I just outlined, all of the INF files for my sample drivers have the no-decoration 
and .NTx86-decoration install sections. That makes the INF files work fine on any Intel x86 platform. 

Distinguishing Among Operating Systems 
For operating systems after and including Windows XP, the INF syntax provides a rather tedious way to specify 
different drivers for different operating systems. You create multiple model sections with unique names, and 
you distinguish among them by appending TargetOsVersion strings to the model statements in the 
[Manufacturer] section. Refer to the DDK documentation for the full syntax of these strings. As an example, you 
can specify the following in an INF file to get different drivers installed for Windows 98, Windows 2000, and 
Windows XP:  

[Manufacturer] 

"Walter Oney Software"=DeviceList            ; for 98/ME and 2K 

"Walter Oney Software"=DeviceList,NTx86.5.1  ; XP on x86 

"Walter Oney Software"=DeviceList,Ntia64.5.1 ; XP on IA64 

 

Following this section, you have three model sections listing all the same hardware models and specifying four 
uniquely named install sections for each model. There is an additional .NTx86 install section for Windows 2000, 
making a total of four install sections per hardware model. That is, you have model sections named 
[DeviceList], [DeviceList.NTx86.5.1], and so on, which point to install sections named (for example) 
[WidgetInstall], [WidgetInstall.NTx86], [WidgetInstall.NTx86.5.1], and so on. You’ll want to comment this INF 
heavily so you can figure out later what you were doing! 

The reason I called this mechanism “tedious” is that you can’t simply append an operating system-specific 
decoration to an install section name. You have to create a separate tree of model statements that point to 
uniquely named install sections. The reason there are two different schemes for identifying platform-dependent 
and operating system-dependent sections is historical. Windows 98/Me doesn’t see the decorated section 
names at all. Windows 2000 will append the decorations to install section (and a few other) names but has no 
notion of operating system dependence. To add the operating system dependence without breaking existing INF 
files, Microsoft pretty much needed a different scheme. 

Further along in this chapter, I’ll be discussing other INF sections whose names begin with the name of the install section. If 
you have multiple install sections in your “array,” these other sections have to include the platform-dependent decoration in 
their names too. For example, I’ll be discussing a Services section that you use to install a description of the driver in the 
registry. You form the name of this section by taking the base name of the install section (for example, DriverInstall) plus the 
platform decoration (for example, NTx86) and adding the word Services, ending up with [DriverInstall.NTx86.Services]. 

A typical Windows XP install section will contain a CopyFiles directive and nothing else: 

[DriverInstall.ntx86] 
CopyFiles=DriverCopyFiles 

This CopyFiles directive indicates that we want the installer to use the information in another INF section for copying files 
onto the end user hard disk. For the PKTDMA sample, the other section is named DriverCopyFiles: 

[DriverCopyFiles] 
pktdma.sys,,,2 
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This section directs the installer to copy PKTDMA.SYS to the end user’s hard disk. 

The statements in a CopyFiles section have this general form: 

Destination,Source,Temporary,Flags 

Destination is the name (without any directory name) of the file as it will eventually exist on the end user system. Source is the 
name of the file as it exists on the distribution media if that name is different from the Destination name; otherwise, it’s just 
blank as in the example. In Windows 98/Me, if you might be installing a file that will be in use at the time of installation, you 
specify a temporary name in the Temporary parameter. Windows 98/Me will rename the temporary file to the Destination name 
on the next reboot. It’s not necessary to use this parameter for Windows XP installs because the system automatically generates 
temporary names. 

The Flags parameter contains a bit mask that governs whether the system will decompress a file and how the system deals with 
situations in which a file by the same name already exists. The interpretation of the flags depends in part on whether the INF 
and the driver are part of a package that Microsoft has digitally signed after certification. Refer to the DDK documentation for 
a full explanation of these flags. I ordinarily specify 2 for this parameter, which basically means that the setup will be 
considered to have failed if this file isn’t successfully copied. 

The filename by itself is not sufficient to tell the installer what it needs to know to copy a file. It also needs to know which 
directory you want the file copied to. In addition, if you have multiple diskettes in the installation set, it needs to know which 
diskette contains the source file. These pieces of information come from other sections of the INF file, as suggested by Figure 
15-10. In the PKTDMA example, these sections are as follows: 

[DestinationDirs] 
DefaultDestDir=10,System32\Drivers 
 
[SourceDisksFiles] 
pktdma.sys=1,objchk~1\i386, 
 
[SourceDisksNames] 
1="WDM Book Companion Disc",disk1 

The SourceDisksFiles section indicates that the installer can find PKTDMA.SYS on disk number 1 of the set, in a subdirectory 
whose 8.3 pathname is objchk~1\i386. The SourceDisksNames section indicates that disk number 1 has the human-readable 
label WDM Book Companion Disc and contains a file named disk1 that the installer can look for to verify that the correct 
diskette is in the drive. Note that these section names have an interior s that’s very easy to miss. 

Figure 15-10. Source and destination information for file copies.  

The DestinationDirs section specifies the target directories for copy operations. DefaultDestDir is the target directory to use 
for any file whose target directory isn’t otherwise specified. You use a numeric code to specify the target directory because the 
end user might choose to install Windows XP in a directory with a nonstandard name. Please refer to the DDK documentation 
entry for the DestinationDirs section for a complete list of the codes—only a few of them are in common use, as follows: 

 Directory 10 is the Windows directory (for example, \Windows or \Winnt). 

 Directory 11 is the System directory (for example, \Windows\System or \Winnt\System32). 

 Directory 12 is the Drivers directory on a Windows XP system (for example, \Winnt\System32\Drivers). Unfortunately, 
this number has a different meaning on a Windows 98/Me system (for example, \Windows\System\Iosubsys). 

WDM drivers reside in the Drivers directory. If your CopyFiles section applies only to a Windows XP installation, you can just 
specify directory number 12. If you want to share a CopyFiles section between Windows 98/Me and Windows XP installs, 
however, I recommend that you specify “10,System32\Drivers” instead because it identifies the Drivers directory in both cases. 

Defining the Driver Service  

The INF syntax I’ve described so far is sufficient for your driver file (or files) to be copied onto the end user’s hard disk. You 
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must also arrange for the PnP Manager to know which files to load. A .Services section accomplishes that goal, as in this 
example: 

[DriverInstall.NTx86.Services] 
AddService=PKTDMA,2,DriverService 
 
[DriverService] 
ServiceType=1 
StartType=3 
ErrorControl=1 
ServiceBinary=%10%\system32\drivers\pktdma.sys 

The 2 in the AddService directive indicates that the PKTDMA service will be the function driver for the device. You form the 
name of this section by appending the word Services to the name of the install section to which it applies. 

The end result of these directives will be a key in the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services branch of 
the registry named PKTDMA (the first parameter in the AddService directive). It will define the service entry for the driver as 
a kernel-mode driver (ServiceType equal to 1) that should be demand-loaded by the PnP Manager (StartType equal to 3). Errors 
that occur during loading should be logged but should not by themselves prevent the system from starting (ErrorControl equal 
to 1). The executable image can be found in \Winnt\System32\Drivers\pktdma.sys (the value of ServiceBinary). By the way, 
when you look in the registry, you’ll see that the name of the executable file is stored under the name ImagePath rather than 
ServiceBinary. 

It’s a good idea to make the name of the service (PKTDMA in this example) the same as the filename (PKTDMA.SYS in this 
example) of your driver binary file. Not only does this make it obvious which service name corresponds to which driver, but it 
also avoids a problem that can arise when two different service keys point to the same driver: any device that uses the same 
driver as a then-started device but under a different service name can’t itself start. 

15.2.2 Populating the Registry  
Many INF sections can contain an AddReg verb that points to an add-registry section elsewhere in the INF file: 

[SomeSection] 
AddReg=SomeAddReg 

The add-registry section in turn contains statements that use a positional syntax to define registry values: 

[SomeAddReg] 
key, subkey, value-name, flags, value 
 

In this syntax template, key denotes either one of the standard root keys (HKCR, HKCU, HKLM, or HKU) or the 
context-dependent value HKR. HKR stands for “relative root key” and refers to a key that depends on where you put the 
AddReg verb that points to this add-registry section. Table 15-6 indicates what HKR means for various different AddReg 
sources. 

Section Containing AddReg Meaning of HKR 

Install section—for example, [DriverInstall] Driver key 

Hardware section—for example, [DriverInstall.ntx86.hw] Hardware parameters key 

Service section—for example, [DriverInstall.ntx86.services] Service key 

[ClassInstall32] or [ClassInstall] Class key 

Event logging section (specified by optional fourth parameter in AddService 
directive) 

Event logger’s subkey for this driver 

Add interface section (specified by optional third parameter in AddInterface 
directive) 

Interface key (not discussed in this 
book) 

Co-installer section—for example, [DriverInstall.CoInstallers] Driver key 

Table 15-6. Meaning of HKR in an Add-Registry Section  

The subkey parameter in the add-registry syntax specifies an optional subkey of key. I rarely specify a subkey when I use HKR 
for the main key, but it’s essential to do so if you specify a different root key. For example, if I wanted to add an entry to the 
RunOnce key, I’d have the following statement in an AddReg section: 

HKLM,Software\Microsoft\Windows\CurrentVersion\RunOnce,<more stuff> 

Incidentally, if you specify an absolute registry path like this, it doesn’t matter which INF section contains the AddReg verb. 
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The value-name parameter in an add-registry statement specifies the value you want to set. Omit this parameter (that is, put 
nothing between the commas) if you want to set the default value in some registry key. Within a [ClassInstall32] AddReg 
section, the value names DeviceCharacteristics, DeviceType, Security, and Exclusive are treated specially—they refer to values 
that are actually in the Properties subkey of the class key. 

The flags parameter indicates the data format of the value you’re setting and also specifies some optional behavior. Consult the 
DDK entry named “INF AddReg Directive” for complete details about these flags. I use only a few specific values in my own 
INF files, as follows: 

 0, which can be abbreviated just by omitting the parameter, indicates a REG_SZ value. 

 1 indicates a REG_BINARY value. 

 0x00010001 is something of a special case. It indicates a REG_DWORD value to Windowx XP but a REG_BINARY value 
to Windows 98/Me (which truncates the flags value to 16 bits and therefore never sees the 0x00010000 bit). 

The value parameter is the value you’re trying to set. For a REG_SZ value, you can supply a quoted string (within which text 
quotes are indicated by two consecutive double-quotation characters). Refer to the DDK entry entitled “INF Strings Section” 
for a full exposition of the syntax rules, and note that a string that contains no blanks or special characters can be coded 
without any quotation marks at all. Thus, the following are equivalent: 

HKR,,NTMPDriver,,"devprop.sys" 
       -or-HKR,,NTMPDriver,,devprop.sys 

You indicate a binary value as a series of 8-bit values. This requirement is a bit of a pain in the neck when you’re trying to 
define a REG_DWORD value in an INF section that you want to use both in Windows XP and in Windows 98/Me. This is how 
you specify a REG_DWORD parameter in a portable way: 

[DriverInstall.ntx86.hw] 
AddReg=HwAddReg 
 
[DriverInstall.hw] 
AddReg=HwAddReg 
 
[HwAddReg] 
HKR,,ProgrammersShoeSize,0x00010001, 0x2A, 0, 0, 0 

Both systems infer that the registry should end up with a REG_DWORD equaling 42 (decimal) from the fact that 32 bits’ worth 
of data are here. 

Now that we’ve covered this syntax information, let’s consider a few examples of registry settings in INF files. 

Initializing Hardware Configuration Settings  

Configuration parameters that relate to the hardware belong in the hardware parameters key. I’ve previously shown the 
whimsical example of a ProgrammersShoeSize parameter. A more realistic example would be a driver that services two 
different types of device that can’t be distinguished at AddDevice time but that need to be treated somewhat differently. (There 
shouldn’t be major differences between the devices because you should write two drivers if there are.) 

I would code the AddDevice function for this driver to open the hardware parameters key and interrogate a value that I’ll call 
BoardType. This will be a REG_DWORD value that can be 0 or 1. The code inside AddDevice would look like this (except that 
we’d really have some error checks): 

HANDLE hkey; 
status = IoOpenDeviceRegistryKey(pdo, 
  PLUGPLAY_REGKEY_DEVICE, KEY_READ, &hkey); 
 
UNICODE_STRING valname; 
RtlInitUnicodeString(&valname, L"BoardType"); 
 
KEY_VALUE_PARTIAL_INFORMATION value; 
ULONG junk; 
status = ZwQueryValueKey(hkey, &valname, 
  KeyValuePartialInformation, &value, sizeof(value), &junk); 
 
ULONG BoardType = *(PULONG) value.Data; 
 
ZwClose(hkey); 

In this fragment, I rely on the fact that the C compiler will pad the value variable to the next address boundary consistent with 
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the most stringent alignment required for one of its members. In this case, this fact means that value.Data will really be 4 bytes 
long, even though it’s declared as being just 1 byte long. 

In the INF file, I’d probably have two different model statements and install sections, like this (note that I’m leaving out quite a 
few of the other sections that would be in the INF file): 

[DeviceList] 
"Widget Model A"=WidgetInstallA,... 
"Widget Model B"=WidgetInstallB,... 
 
[WidgetInstallA.ntx86.hw] 
AddReg=HwAddReg.A 
 
[WidgetInstallB.ntx86.hw] 
AddReg=HwAddReg.B 
 
[WidgetInstallA.hw]     ; for Win98/Me 
AddReg=HwAddReg.A 
 
[WidgetInstallB.hw]     ; ditto 
AddReg=HwAddReg.B 
 
[HwAddReg.A] 
HKR,,BoardType,0x00010001, 0,0,0,0 
 
[HwAddReg.B] 
HKR,,BoardType,0x00010001, 1,0,0,0 

Initializing the Driver Key  

The only time I use the driver key is in the Windows 98/Me sections of my INF files, and then only because the Configuration 
Manager requires two values to be there to specify the WDM driver for the device. Nearly all of the samples in the companion 
content have the following entries in the INF file for this purpose: 

[DriverInstall] 
AddReg=DriverAddReg 
 
[DriverAddReg] 
HKR,,DevLoader,,*ntkern 
HKR,,NTMPDriver,,whatever.sys 

Initializing the Service Key  

I rarely use the service key in a WDM driver. For the debug version of the drivers I build for my consulting clients, however, 
I’ve built a general-purpose set of tracing functions that dovetail with a Device Manager property page for setting various 
options. One aspect of the tracing facility is that the DriverEntry function needs to initialize a flag word. The only pertinent 
registry key that’s available to DriverEntry is the service key, the name to which the RegistryPath argument points. 

Part of the DriverEntry initialization in one of these drivers looks like this: 

ULONG DriverTraceFlags; 
KObjectAttributes oa(RegistryPath, 
  OBJ_CASE_INSENSITIVE │ OBJ_KERNEL_HANDLE); 
HANDLE hkey; 
NTSTATUS status = ZwOpenKey(&hkey, KEY_READ, oa); 
if (NT_SUCCESS(status)) 
  { 
  GetRegistryValue(hkey, L"DriverTraceFlags", DriverTraceFlags); 
  ZwClose(hkey); 
  } 

(This initialization is part of an elaborate class library that I use so I don’t have to keep retyping or cutting and pasting 
standardized code. You can undoubtedly figure out what’s going on.) 

My property page provider presents a page containing some standard and some custom options. The custom options originate 
in some INF-file syntax like this: 

[DriverService] 
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ServiceType=1 
StartType=3 
ErrorControl=1 
ServiceBinary=%10%\system32\drivers\whatever.sys 
AddReg=TraceFlags 
[TraceFlags] 
HKR,,CustomTraceName1,,"Board interrupts" 
HKR,,CustomTraceFlag1,0x00010001, 01,00,00,00 
HKR,,CustomTraceName2,,"Reads && Writes from/to board registers" 
HKR,,CustomTraceFlag2,0x00010001, 02,00,00,00 

The AddReg directive within the [DriverService] section is the crucial part of this example. Within the AddReg section it 
references, HKR refers to the service key. 

Event Logging  

You must prepare the way for your driver to log events by setting up a subkey in the event logger’s own service key. You do 
this with syntax like the following (taken from the INF file for the EVENTLOG sample): 

[DriverInstall.ntx86.Services] 
AddService=EventLogService,2,DriverService,EventLogging 
[DriverService] 
ServiceType=1 
StartType=3 
ErrorControl=1 
ServiceBinary=%10%\system32\drivers\eventlog.sys 
 
[EventLogging] 
AddReg=EventLogAddReg 
 
[EventLogAddReg] 
HKR,,EventMessageFile,0x00020000, \ 
  "%10%\System32\iologmsg.dll;%10%\system32\drivers\EventLog.sys" 
HKR,,TypesSupported,0x00010001,7 

Incidentally, EventMessageFile has the type REG_EXPAND_SZ. 

15.2.3 Security Settings  
You can specify two kinds of security settings in an INF file. One setting applies to the registry entries you create in an 
add-registry section: 

[SomeSection] 
AddReg=SomeAddReg 
 
[SomeAddReg] 
 
 
[SomeAddReg.security] 
"<security descriptor>" 

The other setting supplies an override for device object security descriptors, either for an entire class of device or for just one 
instance: 

[ClassInstall32] 
AddReg=ClassInstallAddReg 
 
[ClassInstallAddReg] 
HKR,,Security,,<security descriptor> 
 
           -or- 

 
[DriverInstall.hw] 
AddReg=HwAddReg 
 
[HwAddReg] 
HKR,,Security,,<security descriptor> 
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In each of these cases, <security descriptor> is a string that succinctly encodes a standard security descriptor. The security 
description language is documented in the Platform SDK in connection with ConvertStringSecurity-
DescriptorToSecurityDescriptor and its complement. For example, the following security descriptor string grants all access to 
the system account, read/write/execute access to administrators, and read-only access to everyone else: 

D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GR;;;WD) 
(This is the SDDL_DEVOBJ_SYS_ALL_ADM_RWX_WORLD_R string from WDMSEC.H, a header in 
the .NET DDK.) 

This string has a visual appearance that only a parser could love. Here’s a guided tour: 

 D:P introduces a discretionary access control list (ACL) with the protected attribute, which means it cannot be modified 
by access control entries inherited from parent objects. 

 Each of the three parentheses-delimited strings represents one access control entry (ACE). 

 (A;;GA;;;SY) specifies an access-allowed access control entry (A) with default flags (omitted second parameter). It gives 
GENERIC_ALL rights (GA) to the system account (SY). The objects for which you specify security descriptors in an 
INF file are implicit in the placement of the directive. Consequently, you would never specify an object GUID or an 
inherited object GUID in one of these entries (omitted fourth and fifth parameters). 

 (A;;GRGWGX;;;BA) grants GENERIC_READ (GR), GENERIC_WRITE (GW), and GENERIC_EXECUTE (GX) 
rights to members of the built-in administrators group (BA). 

 (A;;GR;;;WD) grants GENERIC_READ access to members of the Everyone (WD) group. 

15.2.4 Strings and Localization  
In all the examples I’ve shown so far, I’ve used literal string values in places where you might really want to present localized 
text or where you’re going to be using the same string value over and over. You can create a table of named strings in an INF 
file and then use an escape convention to reference them as needed. Here’s an example: 

[DeviceList] 
%DESCRIPTION%=DriverInstall,*WCO1503 
 
[Strings] 
DESCRIPTION="DEVPROP Sample" 
You can provide a set of localized string sections too. For example: 
[Manufacturer] 
%PROSEWARE%=DeviceList 
 
[Strings] 
PROSEWARE=" Proseware, Inc. of North America" 
 
[Strings.0407] 
PROSEWARE=" Proseware, Inc. Deutschland GmbH" 
 
[Strings.040C] 
PROSEWARE=" Marchandise de Prose" 
 
 

When installing your driver, the system will pick the correct localized versions of the strings. It will fall back on the 
nonlocalized [Strings] section when necessary. 

15.2.5 Device Identifiers  
For true Plug and Play devices, the device identifier that appears in a manufacturer’s model section of an INF is very important. 
Plug and Play devices are those that can electronically announce their presence and identity. A bus enumerator can find these 
devices automatically, and it can read some sort of on-board information to find out what kind each device is. Universal serial 
bus (USB) devices, for example, include vendor and product identification codes in their device descriptors, and the 
configuration space of Peripheral Component Interconnect (PCI) devices includes vendor and product codes. 

NOTE  
The lists of device identifier strings that appear here now also appear in the DDK, even including the examples 
I used in these lists for the first edition. I nevertheless thought it worthwhile to keep this material in the second 
edition for ease of reference. 

When an enumerator detects a device, it constructs a list of device identification strings. One entry in the list is a complete 
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identification of the device. This entry will end up naming the hardware key in the registry. Additional entries in the list are 
“compatible” identifiers. The PnP Manager uses all of the identifiers in the list when it tries to match a device with an INF file. 
Enumerators place more specific identifiers ahead of less specific identifiers so that vendors can supply specific drivers that 
will be found in preference to more general drivers. The algorithm for constructing the strings depends on the enumerator, as 
follows: 

PCI Devices  

The full device identifier has the form 

PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr 

where vvvv is the vendor identifier that the PCI Special Interest Group assigned to the manufacturer of the card, dddd is the 
device identifier that the manufacturer assigned to the card, ssssssss is the subsystem ID (often 0) reported by the card, and rr 
is the revision number. 

For example, the display adapter on a now-discarded laptop computer (based on the Chips and Technologies 65550 chip) had 
this identifier: 

PCI\VEN_102C&DEV_00E0&SUBSYS_00000000&REV_04 

A device can also match an INF model with any of these identifiers: 

PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss 
PCI\VEN_vvvv&DEV_dddd&REV_rr 
PCI\VEN_vvvv&DEV_dddd 
PCI\VEN_vvvv&DEV_dddd&REV_rr&CC_ccss 
PCI\VEN_vvvv&DEV_dddd&CC_ccsspp 
PCI\VEN_vvvv&DEV_dddd&CC_ccss 
PCI\VEN_vvvv&CC_ccsspp 
PCI\VEN_vvvv&CC_ccss 
PCI\VEN_vvvv 
PCI\CC_ccsspp 
PCI\CC_ccss 

in which cc is the base class code from the configuration space, ss is the subclass code, and pp is the programming interface. 
For example, the following additional identifiers for the aforementioned discarded laptop’s display adapter would have 
matched the information in an INF file: 

PCI\VEN_102C&DEV_00E0&SUBSYS_00000000 
PCI\VEN_102C&DEV_00E0&REV_04 
PCI\VEN_102C&DEV_00E0 
PCI\VEN_102C&DEV_00E0&REV_04&CC_0300 
PCI\VEN_102C&DEV_00E0&CC_030000 
PCI\VEN_102C&DEV_00E0&CC_0300 
PCI\VEN_102C&CC_030000 
PCI\VEN_102C&CC_0300 
PCI\VEN_102C 
PCI\CC_030000 
PCI\CC_0300 

The INF that the system actually used for driver installation was the third one, which includes just the vendor and device 
identifiers. 

PCMCIA Devices  

The device identifier for a simple device has the form 

PCMCIA\Manufacturer-Product-Crc 

For example, the device identifier for the 3Com network card on the same dead laptop computer is 

PCMCIA\MEGAHERTZ-CC10BT/2-BF05 

For an individual function on a multifunction device, the identifier has the form 
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PCMCIA\Manufacturer-Product-DEVdddd-Crc 

where Manufacturer is the name of the manufacturer and Product is the name of the product. The PCMCIA enumerator 
retrieves these strings directly from tuples on the card. Crc is the 4-digit hexadecimal cyclical redundancy check (CRC) 
checksum for the card. The child function number (dddd in the template) is a decimal number without leading zeros. 

If the card doesn’t have a manufacturer name, the identifier will have one of these three forms: 

PCMCIA\UNKNOWN_MANUFACTURER-Crc 
PCMCIA\UNKNOWN_MANUFACTURER-DEVdddd-Crc 
PCMCIA\MTD-0000 or PCMCIA\MTD-0002 

(The last of these three alternatives is for a flash memory card with no manufacturer identifier on the card. The identifier with 
0000 is for an SRAM card, while the one with 0002 is for a ROM card.) 

In addition to the device identifier just described, an INF file’s model section can contain an identifier composed by replacing 
the four-digit hexadecimal CRC with a string containing the four-digit hexadecimal manufacturer code, a hyphen, and the 
four-digit hexadecimal manufacturer information code (both from on-board tuples). For example: 

PCMCIA\MEGAHERTZ-CC10BT/2-0128-0103 

SCSI Devices  

The complete device identifier is 

SCSI\ttttvvvvvvvvpppppppppppppppprrrr 

where tttt is a device type code, vvvvvvvv is an 8-character vendor identifier, pppppppppppppppp is a 16-character product 
identifier, and rrrr is a 4-character revision-level value. The device type code is the only one of the identifier components that 
doesn’t have a fixed length. The bus driver determines this portion of the device identifier by indexing an internal string table 
with the device type code from the device’s inquiry data, as shown in Table 15-7. (This table includes only the SCSI standard 
type codes. The SCSI enumerator can return additional type names for other types of device—see the DDK documentation for 
full information.) The remaining components are just the strings that appear in the device’s inquiry data but with special 
characters (including space, comma, and any nonprinting graphic) replaced with an underscore. 

SCSI Type Code Device Type Generic Type 

DIRECT_ACCESS_DEVICE (0)  Disk  GenDisk  

SEQUENTIAL_ACCESS_DEVICE (1)  Sequential   

PRINTER_DEVICE (2)  Printer  GenPrinter  

PROCESSOR_DEVICE (3)  Processor   

WRITE_ONCE_READ_MULTIPLE_DEVICE (4)  Worm  GenWorm  

READ_ONLY_DIRECT_ACCESS_DEVICE (5)  CdRom  GenCdRom  

SCANNER_DEVICE (6)  Scanner  GenScanner  

OPTICAL_DEVICE (7)  Optical  GenOptical  

MEDIUM_CHANGER (8)  Changer  ScsiChanger  

COMMUNICATION_DEVICE (9)  Net  ScsiNet  

Table 15-7. Type Names for SCSI Devices   

For example, a disk drive on one of my workstations has this identifier: 

SCSI\DiskSEAGATE_ST39102LW_______0004 

The bus driver also creates these additional identifiers: 

SCSI\ttttvvvvvvvvpppppppppppppppp 
SCSI\ttttvvvvvvvv 
SCSI\vvvvvvvvppppppppppppppppr 
vvvvvvvvppppppppppppppppr 
gggg 

In the third and fourth of these additional identifiers, r represents just the first character of the revision identifier. In the last 
identifier, gggg is the generic type code from Table 15-7. 

To carry forward the example of my disk drive, the bus driver generated these additional device identifiers: 
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SCSI\DiskSEAGATE_ST39102LW_______ 
SCSI\DiskSEAGATE_ 
SCSI\DiskSEAGATE_ST39102LW_______0 
SEAGATE_ST39102LW_______0 
GenDisk 

The last of these (GenDisk) is the one that appeared as the device identifier in the INF file that the PnP Manager actually used 
to install a driver for this disk. In fact, the generic identifier is usually the one that’s in the INF file because SCSI drivers tend 
to be generic. 

IDE Devices  

IDE devices receive device identifiers that are similar to SCSI identifiers: 

IDE\ttttvpvprrrrrrrr 
IDE\vpvprrrrrrrr 
IDE\ttttvpvp 
vpvprrrrrrrr 
gggg 

Here tttt is a device type name (same as SCSI); vpvp is a string containing the vendor name, an underscore, the vendor’s 
product name, and enough underscores to bring the total to 40 characters; rrrrrrrr is an 8-character revision number; and gggg 
is a generic type name (almost the same as SCSI type names in Table 15-7). For IDE changer devices, the generic type name is 
GenChanger instead of ScsiChanger; other IDE generic names are the same as SCSI names. 

For example, here are the device identifiers generated for an IDE hard drive on one of my desktop systems: 

IDE\DiskMaxtor_91000D8__________________________SASX1B18 
IDE\Maxtor_91000D8__________________________SASX1B18 
IDE\DiskMaxtor_91000D8__________________________ 
Maxtor_91000D8__________________________SASX1B18 
GenDisk 

ISAPNP Devices  

The ISA Plug-And-Play (ISAPNP) enumerator constructs two hardware identifiers: 

ISAPNP\id*altid 

where id and altid are EISA-style identifiers for the device—three letters to identify the manufacturer and four hexadecimal 
digits to identify the particular device. If the device in question is one function of a multifunction card, the first identifier in the 
list takes this form: 

ISAPNP\id_DEVnnnn 

where nnnn is the decimal index (with leading zeros) of the function. 

For example, the codec function of the Crystal Semiconductor audio card on one of my desktop machines has these two 
hardware identifiers: 

ISAPNP\CSC6835_DEV0000 
*CSC0000 

The second of these identifiers is the one that matched the actual INF file. 

USB Devices  

The complete device identifier is 

USB\VID_vvvv&PID_dddd&REV_rrrr 

where vvvv is the four-digit hexadecimal vendor code assigned by the USB committee to the vendor, dddd is the four-digit 
hexadecimal product code assigned to the device by the vendor, and rrrr is the revision code. All three of these values appear 
in the device descriptor or interface descriptor for the device. 

An INF model section can also specify these alternatives: 
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USB\VID_vvvv&PID_dddd 
USB\CLASS_cc&SUBCLASS_ss&PROT_pp 
USB\CLASS_cc&SUBCLASS_ss 
USB\CLASS_cc 
USB\COMPOSITE 

where cc is the class code from the device or interface descriptor, ss is the subclass code, and pp is the protocol code. These 
values are in two-digit hexadecimal format. 

A composite USB device is one that has more than one interface descriptor (not counting alternate settings) in its only 
configuration. If no more specific device identifier for a composite device matches an INF file, the system will match the 
USB\COMPOSITE compatible identifier with the generic parent driver. The generic parent driver in turn creates a PDO for 
each interface. The device identifier for the PDO is of the following form: 

USB\VID_vvvv&PID_dddd&MI_nn 

where vvvv and dddd are as before and nn is the bInterfaceNumber from the interface descriptor. The generic parent driver also 
creates compatible identifiers based on the class, subclass, and protocol codes in the interface descriptor: 

USB\CLASS_cc&SUBCLASS_ss&PROT_pp 
USB\CLASS_cc&SUBCLASS_ss 
USB\CLASS_cc 

1394 Devices  

The 1394 bus driver constructs these identifiers for a device: 

1394\VendorName&ModelName1394\UnitSpecId&UnitSwVersion 

where VendorName is the name of the hardware vendor, ModelName identifies the device, UnitSpecId identifies the software 
specification authority, and UnitSwVersion identifies the software specification. The information used to construct these 
identifiers comes from the device’s configuration ROM. 

If a device has vendor and model name strings, the 1394 bus driver uses the first identifier as the hardware ID and the second 
identifier as the one and only compatible ID. If a device lacks a vendor or model name string, the bus driver uses the second 
identifier as the hardware ID. 

Since I don’t have a 1394 bus on any of my computers, I relied on fellow driver writer Jeff Kellam to provide me with two 
examples. The first example is for a Sony camera, for which the device identifier is 

1394\SONY&CCM-DS250_1.08 

The second example is for the 1394 bus itself operating in diagnostic mode; this device identifier is 

1394\031887&040892 

Please refer to the DDK for information about device identifiers in composite 1394 devices. 

Identifiers for Generic Devices  

The PnP Manager also works with device identifiers for generic devices that can appear on many different buses. These 
identifiers are of the form 

*PNPdddd 

where dddd is a four-digit hexadecimal type identifier. Microsoft keeps moving the list of these identifiers, so every link I 
publish breaks within a few months. Good luck finding it! 

15.2.6 Driver Ranking  
The DDK describes the complete algorithm that the setup program uses to rank drivers when it finds several INF files that all 
describe a new piece of hardware with greater or lesser specificity. (See the entry entitled, “How Setup Selects Drivers.”) The 
entire algorithm is very complex and depends on several factors: 

 Whether a driver package is signed. 

 Whether a device identifier or a compatible identifier generated by the bus driver matches the device identifier or a 



15.2 The INF File   - 397 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

compatible identifier in a model statement and, if so, how specific the match is. Look back a few pages, and notice how 
the bus drivers generate lists of identifiers that begin with a very specific identifier and then become progressively less 
specific and that they generate both device identifier lists and compatible identifier lists. 

 What the DriverVer statement in a signed INF file happens to say. 

 Which operating system platform you’re installing the device for. 

I won’t repeat all the ranking rules because you and I are unlikely to be involved in situations in which very many of them 
matter. Three rough rules of thumb are these: First, signed drivers have absolute preference over unsigned drivers in Windows 
XP. Second, within a group of drivers that are all signed or all unsigned, a match involving more specific identifiers is 
preferred to a less specific match. Finally, all else being equal, setup will break a tie between signed drivers by comparing the 
DriverVer values. Thus, you’ll want to get your driver signed and to specify a full device identifier in a model statement. When 
you distribute updates, you’ll want to be sure you update the DriverVer value so that systems everywhere realize the new 
driver is really new. 

Some Microsoft bus drivers generate compatible device identifiers that map to signed function drivers. This creates a horrible 
problem for a vendor who wants to provide an unsigned driver that matches a more specific device identifier. Here’s an 
example of what can go wrong. Let’s say you’ve created a wonderful new USB mouse. (This is a real example, by the way, 
based on something that happened to one of my consulting clients who agreed to let his story be told.) The end user plugs this 
mouse in to a Windows XP computer. The USB hub driver creates a set of specific device identifiers based on the vendor and 
product ID in the device descriptor. So far, so good. If matters rested here, the system would go on to query for a device driver, 
and your driver would be found. In the interval between releasing the mouse and getting the mouse and the driver certified by 
WHQL, the user would also see an unsigned driver warning dialog box, which he or she could choose to ignore or not. 

But matters don’t rest there. The USB hub driver also creates a compatible device identifier based on the USB class code in the 
mouse’s descriptors. The compatible ID matches a Microsoft INF that specifies HIDUSB.SYS as the driver for a HID-class 
device. Since the Microsoft driver is signed, the system always prefers it to an unsigned driver, even when the unsigned driver 
is for the specific product that has been detected and even though the end user would be willing to accept the unsigned driver. 

At this point, the end user has to go through exactly the right steps in the Update Driver dialog boxes to get Microsoft’s signed 
but generic driver replaced by your unsigned but specific driver. These steps are easy to get wrong and inevitably lead to 
support calls that wipe out the profit from the hardware sale. Not only do your users have to do this, but so do you when you 
want to test your driver package in-house. Your users have to do this not only when they first install your mouse but also every 
time they plug it in to a different port on their USB bus. 

I’m withholding editorial comment on the way the ranking algorithm works out in this kind of situation. You can do a couple 
of things to make sure something similar doesn’t happen to you. You can try to avoid putting your device in a class for which 
Microsoft provides a generic driver based on a compatible ID. In the case of a HID device, this approach will render it 
unusable at boot time and might, for that reason, be unacceptable. Alternatively, you can make sure you have enough time and 
money to get WHQL certification for your device before you begin to sell it. 

NOTE  
Microsoft offers a test signature program that allows you to get what amounts to a dummy signature for a 
driver. This program is not practical for a solo consultant because it requires you to obtain a VeriSign certificate, 
which is assuredly not free and which in turn requires that you jump through various legal hoops that have 
nothing to do with your ability to write drivers. Microsoft designed the current test signature program to work 
well for large companies, from whom the great bulk of driver submissions ultimately come, and periodically 
reviews its plans to see whether smaller fry can be accommodated. I started down the path toward getting a 
test certificate just so I could try it out and tell you readers how it worked, but I gave up when it became 
apparent how inflexible the legal requirements were. 

15.2.7 Tools for INF Files  
If you look in the TOOLS subdirectory of the Windows XP DDK, you’ll find two useful utilities for working with INF files. 
CHKINF will help you validate an INF file, and GENINF will help you build a new INF file. Tools for putting Version stamps 
in INF files that appeared in earlier DDKs appear to have been dropped in the .NET DDK. 

CHKINF  

CHKINF is actually a BAT file that runs a PERL script to examine and validate an INF file. You’ll obviously need a PERL 
interpreter to use this tool. I got a copy once upon a time from http://www.perl.com. The Hardware Compatibility Tests also 
include a copy. 

You can run CHKINF most easily from a command prompt. For example: 

C:\winddk\3615\tools\chkinf>chkinf C:\newbook\chap15\devprop\sys\devprop.inf 

CHKINF generates HTML output files in an HTM subdirectory. The output includes a summary of all the errors and warnings 
found by CHKINF, followed by an annotated version of the INF file itself. I decided to show the unvarnished truth about 

http://www.perl.com/
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DEVPROP.INF so you can see for yourself how CHKINF will help you prepare your driver package. Parents be warned: 
Figure 15-11 contains graphic images that may be inappropriate for all viewers. Well, perhaps it’s not as shocking in black and 
white. 

Figure 15-11. Output from CHKINF utility.  

CHKINF shows me that I omitted the Version and CatalogFile sections that would be needed if I ever wanted to get WHQL 
certification for this “device.” It also—incorrectly, in my view—tells me that the SAMPLE class GUID is undefined, even 
though the INF also contains a ClassInstall32 section to fully define the SAMPLE setup class. All of the warnings relate to 
things in the INF file that I might not have realized were going to happen. For example, telling me about unreferenced sections 
might alert me to a misspelling. As it happens, I’m content with the INF as it stands and don’t plan to take any action based on 
the warnings. 

You should know that CHKINF verifies only the basic syntax and structure of an INF file. It doesn’t verify that you copy files 
to the right directories, or even that you copy all the files that you use. (The WHQL signability test will, however, check these 
items.) It doesn’t understand the [ClassInstall] section needed for a new device class in Windows 98/Me. It doesn’t understand 
that an undecorated section name like [DriverInstall] would be used by Windows 98/Me and so warns that the other Windows 
98/Me sections in the INF aren’t referenced. In other words, CHKINF isn’t a perfect tool, but it will give you useful 
information. Plus, your INF file has to pass CHKINF muster for you to pass WHQL. 

GENINF  

GENINF is a graphical-based wizard that can help you construct INF files. This tool has come a long way from its beginnings 
in the early betas of the Windows 2000 DDK, and I think that many readers can profit from at least trying it out. It wouldn’t 
have helped me with the samples in this book, though, because it doesn’t support custom setup classes or cross-platform INF 
files. It’s also a bit limited in terms of the device classes it does support. 

GENINF also doesn’t embody some of the class-specific knowledge that you need to build a working INF file. For example, I 
used it to build an INF file for a HID minidriver, and it didn’t generate the syntax that would be needed to make sure 
HIDCLASS and HIDPARSE were installed on the end user system. It didn’t ask me whether my device was a joystick, which 
would have required some additional input with regard to axis and button configuration. 

I’m not carping here—I think GENINF is a step in the right direction, but you need to realize that it won’t write your INF file 
for you. 

Debugging Your INF File  

One of the biggest problems with debugging an INF file is that it’s so much like the old game of Adventure. Do something 
wrong, and you learn, “You can’t do that.” In other words, the system doesn’t accept your INF file, and you have to try to 
figure out why, usually by removing more and more lines until you finally figure out what’s causing the problem. I recall once 
spending several hours learning that Windows Me was unhappy with my INF file because one of the Windows 2000 sections 
had a name longer than 28 characters (a fact that was not then documented in the DDK). Once past that hurdle, I had similar 
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pain learning that the disk-label field in a SourceDisksNames entry isn’t optional in Windows Me. 

In Windows XP, the device installer logs various information about the operations it performs in a disk file named 
SETUPAPI.LOG in the Windows directory. You can control the verbosity of the log and the name of the log file by manually 
changing entries in the registry key named HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup. 
Please consult the DDK documentation for detailed information about these settings. I just set the LogLevel parameter to 
0xFFFFFFFF and get way more debugging output than I can usually use, but that’s easier than trying to figure out the 
meanings of 32 bits in a mask. 

Sometimes, a problem with your INF file or another aspect of setup shows up as a problem code in the Device Manager. (See 
Figure 15-12.) The DDK documents the problem codes under the heading “Device Manager Error Messages,” and there are 
about 50 of them. This particular example is what happens after you install the STUPID sample from Chapter 2. Problem code 
31 is CM_PROB_FAILED_ADD, and it means that the driver’s AddDevice function failed. This accurately describes the way 
STUPID works, of course. 

Figure 15-12. A setup problem in the Device Manager.  

15.3 Defining a Device Class  

Let’s suppose you have a device that doesn’t fit into one of the device classes Microsoft has already defined. When you’re 
initially testing your device and your driver, you can get away with using the Unknown class in your INF file. Production 
devices are not supposed to be in the Unknown class, however. You should instead place your custom device in a new device 
class that you define in the INF file. I’ll explain how to create a custom class in this section. 

The INF example I showed you earlier relied on a custom device class: 

[Version] 
Signature=$CHICAGO$ 
Class=Sample 
ClassGuid={894A7460-A033-11d2-821E-444553540000} 

In fact, all of the samples in this book use the Sample class. 

When you want to define a new class of device, you need to run GUIDGEN to create a unique GUID for the class. You can add 
polish to the user interface for your device class by writing a property page provider for use with the Device Manager and 
putting some special entries in the registry key your class uses. You can also provide filter drivers and parameter overrides that 
will be used for every device of your class. You control each of these additional features by statements in your INF file. For 
example, each of the INF files for the samples in the companion content includes these boilerplate entries: 

 
 
[ClassInstall32] 
  AddReg=ClassInstall32AddReg 
  CopyFiles=ClassInstall32CopyFiles 
 
  [ClassInstall32AddReg] 
 
  HKR,,,,"WDM Book Samples" 
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  HKR,,Installer32,,"samclass.dll,SampleClassInstaller" 
 
  HKR,,EnumPropPages32,,samclass.dll 
 
  HKR,,Icon,,101 
 
  [ClassInstall32CopyFiles] 
 
  samclass.dll,,,2 

1. Whenever you use a nonstandard setup class in your INF file, you should have a [ClassInstall32] section to define the 
class. Don’t do what I did in the first edition and depend on some other setup procedure to define the class. Note that the 
system uses this section the very first time it installs a device belonging to your custom class. 

2. In the AddReg section for a [ClassInstall32] section, HKR refers to the class key. The default (unnamed) value is the 
friendly name of the class that will appear in Device Manager and hardware install wizard dialog boxes. 

3. Installer32 names a class installer DLL. For the SAMPLE class, I combined the property page provider and the installer 
into one DLL named SAMCLASS.DLL. I included the installer so I could provide a custom icon for the class. 

4. EnumPropPages32 names a Device Manager property page provider. 

5. Icon specifies the icon resource in the property page provider DLL. 

6. This statement is how we make sure that the property page and installer DLL gets copied during installation of the first 
SAMPLE device. A statement in the [DestinationDirs] section of the INF file directs this file to the system directory. 

15.3.1 A Property Page Provider  
Way back in the introduction to this book, I showed you a screen shot of the property page I invented for use with the Sample 
device class. The SAMCLASS sample in the companion content is the source code for the property page provider that 
produced that page, and I’m now going to explain how it works. 

TIP  
Microsoft recommends that you use an installer or co-installer DLL as a vehicle for adding property pages to the 
Device Manager’s property sheet. The property-page provider concept described here is still supported, and you 
can put the property-page function in the same DLL as an installer or a co-installer. In addition, you’ll need a 
(16-bit) property page provider DLL to get the same functionality in Windows 98/Me, and the code in one of 
those is nearly identical to that in a 32-bit DLL for Windows 2000 and later systems. It’s your choice how you 
proceed. If you want to follow the Microsoft recommendation, I suggest that you consult the CLASSINSTALLER 
portion of the TOASTER sample in the DDK or the COINSTALLER sample in the companion content for this book. 

A property page provider for a device class is a 32-bit DLL with the following contents: 

 An exported entry point for each class for which the DLL supplies property pages 

 Dialog resources for each property page 

 A dialog procedure for each property page 

In general, a single DLL can provide property pages for several device classes. Microsoft supplies some DLLs with the 
operating system that do this, for example. SAMCLASS, however, provides only a single page for a single class of device. Its 
only exported entry point is the following function: 

extern "C" BOOL CALLBACK EnumPropPages 
  (PSP_PROPSHEETPAGE_REQUEST p, 
  LPFNADDPROPSHEETPAGE AddPage, LPARAM lParam) 
  { 
  PROPSHEETPAGE page; 
  HPROPSHEETPAGE hpage; 
  memset(&page, 0, sizeof(page)); 
  page.dwSize = sizeof(PROPSHEETPAGE); 
  page.hInstance = hInst; 
  page.pszTemplate = MAKEINTRESOURCE(IDD_SAMPAGE); 
  page.pfnDlgProc = PageDlgProc; 
  <some more stuff> 
  hpage = CreatePropertySheetPage(&page); 
  if (!hpage) 
    return TRUE; 
  if (!(*AddPage)(hpage, lParam)) 
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    DestroyPropertySheetPage(hpage); 
  return TRUE; 
  } 

When the Device Manager is about to construct the property sheet for a device, it consults the class registry key to see whether 
there’s a property page provider. It loads the DLL you specify (SAMCLASS.DLL in the case of SAMPLE) and calls the 
designated entry point (EnumPropPages). If the function returns TRUE, the Device Manager will display the property page; 
otherwise, it won’t. The function can add zero or more pages by calling the AddPage function as shown in the preceding 
example. 

Inside the SP_PROPSHEETPAGE_REQUEST structure your enumeration function receives as an argument, you’ll find two 
useful pieces of information: a handle to a device information set and the address of an SP_DEVINFO_DATA structure that 
pertains to the device you’re concerned with. These data items (but not, unfortunately, the SP_PROPSHEETPAGE_REQUEST 
structure that contains them) remain valid for as long as the property page is visible, and it would be useful for you to be able 
to access them inside the dialog procedure you write for your property page. Windows SDK Programming 101 (well, maybe 
102 because this process is a little obscure) taught you how to do this. First create an auxiliary structure whose address you 
pass to CreatePropertySheetPage as the lParam member of the PROPSHEETPAGE structure: 

struct SETUPSTUFF { 
  HDEVINFO info; 
  PSP_DEVINFO_DATA did; 
  char infopath[MAX_PATH]; 
  }; 
 
BOOL EnumPropPages(...) 
  { 
  PROPSHEETPAGE page; 
 
  SETUPSTUFF* stuff = new SETUPSTUFF; 
  stuff->info = p->DeviceInfoSet; 
  stuff->did = p->DeviceInfoData; 
  page.lParam = (LPARAM) stuff; 
  page.pfnCallback = PageCallbackProc; 
  page.dwFlags = PSP_USECALLBACK; 
 
  } 
 
UINT CALLBACK PageCallbackProc(HWND junk, UINT msg, LPPROPSHEETPAGE p) 
  { 
  if (msg == PSPCB_RELEASE && p->lParam) 
    delete (SETUPSTUFF*) p->lParam; 
  return TRUE; 
  } 

The WM_INITDIALOG message that Windows sends to your dialog procedure gets an lParam value that’s a pointer to the 
same PROPSHEETPAGE structure, so you can retrieve the stuff pointer there. You can then use SetWindowLong and 
GetWindowLong to save the stuff pointer. 

You also need to provide a way to delete the SETUPSTUFF structure when it’s no longer needed. The easiest way, which 
works whether or not you ever get a WM_INITDIALOG message (you won’t if there’s an error constructing your property 
page), is to use a property page callback function as shown in the preceding fragment. 

You can do all sorts of things in a custom property page. For the sample class, I wanted to provide a button that would bring up 
an explanation for each sample device. To keep things as general as possible, I decided to put a SampleInfo value naming the 
explanation file in the device’s hardware registry key. To invoke a viewer for the explanation file, it suffices to call 
ShellExecute, which will interpret the file extension and locate an appropriate viewer application. For my book samples, the 
explanation files are HTML files, so the viewer in question will be your Web browser. 

Most of the work in SAMCLASS occurs in the WM_INITDIALOG handler. (Error checking is again omitted.) 

case WM_INITDIALOG: 
  { 
  SETUPSTUFF* stuff = (SETUPSTUFF*) ((LPPROPSHEETPAGE) lParam)->lParam; 
 
  SetWindowLong(hdlg, DWL_USER, (LONG) stuff); 
 
 
  TCHAR name[256]; 
  SetupDiGetDeviceRegistryProperty(stuff->info, stuff->did, 
    SPDRP_FRIENDLYNAME, NULL, (PBYTE) name, sizeof(name), NULL); 
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  SetDlgItemText(hdlg, IDC_SAMNAME, name); 
 
 
  HWND hClassIcon = GetDlgItem(hdlg, IDC_CLASSICON); 
  HICON hIcon; 
  SetupDiLoadClassIcon(&stuff->did->ClassGuid, &hIcon, NULL); 
  SendMessage(hClassIcon, STM_SETICON, (WPARAM) (HANDLE) hIcon, 0); 
 
 
HKEY hkey = SetupDiOpenDevRegKey(stuff->info, stuff->did, 
    DICS_FLAG_GLOBAL, 0, DIREG_DEV, KEY_READ); 
  DWORD length = sizeof(name); 
  RegQueryValueEx(hkey, "SampleInfo", NULL, NULL, 
    (LPBYTE) name, &length); 
  DoEnvironmentSubst(name, sizeof(name)); 
  strcpy(stuff->infopath, name); 
  RegCloseKey(hkey); 
  break; 
  } 

1. This statement saves the SETUPSTUFF pointer where the dialog procedure can find it to handle later window messages. 

2. Here we determine the friendly name for the device and put it in a static text control. The actual code sample obtains the 
device description if there’s no friendly name. In the dialog template, I positioned the control quite carefully to match the 
position where the Device Manager puts a similar control on other pages of the property sheet. Taking this bit of extra 
care means that the text (which appears on every page) doesn’t appear to hop around as you tab from one page to the 
next. 

3. These statements determine the class icon. In this particular sample, I could have hard-coded the class icon in the dialog 
template since SAMCLASS is used only with SAMPLE class devices. I preferred to show you this more general way of 
getting the same icon that the Device Manager uses on other pages of the property sheet. Just as with the static control 
containing the friendly name, I had to position the icon control carefully in the dialog template. 

4. The next few statements determine the SampleInfo filename from the hardware key’s parameter subkey. The strings I put 
in the registry are of the form %wdmbook%\chap15\devprop\devprop.htm, in which %wdmbook% indicates substitution 
by the value of the WDMBOOK environment variable. The call to DoEnvironmentSubst, a standard Win32 API, expands 
the environment variable. (Trust me that I don’t just do a blind strcpy in the actual code—I check the length first.) 

When the end user—that would be you in this particular situation, I think—presses the More Information button on the 
property page, the dialog procedure receives a WM_COMMAND message, which it processes as shown here: 

SETUPSTUFF* stuff = (SETUPSTUFF*) GetWindowLong(hdlg, DWL_USER); 
 
case WM_COMMAND: 
  switch (LOWORD(wParam)) 
    { 
  case IDB_MOREINFO: 
    { 
    ShellExecute(hdlg, NULL, stuff->infopath, 
      NULL, NULL, SW_SHOWNORMAL); 
    return TRUE; 
    } 
    } 
  break; 

ShellExecute will launch the application associated with the SampleInfo file—namely, your Web browser—whereupon you can 
view the file and find all sorts of interesting information. 

15.4 Customizing Setup  

In this section, I’ll discuss a number of ways you can tailor the setup process to the requirements of your device. First of all, if 
your device belongs to a new setup class, you can write an installer DLL to handle all the details of installing and managing a 
device of that class. I think that few readers of this book will actually need to do this. At most, you might need to provide a 
class-specific co-installer DLL to modify the default behavior of the system setup programs. If your device belongs to an 
existing setup class or to a new class that has no special requirements, you can provide a device-specific co-installer DLL that 
comes into play for just a few of the installation and management steps. 

If your driver package has a digital signature (see the major section on WHQL at the end of this chapter), you can streamline 
the setup process by preinstalling your software on the end user’s machine. By designing your package not to require 
interaction with the user, you will thereby permit an unattended server-side install that can occur even without an administrator 
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present at the computer. 

Often, vendors ship special applications along with their hardware. Microsoft refers to software that’s in addition to the signed 
driver package as value-added software. Using a co-installer DLL, you can provide for installation of the value-added software 
along with the drivers and other digitally signed components in your package. Sometimes, you might want to launch an 
application after setup completes, and the RunOnce key in the registry provides a vehicle for doing that. As a special case, you 
might want to launch an application each time the user plugs in your device. I’ll briefly describe the scheme used by the 
AUTOLAUNCH sample to help you accomplish that as well. 

NOTE  
A so-called server-side install is possible with a signed package that requires no user interaction. A client-side 
install requires that an administrator be present and occurs whenever a package is unsigned or requires user 
interaction to locate the INF file, to locate one or more of the driver files, to initiate the add-hardware wizard in 
the first place, or because a component displays a property page. According to the DDK, “The term server-side 
is used because installation can be accomplished by the system’s PnP Manager without a user-mode client 
making calls into the PnP Manager.” 

15.4.1 Installers and Co-installers  
The system setup program gets into the act of installing, removing, and managing all the devices in the system. It works with a 
collection of installer and co-installer DLLs to perform the required actions. You can write such DLLs yourself, and you can 
install them along with a driver package by putting directives in your INF file. 

NOTE  
Strictly speaking, the setup program calls installer and co-installer functions, which the program finds in DLLs 
someplace on the system. One DLL can contain many entry points. I think that most readers of this book will 
tend to create only co-installer DLLs (and probably only device-specific ones at that) and to put just one entry 
point in each of those DLLs. 

To speak generally, the setup program needs to identify the setup class for a device before the program can know which 
installer DLL and which class-specific co-installer DLLs it will call. Several pathways through the system setup functions lead 
up to identifying the setup class: 

 When you install a PnP device, the setup program will match a device or a compatible identifier returned by the bus 
driver with a model statement in an INF file. The setup program learns the device’s setup class by reading the [Version] 
section in the INF file. If necessary, the setup program will also process the directives in the [ClassInstall32] section to 
create a new class. 

 When you install a non-PnP device, you use the Add Hardware wizard. The wizard allows you to designate a specific 
setup class as containing the device you want to install. 

 When you install a non-PnP device belonging to a new class, you perforce have to tell the setup program which INF file 
you want to use. Setup determines the class from the [Version] section and will install a new class based on the 
[ClassInstall32] section. 

 When you undertake to modify an existing device through the Device Manager, or by means of some other similar 
management utility, you make dialog choices that specify a particular device, whose setup class is recorded in the 
registry. 

As installation of a new device or modification of an existing device proceeds, the setup program eventually knows which 
device you’re working with. It then starts using any device-specific co-installer DLLs that exist. For many of the tasks the 
setup program performs, therefore, it uses an installer DLL, one or more class-specific co-installers, and one or more 
device-specific co-installers. 

Setup Function Codes  

The setup program communicates with the various DLLs by calling an exported function. Among the arguments to the function 
is a DIF code that indicates which function the DLL should perform. In this subsection, I’ll present an overview of the DIF 
codes used for several common activities. Refer to the DDK (specifically the section entitled “Device Installation Function 
Codes”) for a detailed explanation of the tasks to perform. 

NOTE 
I built the debug version of SAMCLASS.DLL and recorded the resulting trace information as I did various things 
with devices. Don’t assume that these are the only steps that would be performed on all systems or that the 
listed steps wouldn’t be performed in other situations too. 

In the tables that follow, I indicate in the Co-installer? column whether the setup program sends a particular DIF code to a 
co-installer. It sends all the noted codes to the installer. 
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DIF Code Co-installer? Summary of Operation 

DIF_REGISTERDEVICE  No Determine whether non-PnP device is a duplicate. 

DIF_SELECTBESTCOMPATDRV  No 
Modify list of possible drivers; possibly prune list or 
select the driver. 

DIF_ALLOW_INSTALL  No 
Determine whether setup should proceed to install the 
device. 

DIF_INSTALLDEVICEFILES  No Copy files; modify list of files to be copied later. 

DIF_REGISTER_COINSTALLERS  No Modify list of device-specific co-installers. 

DIF_INSTALLINTERFACES  Yes Register device interfaces. 

DIF_INSTALLDEVICE  Yes 
Do whatever is needed before setup loads the drivers for 
the device. 

DIF_NEWDEVICEWIZARD_ 
FINISHINSTALL  

Yes Create any desired additional wizard pages 

DIF_DESTROYPRIVATEDATA  Yes Perform cleanup. 

Table 15-8. Installing a Non-PnP Device (for Example, IOCTL)  

DIF Code Co-installer? Summary of Operation 

DIF_SELECTBESTCOMPATDRV  No 
Modify list of possible drivers; possibly prune list or 
select the driver. 

DIF_ALLOW_INSTALL  No 
Determine whether setup should proceed to install the 
device. 

DIF_INSTALLDEVICEFILES  No Copy files; modify list of files to be copied later. 

DIF_REGISTER_COINSTALLERS  No Modify list of device-specific co-installers. 

DIF_INSTALLINTERFACES  Yes Register device interfaces. 

DIF_INSTALLDEVICE  Yes 
Do whatever is needed before setup loads the drivers for 
the device. 

DIF_NEWDEVICEWIZARD_ 
FINISHINSTALL  

Yes Create any desired additional wizard pages. 

DIF_DESTROYPRIVATEDATA  Yes Perform cleanup. 

Table 15-9. Installing a PnP Device (for Example, USB42)   

The only difference between this scenario and the non-PnP installation scenario is the absence of the DIF_REGISTERDEVICE 
step. 

Note that these actions occur only when you’re initially installing the drivers for a PnP device. Thereafter, you can unplug and 
replug the device any number of times without involving the setup program. 

DIF Code Co-installer? Summary of Operation 

DIF_ADDPROPERTYPAGE_ADVANCED  Yes Create any desired property pages. 

DIF_POWERMESSAGEWAKE  Yes Provide text for the Power Management tab. 

DIF_DESTROYPRIVATEDATA  Yes Perform cleanup. 

Table 15-10. Examining Properties in the Device Manager  

 

DIF Code Co-installer? Summary of Operation 

DIF_PROPERTYCHANGE  Yes 
Alert the installer/co-installer to a change in device state (start/stop, 
enable/disable) or in a configuration parameter. 

DIF_DESTROYPRIVATEDATA  Yes Perform cleanup. 

Table 15-11. Disabling a Device in the Device Manager  
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DIF Code Co-installer? Summary of Operation 

DIF_PROPERTYCHANGE  Yes 
Alert the installer/co-installer to a change in device state (start/stop, 
enable/disable) or in a configuration parameter. 

DIF_DESTROYPRIVATEDATA  Yes Perform cleanup. 

Table 15-12. Enabling a Device in the Device Manager  

DIF Code Co-installer? Summary of Operation 

DIF_REMOVE  Yes 
Decide whether removal should proceed; clean up any persistent 
private data. 

DIF_DESTROYPRIVATEDATA  Yes Perform cleanup. 

Table 15-13. Removing a Device in the Device Manager  

Surprise-Removing a PnP device 

No setup actions occur when you surprise-remove a PnP device. 

Co-installer DLLs  

A co-installer DLL has an exported entry point with the following prototype: 

DWORD __stdcall CoinstallerProc(DI_FUNCTION dif, HDEVINFO infoset, 
  PSP_DEVINFO_DATA did, PCOINSTALLER_CONTEXT_DATA ctx); 

The dif argument is one of the DIF codes discussed in the preceding subsection, infoset is a handle to a device information 
collection, did is the address of a structure containing information about a specific single device, and ctx is a pointer to a 
context structure (declared, along with the entire public interface to the setup program, in SETUPAPI.H): 

typedef struct _COINSTALLER_CONTEXT_DATA { 
  BOOLEAN PostProcessing; 
  DWORD InstallResult; 
  PVOID PrivateData; 
  } COINSTALLER_CONTEXT_DATA, *PCOINSTALLER_CONTEXT_DATA; 

The setup program calls the co-installer procedure either once or twice for each DIF code, as directed by the co-installer itself. 
The initial call is for preprocessing before an action is carried out. The PostProcessing member of the context structure will be 
FALSE in this initial call. The co-installer returns one of these values: 

 NO_ERROR, which indicates that the co-installer has done everything it wants to do in regard to the DIF code. 

 ERROR_DI_POSTPROCESSING_REQUIRED, which indicates that the co-installer wants to do additional work after the 
action associated with the DIF code completes. 

 Any Win32 error except ERROR_DI_DO_DEFAULT, which indicates that some sort of error occurred. Co-installers 
should not return ERROR_DI_DO_DEFAULT, as this might cause the setup program to do the wrong thing. 

Generally speaking, if the co-installer returns an error code, the setup program will abort some operation. You need to consult 
the detailed documentation for each DIF code to see exactly what will happen, though. 

In the second of these return cases—returning ERROR_DI_POSTPROCESSING_REQUIRED—the co-installer can set the 
PrivateData member of the context structure to any desired value before returning. The setup program will call the co-installer 
again later with the same DIF code, infoset, and did values. The PostProcessing member of the context structure will be TRUE, 
and the InstallResult member will indicate the return code from the previous installer or co-installer DLL. PrivateData will 
equal whichever value the co-installer returned in the preprocessing phase. The co-installer can return NO_ERROR or a Win32 
error code in response to a postprocessing call; the default return value should be InstallResult. 

The DDK contains two examples of co-installer DLLs—COINST in TOASTER and TOASTCO in TOASTPKG. I know that 
I’d prefer to write user-mode code, especially code that includes user-interface elements, using Microsoft Foundation Classes. 
If you share this preference, you’ll want to take a close look at the COINSTALLER sample in the companion content. This 
sample includes two general-purpose classes that you can copy to an MFC DLL project in order to very easily construct a 
co-installer DLL: 

 CCoinstaller, derived from CExternalDialogApp (my class) and, ultimately, from CWinApp (a standard MFC class), 
encapsulates a co-installer DLL. The CCoinstaller class includes the co-installer procedure described earlier, virtual 
functions for the preprocessing and postprocessing variants of each relevant DIF code, and an AddPropertyPage function 
for easily populating either the Device Manager property sheet or the installation wizard with custom pages. 

 CCoinstallerDialog, derived from CExternalDialog (my class) and, ultimately, from CPropertyPage (a standard MFC 
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class), encapsulates a property page belonging to an external property sheet. CCoinstallerDialog::OnInitDialog also 
automatically initializes controls named IDC_CLASSICON and IDC_DEVNAME, if they exist, with the class icon and 
the device name. This initialization considerably reduces the burden of building a Device Manager property page. 

Here is the entire declaration and implementation of the CSampleCoinstaller class. I removed some MFC commentary that just 
clutters the presentation. 

class CSampleCoinstallerApp : public CCoinstaller 
{ 
public: 
  CSampleCoinstallerApp(); 
  virtual ~CSampleCoinstallerApp(); 
 
public: 
  virtual DWORD AddPropertyPages(HDEVINFO infoset, 
    PSP_DEVINFO_DATA did, PVOID& PostContext);  
  virtual DWORD FinishInstall(HDEVINFO infoset, 
    PSP_DEVINFO_DATA did, PVOID& PostContext);  
  CShoeSize* m_shoesize; 
  CShoeSizeProperty* m_shoesizeprop; 
  DECLARE_MESSAGE_MAP() 
}; 
 
BEGIN_MESSAGE_MAP(CSampleCoinstallerApp, CExternalDialogApp) 
END_MESSAGE_MAP() 
 
CSampleCoinstallerApp::CSampleCoinstallerApp() 
  { 
  m_shoesize = NULL; 
  m_shoesizeprop = NULL; 
  } 
 
CSampleCoinstallerApp::~CSampleCoinstallerApp() 
  { 
  if (m_shoesize) 
    delete m_shoesize; 
  if (m_shoesizeprop) 
    delete m_shoesizeprop; 
  } 
 
CSampleCoinstallerApp theApp; 
 
DWORD CSampleCoinstallerApp::AddPropertyPages(HDEVINFO infoset, 
  PSP_DEVINFO_DATA did, PVOID& PostContext) 
  { 
  m_shoesizeprop = new CShoeSizeProperty; 
  AddPropertyPage(infoset, did, m_shoesizeprop); 
  return NO_ERROR; 
  } 
 
DWORD CSampleCoinstallerApp::FinishInstall(HDEVINFO infoset, 
  PSP_DEVINFO_DATA did, PVOID& PostContext) 
  { 
  m_shoesize = new CShoeSize; 
  AddPropertyPage(infoset, did, m_shoesize); 
  return NO_ERROR; 
  } 

CShoeSize and CShoeSizeProperty are standard MFC-generated dialog classes derived from CCoinstallerDialog. They 
implement the behavior of a wizard page and a Device Manager page, respectively. 

AddPropertyPages overrides a virtual base function to handle the DIF_ADDPROPERTYPAGE_ADVANCED call. FinishInstall 
overrides a virtual base function to handle the DIF_NEWDEVICEWIZARD_FINISHINSTALL call. 

Since this book is (by original intention, anyway) a treatise on driver programming, I won’t go into the details of how I 
implemented the base classes. Figure 15-13 illustrates the wizard page that you’ll see if you install the dummy device 
associated with the COINSTALLER sample. 
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Figure 15-13. Wizard page presented by a co-installer DLL.  

The wizard page in COINSTALLER has an important defect that you’d want to correct in a real situation. It purports to let you 
initialize a configuration parameter. The PnP Manager has, however, already loaded and initialized the driver by the time this 
page appears. The way the co-installer and the driver are coded, the driver won’t pick up the changed parameter until the next 
time it starts. The co-installer might cause the device to restart automatically when the installation wizard completes. (In fact, 
the Device Manager property page contains a check box for doing just that.) Alternatively, you can provide a dynamic method, 
such as an I/O control (IOCTL) call or a Windows Management Instrumentation (WMI) call, to notify the driver that the 
parameter has changed. I elected not to burden the sample with this extra complication, though. 

NOTE 
One important use for a co-installer DLL is to assign a unique friendly name to a device when you have more 
than one device installed. Since, however, co-installer DLLs aren’t supported in Windows 98/Me, you might 
need an alternative method. The MAKENAME sample in the companion content shows how to use RUNDLL32 
with a simple DLL to create unique friendly names. 

15.4.2 Preinstalling Driver Files  
You achieve the most painless end user experience by preinstalling all the files needed for a server-side install. You’d follow 
these steps: 

1. First get your driver installation package digitally signed. Preinstallation alone doesn’t allow an unsigned package to be 
installed without user interaction. In other words, you don’t gain much by preinstalling an unsigned package. 

2. Write a setup program that will copy all needed driver files to a local directory on the end user system. People commonly 
use an InstallShield script for this purpose, but any solution that fulfills Microsoft’s requirements for an application setup 
program will be OK. 

3. As part of the setup program described in the preceding step, execute a call to SetupCopyOEMInf (documented as part of 
the platform SDK or in MSDN) with the SPOST_PATH option. 

The TOASTPKG sample in the DDK contains a fully worked-out example of how to preinstall a signed driver package in 
Windows XP. The sample includes a CD-image directory with an AUTORUN.INF file that will autoplay a CD-ROM to run the 
preinstallation setup program. 

A multifunction device often requires more than one INF file—typically, the parent and child devices belong to different setup 
classes. The main device’s INF is the one that you should specify in a call to SetupCopyOEMInf, and it should itself contain 
CopyInf directives in the install section to copy the INF files to install child devices. The CopyInf directive was added to 
Windows XP. You can install COCPYINF.DLL as a device-specific co-installer. COCPYINF.DLL also implements the CopyInf 
directive. Full details about using this redistributable component of the DDK are in the file 
Tools\Coinstallers\x86\cocpyinf.htm. 

15.4.3 Value-Added Software  
You can save yourself some grief by not including any so-called value-added software (that is, applications and other 
user-mode components besides co-installers) in the CopyFiles directives within your INF file. The digital signature you obtain 
will cover any file that the INF file copies. Making any change at all to such a file invalidates your digital signature and 
requires you to obtain a new one from WHQL. 

Microsoft recommends that you install valued-added software using a separate program, such as an InstallShield script. You 
can launch that separate program in a variety of ways, I suppose, but probably the most robust way is the one illustrated in the 
DDK’s TOASTPKG sample. In the sample, a registry entry indicates whether the user has been given an opportunity to install 



- 408 - Distributing Device Drivers | Chapter 15 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

the value-added package on a given system. If the flag is clear, a co-installer DLL presents an install wizard page to inquire 
whether the end user wants to install the value-added stuff. (Note that this dialog page will require a client-side install.) If the 
answer to that question is yes, the co-installer launches the value-added setup program from a subdirectory below the directory 
containing the INF file. 

In TOASTPKG, the co-installer comes into play to install the value-added software only when the end user happens to install 
the hardware before running the preinstallation program that comes with the package. (The preinstallation program will do the 
value-added install or not, as specified by the user, and set the registry to prevent the co-installer from later presenting the 
wizard page. A server-side install is therefore possible after the preinstallation program has run.) 

Envisioning and preparing for the various installation scenarios that might occur is a complex task. It’s because of this 
complexity that I advised you in the “Management Overview and Checklist” section of Chapter 1 to plan ahead for the work 
required to prepare your installation package. 

15.4.4 Installing a Driver Programmatically  
If you have a non-PnP device, or if you have a PnP device for which you want to supply an updated driver, you might want to 
write a program to install the driver software without involving the user any more than necessary. The DEVCON sample in the 
DDK illustrates how to programmatically install or update driver software and to perform many other device-manager tasks in 
Windows 2000 and Windows XP. The FASTINST sample in the companion content to this book illustrates just the 
programmatic installation of driver software, but it applies to any WDM platform. I hope that you’ve been using FASTINST to 
install the sample drivers throughout this book. 

The Windows 2000 and Windows XP version of FASTINST performs these steps: 

1. Parses the INF file whose name you supply as a command-line argument to locate the first model statement, which 
determines the device identifier to be used later on. (You can run FASTINST from a command prompt and specify any 
device identifier you want, thereby overriding the default choice of the identifier in the first model statement.) 

2. Constructs an empty device node having the device identifier determined by the first step. 

3. Calls UpdateDriverForPlugAndPlayDevices to “replace” the driver for the empty device node using the INF file. 

15.4.5 The RunOnce Key  
You can place values in the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce registry key to 
execute commands after setup finishes installing a device. Each value in RunOnce contains a command string. When setup 
finishes, it executes those commands and deletes the entries. 

NOTE  
The system also executes any commands that might be in the RunOnce key each time the system boots. The 
DDK indicates that RunOnce commands can be processed at other, unspecified times in addition. It adds, “If you 
place a command under the RunOnce key, you cannot predict when it will execute.” 

Here’s an example, drawn from the AUTOLAUNCH sample in the companion content, of INF-file syntax for creating a 
RunOnce command: 

[DriverInstall.ntx86] 
CopyFiles=DriverCopyFiles,AutoLaunchCopyFiles 
AddReg=DriverAddReg.ntx86 
 
[DriverAddReg.ntx86] 
HKLM,%RUNONCEKEYNAME%,AutoLaunchStart,, \ 
  "rundll32 StartService,StartService AutoLaunch" 
 
[Strings] 
RUNONCEKEYNAME="Software\Microsoft\Windows\CurrentVersion\RunOnce" 

RUNDLL32 is a standard system utility that invokes a function within a DLL. If all the RunOnce commands you create 
involve RUNDLL32, a server-side install will still be possible using your INF. In fact, using any other verb in a RunOnce 
command causes your INF to flunk the WHQL tests. 

The syntax of a RUNDLL32 command is this: 

rundll32 dllname,entryname [cmdline] 

where dllname is the name of a DLL (with or without the .DLL file extension), entryname is the name of an exported entry 
point, and cmdline is an optional command string to be processed by the DLL. The entryname function should be defined like 
this: 
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[extern "C"] void CALLBACK entryname(HWND hwnd, HINSTANCE hInst, 
  LPSTR cmdline, int nshow) 
  { 
 
  } 

Note that CALLBACK includes the __stdcall directive. The hwnd argument is the handle to a window that should be the parent 
of any user-interface elements the function creates, hInst is the instance handle of the DLL, cmdline is an exact copy of the 
like-named argument in the RUNDLL32 command, and nshow is one of the standard show-state values such as 
SW_SHOWNORMAL. 

15.4.6 Launching an Application  
As a special case of using RunOnce, I designed a scheme for the first edition to allow you to arrange to execute a value-added 
application each time (including the first) that the system starts your device. This scheme is shown in the AUTOLAUNCH 
sample in the companion content. In outline, the scheme is this: 

 The INF file installs an AutoLaunch service that runs in user mode looking for arrival notifications on a particular 
interface GUID. 

 When AutoLaunch receives an arrival notification, it consults the registry to obtain a command string, which it then 
executes on the interactive desktop. 

 In order to get the application launched the very first time you install the device, the INF uses a RunOnce command to 
start the AutoLaunch service. 

I’ve gotten very few questions from readers about AutoLaunch, so I judge that it’s not important enough to describe here in 
detail. 

15.5 The Windows Hardware Quality Lab  

Microsoft really wants hardware devices and their associated drivers to meet certain minimum standards for quality, 
interoperability, and ease of use for consumers. To that end, Microsoft established the Windows Hardware Quality Lab 
(WHQL) in 1996. WHQL’s basic mandate is to publish and administer an evolving set of Hardware Compatibility Tests for 
systems and peripherals. Successfully passing these tests confers three basic benefits: 

 Entrée to various marketing programs, such as the “Designed for Windows” logo and various lists maintained by 
Microsoft. 

 A digital signature for your driver package, which greatly eases installation on end user machines. 

 Free distribution of your driver through Windows Update and other means. 

Your starting point for working with WHQL is http://www.microsoft.com/hwdq/hwtest. As I remarked in Chapter 1, it’s 
important to get started early in a development project because there are a number of legal and business hurdles to surmount 
before you even get to the point of asking WHQL to test your hardware and software. Once past those hurdles, you will need to 
acquire systems and hardware that you wouldn’t necessarily need to own except that you need them for some of the prescribed 
tests for your class of device. 

15.5.1 Running the Hardware Compatibility Tests  
When you’re ready to begin the WHQL certification process, you’ll start by running the relevant Hardware Compatibility Tests. 
Microsoft distributes the HCT as part of certain MSDN subscriptions and beta programs. You can also download the tests over 
the Internet. The installation wizard allows you to pick one or more categories of test to perform. If you’re just testing the 
driver for one device, I recommend that you select just the one test category that includes your device in order to minimize the 
number of meaningless choices that you might have to make later. For example, if you install tests for Pointing And Drawing 
Devices and Smart Card Readers, you’ll have to pick one device in each category before the Test Manager will let you begin 
testing in either category. 

To provide a concrete example, I decided to run the tests for a USB gaming mouse for which I wrote the driver. Figure 15-14 
shows how I selected the relevant test category while installing the HCT. 

http://www.microsoft.com/hwdq/hwtest
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Figure 15-14. Selecting a test category.  

The HCT setup program automatically kicks off a wizard that allows you to select a device for test. A dialog box reminds you 
that you need to have the hardware and software installed at this point. For each of the categories you installed, you’ll fill in a 
dialog box like the one shown in Figure 15-15. My device appears as a “HID-compliant mouse.” Microsoft is listed as the 
manufacturer because HCT thinks that my device uses the standard MOUHID.SYS driver. In fact, my mouse is a nonstandard 
HIDCLASS minidriver with many features that need to be tested beyond the basic things that HCT will test. 

Figure 15-15. Selecting a device for testing.  

Figure 15-16. The Test Manager dialog box.  
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HCT presents several additional dialog boxes before it gets to the point where testing can begin. Figure 15-16 illustrates the 
basic test manager dialog box. Ideally, you would just press the button labeled “Add Not Run Tests,” which would populate the 
right-hand pane with all of the tests. A bit of circumspection is called for here, however. 

One of the tests—the ACPI stress test—runs for many hours, if it runs at all. Many computers can’t run this test, and the laptop 
on which I was doing this testing is one of them. To run this test, you need XP Professional on a desktop system that supports 
the S1 and S3 states or a notebook that supports S1 or S3. (I was using Windows XP Home Edition because USB wake-up 
stopped working on the notebook if I upgraded, and USB wake-up testing was the only reason I bought that particular 
notebook.) I suspect that I’ll never own a computer that can run this test because I tend to buy computers with the operating 
system preinstalled and then upgrade the operating system as part of a beta program, whereupon power management stops 
working. 

The USB Manual Interoperability test requires several hundred dollars’ worth of multimedia hardware that I would have no use 
for beyond running this one test suite. (Figure 15-17 is a screen shot from a test run when I made the mistake of allowing this 
test to commence.) This test is pretty important from the hardware point of view because it verifies that commonly used USB 
devices will continue to work with your device plugged in and vice versa. 

Figure 15-17. Required hardware topology for the USB Manual Interoperability test.  

Figure 15-18. I’m ready to start testing…  

Others of the tests are actually useless for telling me anything about the quality of my own driver. The DirectInput Mouse test 
verifies that Microsoft’s drivers interact correctly with DirectInput, a fact I never doubted. The USB Selective Suspend test 
isn’t currently very important for a HID device because HIDCLASS never suspends a device in the first place: most devices 
can’t wake up without losing an input event. In fact, all of the automated USB tests relate to hardware issues. I decided to let 
them run in this particular example because I was working closely at the time with a leading firmware engineer in getting this 
product to market. When I was done selecting the tests that I expected to be able to perform—whether or not they would 
succeed was a different question, to which I actually wanted the answer—my Test Manager dialog box looked as shown in 
Figure 15-18. 
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The very first thing the test engine does is engage the driver verifier—on the wrong drivers—and reboot the computer. 
Remember that HCT thinks MOUHID.SYS is the driver for my mouse. In reality, the verifier should be getting turned on for 
my minidriver instead. Attempting to do that by hand would invalidate the test run, though, so I allowed the test run to 
continue. I’m told that newer versions of the HCT will do a better job of identifying which driver needs to be tested. I later ran 
tests with the verifier turned on for my driver. It was a good thing I did because I caught a rookie mistake in the way my HID 
minidriver was forwarding a device IRP_MJ_POWER with the minor function code IRP_MN_SET_POWER and the power 
type SystemPowerState after waiting for its interrupt-endpoint polling interrupt request packet (IRP) to finish. 

The Mouse Functionality test (see Figure 15-19) is the one most relevant to the quality of my driver in that it verifies whether I 
am actually delivering mouse reports in the format expected by the system. Because my mouse lacks an actual wheel (users 
can program some of its buttons to act as a wheel), I had to fudge part of the functionality test with another mouse attached to 
the same system. 

Figure 15-19. The Mouse Functionality test.  

The Public Import and Signability tests both asked whether my product “installs it’s [sic] own driver.” I answered that it does 
and pointed the test engine to a directory where I had placed my INF and all the other files that get installed on any platform. 
The import test verified that my driver wasn’t calling any verboten kernel-mode functions. The signability test verified, among 
other things, that all files copied by my INF file were in fact present. (Recall that the CHKINF doesn’t do this.) 

The CHKINF test ran CHKINF on the wrong INF file, namely the Microsoft-supplied INPUT.INF. Being a good citizen, I ran 
CHKINF myself. The PERL test script initially failed because it lacked a copy of STRICT.PM, which I found in the HCT 
directory and copied by hand. The test report told me that a RunOnce entry running CONTROL.EXE (my solution to a client 
request to automatically launch their control panel) was not allowed because it didn’t involve RUNDLL32. Since I had always 
regarded that particular client request as a bad idea, I resolved to use the test failure as a lever to get my client to change his 
mind. Mind you, I’m sure I could have thought of a way to use RUNDLL32 to launch a control panel applet, but doing that 
would defeat the real but unstated goal of the test, which is to make sure that a server-side install can proceed without the 
intrusion of user-interface elements. 

The remainder of the tests I scheduled happened without my needing to intervene, which is why I guess they’re called 
automated tests. In the end, I got the test log shown in Figure 15-20. 

The reason that the Enable/Disable test failed to generate a log is that it generated an exception in user mode. Some part of the 
test engine caught the exception and silently terminated that test. 

Figure 15-20. Test results after running selected tests.  

I worked with my firmware engineer colleague to iron out the failures in the various USB tests. In doing this, it would have 
been very helpful to correlate test failures with the HCT documentation entries for the same tests. For example, the USB 



15.5 The Windows Hardware Quality Lab   - 413 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

Address Description test log referred to a test assertion numbered 9.22.6. After opening the HCT 10.0 documentation from the 
Start menu, I browsed to the section labeled Resources/WHQL Test Specification/Chapter 9 USB Test Specification/USB Test 
Assertions/Address Test Assertions, where I found the information shown in Figure 15-21. Test assertion number 9.22.6 is, uh, 
well, something important, probably. 

Figure 15-21. Documentation for test assertions.  

You’ll notice that many things went wrong in the testing process. To summarize: 

 I couldn’t run some of the tests because of hardware or budget limitations. I wouldn’t be able to put together a WHQL 
submission for my client. As it turns out, he doesn’t have the resources either and will have to hire an outside contractor 
who specializes in WHQL testing. He doesn’t actually want a logo, though. In fact, the counterculture he sells into would 
prefer that his mouse not have a logo. He needs a digital signature, though, because of the driver ranking problem 
discussed earlier in this chapter. 

 One of the tests failed on its own for unguessable reasons. 

 A few of the tests were testing the wrong thing. 

 A few of the failed test assertions I encountered weren’t documented. 

What you would do in a similar situation is ask for help. WHQL personnel monitor several newsgroups on the 
msnews.microsoft.com news server, including microsoft.public.development.device.drivers and 
microsoft.public.windowsxp.winlogo. WHQL also responds to e-mail requests for assistance at addresses accessible from the 
WHQL home page, http://www.microsoft.com/hwdq/hwtest. 

15.5.2 Submitting a Driver Package  
The last step in running the Hardware Compatibility Tests would be to create a WHQL submission package. You’ll want to do 
this separately for each operating system that your driver supports and then gather together the resulting CAB files in one 
convenient place. Your next step, which I think you should actually have performed months prior, would be to visit 
http://winqual.microsoft.com and get yourself signed up as a WHQL client company. 

Given a login ID and a password, you can log on through the winqual page to do any of several things: 

 You can create a new submission package. 

 You can review the status of a previous submission. 

 You can retrieve error reports that users worldwide have submitted that apparently arise from your product. 

For this chapter, I wanted to create a new submission for a new hardware device. Figure 15-22 is a screen shot showing the 
starting point for a brand-new submission. 

http://www.microsoft.com/hwdq/hwtest
http://winqual.microsoft.com/


- 414 - Distributing Device Drivers | Chapter 15 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

Figure 15-22. Initial screen for a new WHQL submission.  

From the point shown in Figure 15-22, Web forms lead through the process of characterizing your submission in a relatively 
painless way. You’ll answer questions such as these: 

 What kind of product is it? I said my product was in the Input/Pointing Drawing class, which is the same as the test 
category I used when I was running the HCT. 

 With which operating systems will the product be used? You want to be sure you’ve run the relevant HCT on all the 
platforms you select because you’ll later have to identify the test results for each of them. 

 What are two e-mail contacts (including yourself) for communications related to the submission? I’m not sure what you 
do if you’re a one-person company. (I was doing my testing as a nominal member of a dummy company that the WHQL 
folks use for their own internal testing, so I didn’t have a chance to see how this particular problem would be resolved.) 

 What, exactly, is your product? (See Figure 15-23.) 

Figure 15-23. Detailing the product.  
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 What is the name of your product, when will it be released, and which platforms are supported? There are rules about 
what constitutes an acceptable product name too. I could not have said just “mouse.” I entered a description that included 
the manufacturer’s model number and generic description (“rotary gaming mouse”). The question about platform support 
is different from the earlier question about operating systems in that it includes several varieties of each system. For 
example, you can specify that the product support Windows XP Home Edition but not Windows XP Professional, and so 
on. 

 Where are the driver packages for each operating system? In answering this question, you supply, for each operating 
system, the name of a directory tree that contains all the files that will be covered by the eventual signature file. That is, 
the directory tree includes the INF file or files and all files installed by those INF files. The easiest and best way to 
perform this step is to create a directory tree that mirrors your distribution media layout and contains all the files, and 
nothing but the files, that are destined for the end user’s machine. As part of this step, you also get to specify the 
languages supported by each driver package. 

 Where are the test logs for each operating system? You can’t have more than one in the same directory because of 
filename conflicts, by the way. 

 For which hardware (PnP) IDs do you want Microsoft to distribute drivers via Windows Update? There are additional 
requirements to using Windows Update, by the way, but this step is one not to miss. See Figure 15-24. 

Figure 15-24. Specifying PnP IDs for Windows Update.  

 How will the driver be distributed? There are many choices, all of which are contingent on you having the right to 
distribute the driver. See Figure 15-25. 
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Figure 15-25. Specifying driver distribution channels.  

 How do you intend to pay for the testing? Say what? You mean this isn’t free? At the time I’m writing this, my test 
submission would have cost $250 for each of the operating systems (Windows XP, Windows 2000, and Windows Me) 
that I claimed to support, for a total of $750. The cost for retest submissions is the same, so you don’t want to submit 
obviously flawed packages. 

 Where do you want the testing performed? There are several WQHL testing sites around the world. In the United States, 
you’d pick the one in Redmond. This question is actually relevant only if your submission requires hardware. Mine didn’t. 
(See Figure 15-26.) In fact, most WHQL tests at the time I’m writing this are self-test programs and don’t require you to 
submit hardware. 

Figure 15-26. The packing list.  
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 Does the party of the first part (hereinafter known as the party of the first part) agree that, and so on? Yes, there is a legal 
agreement that you have to sign. 

 Is this your final answer? That is, do you need to correct the driver and test log locations you specified earlier? Speak 
now, or forever hold your peace…. 

 Ta-da! (See Figure 15-27). You’re done. You can digitally sign your submission package and upload it to WHQL. This is 
where I had to stop. Not only did I have a submission package with fatal omissions in it, but also I didn’t have (and didn’t 
want to go to the considerable trouble of obtaining) a VeriSign ID. If I get much more stubborn and independent, I’ll have 
to move to a cabin in Idaho and use the Internet with a dial-up modem the way our pioneer forebeings did. 

Figure 15-27. Ready to sign and submit.  

I learned a few tricks in the process of running through the Web forms for the first time. As I mentioned, you want to be sure to 
have all the distribution packages and test results handy. You have plenty of time to finish the process, but the Web application 
will time out after about an hour—so don’t plan on having a power lunch in between steps. Some of the choices you make 
can’t be undone except by backing up. Choosing the wrong directories for certain options can add hours to the process if it 
forces the application to navigate large directory trees in its search for files. The forms warn you about the last two of these 
gotchas, so I don’t think you’re likely to go wrong. 

15.6 Windows 98/Me Compatibility Notes  

Windows 98/Me uses completely different technology for installing and maintaining devices than does Windows XP. In this 
section, I’ll describe some of the ways this might affect you. 

15.6.1 Property Page Providers  
A property page provider for a new device class must be a 16-bit DLL. Look at SAMCLS16 in the companion content if you 
want to see an example, and don’t discard your 16-bit compiler just yet! 

15.6.2 Installers and Co-installers  
A class installer for Windows 98/Me is a 16-bit DLL and uses functions from SETUPX.DLL, which are documented in MSDN 
rather than in the DDK. I know of no samples to give guidance in writing one. Windows 98/Me doesn’t support co-installer 
DLLs. 

15.6.3 Preinstalled Driver Packages  
SetupCopyOEMInf isn’t implemented in Windows 98 or Windows Me. To preinstall a driver package on these platforms, 
simply copy the files to the correct locations and design the INF file not to require any file copies. 
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15.6.4 Digital Signatures  
Windows 98 doesn’t use digital signatures. Windows Me won’t install an unsigned driver to replace a signed driver for audio 
and certain other multimedia devices or for a display adapter. The DDK describes other rules for when Windows Me uses 
digital signatures. I confess I couldn’t understand all the qualifications and special cases, so I can’t explain them to you. 

15.6.5 Installing Drivers Programmatically  
Because the Windows 98/Me setup program is 16-bit, and because UpdateDriverForPlugAndPlayDevices isn’t implemented in 
those systems, relatively heroic means are required to programmatically install a driver for a non-PnP device. I cobbled 
together the Windows 98/Me version of FASTINST in the companion content by trial and error because the documentation of 
the 16-bit setup functions is pretty sparse. The basic trick is to construct a Device Information structure for the INF file, restrict 
it to the driver for the decided-upon device identifier, and call DiInstallDevice. Needless to say, you’ll need to get a bunch of 
details just right to make this process work. 

15.6.6 CONFIGMG API  
In Windows 98/Me, you often need to call entry points in the protected-mode API exported by CONFIGMG.VXD. The 
functions you call are documented in the Windows 95 DDK as ring-0 service calls whose names begin with CONFIGMG_. 
The API functions you call from ring 3 have the same names and arguments except with the prefix CM_. The 
SAMCLS16.DLL sample in the companion content contains a few CONFIGMG calls that illustrate the mechanics of making 
these calls. 

15.6.7 INF Incompatibilities  
Windows 98/Me uses parsing technology and setup libraries that are completely different from those of Windows 2000 and 
later systems. Consequently, there are many restrictions on how you write an INF file that will be used in both environments. 
Here’s a partial list of them: 

 Section names are limited to 28 characters. 

 Windows 98/Me ignores Unicode INF files and decorated [Strings] sections. Thus, to localize an installation for Windows 
98/Me, you have to provide a completely new INF file (which requires a new WHQL signature). These facts provide 
additional reasons for not marketing your driver for Windows 98 or Windows Me on the planet Chronos. 

 Windows 98/Me doesn’t append platform or operating system decorations to the names of sections. Generally, this 
behavior means that you use undecorated section names for Windows 98/Me and decorated names for the later systems. 

 Windows 98/Me doesn’t combine identically named sections into one section as do Windows 2000 and later systems. 
Instead, it picks the first one. 

 Windows 98/Me requires a [ClassInstall] section to define a new setup class. 

 The Windows 98/Me setup program doesn’t handle long filenames (that is, names with components longer than 8 
characters) in the first instance. For example, if you specify mydriverfile.sys in a CopyFiles section, setup will present a 
dialog box saying it can’t find the file, even when the file exists. You can then press the OK button, whereupon setup will 
happily copy the file. A similar issue arises with the directory path in a [SourceDisksFiles] directive. You might notice 
that all the sample INF files specify objchk~1\i386 instead of objchk_wxp_x86\i386, so you won’t be discommoded by 
this quirk. 

15.6.8 Registry Usage  
Windows 98/Me uses a registry structure that’s completely different from that of Windows XP: 

 Hardware keys are found in HKLM\Enum. 

 There is no separate hardware parameters subkey of the hardware key. Instead, standard and nonstandard properties are 
mixed together in the hardware key. 

 Class keys are found in HKLM\System\CurrentControlSet\Services\Class. They’re identified merely by the class name. 
(There is a dummy key under Class that has the class GUID as its name, but it’s not important.) 

 Driver keys are numbered subkeys of the class key, as in Windows XP. 

 Although there can be a service key, it’s not very important in Windows 98/Me. Instead, the Configuration Manager relies 
on entries in the driver key to load the right driver. 

To initialize the driver key, your Windows 98/Me install section should have an AddReg directive similar to this example: 
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[DriverInstall] 
AddReg=DriverAddReg  
<other install directives> 
[DriverAddReg] 
HKR,,DevLoader,,*ntkern 
HKR,,NTMPDriver,,pktdma.sys 

That is, you designate NTKERN.VXD as the device loader for your device, and you designate your WDM driver as the 
NTMPDriver for which NTKERN looks. 

15.7 Getting Device Properties  

Windows 98/Me incorrectly implements IoGetDeviceProperty for the FriendlyName property. To retrieve the friendly name in 
a WDM driver, you should use IoOpenDeviceRegistryKey and interrogate the property by name. The DEVPROP sample 
illustrates how to do this. 
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Chapter 16  

16 Filter Drivers  

The Windows Driver Model assumes that a hardware device can have several drivers, each of which contributes in some way 
to the successful management of the device. WDM accomplishes the layering of drivers by means of a stack of device objects. 
I discussed this concept in Chapter 2. Up until now, I’ve been talking exclusively about the function driver that manages the 
main functionality of a device. To round out this book, I’ll describe how you write a filter driver that resides above or below 
the function driver and modifies the behavior of the device in some way by filtering the I/O request packets (IRPs) that flow 
through it. 

16.1 The Role of a Filter Driver  

A filter driver that’s above the function driver is called an upper filter driver; a filter driver that’s below the function driver (but 
still above the bus driver) is called a lower filter driver. Please refer to Figure 2-2 for an illustration of this layering. The 
mechanics of building either type of filter are exactly the same, even though the drivers themselves serve different purposes. In 
fact, you build a filter driver just as you build any other WDM driver—with a DriverEntry routine, an AddDevice routine, a 
bunch of dispatch functions, and so on. 

16.1.1 Upper Filter Drivers  
Recall that the I/O Manager sends IRPs for a device to the topmost filter device object (FiDO) in that device’s PnP stack. 
Upper filter drivers therefore see all requests before the function driver does and can edit the stream of requests in any desired 
way. Among the things you can accomplish with an upper filter are these: 

 Implement some consistent upper-edge interface for wildly different underlying hardware. I’ll say more about this 
concept in the following paragraphs. 

 Gather and report metering information, say, in response to Windows Management Instrumentation (WMI) requests. 

 Work around a bug in a function driver. 

Examples of upper filter drivers abound in Windows XP. I’ll describe a few of them. I suggest you use the DevView utility 
mentioned in Chapter 2 in the companion content to examine some of the device stacks to better visualize the examples. 

Disk and Tape Storage Driver Stacks  

Several completely different technologies are in common use for disk and tape devices, including SCSI, IDE, USB, and 1394. 
Function drivers for these devices are therefore going to be very different at their lower edge, where they talk to their hardware. 
To simplify the overall system architecture, each disk or tape function driver exports a SCSI upper edge. That is, drivers higher 
in the stack send SCSI Request Blocks (SRBs) to the function driver. The driver for an actual SCSI device simply extracts 
standardized Command Description Blocks (CDBs) from the SRBs and sends them to the hardware more or less directly. 
Drivers for other types of device translate the CDBs into their own hardware protocol. 

NOTE  
Strictly speaking, there is no “function” driver in a storage stack because none of the drivers in the stack is so 
designated in the registry. The bus driver at the bottom of the stack acts as a function driver. All the other 
drivers in the stack are technically upper filter drivers. 

Microsoft has implemented three upper filter drivers—DISK.SYS, CDROM.SYS, and TAPE.SYS—that implement the 
“diskness” or “tapeness” of hardware. Microsoft refers to these as class drivers, but here the word class is used differently than 
we’ve been considering in this book. Elsewhere, we’ve talked about class/minidriver pairs that add up to a function driver. 
Here the word just refers to a filter driver that implements an upper-edge interface appropriate to a class of devices. 

The upper edge of the storage class drivers presents a unified disk, CD-ROM, or tape interface consisting of certain I/O control 
(IOCTL) requests and a defined behavior for read and write requests. At their lower edge, these drivers talk SCSI to whoever is 
underneath them in the stack. 

Figure 16-1 shows the driver stack for a SCSI hard disk on one of my systems. At the bottom of the stack is AIC78U2.SYS, a 
SCSI miniport driver that works with a class driver named SCSIPORT.SYS to manage the particular SCSI adapter that came 
with my computer. DISK.SYS makes the hard disk look like a disk to everyone above. PARTMGR.SYS manages the two 
partitions that the manufacturer created on the disk. 
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Figure 16-1. Driver stack for a hard drive.  

Figure 16-2 shows the driver stack for an IDE-based DVD-ROM drive on a different computer. Here ATAPI.SYS is at the 
bottom of the stack. At its upper edge, it looks like a SCSI port driver. At its lower edge, it acts like an IDE controller. Layered 
on top of ATAPI.SYS are IMAPI.SYS, CDROM.SYS (presents an ISO-standard CD-ROM image at its upper edge), and 
REDBOOK.SYS (implements the Redbook audio standard). 

Figure 16-2. Driver stack for a DVD-ROM drive.  

The PnP Manager constructs these driver stacks based on the type of device reported by the bus driver. In the hard-disk 
example (Figure 16-1), the device is class Disk. DISK.SYS and PARTMGR.SYS are listed as upper filters in the Disk class key. 
In the DVD-ROM example (Figure 16-2), the device is class Cdrom. REDBOOK.SYS and IMAPI.SYS are listed as upper and 
lower filters, respectively, in the hardware key; CDROM.SYS is listed as an upper filter in the Cdrom class key. 

Mouse and Keyboard Drivers  

Two connection technologies—universal serial bus (USB) and 8042—are commonly used nowadays for keyboards and mice in 
Windows systems. Figure 16-3 illustrates the driver stack for a USB mouse. HIDUSB.SYS (a HIDCLASS minidriver) plays 
the role of a bus driver, while MOUHID.SYS acts as the function driver. MOUCLASS.SYS is a class upper filter for the 
Mouse class. 

Figure 16-3. Driver stack for a USB mouse.  

Figure 16-4 is a parallel diagram for a PS/2 mouse on a different system. I8042.SYS is the function driver for the PS/2 mouse 
port. On this particular system, ACPI.SYS (the driver with overall responsibility for power management) acts as the bus driver. 

Figure 16-4. Driver stack for a PS/2 mouse.  
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Evidently, both driver stacks have MOUCLASS.SYS in common. MOUCLASS presents a consistent mouse interface to the 
rest of the system, which is how it comes to pass that you can use either type of mouse (or both at the same time) on a 
Windows computer. 

For a keyboard, the only important difference in the driver stacks would be that KBDCLASS is at the top. 

Serial Enumerator  

You often plug other things in to a serial port. The most common things, of course, are modems and mice. Until the advent of 
USB, the serial port was also a popular place to attach a variety of other peripherals. Microsoft long ago defined a protocol 
whereby serial-attached devices can provide a Plug and Play identifier. The document “Plug and Play External COM Device 
Specification” describes the protocol but (because of indexing difficulties posed by the fact that the word “serial” doesn’t 
appear in the title) is nearly impossible to find. I found a copy at 
http://www.microsoft.com/hwdev/resources/specs/pnpcom.asp, but it will probably have moved by the time you go looking for 
it. 

Microsoft implements the serial PnP protocol in a device upper filter named SERENUM.SYS. SERENUM uses the standard 
serial port interface to talk downward to a serial port driver. If it detects a PnP identifier string, it acts as a bus driver by 
creating a physical device object (PDO). Thereafter, the PnP Manager loads function and filter drivers in the ordinary way. 

Figure 16-5 shows the driver stack for a serial mouse. SERENUM.SYS is in the figure twice, once as a device upper filter for 
the serial port (whose function driver is SERIAL.SYS) and once as the bus driver at the bottom of the SERMOUSE stack. 
Note once again that MOUCLASS.SYS gets into the act to present that consistent mouse interface to the rest of the system. 

Figure 16-5. Driver stack for a serial mouse.  

The DISKPERF Driver  

The DISKPERF driver in the DDK illustrates another use for an upper filter. DISKPERF is an optional driver that collects 
statistics about the disk I/O requests that pass through it. DISKPERF reports these statistics by means of WMI requests that 
any WMI-based performance monitor can use. 

16.1.2 Lower Filter Drivers  
Lower filter drivers are much less common than upper filters. Since (by definition) a lower filter driver is below the function 
driver in the PnP stack, it receives only those IRPs that the function driver chooses to send down. For a device attached to a 
traditional bus such as Peripheral Component Interconnect (PCI), the function driver will consume all the interesting IRPs by 
making hardware abstraction layer (HAL) calls to do actual I/O. The only IRPs that are likely to flow down from the function 
driver are power and PnP. Generally speaking, there’s not much a filter driver can or should do about those. 

You might design a system of drivers as shown in Figure 16-6. The idea is to create a single function driver that uses lower 
filter drivers to communicate to hardware on various bus architectures. The drivers for the built-in modem on one of my 
notebook computers use this idea. The function driver for the modem is the Microsoft-supplied MODEM.SYS. The modem 
vendor supplies a lower filter driver that supports the standard serial port interface and two additional lower filters for reasons 
that don’t immediately meet the eye. This idea is really the same as the concept underlying DISK.SYS and 
MOUCLASS.SYS—only the technical names assigned to the drivers are different. The really important thing is the way the 
drivers are layered, of course, and not their names. 

I sometimes use a lower filter driver to “snoop” on the USB traffic generated by a function driver. Later in this chapter, I’ll 
describe a lower filter I built to help me debug power-management problems in my own drivers; its job in life is to print 
debugging messages about all the IRP_MJ_POWER requests that the function driver generates or passes down. 

Appendix A describes a lower filter driver named WDMSTUB.SYS. WDMSTUB defines a bunch of kernel functions that 
Windows 98 and Windows Me don’t export. Making it a lower filter means that those functions get defined before the system 
tries to load a function driver that calls those functions. This fact in turn makes it possible to have true binary portability 
between Windows 2000, Windows XP, and Windows 98/Me. 

http://www.microsoft.com/hwdev/resources/specs/pnpcom.asp
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Figure 16-6. Using lower filter drivers to achieve bus independence.  

16.2 Mechanics of a Filter Driver  

In this section, I’ll describe the mechanics of building a filter driver. As I’ve said several times, a filter driver is just another 
kind of WDM driver that has a DriverEntry routine, an AddDevice routine, dispatch functions for PnP and Power IRPs, and so 
on. The devil, as usual, is in the details.  

On the CD   The FILTER sample in the companion content illustrates the points discussed in this section. 

16.2.1 The DriverEntry Routine  
The DriverEntry routine for a filter driver is similar to that for a function driver. The major difference is that a filter driver must 
install dispatch routines for every type of IRP, not just for the types of IRP it expects to handle: 

extern "C" NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, 
  PUNICODE_STRING RegistryPath) 
  { 
  DriverObject->DriverUnload = DriverUnload; 
  DriverObject->DriverExtension->AddDevice = AddDevice; 
  for (int i = 0; i < arraysize(DriverObject->MajorFunction); ++i) 
    DriverObject->MajorFunction[i] = DispatchAny; 
  DriverObject->MajorFunction[IRP_MJ_POWER] = DispatchPower; 
  DriverObject->MajorFunction[IRP_MJ_PNP] = DispatchPnp; 
  return STATUS_SUCCESS; 
  } 

A filter driver has a DriverUnload and an AddDevice function just as any other driver does. I filled the major function table 
with the address of a routine named DispatchAny that would pass any random request down the stack. I specified dispatch 
routines for power and PnP requests. 

The reason that a filter driver has to handle every conceivable type of IRP has to do with the order in which driver AddDevice 
functions get called vis-à-vis DriverEntry. In general, a filter driver has to support all the same IRP types that the driver 
immediately underneath it supports. If a filter were to leave a particular MajorFunction table entry in its default state, IRPs of 
that type would get failed with STATUS_INVALID_DEVICE_REQUEST. (The I/O Manager includes a default dispatch 
function that simply completes a request with this status. The driver object initially comes to you with all the MajorFunction 
table entries pointing to that default routine.) But you won’t know until AddDevice time which device object or objects are 
underneath you. You can investigate the dispatch table for each lower device driver inside AddDevice and plug in the needed 
dispatch pointers in your own MajorFunction table, but remember that you might be in multiple device stacks, so you might 
get multiple AddDevice calls. It’s easier just to declare support for all IRPs at DriverEntry time. 

16.2.2 The AddDevice Routine  
Filter drivers have AddDevice functions that get called for each appropriate piece of hardware. You’ll be calling 
IoCreateDevice to create an unnamed device object and IoAttachDeviceToDeviceStack to plug in to the driver stack. In 
addition, you’ll need to copy a few settings from the device object underneath you: 

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo) 
  { 
  PDEVICE_OBJECT fido; 



16.2 Mechanics of a Filter Driver   - 425 - 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

  NTSTATUS status = IoCreateDevice(DriverObject, 
    sizeof(DEVICE_EXTENSION), NULL, GetDeviceTypeToUse(pdo), 
    0, FALSE, &fido); 
  if (!NT_SUCCESS(status)) 
    return status; 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  do 
    { 
    pdx->DeviceObject = fido; 
    pdx->Pdo = pdo; 
    PDEVICE_OBJECT fdo = IoAttachDeviceToDeviceStack(fido, pdo); 
    pdx->LowerDeviceObject = fdo; 
     fido->Flags │= fdo->Flags & 
      (DO_DIRECT_IO │ DO_BUFFERED_IO │ DO_POWER_PAGABLE); 
    fido->Flags &= ~DO_DEVICE_INITIALIZING; 
    } 
  while (FALSE); 
  if (!NT_SUCCESS(status)) 
    IoDeleteDevice(fido); 
  return status; 
  } 

The parts that are different from a function driver are shown in boldface. Basically, we’re using a peculiar method to determine 
the device type, and we’re propagating a few flag bits from the next device object beneath us. 

GetDeviceTypeToUse is a local function that determines the device type of the device object immediately under ours. We 
haven’t yet called IoAttachDeviceToDeviceStack, so we don’t have our regular LowerDeviceObject pointer. 
GetDeviceTypeToUse uses IoGetAttachedDeviceReference to get a pointer to the device object that’s currently at the top of the 
stack rooted in our PDO, and it returns that device object’s type. The reason we do this in the first place is that if we happen to 
be filtering a disk storage device object, we must have the correct type code in our call to IoCreateDevice so that the I/O 
Manager will create an auxiliary data structure known as a Volume Parameters Block (VPB). Without a VPB on every device 
object in the stack, some Windows 2000 file system drivers might crash later on. 

We specify 0 for the device object characteristics. The PnP Manager will propagate any crucial characteristics flags up and 
down the device stack automatically. It would be wrong for a filter driver to force the FILE_FLAG_SECURE_OPEN flag, 
which applies to the whole driver stack, except for the purpose of fixing a bug in a function driver that forgets to set this flag. 

We copy the buffering flags from the lower device object because the I/O Manager bases some of its decisions on what it sees 
in the topmost device object. In particular, whether a read or write IRP gets a memory descriptor list or a system buffer 
depends on what the top object’s DO_DIRECT_IO and DO_BUFFERED_IO flags are. The reason a function driver must set 
one or the other of these flags at AddDevice time and can’t change its mind later should now be clear: a filter driver will copy 
the flags at AddDevice time and won’t have any way to know that a lower driver has changed them. 

We copy the DO_POWER_PAGABLE flag from the lower device object to satisfy an obscure restriction imposed by the Power 
Manager. Refer to the sidebar for an explanation of the restriction. We will deal with another aspect of the same problem in our 
IRP_MJ_PNP dispatch routine. We don’t need to propagate the DO_POWER_INRUSH flag because the Power Manager needs 
that flag set in only one device object. 

The DO_POWER_PAGABLE Flag 
Drivers must actively manage the DO_POWER_PAGABLE flag to accommodate some quirks in the Windows 
2000 Power Manager. If this flag is set in a device object, the Power Manager will send IRP_MN_SET_POWER 
and IRP_MN_QUERY_POWER requests to the corresponding driver at PASSIVE_LEVEL. If the flag is clear, the 
Power Manager sends those IRPs at DISPATCH_LEVEL. (IRP_MN_WAIT_WAKE and 
IRP_MN_POWER_SEQUENCE requests are always sent at PASSIVE_LEVEL.)  

PoCallDriver acts as a sort of interrupt request level (IRQL) transformer for SET_POWER and QUERY_POWER 
requests. A driver might forward these IRPs at either PASSIVE_LEVEL or DISPATCH_LEVEL, depending on the 
IRQL at which the driver itself received the IRP and on whether it’s forwarding the IRP as part of an I/O 
completion routine. If necessary, PoCallDriver will raise the IRQL or schedule a work item to call the next driver 
at the correct IRQL. 

In Windows 2000, however, the Power Manager nevertheless objects (by bugchecking) if it finds a nonpaged 
device object layered on top of a paged device object when it’s building internal lists in preparation for power 
operations. The Driver Verifier in all systems after and including Windows 2000 also checks for this condition. 
Because of the rule, you need to make sure at all times that your device object has DO_POWER_PAGABLE set 
if the driver under you does, and you need to help the driver above you obey the rule too. The first aspect of 
obeying the rule is to set the flag the same as the lower device object at AddDevice time. 

We don’t need to copy the SectorSize or AlignmentRequirement members of the lower device 
object—IoAttachDeviceToDeviceStack will do that automatically. We don’t need to copy the Characteristics flags because the 
PnP Manager does that automatically after the device stack is completely built and after it applies overrides from the registry. 
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There’s ordinarily no need for a FiDO to have its own name. If the function driver names its device object and creates a 
symbolic link, or if the function driver registers a device interface for its device object, an application will be able to open a 
handle for the device. Every IRP sent to the device gets sent first to the topmost FiDO driver, regardless of whether that FiDO 
has its own name. Further on in this chapter, I’ll discuss how to create an extra named device object to allow applications to 

access your filter in the middle of a driver stack. 

The Driver Verifier ensures that you set the device object flags and type as described here.  

16.2.3 The DispatchAny Function  
You write a filter driver in the first place because you want to modify the behavior of a device in some way. Therefore, you’ll 
have dispatch functions that do something with some of the IRPs that come your way. But you’ll be passing most of the IRPs 
down the stack, and you pretty much know how to do this already: 

NTSTATUS DispatchAny(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status, 0); 
  IoSkipCurrentIrpStackLocation(Irp); 
  status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return status; 
  } 

 

NOTE  
You should follow this guideline when you program a filter driver: First, do no harm. In other words, don’t cause 
drivers above or below you to fail because you perturbed anything at all in their environment or in the flow of 
IRPs. 

We need to revisit the Chapter 6 discussion about the remove lock at this point. Recall that we acquire this 
lock for each IRP that we pass down the PnP stack and release it when that IRP finishes. Our 
IRP_MN_REMOVE_DEVICE dispatch routine will call IoReleaseRemoveLockAndWait to make sure that all 
such IRPs have drained through the lower driver before we call IoDetachDevice and before we return to the 

PnP Manager. These steps prevent the lower driver from being removed while it’s processing an IRP that we’ve sent it.  

DispatchAny uses the remove lock in an attempt to partially fulfill our responsibility to keep the lower driver in memory. As 
discussed in Chapter 6, however, there’s a small hole in the protection we’re trying to provide. Our protection of the lower 
driver will expire as soon as we release the lock at the end of DispatchAny. If the lower driver, or any driver underneath it, 
returns STATUS_PENDING from the dispatch routine, we’re going to release the lock too soon. To provide totally bulletproof 
protection, we would need to install a completion routine (using IoSetCompletionRoutineEx if it’s available) that would release 
the remove lock. 

Installing a completion routine for every IRP in every filter driver isn’t an acceptable solution to the early-unload problem, 
however, because doing so would greatly increase the cost of handling every IRP just to guard against a low-probability race 
condition. Furthermore, many thousands of filter drivers already in the field don’t go to these heroic lengths. Consequently, 
Microsoft is going to have to find a more general solution to the problem. You could even make the case that a DispatchAny 
routine in a filter driver might as well not bother with the remove lock at all since it provides only limited protection at some 
slight cost and since most IRPs that flow through a filter driver are handle based in the first place. As discussed in Chapter 6, 
handle-based IRPs are inherently safe because Windows XP won’t even send an IRP_MN_REMOVE_DEVICE to a device 
stack while anyone has an open handle. 

16.2.4 The DispatchPower Routine  
The dispatch routine for IRP_MJ_POWER in a filter driver is straightforward and (nearly) trivial: 

NTSTATUS DispatchPower(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceObject; 
  PoStartNextPowerIrp(Irp); 
  NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status, 0); 
  IoSkipCurrentIrpStackLocation(Irp); 
  status = PoCallDriver(pdx->LowerDeviceObject, Irp); 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
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  return status; 
  } 

The only remarkable thing about this routine is that in contrast with every other DispatchPower routine you’ve ever seen, this 
one is actually simple to code. 

16.2.5 The DispatchPnp Routine  
The dispatch routine for IRP_MJ_PNP in a filter driver has several special cases: 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fido, PIRP Irp) 
  { 
  PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
  ULONG fcn = stack->MinorFunction; 
 
  NTSTATUS status; 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fido->DeviceExtension; 
  status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
  if (!NT_SUCCESS(status)) 
    return CompleteRequest(Irp, status, 0); 
 
  if (fcn == IRP_MN_DEVICE_USAGE_NOTIFICATION) 
    { 
    if (!fido->AttachedDevice  
      ││ (fido->AttachedDevice->Flags & DO_POWER_PAGABLE)) 
      fido->Flags │= DO_POWER_PAGABLE; 
    IoCopyCurrentIrpStackLocationToNext(Irp); 
    IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
      UsageNotificationCompletionRoutine, 
      (PVOID) pdx, TRUE, TRUE, TRUE); 
    return IoCallDriver(pdx->LowerDeviceObject, Irp); 
    } 
 
  if (fcn == IRP_MN_START_DEVICE) 
    { 
    IoCopyCurrentIrpStackLocationToNext(Irp); 
    IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
      StartDeviceCompletionRoutine, 
      (PVOID) pdx, TRUE, TRUE, TRUE); 
    return IoCallDriver(pdx->LowerDeviceObject, Irp); 
    } 
 
  if (fcn == IRP_MN_REMOVE_DEVICE) 
    { 
    IoSkipCurrentIrpStackLocation(Irp); 
    status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
    IoReleaseRemoveLockAndWait(&pdx->RemoveLock, Irp); 
    RemoveDevice(fido); 
    return status; 
    } 
 
  IoSkipCurrentIrpStackLocation(Irp); 
  status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return status; 
  } 

IRP_MN_DEVICE_USAGE_NOTIFICATION  

Recall from Chapter 6 that the usage notification informs a function driver that a disk device contains or doesn’t contain a 
paging file, a dump file, or a hibernation file. In response to a usage notification, the function driver might change the setting 
of its DO_POWER_PAGABLE flag. We may need to alter our setting of that flag in sympathy. 

As the IRP travels down the stack, we set DO_POWER_PAGABLE if we’re at the top of the PnP stack or if the driver above us 
has set this flag. It’s not normally safe to reference the AttachedDevice field because we don’t have access to the internal spin 
lock that protects the device object stack. The reference is safe in this context, though, because the PnP Manager won’t be 
changing the stack while the usage notification IRP is outstanding. 
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NOTE  
If another driver were to attach to our device stack while a usage notification was traveling down the stack, 
there is some slight possibility of allowing a nonpaged driver to be layered above a paged driver. Microsoft’s own 
filter drivers don’t worry about this possibility, so you and I can probably follow suit. 

As the IRP travels back up the stack, our completion routine propagates the flag setting from the lower driver so as to obey the 
rule that we don’t have a nonpaged handler layered on top of a paged handler. 

NTSTATUS UsageNotificationCompletionRoutine( 
  PDEVICE_OBJECT fido, PIRP Irp, PDEVICE_EXTENSION pdx) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); 
  if (!(pdx->LowerDeviceObject->Flags & DO_POWER_PAGABLE)) 
    fido->Flags &= ~DO_POWER_PAGABLE; 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return STATUS_SUCCESS; 
  } 

For this code to work right, the driver at the top of the stack must set DO_POWER_PAGABLE on the way down so that we’ll 
have set it ourselves in the dispatch routine. We’ll leave it set if the lower driver sets it. We’ll clear it if the lower driver clears 
it. 

IRP_MN_START_DEVICE  

We hook IRP_MN_START_DEVICE so we can propagate the FILE_REMOVABLE_ MEDIA flag. This flag doesn’t get set in 
AddDevice (because the function driver can’t talk to the device then) but must be set correctly in the topmost device object of a 
storage stack. The completion routine is as follows: 

NTSTATUS StartDeviceCompletionRoutine(PDEVICE_OBJECT fdo, 
  PIRP Irp, PDEVICE_EXTENSION pdx) 
  { 
  if (Irp->PendingReturned) 
    IoMarkIrpPending(Irp); 
  if (pdx->LowerDeviceObject->Characteristics & FILE_REMOVABLE_MEDIA) 
    fido->Characteristics │= FILE_REMOVABLE_MEDIA; 
  IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
  return STATUS_SUCCESS; 
  } 

IRP_MN_REMOVE_DEVICE  

We handle IRP_MN_REMOVE_DEVICE specially because this is where we do the RemoveDevice processing that calls 
IoDetachDevice and IoDeleteDevice. The reason this is so much simpler than in a function driver is that we don’t have queues 
to abort or I/O resources to release. 

16.3 Installing a Filter Driver  

There are only two truly easy ways to install a filter driver: when the filter is for an entire class of device, or when it’s part of a 
package that includes the function driver. To install a filter driver for an existing device, you need to locate and modify the 
right registry entries more or less by hand. I’ll discuss these installation issues in this section. 

Figure 2-7 illustrates the layering of device and class filters. To recapitulate what Chapter 2 says about the order of driver 
loading, the PnP Manager first loads device and class lower filters, then the function driver, and finally device and class upper 
filters. The lowest driver in the stack (apart from the bus driver, that is) will be the first driver mentioned in the hardware key’s 
LowerFilters value. The highest driver in the stack will be the last driver mentioned in the class key’s UpperFilters value. 

16.3.1 Installing a Class Filter  
To install a class filter along with the class, add some syntax to the [ClassInstall32] section: 

[ClassInstall32] 
AddReg=ClassInstall32AddReg 
CopyFiles=CopyClassFilters 
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[ClassInstall32AddReg] 
HKR,,UpperFilters,0x00010000,foo,bar 
 
[ClassInstall32.Services] 
AddService=FOO,,FooAddService 
AddService=BAR,,BarAddService 
 
[CopyClassFilters] 
foo.sys,,,2 
bar.sys,,,2 

The AddReg section defines a REG_MULTI_SZ value containing two strings: foo and bar, which specify the service names of 
two filter drivers. The [ClassInstall32.Services] section defines these services using the same service-definition syntax that I 
showed in Chapter 15 for a function driver. The [CopyClassFilters] section relies on a [DestinationDirs] directive (not shown) 
to put the driver files into the drivers directory. 

To define class lower filters, simply define a value named LowerFilters using similar syntax. 

Once the class has been defined, you can add filter drivers to the end of the list of filters in Windows 2000 and later systems by 
using an INF like this one. (Compare the CLASFILT sample in the DDK, which has a bit more syntax than you actually need.) 

[Version] 
Signature=$CHICAGO$ 
 
[DefaultInstall] 
CopyFiles=CopyClassFilters 
AddReg=FilterAddReg 
 
[DefaultInstall.Services] 
AddService=JUNKOLA,,FilterAddService 
 
[SourceDisksFiles] 
junkola.sys=1 
 
[SourceDisksNames] 
1="Filter install disk" 
 
[DestinationDirs] 
DefaultDestDir=12 
 
[CopyClassFilters] 
junkola.sys,,,2 
 
[FilterAddService] 
ServiceType=1 
ErrorControl=1 
StartType=3 
ServiceBinary=%12%\junkola.sys 
 
[FilterAddReg] 
HKLM,%CLASSKEY%,UpperFilters,0x00010008,junkola 
[Strings] 
CLASSKEY=System\CurrentControlSet\Control\Class\{<class-GUID>} 

The only interesting thing in this sample INF is the [FilterAddReg] section, which uses the FLG_ADDREG_APPEND flag to 
cause the new filter service to be appended to the existing UpperFilters value unless it’s already in the list of upper filters. 
Note that you need to spell out the setup class globally unique identifier (GUID) for the class you’re overriding in this way. 

NOTE  
The DDK documentation is a bit sparse when it comes to the REG_MULTI_SZ value syntax. If you want to 
completely overwrite a REG_MULTI_SZ value with one or more string values, specify the flag 0x00010000 and 
specify the strings with commas between them, as in the first example in this subsection. If you want to append 
a value, specify the flag 0x00010008, as in the second example. You can append just one value with one 
directive in the AddReg section. You can, however, have more than one directive that applies to the same value, 
and they’ll be executed in the order they appear. The comparison to see whether a given string is already in the 
value is not case sensitive. There is no syntax for putting a new string elsewhere than at the end of the value. 

To actually install the filter by hand, right-click on the INF file and select the INSTALL choice. Alternatively, use RUNDLL32 
to execute the InstallHinfSection function in setupapi.dll with an argument string composed by concatenating “DefaultInstall ” 
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(notice the trailing space) with the name of the INF file. 

Microsoft hasn’t provided a way to extend the list of class filters in Windows 98/Me. You need to write an installation program 
to directly modify the class key. 

16.3.2 Installing a Device Filter with the Function Driver  
To install a device upper or lower filter along with the function driver in Windows 2000 and later systems, you need merely to 
define an UpperFilters or LowerFilters value in the hardware key, copy the filter driver files to the driver directory, and define 
the filter services. Here’s an example of the additional syntax you need: 

[DriverCopyFiles] 
foo.sys,,,2 
 
 
[DriverInstall.ntx86.Services] 
AddService=whatever,2,DriverService  ; <== for the function driver 
AddService=foo,,FooService 
 
 
[FooService] 
ServiceType=1 
ErrorControl=1 
StartType=3 
ServiceBinary=%12%\foo.sys 
 
[DriverInstall.ntx86.hw] 
AddReg=FilterAddReg.ntx86 
 
[FilterAddReg.ntx86] 
HKR,,UpperFilters,0x00010000,foo 

To specify a lower filter, define a LowerFilters value in the hardware key. To specify more than one filter, use commas to 
separate the service names in the directive or directives in the AddReg section. 

16.3.3 Installing a Device Filter for an Existing Device  
Microsoft hasn’t provided a way to install a filter driver for an existing device. The problem you face when you try to do this is 
determining the name of the hardware key in the registry, and there’s no general way to do that. 

The FILTJECT.DLL code in the companion content illustrates a scheme for installing a device filter after the fact. You invoke 
FILTJECT by means of the system RUNDLL32 utility, which makes it usable in a RunOnce key installed by an INF file. (See 
the FILTER sample’s INF file for an example.) FILTJECT parses command-line options that include the exact device 
description or friendly name string of the device you want to filter. Then it enumerates all installed devices to locate all 
instances of that device, and it modifies the UpperFilters or LowerFilters values as specified by other command-line options. 

NOTE  
The FILTER.HTM file describing the FILTER sample also describes the syntax for FILTJECT.DLL. 

The POWTRACE sample shows another scheme for after-the-fact filtering. POWTRACE’s INF file merely defines the 
POWTRACE service. You can then hand-edit the registry to add a LowerFilters value to any device you want to filter. 

16.4 Case Studies  

The preceding theory lays out a framework for writing any sort of WDM filter driver. To write a filter driver for any particular 
purpose, you will undoubtedly encounter many pitfalls based on peculiarities in device stacks and your position in the device 
stack. In this section, I’ll present some additional examples of filter drivers to help you get started. 

16.4.1 Lower Filter for Traffic Monitoring  
I’ll tell you a secret. I have a hard time getting power management to work right in my drivers. It’s such a recurring theme that 
I finally wrote the POWTRACE filter driver. You install POWTRACE as a lower filter for any driver you’re trying to debug. It 
then logs all the power-related IRPs that your function driver generates. There’s actually nothing at all remarkable about how 
POWTRACE works on the inside, so I’ll commend you to the companion content. 

Let’s say you want to investigate how Microsoft’s HIDUSB and HIDCLASS drivers handle wake-up for a USB mouse. After 
making sure that the POWTRACE service entries are defined, you can modify the hardware key for the mouse in question 
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(Figure 16-7). Then unplug and replug the mouse, and start watching the debug trace with DbgView. Figure 16-8 is the trace I 
generated by enabling wake-up in the Device Manager (line 58), putting the machine in standby (lines 60 through 68), and then 
waking the system with a mouse click (lines 70 through 89). 

Figure 16-7. Preparing to use POWTRACE.  

Figure 16-8. POWTRACE log of wake-up/resume cycle.  

16.4.2 Named Filters  
Sometimes you want to have an application talk directly to a filter driver. The straightforward way to arrange this sort of 
communication is for the application to open a handle to the device and then use some private IOCTL operations that the filter 
consumes. Unfortunately, this approach isn’t always feasible: 

 Some devices won’t let your application open a handle. A mouse or a keyboard, for example, will already be open for the 
raw input thread, and you can’t open a second handle. A serial port is usually an exclusive device and likewise won’t let 
you open a second handle if someone else is already using the port. 

 You’re at the mercy of all the drivers above you as to whether you’ll see any IOCTL traffic. MOUCLASS and 
KBDCLASS, for example, block private IOCTLs. Even if your application could open a handle, therefore, it still 
couldn’t talk to a filter in the mouse or keyboard stack. 

The standard solution to these kinds of problems is to create an Extra Device Object (EDO) that shadows the FiDO you put in 
the PnP stack. Figure 16-9 illustrates the concept. 



- 432 - Filter Drivers | Chapter 16 

Programming The Microsoft Windows Driver Model 2nd Edition   Copyright © 2003 by Walter Oney 

Figure 16-9. An Extra Device Object for a filter driver.  

To bring this off, you need to define two different device extension structures that have at least one initial member in common. 
For example: 

typedef struct _COMMON_DEVICE_EXTENSION { 
  ULONG flag; 
  } COMMON_DEVICE_EXTENSION, *PCOMMON_DEVICE_EXTENSION; 
 
typedef struct _DEVICE_EXTENSION : public _COMMON_DEVICE_EXTENSION { 
 
  struct _EXTRA_DEVICE_EXTENSION* edx; 
 
  } DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
 
typedef struct _EXTRA_DEVICE_EXTENSION : public 
  _COMMON_DEVICE_EXTENSION { 
 
  PDEVICE_EXTENSION pdx; 
 
  } EXTRA_DEVICE_EXTENSION, *PEXTRA_DEVICE_EXTENSION; 
 
#define FIDO_EXTENSION 0 
#define EDO_EXTENSION 1 

In your AddDevice function, you create two device objects: a FiDO that you link into the PnP stack and an EDO that you don’t. 
You give the EDO a unique name too. For example: 

NTSTATUS AddDevice(PDRIVER_OBJECT Driver Object, PDEVICE_OBJECT pdo) 
  { 
  PDEVICE_OBJECT fido; 
  IoCreateDevice(...); 
  PDEVICE_EXTENSION pdx = 
    (PDEVICE_EXTENSION) fido->DeviceExtension; 
  <etc. -- all the stuff shown earlier in the chapter> 
  pdx->flag = FIDO_EXTENSION; 
 
  WCHAR namebuf[64]; 
  static LONG numextra = -1; 
  _snwprintf(namebuf, arraysize(namebuf), L"\\Device\\MyExtra%d", 
    InterlockedIncrement(&numextra)); 
  UNICODE_STRING edoname; 
  RtlInitUnicodeString(&edoname, namebuf); 
  IoCreateDevice(DriverObject, sizeof(EXTRA_DEVICE_EXTENSION), 
    &edoname, FILE_DEVICE_UNKNOWN, 0, FALSE, &edo); 
 
  PEXTRA_DEVICE_EXTENSION edx =  
    (PEXTRA_DEVICE_EXTENSION) edo->DeviceExtension; 
  edx->flag = EDO_EXTENSION; 
  edx->pdx = pdx; 
  pdx->edx = edx; 
 

edo->flags &= ~DO_DEVICE_INITIALIZING;  //see Updates&errata 
  } 

You’ll also want to create a uniquely named symbolic link to point to the EDO. That’s the name your application will use when 
it wants to open a handle to your filter. 

In each dispatch routine, you first cast the device object’s DeviceExtension pointer to PCOMMON_DEVICE_EXTENSION, 
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and you inspect the flag member to see whether the IRP is aimed at the FiDO or the EDO. You handle FiDO IRPs as shown 
earlier for a generic filter driver. You handle EDO IRPs however you please. At a minimum, you’ll succeed IRP_MJ_CREATE 
and IRP_MJ_CLOSE requests for the EDO, and you’ll respond to whichever set of IOCTLs you define. 

The foregoing are the basics for making your filter driver accessible no matter where it is in the driver stack and no matter 
which policies the drivers above you may be enforcing on file opens and private IOCTLs. There are a few other details to 
attend to if you want to put the idea to real use: 

 Pay attention to the security attributes on the EDO. This would be a good time to use IoCreateDeviceSecure when it 
becomes available in the DDK. (This function, which was brand-new at press time, allows you to specify a security 
descriptor for a new device object. This is one of the situations it was invented to handle.) 

 Use instructions you receive over the EDO pathway to modulate how you handle IRPs in the FiDO pathway. 

 You need to delete the EDO at the same time you delete the FiDO. Don’t forget to drain IRPs through the EDO too. 

 The EDO is not part of the PnP stack. Consequently, it doesn’t receive PnP, power, or WMI requests. Moreover, you can’t 
use IoRegisterDeviceInterface to create a symbolic link to it—you have to use the older method of naming the EDO and 
creating a symbol link that points to it. 

16.4.3 Bus Filters  
A bus filter is a special kind of upper filter that attaches just above a bus driver. Recall that bus drivers wear two hats: a 
function device object (FDO) hat and a PDO hat. Creating an upper filter for the FDO personality of a bus driver is completely 
trivial: just make yourself a device UpperFilter in the hardware key for the bus driver. The tricky part about a bus filter is 
inserting yourself into each of the child device stacks right above the PDOs that the bus driver creates. Figure 16-10 illustrates 
the topology you’re aiming for. 

Figure 16-10. Bus filter topology.  

Managing the FiDOs in each child device stack isn’t too hard. In your parent stack filter role (FDO hat, in other words), be on 
the lookout for IRP_MN_QUERY_DEVICE_RELATIONS asking for BusRelations. This query is how the PnP Manager asks 
the bus driver for a list of all the child devices. Review Chapter 11 if you’re a bit unclear on how this protocol works. You’ll 
want to pass this query down synchronously (the ForwardAndWait scenario from the end of Chapter 5) and then inspect the list 
of PDOs that the bus driver returns. Each time you see a child PDO for the first time, you’ll create a child-stack FiDO and 
attach it to the PDO. Each time you fail to see a PDO that you had seen earlier, you’ll detach and delete the now-obsolete 
child-stack FiDO. 

Creating and destroying child-stack FiDOs may not be all you need to do to create a working bus filter, though. The USB 
driver stack, for example, uses a back door to let USBHUB communicate efficiently with the host controller driver without 
sending IRPs through all the intermediate hub drivers that might be present. A USB bus filter uses USBD_RegisterHcFilter in 
the parent device stack for the host controller to make sure that it sees this backdoor traffic. Other buses might have similar 
registration requirements. 

16.4.4 Keyboard and Mouse Filters  
 A common use of filtering is for keyboard and mouse input. Among the applications I’ve seen for such filters are 

 Computer-aided training, especially when it involves raw motion reports or keystrokes that can’t be hooked in user mode. 

 Accessibility applications. 

 Automated testing. 

Earlier in this chapter, I showed example driver stacks for keyboards and mice. I think it’s easiest to plan on building a 
keyboard or mouse filter as a class upper filter that sits just below KBDCLASS or MOUCLASS, as the case may be. Your 
DriverEntry and AddDevice routines will be as shown earlier for a standard WDM filter driver. You’ll probably want to create 
an EDO for out-of-band communication with your own user-mode application code too. 
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NOTE  
The DDK samples KBFILTR and MOUFILTR illustrate the basics of writing a keyboard or mouse filter. 

KBDCLASS and MOUCLASS use a direct-call interface to receive keyboard and mouse reports from whichever port driver is 
actually handling the hardware. (These two drivers are samples in the DDK, so you can see for yourself exactly what’s going 
on.) To effectively filter the reports, you need to hook into this direct-call mechanism by handling either 
IOCTL_INTERNAL_KEYBOARD_CONNECT or IOCTL_INTERNAL_MOUSE_CONNECT, which are internal device control 
requests. These IOCTLs use a parameter structure declared in KBDMOU.H: 

typedef struct _CONNECT_DATA { 
  IN PDEVICE_OBJECT ClassDeviceObject; 
  IN PVOID ClassService; 
  } CONNECT_DATA, *PCONNECT_DATA; 

Here ClassDeviceObject is the address of a device object belonging to KBDCLASS or MOUCLASS, and ClassService is the 
address of a function with the following abstract prototype: 

typedef VOID (*PSERVICE_CALLBACK_ROUTINE) (PVOID NormalContext, 
  PVOID SystemArgument1, PVOID SystemArgument2, 
  PVOID SystemArgument3); 

Your filter driver’s dispatch routine for IRP_MJ_INTERNAL_DEVICE_CONTROL would process the CONNECT request by 
saving the ClassDeviceObject and ClassService values in your own device extension and then substituting your own device 
object and callback routine addresses before passing the IRP down the stack to the port driver. 

Once the direct-call connection is made, the port driver calls the ClassService callback routine each time an input event occurs. 
The callback routine is expected to consume a certain number of reports from any array provided by the port driver and return 
with an indication of how many reports were consumed. 

In the case of a keyboard filter, the callback routine has this actual prototype: 

VOID KeyboardCallback(PDEVICE_OBJECT fido, 
  PKEYBOARD_INPUT_DATA start, 
  PKEYBOARD_INPUT_DATA end, PULONG consumed); 

The start and end parameters delimit an array of KEYBOARD_INPUT_DATA structures, each of which relates to a single key 
press or release event (see NTDDKKB.H): 

typedef struct _KEYBOARD_INPUT_DATA { 
  USHORT UnitId; 
  USHORT MakeCode; 
  USHORT Flags; 
  USHORT Reserved; 
  ULONG ExtraInformation; 
  } KEYBOARD_INPUT_DATA, *PKEYBOARD_INPUT_DATA; 

The so-called MakeCode is a raw scan code generated by the keyboard. This scan code describes the physical position of the 
key on the keyboard and has no necessary relationship to the graphic on the keycap. The Flags member indicates whether the 
key has been pressed (KEY_MAKE) or released (KEY_BREAK). There are also flag bits (KEY_E0 and KEY_E1) to indicate 
extended shift states that modulate certain special keys like SysRq and Pause. 

In the case of a mouse filter, the callback has this actual prototype: 

VOID MouseCallback(PDEVICE_OBJECT fido, PMOUSE_INPUT_DATA start, 
  PMOUSE_INPUT_DATA end, PULONG consumed); 

In this function, start and end refer to instances of the following structure (see NTDDMOU.H): 

typedef struct _MOUSE_INPUT_DATA { 
  USHORT UnitId; 
  USHORT Flags; 
  union { 
    ULONG Buttons; 
    struct { 
      USHORT ButtonFlags; 
      USHORT ButtonData; 
      }; 
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    }; 
  ULONG RawButtons; 
  LONG LastX; 
  LONG LastY; 
  ULONG ExtraInformation; 
  } MOUSE_INPUT_DATA, *PMOUSE_INPUT_DATA; 

The mouse report information is in LastX and LastY (distances moved or absolute position) and ButtonFlags (bits such as 
MOUSE_LEFT_BUTTON_DOWN to indicate button events). 

In either case, you return (in *consumed) the number of events you’ve actually removed from the array bounded by start and 
end. The function driver will report any unconsumed events in a subsequent callback. When you’re testing a filter, you can 
easily be misled into thinking that you never get more than one report at a time, but you really do have to program the driver to 
accept an array of reports. 

Within your callback routine, you can do any of the following: 

 Forward events by passing them to the higher-level driver’s callback routine. Don’t forget to take into account that the 
higher-level driver might not consume all the events that you try to forward. 

 Remove events by not passing them up. You can, for example, make several calls to the higher-level driver’s callback 
routines for portions of the array not including the events you want to elide. 

You can also insert events into the stream by making your own call to the higher-level driver’s callback routine. 

16.4.5 Filtering Other HID Devices  
It’s very difficult to provide a useful filter driver for a HID device. To understand why, we need to look closely at the device 
stack for a HID device such as a joystick. (See Figure 16-11.) The function driver for the physical device is HIDUSB, a 
HIDCLASS minidriver. It does you no particular good to attach an upper filter to this device (which you could easily do using 
techniques already discussed in this chapter) because HIDCLASS will fail any IRP_MJ_CREATE directed to the FDO. There 
is, in fact, no simple way for a filter driver in the parent driver stack to receive any IRPs except by creating an Extra Device 
Object. 

Figure 16-11. Driver stack for a joystick.  

Often, you’re not interested in filtering the real device anyway. Instead, you want to filter the reports flowing upward in the 
child driver stack that HIDCLASS creates for each top-level collection exported by the real device. The problem is, you can’t 
know in advance which device identifier HIDCLASS will use for the collection PDOs, and you can’t modify the 
Microsoft-provided INF files for the collection device class without breaking Microsoft’s digital signature for its own drivers. 
If you can get by with a class filter, as you can for keyboards and mice, well and good—just install your filter as a class filter. 
But if you need a device-specific filter, it looks as though you’re out of luck. 

This is where the concept of a bus filter might be useful. Go ahead and install your filter as an upper filter in the parent stack. 
Then have it monitor the BusRelations queries as described earlier for bus filter drivers. At the appropriate time, you can 
instantiate a FiDO in the collection driver stack. If you can get by with having your filter be the bottommost in the collection 
stack, you’re done. Otherwise, you may need to do something relatively heroic such as alter the device identifiers reported by 
IRP_MN_QUERY_ID in order to force use of your own INF file. 

16.5 Windows 98/Me Compatibility Notes  

There are some minor differences between Windows 98/Me and Windows XP insofar as the material discussed in this chapter 
goes. 

16.5.1 WDM Filters for VxD Drivers  
People often want to take WDM filter drivers for serial or disk devices and just port them to Windows 98/Me. This process 
won’t work. Windows 98/Me uses VxD drivers for serial ports and block storage devices, and there’s no simple way to insert a 
WDM driver into the flow of I/O requests. 
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16.5.2 INF Shortcut  
Rather than trying to figure out how to store a REG_MULTI_SZ value in Windows 98/Me (which doesn’t support this registry 
data type in the first place), I find it easier to just specify multiple drivers in the driver key: 

[DriverAddReg] 
HKR,,DevLoader,,*ntkern 
HKR,,NTMPDriver,, \ 
  "wdmstub.sys,powtrace.sys,whatever.sys,filter.sys" 

The reason this works is that Windows 98/Me device loaders, including NTKERN, invariably call a CONFIGMG routine that 
loads all the drivers specified in a comma-delimited string. 

16.5.3 Class Filter Drivers  
Since Windows 98/Me doesn’t support the REG_MULTI_SZ value type, you use a binary value when you want to specify class 
filters. (You can use the shortcut just described for device filters.) For example: 

[ClassInstall] 
AddReg=ClassInstallAddReg 
CopyFiles=CopyClassFilters 
 
[ClassInstallAddReg] 
HKR,,UpperFilters,1, 66, 6f, 6f, 2e, 73, 79, 73, 00, \ 
62, 61, 72, 2e, 73, 79, 73, 00, 00 

This syntax defines a REG_BINARYUpperFilters value containing foo.sys\0bar.sys\0\0. Note that you need to specify the 
filename rather than a service name. 
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Appendix A  

Coping with Cross-Platform 

Incompatibilities  

I closed many of the chapters in this book with a series of MicrosoftWindows 98/Me compatibility notes. Microsoft originally 
planned that you’d be able to ship a single driver binary file for all WDM platforms, including Windows 98, Windows 98 
Second Edition, Windows Me, Windows 2000, Windows XP, and later systems, but the sad fact is that so lofty a goal has 
proven elusive in practice. Not surprisingly, systems continued to evolve long after Windows 98 was up and running on 
millions of PCs, and Microsoft has added numerous kernel-mode service functions that the earlier systems don’t support. If a 
WDM driver calls one of these functions, the system simply won’t load the driver because it can’t resolve the reference to the 
symbol. In this appendix, I’ll discuss methods of coping with the incompatibilities so as to use a single binary anyway. 

Determining the Operating System Version  

Windows 2000 and later systems provide a routine, PsGetVersion, which seems ideally suited for determining which platform 
you’re running on. Unfortunately, Windows 98/Me doesn’t support this function. All platforms do, however, have in common 
this function: 

BOOLEAN IoIsWdmVersionAvailable(major, minor); 

This function returns TRUE if the platform supports the WDM driver interfaces at the specified level. The WHICHOS sample 
in the companion content illustrates one way you might use IoIsWdmVersionAvailable to distinguish among platforms, based 
on the information in Table A-1. 

Platform WDM Version Supported 

Windows 98 “Gold” and Second Edition 1.0 

Windows Me 1.05 

Windows 2000 1.10 

Windows XP 1.20 

Windows .NET 1.30 

Table A-1. WDM Versions by Platform  

For example, you can determine whether you’re running under Windows XP by making this function call: 

BOOLEAN isXP = IoIsWdmVersionAvailable(1, 0x20); 

Windows 98 was issued in two versions: the original, or “gold,” version, and the Second Edition. IoIsWdmVersionAvailable 
will indicate version 1.0 on both systems. If you need to distinguish between the two, you can use the trick illustrated in 
WHICHOS of checking the ServiceKeyName member of the DriverExtension structure: 

BOOLEAN Win98SE =  
  DriverObject->DriverExtension->ServiceKeyName.Length != 0; 

I’ve used this trick only in my DriverEntry function, by the way. For all I know, the ServiceKeyName member might change 
afterward. 

The biggest distinction between platforms is, of course, between the Windows 2000 line of systems and Windows 98/Me. All 
of the sample drivers in the companion content define a global variable named win98, which DriverEntry initializes based on 
the result of calling IoIsWdmVersionAvailable: 

win98 = !IoIsWdmVersionAvailable(1, 0x10); 

Run-Time Dynamic Linking  

As you know, Windows systems rely extensively on dynamic linking to connect applications and drivers to system libraries. In 
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both kernel mode and user mode, if an executable module references a library or an entry point that doesn’t exist, the system 
will refuse to load the module. If you’ve done extensive application programming for Windows platforms, you may be familiar 
with the Win32 API function GetProcAddress, which allows you to obtain a pointer to an exported function at run time. 
Programmers commonly use GetProcAddress to resolve symbol imports dynamically in a way that doesn’t preclude the 
application from being loaded. 

In Windows 2000 and later systems, you can call MmGetSystemRoutineAddress to locate an entry point in the kernel or in the 
hardware abstraction layer (HAL). In effect, this function is a kernel-mode version of GetProcAddress. For example (see the 
SPINLOCK sample from Chapter 4): 

typedef VOID (FASTCALL *KEACQUIREINSTACKQUEUEDSPINLOCK) 
  (PKSPIN_LOCK, PKLOCK_QUEUE_HANDLE); 
KEACQUIREINSTACKQUEUEDSPINLOCK pKeAcquireInStackQueuedSpinLock; 
UNICODE_STRING us; 
RtlInitUnicodeString(&us, L"KeAcquireInStackQueuedSpinLock"); 
pKeAcquireInStackQueuedSpinLock = (KEACQUIREINSTACKQUEUEDSPINLOCK) 
  MmGetSystemRoutineAddress(&us); 

To use MmGetSystemRoutineAddress effectively, note the following fine points: 

 The function only searches NTOSKRNL.EXE (the kernel) and HAL.DLL (the hardware abstraction layer) for the symbol 
you specify. You can’t use this function to dynamically resolve entry points into other drivers or system components. 

 Windows 98/Me doesn’t support the function (but read on to learn about WDMSTUB, which does support it). 

 You need to use the same name that the kernel uses for a given symbol. You may need to consult WDM.H or NTDDK.H 
to follow a chain of macro definitions. 

Checking Platform Compatibility  

The WDMCHECK utility in the companion content evaluates a WDM driver for import compatibility with a Windows 98 or 
Windows Me platform. To use the tool, follow these steps: 

1. Develop your driver under Windows XP. 

2. Copy the driver binary to the %windir%\system32\drivers directory on a Windows 98/Me system. 

3. Make the drivers directory current. 

4. Invoke WDMCHECK with the name of your driver as the only command-line argument. 

WDMCHECK gives you a report about any symbols you’re importing that aren’t exported by the operating system or any 
installed WDM library. Figure A-1 illustrates the result of running WDMCHECK on a driver that has no unresolved imports. 

Figure A-1. Clean bill of health from WDMCHECK.  

Contrast Figure A-1 with Figure A-2, which shows the results for a driver that calls three functions that Windows Me doesn’t 
natively support. 

Figure A-2. WDMCHECK results for a driver with missing imports.  

WDMCHECK scans the import sections in your driver and attempts to resolve each imported symbol. For symbols imported 
from NTOSKRNL.EXE, HAL.DLL, NDIS.SYS, and SCSI.SYS, the utility calls a helper VxD. The VxD in turn uses the 
_PELDR_GetProcAddress service to resolve the symbol. (That’s the same service that the system loader will be using when it 
tries to load your driver, by the way.) For symbols imported from other modules, WDMCHECK opens the target module and 
scans its table of exported symbols. This algorithm essentially duplicates how the system would resolve references from your 
driver and therefore constitutes a fair test. 
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If you want to check a driver for compatibility with Windows 2000 or later, copy it by hand to the drivers directory on the 
target system and run the DEPENDS utility from the Platform SDK. DEPENDS will flag any undefined imports. Figure A-3 is 
an example of using DEPENDS on Windows 2000 with a module that uses two functions added to Windows XP. 

Figure A-3. DEPENDS shows missing imports.  

Defining Win98/Me Stubs for Kernel-Mode Routines  

The WDMSTUB sample in the companion content is a lower-filter driver that defines a number of kernel routines that 
Windows 98/Me omits. It relies on the same basic trick that Microsoft crafted to port several hundred kernel-mode support 
functions from Microsoft Windows NT to Windows 98/Me—that is, extending the symbol tables that the run-time loader uses 
when it resolves import references. To extend the symbol tables, you first define three data tables that will persist in memory: 

 A name table that gives the names of the functions you’re defining 

 An address table that gives the addresses of the functions 

 An ordinal table that correlates the name and address tables 

Here are some of the table entries from WDMSTUB: 

static char* names[] = { 
  "PoRegisterSystemState", 
 
  "ExSystemTimeToLocalTime", 
 
  }; 
 
static WORD ordinals[] = { 
  0, 
, 
  6, 
 
  }; 
 
static PFN addresses[] = { 
  (PFN) PoRegisterSystemState, 
 
  (PFN) ExSystemTimeToLocalTime, 
 
  }; 

The purpose of the ordinal table is to provide the index within addresses of the entry for a given names entry. That is, the 
function named by names[i] is address[ordinals[i]]. 

If it weren’t for a version compatibility problem I’ll describe in a moment, you could call _PELDR_AddExportTable as 
follows: 
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HPEEXPORTTABLE hExportTable = 0; 
 
extern "C" BOOL OnDeviceInit(DWORD dwRefData) 
  { 
  _PELDR_AddExportTable(&hExportTable,  
    "ntoskrnl.exe", 
    arraysize(addresses), // <== don't do it this way! 
    arraysize(names), 0,  
    (PVOID*) names, 
    ordinals, addresses, NULL); 
  return TRUE; 
  } 

The call to _PELDR_AddExportTable extends the table of symbols that the loader uses when it tries to resolve import 
references from NTOSKRNL.EXE, which is of course the Windows XP kernel. NTKERN.VXD, the main support module for 
WDM drivers in Windows 98/Me, initializes this table with the addresses of the several hundred functions it supports. In effect, 
then, WDMSTUB is an extension of NTKERN. 

Version Compatibility  
The version compatibility problem to which I just alluded is this: Windows 98 supported a particular subset of the Windows 
2000 functions used by WDM drivers. Windows 98 Second Edition supported a larger subset. The last version of Windows, 
Windows Me, supports a still larger subset. You wouldn’t want your stub driver to duplicate one of the functions that the 
operating system supports. What WDMSTUB actually does during initialization, therefore, is dynamically construct the tables 
that it passes to _PELDR_AddExportTable: 

HPEEXPORTTABLE hExportTable = 0; 
 
extern "C" BOOL OnDeviceInit(DWORD dwRefData) 
  { 
  char** stubnames = (char**) HeapAllocate(sizeof(names), HEAPZEROINIT); 
  PFN* stubaddresses = (PFN*)_HeapAllocate(sizeof(addresses), HEAPZEROINIT); 
  WORD* ordinals = (WORD*)_HeapAllocate(arraysize(names) * 
    sizeof(WORD), HEAPZEROINIT); 
  int i, istub; 
  for (i = 0, istub = 0; i < arraysize(names); ++i) 
    { 
    if (_PELDR_GetProcAddress((HPEMODULE) "ntoskrnl.exe", 
      names[i], NULL) == 0) 
      { 
      stubnames[istub] = names[i]; 
      ordinals[istub] = istub; 
      stubaddresses[istub] = addresses[i]; 
      ++istub; 
      } 
    } 
  _PELDR_AddExportTable(&hExportTable, "ntoskrnl.exe", istub, 
    istub, 0, (PVOID*) stubnames, ordinals, stubaddresses, NULL); 
  return TRUE; 
  } 

The line appearing in boldface is the crucial step here—it makes sure that we don’t inadvertently replace a function that 
already exists in NTKERN or another system VxD. 

There’s one annoying glitch in the version compatibility solution I just outlined. Windows 98 Second Edition and Windows Me 
export just three of the four support functions for managing the IO_REMOVE_LOCK object. The missing function is 
IoRemoveLockAndWaitEx, if you care. My WDMSTUB.SYS driver compensates for this omission by stubbing either all or 
none of the remove lock functions based on whether or not this function is missing. 

Stub Functions  
The main purpose of WDMSTUB.SYS is to resolve symbols that your driver might reference but not actually call. For some 
functions, such as PoRegisterSystemState, WDMSTUB.SYS simply contains a stub that will return an error indication if it is 
ever called: 

PVOID PoRegisterSystemState(PVOID hstate, ULONG flags) 
  { 
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  ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
  return NULL; 
  } 

Sometimes, though, you don’t need to write a stub that fails the function call—you can actually implement the function, as in 
this example: 

VOID ExLocalTimeToSystemTime(PLARGE_INTEGER localtime, PLARGE_INTEGER systime) 
  { 
  systime->QuadPart = localtime->QuadPart + GetZoneBias(); 
  } 

where GetZoneBias is a helper routine that determines the time zone bias—that is, the number of units by which local time 
differs from Greenwich mean time—by interrogating the ActiveTimeBias value in the TimeZoneInformation registry key. 

Support Function Remarks 

ExFreePoolWithTag  Stubbed 

ExLocalTimeToSystemTime  Implemented 

ExSystemTimeToLocalTime  Implemented 

HalTranslateBusAddress  Subset implemented 

IoAcquireRemoveLockEx  Implemented 

IoAllocateWorkItem  Implemented 

IoCreateNotificationEvent  Stub—always fails 

IoCreateSynchronizationEvent  Stub—always fails 

IoFreeWorkItem  Implemented 

IoInitializeRemoveLockEx  Implemented 

IoQueueWorkItem  Implemented 

IoRaiseInformationalHardError  Implemented 

IoReleaseRemoveLockEx  Implemented 

IoReleaseRemoveLockAndWaitEx  Implemented 

IoReuseIrp  Implemented 

IoReportTargetDeviceChangeAsynchronous  Stub—always fails 

IoSetCompletionRoutineEx  Implemented 

KdDebuggerEnabled  Implemented 

KeEnterCriticalRegion  Implemented 

KeLeaveCriticalRegion  Implemented 

KeNumberProcessors  Always returns 1 

KeSetTargetProcessorDpc  Implemented 

PoCancelDeviceNotify  Stub—always fails 

PoRegisterDeviceNotify  Stub—always fails 

PoRegisterSystemState  Stub—always fails 

PoSetSystemState  Stub—always fails 

PoUnregisterSystemState  Stub—always fails 

PsGetVersion  Implemented 

RtlInt64ToUnicodeString  Stub—always fails 

RtlUlongByteSwap  Implemented 

RtlUlonglongByteSwap  Implemented 

RtlUshortByteSwap  Implemented 

SeSinglePrivilegeCheck  Always returns TRUE 

ExIsProcessorFeaturePresent  Implemented 

MmGetSystemRoutineAddress  Implemented 

ZwLoadDriver  Implemented 

ZwQueryDefaultLocale  Implemented 

ZwQueryInformationFile  Implemented 

ZwSetInformationFile  Implemented 

ZwUnloadDriver  Implemented 

Table A-2. Functions Stubbed in WDMSTUB.SYS   
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Table A-2 lists the kernel-mode support functions that WDMSTUB.SYS exports. 

Using WDMSTUB  
To use WDMSTUB, include WDMSTUB.SYS in your driver package and specify it as a lower filter for your function driver. 
Here’s an example from the INF file for one of the sample drivers in the companion content: 

[DriverInstall] 
AddReg=DriverAddReg 
CopyFiles=DriverCopyFiles,StubCopyFiles 
 
[StubCopyFiles] 
wdmstub.sys,,,2 
 
[DriverAddReg] 
HKR,,DevLoader,,*ntkern 
HKR,,NTMPDriver,,"wdmstub.sys,workitem.sys" 

The indicated syntax for the NTMPDriver value in the driver key causes the system to load WDMSTUB.SYS before 
attempting to load the function driver WORKITEM.SYS. By the time the system gets around to loading WORKITEM.SYS, 
the DriverEntry routine in WDMSTUB has already executed and defined the functions listed in Table A-2. 

Note that using WDMSTUB as a lower-filter driver means that the install package won’t require a reboot. 

Interaction Between WDMSTUB and WDMCHECK  
WDMCHECK will tell you when certain symbols are defined only because you happen to have WDMSTUB loaded. See 
Figure A-4 for an example. 

Figure A-4. WDMCHECK results involving WDMSTUB.  

Special Licensing Note  
WDMSTUB.SYS is an exception to the licensing requirements for the samples in the companion content. To avoid problems 
on end user machines caused by inconsistent versions of WDMSTUB, I ask that you not redistribute WDMSTUB.SYS except 
under license from me. I will grant a royalty-free license to distribute WDMSTUB to anyone who asks. Just send an e-mail to 
waltoney@oneysoft.com, explain that you want to redistribute WDMSTUB, and provide contact details so I can fax a license 
agreement to you. 
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Appendix B  

Using WDMWIZ.AWX  

This appendix describes how to use the WDMWIZ.AWX custom wizard to build a driver project for use with MicrosoftVisual 
C++ version 6.0 and the Windows XP or .NET DDK. I built this wizard because I wanted an easy and reproducible way to 
generate the sample drivers for this book. I’ve included it in the companion content because I knew you’d want an easy way to 
generate drivers as you read through the book. 

The WDMBOOK.HTM file in the companion content tells you how to install this wizard on your system. Once you’ve 
installed the wizard, you’ll find a WDM Driver Wizard item on the Projects tab of the New dialog box that Visual C++ 
presents when you create a new project. WDMBOOK.HTM also contains detailed instructions for setting up your build 
environment to use the wizard. I’m not providing those instructions here in the book because they will undoubtedly change 
from time to time as Microsoft releases new Driver Development Kits. 

WDMWIZ.AWX is not a product and never will be. I would like to know about situations in which it generates incorrect code, 
but I’m not planning to make any changes to the admittedly clunky user interface. Furthermore, you’re on your own as far as 
quality assurance for your finished driver goes. 

Basic Driver Information  

The initial page (shown in Figure B-1) asks you for basic information about the driver you want to build. 

For Type Of Driver, you can specify these choices: 

 Generic Function Driver  
Builds a function driver for a generic device. (Note that the use of the word generic here is unfortunate because it has 
nothing to do with GENERIC.SYS.) 

 Generic Filter Driver  
Builds a filter driver with default handling for all types of I/O request packet (IRP). 

 USB Function Driver  
Builds a function driver for a universal serial bus (USB) device. 

 Empty Driver Project  
Builds a project with no files but with options set up for building a WDM driver. 

 Convert existing SOURCES file  
Creates a project according to the definition in a standard DDK SOURCES file. Use this option, for example, to convert a 
DDK sample to a Visual Studio project. 

Figure B-1. Page for entering basic driver information.  

You can select the following options: 

 Verbose Debugging Trace  
If you check this option, the driver project files will include many KdPrint macro calls to trace important operations in 
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the driver. 

 Use Buffered Method For Reads And Writes  
Set this option if you want to use the DO_BUFFERED_IO method for read and write operations. Clear this option if you 
want to use DO_DIRECT_IO instead. 

 Use Old-Style For Device Naming  
Set this option to generate named device objects. Clear this option to generate a driver that uses a device interface instead. 
The second choice (device interface) is the one Microsoft prefers for WDM drivers. 

 Replace ASSERT For i86 Platforms  
The DDK’s ASSERT macro calls a kernel-mode support routine (RtlAssert) that’s a no-operation in the free build of 
Microsoft Windows 2000. The checked build of your driver will therefore not stop in the free build of the operating 
system. Set this option to redefine ASSERT so that the checked build of your driver halts even in the free build of the 
operating system. 

 Use GENERIC.SYS Library  
Set this option to make use of the standardized driver code in GENERIC.SYS. Clear this option to put all that 
standardized code in your own driver. 

 Windows 98 Detection  
Set this option to include a run-time check for whether your driver is running under Windows 98/Me or Windows 
2000/XP. Clear this option to omit the check. 

You can also specify the base pathname where you’ve installed the Windows .NET DDK and the samples for this book. The 
default values—$(DDKPATH) and $(WDMBOOK)—rely on the environment variables that the sample setup program creates. 

Finally you can click the Dispatch Functions button to specify the types of IRP your driver will handle, as Figure B-2 shows. 
The dialog box embodies some design decisions that you can’t override. Your driver will include support for IRP_MJ_PNP 
and IRP_MJ_POWER. If you specify handling for IRP_MJ_CREATE, you’ll get support for IRP_MJ_CLOSE. If you specify 
handling for IRP_MJ_READ, IRP_MJ_WRITE, or IRP_MJ_DEVICE_CONTROL, you’ll get support for IRP_MJ_CREATE 
(and therefore IRP_MJ_CLOSE). WDMWIZ.AWX doesn’t generate skeleton dispatch functions for many types of IRP that are 
used only by file system drivers. 

Figure B-2. Dialog box for specifying the IRP major function codes for which you want dispatch functions.  

DeviceIoControl Codes  

If you specified handling for IRP_MJ_DEVICE_CONTROL, the wizard will present a page (depicted in Figure B-3) to allow 
you to specify information about the control operations you support. 
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Figure B-3. Page for specifying supported I/O control operations.  

Figure B-4 is an example of how you specify information about a particular DeviceIoControl operation. Most of the fields 
correspond directly to parameters in the CTL_CODE preprocessor macro and should therefore require no explanation. Setting 
the Asynchronous option generates support for an operation that you complete asynchronously after the dispatch function 
returns STATUS_PENDING. 

Figure B-4. Dialog box for adding and editing an I/O control operation.  

I/O Resources  

If your device uses any I/O resources, you can fill in the third page with information about them, as Figure B-5 shows. 

Figure B-5. Page for specifying I/O resources.  

USB Endpoints  

If you selected USB Function Driver on the first page, the wizard will present a page that allows you to describe the endpoints 
of your device, as Figure B-6 shows. This page lists the names of variables in your device extension that will hold pipe handles. 
The order of names corresponds to the order of endpoint descriptors on your device. 
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NOTE  
This page isn’t sufficiently complex to let you describe a device with multiple interfaces or with alternate 
settings for interfaces. 

Figure B-6. Page for defining USB endpoints.  

Refer to Figure B-7 for an illustration of the dialog box you can use to describe a single endpoint. The Description Of Endpoint 
group relates to the description of the endpoint in your device firmware and should be self-explanatory. Within the Resources 
In The Driver group, complete the fields as follows: 

 Name Of Pipe Handle In Device Extension  
Supply the name of a DEVICE_EXTENSION member to hold the pipe handle you’ll use for operations on this endpoint. 

 Maximum Transfer Per URB  
Specify here the maximum number of bytes you’ll transfer in a single URB. In general, this value is much larger than the 
endpoint maximum. 

Figure B-7. Dialog box for adding and editing a USB endpoint.  

WMI Support  

If you’ve specified that you want to handle IRP_MJ_SYSTEM_CONTROL requests, the wizard will present the page shown in 
Figure B-8 to allow you to specify the elements of your custom Windows Management Instrumentation (WMI) schema or to 
specify any Microsoft-standard classes you will support. 
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Figure B-8. Page for specifying WMI options.  

The Block Identifiers list names the class globally unique identifiers (GUIDs) in the order they’ll appear in the GUID list for 
WMILIB. 

Figure B-9 illustrates how you can describe one of the standard Micrsoft classes. The topmost (unlabeled) control is the 
symbolic name of the GUID. By typing in a name, you can specify a class in your custom schema. You can specify the 
following attributes of a WMI class: 

 Number Of Instances  
Indicates how many instances of the class your driver will create. 

 Expensive  
Indicates an expensive class that must be specifically enabled. 

 Event Only  
Indicates that the class is used only to fire an event. 

 Traced  
Corresponds to a WMI option that I don’t currently understand. But if I ever do understand it, I’ll be able to use this 
check box to influence its state. 

You can choose between physical device object (PDO)-based instance naming and instance naming using a base name. 
Microsoft recommends you use PDO-based naming. 

Figure B-9. Dialog box for specifying a WMI class.  

Parameters for the INF File  

The last page in the wizard (shown in Figure B-10) lets you specify information for the INF file that becomes part of your 
driver project. 

The fields in this page are as follows: 

 Manufacturer Name  
Name of the hardware manufacturer. 
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 Device Class  
The standard device class to which your device belongs. Sample is my own class for the driver samples in this book; you 
shouldn’t use this class for a production device. 

 Hardware ID  
The hardware identifier for this device. I made up *WCO0B01 for this example. You should specify the identifier that 
will match one of the identifiers that the relevant bus driver will create. Refer to the section titled “Device Identifiers” in 
Chapter 15 for more information. 

 Friendly Name For Device  
If you want to have a FriendlyName value inserted into the device’s hardware key, specify that name here. 

 Auto-Launch Command  
If you want the AutoLaunch service to automatically start an application when your device starts, specify the command 
line here. For example, when I built the AutoLaunch sample for Chapter 15, I specified %windir%\altest.exe %s %s in 
this field. 

 Device Description  
Insert the description of your device here. 

Figure B-10. Page for specifying INF file options.  

Now What?  

After you run through all the pages of the wizard, you'll have a project that you can use to finish crafting your driver. Because 
of limitations on the custom wizard support in Visual C++, you'll need to modify the project settings by hand. Please refer to 
WDMBOOK.HTM in the companion content for a description of these settings. 

The generated code will contain a number of TODO comments that highlight areas where you need to write some code. I 
suggest you use the Find In Files command to locate these items. 

WDMWIZ also generates a standard DDK SOURCES file that you can use with the BUILD utility. Many people prefer to use 
BUILD for driver builds, and this feature will make your life easier if you're one of them. 
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