
ptg

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WINDOWS 7
DEVICE DRIVER

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WINDOWS 7
DEVICE DRIVER

Ronald D. Reeves, Ph.D.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Reeves, Ron.
Windows 7 device driver / Ronald D. Reeves.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-321-67021-2 (pbk. : alk. paper)
ISBN-10: 0-321-67021-3 (pbk. : alk. paper)
1. Microsoft Windows device drivers (Computer programs)

I. Title.
QA76.76.D49R44 2011
005.7'1—dc22

2010039109

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-67021-2
ISBN-10: 0-321-67021-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2010

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

I would like to dedicate this book to my best friend, and partner in life,
my wife, Paulette. Her untiring support and love over the years have been

a great source of inspiration.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

CONTENTS

Preface . xv
About the Author . xix

Introduction . 1

PART I DEVICE DRIVER ARCHITECTURE OVERVIEW 5
Chapter 1 Objects . 7

1.1 Nature of an Object . 7
1.2 What Is a Software Object? . 8
1.3 Gaining an Understanding .10
1.4 Software Components .11

Chapter 2 Windows Driver Foundation (WDF) Architecture 13

2.1 WDF Component Functions .13
2.2 Design Goals for WDF .14
2.3 Device and Driver Support in WDF .15
2.4 WDF Driver Model .16
2.5 WDF Object Model .17

2.5.1 Kernel Mode Objects .19
2.5.2 User Mode Objects .19

2.6 Plug and Play and Power Management Support 20
2.6.1 Plug and Play/Power Management State Machine 21

2.7 Integrated I/O Queuing and Cancellation 22
2.7.1 Concurrency . 22
2.7.2 I/O Model . 23
2.7.3 I/O Request Flow . 24
2.7.4 Device I/O Requests . 25
2.7.5 Plug and Play and Power Management Requests 26

vii

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.8 WMI Requests (Kernel Mode Drivers Only) 27
2.9 Driver Frameworks . 28

2.9.1 Kernel Mode Framework . 29
2.9.2 User Mode Framework . 31

2.10 Windows Kernel . 32
2.10.1 Reflector . 32
2.10.2 Driver Host Process . 32
2.10.3 Driver Manager . 33

2.11 Tools for Development and Testing . 33
2.11.1 PREfast for Drivers . 34
2.11.2 Static Driver Verification (SDV) 35
2.11.3 Frameworks Verifier . 36
2.11.4 Trace Logging . 36
2.11.5 Debugger Extensions . 37
2.11.6 Serviceability and Versioning . 37

PART II USER MODE DRIVERS 39
Chapter 3 Windows 7 User Mode Drivers Overview

and Operation . 41

3.1 Devices Supported in User Mode . 42
3.2 UMDF Model Overview . 43

3.2.1 UMDF Object Model . 45
3.2.2 UMDF Objects . 45

3.3 Driver Callback Interfaces . 47
3.4 UMDF Driver Features . 49

3.4.1 Impersonation . 50
3.4.2 Device Property Store . 50

3.5 I/O Request Flow . 51
3.5.1 I/O Request Dispatching . 53
3.5.2 Create, Cleanup, and Close Requests 53
3.5.3 Create, Read, Write, and Device I/O Control Requests . . 56

3.6 I/O Queues . 56
3.6.1 Dispatch Type . 58
3.6.2 Queues and Power Management 59

3.7 I/O Request Objects . 60
3.7.1 Retrieving Buffers from I/O Requests 61
3.7.2 Sending I/O Requests to an I/O Target 61
3.7.3 Creating Buffers for I/O Requests 63

viii Contents

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.7.4 Canceled and Suspended Requests 64
3.7.5 Completing I/O Requests . 66
3.7.6 Adaptive Time-Outs . 66

3.8 Self-Managed I/O . 67
3.9 Synchronization Issues . 68
3.10 Locks . 70
3.11 Plug and Play and Power Management Notification 70
3.12 Device Enumeration and Startup . 71
3.13 Device Power-Down and Removal . 72

3.13.1 Surprise-Removal Sequence . 74
3.14 Build, Test, and Debug . 75

3.14.1 Installation and Configuration 76
3.14.2 Versioning and Updates . 77

Chapter 4 Programming Drivers for the User Mode
Driver Framework . 79

4.1 Windows I/O Overview . 79
4.2 Brief COM Information . 81
4.3 UMDF Architecture . 82
4.4 Required Driver Functionality . 84
4.5 UMDF Sample Drivers . 87

4.5.1 Minimal UMDF Driver: The Skeleton Driver 88
4.5.2 Skeleton Driver Classes, Objects, and Interfaces 89

4.6 Driver Dynamic-Link Library and Exports 91
4.6.1 Driver Entry Point: DllMain . 91
4.6.2 Get Class Object: DllGetClassObject 93

4.7 Functions for COM Support . 95
4.7.1 IUnknown Methods . 95
4.7.2 IClassFactory Interface . 96
4.7.3 Driver Callback Object . 96
4.7.4 Device Callback Object .100

4.8 Using the Skeleton Driver as a Basis for Development 106
4.8.1 Customize the Exports File .107
4.8.2 Customize the Sources File .107
4.8.3 Customize the INX File .108
4.8.4 Customize the Comsup.cpp File108
4.8.5 Add Device-Specific Code to Driver.cpp109
4.8.6 Add Device-Specific Code to Device.cpp 109

Contents ix

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 5 Using COM to Develop UMDF Drivers 111

5.1 Getting Started .111
5.1.1 COM Fundamentals .112
5.1.2 HRESULT .114

5.2 Using UMDF COM Objects .116
5.2.1 Obtaining an Interface on a UMDF Object 117
5.2.2 Reference Counting .119

5.3 Basic Infrastructure Implementation . 120
5.3.1 DllMain .121
5.3.2 DllGetClassObject .121
5.3.3 Driver Object’s Class Factory .122
5.3.4 Implementing a UMDF Callback Object 122
5.3.5 Implementing QueryInterface .125

PART III KERNEL MODE DRIVERS 127
Chapter 6 Windows 7 Kernel Mode Drivers

Overview and Operations .129

6.1 KMDF Supported Devices .129
6.2 KMDF Components .131
6.3 KMDF Driver Structure .132
6.4 Comparing KMDF and WDM Drivers .132
6.5 Device Objects and Driver Roles .135

6.5.1 Filter Drivers and Filter Device Objects136
6.5.2 Function Drivers and Functional Device Objects 136
6.5.3 Bus Drivers and Physical Device Objects 137
6.5.4 Legacy Device Drivers and Control Device Objects 138

6.6 KMDF Object Model . 139
6.6.1 Methods, Properties, and Events 139
6.6.2 Object Hierarchy .141
6.6.3 Object Attributes .144
6.6.4 Object Context .145
6.6.5 Object Creation and Deletion .146

6.7 KMDF I/O Model .147
6.7.1 I/O Request Handler .149
6.7.2 I/O Queues .152
6.7.3 I/O Request Objects .154
6.7.4 Retrieving Buffers from I/O Requests 155

x Contents

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7.5 I/O Targets .156
6.7.6 Creating Buffers for I/O Requests 157
6.7.7 Canceled and Suspended Requests 158
6.7.8 Completing I/O Requests .160
6.7.9 Self-Managed I/O .161
6.7.10 Accessing IRPs and WDM Structures 161

Chapter 7 Plug and Play and Power Management163

7.1 Plug and Play and Power Management Overview 163
7.2 Device Enumeration and Startup .164

7.2.1 Startup Sequence for a Function or Filter Device Object . . .165
7.2.2 Startup Sequence for a Physical Device Object166
7.2.3 Device Power-Down and Removal 167

7.3 WMI Request Handler .172
7.4 Synchronization Issues .173

7.4.1 Synchronization Scope .175
7.4.2 Execution Level .177
7.4.3 Locks .178
7.4.4 Interaction of Synchronization Mechanisms 179

7.5 Security .180
7.5.1 Safe Defaults .180
7.5.2 Parameter Validation .180
7.5.3 Counted UNICODE Strings .181
7.5.4 Safe Device Naming Techniques 181

Chapter 8 Kernel Mode Installation and Build 183

8.1 WDK Build Tools .183
8.2 Build Environment .185
8.3 Building a Project .186
8.4 Building Featured Toaster .187

8.4.1 Makefile and Makefile.inc .187
8.4.2 The Sources File .188
8.4.3 The Build .190

8.5 Installing a KMDF Driver .190
8.5.1 The WDF Co-Installer .191
8.5.2 The INF .191
8.5.3 INFs for KMDF Drivers .192
8.5.4 wdffeatured.inf .192

Contents xi

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.6 Catalog Files and Digital Signature .193
8.7 Installing Featured Toaster .194
8.8 Testing a KMDF Driver .196

8.8.1 PREfast .196
8.8.2 Static Driver Verifier .197
8.8.3 KMDF Log .198
8.8.4 KMDF Verifier .198
8.8.5 Debugging a KMDF Driver .198
8.8.6 Kernel Debugging . 200
8.8.7 KMDF Driver Features . 201

8.9 Debugging Macros and Routines . 203
8.10 WDF Debugger Extension Commands 204
8.11 Using WPP Tracing with a KMDF Driver 205
8.12 Using WinDbg with Featured Toaster 205
8.13 Versioning and Dynamic Binding . 208

Chapter 9 Programming Drivers for the Kernel
Mode Driver Framework . 211

9.1 Differences Between KMDF and WDM Samples 216
9.2 Macros Used in KMDF Samples . 218
9.3 KMDF Driver Structure and Concepts 219

9.3.1 Object Creation . 220
9.3.2 Object Context Area . 221
9.3.3 I/O Queues . 222
9.3.4 I/O Requests . 224

9.4 A Minimal KMDF Driver: The Simple Toaster 224
9.4.1 Creating a WDF Driver Object: DriverEntry 225
9.4.2 Creating the Device Object, Device Interface, and

I/O Queue: EvtDriverDeviceAdd 227
9.4.3 Device Object and Device Context Area 229
9.4.4 Device Interface . 231
9.4.5 Default I/O Queue . 232
9.4.6 Handling I/O Request: EvtIoRead, EvtIoWrite,

EvtIoDevice Control . 233
9.5 Sample Software-Only Driver . 235

9.5.1 File Create and Close Requests 235
9.5.2 Additional Device Object Attributes 237
9.5.3 Setting Additional Device Object Attributes 240

xii Contents

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Chapter 10 Programming Plug and Play and
Power Management . 243

10.1 Registering Callbacks . 243
10.1.1 Sample Code to Register Plug and

Play and Power Callbacks . 245
10.2 Managing Power Policy . 248

10.2.1 Code to Set Power Policy . 249
10.3 Callbacks for Power-Up and Power-Down 250
10.4 Callback for Wake Signal Support . 251

Chapter 11 Programming WMI Support . 253

11.1 WMI Architecture . 253
11.2 Registering as a WMI Data Provider 254
11.3 Handling WMI Requests . 255
11.4 WMI Requirements for WDM Drivers 256
11.5 WMI Class Names and Base Classes 257
11.6 Firing WMI Events . 260
11.7 Troubleshooting Specific WMI Problems 265

11.7.1 Driver’s WMI Classes Do Not Appear in
the \root\wmi NameSpace . 265

11.7.2 Driver’s WMI Properties or Methods Cannot
Be Accessed . 266

11.7.3 Driver’s WMI Events Are Not Being Received 267
11.7.4 Changes in Security Settings for WMI Requests

Do Not Take Effect . 267
11.8 Techniques for Testing WMI Driver Support 268

11.8.1 WMI IRPs and the System Event Log 269
11.8.2 WMI WDM Provider Log . 269

11.9 WMI Event Tracing . 269

Chapter 12 Programming KMDF Hardware Driver 273

12.1 Support Device Interrupts . 274
12.1.1 Creating an Interrupt Object 274
12.1.2 Code to Create an Interrupt Object 275
12.1.3 Enabling and Disabling Interrupts 276
12.1.4 Code to Enable Interrupts . 276
12.1.5 Code to Disable Interrupts . 277

Contents xiii

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12.1.6 Post-Interrupt Enable and Pre-Interrupt
Disable Processing . 277

12.2 Handling Interrupts . 278
12.2.1 Code for EvtInterruptIsr Callback 279
12.2.2 Deferred Processing for Interrupts 281

12.3 Mapping Resources. 283
12.3.1 Code to Map Resources . 284
12.3.2 Code to Unmap Resources . 288

Chapter 13 Programming Multiple I/O Queues and
Programming I/O . 291

13.1 Introduction to Programming I/O Queues 291
13.2 Creating and Configuring the Queues 293

13.2.1 Code to Create Queues for Write Requests 294
13.2.2 Code to Create Queues for Read Requests 296
13.2.3 Code to Create Queues for Device I/O

Control Requests . 297
13.3 Handling Requests from a Parallel Queue 298

13.3.1 Code to Handle I/O Requests 299
13.3.2 Performing Buffered I/O . 301

13.4 Forwarding Requests to a Queue . 302
13.5 Retrieving Requests from a Manual Queue. 303

13.5.1 Code to Find a Request . 304
13.6 Reading and Writing the Registry . 308

13.6.1 Code to Read and Write the Registry 309
13.7 Watchdog Timer: Self-Managed I/O. 312

13.7.1 Self-Managed I/O Device Startup and Restart 313
13.7.2 Self-Managed I/O During Device

Power-Down and Removal . 314
13.7.3 Implementing a Watchdog Timer 315

Appendix Driver Information Web Sites 323

Bibliography . 331

Index . 333

xiv Contents

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

PREFACE

This book provides the technical guidance and understanding needed to
write device drivers for the new Windows 7 Operating System. It takes this
very complex programming development, and shows how the Windows
Driver Framework has greatly simplified this undertaking. It explains the
hardware and software architecture you must understand as a driver devel-
oper. However, it focuses this around the actual development steps one
must take to develop one or the other of the two types of drivers. Thus, this
book’s approach is a very pragmatic one in that it explains the various soft-
ware APIs and computer and device hardware based upon our actual
device handler development.

There has been great progress in the art of creating and debugging
device drivers. There is now a great deal of object-oriented design tech-
niques associated with the driver frameworks that are available to the
device driver developer. Much of the previous grunt work, thank goodness,
is now being handled by the latest device development framework
Windows Driver Foundation (WDF). We will be covering both the user
mode and kernel mode of device driver development. WDF has excellent
submodels contained within it, called the User Mode Driver Framework
and the Kernel Mode Driver Framework.

It is really great to see a Windows Driver Framework involved in the
creation of Windows Device Drivers. I started working with Windows in
1990 and we primarily used the Win32 System APIs to communicate and
control the Windows Operating System for our applications. We used the
Device Driver Kit (DDK) to create the Windows drivers. Because I had
my own company to create application software, I obviously was very con-
cerned about the time it took to develop application software, and the
robustness of the application. There were more than 2,000 Win32 APIs to
be used for this task.

Then in about 1992, Microsoft came out with the Microsoft
Framework Classes (MFC). In these 600+ classes, most of the Win32
APIs were encapsulated. Of course, prior to this, around 1988, the C++
compiler came out, and Object Oriented Programming started to come

xv

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

into its own. By using the MFC Framework, we could produce more appli-
cation software faster and with better quality. My return on investment
(ROI) went up, and I made more money. This sure made a believer of me
in the use of frameworks. I used MFC until the .NET Framework came
out, and for the last nine years I have been using this great collection of
classes. All along, Microsoft was working to bring this same kind of soft-
ware development improvements to developing device drivers. We came
from the DDK, to the Windows Driver Model, to the Windows Driver
Foundation Framework.

Therefore, this book shows how to create Windows 7 Device Drivers
using the Windows Driver Foundation Framework. This should give us
driver developers a little more sanity when meeting our deadlines.

The book is broken into three major parts as follows:

■ Part I, “Device Driver Architecture Overview”—This part lays
out the architecture involved in both software and hardware for
device handler development. It also covers the driver development
environment needed for driver development, for both types of driv-
ers that are normally developed—that is, User Mode and Drivers.
This section also covers the two Windows driver frameworks that are
most commonly used for driver device development today, which
are part of the Windows Driver Framework (WDF). These two
Windows Driver Frameworks are the User Mode Driver Framework
(UMDF) and the Kernel Mode Driver Framework (KMDF).

■ Part II, “User Mode Drivers”—This part outlines the approach,
design, development, and debug of User Mode Drivers. This part
takes the driver programmer from start to finish in developing User
Mode Drivers. We primarily use the User Mode Driver Framework
for all of this work. The code is done in C++ because it is the best way
to develop these types of drivers. Discussions are based on a USB
User Mode Driver that we will develop using the UMDF. We will use
a USB hardware learning kit from Open Systems Resources,
Inc. (OSR). This provides a hardware simulation to test our User
Mode Drivers. This part is primarily stand-alone and could be read
and used without reading any other parts of the book. However,
you will probably want to read Part I to get a feel for what we are using.

xvi Preface

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ Part III, “Kernel Mode Drivers”—This part outlines the
approach, design, development, and debug of Kernel Mode
Drivers. The intent again is to take the driver programmer from
start to finish in developing Kernel Mode Drivers. For this section,
we primarily use the Kernel Mode Driver Framework for all of this
work. The code is done in C because this is the best way to develop
these types of drivers. Discussions are based on a Kernel Mode
Driver that we develop using the KMDF. We use a Peripheral
Component Interconnect (PCI) hardware learning kit from OSR.
This provides a hardware simulation to test our Kernel Mode
Drivers. The section is also primarily stand-alone and could be read
and used without reading any other parts of the book. Again, you
will probably want to read Part I to get a feel for what we are using.

ACKNOWLEDGMENTS

I am most grateful to my editor Bernard Goodwin at Pearson Education for
giving me the opportunity to write this book. His support during the prepa-
ration was great. I would also like to thank his assistant Michelle Housley for
her timely fashion in getting me reference books and material. Also, I would
like to thank John Herrin, Video Project Manager at Pearson Education, for
support and help in creating the book video. Thanks to Michael Thurston,
my development editor, for making the book sound very polished.

Preface xvii

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

ABOUT THE AUTHOR

Ronald D. Reeves, Ph.D., is founder and president of Software Genesis,
LLC, a software development and consulting company based in
Brighton, Michigan. Dr. Reeves has some forty years of experience in
designing and developing computer hardware and software applications.
He holds degrees in engineering and computer science and is a nation-
ally recognized author, consultant, and teacher.

If you have questions, comments, or suggestions for improving this
book, we would like to hear from you. You can contact the author by U.S. Mail
or by email at the following addresses:

Dr. Ronald D. Reeves
PO Box 2425
Brighton, MI 48116
Email: software.genesis@att.net

xix

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1

INTRODUCTION

Device drivers are where the rubber meets the road, and are very
specialized pieces of software that allow your application programs to com-
municate to the outside world. Any communications your Windows 7
makes to the outside world requires a Device Driver. These devices
include such things as mouse, display, keyboard, CD-ROMS, data acquisi-
tion, data network communication, and printers. However, Microsoft has
written and supplied a great many drivers with the Windows 7 Operating
System. These drivers support most of what we call the standard devices,
and we will not be covering them in this book.

This book is about how we create device drivers for the nonstandard
devices—devices that are not typically found on standard PCs. Quite often,
the market is too small for Microsoft to create a standard device driver for
these types of devices—such things as data acquisition boards, laboratory
equipment, special test equipment, and communications boards.

This discussion will highlight the significant features of interest to the
device driver developers. Figure I.1 shows a general block diagram of
Windows 7. We develop more detailed block diagrams in the discussions in
various parts of the book.

In Figure I.1 the user applications don’t call the Windows 7 Operating
System Services directly. They go thru the Win32 subsystem dynamic-
linked libraries (DLL). The User Mode Device Drivers, discussed later, go
through this same communication channel.

The various Windows 7 services that run independently are handled by
the Service Processes. They are typically started by the service control
manager.

The various Windows 7 System Support Processes are not considered
Windows 7 services. They are therefore not started by the service control
manager.

The Windows 7 I/O Manager actually consists of several executive sub-
systems that manage hardware devices, priority interfaces for both the
system and the applications. We cover this in detail in Parts II and III of
this book.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The Device Driver block shown in the I/O Manager block is primarily
what this book is all about—that is, designing, developing, and testing
Windows 7 Device Drivers. The drivers of course translate user I/O func-
tion calls into hardware device I/O requests.

The Hardware Abstraction Layer (HAL) is a layer of code that isolates
platform-specific hardware differences from the Windows 7 Operating
System. This allows the Windows 7 Operating System to run on different
hardware motherboards. When device driver code is ported to a new plat-
form, in general, only a recompile is necessary. The device driver code
relies on code (macros) within HAL to reference hardware buses and reg-
isters. HAL usage in general is implemented such that inline performance
is achieved.

The Windows 7 performance goals often impact device driver writers.
When system threads and users request service from a device, it’s very
important that the driver code not block execution. In this case, where the
driver request cannot be handled immediately, the request must be

2 Introduction

User
Applications

Service
Processes

System Support
Processes

Environment
Subsystems

Win32 Subsystems

User Mode

Kernel Mode

I/O Manager

Device
Drivers

Executive Components

Kernel

Hardware Abstraction Layer (HAL)

Hardware Platform

Figure I.1 System Overview Windows 7

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

queued for subsequent handling. As we will show in later discussions, the
I/O Manager routines available allow us to do this.

Windows 7 gives us a rich architecture for applications to utilize.
However, this richness has a price that device driver authors often have to
pay. Microsoft, realizing this early on some 14 years ago, started develop-
ing the driver development models and framework to aid the device driver
author. The earliest model, the Windows Driver Model (WDM) had a
steep learning curve, but was a good step forward. Microsoft has subse-
quently developed the Windows Driver Foundation (WDF) that makes
developing robust Windows 7 drivers easier to implement and learn. This
book is about developing Windows 7 Device Driver using WDF.

Introduction 3

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

P A R T I

DEVICE DRIVER ARCHITECTURE
OVERVIEW

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7

C H A P T E R 1

OBJECTS

Before we go into the discussion on drivers, we need to first briefly review
objects, which are mentioned extensively throughout the book.

1.1 Nature of an Object

One of the fundamental ideas in software component engineering is the
use of objects. But just what is an object? There doesn’t seem to be a
universally accepted idea as to what an object is. The view that the
computer scientist Grady Booch (1991) takes is that an object is defined
primarily by three characteristics: its state, its behavior, and its identity.
The fundamental unit of analysis, in most cognitive theories, is the
information-processing component. A component is an elementary infor-
mation process that operates on the internal representation of objects or
symbols (Newell & Simon 1972; Sternberg 1977). If we look at the way
these components work, they may translate a sensory input into a concep-
tual representation, transform one conceptual representation into another,
or translate a conceptual representation into a motor output.

The Object Oriented Programming (OOP) techniques for software
have been around now for approximately a quarter of a century. But the
phenomenon is not new. Ancient philosophers, such as Plato and Aristotle,
as well as modern philosophers like Immanuel Kant have been involved in
explaining the meaning of existence in general and determining the
essential characteristics of concepts and objects (Rand 1990). Very recently
Minsky developed a theory of objects, whose behavior closely resembles
processes that take place in the human mind (Minsky 1986). Novak and
Gowin (Novak and Gowin 1984) showed how objects play an important
role in education and cognitive science. Their approach is one in which
concepts are discovered by finding patterns in objects designated by some
name. But wait, we were talking about objects and now we are talking
about concepts. That is because concepts reflect the way we divide the

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

world into classes, and much of what we learn, communicate, and reason
about involves relations among these classes. Concepts are mental repre-
sentations of classes, and their salient function is to promote cognitive
economy. A class then can be seen as a template for generating objects
with similar structure and behavior.

The Object Management Group (OMG) defines a class as follows:

A class is an implementation that can be instantiated to create
multiple objects with the same behavior. An object is an instance
of a class.

From the software point of view, by partitioning the software into
classes, we decrease the amount of information we must perceive, learn,
remember, communicate, and reason about.

1.2 What Is a Software Object?

What is a software object? In 1976, Niklaus Wirth published his book
Algorithms + Data Structures = Programs. The relationship of these two
aspects heightens our awareness of the major parts of a program. In 1986,
J. Craig Cleaveland published his book Data Types. In 1979 Bjarne
Stroustrup had started the work on C with classes. By 1985, the C++
Programming Language had evolved and in 1990 the book The Annotated
C++ Reference Manual was published by Bjarne Stroustrup. In this
discussion, I will only talk about .NET Framework base classes and .NET
Framework library classes with respect to objects, because that seems to
be the main focus of where we are going today.

When Bjarne Stroustrup published the above book on C++ or C with
classes, we started associating the word class and object with the term
abstract data type. But what is the difference between data types and
abstract data types? A data type is a set of values. Some algorithm then oper-
ates upon managing and changing the set of values. An abstract data type has
not only a set of values, but also a set of operations that can be performed
upon the set of values. The main idea behind the abstract data types is the
separation of the use of the data type from its implementation. Figure 1.1
shows the four major parts of an abstract data type. Syntax and semantics
define how an application program will use the abstract data type.
Representation and algorithms show a possible implementation.

8 Chapter 1 Objects

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg
For an abstract data type, we have therefore defined a set of behaviors,

and a range of values that the abstract data type can assume. Using the data
type does not involve knowing the implementation details. Representation
is specified to define how values will be represented in memory. We call
these representations class member variables in VB.NET or C#. The algo-
rithm or programs specify how the operations are implemented. We call
these programs member functions in VB.NET or C#. The semantics spec-
ify what results would be returned for any possible input value for each
member function. The syntax specifies the VB.NET or C# operator sym-
bols or function names, the number and types of all the operands, and the
return values of the member functions. We are therefore creating our own
data object (abstract data type) for the software to work with and use. This
is opposed to only using the data types predefined by the compiler, such as
integer, character, and so on. These abstract data types or objects, as
defined in Grady Booch’s book Object-Oriented Analysis and Design with
Applications, Third Edition (2007), are as follows: “an object represents an
individual, identifiable item, unit, or entity, either real or abstract, with a
well-defined role in the problem domain.”

Another classic book relating to objects is Design Patterns (Gamma
1995). This books points out the elements of reusable object-oriented
software.

1.2 What Is a Software Object? 9

Figure 1.1 Abstract Data Type

Abstract
Data Types

Specification Implementation

Syntax Semantics Representation Algorithms

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.3 Gaining an Understanding

We have slowly come to the realization of just what properties our program
should have to make it work in solving complex real world problems.
Having a new language like VB.NET or C# and their associated capabili-
ties to create classes and objects was not enough. We realized that just
using the abstract data type or class was not enough. As part of this ongoing
development, the methodology called object-oriented technology evolved
into what is called the object model. The software engineering foundation
whose elements are collectively called the object model encompass the
principles of abstraction, modularity, encapsulation, hierarchy, typing,
concurrency, and persistence. The object model defines the use of these
elements in such a way that they form a synergistic association.

As with any discipline, such as calculus in mathematics, we need a sym-
bolism or notation in which to express the design of the objects. The creation
of the C++ language, as an example, supplied one language notation needed
to write our object-oriented programs. However, we still needed a notation
for the design methodology to express our overall approach to the software
development. In 1991, Grady Booch first published his book Object-
Oriented Analysis and Design with Applications in which he defined a set of
notations. These notations have become the defacto standard for Object
Oriented Design. His second edition does an even better job of describing
the overall Object Oriented Design notation and the object model. In this
second edition, he expresses all examples in terms of the C++ language,
which for a time became the predominate language for object-oriented soft-
ware development. We even have a Windows GUI tool based upon this nota-
tion to aid us in our thinking. This tool by Rational Corporation and Grady
Booch was called ROSE. Quite a change from how calculus and its notation
were initially used. We almost immediately have the same engine we wish to
program on, aiding us in doing the programming. This tool has continued to
evolve and is now called the Universal Modeling Language (UML).

An object (or component) then is an entity based upon abstract data
type theory, implemented as a class in a language such as VB.NET or C#,
and the class incorporates the attributes of the object model. What we have
been describing, however, is just the tip of the iceberg relative to objects.
The description so far has described the static definitions and has not
talked about objects talking with other objects. Let’s just look at one of the
object model attributes: inheritance. Inheritance is our software equiva-
lent of the integrated electronic circuit (IC) manufacturing technique of

10 Chapter 1 Objects

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

large-scale integration (LSI) that allows such tremendous advances in
electronic system creations. Software using inheritance is certainly very
small scale at the present, but the direction is set. Inheritance allows the
creating of a small-scale integration (SSI) black box in software. This SSI
creates an encapsulated software cluster of objects directed toward the
solution of some function needed for the application. We have thus
abstracted away a large amount of the complexity and the programmer
works only with the interfaces of the cluster. The programmer then sends
messages between these clusters, just like the electronic logic designed has
wires between ICs, over which signals are sent.

1.4 Software Components

Although we allude to software components having an analogy to hardware
chips, this is only true in a most general sense. Software components cre-
ated with the rich vocabularies of the programming language, and based
upon the constructs created by the programmer’s mind, have a far greater
range of flexibility and power for problem solving than hardware chips. Of
course, therein lays a great deal of the complexity nature of software
programs. However, the software components ride on top of the hardware
chips adding another complete level of abstraction. The deterministic logic
involved in a complex LSI chip is very impressive. But the LSI chip is very
limited in the possibility of forming any synergist relationship with a
human mental object.

The more we dwell upon the direction of the .NET Framework’s
object model, in all its technologies, the more it seems to feel like we are
externalizing the mind’s use of mental object behavior mechanics.
Certainly, the object relationships formed with linking and embedding
of software objects, via interfaces, doesn’t look much like the dendrite
distribution of influences on clusters of neurons. But certainly now, one
software object is starting to effect one or more other software objects to
accomplish its goal.

Let’s look at a control object or collection of control objects from an
everyday practical standpoint that we are using in other engineering fields.
One of our early loves is the automobile. We can hardly wait to learn how
to drive one. Notice, we said drive one, any one. We have done such a great
job on our encapsulation and interface exposure that we can learn to drive
any kind and be able to drive any other kind. The automobile object we

1.4 Software Components 11

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

interact with has three primary interface controls: steering wheel, throttle,
and brake. We realize that encapsulated within that automobile object is
many internal functions. We can be assured that these control interfaces
will not change from automobile object to automobile object. In other
words, if we go from a General Motors car to a Ford car we can depend on
the same functionality of these control interfaces.

Another characteristic of a software object is persistence. Persistence
of an object is learned very early by a child. Eventually, when we show a
child a toy and then hide it behind our back, the child knows the toy still
exists. The child has now conceptualized the toy object as part of its mental
set of objects. As the programmer does a mental conceptualization of
various software objects, this will lead to a high level of persistence of the
objects in the programmer’s mind. Because one of the main features of
standard software objects is reusability, the efficiency of the programmer
will continue to increase as the standard objects are conceptualized in the
programmer’s mental model.

Polymorphic behavior is another characteristic that can be imple-
mented in a software object. Probably one of the earlier forms that a child
realizes has different behavior, based upon form, is the chair object. The
chair object is polymorphic in that its behavior depends on its form. We
have rocking chairs, kitchen chairs, lounge chairs, and so on. This idea of
form and related behavior has created a whole field of study called
morphology. Certainly, this is a key idea in how we relate cognitively to
various objects. Not only does the clustering of our objects have form rela-
tionships, the internal constructs of the objects have a form relationship.
There is a definite relationship between the logic flow of a program and
the placement of the various meaningful chunks of a program. This is
somewhat different than a pure polymorphic nature of a function, but does
point out that we should be aware of the morphology of our objects and
their parts and placement in our program.

12 Chapter 1 Objects

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13

C H A P T E R 2

WINDOWS DRIVER FOUNDATION
(WDF) ARCHITECTURE

The next generation driver model for the Windows family of operating
systems is the Windows Driver Foundation (WDF). This new model can
reduce driver development time, contribute to greater system stability, and
improve driver serviceability. In this chapter, we cover the overall WDF
Driver Model and its various functionality. In the subsequent chapters on
User Mode Drivers and Kernel Mode Drivers, we will drill down into the
programming details of developing one or the other type driver. This chap-
ter then should give a good overall feel for the general WDF driver model
architecture. Note: In general, when we have a programming construct or
variable, we present that information in a bold format. This of course cov-
ers the various WDF APIs available to us for developing the driver.

2.1 WDF Component Functions

WDF includes a suite of components that support the development,
deployment, and maintenance of both Kernel Mode and User Mode
Drivers. WDF components work with existing driver development tools to
address the entire driver cycle of the following:

■ Plan & Design: Driver Model—The WDF driver model supports
the creation of object-oriented, event-driven drivers. By using
WDF, driver writers can focus on their device hardware, rather than
on the operating system. WDF drivers can be written for either ker-
nel mode or user mode.

■ Develop: Frameworks and Windows Driver Kit (WDK)—WDF
defines a single driver model and includes frameworks for both
Kernel Mode and User Mode Driver development. The frameworks

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

14 Chapter 2 Windows Driver Foundation Architecture

provide the basic infrastructure to support the WDF model. They
implement common features, provide intelligent defaults, and man-
age most interactions with the operating system.

The Kernel Mode Driver Framework (KMDF) implements
basic Kernel Mode Driver support features that are required by
Windows and are common to all Kernel Mode Drivers.

The User Mode Driver Framework (UMDF) provides func-
tional support similar to that in the KMDF, but enables drivers for
some types of devices to run in user mode instead of in kernel mode.

■ Test: Tracing and Static Analysis Tools—Both the KMDF and the
UMDF have built-in verification code and support integrated trac-
ing through Event Tracing for Windows (ETW). The generated
traces can help in debugging drivers during development and in
diagnosing problems in released drivers. WDF drivers also work
with the existing driver verifier. In addition, compile-time driver
verification tools, such as PREfast and Static Driver Verifier (SDV),
are also part of the WDF effort.

■ Qualify: Driver Signing—WDF drivers are signed in the same way
as Windows Driver Model (WDM) drivers.

■ Deploy: Driver Installation Tools—WDF drivers are installed by
using INF files and work with existing driver installation tools,
including the Driver Install Frameworks (DIFx) tools.

■ Maintain: Versioning—WDF supports versioning so that a single
driver binary can run on any version of the operating system and use
the same version of the framework on which it was built and tested.

2.2 Design Goals for WDF

Writing a Windows driver is not easy. The current Kernel Mode Driver
development model Windows Driver Model (WDM) is complex and has
serious limitations.

WDM requires that drivers be designed to manage interactions with the
operating system, not just the device hardware. A simple WDM driver has
thousands of lines of code, much of which implements common features that
every driver must support. WDM drivers must use device-driver interfaces
(DDIs) that are exported directly from the operating system kernel. These
interfaces were designed for performance, not for ease of use. In many cases,
the DDIs expose essential operating system data structures directly to the

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

driver, thus increasing the chance that a driver error might crash or corrupt
the system.

For some device types, port/miniport models implement much of the
WDM code. However, Windows supports more than 10 such models and
each is different. So the knowledge gained from writing a miniport driver
for one type of device does not necessarily apply to writing a miniport
driver for a different type of device.

Unlike Kernel Mode Drivers, User Mode Drivers have no common
infrastructure that is comparable to WDM.

The following are the primary design principles underlying the WDF
model:

■ Separate the driver model from the core operating system compo-
nents.

■ Provide a user mode option for some device types.
■ Implement common and default driver features so that driver devel-

opers can focus on their hardware.
■ Make drivers event driven and define the events at a detailed level

so that driver tasks are straightforward.
■ Support Plug and Play and power management implementation for

all drivers.
■ Support a consistent installation process for both User Mode and

Kernel Mode Drivers.
■ Provide integrated tools, including built-in tracing and verification

support, to help find and diagnose problems both during debugging
and after release.

■ Enable a single driver binary to work with several versions of the
framework and the operating system.

2.3 Device and Driver Support in WDF

Table 2.1 lists the WDF support for various device classes and driver mod-
els in Windows 7. From this table, we can get a feel for the wide range of
device types that Windows 7 supports. As we have mentioned earlier, this
book is primarily about creating custom device drivers. That is, ones not
normally supplied by Microsoft. Notice also the distribution of device
types across the two driver modes—that is, Kernel Mode Driver
Framework (KMDF) and User Mode Driver Framework (UMDF).

2.3 Device and Driver Support in WDF 15

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Table 2.1 WDF Device Support for Windows 7

16 Chapter 2 Windows Driver Foundation Architecture

Device Class/Driver Model KMDF UMDF SDV PREfast

Antivirus filters No No Yes Yes
CD-ROM device Yes No Yes Yes
Cell phones No Yes No Yes
Digital cameras No Yes No Yes
Display adapters No No No Yes
DSL/Cable modems Yes No No Yes
Ethernet devices No No No Yes
Keyboards and mouse devices Yes No Yes Yes
Modems Yes No Yes Yes
Other device (not listed here) No Yes No Yes
that connect to a Protocol
bus such as USB or IEEE 1394
PDAs No Yes No Yes
Portable media players No Yes No Yes
Printers No No No Yes
Scanners No No No Yes
SCSI/StorePort No No No Yes
Video capture devices No No No Yes

2.4 WDF Driver Model

The WDF driver model defines an object-oriented, event-driven environ-
ment in which driver code manages device-specific features and a
Microsoft-supplied framework calls the driver to respond to events that
affect operation of its device. The driver model includes the following:

■ An object model that is implemented by both KMDF and UMDF.
■ A Plug and Play and power management implementation that both

frameworks use.
■ An I/O model in which the frameworks handle interactions with the

operating system and manage the flow of I/O, Plug and Play, and
power management requests.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ A versioning strategy that applies to both Kernel Mode and User
Mode Drivers.

■ Consistent installation techniques for both Kernel Mode and User
Mode Drivers.

This design has several important advantages:

■ The frameworks implement common driver features and default
behavior, thus making vendor-written drivers smaller and faster to
develop and debug.

■ Microsoft can change the operating system’s internal data structure
without introducing driver incompatibilities.

■ Driver developers and hardware vendors are better isolated from
incremental changes in each new version or update of the operating
system.

■ Each framework can track the state of the driver, operating system,
and device, thus eliminating much of the complex logic often
required in a driver, particularly in respect to Plug and Play and
power management.

The WDF model provides a consistent but extensible driver development
interface. Both frameworks conform to conventions for naming, parameter
types and usage, object hierarchy, and default. Features that are required
by or common to all device types are part of each overall framework, so
driver writers can apply knowledge gained from writing a driver for one
device type to writing a driver for another device type.

2.5 WDF Object Model

In Chapter 1, Objects, we covered what are objects and classes. This is
the point in our discussion of the WDF object model: that we start to
talk about the use of objects by the WDF. Objects are a significant fun-
damental element of our device driver program development. Of
course, many other aspects of Windows 7 use objects as well. After look-
ing over this section, you might want to go back and revisit Chapter 1
again.

2.5 WDF Object Model 17

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18 Chapter 2 Windows Driver Foundation Architecture

In the WDF object model:

■ Objects work as building blocks for the driver. A driver modifies
these objects through well-defined interfaces. The objects them-
selves have well-defined life cycles.

■ A set of events can affect each type of object. The framework defines
default behavior for each event. To support device-specific behavior,
the driver includes callback routines that override the defaults.

The model defines a set of objects that represents common driver con-
structs, such as devices, queues, I/O requests, and the driver itself. The
objects have properties, methods, and events:

■ Properties describe characteristics of the object. Each property is
associated with methods that get and (if relevant) set the value of
the property.

■ Methods perform actions on the objects.
■ Events are conditions for which a driver might need to take action.

WDF identifies possible events for each object and defines default
actions for most of them. The driver includes code to handle only
the events for which the default actions are inappropriate or inade-
quate for its device. When the event occurs, WDF invokes the
related callback.

The WDF driver creates instances of the objects that it requires to service
its device and customizes those instances to suit its requirements. For each
instance, the driver provides callbacks for the events that require actions
other than the WDF defaults. The callbacks call methods on the object to
perform any additional actions.

Objects are organized hierarchically. The WDF driver object is the
root object; all other objects are subordinate to it. For most types, a driver
can specify the parent when it creates the object. If the driver does not
specify a parent at object creation, the framework sets the parent to the
WDF driver object by default. Some object types, however, have prede-
fined parents that cannot be changed at creation. For example, I/O queue
objects are children of the device object. Each child object is deleted when
its parent object is deleted.

Although the object model applies to both the KMDF and UMDF, WDF
objects themselves are implemented differently in the two frameworks.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5 WDF Object Model 19

2.5.1 Kernel Mode Objects
KMDF objects are structures that are opaque to the driver. Drivers never
directly access instances of KMDF objects. Instead, they reference object
instances by handles. To read, write, or perform an action on an object, a
driver calls a method on the object and passes the handle.

The KMDF defines more than 20 types of objects. Table 2.2 lists some
of the most commonly used.

KMDF objects are unique to the framework. They are not managed by
the Windows object manager and therefore cannot be manipulated by
using the system’s ObXxx functions. Only the framework and WDF driv-
ers can create and manipulate them.

Similarly, KMDF events are not related to the kernel dispatcher events
that Windows uses as synchronization mechanisms. A driver cannot create,
manipulate, or wait on a WDF event. Instead, the driver registers a call-
back for the event and WDF calls the driver when the event occurs.

2.5.2 User Mode Objects
UMDF objects are based on the component object model (COM). The
UMDF uses a small subset of COM for query-interface and reference
counting features. In User Mode Drivers, both the driver and the framework

Object Type Name Usage

WDFDRIVER Represents the driver object
WDFDEVICE Represents a device object
WDFQUEUE Represents a queue of I/O request
WDFINTERRUPT Represents an interrupt resource
WDFREQUEST Describes an I/O request
WDFMEMORY Describes a buffer for an I/O request
WDFDMANENABLE Describes the characteristic of all DMA transfers

for a device
WDFDMATRANSACTION Manages operations for an individual DMA

request
WDFIOTARGET Represents the driver that is the target of an

I/O request

Table 2.2 Commonly Used KMDF Object Types

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

20 Chapter 2 Windows Driver Foundation Architecture

implement and expose COM-style interfaces. Handles are not required
because the interfaces are abstract base classes and thus identify the object.

The UMDF defines fewer objects than the KMDF because User
Mode Drivers cannot directly access hardware and therefore do not per-
form direct memory access (DMA) or handle interrupts. Table 2.3 lists the
interfaces that expose the UMDF object types.

2.6 Plug and Play and Power Management Support

Simplifying driver support for Plug and Play and power management and
making it available in both kernel mode and user mode were primary
design goals for WDF. Seamless handling of Plug and Play and power
events is critically important to system reliability and a good user experi-
ence, but is exceedingly complex to implement correctly.

Much of this complexity occurs because drivers must determine the cor-
rect way to handle each Plug and Play or power management request. Proper
handling depends on the driver’s position, the device stack, the current state
of its device, the current state of the operating system, and sometimes the
nature of an impending state change for the device or system. Such support
typically requires thousands of lines of code to handle tricky, state-dependent
situations. Most drivers require code to handle requests that they don’t even
support.

Object Interface Name Usage

IWDFObject Defines the base WDF object type
IWDFDriver Represents the driver object
IWDFDevice Represents a device object
IWDFFile Represents a file object
IWDFIoQueue Represents a queue of I/O requests
IWDFIoRequest Describes an I/O request
IWDFIoTarget Represents the driver that is the target of an I/O

request
IWDFMemory Provides access to an area of memory

Table 2.3 Interfaces for UMDF Object Types

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.6 Plug and Play and Power Management Support 21

WDF concentrates the state-tracking and decision-making logic in the
frameworks, instead of requiring it in each driver. WDF support for Plug
and Play and power management is based on the following principles:

■ The driver should not be required to interpret or respond to every
uninteresting request. Instead, the driver should be able to “opt in”
and handle only the requests that are relevant to its device.

■ The frameworks should provide default behavior for a rich set of
Plug and Play and power features, including device stop, device
removal, device ejection, fast resume, low run-time power usage,
and device wake-up by external events.

■ WDF actions at each point must be well-defined and predictable; in
effect, a “contract” applies to each driver callback.

■ Plug and Play and power management should be thoroughly
integrated with other parts of the frameworks, such as queue
management.

■ The frameworks must support both simple and complex hardware
and driver designs.

■ A driver should be able to override any framework-supplied
defaults.

2.6.1 Plug and Play/Power Management
State Machine

Internally, WDF implements Plug and Play and power management as a
state machine. Both the KMDF and UMDF use the same state machine.
A driver includes callbacks so that it can perform device-specific actions at
individual states in the machine. For example, a driver can provide a call-
back that is called immediately after its device enters the working state.

At each state transition, a predetermined set of events is valid for each
type of object, and the framework invokes the driver’s callbacks for these
events in a defined order. Thus, a driver can assume that both the system
and its device are in a particular state whenever it is asked to perform a
Plug and Play or power management action.

The complicated logic that tracks system and device state is incorpo-
rated into the framework, not into the driver. This approach vastly reduces
the amount of required decision-making in the driver—especially during
power transitions—and eliminates much redundant code. Instead, the
framework defines a state-related event and the driver optionally supplies

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

22 Chapter 2 Windows Driver Foundation Architecture

a corresponding callback. As a result, a WDF driver includes code to
handle only those events for which it requires device-specific support. All
other events can be handled by WDF defaults.

Furthermore, Plug and Play and power management support are inte-
grated throughout the framework so that other aspects of the driver oper-
ate properly when state transitions occur. For example, a driver can
configure its I/O queues so that the framework stops dispatching requests
while the device is in a low-power state.

2.7 Integrated I/O Queuing and Cancellation

WDF integrates Plug and Play and power management support with the
queuing of I/O requests and, in turn, integrates queuing with request
cancellation.

Both the KMDF and UMDF provide configurable I/O queues. The
driver creates the queues and configures them for specific I/O request,
power management characteristics, and dispatching requirements. The
framework queues and dispatches requests according to the driver’s specifi-
cations: sequentially (one at a time), in parallel (as soon as they arrive), or
manually (at the driver’s explicit request). When Plug and Play or power
management events affect queuing, WDF can start, stop, or resume queu-
ing as appropriate, depending on how the driver configured the queue.

Because Windows I/O is inherently asynchronous, handling the can-
cellation of an I/O request is often complex. The driver must cope with
several potential race conditions and one or more locks, and the required
code is typically scattered among several driver routines.

WDF relieves drivers of much of this burden by managing the locks for
the I/O queues and by canceling queued requests without driver interven-
tion. (A driver can, however, register for notification when a request is can-
celed.) By default, requests that are in a queue can be canceled. Requests
that have been removed from a queue and dispatched to a driver cannot be
canceled unless the driver specifically marks them so. WDF drivers that use
these defaults typically require little if any cancellation code.

2.7.1 Concurrency
Managing concurrent operations is another challenge in writing
a Windows driver. Because Windows is a pre-emptive, multitasking

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.7 Integrated I/O Queuing and Cancellation 23

operating system, multiple threads can concurrently try to access shared
data structures or resources, and multiple driver routines can run concur-
rently. To ensure data integrity, drivers must synchronize access to shared
data structures.

WDF simplifies synchronization by implementing several internal syn-
chronization mechanisms and by holding any required locks. In addition,
WDF synchronization scope is a configurable object-based mechanism for
specifying the degree of concurrency. (Synchronization scope is called the
locking constraint in the UMDF.) An object’s synchronization scope deter-
mines whether WDF invokes multiple event callbacks on the object con-
currently. Drivers that use the KMDF can specify synchronization scope
for driver, device, and file objects. In the UMDF, synchronization scope
applies only to device objects.

WDF defines the following synchronization scopes:

■ Device scope—WDF does not call certain I/O event callbacks con-
currently for an individual device object or any file objects or queue
objects that are its children.

■ Queue scope—These I/O callbacks are not called concurrently on a
per-queue basis. If a Kernel Mode Driver specifies queue scope for
a device object, these callbacks can run concurrently for multiple
queues. However, multiple callbacks for an individual queue object
will not be called concurrently. The initial UMDF release does not
support queue scope.

■ No scope—WDF does not acquire any locks and can call any event
callback concurrently with any other event callback.

By default, the KMDF uses no scope. A Kernel Mode Driver must “opt in”
to synchronization for its objects by setting device scope or queue scope
when it creates an object. The UMDF uses device scope by default.

For Kernel Mode Drivers, the KMDF also enables driver writers to
constrain the interrupt request level (IRQL) at which the callbacks can be
invoked.

2.7.2 I/O Model
In Windows, the I/O request packet (IRP) does more than just present
traditional I/O requests (read, write, create, and so forth) to drivers. It
works as a general packet-based communication mechanism between the

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

24 Chapter 2 Windows Driver Foundation Architecture

operating system and drivers, and between drivers themselves. The
Windows I/O manager sends IRPs to notify drivers of Plug and Play
requests, power management requests, changes in device status, and
queries about device and driver resources (among other purposes) in addi-
tion to passing I/O requests. Therefore, the WDF I/O model encompasses
more than just data transfers to and from a device.

For WDF drivers, the framework manages the mechanics of dispatch-
ing, queuing, completing, and canceling IRPs on behalf of its drivers. The
framework calls the driver’s event callback routines to notify it of signifi-
cant events such as requests that the driver must handle.

After receiving a request, the framework records information about
the request, creates a WDF object to represent the request (if neces-
sary), and calls one or more of the driver’s event callbacks to handle the
request as appropriate. WDF queue objects help drivers to manage the
arrival of I/O requests. A driver can create one or more such queues and
configure each to receive specific types of requests. Depending on the
dispatch mechanism that the driver has designed for each queue, the
framework either delivers the request to the driver immediately or
queues it for later delivery.

The framework keeps track of every I/O request, whereas the driver
“owns” the request—that is, until the request has been canceled, com-
pleted, or passed to another target. Because the framework is aware of
all the active requests, it can call the appropriate driver callbacks in
case of IRP cancellation, power state changes, hardware removal, and
so forth.

2.7.3 I/O Request Flow
Both the KMDF and UMDF use the same I/O model, although it is imple-
mented by different components. Within this model, I/O request flow is as
shown in Figure 2.1.

As Figure 2.1 shows, WDF dispatcher code directs I/O request packets
within the framework. WDF dispatches I/O requests according to their
major I/O function code. The major function code is a field within the IRP
that identifies the type of request. Based on the major I/O function code,
the dispatcher determines which package within the framework should
initially handle the request.

The following sections describe how WDF processes requests.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.7.4 Device I/O Requests
When an IRP that requests device I/O arrives, the dispatcher passes it to
the I/O package. If the driver has not configured a queue or exposed a call-
back for the requested type, the framework takes a default action that
depends on the type of driver. For a User Mode Driver, or for a Kernel
Mode Function Driver or Bus Driver, the framework fails the request. For
a Kernel Mode Filter Driver, the framework forwards the request to the
next lower driver in the stack.

If the driver has configured a queue or exposed a callback for the
request type, the framework creates a WDF request object, which contains
the information in the original IRP structure along with additional
information about the driver state. The framework then places the request
object in the corresponding queue.

2.7 Integrated I/O Queuing and Cancellation 25

Figure 2.1 Block Diagram I/O Request Flow

Dispatcher

I/O Package

Nonpower-
Managed I/O

Queues

Power Managed
I/O Queues

Driver
Callbacks

I/O Target

Plug and Play/
Power

Package

Driver
Callbacks

WMI Package
Driver

Callbacks

IRPs

WMI
Requests

(KMDF only)

Plug and Play
and Power
Requests

I/O Requests

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

If the queue is configured for automatic power management, the
framework then determines whether the device is in the correct power
state. If not, the Plug and Play and power package puts the device in the
working state. If the driver has registered callbacks for power events, the
framework calls the Plug and Play; otherwise, it takes whatever default
steps are required.

After the device has entered the working state, the framework
dispatches the I/O request according to the driver’s specifications by
invoking the callbacks registered for the I/O request. A driver can also
request manual dispatching, which means that it must call the framework
to get a request. The framework passes the WDF request object when it
invokes the callbacks. The driver’s callbacks might set or get properties for
the request, call methods on the request object or other WDF objects,
perform device I/O, and take other actions as necessary to handle the
request.

When the driver has finished processing the request, the driver can
complete it or pass it on to an I/O target. An I/O target is an external des-
tination for the I/O request. The next lower driver in the device stack is
considered the local I/O target; any other driver is considered a remote
I/O target.

If a driver does not complete an I/O request, it typically sends the
request to its local I/O target. Occasionally, however, a driver might require
information from a different driver before it can complete a request. To
obtain this information, the driver creates an object to represent the
remote I/O target, creates a WDF request object, and then calls methods
on the I/O target to send the request.

2.7.5 Plug and Play and Power Management
Requests

When a Plug and Play or power request arrives, the framework determines
whether any Plug and Play or power management state changes are
required to satisfy the request. If so, the framework takes the necessary
actions to change the state and either calls the driver’s registered event
callbacks or performs default actions if the driver has not registered any
callbacks for those events.

After the relevant callbacks have returned, the framework completes
or forwards the request, as appropriate, on the driver’s behalf.

26 Chapter 2 Windows Driver Foundation Architecture

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.8 WMI Requests (Kernel Mode Drivers Only)

A Windows Management Instrumentation (WMI) request triggers call-
backs that the driver registered for any current WMI events. In its WMI
callbacks, the driver might call WMI methods on the device object to cre-
ate and manipulate WMI instances of to change its status as a WMI
provider. After the WMI callbacks have returned, the framework com-
pletes or forwards the request, as appropriate, on the driver’s behalf. Only
the KMDF supports WMI.

To understand how an I/O request flows through a WDF driver, con-
sider the following scenario:

■ A user mode process requests a read from a device.
■ At the time of the request, the device is in a low-power state.
■ The driver has configured a power-managed queue to accept read

requests.

The request is processed by the WDF function driver as follows:

1. The IRP dispatcher inspects the IRP and directs it to the I/O pack-
age. The I/O package creates a WDF request object to represent
the IRP, adds the WDF request object to the queue, and checks
the current device power state. Because the device is in a low-
power state, the I/O package calls the Plug and Play/power man-
agement package to put the device in the fully powered working
state so that it can perform the read operation.

2. The Plug and Play/power management package returns the device
to the working state by taking default actions and calling the appro-
priate power management callbacks implemented by the driver.

3. When the device has successfully reentered the working state, the
framework dispatches the read request to the driver. If the driver
has configured manual dispatching, the driver calls a method on
the queue to get a request. Otherwise, the framework dispatches
the request either immediately or when the driver has completed
the previous request, depending on the queue’s configuration.

4. If the driver can satisfy the request, it does; if it cannot, it sends the
request to an I/O target.

2.8 WMI Requests (Kernel Mode Drivers Only) 27

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.9 Driver Frameworks

The WDF driver model is implemented through the KMDF, which sup-
ports Kernel Mode Driver development, and the UMDF, which supports
User Mode Driver development. The frameworks provide the basic
driver infrastructure and perform the following services for WDF
Drivers:

■ Define WDF objects that drivers can instantiate.
■ Manage object lifetimes.
■ Expose a basic set of DDIs that drivers call to manipulate the

objects.
■ Provide a common implementation of features that drivers typically

require, such as Plug and Play, power management, synchroniza-
tion, I/O queues, and access to the registry.

■ Manage the flow of I/O requests and Plug and Play and power noti-
fications from the operating system to the driver.

Instead of calling the operating system directly, drivers interact with the
appropriate framework for most services. The frameworks manage most of
the interactions with the operating system on behalf of the driver. In effect,
the frameworks shield driver developers from the details of the operating
system.

The frameworks implement the WDF I/O model, object model, and
Plug and Play and power management support. Each framework receives
I/O requests, calls the driver to handle events according to the driver’s con-
figuration, and applies defaults otherwise. Both frameworks provide intel-
ligent defaults for common operations so that drivers do not require large
amounts of potentially buggy “boilerplate” code.

The frameworks support common features required for all device
classes. Device-class-specific extensions can also be added. For example,
the initial release of the KMDF supports extensions specifically for USB
devices. As new features are added to the operating system, and as new
device classes are supported, features that are common to all device classes
will be added to the base set of DDIs in the frameworks. Extensions will
provide features that are required by one or more specific device classes,
but not by every device class. The extensions are intended to replace the
miniport models common with WDM.

28 Chapter 2 Windows Driver Foundation Architecture

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.9 Driver Frameworks 29

2.9.1 Kernel Mode Framework
For Kernel Mode Drivers, the KMDF does not replace WDM; instead, it
provides a skeletal WDM implementation. In effect, the driver developer
configures the skeletal driver to work with a particular device by creating
objects and providing event-based callback routines.

The KMDF is a reentrant library that can be shared by multiple drivers.
Drivers are dynamically bound with the library at load time, and multiple
versions of the library can be used by multiple drivers simultaneously.

The KMDF currently supports creation of the following types of
Kernel Mode Drivers:

■ Function drivers for Plug and Play devices.
■ Filter drivers for Plug and Play devices.
■ Bus drivers for Plug and Play device stacks.
■ Control device drivers for legacy (NT 4.0-style) devices that are not

part of a Plug and Play stack.

Currently, the KMDF does not support bus filter drivers.
WDF provides certain methods and callbacks specifically for bus driv-

ers, others specifically for function and filter drivers, and still others for
control device drivers.

The KMDF identifies a function driver, control device driver, or a bus
driver based on the methods that the driver calls and the callbacks that the
driver supports. For example, the bus driver for a device typically supports
callbacks to enumerate the children of the device and to supply a list of the
hardware resources that the device requires. A function driver for a device
typically supports callbacks to manage power to its device.

A filter driver explicitly identifies itself as such before creating a device
object. The KMDF uses this information when passing I/O requests to the
driver. A filter driver registers for only the I/O requests it chooses to filter;
the KMDF passes all other requests to the next lower driver. (For a func-
tion or bus driver, WDF fails other requests.) By contrast, a WDM filter
driver must accept all I/O requests that could be targeted to its device, pass
those it does not filter to a lower driver, and act on the remaining subset.
A WDM filter driver requires logic to inspect and forward many types of
requests; a WDF filter driver has no such code because it receives only the
requests it is interested in.

When an application sends an I/O request to a Kernel Mode WDF
Driver, the request travels through the components shown in Figure 2.2.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

As the figure shows, the following components are involved in handling an
I/O request to a Kernel Mode WDF Driver:

■ Application—The application is a user mode process that issues
I/O requests through the Win32 API.

■ Win32 API—In response to the application’s I/O request, the
Win32 API calls I/O routines in the Windows kernel.

■ Windows kernel—The I/O manager in the Windows kernel cre-
ates an IRP to represent the request and presents it to the target
driver by calling the driver at a designated entry point. For Kernel
Mode WDF Drivers, the KMDF registers the entry points, in effect
intercepting the request on behalf of the driver.

■ KMDF—The KMDF processes the request as previously described
in the section “I/O Request Flow,” creating a WDF request object
and calling the driver’s event callback routines as required.

30 Chapter 2 Windows Driver Foundation Architecture

Figure 2.2 I/O Flow to Kernel Mode WDF Driver

Application

Win32 API

Windows Kernel
I/O Manager

Kernel Mode Driver
KMDF

I/O Request

User Mode

Kernel Mode

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.9 Driver Frameworks 31

2.9.2 User Mode Framework
The UMDF implements a subset of the KMDF functionality, including
support for Plug and Play, power management, and asynchronous I/O.
Drivers that run in user mode have access only to the user address space
and therefore pose low risk to system stability. User Mode Drivers cannot
handle interrupts, perform DMA, or use kernel mode resources such as
nonpaged pool.

Using the UMDF, developers can create drivers for any protocol or
serial-bus based device. Although these drivers run in user mode, they use
the standard Plug and Play installation mechanism and the same I/O model
as Kernel Mode WDF Drivers. Figure 2.3 shows the components involved
in transmitting an I/O request from an application to a User Mode WDF
Driver.

Figure 2.3 I/O Flow to User Mode WDF Driver

Application

Win32 API

Windows Kernel
I/O Manager

Reflector

I/O Request

User Mode

Kernel Mode

Host Process

User Mode
Driver

UMDF

Run-Time
Environment

Driver
Manager

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 2.3 includes the following components, described according to
the typical flow of an I/O request:

■ Application—The application is a user mode process that issues
I/O requests through the Win32 API.

■ Win32 API—In response to the application’s I/O request, the
Win32 API calls I/O routines in the Windows kernel.

2.10 Windows Kernel

The I/O manager in the Windows kernel creates IRPs to represent the
requests and presents them to the target driver by calling the driver at a
designated entry point. If the target of the request is a User Mode WDF
Driver, however, the I/O manager cannot call the driver or the UMDF
directly because these components run a user mode process, and kernel
mode components cannot be called back to user mode. Therefore, the I/O
manager does not present the request directly to the User Mode Driver.
Instead, the I/O manager presents the request to a kernel mode compo-
nent called the reflector.

2.10.1 Reflector
The reflector is a Kernel Mode WDM Filter Driver that represents the
User Mode Driver in the Kernel Mode Driver stack. The reflector passes
the I/O request to the User Mode Driver host process.

The reflector manages communication between the kernel mode com-
ponents and the User Mode Driver host process. It monitors the driver
host process to ensure that it responds properly to messages and completes
critical operations in a timely manner, thus helping to prevent driver and
application hangs. The reflector also sends messages to the driver manager
as required.

The reflector is supplied by Microsoft and is added as the top driver in
the Kernel Mode Driver stack during installation of the User Mode Driver.

2.10.2 Driver Host Process
The driver host process is the user mode process in which the User Mode
Driver runs. It includes the following components:

■ The User Mode WDF Driver is an in-process COM component that
controls the hardware from user mode.

32 Chapter 2 Windows Driver Foundation Architecture

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ The UMDF exposes the User Mode DDI. The UMDF is a
dynamic-link library (DLL) of COM-style objects that support the
presentation, flow, and management of I/O, Plug and Play, and
power management requests to the driver.

■ The run-time environment dispatches I/O requests, loads the driver,
constructs and destroys the user mode device stack, manages a user
mode thread pool, and handles messages from the reflector and the
driver manager.

The driver host process is separate from the application process and
the driver manager. It runs in the security credentials of a LocalService
account, although it is not a Windows service. The driver host process
contains the user mode device stack for the device. The device stack is
visible to all applications across the system. Each instance of a device has
its own device stack. Currently, each instance has a separate driver host
process, too. The driver host process is a child process of the driver
manager.

2.10.3 Driver Manager
The driver manager creates and shuts down the driver host process and
maintains status information about it. It also responds to messages from
the reflector. The driver manager runs as a Windows service is started dur-
ing installation of the first device that is managed by a User Mode WDF
Driver. The driver manager must be running all the time that any device
controlled by a User Mode WDF Driver is installed on the system.

2.11 Tools for Development and Testing

The WDF has some outstanding tools to aid in the testing of drivers. We
will cover those in the following discussion. Thoroughly testing a driver is
nearly as complex as writing one for two main reasons:

■ Observing the point of error can be difficult. In many cases, a driver
error is not apparent until long after it has actually occurred. If a
Kernel Mode Driver uses a DDI incorrectly, the system might not
crash until another driver attempts to perform an action based on
the first driver’s error.

■ Subtle, condition-dependent errors and related code paths are difficult
to exercise. Drivers that work correctly under normal circumstances

2.11 Tools for Development and Testing 33

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

can have subtle errors that occur only under exceptional situations,
such as when another driver, lower in the stack, fails an I/O request.

Too often, testing becomes a hit-or-miss, trial-and-error affair. To help
remedy the situation, WDF has several testing and tracing features that
make it easier for driver writers to find problems early in the development
cycle. We will cover these features in more detail in the subsequent dis-
cussion. These features include the following:

■ Built-in verification with the frameworks verifier
■ Built-in trace logging
■ Debugger extensions

In addition, WDF includes PREfast and Static Driver Verifier (SDV).
PREfast and SDV are both compile-time code verification tools that are
provided with the Windows Driver Kit (WDK). PREfast analyzes code on
a function-by-function basis, looking for a wide variety of common logic
and usage errors. SDV applies knowledge about system internals to Kernel
Mode Driver verification.

2.11.1 PREfast for Drivers
PREfast for Drivers (PFD), an extension of PREfast, is a compile-time
static verification tool that detects errors missed by the compiler and by
conventional run-time testing. It detects common coding errors in C and
C++ programs, and is designed to detect errors in Kernel Mode Driver
code. You can run PFD very early in the development cycle—as soon as
the code compiles correctly. PFD is integrated into the Windows 7 build
environments in the Windows Driver Kit (WDK) as well as into Windows
Automated Code Review (known as OACR). PFD supports a large vocab-
ulary of annotations beyond those supported for generic PREfast, includ-
ing annotations for IRQLs, resource-object leaks, memory leaks, and
stricter type checking.

PREfast for Drivers examines each function in the code indepen-
dently, looking for common errors and unwise coding practices. PFD runs
quickly, even on large drivers, and generates a report that identifies the
line of driver code with the suspected error.

PREfast for Drivers runs on Windows XP and later versions of
Windows and is designed to analyze code written for X86-based and

34 Chapter 2 Windows Driver Foundation Architecture

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

X64-based platforms. It can analyze C and C++ source files for drivers
in any driver model, including managed code.

You should use PREfast for Drivers in conjunction with Driver
Verifier, Static Driver Verifier, and the checked build of Windows to
ensure that your driver code is safe and reliable.

The following new features for PFD are in Windows 7:

■ PFD now supports a broader range of expressions for analysis, such
as const, member names, and side effect-free C expressions.

■ PFD now has better annotation error checking.
■ PFD now has improved defect detection, including “banned API”

checking.
■ PFD now generates warnings that help you prepare to analyze a

driver with Static Driver Verifier (SDV). SDV requires drivers to
have declarations that define the role of the driver-supplied callback
functions. PFD will indicate when you need to add these role type
declarations to the drive code.

■ PFD is now integrated into the build environments and OACR in
the WDK. When you build your driver using the WDK build envi-
ronments, PFD runs automatically in the background and presents
an easy-to-read view for any potential defects it finds.

For Windows 7, all Microsoft drivers that ship with the operating system
and all WDK samples have been verified with PFD, and identified defects
have been fixed. In addition, the WDK public headers are now annotated
to enable PFD to better find code defects. The following functionality aids
in finding code defects.

■ Because PFD annotations are not in public header files, driver writ-
ers can take advantage of these checks by simply running PFD on
their drivers. Adding PFD annotations to your driver code will give
you deeper analysis.

■ Windows headers for drivers now provide a comprehensive set of
examples of how to annotate your functions.

2.11.2 Static Driver Verification (SDV)
Static Driver Verifier (SDV) is a static verification tool that runs at compile
time. It explores paths in the driver code by symbolically executing the

2.11 Tools for Development and Testing 35

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

source code, making the fewest possible assumptions about the state of the
operating system and the initial state of the driver. As a result, SDV can
exercise code in paths that are missed in traditional testing.

SDV includes a set of rules that defines proper interaction between a
driver and the operating system kernel. During verification, SDV examines
every applicable branch of the driver code and the library code that it uses,
and tries to prove that the driver violates the rules. If SDV fails to prove a
violation, it reports that the driver complies with the rules and passes the
verification.

2.11.3 Frameworks Verifier
WDF includes an internal driver verifier that provides framework-specific
features that are not currently available in the driver verifier (Verifier.exe).
The frameworks verifier provides extensive tracing messages that supply
detailed information about activities within the framework. It tracks refer-
ences to each WDF object and builds a trace that can be sent to the
debugger.

In kernel mode, the frameworks verifier checks lock acquisition and
hierarchies, and ensures that calls to the framework occur at the correct
IRQL. It also verifies correct I/O cancellation and queue usage. It can also
simulate low-memory and out-of-memory conditions and test a driver’s
response to these situations to determine whether the driver responds
properly without crashing, hanging, or failing to unload.

In user mode, the frameworks verifier checks for correct use of param-
eters, validates configurations, and correct responses to events.

2.11.4 Trace Logging
Both the KMDF and UMDF support integrated internal trace logging.
The following discussions cover this internal trace logging.

The KMDF includes an internal trace logger called the in-flight
recorder (IFR), which is based on the Windows Software Trace
Preprocessor (WPP). The IFR provides a recent history of events (cur-
rently, about the last 100 trace events) on a per-driver-instance basis. The
trace logs track the progress of IRPs through the framework and the cor-
responding requests through a driver. Each WDF driver has its own log.

Kernel Mode Drivers can use Event Tracing for Windows (ETW) and
WPP software tracing to generate a trace log that contains information

36 Chapter 2 Windows Driver Foundation Architecture

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

about both the driver and the KMDF. Driver-level tracing provides
information about events in the driver code. Internal WDF tracing pro-
vides information about events internal to WDF that might affect driver
activities. A driver developer can choose whether to implement driver-
level tracing, but internal WDF tracing is always available.

Driver writers can use the software tracing tools provided with the
WDK to view the IFR logs during interactive debugging. These logs can
also be made available as part of a mini dump for inspection after a crash.
The typical saved IFR log file is small (10K to 20K bytes) and written in a
binary form that humans cannot read.

The User Mode Driver components supplied by Microsoft start
trace sessions that record their activities and note such events as driver
hangs, timeouts, and failures. The log files from these sessions can be
sent as input to Windows Error Reporting (WER). Vendor-supplied
User Mode WDRF Drivers can use ETW to generate a trace log of
driver events.

2.11.5 Debugger Extensions
WDF also includes several debugger extensions that can dump internal
trace records. These extensions are specialized commands that run in the
context of the WinDbg debugger. These extensions are packaged in two
DLLs: WudfExt.dll contains the UMDF extensions, and WdfKd.dll con-
tains the KMDF extensions. The information they provide can help locate
the exact point in I/O processing at which an error occurred and can often
give a clue to faulty assumptions or unexpected behavior.

The two sets of debugger extensions are provided for WDF. As men-
tioned, one set supports user mode debuggers, and the other supports
kernel mode debuggers.

2.11.6 Serviceability and Versioning
To improve driver serviceability, WDF includes versioning and side-by-
side support. Versioning allows a driver binary to run with the same major
version of WDF with which it was built. Side-by-side support enables the
simultaneous use of two or more major versions of WDF by two or more
drivers.

Serviceability is a common problem for drivers. When Microsoft
releases a new version of Windows, driver vendors must test their drivers

2.11 Tools for Development and Testing 37

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

to ensure that they operate properly on the new release. Any driver that
uses undocumented features, or that uses documented features in a non-
standard way, is likely to encounter compatibility problems from one
release to the next. Even drivers that follow the rules might be affected by
subtle changes between versions of Windows.

Drivers that use the frameworks, however, are less susceptible to such
problems. Microsoft is responsible for testing the frameworks on each new
version of the operating system and ensuring that drivers built with older
versions maintain consistent behavior from one release to the next.

In addition, the versioning support in WDF helps to prevent compat-
ibility problems. The frameworks have major and minor version numbers,
which are recorded in the driver binaries. In general, a WDF driver runs
against the latest available minor version of the major version against which
it was compiled, so that it can benefit from bug fixes in the new version.

A WDF driver can use a newer minor version, but not an older minor
version, than the one against which it was built. Multiple WDF drivers can
use a single WDF library. They can also run side by side using different
major versions of the framework.

38 Chapter 2 Windows Driver Foundation Architecture

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

P A R T I I

USER MODE DRIVERS

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

41

C H A P T E R 3

WINDOWS 7 USER MODE
DRIVERS OVERVIEW AND
OPERATION

The Windows Driver Foundation (WDF) contains a framework for the
creation of User Mode Drivers. The User Mode Driver Framework
(UMDF) is designed to support protocol device classes such as cameras
and portable music players. It integrates the installation and management
of these devices with standard operating system facilities, such as I/O and
Plug and Play and power management.

UMDF is based on the same conceptual driver programming model as
the Kernel Mode Driver Framework (KMDF) that is also part of WDF.
However, the two frameworks implement the model with different com-
ponents, device-driver interfaces (DDIs), and data structures. KMDF
includes some objects that are available only in kernel mode, and UMDF
includes some objects that are available only in user mode.

Like KMDF, UMDF provides intelligent defaults, so that driver devel-
opers can focus on their device hardware and avoid writing code to per-
form many common driver tasks. Instead, that code is built into the
framework, thus making vendor-written drivers smaller, ensuring greater
code reuse, and providing for global bug fixes by Microsoft.

This chapter describes the architecture and features of UMDF and
outlines the requirements for drivers that use UMDF (sometimes called
UMDF-based drivers or simply UMDF drivers).

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

42 Chapter 3 Windows 7 UMD Overview and Operation

3.1 Devices Supported in User Mode

UMDF supports the development of drivers for protocol-based or serial
bus-based devices, such as Universal Serial Bus (USB) devices and network-
connected devices. For example, drivers for the following types of devices
can be written in user mode:

■ Portable storage devices
■ Portable media players
■ USB bulk transfer devices
■ Auxiliary display devices

The device can be directly connected, connected on the network, or con-
nected via a wireless protocol such as Bluetooth. UMDF also supports
software-only drivers.

The initial UMDF release includes the following sample UMDF drivers:

■ Skeleton—A minimal driver that is intended for use as a template
for driver development.

■ Echo—A simple-software-only driver that shows the use of a serial
I/O queue.

■ USB/FX2_Driver and USB/Echo Driver—Function drivers for the
USB-FX2 board that was designed by Open Systems Resources,
Inc. (OSR). This is the board we will be using for our driver exam-
ple developments for UMDF.

■ USB/Filter—A filter driver for the USB-FX2 device stack.

User Mode Drivers can support 32-bit or 64-bit devices for any Windows
hardware platform and can be distributed on Windows Update. UMDF is
currently supported for Windows 7, Windows Vista, and Windows XP.

Drivers that require the following cannot be written as UMDF drivers;
they must be written as Kernel Mode Drivers:

■ Handling interrupts
■ Direct access to the hardware, such as direct memory access (DMA)
■ Strict timing loops
■ Use of nonpaged pool or other resources that are reserved for

kernel mode.

In addition, a UMDF driver cannot be a client of the Windows kernel or
of a Kernel Mode Driver.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.2 UMDF Model Overview

A UMDF driver runs in a driver host process that also hosts UMDF and a
run-time environment. Each such driver operates as part of a stack of driv-
ers that manage a device. The User Mode Drivers are loaded above the
Kernel Mode Drivers at the top of the stack. Because user mode compo-
nents do not have access to the system address space where the system and
Kernel Mode Drivers maintain I/O requests and other shared data, the
UMDF architecture includes components that communicate between ker-
nel mode and user mode. Figure 3.1 shows the overall architecture of the
UMDF driver model.

3.2 UMDF Model Overview 43

Figure 3.1 UMDF Driver Architecture

Run-Time
Environment

Host Process

User Mode
Driver

Framework

Run-Time
Environment

Host Process

User Mode
Driver

Framework

Applications

Driver
Manager

Windows Kernel

User Mode

Kernel Mode

Reflector
(Filter)

Reflector
(Filter)

Kernel Mode
Driver

Kernel Mode
Driver

Kernel Mode
Driver

Win32 API

Device Stack Device Stack

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 3.1 shows two device stacks that service two different devices.
Each device stack includes a UMDF driver that runs in its own driver host
process. The figure includes the following components, described accord-
ing to the typical flow of an I/O request.

Applications. The applications are clients of the drivers. These applica-
tions are user mode processes that issue I/O requests through the Win32 File
I/O API. The Win32 functions call I/O routines in the Windows kernel.

Windows kernel. The Windows kernel creates I/O request packets
(IRPs) to represent the user mode I/O requests and forwards them to the
top of the Kernel Mode Driver stack for the target device.

Reflector. The reflector is a Kernel Mode WDM Filter Driver that is
installed at the top of the kernel mode device stack for each device that a
UMDF driver manages. The reflector manages communication between
the kernel mode components and the User Mode Driver host process. The
reflector forwards I/O, power, and Plug and Play messages from the oper-
ating system to the driver host process, so that User Mode Drivers can
respond to I/O requests and participate in Plug and Play device installa-
tion, enumeration, and management. The reflector also monitors the driver
host process to ensure that it responds properly to messages and completes
critical operations in a timely manner, thus helping to prevent driver and
application hangs. Microsoft provides the reflector.

Driver manager. The driver manager creates and shuts down the
driver host processes and maintains status information about them. It also
responds to messages from the reflector. The driver manager runs as a
Windows service and is started during installation of the first device that
has a UMDF driver. One instance of the driver manager handles all of the
driver host processes. The driver manager must be running all of the time
that any device controlled by a UMDF driver is installed on the system.
Microsoft provides the driver manager.

Host process. The host process is the process in which the User Mode
Driver runs. It is separate from the application process and the driver
manager. It runs in the security credentials of a LocalService account,
although it is not a Windows service. The host process contains the user
mode device stack for the device. The device stack is visible to all applica-
tions across the system. Each instance of a device has its own device stack.
Currently, each instance has a separate driver host process, too.

The host process includes the following components:

■ The UMDF driver is an in-process component object model
(COM) component that controls the hardware from user mode.

44 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ The framework exposes the user mode DDI, which is a dynamic-link
library (DLL) of COM-style objects that support the presentation,
flow, and management of I/O, power, and Plug and Play requests to
the driver.

■ The run-time environment dispatches I/O requests, loads the driver,
constructs and destroys the user mode device stack, manages a user
mode thread pool, and handles messages from the reflector and the
driver manager.

The host process is a child process of the driver manager.
Kernel Mode Drivers. Additional Kernel Mode Drivers can service

each device. These device drivers are supplied either by Microsoft or by
the device writer.

3.2.1 UMDF Object Model
UMDF drivers are object oriented and event driven. The driver and the
framework create instances of objects that are required to support the driv-
er’s device. The driver implements event callback interfaces to handle
events that affect these objects.

The objects and interfaces are based on the COM programming pattern.
UMDF uses only a small subset of COM, specifically the COM lifetime
model; it does not depend on the entire COM infrastructure and run-time
library. The UMDF run-time environment loads the driver by reading infor-
mation that is stored in the registry under the WDF service key.

UMDF uses only the query-interface and reference-counting features
of COM. Every UMDF interface derives from IUnknow and therefore
supports the QueryInterface, AddRef, and Release methods by default.
The AddRef and Release methods manage object lifetime. The
QueryInterface method enables other components to determine which
interfaces the driver supports.

3.2.2 UMDF Objects
UMDF manages a series of objects that are exposed to the User Mode
Driver. UMDF creates some of these objects in response to application-
triggered actions, such as an I/O request; the driver creates other objects
by calling methods on UMDF interfaces.

For each type of object, UMDF defines one or more interfaces through
which to manipulate instances of the object. The interfaces provide

3.2 UMDF Model Overview 45

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

46 Chapter 3 Windows 7 UMD Overview and Operation

methods and properties. Methods define actions that can be taken on
behalf of the object and return a status to indicate whether they succeeded
or failed. Property operations set and get the attributes of the object and
cannot fail. Some interfaces are implemented by UMDF, and others are
implemented by the driver.

Table 3.1 lists all the UMDF object types and the interfaces that
UMDF implements on each type.

Table 3.1 UMDF Object Types

Type of Object Interfaces Description

Base object IWDFObject Exposes a base object for use as the
driver requires.

Device IWDFDevice Exposes an instance of a device object.
A driver typically has one device object
for each device that it controls.

Driver IWDFDriver Exposes the driver object itself. Every
driver has one driver object.

File IWDFFile Exposes a framework file object that
was opened by the Win32 CreateFile
function, through which applications
can access the device.

IWDFDriverCreatedFile Exposes a framework file object that
the driver created.

I/O queue IWDFloQueue Exposes an I/O queue, which controls
the flow of I/O in the driver. A driver
can have any number of I/O queues.

I/O request IWDFloRequest Exposes a request for device I/O.
I/O target IWDFloTarget Represents the next-lower driver in

the device stack, to which the driver
sends I/O requests.

Memory IWDFMemory Exposes memory that the driver uses,
typically an input or output buffer that
is associated with an I/O request.

USB device IWDFUsbTargetDevice Exposes a USB device object that is an
I/O target. Inherits from IWdfloTarget.

USB interface IWDFUsbInterface Exposes an interface on a USB device.
USB pipe IWDFUsbTargetPipe Exposes a USB pipe that is an I/O

target. Inherits from IWdfloTarget.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.3 Driver Callback Interfaces 47

The driver calls methods on these interfaces to perform operations on
its objects. For example, UMDF implements the IWDFloRequest
interface, and the driver calls methods in this interface to retrieve the
parameters for the I/O request.

For the driver, devices, and queues, both the framework and the driver
maintain objects. The driver-created objects are callback objects, on which
the driver implements the callback interfaces that are required to service
its device. A driver has one callback object, one device callback object for
each device that it supports, and one queue callback object for each queue
that it creates. The callback objects serve as the “context memory” for the
driver.

3.3 Driver Callback Interfaces

The driver implements callback interfaces to provide device-specific responses
to events. Each callback interface is implemented on a specific object type. For
example, Plug and Play callback interface (IPnpCallback, IPnpCallback-
Hardware, and IPnpCallbackSelfManagedIo) are implemented for device
objects, and I/O queue callback interfaces (IQueueCallbackCreate,
IQueueCallbackRead, and so forth) are implemented on I/O queue objects.

When a Plug and Play, power management, or I/O request arrives,
UMDF calls methods in the driver’s callback interfaces to handle the asso-
ciated events. For example, when UMDF receives a read request, it calls
methods in the driver’s IQueueCallbackRead interface.

A driver implements callback interfaces only for the events that are
important to its operation. When the event occurs for an object, the frame-
work invokes the callback for that object. For example, the unexpected
removal of a device is a Plug and Play event. If a device can be removed
unexpectedly, its driver should implement the IPnpCallback interface
(which includes the OnSurpriseRemoval method) to perform device-
specific operations upon ejection. When the Plug and Play manager sends
a surprise-removal notification for the device, UMDF calls the
OnSurpriseRemoval method with a pointer to the IWDFDevice inter-
face for the device that has been removed.

For most events, a driver can either provide a callback interface or
allow UMDF to perform a default action in response. For a few events,
however, a driver-specific callback is required. For example, adding a

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

48 Chapter 3 Windows 7 UMD Overview and Operation

device is an event for which every Plug and Play driver must include a call-
back. The driver object’s IDriverEntry::OnDeviceAdd callback creates
the device object.

The names of the driver-implemented callback interfaces are generally
in the form IObjectAction, where Object identifies the object to which
the interface applies and Action indicates what the interface does. For
example, the IQueueCallbackRead interface is implemented for I/O
queues and contains methods called when a queue receives a read request.

Table 3.2 lists the possible callback interfaces a driver might
implement.

Table 3.2 Driver Callback Objects and Interfaces

Description

Provides process that is
required before an object is
deleted, typically releasing any
references held on the object.
Provides main entry point and
methods to initialize the driver
and add its devices.
Handles device stop, removal,
and power state changes.
Provides hardware-related
operations before device power-
up and after device power-down.
Provides driver, rather than
framework, control over I/O
operations at specific Plug and
Play and power management
states.
Handles clean-up requests for
file objects on a specific device.
Handles close requests for file
objects on a specific device.
Handles file create requests.
Handles create, device I/O
control, read, and write
requests for which no other
interface has been
implemented.

Type of Object

Base object, or
any object that
inherits from the
base object type
Driver

Device

I/O queue

Callback Interfaces

IObjectCleanup

IDriverEntry

IPnpCallback

IPnpCallbackHardware

IPnpCallbackSelfManagedIo

IFileCallbackCleanup

IFileCallbackClose

IQueueCallbackCreate
IQueueCallbackDefault-
IoHandler

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.4 UMDF Driver Features

UMDF drivers can call methods in the framework and can use the Win32
API and other Windows user mode features.

Every UMDF driver must do the following:

■ Support the DllGetClassObject export that is required by COM.
■ Implement the IClassFactory interface to create a driver object.
■ Implement the IDriverEntry interface on the driver class.

UMDF drivers are implemented as in-process COM servers. The COM
run-time environment requires the DLL export DllGetClassObject,
which must return an IClassFactory interface so that UMDF can create
the driver callback object.

The IDriverEntry interface includes methods that initialize and
uninitialize the driver and perform other required tasks when the device is
added to the system. UMDF calls these methods when the driver is loaded

3.4 UMDF Driver Features 49

Description

Handles device I/O control
requests.
Resumes processing an I/O
request after its queue has
been stopped.
Stops processing an I/O
request because its queue is
stopping.
Handles read requests.
Handles write requests.
Provides impersonation for
certain Win32 I/O operations.
Handles cancellation of an I/O
request.
Handles completion of an I/O
request.

Type of Object

I/O request

Callback Interfaces

IQueueCallbackDevice-
IoControl
IQueueCallbackIoResume

IQueueCallbackIoStop

IQueueCallbackRead
IQueueCallbackWrite
IImpersonateCallback

IRequestCallbackCancel

IRequestCallbackRequest-
Completion

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

50 Chapter 3 Windows 7 UMD Overview and Operation

or unloaded and when the Plug and Play manager enumerates one of the
driver’s devices. Every UMDF driver must implement the IDriverEntry
interface on the driver class.

3.4.1 Impersonation
UMDF drivers run in the LocalService security context. The LocalService
context has minimum security privileges on the local computer and pre-
sents anonymous credentials on the network.

When necessary, a UMDF driver can impersonate the client process
to handle I/O requests, but not Plug and Play, power, or other system
requests. At driver installation, the INF file specifies the maximum imper-
sonation level that the driver can use.

When an application calls the CreateFile function, it can specify the
impersonation level for the driver. The impersonation level determines the
operations that the driver can perform in the context of the application
process. If the level that the application specifies is different from the min-
imum that the INF provides, the reflector uses the lower of the two
levels.

A driver requests impersonation by calling the IWDFIoRequest::-
Impersonate method with the required impersonation level and a
pointer to the driver’s IImpersonateCallback interface. The
IImpersonateCallback interface includes one method, OnImpersonation,
which should implement the code that must be run during impersonation.
To prevent security leaks, OnImpersonation should perform only the
tasks that require impersonation and should not call any other framework
methods. Properly handling impersonation is key to writing a secure
driver.

3.4.2 Device Property Store
The device property store is an area in the registry where a UMDF
driver can maintain information about the properties of its device. A
UMDF driver can create a device property store (or retrieve an
existing property store) during initialization by calling the IWDF-
DeviceInitialize::RetrieveDevicePropertyStore method. This
method returns a pointer to the IWDFNamedPropertyStore inter-
face, through which the driver can set and get the values of device
properties.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.5 I/O Request Flow 51

The format and contents of the property store is driver defined. The
property store persists in the registry until the device is uninstalled from
the system.

3.5 I/O Request Flow

Figure 3.2 shows the path that an I/O request takes from an application to
a UMDF driver.

Figure 3.2 I/O Flow to UMDF Driver

Application

Win32 API

Windows Kernel
I/O Manager

Host Process

User Mode
Driver

Framework

Run-Time
Environment

Driver
Manager

Up Device
Object

Down Device
Object

Control
Device Object

Additional Kernel
Mode Drivers

Reflector

IRP

IPC Win32 API

IPC

IPC

User Mode
Kernel Mode

Device Stack

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

52 Chapter 3 Windows 7 UMD Overview and Operation

Callers use the Win32 API to send I/O requests to devices that are
managed by UMDF drivers, just as they do for any other device. The
Win32 API calls the appropriate kernel mode I/O routine, and the
Windows kernel I/O manager creates an I/O request packet (IRP) and
sends this IRP to the driver at the top of the kernel mode device stack for
the target device. For a device that is managed by a UMDF driver, the
reflector is the driver at the top of the kernel mode device stack.

The reflector creates three types of device objects:

■ up device object—This is at the top of the kernel mode stack for the
device and thus is the reflector’s target for IRPs from the I/O man-
ager. When an IRP arrives, the reflector uses interprocess commu-
nications to forward it to the User Mode Driver host process, in
which the framework and driver run. UMDF interprets the request
and calls methods in the driver’s event callback interfaces to handle
it. The reflector creates an up device object for each device stack in
which it participates.

■ down device object—This is the reflector’s target for I/O
requests that originate in the User Mode Driver and is therefore
the default I/O target for the bottom driver in the user mode device
stack. A User Mode Driver might issue an I/O request to perform a
device I/O control operation on its own device or to retrieve data
from another device to complete one of its own requests. The
reflector creates a down device object for each stack in which it
participates.

■ control device object—This manages I/O requests to and from the
driver manager, which are not part of the normal I/O flow to the
driver. Instead, the control device object enables “sideband” I/O
between the reflector and the driver manager, which is indepen-
dent of the normal flow of I/O, power management, and Plug and
Play requests. The reflector creates only one control device object
per system.

In addition to creating IRPs to represent user I/O requests, the I/O
manager sends IRPs to notify drivers of Plug and Play requests, power
management requests, change to device status, and queries about
device and driver resources (among other purposes). Therefore, the
UMDF I/O mode encompasses both I/O request dispatching and Plug

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

and Play and power notification. The following sections will describe
these aspects of the model in more detail.

3.5.1 I/O Request Dispatching
UMDF dispatches I/O requests to the driver, manages I/O cancellation
and completion, and ensures that the Plug and Play and power state of the
device is compatible with performing device I/O. Depending on the type
of I/O request, the UMDF either queues the request or invokes a method
in a callback interface.

UMDF provides configurable I/O queue objects that a driver can
instantiate. The driver specifies which types of requests to place in each
queue and how to dispatch those requests. Each queue can hold one or
more types of requests.

UMDF queues and dispatches requests according to the driver’s spec-
ifications: sequentially (one at a time), in parallel (as soon as they arrive),
or manually (at the driver’s explicit request). If Plug and Play or power
management events affect queuing, a UMDF can start, stop, or resume
queuing as appropriate, depending on how the driver configured the
queue.

The driver provides callback interfaces to handle I/O requests on its
queues. To dispatch a request, UMDF calls a method in the corresponding
callback interface. For example, to dispatch a read request, UMDF calls
the OnRead method of the driver’s IQueueCallbackRead interface. The
driver can implement request type-specific interfaces (such as IQueue-
CallbackRead); it can also optionally implement the default I/O callback
interface IQueueCallbackDefaultIoHandler that UMDF calls when it
receives a create, read, write, or device I/O control request for which the
driver has not implemented any other interface.

3.5.2 Create, Cleanup, and Close Requests
UMDF can call the driver to handle create, cleanup, and close requests or
can automatically forward them to the default I/O target (typically, the next
lower driver in the driver stack). The framework queues create requests if
the driver configures a queue accordingly. It does not queue cleanup or
close requests. Table 3.3 shows the interfaces and methods that a driver
must implement to support, cleanup, and close requests.

3.5 I/O Request Flow 53

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Automatic forwarding is useful for drivers that process some types of
I/O requests but not others. For example, a filter driver might inspect the
data that is being written to a file but might not look at create, cleanup, or
close requests. Therefore, it would have a callback interface for write request
but would enable automatic forwarding for create, cleanup, and close.

A driver configures automatic forwarding by calling the
AutoForwardCreateCleanupClose method on the IWDFDevice-
Initialize interface before it creates the device object. This method sets a
flag that indicates whether the framework should forward these requests.
Its only parameter is one of three enumerators:

■ WdfDefault indicates that the framework should use its defaults
for forwarding. The defaults differ for filter and function drivers, as
the following sections describe.

■ WdfTrue indicates that the framework should forward requests to
the default I/O target.

■ WdfFalse indicates that the framework should not forward any cre-
ate, cleanup, or close requests. If the driver does not implement the
required interfaces to handle such requests, the framework fails the
request.

In addition to the setting of the AutoForwardCreateCleanupClose flag,
whether the framework dispatches, forwards, or completes create, cleanup,
and close requests depends on the following:

■ Whether this is a filter driver or a function driver.
■ Whether the driver implements the callback interface for the

request type.
■ For create request only, whether the driver configures a queue for

the requests.

54 Chapter 3 Windows 7 UMD Overview and Operation

Table 3.3 Supporting Create, Cleanup, and Close Requests

Request Type Interface Method

Create IQueueCallbackCreate OnCreateFile
Cleanup IFileCallbackCleanup OnCleanupFile
Close IFileCallbackClose OnCloseFile

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The following sections describe what the framework does with such
requests for each type of driver.

3.5.2.1 Create, Cleanup, and Close in a Filter Driver
The driver calls IWDFDeviceInitialize::AutoForwardCreateCleanup-
Close and sets WdfDefault. A UMDF driver identifies itself as a filter
driver by calling the IWDFDeviceInitialize::SetFilter method.

UMDF forwards cleanup and close requests for filter drivers to the
default I/O target. If a filter driver does not implement the
IQueueCallbackCreate::OnCreateFile method, UMDF forwards cre-
ate requests, too. However, if the filter driver implements OnCreateFile,
UMDF by default calls this method when a create request arrives.
OnCreateFile should perform whatever filtering tasks are required and
then, if appropriate, forward the request to the default I/O target.

If the filter driver sets WdfTrue in the call to
IWDFDeviceInitialize::AutoForwardCreateCleanupClose, UMDF
forwards create requests unless the driver implements OnCreateFile. If
the filter driver sets WdfFalse, UMDF calls the corresponding method if
the driver implements it; otherwise, UMDF fails the request.

If the filter driver completes a create request for a file object, it
should set AutoForwardCreateCleanupClose to WdfFalse so that
UMDF completes cleanup and close requests for the file object instead of
forwarding them.

3.5.2.2 Create, Cleanup, and Close in a Function Driver
In a function driver, if a create request arrives for which the driver has nei-
ther implemented the OnCreateFile method nor configured a queue to
receive create request, UMDF opens a file object to represent the device
and completes the request with S_OK. Therefore, any function driver that
does not accept create or open requests from user mode applications—and
thus does not register a device interface—must implement an
IQueueCallbackCreate::OnCreateFile method that explicitly fails
such requests. Supplying a method to fail create requests ensures that a
rogue application cannot gain access to the device.

To handle file cleanup and close requests, a driver implements the
IFileCallbackCleanup and IFileCallbackClose interfaces. If a function
driver does not implement such interfaces, UMDF closes the file object
and completes the request with S_OK.

3.5 I/O Request Flow 55

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.5.3 Create, Read, Write, and Device I/O Control
Requests

For read, write, and device I/O control requests, the driver creates one or
more queues and configures each queue to receive one or more types of
I/O requests. For create requests, the driver can configure automatic for-
warding, as described in the preceding section, or can direct the requests
to a queue.

When such a request arrives, the I/O request handler:

■ Determines whether the driver has created a queue that handles
this type of request (either by explicitly configuring the queue for
the request type or by creating a default I/O queue) or has imple-
mented a default I/O handler. If neither is true, the handler fails a
read, write, or device I/O control request if this is a function driver.
If this is a filter driver, the handler forwards the request to the
default I/O target.

■ Determines whether the queue is accepting requests and the device
is powered on (in the DO state). If both are true, the handler cre-
ates an I/O request object to represent the request and adds it to the
queue. If the queue is not accepting requests, the handler fails the
request.

■ Notifies the Plug and Play handler to power up the device if the
queue is power managed and the device is not in the DO state.

■ Queues the request.

Figure 3.3 summarizes the flow of a create, read, write, or device I/O con-
trol request through the framework to the driver.

3.6 I/O Queues

The IWDFIoQueue interface exposes a queue object that presents
requests from UMDF to the driver. Queues control the flow of I/O
through the driver.

56 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.6 I/O Queues 57

Figure 3.3 Flow of Create, Read, Write, and Device I/O Control Requests

Does
driver have a

queue for
this type?

Is the queue
accepting
 requests?

Create an I/O
request object to

represent the
request

Is the queue
power

managed?

Is the device
in the working

state?

Notify the Plug and
Play/power

handler to power
up the device

Queue the
request

Is this a filter
 driver?

YESNO

NO YES

NO YES

NO YES

NO YES

Pass the request
to the default I/O

target

Fail the request

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A driver typically creates one or more I/O queues, each of which can
accept one or more types of requests. The driver configures the queues
when it creates them. For each queue, the driver can specify:

■ The types of requests that are placed in the queue.
■ The power management options for the queue.
■ The dispatch method for the queue, which determines whether the

framework calls the driver to dispatch a request or whether the
driver calls the framework to dispatch a request. The dispatch
method also determines whether the driver services multiple
requests from the queue at a given time.

■ Whether the queue accepts read and write requests that have a
zero-length buffer.

A driver can have any number of queues, which can all be configured dif-
ferently. For example, a driver might have a parallel queue for read requests
and a sequential queue for write requests.

Although a request is in a queue and has not yet been presented to the
driver, the queue is considered the “owner” of the request. After the request
has been dispatched to the driver, it is “owned” by the driver. Internally, each
queue object keeps track of which requests it owns and which requests it has
dispatched to the driver. A driver can forward a request from one queue to
another by calling a method on the request object.

3.6.1 Dispatch Type
A queue’s dispatch type determines how and when I/O requests are deliv-
ered to the driver and, as a result, whether multiple I/O requests from a
queue are active in the driver at one time. Drivers can control the concur-
rency of I/O requests by configuring the dispatching method for their
queues. UMDF supports three dispatch types:

■ Sequential—A queue that is configured for sequential dispatching
delivers I/O requests to the driver one at a time. The queue does not
deliver another request to the driver until the previous request has
been completed or forwarded to another queue.

■ Parallel—A queue that is configured for parallel dispatching deliv-
ers I/O requests to the driver as soon as possible, whether or not
another request is already active in the driver.

58 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ Manual—A queue that is configured for manual dispatching does
not deliver I/O requests to the driver. Instead, the driver retrieves
requests at its own pace by calling a method on the queue.

The dispatch type controls only the number of requests that are active
within a driver at one time. It has no effect on whether the queue’s I/O
event callbacks are invoked sequentially or concurrently; instead, the con-
currency of callbacks is controlled by the synchronization model (locking
constraint) of the device object. Even if the synchronization model does
not allow concurrent callbacks, a parallel queue nevertheless might have
many requests active in the driver at one time.

All I/O requests that a driver receives from a queue are inherently
asynchronous. The driver can complete the request within the event call-
back or sometime later, after returning from the callback. The driver is not
required to mark the request pending, as in a Kernel Mode WDM Driver;
UMDF handles this on behalf of the driver.

3.6.2 Queues and Power Management
UMDF integrates support for queues with Plug and Play/power manage-
ment state machine. Power management is configurable on a per-queue
basis. A driver can use both power-managed and nonpower-managed queues
and can sort requests based on the requirements for its power model.

3.6.2.1 Power-Managed Queues
By default, I/O queues are power managed, which means that the state of
the queue can trigger power-management activities. Such queues have a
couple of advantages, as the following scenarios show:

■ If an I/O request arrives while the system is in the working state
(SO) but the device is not, UMDF notifies its Plug and Play and
power handler so that it can restore device power.

■ If the device power state begins to change while the driver “owns”
an I/O request that was dispatched from a power-managed queue,
UMDF can notify the driver through the IQueueCallback-
IoStop::OnIoStop callback. The driver must complete, cancel, or
acknowledge all of the I/O requests that it owns before the device
can exit from the working state.

3.6 I/O Queues 59

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

For power-managed queues, UMDF pauses the delivery of requests when
the device leaves the working state (DO) and resumes delivery when the
device returns to the working state. Although delivery stops while the queue
is paused, queuing does not. If UMDF receives a request while the queue is
paused, UMDF adds the request to the queue for delivery after the queue
resumes. If an I/O request arrives while the system is transitioning to a sleep
state, however, UMDF does not return the device to the working state until
the system returns to the working state. The request remains in the queue
until the system and the device have returned to the working state.

For requests to be delivered, both the driver and device power state
must allow processing. The driver can pause delivery manually by calling
IWDFIoQueue::Stop or IWDFIoQueue::StopSynchronously and
later resume delivery by calling WdfIoQueue::Start.

3.6.2.2 Nonpower-Managed Queues
If a queue is not power managed, the state of the queue has no effect on
power management, and conversely, UMDF delivers requests to the driver
any time the system is in the working state, regardless of the power state
of the device. Drivers should use nonpower-managed queues to hold
requests that the driver can handle even while its device is not in the work-
ing state.

3.7 I/O Request Objects

The IWDFIoRequest interface exposes an I/O request object, which
describes a read, write, or device I/O control request. When an I/O request
arrives from the reflector, the I/O handler creates an I/O request object and
adds the object to the queue that the driver configured for requests of that type.
The driver receives a pointer to IWDFIoRequest interface for the object
when UMDF calls the I/O event callback function or, if the queue supports
manual dispatching, when the driver requests the object from the queue.

The driver can then call methods on the interface to retrieve informa-
tion about the request, such as the request type, parameters, data buffers,
and associated file object, among others.

Like all other UMDF objects, the I/O request object has a reference
count. When the driver completes the I/O request that the object repre-
sents, UMDF automatically drops its reference on the object and any child

60 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

objects such as memory buffers. After the driver that was called completes
the request, it must not attempt to access the request object or any of its
child objects.

3.7.1 Retrieving Buffers from I/O Requests
The IWDFMemory interface exposes a memory object, which encapsu-
lates an I/O buffer that is associated with an I/O request. The memory
object can be used to copy data from the driver to the buffer and vice
versa. The driver can also create its own memory object by calling
IWDFDriver::CreatePreallocatedWdfMemory and can then associate
that memory object with the buffer that is supplied in an I/O request.

Like other UMDF objects, memory objects have reference counts and
persist until all references to them have been removed. The buffer that
underlies the memory object, however, might not be “owned” by the object
itself. For example, if the issuer of the I/O request allocated the buffer or
if the driver called CreatePreallocatedWdfMemory to assign an existing
driver-created buffer to the object, the memory object does not “own the
buffer.” In this case, the buffer pointer becomes invalid when the associ-
ated I/O request has been completed, even if the memory object still exists.

Each memory object contains the length of the buffer that it repre-
sents. IWDFMemory methods that copy data to and from the buffer val-
idate the length of every transfer to prevent buffer over runs and under
runs, which can result in corrupt data or security breaches.

Each memory object also controls access to the buffer and allows the
driver to write only buffers that support I/O from the device to the buffer.
A buffer that is used to receive data from the device (as in a read request)
is writable. The memory object does not allow write access to a buffer that
only supplies data (as in a write request).

3.7.2 Sending I/O Requests to an I/O Target
If a driver cannot satisfy an I/O request by itself, it typically forwards the
request to an I/O target. An I/O target represents a device object to which
the driver sends an I/O request. The default I/O target is typically the
next lower driver in the device stack. A UMDF driver can access the
default I/O target through the IWDFIoTarget interface; it gets a pointer
to this interface by calling the IWDFDevice::GetDefaultIoTarget
method.

3.7 I/O Request Objects 61

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In addition to forwarding existing I/O requests, some UMDF drivers
issue I/O requests by creating or reusing an I/O request object and send-
ing the request to an I/O target. Drivers can send requests either synchro-
nously or asynchronously and can specify a time-out value for either type
of request. If the time-out period expires, UMDF cancels the request.

In addition to using the default I/O target, a driver can create addi-
tional I/O targets. An I/O target can be a UMDF driver, a KMDF driver, a
WDM driver, or any other Kernel Mode Driver. UMDF defines two inter-
faces that create targets:

■ IWDFFileHandleTargetFactory creates an I/O target that is
associated with a file handle that the driver has already opened. The
driver calls the Win32 CreateFile function to open the handle, and
then calls methods in this interface to create the I/O target. This
mechanism enables a driver to send I/O requests to a different
device stack.

■ IWDFUsbTargetFactory creates a USB device object and an
associated I/O target.

To create an I/O target, the driver queries the device object for the
IWDFFileHandleTargetFactory or IWDFUsbTargetFactory inter-
face and then calls the creation method that is supported by the interface.

If the driver is the originator of the request, it creates an I/O request
object by calling IWDFDevice::CreateRequest. If the driver is merely
forwarding an existing request, this step is not required.

Whether this is a new or existing request, the driver must format it
before sending it. To format a request for the default I/O target or for a file
handle-based target, the driver calls methods in the IWDFIoTarget inter-
face. To format an I/O request for a USB target, the driver calls methods
in the IWDFUsbTargetDevice, which inherits from IWDFIoTarget.
Formatting the request is important because it specifies the buffers and
buffer lengths that the target should use in performing the I/O.

The driver then can call IWDFIoRequest::Send to send the request.
If the driver implements the IRequestCallbackCompletion::-
OnCompletion and IRequestCallbackCancel::OnCancel interfaces,
UMDF calls the driver if the request is completed or canceled.

The I/O target object racks queued and sent requests and can cancel
them when the state of the target device of the issuing driver changes.
UMDF does not free the I/O target object until all of the I/O requests that

62 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

have been sent to it are complete. If the driver created the I/O request, it
must release its reference to the request before deleting it.

By default, UMDF sends a request only when the target is in the
proper state to receive it. However, a driver can request that UMDF
ignore the state of the target and send the request anyway. If the target
device has been stopped (but not removed), UMDF queues the request to
send later after the target device resumes. If the driver that forwarded the
request specifies a time-out value, the timer starts when the request is
added to the queue.

To manage an I/O target, the driver can call methods in the
IWDFIoTargetStateManagement interface. These methods enable the
driver to start, stop, and remove the target and to query its current state.

3.7.3 Creating Buffers for I/O Requests
Drivers that issue I/O requests must supply buffers with those requests. A
driver can

■ Allocate the buffer from memory by using the C++ new operator or
a Win32 memory allocation function and the call IWdfDriver::-
CreatePreallocatedWdfMemory to associate the buffer with a
memory object. The driver must ensure that the buffer persists until
the request has completed.

■ Call IWdfDriver::CreateWdfMemory to create a memory object
with a specified buffer size. UMDF ensures that the buffer persists
until the I/O request has completed back to the issuing driver.

■ Retrieve a memory object from an incoming I/O request for use in
a new request.

If the driver uses a memory object, UMDF takes out a reference on that
object on behalf of the new I/O target when it formats the memory object
to send to the I/O target. This reference persists until one of the following
occurs:

■ The request has been completed.
■ The driver reformats the request object by calling IWDFRequest::-

FormatUsingCurrentType or any of the IWDFIoTarget::Format-
RequestForXxx methods.

■ The request has been deleted.

3.7 I/O Request Objects 63

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The driver can retrieve a memory object from an incoming I/O request and
then reformat it for use in a new request to a new I/O target. However, if
the driver has not yet completed the original request, the driver still has a
reference on the memory object. The driver should implement an I/O
completion callback (the IRequestCallbackRequestCompletion inter-
face) for the new I/O request, and in this callback must call Release on the
memory object before it completes the original request.

3.7.4 Canceled and Suspended Requests
Windows I/O is inherently asynchronous. The system can request that a
driver stop processing an I/O request at any time for many reasons, most
commonly:

■ The thread or process that issued the request cancels it or exits.
■ A system Plug and Play or power event such as hibernation occurs.
■ The device is being, or has been, removed.

The action that a driver takes to stop processing an I/O request depends on
the reason for suspension or cancellation. In general, the driver can either
cancel the request or complete it with an error. In some situations, the sys-
tem might request that a driver suspend (temporarily pause) processing;
the system notifies the driver later when to resume processing.

To provide a good user experience, drivers should provide callbacks to
handle cancellation and suspension of any I/O request that might take a
long time to complete or that might not complete, such as a request for
asynchronous input.

3.7.4.1 Request Cancellation
How UMDF proceeds to cancel an I/O request depends on whether the
request has already been delivered to the target driver:

■ If the request has never been delivered—either because UMDF
has not yet queued it or because it is still in a queue—UMDF
cancels or suspends it automatically without notifying the driver.

■ If the request has been delivered but the driver forwards it to a dif-
ferent queue, UMDF automatically cancels the request without
notifying the driver.

64 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ If the request has been delivered and is owned by the driver,
UMDF does not cancel it. However, if the driver explicitly marks
the request cancelable by calling the IWDFIoRequest::-
MarkCancelable method and registering a cancellation callback
(IRequestCallbackCancel::OnCancel), UMDF notifies the
driver that the request was canceled.

A driver should mark a request cancelable and register an I/O cancellation
callback if either of the following is true:

■ The request involves a long-term operation.
■ The request might never succeed; for example, the request is wait-

ing for synchronous input.

In the OnCancel callback, the driver must perform any tasks that are
required to cancel the request, such as stopping any device I/O operations
that are in progress and canceling any related requests that it has already
forwarded to an I/O target. Eventually, the driver must complete the
request with the status ERROR_CANCELLED.

Requests that the driver has marked cancelable cannot be forwarded
to another queue. Before requeuing a request, the driver must first make
it noncancelable by calling IWDFIoRequest::UnmarkCancelable.
After the request has been added to the new queue, UMDF again consid-
ers it cancelable until that queue dispatches it to the driver.

3.7.4.2 Request Suspension
When the system transitions to a sleep state—typically because the user
has requested hibernation or closed the lid on a laptop—a driver can com-
plete, requeue, or continue to hold any requests that it is currently pro-
cessing. UMDF notifies the driver of the impending power change by
calling the IQueueCallbackIoStop::OnIoStop callback for each such
request. Each call includes flags that indicate the reason for stopping the
queue and whether the I/O request is currently cancelable.

Depending on the value of the flags, the driver can complete the
request, requeue the request, acknowledge the event but continue to hold
the request, or ignore the event if the current request will complete in a
timely manner. If the queue is stopping because the device is being
removed, either by an orderly removal or a surprise removal, the device
must complete the request immediately.

3.7 I/O Request Objects 65

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Drivers should implement the OnIoStop method for any request that
might take a long time to complete or that might not complete, such as a
request for asynchronous input. OnIoStop provides a good user experi-
ence for laptops and other power-managed systems.

3.7.5 Completing I/O Requests
To complete an I/O request, a driver calls IWDFIoRequest::Complete
or CompleteWithInformation. In response, UMDF completes the
underlying I/O request from the system and then deletes the I/O
request object and any child objects. If the driver implements the
IObjectCleanup::OnCleanup method for the request object, UMDF
invokes that method before completing the underlying system I/O
request, so that the system I/O request itself is still valid when the call-
back runs. Because the underlying request is still valid, the UMDF
driver has access to its parameters and memory buffers.

After Complete or CompleteWithInformation returns, the I/O
request object and its resources have been released. The driver must not
attempt to access the object or any of its resources, such as parameters and
memory buffers that were passed in the request.

If the request was dispatched from a sequential queue, the driver’s call
to complete the request might cause UMDF to deliver the next request in
the queue. (If the queue is configured for parallel dispatching, UMDF can
deliver another request at any time.) If the driver holds any locks while it
calls Complete or CompleteWithInformation, it must ensure that its
event callback methods for the queue do not use the same locks because a
deadlock might occur. In practice, this is difficult to ensure, so the best
practice is not to call Complete or CompleteWithInformation while
holding a lock.

3.7.6 Adaptive Time-outs
Drivers for Windows 7 should follow the Windows guidelines for I/O com-
pletion and cancellation, which require that drivers:

■ Support cancellation for I/O requests that might take an indefinite
period of time to complete.

66 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ Complete I/O requests within a reasonable period (generally,
10 seconds or less) after cancellation.

■ Do not block I/O thread for an unreasonable period while perform-
ing I/O. UMDF I/O threads are a limited resource, so blocking on
such a thread for a long time can decrease driver performance.

To aid User Mode Drivers in conforming to these guidelines, UMDF
supports adaptive time-outs. UMDF tracks the progress on critical
I/O operations that can hold up the system if delayed. Critical opera-
tions include cleanup, close, cancellation, and Plug and Play and
power requests.

When the reflector passes a critical request to the driver host process,
it watches for progress to ensure that I/O operations are proceeding. While
such a request is pending, the User Mode Driver must complete an oper-
ation at regular intervals until it has completed the critical request. If the
time-out period expires, the reflector terminates the host process and
reports the problem through Window Error Reporting (WER). By default,
the time-out is currently one minute. If the driver must perform opera-
tions that take a long time to complete, it should handle them asynchro-
nously, create a separate thread to handle them, or handle them in a user
work item.

3.8 Self-Managed I/O

Some drivers have I/O paths that do not go through queues or are not sub-
ject to power management. UMDF provides self-managed I/O features to
support these requirements.

The self-managed I/O callbacks correspond directly to Plug and Play
and power management state changes, and the automatic queuing feature
in UMDF is built around the same mechanism. These routines are called
with a pointer to the IWDFDevice interface and no other parameters. If
a driver implements the IPnpCallbackSelfManagedIo interface,
UMDF calls its methods at the designated times so that the driver can per-
form whatever actions it requires.

Table 3.4 lists the methods of this interface and indicates when each
is called.

3.8 Self-Managed I/O 67

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

68 Chapter 3 Windows 7 UMD Overview and Operation

3.9 Synchronization Issues

Because Windows is a preemptive, multitasking operating sys-
tem, multiple threads can try to access shared data structures or
resources concurrently and multiple driver routines can run
concurrently. To ensure data integrity, all drivers must synchro-
nize access to shared data structures.

Table 3.4 Self-Managed I/O Methods

Method When Called

OnSelfManagedIoCleanup During device removal, after calling
OnSelfManagedIoSuspend

OnSelfManagedIoFlush After device removal has completed.
OnSelfManagedIoInit During device start-up, after the

framework has called the driver’s
IPnpCallback::OnDoEntry callback
function for the first time.

OnSelfManagedIoRestart When the device returns from a low-
power state to its working (DO) state;
called only if UMDF previously called
the driver’s OnSelfManagedIo-
Suspend method.

OnSelfManagedIoStop Not currently called.
OnSelfManagedIoSuspend When one of the following is true:

■ The device is about to enter a
low-power state.

■ The device is being removed or
was surprise-removed.

■ The Plug and Play manager is
preparing to redistribute the sys-
tem’s hardware resources among
system’s attached devices.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

For UMDF drivers, ensuring proper synchronization requires attention to
several areas:

■ The number of concurrently active requests that are dispatched
from a particular queue.

■ The number of concurrently active callbacks for a particular device
object.

■ The driver utility functions that access object-specific data.

The dispatch method for an I/O queue controls the number of requests from
the queue that can concurrently be active in the driver, as described in
“Dispatch Type” earlier. Limiting concurrent requests does not, however,
resolve all potential synchronization issues. Concurrently active callbacks on
the same object might require access to shared object-specific data. Similarly,
driver utility functions might share object-specific data with callbacks. For
example, a driver’s cleanup and cancellation methods often use the same data
as its dispatch (read, write, and device I/O control) callbacks.

UMDF provides configurable concurrency control, called the syn-
chronization model or locking constraint, for the callbacks of several
types of objects. An object’s synchronization model determines
whether UMDF invokes certain event callbacks on the object
concurrently.

UMDF defines two synchronization models that is device scope and
no scope.

Device Scope means that UMDF does not call certain I/O event call-
backs concurrently for an individual device object or any file objects or
queues that are children of the device object. Specifically, device scope
applies to the following event callbacks:

IFileCallbackCleanup::OnCleanupFile
IFileCallbackClose::OnCloseFile
IQueueCallbackCreate::OnCreateFile
IQueueCallbackDefaultIoHandler::OnDefaultIoHandler
IQueueCallbackDeviceIoControl::OnDeviceIoControl
IQueueCallbackIoResume::OnIoResume
IQueueCallbackIoStop::OnIoStop
IQueueCallbackRead::OnRead
IQueueCallbackStateChange::OnStateChange
IQueueCallbackWrite::OnWrite
IRequestCallbackCancel::OnCancel

3.9 Synchronization Issues 69

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

However, callbacks for different device objects that were created by
the same driver can be called concurrently. By default, a UMDF uses
device scope.

No Scope means that UMDF can call any event callback concurrently
with any other event callback. The driver must create and acquire all its
own locks.

A driver sets the synchronization mode by calling the SetLocking
Constraint method of the IWDFDeviceInitialize interface before it
creates the device object.

3.10 Locks

In addition to the synchronization for the configurable synchronization
model, UMDF provides a lock for each device and I/O queue object. A
driver can acquire and release this lock by using the IWDFObject::-
AcquireLock and IWDFObject::ReleaseLock methods. These methods
are supported for IWDFDevice and IWDFIoQueue, which inherit from
IWDFObject.

Driver code that runs outside an event callback sometimes must syn-
chronize with code that runs inside an event callback. After acquiring the
lock, the driver can safely access the object and perform other actions that
affect the object. However, to prevent a deadlock, the driver must release
the lock before calling any methods in the framework, such as
IWDFRequest::CompleteWithInformation.

3.11 Plug and Play and Power Management
Notification

UMDF implements integrated Plug and Play and power management sup-
port as an internal state machine. An event is associated with the transition
to each state, and a driver can supply callbacks that are invoked at specific
state changes.

UMDF is designed to work with drivers on an “opt-in” basis. A UMDF
driver implements Plug and Play callback interfaces for only the events
that affect its device. For example, some devices require intervention
immediately after they are turned on and immediately before they are
turned off. The driver for such a device can implement the

70 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

IPnpCallbackHardware interface, which provides methods to be called
at those times. If the device does not require such intervention, its driver
does not implement the interface.

If you are familiar with WDM driver, you probably remember that any
time the system power state changes, the WDM driver must determine the
correct power state for its device and then issue power management
requests to put the device in that state at the appropriate time. The UMDF
state machine automatically handles the translation of system power events
to device power events and notifies the driver to

■ Transition the device to low power when the system hibernates or
goes to sleep.

■ Return the device to full power when the system resumes.

UMDF automatically provides for the correct behavior in device
parent/child relationships. If both a parent and a child device are powered
down and the child must power up, UMDF automatically returns the par-
ent to full power and then powers up the child.

To accomplish these power transitions, a driver implements the
IPnpCallback and IPnpCallbackHardware interfaces. The meth-
ods in these two interfaces are called in a defined order and each con-
forms to a “contract” so that both the device and the system are
guaranteed to be in a particular state when the driver is called to per-
form an action.

In addition, requests that the framework has received and not yet
delivered to the device driver can affect the power state of the device. If
the driver has configured a queue for power management, the framework
can automatically restore device power before it delivers the request to the
driver. It can also automatically stop and start the queue in response to
Plug and Play and power events.

3.12 Device Enumeration and Startup

To prepare the device for operation, UMDF calls the driver’s callback rou-
tines in a fixed sequence.

The following shows the callbacks for a driver that is involved in bring-
ing a device to the fully operations state, starting from the DeviceArrived
state at the bottom of the following steps.

3.12 Device Enumeration and Startup 71

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

72 Chapter 3 Windows 7 UMD Overview and Operation

Device Operational
End Sequence

1. Enable self-managed I/O, if driver supports it.
IPnpCallbackSelfManagedIo::OnSelfManageIoInit or
OnSelfManagedIoRestart

2. Start power-managed queues.
(Called only if UMDF earlier invoked
IQueueCallbackIoStop::OnIoStop during power-down.)
IQueueCallbackIoResume::OnIoResume

3. Notify driver of state change.
IPnpCallback::OnDOEntry

Restart from here if device is in low-power state

4. Prepare hardware for power.
IPnpCallbackHardware::OnPrepareHardware

Restart from here if rebalancing resources

5. Create device object.
IDRiverEntry::OnDeviceAdd

Device Arrived
Start Sequence Above

At the bottom of the preceding steps, the device is not present on the
system. When the user plugs it in, UMDF begins by calling the driver’s
IDRiverEntry::OnDeviceAdd callback so the driver can create a device
object to represent the device. UMDF continues calling the driver’s callback
routines by progressing up through the sequences above until the device is
operational. If the device was stopped because the PnP manger was rebal-
ancing system resources or if the device was physically present but not in the
working state, not all of the steps are required, as the sequence shows.

3.13 Device Power-Down and Removal

UMDF might remove a device from the operational state for several reasons:

■ To put the device in a low-power state because the system is entering
a sleep state

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ To rebalance resources
■ To remove the device after the user has requested an orderly

removal
■ To disable the device in response to the user’s request in Device

Manager

The following shows the sequence of callbacks that are involved in power-
down and removal. The sequence starts at the top of the sequence below
with an operational device that is in the working power state (DO).

3.13 Device Power-Down and Removal 73

Device Operational
Start Sequence

1. Suspend self-managed I/O.
IPnpCallbackSelfManagedIo::OnSelfManagedIoSuspend

2. Stop power-managed queues.
IQueueCallbackIoStop::OnIoStop

3. Notify driver of state change.
IPnpCallback::OnDoExit

Stop here if transitioning to low-power state

4. Release hardware (Not called if target device state is
WdfPowerDeviceD3Final).
IPnpCallbackHardware::OnReleaseHardware

Stop here if rebalancing resources

5. Purge power-managed queues.
IQueueCallbackIoStop::OnIoStop

6. Flush I/O buffers, if driver supports self-managed I/O.
IPnpCallbackSelfManagedIo::OnSelfManagedIoFlush

7. Purge nonpower-managed queues.
IQueueCallbackIoStop::OnIoStop

8. Clean up I/O buffers, if driver supports self-managed I/O.
IPnpCallbackSelfManagedIo::OnSelfManagedIoCleanup

Device Removed
End Sequence

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

As the preceding sequence shows, the UMDF power-down and
removal sequence involves calling the corresponding “undo” callbacks in
the reverse order from which UMDF called the methods that it invoked to
make the device operational.

3.13.1 Surprise-Removal Sequence
If the user removes the device without warning, by simply unplugging it
without using Device Manager or the Safely Remove Hardware utility, the
device is considered surprise removed. When this occurs, UMDF follows
a slightly different removal sequence. It also follows the surprise-removal
sequence if another driver invalidates the device state (for example, a
Kernel Mode Driver calls IoInvalidateDeviceState), even if the device
is physically present.

In the surprise-removal sequence, UMDF calls the IPnpCallback::-
OnSurpriseRemoval callback to notify the driver that the device has
been unexpectedly removed. This callback is not guaranteed to occur in
any particular order with the other callbacks in the removal sequence.

Drivers for all removable devices must ensure that the callbacks in
both the shutdown and startup paths can handle failure, particularly fail-
ures that are caused by the removal of the hardware. The reflector times
out the driver if an attempt to access the hardware waits indefinitely.

The following sequence shows the surprise-removal sequence.

74 Chapter 3 Windows 7 UMD Overview and Operation

Device Surprise Removed
Start here if device is in the working state

1. Suspend self-managed I/O.
IPnpCallbackSelfManagedIo::OnSelfManagedIoSuspend

2. Stop power-managed queues.
IQueueCallbackIoStop::OnIoStop

3. Notify driver of state change.
IPnpCallback::OnDOExit

Start here if device is not in the working state

4. Release hardware.
IPnpCallbackHardware::OnReleaseHardware

5. Purge power-managed queues.
IQueueCallbackIoStop::OnIoStop

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

If the device was not in the working state when it was removed, UMDF
starts with the IPnpCallbackHardware::OnReleaseHardware method.
It omits the intervening steps, which were already performed when the
device exited from the working state.

3.14 Build, Test, and Debug

Like Kernel Mode Drivers, UMDF drivers are built with the Windows
Driver Kit (WDK). The WDK includes the required libraries and header
files to build a UMDF driver, along with sample code and build scripts.

The WDK includes a library of debugger extensions for use with
UMDF drivers. The debugger extensions work with CDB, NTSD, and
WinDbg. UMDF drivers can be debugged in either user mode or kernel
mode. Debugging a User Mode Driver is similar to debugging a service.
Symbol files are also included as an aid in debugging.

UMDF drivers can use Event Tracing for Windows (ETW) to gener-
ate a trace log of driver events. The logs can be viewed using the tracing
tools provided with the WDK.

The user mode components that Microsoft supplies start trace sessions
that record their activities and note such events as driver hangs, time-outs,
and failures. UMDF has integrated verification code that is always
enabled. If a driver uses UMDF DDIs incorrectly or passes incorrect
parameters, the verifier saves a memory dump in the system log file direc-
tory and optionally creates a Windows error report. The trace log files and
error reports can optionally be sent to the Microsoft Windows Error
Reporting (WER) facility. WER captures software crash data and supports

3.14 Build, Test, and Debug 75

6. Flush I/O buffers, if driver supports self-managed I/O.
IPnpCallbackSelfManagedIo::OnSelfManagedIoFlush

7. Purge nonpower-managed queues.
IQueueCallbackIoStop::OnIoStop

8. Clean up I/O buffers, if driver supports self-managed I/O.
IPnpCallbackSelfManagedIo::OnSelfManagedIoCleanup

Removal Processing Complete

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

end-user reporting of crash information. The information collected
through WER is accessible to vendors so that they can analyze problems
and respond directly to their customers.

You can also use PREfast, a static analysis tool that is part of the WDK,
with UMDF drivers. PREfast examines code paths on a per-function basis
and can find logic and usage errors in a driver at compile time.

3.14.1 Installation and Configuration
UMDF drivers are installed by using standard INF files, in the same way
as Kernel Mode Drivers. A hardware vendor’s installation package thus
includes

■ An INF file for the driver
■ The redistributable update co-installer WUDF_Update_MMmmm.dll

(where MM is the major UMDF version number and mmm is the
minor version number)

■ A driver binary
■ An optional custom installation application

The INF file includes a [DDInstall.CoInstallers] section that references
the co-installer. The co-installer is available to hardware vendors in the
WDK and in general distribution releases (GDRs). Microsoft provides the
redistributable co-installer Wudf_Update_MMmmm.dll, which vendors
can ship as part of their driver packages. The co-installer is a signed com-
ponent. Driver installation fails if the certificate with the co-installer was
signed and is not available on the target system.

The Wdf section of the driver’s INF file specifies the driver service
name, the driver class ID, the order in which the UMDF drivers should be
installed in the device stack, and the maximum impersonation level that
the UMDF driver can use.

The DestinationDirs section of the INF file specifies the location to
which to copy the driver. All UMDF drivers must reside in
%SystemRoot%\system32\drivers\UMDF. This directory has sufficient
ACLs to ensure that an unprivileged user cannot tamper with the drivers.

If the UMDF device stack for the driver contains only filter drivers,
the INF installs the reflector as the top-level filter driver in the Kernel
Mode Driver stack. However, if the function driver for the device is a
UMDF driver, the INF installs the reflector as the service for the device.

76 Chapter 3 Windows 7 UMD Overview and Operation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

When the INF for the device is processed, the co-installer starts the
driver manager if it is not already running. User Mode Driver installation
must not require a reboot of the system.

3.14.2 Versioning and Updates
UMDF supports versioning, which enables a driver binary to run with the
same major version of UMDF independent of the operating system version.
Versioning helps to ensure that a driver uses the components with which it
was designed, tested, and released. Each version of the operating system
supports all versions of UMDF. Updates to UMDF or the operating system
do not require updates to the driver. Microsoft is responsible for ensuring
consistent behavior across releases.

Although two major versions of UMDF can run side by side simulta-
neously, two minor versions of the same major version cannot. At installa-
tion, a more recent minor version of the UMDF run-time library or other
components overwrites an existing, older minor version. If the older ver-
sion is already loaded when a user attempts to install a driver with a newer
version, the user must reboot the system.

3.14 Build, Test, and Debug 77

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

79

C H A P T E R 4

PROGRAMMING DRIVERS
FOR THE USER MODE DRIVER
FRAMEWORK

In this chapter, we will cover the overview of the User Mode Driver
Framework (UMDF) as well as how to create a UMDF Driver. We will
introduce COM and how it is used in conjunction with creating a UMDF
Driver. As was discussed in Chapter 3, UMDF Drivers create callback
objects to represent the driver itself, each of its devices, and each of its I/O
queues. The framework defines a set of interfaces, some of which the
driver must implement for the callback objects that it creates and others
the framework itself implements for the objects that the framework
creates. In general, the framework creates an object that corresponds to
each of the driver’s callback objects. The framework makes the interfaces
on its own objects available to the driver by passing pointers.

4.1 Windows I/O Overview

Before writing a driver—even a User Mode Driver—you must under-
stand the basics of the Windows I/O architecture, as shown in Figure 4.1.
In this overview, we will discuss some of the major principles behind the
I/O system and define the most important terms. For a detailed explana-
tion of Window I/O, see the book Windows Internals, Fifth Edition, which
is listed in the Bibliography.

As Figure 4.1 shows, Windows supports a layered I/O architecture.
User mode applications and services issue I/O requests through the Win32
API and communicate with the user mode PnP manager to perform Plug
and Play and power activities. The Win32 API and user mode PnP manager,

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

80 Chapter 4 Programming Drivers for the UMDF

Figure 4.1 Block Diagram Windows I/O

Applications and Windows Services

Win32 API
User Mode PnP

Manager

Windows I/O System

I/O Manager
Power

Manager
PnP Manager

Device Stack

Filter Driver

Function
Driver

Filter Driver

Bus Driver

User Mode

Kernel Mode

in turn, communicate with the kernel mode I/O system, which includes the
kernel mode I/O manager, PnP manager, and power manager. The kernel
mode I/O system communicates with the Kernel Mode Drivers.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Drivers are also layered. Most devices are driven by not one but by
several drivers, each layered atop the next. Together, the group of drivers
that operates a particular device is called the device stack (sometimes also
called the driver stack). At the bottom of the device stack is a bus driver,
which controls a bus and enumerates the devices that are connected to the
bus. Layered above the bus driver are filter drivers and a function driver.
The function driver is the primary driver for the device and exposes the
device interface to the I/O manager. Filter drivers can be layered above or
below the function driver and provide additional features, such as encryp-
tion or security, or change the behavior of a device. Each driver in the
device stack is represented by a device object. The device object is a data
structure that contains information about the driver and the device.

Drivers receive I/O, Plug and Play, and power management requests
in the form of I/O request packets (IRPs). When the Windows I/O
manager receives an I/O request, it determines which device stack corres-
ponds to the virtual file that is specified in the request. It then packages
the request into an IRP and forwards it to the target device object. Plug
and Play and power management notifications are also packaged as IRPs,
and drivers communicate with other drivers by sending IRPs.

When a driver receives an IRP, it takes whatever actions are required
to satisfy the request and then completes it. Sometimes, however, a driver
cannot satisfy an IRP by itself. If the driver cannot complete the IRP, it
typically passes the IRP down the device stack to the next driver and
optionally sets an I/O completion routine for callback when the request is
complete. Eventually, the IRP arrives at a driver that satisfies and com-
pletes the request. When the request is complete, the I/O manager calls
any completion callback routines that drivers set as the request traveled
down the device stack. It calls these routines in the opposite order in
which they were set—that is, it “unwinds” back up the device stack.

4.2 Brief COM Information

Chapter 5 covers the component object model (COM) in a fair amount of
detail to get you up to speed on COM and the UMDF driver development.
Here, we will just touch upon a few points.

The UMDF interfaces are defined in terms of COM. UMDF does not
depend on the COM infrastructure and run-time library. Instead, it uses
only the COM programming pattern, specifically the query-interface and
reference-counting features. It does not use the COM run-time loader.

4.2 Brief COM Information 81

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The following is a brief overview on COM:

■ COM is based on a client-server model.
■ COM maintains reference counts for all of its objects.
■ COM objects expose interfaces, which support callable methods.
■ COM interfaces are C++ abstract base classes. An interface con-

tains one or more methods that form the contract for any caller that
wants to use the class.

■ The query-interface (QI) feature of COM enables a client to query
a server to determine whether the server supports a particular
interface. UMDF drivers can request notification of particular
system events by exposing callback interfaces. UMDF uses the QI
feature to discover these callback interfaces.

■ IUnknown is the fundamental COM interface, and every COM
object supports it. IUnknown supports the QueryInterface,
AddRef, and Release methods. The QueryInterface method
enables other components to determine which interfaces the
object supports. The AddRef and Release methods manage object
lifetime.

■ The IClassFactory interface creates instances of class objects.
UMDF calls DllGetClassObject to get a pointer to an
IClassFactory interface in the driver and then uses the
CreateInstance method of the IClassFactory interface to create
an instance of the driver object.

■ When COM returns an interface pointer to a driver, it takes out a
reference on the corresponding object. The driver should release
this reference by calling the object’s Release method when it has
finished using the object. Failing to release references causes
object leaks, which consume memory unnecessarily.

4.3 UMDF Architecture

A UMDF driver is a dynamic-link library (DLL) that runs as an in-process
COM server. Figure 4.2 shows the components that are involved when a
UMDF driver controls a device.

As Figure 4.2 shows, the User Mode Driver runs under the Host
Process, which combines with Kernel Mode Drivers (including the
reflector) to form the device stack for the device.

82 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The following describes the preceding components in the figure
according to the typical flow of an I/O request.

Application. The application issues I/O requests through the Win32
API, which in turn calls I/O routines in the Windows kernel.

Windows kernel. The Windows kernel creates IRPs to represent the
requests and forwards them to the top of the kernel mode device stack for
the target device.

4.3 UMDF Architecture 83

Figure 4.2 User Mode Driver Architecture

Application

Win32 API

Windows Kernel
I/O Manager

I/O Request

User Mode

Kernel Mode

Host Process

User Mode
Driver

UMDF

Run-Time
Environment

Driver
Manager

Reflector

Kernel Mode Drivers

Device Stack

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Reflector. The reflector is a Kernel Mode WDM Filter Driver that is
installed at the top of the kernel mode device stack for each device that is
managed by a UMDF driver. The reflector manages communication
between the kernel mode components and the User Mode Driver host
process.

Driver manager. The driver manager creates and shuts down all the
driver host processes and maintains status information about them. It also
responds to messages from the reflector. The driver manager runs as a
Windows service and is started during installation of the first device that is
managed by a UMDF driver. The driver manager must be running all the
time that any device controlled by a UMDF driver is installed on the
system. Microsoft provides the driver manager.

Host process. The host process is the process in which the User
Mode Driver runs. The host process is a child process of the driver
manager and runs in the security credentials of a LocalService account,
although it is not a Windows service. The host process includes the follow-
ing components:

■ The UMDF driver is an in-process COM component that controls
the hardware from user mode.

■ UMDF exposes the User Mode device-driver interface (DDI).
UMDF is a DLL of COM-style objects that support the presentation,
flow, and management of I/O and Plug and Play requests to the driver.

■ The run-time environment dispatches I/O requests, loads the
driver, constructs and destroys the user mode device stack, man-
ages a user mode thread pool, and handles messages from the
reflector and the driver managers.

Kernel Mode Drivers. Additional Kernel Mode Drivers can service each
device.

4.4 Required Driver Functionality

Every UMDF driver must provide the following functionality:

■ Support the DllMain export as its primary entry point.
The driver must support DllMain as its primary entry point.

After the system creates the UMDF driver host process, the host

84 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

process loads the driver by calling the DllMain function. In a
UMDF driver, this function does very little; typically, it enables trac-
ing and then returns. As in all DLLs, the driver must not make block-
ing calls such as WaitForSingleObject, which can deadlock the
system. Drivers should defer resource allocation to IDriverEntry::-
OnInitialize, instead of DllMain.

■ Support the DllGetClassObject export, which must return a
pointer to an IClassFactory interface that creates an instance of
the driver callback object.

The driver must also support the DllGetClassObject function,
which COM requires. This function returns a pointer to an
IClassFactory interface with which UMDF can create an instance
of the driver callback object. The UMDF sample drivers show how
to implement this function. Alternatively, the Active Template
Library (ATL) wizard can be used to generate the supporting
COM code.

■ Implement the IDriverEntry interface on the driver class.
Finally, every User Mode WDF driver must implement the

IDriverEntry interface on the driver class. This interface includes
methods that initialize and uninitialize driver-wide data. UMDF
calls the OnInitialize method when the first device for the driver
is loaded and calls the OnDeinitialize method when the driver is
unloaded. IDriverEntry also includes the OnAddDevice
method, which UMDF calls when the Plug and Play manager enu-
merates one of the driver’s devices.

Figure 4.3 shows the interactions of the functionality of a driver with
UMDF and the system.

When the system starts, the driver manager is loaded and the follow-
ing actions occur:

1. The driver manager creates the driver host process and then loads
the driver library by calling the DllMain entry point. DllMain
performs any required global initialization for the driver, such as
starting tracing.

2. UMDF creates a framework driver object and calls the driver at
DllGetClassObject to get an interface that I can use to create a
corresponding callback object in the driver. DllGetClassObject
returns a pointer to the driver’s IClassFactory interface.

4.4 Required Driver Functionality 85

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

86 Chapter 4 Programming Drivers for the UMDF

Figure 4.3 Flow of Control for UMDF and Driver

System and UMDF Actions Driver Actions

Load driver library
Initialize global
variables and

tracing

Get interface with
which to create
driver callback

object

Instantiate class factory object.
Return pointer to IClassFactory

interface.

Create driver
callback object and

get pointer to
IDriverEntry

interface

Create driver callback object.
Return pointer to IDriverEntry

interface.

Start UMDF driver
Initialize driver

variables

Notify driver that a
device is present

Create device callback object.
Create and configure I/O

queues.

Query for PnP and
I/O queue interfaces

on device object

Return interface
pointers as
requested

Invoke PnP and I/O
queue methods as

events occur

DllMain

DllGetClassObject

IClassFactory::CreateInstance

IDriverEntry::OnInitialize

IDriverEntry::OnDeviceAdd

IUnknown::QueryInterface

various Respond to events
as called

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. UMDF calls the CreateInstance method of the IClassFactory
interface to create an instance of the driver callback object. The
driver callback object implements methods to initialize the driver,
to notify it that one of its devices has been enumerated, and to
prepare it for unloading.

4. UMDF calls the OnInitialize method of the driver callback
object to initialize the driver.

5. Whenever one of the driver’s devices is enumerated, UMDF calls
OnDeviceAdd. OnDeviceAdd performs any required configu-
ration, creates a device callback object to represent the device,
creates any required device interfaces, and creates and configures
the queues into which UMDF will place I/O requests that are tar-
geted at the driver. A device interface is a device feature that
driver exposes to applications or other system components,
whereas a COM interface is a related group of functions that act
on an object.

6. UMDF queries for the Plug and Play and queue interfaces that it
will use to handle I/O requests.

7. When the device is removed, UMDF calls the Plug and Play meth-
ods that are appropriate for the type of removal (orderly or surprise),
deletes the objects, and calls the IDriverEntry::OnDeinitialize
method to clean up. It then unloads the DLL and deletes the driver
host process.

4.5 UMDF Sample Drivers

The UMDF release for Windows 7 includes several sample User Mode
Drivers, which are installed at WDF\UMDF\src in the Windows Driver
Kit (WDK) installation directory. You can use these samples as the basis for
your own driver, as well as the examples in the book. Table 4.1 lists the
UMDF samples.

Use the WDK build environment to build the samples. To build a par-
ticular sample:

1. Start a build environment window.
2. Set the working directory to the directory that contains the sample

to build.
3. Type the following command: build –ceZ

4.5 UMDF Sample Drivers 87

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.5.1 Minimal UMDF Driver: The Skeleton Driver
The Skeleton driver contains the minimum amount of code that is required
in a loadable UMDF driver. It was designed as a starting point from which to
build drivers for actual hardware. In addition to demonstrating the minimal
required features and best practices, the Skeleton driver splits into appropri-
ate modules the common code that is required in all UMDF drivers.

The Skeleton driver supports a driver entry point, functions to create
and initialize the driver and device callback objects, and functions for
COM support. It does not support any I/O or Plug and Play operations.
Table 4.2 lists the component source files.

88 Chapter 4 Programming Drivers for the UMDF

Name Description

Skeleton Minimal software-only driver that shows the structure and
fundamental components of a simple UMDF driver.

Echo Simple driver that uses a serial I/O queue and handles one
I/O request at a time. The Echo sample defers the completion
of each I/O request to a worker thread and shows how
to mark a request cancelable while it is pending in the driver.
This sample was adapted from the KMDF Echo sample and is
functionally similar to the WDM sample of the same name.

USB\Driver Hardware driver for the USB-FX2 Learning Kit from OSR.
This sample supports a parallel I/O queue. It is similar to
the Echo sample, but can handle multiple independent
requests at one time. This driver also demonstrates how a
User Mode Driver controls a device. It uses the memory in
the OSR-USBFx2 device as a buffer and uses the WinUSB
API and WinUSB Kernel Mode Driver to control the
hardware. The driver demonstrates how to escape from
UMDF and send I/O by using an alternate path and how to
synchronize I/O on the alternate path with cancellation and
file closure.

USB\Filter Filter driver for the WinUSB driver stack. This sample
modifies the data in read and write requests as they flow
through the device stack and uses I/O targets to
communicate with a lower driver.

Table 4.1 List of UMDF Sample Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.5 UMDF Sample Drivers 89

Filename Description

Comsup.cpp Source code for the CUnknown and
CClassFactory classes.

Comsup.h Header file for COM support functions and
classes.

Device.cpp Source code for the device callback object
class, CMyDevice.

Device.h Header file for the device callback object.
Dllsup.cpp Source code for the driver entry point and

exported COM support functions.
Driver.cpp Source code for the driver callback object

class, CMyDriver.
Driver.h Header file for the driver callback object.
Exports.def Definition file that identifies the library

name and exported entry point for driver.
Internal.h Header file for local type definitions.
Makefile Generic makefile for building the sample.
Makefile.inc Additional commands input to the makefile.
Skeleton.htm Help file that describes the sample.
Skeleton.rc Resource file for the sample.
Sources Source file for the build procedure.
UMDF_Skeleton_OSR.inx INF that installs the Skeleton sample as a

driver for the OSR USBFX2 device.
UMDF_Skeleton_OSR_xp.inx INF that installs the Skeleton sample as a

driver for the OSR USBFX2 device on
Windows 7.

UMDF_Skeleton_root.inx INF that installs the Skeleton sample as a
driver for a root-enumerated device.

UMDF_Skeleton_root_xp.inx INF that installs the Skeleton sample as a
driver for a root-enumerated device on
Windows 7.

Table 4.2 Component Source Files

4.5.2 Skeleton Driver Classes, Objects, and Interfaces
The Skeleton driver implements the four classes that are listed in Table 4.3.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

90 Chapter 4 Programming Drivers for the UMDF

Table 4.3 Classes Implemented in Skeleton Driver

Class Name Description Public Interfaces

CUnknown Base Class from which others derive IUnknown
CClassFactory Class factory that instantiates the IClassFactory

driver class
CMyDriver Driver callback object class IDriverEntry

IUnknown
CMyDevice Device callback object IUnknown

Figure 4.4 Interaction of Framework and Skeleton Objects

IWdfDeviceInitialize

CUnknown
IUnknown

IClassFactory

IDriverEntry

IWdfDevice

CClassFactory

CMyDriver

CMyDevice
Framework

Device Object

IWdfDriver

Framework Driver
Object

Figure 4.4 shows how the objects that are instantiated from these
classes interact with the corresponding framework objects.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.6 Driver Dynamic-Link Library and Exports 91

As Figure 4.4 shows, the framework implements a driver object and a
device object. The framework’s driver object uses the IDriverEntry inter-
face on the Skeleton driver’s CMyDriver object, and the CMyDriver
object, in turn, uses the IWdfDriver interface on the framework’s driver
object. The framework’s device object exposes the IWdfDevice and
IWdfDeviceInitialize interfaces, which the driver’s CMyDevice object
uses. The Skeleton driver’s CMyDevice class does not implement addi-
tional interfaces because it does not support hardware or handle I/O
requests. The device object in a typical driver would implement additional
interfaces for Plug and Play notifications, I/O requests, I/O queues, and
so forth.

4.6 Driver Dynamic-Link Library and Exports

Every UMDF driver must support DllMain as the driver’s primary entry
point and must export the DllGetClassObject function so that COM can
instantiate the driver object. The Skeleton sample defines these functions
in the Dllsup.cpp file.

4.6.1 Driver Entry Point: DllMain
DllMain is the driver’s primary entry point. This function typically ini-
tializes any data that is required for tracing and debugging but otherwise
does little because most driver-and-device-specific initialization takes
place in conjunction with the driver and device object creation. In the
Skeleton driver, DllMain simply initializes tracing, as the following
source code shows:

BOOL
WINAPI
DllMain{

HINSTANCE ModuleHandle,
DWORD Reason,
PVOID /* Reserved */
}

/*++

Routine Description:

This is the entry point and exit point for the I/O
driver. It does very little because the driver has mini-
mal global data.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

92 Chapter 4 Programming Drivers for the UMDF

This method initializes tracing.

Arguments:
ModuleHandle - the Dll handle for this module.
Reason - the reason this entry point was called.
Reserved - unused

Return Value:
TRUE

--*/
{

If (DLL_PROCESS_ATTACH == Reason)
{

//
// Initialize tracing.
//

WPP_INIT_TRACING(MYDRIVER_TRACING_ID);

}
else if (DLL_PROCESS_DETACH == Reason)
{

//
// Clean up tracing.
//

WPP_CLEANUP();
}

return TRUE;
}

When the driver host process calls DllMain, it passes a reason for the
call, along with a handle and a reserved value, both of which the function
can ignore. If the driver host process is starting and the DLL is being
loaded, the reason is DLL_PROCESS_ATTACH. In this case, the func-
tion initializes tracing. If the driver host process is terminating or the
library did not load successfully, the reason is DLL_PROCESS_
DETACH, so the function ends tracing. Starting and ending tracing in
DllMain ensures that trace information is recorded for the entire life of
the driver.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.6 Driver Dynamic-Link Library and Exports 93

4.6.2 Get Class Object: DllGetClassObject
COM calls the driver’s DllGetClassObject function to get a pointer to
an interface through which it can instantiate a driver callback object. This
method should create an instance of the class factory for the driver object;
UMDF later calls methods on the class factory to actually instantiate the
driver callback object.

The following is the source code for the Skeleton driver’s DllGet-
ClassObject function:

HRESULT
STDAPICALLTYPE
DllGetClassObject{

__in REFCLSID ClassId,
__in REFIID InterfaceId,
__deref_out LPVOID *Interface
}

/*++
Routine Description:
This routine is called by COM to instantiate the skeleton
driver callback object and do an initial query interface
on it.

This method only creates an instance of the driver’s
class factory, which is the minimum required to support
UMDF.

Arguments:
ClassId - the CLSID of the object being “gotten”
InterfaceId - the interface the caller wants from that
object
Interface - a location to store the referenced interface
pointer

Return Value:
S_OK if the function succeeds, or
Error code indicating the reason for failure

--*/
{

PCClassFactory factory;

HRESULT hr = S_OK;

*interface = NULL;

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

//
// If the CLSID doesn’t match that of our “coclass”
// defined in the IDL file) then we can’t create the
// object that the caller wants. This error may indicate
// that the COM registration is incorrect, and another
// CLSID is referencing this driver.
//
If (IsEqualCLSID(ClassId, CLSID_MyDriverCoClass == false)
{

Trace{
TRACE_LEVEL_ERROR,
L”ERROR: Called to create instance of unrecognized
class

“(%!GUID!)”,
};

Return CLASS_E_CLASSNOTAVAILABLE;
}

//
// Create an instance of the class factory for the caller
//

factory = new CClassFactory();

if (NULL == factory)
{

Hr = E_OUTOFMEMORY;
}

//
// Query the object we created for the interface that the
// caller requested. Then release the object. If the QI
// succeeded and referenced the object, its reference
// count will now be 1. If the QI failed, the reference
// count is 0 and the object is automatically deleted.
//

If (S_OK == hr)
{

hr = factory->QueryInterface(InterfaceId, Interface);
factory->Release();

}

return hr;
}

94 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In the Skeleton driver, DllGetClassObject verifies that the class ID
passed in by the caller (COM) matches the class ID of the object, as
defined in the IDL file. It creates an instance of the class factory, calls
QueryInterface on the class factory to get a pointer to the
IClassFactory interface and increment its reference count, and then
returns.

4.7 Functions for COM Support

The source file Comsup.cpp supplies code that is required to support
COM. It implements methods for the IUnknown and IClassFactory
interfaces. This section briefly describes what these methods do, but does
not show any of the sample code. You can simply copy the Comsup.cpp
and Comsup.h files for use in your own drivers, typically without any
changes.

4.7.1 IUnknown Methods
CUnknown is the base class from which all other classes derive, and it
supports the IUnknown interface. Every UMDF driver must implement
this class with a constructor method and the IUnknown interface, which
includes the AddRef, QueryInterface, QueryIUnknown, and Release
methods. Table 4.4 summarizes the IUnknown methods.

4.7 Functions for COM Support 95

Method Name Description

CUnknown Constructor, which initializes the reference count for this
instance of the CUnknown class to 1.

QueryInterface Returns a pointer to the IUnknown interface for the
object.

QueryIUnknown Public helper method that casts a CUnknown pointer to
an IUnknown pointer.

AddRef Increments the reference count for the object.
Release Decrements the object’s reference count and deletes the

object if the reference count reaches zero.

Table 4.4 IUnknown Method Names

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.7.2 IClassFactory Interface
The CClassFactory class object implements the IClassFactory inter-
face. The framework invokes methods in this interface to create an
instance of the driver callback class. The driver callback class instance is
the only callback object that the framework creates; the driver itself cre-
ates all other callback objects in response to calls from the framework.
Table 4.5 summarizes the methods in this interface.

4.7.3 Driver CallBack Object
When UMDF gets a pointer to the IClassFactory interface, it calls the
CreateInstance method in that interface to create an instance of an
object. That method, in turn, calls the CMyDriver::CreateInstance
method, which creates and initializes the driver callback object. In gen-
eral, any CreateInstance method is a factory method that creates an
object.

96 Chapter 4 Programming Drivers for the UMDF

Method Description

QueryInterface Returns a pointer to the requested interface.
QueryIClassFactory Public helper method that casts a CClassFactory pointer

to an IClassFactory pointer; essentially similar to the
IQueryIUnknown method in the IUnknown interface.

CreateInstance Creates an instance of the driver callback class and returns
a pointer to a requested interface for that class.

LockServer Maintains a lock count that indicates whether the driver
DLL should remain in memory.

Table 4.5 IClassFactory Methods

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

CMyDriver::CreateInstance is defined in the source file
Driver.cpp and is straightforward, as the following shows:

HRESULT
CMyDriver::CreateInstance(

__out PCMyDriver *Driver
)
/*++

Routine Description:

This static method is invoked to create and initialize a new
instance of the driver class. The caller should arrange for
the object to be released when it is no longer in use.

Arguments:

Driver - a location to store a referenced pointer to
the new instance

Return Value:

S_OK if successful, or error otherwise

--*/
{
PCMyDriver driver;
HRESULT hr;

//
// Allocate the callback object
//
driver = new CMyDriver();

if (NULL == driver)
{
return E_OUTOFMEMORY;

}

//
// Initialize the callback object
//
hr = driver->Initialize();

if (SUCCEEDED (hr))
{

4.7 Functions for COM Support 97

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

//
// Store a pointer to the new, initialized object in
// the output parameter.
//
*Driver = driver;

}
else
{

//
// Release the reference on the driver object so that
// it will delete itself
//
driver->Release();

}
return hr;
}

This method allocates and creates an instance of the driver callback
object, and then calls the initialize method to initialize the object. The
Skeleton driver object requires no initialization, so the Initialize method
is a stub (and so is not shown here). CreateInstance returns a pointer to
the new driver callback object and releases its reference on this object
before returning.

Every UMDF driver must implement the IDriverEntry interface
on the driver callback object. This interface supports methods to ini-
tialize the driver, perform tasks when one of the driver’s devices is added
to the system, and prepare the driver for unloading, just before
DllMain.DetachProcess is called. The driver.cpp file contains code
that implements IDriverEntry.

IDriverEntry defines three methods: OnDeviceAdd,
OnInitialize, and OnDeInitialize. In the Skeleton driver, the
OnInitialize and OnDeInitialize methods are stubs.

When one of the driver’s devices is added, UMDF calls the
OnDevice method, passing as parameters pointers to the IWdfDriver
and IWdfDeviceInitialize interfaces, which the framework implements.
The Skeleton driver does not support physical hardware, so its
OnDeviceAdd method is minimal:

HRESULT
CMyDriver::OnDeviceAdd{

__in IWDFDriver *FxWdDriver,
__in IWDFDeviceInitialize *FxDeviceInit

}
/*++

98 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Routine Description:

The FX invokes this method to install our driver on a device
stack. This method creates a device callback object, then
calls the Fx to create an Fx device object and associate the
new callback object with it.

Arguments:

FxWdfDriver - the Fx driver object.
FxDeviceInit - the initialization information for the
device.

Return Value:
Status

--*/
{

HRESULT hr;

PCMyDevice device = NULL;

//
// TODO: Here is where to do any per device initialization
// (reading settings from the registry, for example) that is
// required before you create the device callback object.
// You can leave initialization of the device callback
// object itself to the device event handler.
//

//
// Create a new instance of our device callback object
//

hr = CMyDevice::CreateInstance(FxWdfDriver, FxDeviceInit,
&device);

//
// TODO: Change any per device settings that the object
// exposes before you call Configure to complete its
// initialization.
//

4.7 Functions for COM Support 99

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

//
// If that succeeded then call the device’s construct
// method. The construct method can create queues or
// other structures that are required for the device object.

if (S_OK == hr)
{

hr = device->Configure();
}

//
// Release the reference on the device callback object
// now that it’s associated with an fx device object.
//

if (NULL != device)
{

device->Release();
}

return hr;
}

The Skeleton driver’s OnDeviceAdd method calls the
CreateInstance method on the CMyDevice class to instantiate
the device callback object. It passes the pointers to the IWdfDevice-
Initialize and IWdfDriver interfaces so that CreateInstance can use
these UMDF defined interfaces to create and initialize the device
object.

By convention, a CreateInstance method in the sample represents a
factory for building objects of a particular type.

4.7.4 Device CallBack Object
The device callback object represents the device in the driver. The driver
creates an instance of this object when its IDriverEntry::OnDeviceAdd
method is called. The driver implements the CreateInstance, Initialize,
Configure, and QueryInterface methods for the device callback object.

The code for the device callback object for the Skeleton driver is in
the Device.cpp. This module includes the header files Internal.h, which
contains driver-specific internal definitions, and Device.tmh, which
defines tracing information for Event Tracing for Windows (ETW).

100 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.7.4.1 CreateInstance Method
A driver’s IDriverEntry::OnDeviceAdd method calls IDeviceObject::-
CreateInstance to create an instance of the device callback object. This
method simply allocates and initializes an instance of the device callback
object as follows:

HRESULT
CMyDevice::CreateInstance(

__in IWDFDriver *FxDriver,
__in IWDFDeviceInitialize *FxDeviceInit,
__out PCMyDevice *Device
)

/*++

Routine Description:

This method creates and initializes an instance of the
skeleton Driver’s device callback object.

Arguments:

FxDeviceInit - the settings for the device.
Device - a location to store the referenced pointed to the

device object.
Return Value:

Status
--*/
{

PCMyDevice device;
HRESULT hr;

//
// Allocate a new instance of the device class.
//

device = new CMyDevice();

if (NULL == device)
{

Return E_OUTOFMEMORY;
}

4.7 Functions for COM Support 101

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

//
// Initialize the instance.
//

hr = device->Initialize(FxDriver, FxDeviceInit);

if (S_OK == hr)
{

*Device = device;
}
else
{

device->Release();
}

return hr;
}

When UMDF calls the OnDeviceAdd method, it passes a pointer to the
IWdfDriver interface and a pointer to the IWdfDeviceInitialize interface.
These interfaces provide methods through which the driver can initialize per-
device-object settings and create a device callback object. OnDeviceAdd
passes these pointers to CreateInstance, which in turn passes them as
parameters to the Initialize method to initialize the instance.

4.7.4.2 Initialize Method
The Initialize method of the device callback object does exactly what its
name implies: It initializes the callback object. It also calls the framework
to create the framework’s device object.

The initialize method receives a handle to the framework’s
IWdfDeviceInitialize interface and stores it in FxDeviceInit. It uses
this handle to call methods on that interface to initialize certain device
characteristics that must be set before the framework’s device object is
created. Such characteristics include the synchronization (locking) model
and the Plug and Play features. They also indicate whether the driver is a
filter driver, whether the driver controls device power policy, and whether
the framework should forward or fail certain request types. The driver
must set these values before creating the framework’s device object
because they determine which callbacks the framework initializes for the
device object. The following code shows how to set the needed values:

HRESULT
CMyDevice::Initialize(

102 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

__in IWDFDriver *FxDriver,
__in IWDFDeviceInitialize *FxDeviceInit
)
/*++

Routine Description:

This method initializes the device callback object and
creates the partner device object.

The method should perform any device specific configuration
that:

Could fail (these can’t be done in the constructor)
must be done before the partner object is created-or-
can be done after the partner object is created and
isn’t influenced, by any device level parameters that the
parent (the driver in this case) might set.

Arguments:

FxDeviceInit - the settings for this device.

Return Value:

status.

--*/
{

IWDFDevice *fxDevice;
HRESULT hr;

//
// Configure things like the locking model before we
// create our partner device.
//

//
// TODO: Set her locking mode. The skeleton uses device level
// locking, but you can choose “none” as well.
//

FxDeviceInit->SetLockingConstraint (WdfDeviceLevel);

//
// TODO: If you’re writing a filter driver indicate that
// here.
//

4.7 Functions for COM Support 103

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

// FxDeviceInit->SetFilter();
//

//
// TODO: Any per-device initialization which must be done
// before creating the partner object.
//
//
// Create a new FX device object and assign the new
// callback object to handle any device level events that
// occur.
//

//
// QueryIUnknown references the IUnknown interface that it
// returns (which is the same as referencing the device). We
// pass that to CreateDevice, which takes its own reference
// if everything works.
//

{
IUnknown *unknown = this->QueryIUnknown();

hr = FxDriver->CreateDevice(FxDeviceInit, unknown,
&fxDevice);

unknown->Release();
}

//
// If that succeeded, then set our FxDevice member variable.
//

if (S_OK == hr)
{

m_FxDevice = fxDevice;
//
// Drop the reference we got from CreateDevice. Since
// this object is partnered with the framework object
// they have the same lifespan. There is no need for an
// additional reference.
//

}

return hr;
}

104 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The Initialize method first sets the locking model for the driver
by calling the SetLockingConstraint method of the IWdf-
DeviceInitialize interface. The locking model determines whether the
framework calls the driver’s callback methods concurrently on a per-
device-object level or not at all. The Skeleton driver sets
WdfDeviceLevel, which means that the framework synchronizes calls to
methods at the device object level or lower. Therefore, the driver does not
require code to synchronize access to shared data in such methods.

Device-level locking applies to methods on the IWdfIoQueue
interface, the IFileCallbackCleanup interface, and the IFileCallback-
Close interface. The IWdfIoQueue interface is implemented by the I/O
queue object, and the IFileCallbackCleanup and IFileCallbackClose
interfaces are implemented by the device object.

The Skeleton does not support physical hardware, so it does not set
any Plug and Play characteristics. If it supported an actual Plug and Play
device, it might also have to specify whether the device is ejectable, lock-
able, and other similar settings.

After the driver has set the device characteristics, it can call UMDF
to create the framework’s device object. The IWdfDriver::Create-
Device method takes a pointer to the IWdfDeviceInitialize interface
that was passed to the driver, a pointer to the driver’s device callback
object, and a location in which to return the handle to the created frame-
work device object. To get a pointer to the device callback object, the
driver calls QueryIUnknown on the current interface. It then passes this
pointer when it calls CreateDevice. Calling QueryIUnknown adds a
reference on the IUnknown interface it returns—in this case, the driver’s
callback object interface. After the CreateDevice method returns, the
driver releases this reference.

If UMDF successfully creates the framework device object, the driver
initializes the variable m_FxDevice to hold the pointer to the returned
interface. It then calls the Release method to release the reference that
the CreateDevice method added on the returned interface. The
m_FxDevice interface has the same lifetime as the framework’s
IWdfDevice interface, so this reference is not required to ensure that the
interface persists for the driver.

4.7.4.3 Configure Method
The Configure method handles tasks that are related to configuration
after the framework and device callback objects have been created. The

4.7 Functions for COM Support 105

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Skeleton driver’s OnDeviceAdd callback invokes the Configure
method after CreateInstance has successfully returned.

In the Skeleton driver, Configure is a stub. In a driver that handles
I/O requests, this method would create and configure I/O queues and
queue callback objects.

4.7.4.4 QueryInterface Method
The QueryInterface method returns a pointer to any of the device call-
back object’s interfaces. It takes the interfaceId as an input parameter
and returns a pointer to the interface.

The Skeleton driver does not implement any of the event callback
interfaces for the device object because it does not support actual hard-
ware. Therefore, it simply returns the pointer to the IUnknown interface
of the base class CUnknown, as follows:

return CUnknown::QueryInterface(InterfaceId, object);

In a driver that supports actual hardware, this method should validate
the input interfaceId and return a pointer to the requested interface.

4.8 Using the Skeleton Driver as a Basis
for Development

The Skeleton driver is designed for use as a basis for UMDF driver develop-
ment. By customizing the existing code and adding some of your own code, you
can create a driver for your specific device. The following tasks are required:

■ Customize the exports.
■ Customize the Sources file.
■ Customize the INF file.
■ Customize the Comsup.cpp file.
■ Add device-specific code to the Driver.cpp file.
■ Add device-specific code to the Device.cpp file.

For most drivers, you can use the following files from the Skeleton
unchanged:

■ Resource.h
■ Makefile

106 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ ComSup.cpp and ComSup.h, which supply basic support for COM
■ DllSup.cpp, which supports basic DLL functions

4.8.1 Customize the Exports File
The file Exports.def lists the library and function names that the DLL
exports. To customize this file, replace the value in the LIBRARY statement
with the name of the binary file that contains the DLL. For example:

LIBRARY “MyDevice.DLL”

Your driver must export the DLLGetClassObject function, so you
can leave the EXPORTS area unchanged.

4.8.2 Customize the Sources File
The Sources file defines environment variables and settings that are
required to build the driver. It is input to the generic makefile that is sup-
plied with the samples. To create a makefile to build your own driver, you
do not edit the generic makefile. Instead, you edit the Sources file.

To customize the Sources file:

■ Change the TARGETNAME statement to include the name for
your driver. For example:

TARGETNAME=MyDevice

■ Change the SOURCES statement to include the source files for
your driver. For example:

SOURCES=\
MyDevice.rc \
dllsup.cpp \
comsup.cpp \
driver.cpp \
device.cpp \

■ Change the NTTARGETFILES statement to include the INF
files and any other miscellaneous files for your driver.
For example:

NTTARGETFILES=$(OBJ_PATH)\$(0)\UMDFSkeleton_Root.inf\
$(OBJ_PATH)\$(0)\UMDFSkeleton_OSR.inf

4.8 Using the Skeleton Driver 107

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.8.3 Customize the INX File
The INX file contains the INF that is used to install the driver. To use this
file as a basis for your own driver’s installation, you must change a variety
of settings. The following list outlines the types of required changes:

■ Change the [Manufacturer] section to include the name of your
company and the [Manufacturer.NT$ARCH$] section to include
the name and location of your driver.

■ Change the [SourceDisksFiles] section to include the name of
your DLL.

■ If your driver is a filter driver, change the [DDInstall.Services]
section to install the reflector as the top filter driver in the kernel
mode device stack. If your driver is a function driver, the
[DDInstall.Services] section should install the reflector as the
service for the device.

■ Change the [DDInstall.Wdf] section to install your driver as a
service and list it in the UMDFServiceOrder directive.

■ If your driver performs impersonation, add the UMDF-
Impersonation directive that specifies the maximum imperson-
ation level for the driver.

■ In the [UMDFServiceInstall] section, change the name of the
binary to the name of your driver binary and specify your driver’s
class ID in the DriverCLSID directive.

■ In the UMDriverCopy section, specify the name of your DLL.
■ In the [Strings] section, change the strings to specify the name of

your company, installation medium, and so forth.

Additional changes might be required depending on the type of
device that your driver supports or whether yours is a software-only
driver.

4.8.4 Customize the Comsup.cpp File
If you change the name of the driver class to something different
from CMyDriver, you must change the following line in
CClassFactory::CreateInstance to reflect the new class name:

hr = CMyDriver::CreateInstance(&driver);

108 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.8.5 Add Device-Specific Code to Driver.cpp
In the driver.cpp file, you should add code to the OnDeviceAdd method
to initialize your device and to change any device-specific settings. For
example, if your driver must read settings from the registry before initial-
izing the device, it should do so in OnDeviceAdd.

The CreateInstance, AddRef, Release, and QueryInterface
methods from the Skeleton driver should suffice for most drivers.

4.8.6 Add Device-Specific Code to Device.cpp
The file Device.cpp is where you must do the most work. The Skeleton
sample does not support an actual device, so it implements very few of the
interfaces and callback objects that are required for the typical device.

In the Initialize method, you should set the locking constraint for
your driver. The locking constraint determines whether your driver’s call-
back methods can be called concurrently or whether only one such
method at a time can be active. Note, however, that the locking model
applies strictly to the number of callback methods that are concurrent; it
does not limit the number of I/O requests that can be active in your driver
at one time.

If your driver is a filter driver, you should indicate that in the
Initialize method as well, by calling the SetFilter method of the
IDeviceInitialize interface.

In the Configure method, you create the I/O queues for the driver.
Because the Skeleton driver does not handle actual I/O requests, it does
not set up any queues. Most drivers, however, implement one or more
queues through which UMDF dispatches I/O requests. To create a
queue, the driver calls the IWdfDevice::CreateIoQueue method and
specifies how the queue dispatches requests to the driver: in parallel as
soon as they arrive, sequentially (one at a time), or only when the driver
calls a method on the queue to request one. The driver then calls
IWdfIoQueue::ConfigureRequestDispatching to specify the types of
requests that should be directed to the queue. The driver must also imple-
ment methods in the IQueueCallbackXxx, IRequestCallbackXxx, and
IFileCallbackXxx interfaces as appropriate to handle the requests that
are directed to its queues.

Finally, a driver that supports a Plug and Play device typically must
implement the IPnPCallback interface and possibly the

4.8 Using the Skeleton Driver 109

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

IPnPCallbackHardware and IPnPCallbackSelfManagedIo inter-
faces as well.

You should also either update the header file Internal.h or add your
own device-specific header file with any additional definitions pertinent
to your device-specific code.

110 Chapter 4 Programming Drivers for the UMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

111

C H A P T E R 5

USING COM TO DEVELOP
UMDF DRIVERS

The Component Object Model (COM) is a specification for a way of
building applications based on using components. In the traditional sense,
applications were divided into files, modules, or classes. They were then
linked to form a monolithic application. A component, however, is like a
small application that comes packaged as a binary piece of code that is com-
piled, linked, and ready to use. This piece of code then links with other
components at run-time to form an application. One of the great features of
this approach is that one can change or enhance the application by simply
replacing one of the components. This chapter introduces COM and its use
in creating UMDF drivers. For a more detailed discussion on COM, see the
Bibliography for a reference to the book Inside COM (Rogerson 1997).

For our work in the UMDF driver development, we must use a number
of COM objects that are part of the WDF framework. A number of callback
objects are needed to be created based on COM-based callback objects. In
the UMDF driver development, we will not use the COM run-time, which
contained a good deal of complexity. In the UMDF driver development, we
use the essential core of the COM programming model. This keeps the
UMDF driver fairly lightweight and thus relatively easy to implement.

5.1 Getting Started

In general, the UMDF drivers are programmed using C++, and the COM
objects are developed and also written in C++. It is good to have an under-
standing of class structure such as the struct and class keywords, public and
private members, static methods, constructors, destructors, and pure
abstract classes. Also, you should understand object creation, which
includes base and derived classes, multiple inheritance, and pure virtual
methods.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

See the Bibliography for a reference to C++ How to Program, Seventh
Edition (Deitel 2009) to review or get an understanding of these concepts.
In UMDF drivers, the operator overloading or templates are not neces-
sary. The UMDF drivers could use, but are not required to use, the C++
standard template libraries. This includes the Standard Template Library
(STL) and the Active Template Library (ATL). We do not show examples
of the use of these libraries.

5.1.1 COM Fundamentals
Let’s look at some of the fundamental aspects of COM to get us started:

■ IUnknown is the core COM interface. All COM interfaces derive
from this interface. Every COM object exposes this interface and it
is essential to the object’s operation.

■ One of the significant differences between objects in COM and
other Object Oriented Programming (OOP) models is that there are
no fundamental object pointers in COM. COM exposes interfaces
that are groups of related methods. Objects typically expose at least
two and sometimes many interfaces. Thus, when you obtain a COM
object, you are given a pointer to one of the object’s interfaces not
the object itself.

■ Globally Unique Identifiers (GUIDs) are used by COM to
uniquely identify COM interfaces. Some COM objects have GUID
identifiers, which are referred to as CLSIDs. GUIDs are referred to
as IIDs. We can request an interface pointer using these IIDs.
COM uses GUIDs for two primary purposes:
■ Interface ID (IID)—An IID is a GUID that uniquely identi-

fies a particular COM interface. The interface always has the
same IID, regardless of which object exposes it.

■ Class ID (CLSID)—A CLSID is a GUID that identifies a par-
ticular COM object. CLSIDs are required for COM objects that
are created by a class factory, but optional for objects that are
created in other ways. With UMDF, only the driver callback
object has a class factory or a CLSID.

To simplify using GUIDs, an associated header file usually defines
friendly names that conventionally have a prefix of either IID_ or
CLSID_ followed by the descriptive name. For example, the
friendly name for the GUID that is associated with IDriverEntry

112 Chapter 5 Using COM to Develop UMDF Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

is IID_IDriveEntry. For convenience, the UMFD documentation
usually refers to interfaces by the name used in their implementa-
tion, such as IDriverEntry, rather than the IID.

■ Any of the methods on an interface can be used with an interface
pointer. If you want access to a method on another interface you
must obtain another interface pointer. That is done using the
IUnknown::QueryInterface method.

■ There is no public data member’s exposure in COM objects. Public
data is exposured through methods we call accessors. In UMDF, we
use a Get/Retrieve or Set/Assign prefix for its read and write acces-
sors, respectively. Figure 5.1 shows the logical relationship between
an object and its contents.

5.1 Getting Started 113

Figure 5.1 COM Objects, Interfaces, and Methods

Object 1

Interface 1 Methods

Interface 2 Methods

Additional Interfaces

Private Data, Utility Methods
Etc.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

All access to COM objects is through a virtual function table—com-
monly called a VTable—that defines the physical memory structure of the
interface. The VTable is an array of pointers to the implementation of each
of the methods that the interface exposes. When a client gets a pointer to
an interface, it is actually a pointer to the VTable pointer, which in turn
points to the method pointer. For example, Figure 5.2 shows the memory
structure of the VTable for IWDFloRequest.

The VTable is exactly the memory structure that many C++ compilers
create for a pure abstract base class. This is one of the main reasons that
COM objects are normally implemented in C++, with interfaces declared
as pure abstract base classes. You can then use C++ inheritance to imple-
ment the interface in your objects, and the VTable is created for you by the
compiler.

5.1.2 HRESULT
Before we look at using COM objects, let’s look at the return from a COM
method. COM methods often return a 32-bit type called an HRESULT.
It’s similar to the NTSTATUS type that Kernel Mode Driver routines use
as a return value and is used in much the same way. Figure 5.3 shows the
layout of an HRESULT.

The HRESULT type has three fields:

■ Severity, which is essentially a Boolean value that indicates success
or failure

■ Facility, which can usually be ignored
■ Return code, which provides a more detailed description of the

results

114 Chapter 5 Using COM to Develop UMDF Drivers

Figure 5.2 VTable and Interface Pointers

Interface Pointer

VTable Pointer

Private Data

&CancelSentRequest

&Complete

&CompleteWithInformation

CancelSentRequest

Complete

CompleteWithInformation

Client
Interface

Class
Implementation

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

As with NTSTATUS values, it’s rarely necessary to parse the HRESULT
and examine the individual fields. Standard HRESULT values are defined
in header files and described on method reference pages. By convention,
success codes are assigned names that begin with S_ and failure codes with
E_. For example, S_OK is the standard HRESULT value for simple
success.

It’s important not to think of HRESULT as error values. Methods
often have multiple return values for success and for failure. S_OK is the
usual return value for success, but methods sometimes return other suc-
cess codes, such as S_FALSE.

The severity value is all that is needed to determine whether the
method simply succeeded or failed. Rather than parse the HRESULT to
get the Severity value, COM provides two macros that work much like the
NT_SUCCESS macro that is used to check NTSTATUS values for suc-
cess or failure. For an HRESULT return value of hr:

FAILED(hr)
Returns TRUE if the Severity code for hr indicates
failure and FALSE if it indicates success.

SUCCEEDED(hr)
Returns FALSE if the Severity code for hr indicates
failure and TRUE if it indicates success.

You can examine the HRESULT’s return code to determine whether
a failure is actionable. Usually, you just compare the returned HRESULT
to the list of possible return values on the method’s reference page.
However, be aware that those lists are often incomplete. They typically
have only those HRESULTs that are specific to the method or standard
HRESULTs that have some method-specific meaning. The method might
also return other HRESULTs.

5.1 Getting Started 115

Figure 5.3 HRESULT Layout

Severity

Facility Return Code

015163031

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Always test for simple success or failure with the SUCCEEDED or
FAILED macros, whether or not you test for specific HRESULT values.
Otherwise, for example, if you test for success by comparing the HRE-
SULT to S_OK and the method unexpectedly returns S_FALSE, your
code will probably fail.

Although NTSTATUS and HRESULT are similar, they are not inter-
changeable. Occasionally, information in the form of an NTSTATUS
value must be returned as an HRESULT. In that case, use the HRE-
SULT_FROM_NT macro to convert the NTSTATUS value into an equiv-
alent HRESULT. However, do not use this macro for an NTSTATUS
value of STATUS_SUCCESS. Instead, return the S_OK HRESULT
value. If you need to return a Windows error value, you can convert it to
an HRESULT with the HRESULT_FROM_WIN32 macro.

5.2 Using UMDF COM Objects

A process that uses a COM object is known as a COM client. Both UMDF
drivers and the UMDF run-time function as COM clients. UMDF drivers
interact with UMDF run time by using UMDF-provided COM objects.
For example, the UMDF device object represents the device, and drivers
can use the object for tasks such as setting or retrieving the device’s Plug
and Play state.

The UMDF run time interacts with drivers through the drive-provided
COM-based callback objects. For example, a driver can create one or more
queue callback objects to handle I/O requests. The UMDF run time uses
those objects to pass request to the driver.

After you get a pointer to an interface, you can call the interface meth-
ods by using the same syntax that is used for a pointer to a C++ method.
For example, if pWdfRequest is a pointer to an IWDFloRequest inter-
face, the following code is an example of how to invoke the interface’s
Send method:

HRESULT hr;

hr = pWdfRequest- >Send(m_pIUsbTargetDevice,

WDR_REQUEST_SEND_OPTION_SYNCHRONOUS,

0);

116 Chapter 5 Using COM to Develop UMDF Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The method’s return value is an HRESULT, a typical return type for
COM methods. HRESULT is similar to the NTSTATUS type that Kernel
Mode Drivers use as a return value and is used in much the same way. It
is important not to think of HRESULT as error values. Methods some-
times have multiple return values for success as well as for failure. You can
determine the result of calling a method by comparing the returned
HRESULT to the list of possible values in the reference documentation.
However, be aware that these lists are not always complete. Use the error-
checking macros that are discussed shortly to ensure that you do not miss
a possible return value.

You can also test an HRESULT for simple success or failure. COM
provides two macros for that purpose that work much like the
NT_SUCCESS macro. For an HRESULT return value of hr:

■ FAILED(hr) returns TRUE for failure and FALSE for success.
■ SUCCEEDED(hr) returns FALSE for failure and TRUE for

success.

Although NTSTATUS and HRESULT are similar, they are not inter-
changeable. Occasionally, information in the form of an NTSTATUS value
must be returned as an HRESULT. In that case, you can use the
HRESULT_FROM_NT macro to convert the NTSTATUS into an
equivalent HRESULT. Do not use this macro for an NTSTATUS value of
STATUS_SUCCESS. In that case, return the S_OK HRESULT value.

5.2.1 Obtaining an Interface on a UMDF Object
You can obtain an interface on a UMDF object in one of three ways:

■ The UMDF run time passes an interface pointer in to one of the
driver’s callback methods.

■ The driver creates a new WDF object by calling a UMDF object
creation method.

■ The driver calls IUnknown::QueryInterface to request a new
interface from an existing WDF object.

You can also receive an Interface through a Driver Method. The first case
is the simplest. For example, when the UMDF run time calls a driver’s
IDriverEntry::OnDeviceAdd method, it passes a pointer to the device
object’s IWDFDriver interface.

5.2 Using UMDF COM Objects 117

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The following example shows this activity:

HRESULT CMyDriver::OnDeviceAdd(
__in IWDFDriver *FxWdfDriver,
__in IWDFDeviceInitialize *FxDeviceInit
)

{
// Install the driver in the device stack

}

You can then use FxWdfDriver to access the methods on the driver
object’s IWDFDriver interface. Do not release FxWdfDriver when you
are finished with it. The caller ensures that the object remains valid during
the scope of the method call.

Another way to create a WDF object is by calling the appropriate
UMDF object creation method. For example, to create a request object,
call the UMDF device object’s IWDFDevice::CreateRequest method.
If you look at the UMDF reference in the Windows Driver Kit (WDK),
you will find syntax like that for IWDFDevice::CreateRequest:

HRESULT CreateRequest(
IN IUnknown* pCallbackInterface,
IN IWdfObject* pParentObject,
OUT IWDFIoRequest** ppRequest
);

ppRequest is an OUT parameter that provides an address at which the
CreateRequest method can store a pointer to the newly created request
object’s IWDFObject interface. The following procedure and sample show
how to handle such parameters, by using a call to CreateRequest by the
UMDF’s fx2_driver sample as an example.

We would declare a variable, pWdfRequest, to hold a pointer to
IWDFloRequest.

Then we would pass a reference to pWdfRequest to CreateRequest
as follows:

IWDFIoRequest *pWdfRequest = NULL;
…
hr = m_FxDevice- >CreateRequest (NULL, NULL, &pWdfRequest);

When CreateRequest returns, pWdfRequest holds a pointer to an
IWDFIoRequest interface. When the caller has finished with pWdf-
Request, it should release the interface pointer by calling IUn-
known::Release.

118 Chapter 5 Using COM to Develop UMDF Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Another approach is to call QueryInterface to request a new inter-
face. Objects can expose more than one interface. Sometimes, you have a
pointer to one interface and need a pointer to another interface on the
same object. In that case, call IUnknown::QueryInterface to request the
desired pointer. Pass QueryInterface the IID of the desired interface and
the address of the interface pointer, and QueryInterface returns the
requested pointer. When the caller is finished with the interface pointer,
the caller should release it. The following is an example:

VOID CMyDevice::StartTarget (IWDFIoTarget * pTarget)
{

IWDFIoTargetStateManagement * pStateMgmt = NULL;
HRESULT hrQI =

pTarget->QueryInterface(IID_PPV_ARGS(&pStateMgmt));
…

}

This example requests an IWDFIoTargetStateManagement inter-
face pointer from the UMDF’s I/O target object. It uses the
IID_PPV_ARGS macro—declared in objbase.h—which takes an interface
pointer and produces the correct arguments for QueryInterface.

QueryInterface belongs to the IUnknown interface. However, as
shown earlier, there is no need to have an explicit pointer to an
object’s IUnknown interface to call QueryInterface. All interfaces inherit
from IUnknown, so you can use any interface to call QueryInterface.

5.2.2 Reference Counting
Unlike C++ objects, a client does not directly manage the lifetime of a
COM object. Instead, a COM object maintains a reference count on itself.
When a client creates a new object with an object-creation method, the
object has a reference count of 1. Each time the client requests an addi-
tional interface on the object, the object increments the reference count.
When a client is finished with an interface, it releases the interface pointer,
which decrements the reference count. When all the interface pointers on
the object have been released, the reference count is zero and the object
destroys itself.

You must be extremely careful about handling reference counts when
you use or implement COM objects. Although clients do not explicitly
destroy COM objects, there is no garbage collection to take care of the
problem automatically as there is with managed code. A common

5.2 Using UMDF COM Objects 119

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

mistake is to fail to release an interface. In that case, the reference count
never goes to zero and the object remains in memory indefinitely.
Conversely, releasing the interface pointer too many times causes the
object to be destroyed prematurely, which can cause a crash. Failure to
correctly manage reference counts is a common cause of memory leaks
in COM-based applications, along with a variety of other problems. Even
worse, bugs that are caused by mismanaged reference counts can be very
difficult to locate.

The following are some basic rules for reference counting:

■ Release any interface pointer that is passed to you as an OUT
parameter when you are finished with it by calling IUnknown::-
Release. Do not release pointers that are passed as IN parameters.
A common practice to ensure that all interface pointers are properly
released is to initialize all pointers to NULL. Then set them to
NULL again when they are released. That convention allows you to
test all the interface pointers in your cleanup code; any non-NULL
pointers are still valid and should be released.

■ The reference count is usually incremented for you. The main
exception is when you make a copy of an interface pointer. In that
case, call IUnknown::AddRef to explicitly increment the object’s
reference count. You must then release the pointer when you are
finished.

■ When you discover that the driver has reference counting prob-
lems, do not attempt to fix them by simply adding calls to
AddRef or Release. Make sure that the driver is acquiring and
releasing references according to the rules. Otherwise, you may
find, for example, that the Release calls that you added to solve
a memory leak occasionally deletes the object prematurely and
instead causes a crash.

As with QueryInterface, you do not need a pointer to the object’s
IUnknown interface to call AddRef or Release. You can call these meth-
ods from any of the object’s interfaces.

5.3 Basic Infrastructure Implementation

In this section, we will discuss the required basic infrastructure to support
UMDF drivers. A good starting point for your implementation is to take

120 Chapter 5 Using COM to Develop UMDF Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

the sample in this book and modify that code to suit your driver’s needs.
That code should require at most only modest changes to adapt it to your
driver’s requirements.

5.3.1 DllMain
A dynamic-link library (DLL) can contain any number of in-process COM
objects, but it must have a single entry point that is named DllMain.
Windows calls DllMain after the driver binary has been loaded into a host
process and before it is unloaded. The function is also called when threads
are created or destroyed. The dwReason parameter indicates why the
function was called.

When a UMDF driver’s DllMain function is called for DLL loading
or unloading, it should perform only simple module-wide initialization and
termination tasks, such as initializing or freeing global variables and regis-
tering or unregistering Window Software Trace Preprocessor (WPP) trac-
ing. There is a number of things DllMain should definitely not do, such as
calling LoadLibrary.

When a UMDF driver’s DllMain function is called for thread creation
or destruction, it can ignore the call. For more information, see the func-
tion’s reference page in the Platform Software Developers Kit (SDK). For
a typical DllMain implementation, see the dllsup.cpp from the UMDF
sample code.

5.3.2 DllGetClassObject
Because class factories aren’t exported by name, there is no direct way for
a client to get access to them. Instead, the DLL exports the
DllGetClassObject function by name, which allows it to be called by any
client with access to the DLL. For many COM DLLs, including the
UMDF samples, DllGetClassObject is the only function that is listed in
the project’s .def file to be exported by name from the DLL.

When a client wants to create an instance of one of the COM objects
in the DLL, it passes the CLSID of the desired class factory object to
DllGetClassObject and the IID of the desired interface, usually
IClassFactory. DllGetClassObject creates a new class factory object
and returns a pointer to the appropriate interface on the object.
The client can then use the IClassFactory::CreateInstance method
to create an instance of the object. For a typical implementation of

5.3 Basic Infrastructure Implementation 121

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

DllGetClassObject, see dllsup.cpp from the UMDF’s sample code in
the book.

A standard COM server is also required to implement DllCan
UnloadNow and, optionally, DllRegisterServer and DllUnregister
Server. These exports are not required for UMDF drivers.

5.3.3 Driver Object’s Class Factory
Some COM objects must be created by external clients. For UMDF driv-
ers, there is usually only one such object: that is the driver callback object.
A COM object that can be created by an external client must have a class
factory. This is a small specialized COM object whose sole purpose is to
create a new instance of its associated COM object and return a pointer to
a specified interface. For a typical implementation of a class factory, see
comsup.cpp from the UMDF’s sample code.

Class factories usually expose only one interface in addition to
IUnknown, IClassFactory. The IClassFactory interface has two
members:

■ CreateInstance creates an instance of the object and returns the
requested interface pointer to the client.

■ LockServer can be used to keep the DLL in memory. UMDF class
factories typically have only a token implementation because
UMDF does not use LockServer.

Some recommendations for implementing CreateInstance are as
follows.

■ Ignore the first parameter. Its purpose is to support COM aggrega-
tion, which is not used by UMDF.

■ Create a new driver callback object by whatever means is conven-
ient. The sample code puts the object creation code in a static
method on the class that implements the callback object.

■ Return the appropriate interface as an OUT parameter. At this
point, the object should have a reference count of 1.

5.3.4 Implementing a UMDF Callback Object
A UMDF driver consists of a collection of COM callback objects. These
objects respond to notification by the UMDF run time and allow the driver
to process various events, such as read or write requests. All callback

122 Chapter 5 Using COM to Develop UMDF Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

objects are in-process COM objects. This means that they are packaged in
a DLL and run in the process context of a UMDF host.

The basic requirements for implementing UMDF callback objects are
relatively simple and straightforward:

■ Implement the IUnknown methods to handle reference counting
and provide pointers to the object’s interfaces.

■ Implement the methods of the UMDF callback interfaces that are
to be exported by the object.

5.3.4.1 Implementing the UMDF Callback Class
UMDF callback objects are typically implemented as a C++ class that
contains the code to support IUnknown plus any UMDF interfaces that
the object exposes. The UMDF interfaces are declared in wudfdd.h.
Following are some of the requirements:

■ The class must inherit from every interface that it exposes.
However, it can do so indirectly, for example, by inheriting from a
class that in turn inherits from one or more interfaces.

■ Interfaces are declared as abstract base classes, so the class must
implement all the interface methods.

■ The class often inherits from a parent class in addition to interfaces.
Many of the UMDF samples, for instance, inherit from a parent
class, named CUnknown, that contains a base implementation of
IUnknown.

■ The class can contain private data members, public methods that
are not part of an interface, and so on. These are for internal use and
are not visible to clients.

■ Constructors are optional. However, if a class has a constructor, it
should contain no code in it that might fail. Put any code that can
fail in a public initialization method that can be called after object
creation.

As we mentioned, a UMDF callback object is typically implemented as a
class that inherits from IUnknown and one or more object-specific inter-
faces. Listing 5.1 shows the full declaration of the CMyDriver class. The
class inherits from a single UMDF interface IDriverEntry and inherits
from IUnknown through the CUnknown parent class. For convenience,
several of the simpler methods are implemented here, rather than in the
associated .cpp file.

5.3 Basic Infrastructure Implementation 123

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Listing 5.1 Declaration of a Driver’s Callback Object

Class CMyDriver : public Unknown, Public IDriveEntry
{
private:

IDriverEntry * QueryIDriverEntry (VOID)
{

AddRef();
return static_cast<IDriverEntry*>(this);

}
HRESULT initialize(VOID);

public:
static HRESULT CreateInstance(__out PCMyDriver *Driver);

public:
virtual HRESULT STDMETHODCALLTYPE OnInitialize(__in

IWDFDriver *FxWdfDriver)
{

UNREFERENCED_PARAMETER (FxWdfDriver);
return S_OK;

}
virtual HRESULT STDMETHODCALLTYPE OnDeviceAdd(

__in IWDFDriver *FwWdfDriver,
__in IWDFDeviceInitialize *FxDeviceInit);

virtual VOID STDMETHODCALLTYPE OnDeinitialize(
__in IWDFDriver *FxWdfDriver
)

{
UNREFERENCED PARAMETER(FxWdfDriver);
return;

}
virtual ULONG STDMETHODCALLTYPE AddRef (VOID)
{

return __super::AddRef();
}
virtual ULONG STDMETHODCALLTYPE Release(VOID)
{

return __super::Release();
}
virtual HRESULT STDMETHODCALLTYPE QueryInterface(

__in REFID InterfacedId,
__deref_out PVOID *Object
);

};

124 Chapter 5 Using COM to Develop UMDF Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

IUnknown is the core COM interface; it is exposed by every COM
object and is essential to the object’s operation. The approach that is used
by the UMDF sample code is to have an IUnknown base class, called
CUnknown, plus an implementation for each exposed interface that
inherits from the base class.

5.3.4.2 Implementing AddRef and Release
Reference counting is arguably the key task of IUnknown. Normally, a
single reference count is maintained for the object as a whole. The follow-
ing are some recommendations for handling AddRef and Release:

■ Have the interface-specific implementations pass their calls to the
base implementation and let it handle incrementing or decrement-
ing the reference count for the object.

■ Use InterlockedIncrement and InterlockedDecrement to
modify the reference count. This eliminates the possibility of a race
condition.

■ After the Release method decrements the reference count, check
to see whether the count has gone to zero. If so, there are no out-
standing interface pointers and you can use delete to destroy the
object.

■ Both AddRef and Release return the current reference count. Use
this for debugging purposes.

5.3.5 Implementing QueryInterface
QueryInterface is the fundamental mechanism by which a COM object
provides pointers to its interfaces. It responds to a client’s request by
returning the specified interface pointer. The following are some recom-
mendations for QueryInterface:

■ QueryInterface must check the incoming IID to see if the request
is for a supported interface. IsEquallD is a utility function declared
in guiddef.h that simplifies comparing IIDs.

■ If the object supports the requested interface, QueryInterface calls
AddRef to increment the object’s reference count and returns the
requested interface pointer. To return the pointer, QueryInterface
casts a this pointer to the requested interface type. This cast is required
because of the way in which C++ handles multiple inheritances.

5.3 Basic Infrastructure Implementation 125

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ When a client queries for IUnknown, an object must always return
the same IUnknown pointer regardless of which interface
QueryInterface is called from.

The basic process of implementing UMDF callback interfaces is similar to
IUnknown. Most of the implementation details are governed by the
requirements of the individual methods.

126 Chapter 5 Using COM to Develop UMDF Drivers

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

P A R T I I I

KERNEL MODE DRIVERS

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

C H A P T E R 6

WINDOWS 7 KERNEL MODE
DRIVERS OVERVIEW AND
OPERATIONS

The Kernel Mode Driver Framework (KMDF) is an infrastructure for
developing Kernel Mode Drivers. It provides a C-language device-driver
interface (DDI) and can be used to create drivers for Windows 7. In
essence, the framework is a skeletal device driver that can be customized
for specific devices. KMDF implements code to handle common driver
requirements. Drivers customize the framework by setting object proper-
ties, registering callbacks to be notified of important events, and including
code only for features that are unique to their device.

KMDF provides a well-defined object model and controls the lifetime
of objects and memory allocations. Objects are organized hierarchically in
a parent/child model, and important driver data structures are maintained
by KMDF instead of by the driver.

This chapter provides an introduction to the architecture and features
of KMDF and to the requirements for drivers that use KMDF (sometimes
called KMDF-based drivers or simply DMDF drivers).

As we covered in Part II, the Windows Driver Foundation (WDF) also
includes a User Mode Driver Framework (UMDF). If your device does
not handle interrupts, perform direct memory access (DMA), or require
other kernel mode resources such as nonpaged pool memory, you should
consider writing a User Mode Driver instead.

6.1 KMDF Supported Devices

KMDF was designed to replace the Windows Driver Model (WDM).
The initial KMDF release supports most of the same devices and device
classes as WDM, except in those that are currently supported by

129

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

miniport models. Table 6.1 lists the device and driver types that KMDF
supports.

Table 6.1 Devices and Driver Types That KMDF Supports

130 Chapter 6 Windows 7 KMD Overview and Operations

Device or Driver Type

Control and non-Plug
and Play drivers
IEEE 1394 client
drivers

ISA, PCI, PCMCIA, and
secure digital (SD)
devices

NDIS protocol drivers

NDIS WDM drivers

SoftModem drivers

Storage class drivers and
filter drivers
Transport driver
interface (TDI) client
drivers
USB client drivers

Winsock client drivers

Existing Driver Model

Legacy

Depends on device
class

WDM driver

WDM upper edge and
NDIS lower edge
NDIS upper edge and
WDM lower edge
WDM driver with
upper Edge support
for TAPI Interface
WDM driver

Generic WDM driver

Depends on device
class
WDM driver with a
callback interface for
device-specific
requests

Comments

Supported

Supported for devices
that do not conform to
existing device class
specifications
Supported, if device class
or port drivers do not
provide the driver
dispatch functions
Supported

Supported

Supported

Supported

Supported

Supported

Supported

In general, KMDF supports drivers that conform to WDM, supply
entry points for the major I/O dispatch routines, and handle I/O request
packets (IRPs). For some device types, device class and port drivers sup-
ply driver dispatch functions and call back to a miniport driver to handle

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

specific I/O details. Such miniport drivers are essentially callback libraries
and are not currently supported by KMDF. In addition, KMDF does not
support device types that use the Windows imaging architecture (WIA).

6.2 KMDF Components

KMDF is distributed as part of the Windows Driver Kit (WDK) and con-
sists of header files, libraries, sample drivers, development tools, public
debugging symbols, and tracing format files. By default, KMDF is installed
in the WDF subdirectory of the WDK root installation directory. KMDF-
based drivers are built in the WDK build environment. Table 6.2 lists the
KMDF components that are installed as part of WDF.

Table 6.2 KMDF Component Names

6.2 KMDF Components 131

Component Location Description

Header files wdf/inc Header files required to
build KMDF drivers

Libraries wdf/lib Libraries for x86, x64, and
Intel Itanium architectures

Sample drivers wdf/src Sample drivers for numerous
device types; most are ported
from Windows Device Kit
(DDK) WDM samples

Tools wdf/bin Tools for testing, debugging,
and installing drivers,
includes the redistributable
KMDF co-installer,
WdfConinstallernn.dll

Debugging symbols wdf/symbols Public symbol database
(.pdb) files for KMDF
libraries and co-installer for
checked and free builds

Tracing format files wdf/tracing Trace format files for the
trace messages generated by
KMDF libraries and co-
installer

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To aid in debugging, KMDF is distributed with free and checked
builds of the run-time libraries and loader, along with corresponding sym-
bols. However, Microsoft does not provide a checked version of the redis-
tributable co-installer itself.

6.3 KMDF Driver Structure

A KMDF driver consists of a DriverEntry function that identifies the
driver as based on KMDF, a set of callback functions that KMF calls so
that the driver can respond to events that affect its device, and other
driver-specific utility functions. Nearly every KMDF driver must have the
following:

■ A DriverEntry function, which represents the driver’s primary entry
point

■ An EvtDriverDeviceAdd callback, which is called when the Plug
and Play manager enumerates one of the driver’s devices (not
required for drivers that support non-Plug and Play devices)

■ One or more EvtIo* callbacks, which handle specific types of I/O
requests from a particular queue

Drivers typically create one or more queues into which KMDF places I/O
requests for the driver’s device. A driver can configure the queues by type
of request and type of dispatching.

A minimal Kernel Mode Driver for a simple device might have these
functions and nothing more. KMDF includes code to support default
power management and Plug and Play operations, so drivers that do not
manipulate physical hardware can omit most Plug and Play and power
management code. If a driver can use the default, it does not require code
for many common tasks, such as passing a power IRP down the device
stack. The more device-specific features a device supports and the more
functionality the driver provides the more code the driver requires.

6.4 Comparing KMDF and WDM Drivers

The KMDF model results in drivers that are much simpler and easier to
debug than WDM drivers. KMDF drivers require minimal common
code for default operations because most such code resides in the

132 Chapter 6 Windows 7 KMD Overview and Operations

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

framework, where it has been thoroughly tested and can be globally
updated.

Because KMDF events are clearly and narrowly defined, KMDF-
based drivers typically require little code complexity. Each driver callback
routine is designed to perform a specific task. Therefore, compared to
WDM drivers, KMDF-based drivers have fewer lines of code and virtually
no state variables or locks.

As part of the WDF development effort, Microsoft has converted
many of the sample drivers that shipped with the Windows DDK from
WDM drivers to KMDF drivers. Without exception, the KMDF drivers
are smaller and less complex.

Table 6.3 shows “before-and-after” statistics for the PCIDRV, Serial,
and OSRUSBFX2 drivers.

Table 6.3 WDM-KMDF Statistics for Sample Drivers

6.4 Comparing KMDF and WDM Drivers 133

Statistic PCIDRV Serial OSRUSBFX2

WDM KMDF WDM KMDF WDM KMDF

Total lines of code 13,147 7,271 24,000 17,000 16,350 2,300
Lines of code required 7,991 1,795 5,000 2,500 8,700 742
for Plug and Play and
power management
Locks and 8 3 10 0 9 0
synchronization
State variables required 30 0 53 0 21 0
for Plug and Play and
power management

The PCIDRV sample supports the Intel E100B NIC card. The WDM
and KMDF versions are functionally equivalent. The Serial sample sup-
ports a serial device. In this case, the WDM sample supports a multiport
device, but the KMDF sample supports only a single port. However, the
statistics for the WDM driver do not include code, locks, or variables that
are required solely to support multiport devices, so the statistics are com-
parable. The OSRUSBFX2 sample supports the USB-FX2 board built by
OSR. The WDM and KMDF versions are functionally equivalent.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

As the table shows, converting these drivers from WDM to KMDF
resulted in significant reductions in the lines of code, particularly for Plug
and Play and power management. The KMDF samples also require fewer
locks and synchronization primitives and state variables. The following
information shows more detail with respect to these requirements:

■ Lines of code—The KMDF drivers require significantly fewer
lines of code both overall and to implement Plug and Play and
power management. Less code means a less complex driver with
fewer opportunities for error and a smaller executable image.

■ Locks and synchronization primitives—Not only are the
KMDF drivers smaller, but in all three cases the number of locks
and synchronization primitives has been reduced significantly. This
change is important because it eliminates a common source of
driver problems. WDM drivers use locks to synchronize I/O queues
with Plug and Play and power operations and often supply locks to
manage I/O cancellation. The locking scenarios typically involve one
or more race conditions and can be difficult to implement correctly.
KMDF drivers can be implemented with few such locks because
the framework provides the locking.

■ State variables—The number of state variables that are required
for Plug and Play and power management is a measure of the com-
plexity of the Plug and Play and power management implementa-
tion within the driver. A WDM driver receives Plug and Play and
power management requests from the operating system in the form
of IRPs. When such a driver receives a Plug and Play or power IRP,
it must determine the current state of its device and the system and,
based on those two states, must determine what to do to satisfy the
IRP. Drivers must handle some IRPs immediately upon arrival as
they travel down the device stack, but must handle others only after
they have been acted upon by drivers lower in the stack.
Consequently, a WDM driver must keep track of numerous details
about the current state of its device and of current Plug and Play
and power management requests. Tracking this information
requires 30 variables in the WDM PCIDRV sample, 53 in the Serial
sample, and 21 in the OSRUSBFX2 sample.

The KMDF versions of the three sample drivers require no state variables.
The KMDF drivers do not maintain such information because the

134 Chapter 6 Windows 7 KMD Overview and Operations

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

framework does so on their behalf. The framework implements an exten-
sive state machine that integrates Plug and Play and power management
operations with I/O operations. A driver provides callbacks that are
invoked only when its device requires manipulation. For example, a driver
for a device that supports a wake-up signal can register a callback that arms
the signal, and KMDF invokes the callback at the appropriate time. By
contrast, a WDM driver must determine which power management IRPs
require it to arm the signal and at which point in handling those IRPs it
should do so.

6.5 Device Objects and Driver Roles

Every driver creates one or more device objects, which represent the
driver’s roles in handling I/O requests and managing its device. KMDF
supports the development of the following types of device objects:

■ Filter device objects (filter DOs) represent the role of a filter driver.
Filter DOs “filter,” or modify, one or more types of I/O requests that
are targeted at the device. Filter DOs are attached to the Plug and
Play device stack.

■ Functional device objects (FDOs) represent the role of a function
driver, which is the primary driver for a device. FDOs are attached
to the Plug and Play device stack.

■ Physical device objects (PDOs) represent the role of the bus driver,
which enumerates child devices. PDOs are attached to the Plug and
Play device stack.

■ Control device objects represent a legacy non-Plug and Play device
or a control interface. They are not part of the Plug and Play device
stack.

Depending on the design of the device and the other drivers in the device
stack, a driver might assume one or more of these roles. Each Plug and
Play device has one function driver and one bus driver, but can have any
number of filter drivers. In the Plug and Play device stack, a driver some-
times acts as the function driver for one device and as the bus driver for
the devices that its device enumerates. For example, a USB hub driver acts
as the function driver for the hub itself and the bus driver for each USB

6.5 Device Objects and Driver Roles 135

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

device that is attached to the hub. Thus, it creates an FDO for the hub and
a PDO for each attached USB device.

6.5.1 Filter Drivers and Filter Device Objects
A filter driver receives one or more types of I/O requests that are targeted
at its device, takes some action based on the request, and then passes the
request to the next driver in the stack. Filter drivers do not typically per-
form device I/O themselves; instead, they modify or record a request that
another driver satisfies. Device-specific data encryption/decryption soft-
ware is commonly implemented as a filter driver.

A filter driver adds a filter DO to the Plug and Play device stack. A
KMDF driver notifies the framework that it is a filter driver when its
device is added to the system, so that KMDF creates a filter DO and sets
the appropriate defaults.

Most filter drivers are not “interested” in every request that is targeted
at their devices; a filter driver might filter only read requests or only cre-
ate requests. To simplify filter driver implementation, KMDF dispatches
only the types of requests that the filter driver specifies and passes all other
requests down the device stack. The filter driver never receives them and
so does not require code to inspect them or pass them to another driver.

The sample Firefly, Kbfiltr, and Toaster Filter drivers create filter
DOs.

KMDF does not support the development of bus filter drivers. Such
drivers are layered immediately above a bus driver that creates a PDO and
add their device objects to the stack when Plug and Play manager queries
the bus driver for bus relations.

6.5.2 Function Drivers and Functional Device Objects
Function drivers are the primary drivers for their devices. A function
driver communicates with its device to perform I/O and typically manages
power policy for its device. In the Plug and Play device stack, a function
driver exposes an FDO.

To support function drivers, KMDF includes an FDO interface, which
defines a set of methods, events, and properties that apply to FDOs during
initialization and operation. By using the FDO interface, a driver can

136 Chapter 6 Windows 7 KMD Overview and Operations

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ Register event callbacks that are related to resource allocation for its
device.

■ Retrieve properties of its physical device.
■ Open a registry key.
■ Manage a list of child devices, if the device enumerates one or more

children.

When the driver creates its device object, KMDF creates an FDO unless
the driver notifies it otherwise.

By default, KMDF assumes that the function driver is the power pol-
icy manager for its device. If the device supports wake-up signals, the func-
tion driver typically also sets power policy event callbacks to implement
this feature. All the sample drivers, except the KbFiltr and Firefly drivers,
create an FDO.

6.5.3 Bus Drivers and Physical Device Objects
A bus driver typically operates as the function driver for a parent device
that enumerates one or more child devices. The parent device might be a
bus but could also be a multifunction device that enumerates children
whose functions require different types of drivers. In the Plug and Play
device stack, a bus driver exposes a PDO.

KMDF defines methods, events, and properties that are specific to
PDOs, just as it does for FDOs. By using the PDO interface, a driver can

■ Register event callbacks so that the driver can report the hardware
resources that its children require.

■ Register event callbacks that are related to device locking and ejec-
tion.

■ Register event callbacks that perform bus-level operations so that its
child devices can trigger a wake signal.

■ Assign Plug and Play, compatible, and instance IDs to its child
devices.

■ Set removal and ejection relations for its child devices.
■ Notify the system that a child device has been ejected or surprise

removed.
■ Retrieve and update the bus address of a child device.
■ Indicate that the driver controls a raw device. (A raw device is

driven directly by a bus driver, without a function driver.)

6.5 Device Objects and Driver Roles 137

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To indicate that it is a bus driver, a KMDF driver calls one or more of
the PDO initialization methods before creating its device object. If the
driver indicates that it is driving a raw device, KMDF assumes that the
driver is the power policy manager for the device.

Writing bus drivers is much simpler with KMDF than with WDM.
KMDF manages the state of the PDO on behalf of the driver, so that the
driver is only required to notify KMDF when the device is added or
removed. KMDF supports both static and dynamic models for enumerat-
ing child devices. If the status of child devices rarely changes, the bus
driver should use the static model. The dynamic model supports drivers for
devices such as IEEE 1394 buses, where the status of child devices might
change at any time.

For bus drivers, KMDF handles most of the details of enumeration,
including:

■ Reporting children to WDM.
■ Coordinating scanning for children.
■ Maintaining the list of children.

In addition, the KMDF interface through which drivers report resource
requirements is easier to use than that provided by WDM.

The sample KbFiltr, OsrUsbFx2/EnumSwitches, and Toaster bus
drivers create PDOs and use both the static and dynamic methods to
enumerate their child devices.

6.5.4 Legacy Device Drivers and Control
Device Objects

In addition to Plug and Play function, bus, and filter drivers, KMDF sup-
ports the development of drivers for legacy devices, which are not con-
trolled by a Plug and Play lifetime model. Such drivers create control
device objects, which are not part of the Plug and Play device stack.

Plug and Play drivers can also use control device objects to imple-
ment control interfaces that operate independently of the device stack. An
application can send requests directly to the control device object, thus
bypassing any filtering performed by other drivers in the stack. Such a con-
trol device object typically has a queue and might sometimes forward
requests from that queue to a Plug and Play device object.

138 Chapter 6 Windows 7 KMD Overview and Operations

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Because control device objects are not part of the Plug and Play
device stack, the driver must notify KMDF when their initialization is
complete. In addition, the driver itself must delete the device object when
the device has been removed because only the driver knows how to con-
trol the lifetime of such a device. The sample NdisProt, NonPnP, and
Toaster Filter drivers create control device objects.

6.6 KMDF Object Model

KMDF defines an object-based programming model in which object types
represent common driver constructs. Each object exports methods (func-
tions) and properties (data) that drivers can access and is associated with
object-specific events, which drivers can support by providing event call-
backs. The objects themselves are opaque to the driver.

KMDF creates some objects on behalf of the driver, and the driver cre-
ates others depending on its specific requirements. The driver also provides
callbacks for the events for which the KMDF defaults do not suit its device
and calls methods on the object to get and set properties and perform any
additional actions. Consequently, a KMDF driver is essentially a Driver-
Entry routine, a set of callback functions that perform device-specific tasks,
and whatever utility functions the driver implementation requires.

Framework-base drivers never directly access instances of framework
objects. Instead, they reference object instances by handles, which the
driver passes as parameters to object methods and KMDF passes as
parameters to event callbacks. Framework objects are unique to the frame-
work. They are not managed by the Windows object manager and cannot
be manipulated by using the system’s ObXxx function. Only the frame-
work (and its drivers) can create and operate on them.

6.6.1 Methods, Properties, and Events
Methods are functions that perform an action on an object, such as creat-
ing or deleting the object. KMDF methods are named according to the fol-
lowing pattern:

WdfObjectOperation

Object specifies the KMDF object on which the method operates,
and Operation indicates what the method does. For example, the
WdfDeviceCreate method creates a framework device object.

6.6 KMDF Object Model 139

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Properties are functions that read and write data fields in an object,
thus defining object behavior and defaults. Properties are named accord-
ing to the following pattern:

WdfObject{Set|Get}Data
WdfObject{Assign|Retrieve}Data

Object specifies the KMDF object on which the function operates, and
Data specifies the field that the function reads or writes. Some properties can
be read and written without failure, but others can sometimes fail. Functions
with Set and Get in their names read and write fields without failure. The Set
functions return VOID, and the Get functions typically return the value of
the field. Functions with Assign and Retrieve in their names read and write
fields but can fail. These functions return an NTSTATUS value.

For example, the WDFINTERRUPT object represents the interrupt
object for a device. Each interrupt object is described by a set of charac-
teristics that indicate the type of interrupt (message signaled or IRQ
based) and provide additional information about the interrupt. The
WdfInterruptGetInfo method returns this information. A corresponding
method to set the value is not available because the driver initializes this
information when it creates the interrupt object and cannot change it dur-
ing device operation.

Events represent run-time states to which a driver can respond or dur-
ing which a driver can participate. A driver registers callbacks only for
the events that are important to its operation. When the event occurs, the
framework invokes the callback, passing as a parameter a handle to
the object for which the callback is registered. For example, the ejection of
a device is a Plug and Play event. If a device can be ejected, its driver reg-
isters an EvtDeviceEject callback routine, which performs device-spe-
cific operations upon ejection. KMDF calls this routine with a handle to
the device object when the Plug and Play manager sends an IRP_
MN_EJECT request for the device. If the device cannot be ejected, the
driver does not require such a callback.

For most events, a driver can either provide a callback routine or allow
KMDF to perform a default action in response. For a few events, however,
a driver-specific callback is required. For example, adding a device is an
event for which every Plug and Play driver must include a callback. The
driver’s EvtDriverDeviceAdd callback creates the device object and sets
device attributes.

KMDF events are not related to the kernel-dispatcher events that
Windows provides as synchronization mechanisms. A driver cannot create,

140 Chapter 6 Windows 7 KMD Overview and Operations

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

manipulate, or wait on a KMDF event. Instead, the driver registers a
callback for the event and KMDF calls the driver when the event occurs.
(For time-related waits, KMDF provides timer objects.)

6.6.2 Object Hierarchy
KMDF objects are organized hierarchically. WDFDRIVER is the root
object; all other objects are considered its children. For most object types, a
driver can specify the parent when it creates the object. If the driver does not
specify a parent at object creation, the framework sets the default parent to the
WDFDRIVER object. Figure 6.1 shows the default KMDF object hierarchy.

6.6 KMDF Object Model 141

Figure 6.1 Parent-Child Relationships Among the KMDF Objects

WDFDRIVER

WDFDEVICE

WDFDMAENABLER

WDF COMMONBUFFER
WDFTRANSACTION

WDFIORESREQLIST

WDFIORESLIST

WDFQUEUE

WDFDPC
WDFTIMER

WDFWORKITEM

WDRWMIPROVIDER

WDFWMIINSTANCE

WDFCMRESLIST

WDFUSBDEVICE

WDFUSBINTERFACE

WDFUSBPIPE

WDFCHILDLIST
WDFFILEOBJECT
WDFINTERRUPT
WDFIOTARGET
WDFREQUEST

(Delivered from Queue)

WDFCOLLECTION
WDFKEY

WDFLOOKASIDE
WDFMEMORY
WDFOBJECT

WDFREQUEST
(Driver Created)
WDFSPINLOCK

WDFSTRING
WDFWAITLOCK

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

For each object, the figure shows which other object(s) must be in its par-
ent chain. These objects are not necessarily the immediate parent but
could be the grandparent, great-grandparent, and so forth. For example,
Figure 6.1 shows the WDFDEVICE object as parent of the
WDFQUEUE object. However, a WDFQUEUE object could be the
child of a WDFIOTARGET object, which in turn is the child of a
WDFDEVICE object. Thus, the WDFDEVICE object is in the parent
chain for the WDFQUEUE object.

The object hierarchy affects the object’s lifetime. The parent holds a
reference count for each child object. When the parent object is deleted,
the child objects are deleted and their callbacks are invoked in a defined
order. Table 6.4 lists all the KMDF object types.

Table 6.4 KMDF Object Types

142 Chapter 6 Windows 7 KMD Overview and Operations

Object Type Description

Child list WDFCHILDLIST Represents a list of the child devices for a
device.

Collection WDFCOLLECTION Describes a list of similar objects, such as
resources or the devices for which a filter
driver filters requests.

Device WDFDEVICE Represents an instance of a device. A driver
typically has one WDFDEVICE object for
each device that it controls.

DMA WDFCOMMON Represents a buffer that can be accessed by
common BUFFER both the device and the driver to perform
buffer DMA.
DMA enabler WDFDMAENABLER Enables a driver to use DMA. A driver that

handles device I/O operations has one
WDFDMAENABLER object for each DMA
channel within the device.

DMA WDFDMATRANS- Represents a single DMA transaction.
transaction ACTION
Deferred WDFDPC Represents a Deferred Procedure Call.
Procedure
Call (DPC)
Driver WDFDRIVER Represents the driver itself and maintains

information about the driver, such as its entry
points. Every driver has one WDFDRIVER
object.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.6 KMDF Object Model 143

Object Type Description

File WDFFILEOBJECT Represents a file object through which
external drivers or applications can access the
device.

Generic WDFOBJECT Represents a generic object for use as the
object driver requires.
I/O queue WDFQUEUE Represents an I/O queue. A driver can have

any number of WDFIOQUEUE objects.
I/O request WDFREQUEST Represents a request for device I/O.
I/O target WDFIOTARGET Represents a device stack to which the driver

is forwarding an I/O request.
Interrupt WDFINTERRUPT Represents a device’s interrupt object. Any

driver that handles device interrupts has one
WDFINTERRUPT object for each IRQ or
message-signaled interrupt (MSI) that the
device can trigger.

Look-aside WDFLOOKASIDE Represents a dynamically sized list of
list identical buffers that are allocated from the

paged or nonpaged pool. Both the
WDFLOOKASIDE object and its component
memory buffers can have attributes.

Memory WDFMEMORY Represents memory that the driver uses,
typically an input or output buffer that is
associated with an I/O request.

Registry key WDFKEY Represents a registry key.
Resource list WDFCMRESLIST Represents the list of resources that have

actually been assigned to the device.
Resource WDFIORESLIST Represents a possible configuration for a
range list device.
Resource WDFIORESREQLIST Represents a set of I/O resource lists, which
requirements comprises all possible configurations for the
list device. Each element of the list is a

WDFIORESLIST object.
String WDFSTRING Represents a counted Unicode string.
Synchro- WDFSPINLOCK Represents a spin lock, which synchronizes
nization: access to data DISPATCH_LEVEL.
spin lock

(continues)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.6.3 Object Attributes
Every KMDF object is associated with a set of attributes. The attributes
define information that KMDF requires for objects, as listed in Table 6.5.

Table 6.5 KMDF Object Attributes

144 Chapter 6 Windows 7 KMD Overview and Operations

Field Description

ContextSizeOverride Size of the context area; overrides the value in
ContextTypeInfo->ContextSize.

ContextTypeInfo Pointer to the type information for the object context area.
EvtCleanupCallback Pointer to a callback routine that is invoked to clean up the

object before it is deleted; the object might still have
references.

Object Type Description

Synchronization: WDFWAITLOCK Represents a wait lock, which synchro-
wait lock nizes access to data at PASSIVE_LEVEL.
Timer WDFTIMER Represents a timer that fires either

once or periodically and causes a
callback routine run.

USB device WDFUSBDEVICE Represents a USB device.
USB interface WDFUSBINTERFACE Represents an interface on a USB

device.
USB pipe WDFUSBPIPE Represents a pipe in a USB interface.
Windows WDFWMIINSTANCE Represents an individual WMI data
Management block that is associated with a particular
Instrumentation provider
(WMI) instance
WMI provider WDFWMIPROVIDER Represents the schema for WMI data

blocks that the driver provides.
Work item WDFWORKITEM Represents a work item, which runs in

a system thread at PASSIVE_LEVEL.

Table 6.4 KMDF Object Types (continued)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.6 KMDF Object Model 145

Field Description

EvtDestroyCallback Pointer to a callback routine that is invoked when the
reference count reaches zero for an object that is marked
for deletion.

ExecutionLevel Maximum interrupt request level (IRQL) at which KMDF
can invoke certain object callbacks.

ParentObject Handle to the object’s parent.
Size Size of the object
SynchronizationScope Level at which certain callbacks for this object are

synchronized; applies only to driver, device, and file
objects.

The framework supplies defaults for most attributes. A driver can
override these defaults when it creates the object by using the WDF_
OBJECT_ATTRIBUTES_INIT function.

6.6.4 Object Context
Every instance of a KMDF object can have one or more object context
areas. This area is a driver-defined storage area for data that is related to a
specific instance of an object, such as a driver-allocated lock or event for
the object. The size and layout of the object context area are determined
by the driver. When the driver creates the object, it initializes the context
area and specifies its size and type. The driver can create additional con-
text areas after the object has been created. For a KMDF device object,
the object context area is the equivalent of the WDM device extension.

When KMDF creates the object, it allocates memory for context areas
from the nonpaged pool and initializes them according to the driver’s spec-
ifications. When KMDF deletes the object, it deletes the context areas,
too. The framework provides macros to associate a type and a name with
the context area and to create a named accessor function that returns a
pointer to the context area.

If you are familiar with WDM, this design might seem unnecessarily
complicated. However, it provides flexibility in attaching information to I/O
requests as they flow through the driver. In addition, it enables different
libraries to have their own separate context for an object. For example, an
IEEE 1394 library could track a WDFDEVICE object at the same time

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

that the device’s function driver tracks it, but with separate contexts. Within
a driver, the context area enables a design pattern that is similar to inheri-
tance. If the driver uses a request for several different tasks, the request
object can have a separate context area to each task. Functions that are
related to a specific task can access their own contexts and do not require
any information about the existence or contents of any other contexts.

6.6.5 Object Creation and Deletion
To create an object, KMDF does the following:

■ Allocates memory from the nonpaged pool for the object and its
context areas.

■ Initializes the object’s attributes with default values and the driver’s
specifications (if any).

■ Zeroes the object’s context areas.
■ Configures the object by storing pointers to its event callbacks and

setting other object-specific characteristics.

If object initialization fails, KMDF deletes the object and any children that
have already been created.

To initialize object attributes and configuration structures, a driver
invokes KMDF initialization functions before it calls the object-creation
methods. KMDF uses the initialized attributes and structures when it cre-
ates the object.

KMDF maintains a reference count for each object and ensures that
the object persists until all references to it have been released. If the driver
explicitly deletes an object (by calling a deletion method), KMDF marks
the object for deletion but does not physically delete it until its reference
count reaches zero.

Drivers do not typically take out references on the objects that they
create, but in some cases (such as when escaping directly to WDM) such
references are necessary to ensure that the object’s handle remains valid.
For example, a driver that sends asynchronous I/O requests might take out
a reference on the request object to guard against race conditions during
cancellation. Before the request object can be deleted, the driver must
release this reference.

Object deletion starts from the object farthest from the parent and
works up the object hierarchy toward the root. KMDF takes the following
steps to delete an object:

146 Chapter 6 Windows 7 KMD Overview and Operations

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 147

■ Starting with the child object farthest from the parent, calls the
object’s EvtCleanupCallback. In this routine, drivers should per-
form any cleanup tasks that must be done before the object’s parent
is deleted. Such tasks might include releasing explicit references on
the object or a parent object. Note that when the EvtCleanup-
Callback function runs, the object’s children still exist; even though
their EvtCleanupCallback functions have already been invoked.

■ When the object’s reference count reaches zero, calls the object’s
EvtDestroyCallback, if the driver has registered one.

■ Deallocates the memory that was allocated to the object and its con-
text area.

KMDF always calls the EvtCleanupCallback routines of child objects
before calling those of their parent objects, so drivers are guaranteed that
the parent object still exists when a child’s EvtCleanupCallback runs.
This guarantee does not apply to EvtDestroyCallbacks, however;
KMDF can call the EvtDestroyCallback routines in any order, so that
the EvtDestroyCallback for a parent might be called before that of one
of its children.

Drivers can change the parent of most KMDF objects by setting the
ParentObject attribute. By setting the parent/child relationships appro-
priately, a driver can avoid taking out explicit references on related objects
and can instead use the hierarchy and the associated callbacks to manage
the object’s lifetime.

6.7 KMDF I/O Model

KMDF established its own dispatch routines that intercept all IRPs that
are sent to the driver. Figure 6.2 shows the overall flow of I/O through the
KMDF library and driver.

When an IRP arrives, KMDF directs it to one of the following com-
ponents for processing:

■ I/O request handler, which handles requests that involve device I/O.
■ Plug and Play/power request handler, which handles Plug and

Play and power request (IRP_MJ_PNP and IRP_MJ_
POWER requests) and notifies other components of changes in
device status.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

148 Chapter 6 Windows 7 KMD Overview and Operations

■ WMI handler, which handles WMI and event-tracing request
(IRP_MJ_SYSTEM_CONTROL requests).

Each component takes one or more of the following actions for each
request:

■ Raises one or more events to the driver.
■ Forwards the request to another internal handler or I/O target for

further processing.
■ Completes the request based on its own action.
■ Completes the request as a result of a driver call.

If the request has not been processed when it reaches the end of
frameworks processing, KMDF takes an action that is appropriate for the
type of driver. For function and bus drivers, KMDF completes the request
with the status STATUS_INVALID_DEVICE_REQUEST. For filter
drivers, KMDF automatically forwards the request to the default I/O

IRPs
Dispatcher

Plug and Play/
Power Request

Handler

WMI Request
Handler

I/O Request
Handler

Nonpower-
Managed I/O

Queues

Power-Managed
I/O Queues

Driver
Callbacks I/O Target

Driver
Callbacks

Driver
Callbacks

Figure 6.2 KMDF I/O Flow

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 149

target (the next lower driver). The next sections describe how each of the
three components processes I/O requests.

6.7.1 I/O Request Handler
The I/O request handler dispatches I/O requests to the driver, manages I/O
cancellation and completion, and works with the Plug and Play/power han-
dler to ensure that the device state is compatible with performing device I/O.

Depending on the type of I/O request, the I/O request handler either
queues the request or invokes an event callback that the driver registered
for the request.

6.7.1.1 Create, Cleanup, and Close Requests
To handle create events, a driver can either configure a queue to receive
the events or can supply an event callback that is invoked immediately. The
driver’s options are the following:

■ To be called immediately, the driver supplies an EvtDevice-
FileCreate callback and registers it from the EvtDriverDevice-
Add callback by calling WdfDeviceInitSetFileObjectConfig.

■ To configure a queue to receive the requests, the driver calls Wdf-
DeviceConfigureRequestDispatching and specifies Wdf-
RequestTypeCreate. If the queue is not manual, the driver must
register an EvtIoDefault callback, which is called when a create
request arrives.

Queuing takes precedence over the EvtDeviceFileCreate callback—that is,
if the driver both registers for EvtDeviceFileCreate events and configures
a queue to receive such requests, KMDF queues the requests and does not
invoke the callback. KMDF does not queue create requests to a default
queue; the driver must explicitly configure a queue to receive them.

In a bus or function driver, if a create request arrives for which the driver
has neither registered an EvtDeviceFileCreate callback function nor con-
figured a queue to receive create requests, KMDF opens a file object to rep-
resent the device and completes the request with STATUS_SUCCESS.
Therefore, any bus or function driver that does not accept create or open
requests from user mode application—and thus does not register a device
interface—must register an EvtDeviceFileCreate callback that explicitly
fails such requests. Supplying a callback to fail create requests ensures that
a rogue user mode application cannot gain access to the device.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

150 Chapter 6 Windows 7 KMD Overview and Operations

If a filter driver does not handle create requests, KMDF by default for-
wards all create, cleanup, and close requests to the default I/O target (the
next lower driver). Filter drivers that handle create requests should per-
form whatever filtering tasks are required and then forward such requests
to the default I/O target. If the filter driver completes a create request for
a file object, it should set AutoForwardCleanupClose to WdfFalse in
the file object configuration so that KMDF completes cleanup and close
requests for the file object instead of forwarding them.

To handle file cleanup and close requests, a driver registers the
EvtFileCleanup and EvtFileClose event callbacks. If a bus or function
driver does not register such a callback, KMDF closes the file object and
completes the request with STATUS_SUCCESS. In a filter driver that
does not register cleanup and close callbacks, KMDF forwards these
requests to the default I/O target unless the driver has explicitly
set AutoForwardCleanupClose to WdfFalse in the file object
configuration.

6.7.1.2 Read, Write, Device I/O Control, and Internal Device
I/O Control Requests

For read, write, device I/O control, and internal device I/O control
requests, the driver creates one or more queues and configures each queue
to receive one or more types of I/O requests. When such a request arrives,
the I/O request handler does the following:

■ Determines whether the driver has configured a queue for this type
of request. If not, the handler fails a read, write, device I/O control,
or internal device I/O control request if this is a function or bus
driver. If this is a filter driver, the handler passes such a request to
the default I/O target.

■ Determines whether the queue is accepting requests and the device
is powered on. If both are true, the handler creates a WDFRE-
QUEST object to represent the request and adds it to the queue. If
the queue is not accepting requests, the handler fails the request.

■ If the device is not in the DO state, notifies the Plug and Play/power
handler to power up the device.

■ Queues the request.

Figure 6.3 shows the flow of a read, write, device I/O control, or internal
device I/O control request through the I/O request handler to the driver.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 151

Figure 6.3 Flow of I/O Request Through I/O Request Handler

Does driver have a
queue for this

type?

NO YES

Is the queue
accepting requests?

NO YES

Create an I/O
request object to

represent the
request

Is the queue power
managed?

NO YES

Is the device in the
working state?

NO YES

Notify the Plug and
Play/power

handler to power
up the device

Queue the
request

Is this a filter driver?

NO YES

Pass the request
to the default I/O

target

Fail the request

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

152 Chapter 6 Windows 7 KMD Overview and Operations

6.7.2 I/O Queues
A WDFQueue object represents a queue that presents requests from
KMDF to the driver. A WDFQUEUE is more than just a list of pending
requests; however, it tracks requests that are active in the driver, supports
request cancellation, manages the concurrency of requests, and can
optionally synchronize calls to the driver’s I/O event callback functions.

A driver typically creates one or more queues, each of which can
accept one or more types of requests. The driver configures the queues
when it creates them. For each queue, the driver can specify

■ The types of requests that are placed in the queue.
■ The event callback functions that are registered to handle I/O

requests from the queue.
■ The power management options for the queue.
■ The dispatch method for the queue, which determines the number

of requests that are serviced at a given time.
■ Whether the queue accepts requests that have a zero-length buffer.

A driver can have any number of queues, and they can all be configured
differently. For example, a driver might have a parallel queue for read
requests and a sequential queue for write requests.

While a request is in a queue and has not yet been presented to the
driver, the queue is considered the “owner” of the request. After the request
has been dispatched to the driver, it is “owned” by the driver and is consid-
ered an in-flight request internally, and each WDFQUEUE object keeps
track of which requests it owns and which requests are pending. A driver can
forward a request from one queue to another by calling a method on the
request object.

6.7.2.1 Queues and Power Management
KMDF provides rich control of queues. The framework can manage the
queues for the driver, or the driver can manage queues on its own. Power
management is configurable on a per-queue basis. A driver can use both
power-managed and non-power-managed queues and can sort requests
based on the requirements for its power model.

By default, queues for FDOs and PDOs are power managed, which
means that the state of the queue can trigger power-management activi-
ties. Such queues have several advantages:

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 153

■ If an I/O request arrives while the system is in the working state
(SO) but the device is not, KMDF notifies the Plug and Play/power
handler so that it can restore device power.

■ When a queue becomes empty, KMDF notifies the Plug and Play/power
handler so that it can track device usage through its idle timer.

■ If the device power state begins to change while the driver “owns” an
I/O request, KMDF can notify the driver through the EvtIoStop call-
back. The driver must complete, cancel, or acknowledge all the I/O
requests that it owns before the device can leave the working state.

For power-managed queues, KMDF pauses the delivery of requests when
the device leaves the working state (DO) and resumes delivery when the
device returns to the working state. Although delivery stops while the queue
is paused, queuing does not. If KMDF receives a request while the
queue is paused, KMDF adds the request to the queue for delivery after
the queue resumes. If an I/O request arrives while the device is idle and the
system is in the working state, KMDF returns the device to the working
state so that it can handle the request. If an I/O request arrives while the
system is transitioning to a sleep state, however, KMDF does not return the
device to the working state until the system returns to the working state.

For requests to be delivered, both the driver and the device power
state must allow processing. The driver can pause delivery manually by
calling WdfIoQueueStop and resume delivery by calling WdfIo-
QueueStart.

If a queue is not power managed, the state of the queue has no effect
on power management, and conversely, KMDF delivers requests to the
driver any time the system is in the working state, regardless of the power
state of the device. KMDF does not start an idle timer when the queue
becomes empty, and it does not power up a sleeping device when I/O
arrives for the queue.

Drivers should use non-power-managed queues to hold requests that
the driver can handle even while its device is not in the working state.

6.7.2.2 Dispatch Type
A queue’s dispatch type determines how and when I/O requests are deliv-
ered to the driver and, as a result, whether multiple I/O requests from a
queue are active in the driver at one time. Drivers can control the concur-
rency of in-flight requests by configuring the dispatching method for their
queues. KMDF supports three dispatch types:

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

154 Chapter 6 Windows 7 KMD Overview and Operations

■ Sequential—A queue that is configured for sequential dispatching
delivers I/O requests to the driver one at a time. The queue does not
deliver another request to the driver until the previous request has
been completed. (Sequential dispatching is similar to the start-I/O
technique in WDM.)

■ Parallel—A queue that is configured for parallel dispatching deliv-
ers I/O requests to the driver as soon as possible, whether or not
another request is already active in the driver.

■ Manual—A queue that is configured for manual dispatching does
not deliver I/O requests to the driver. Instead, the driver retrieves
requests at its own pace by calling a method on the queue.

The dispatch type controls only the number of requests that are active
within a driver at one time. It has no effect on whether the queue’s I/O
event callbacks are invoked sequentially or concurrently; instead, the con-
currency of callbacks is controlled by the synchronization scope of the
device object. Even if the synchronization scope for a parallel queue does
not allow concurrent callbacks, the queue nevertheless might have many
in-flight requests.

All I/O requests that a driver receives from a queue are inherently
asynchronous. The driver can complete the request within the event call-
back or sometime later, after returning from the callback.

6.7.3 I/O Request Objects
The WDFREQUEST object is the KMDF representation of an IRP.
When an I/O request arrives, the I/O handler creates a WDFREQUEST
object, queues the object, and eventually passes the object to the driver in
its I/O callback function.

The properties of the WDFREQUEST object represent the fields of
the IRP. The object also contains additional information. Like all other
KMDF objects, the WDFREQUEST object has a reference count and
can have its own object context area. When the driver completes the I/O
request that the object represents, KMDF automatically frees the object
and any child resources such as associated memory buffers or memory
descriptor lists (MDLs). After the driver has called WdfRequest-
Complete, the driver must not attempt to access the handle to the
WDFREQUEST object or any of its child resources. A driver can create
its own WDFREQUEST objects to request I/O from another device or to
split an I/O request into multiple, smaller requests before completing it.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 155

6.7.4 Retrieving Buffers from I/O Requests
The WDFMEMORY object encapsulates the I/O buffers that are sup-
plied for an I/O request. To enable device drivers to handle complicated
requests with widely scattered buffers, any number of WDFMEMORY
objects may be associated with a WDFREQUEST.

The WDFMEMORY object represents a buffer that the framework
manages. The object can be used to copy memory to and from the driver
and the buffer represented by the WDFMEMORY handle. In addition,
the driver can use the underlying buffer pointer and its length for complex
access, such as casting to a known data structure.

Like other KMDF objects, WDFMEMORY objects have reference
counts and persist until all references to them have been removed. The
buffer that underlies the WDFMEMORY object, however, might not be
“owned” by the object itself. For example, if the issuer of the I/O request
allocated the buffer or if the driver called WdfMemoryCreate-
Preallocated to assign an existing buffer to the object, the
WDFMEMORY object does not “own” the buffer. In this case, the buffer
pointer becomes invalid when the associated I/O request has been com-
pleted, even if the WDFMEMORY object still exists.

Each WDFMEMORY object contains the length of the buffer that it
represents. KMDF methods that copy data to and from the buffer validate
the length of every transfer to prevent buffer over- and underruns, which
can result in corrupt data or security breaches.

Depending on the type of I/O that the device and driver support, the
underlying buffer might be any of the following:

■ For buffered I/O, a system-allocated buffer from the nonpaged
pool.

■ For direct I/O, a system-allocated MDL that points to the physical
pages for DMA.

■ For neither buffered nor direct I/O, an unmapped and unverified
user mode memory address.

The WDFMEMORY object supports methods that return each type of
buffer from the object and methods to read and write the buffers. For
device I/O control requests (IOCTLs), KMDF provides methods to probe
and lock user mode buffers. The driver must be running in the context of
the process that sent the I/O request to probe and lock a user mode buffer,

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

156 Chapter 6 Windows 7 KMD Overview and Operations

so KMDF also defines a callback that drivers can register to be called in
the context of the sending component.

Each WDFMEMORY object also controls access to the buffer and
allows the driver to write only to buffers that support I/O from the device
to the buffer. A buffer that is used to receive data from the device (as in a
read request) is writable. The WDFMEMORY object does not allow
write access to a buffer that only supplies data (as in a write request).

6.7.5 I/O Targets
Drivers send I/O requests by creating or reusing an I/O request object,
creating an I/O target, and sending the request to the target. Drivers can
send requests either synchronously or asynchronously. A driver can spec-
ify a time-out value for either type of request.

An I/O target represents a device object to which an I/O request is
directed. If a driver cannot complete an I/O request by itself, it typically
forwards the request to an I/O target. An I/O target can be a KMDF
driver, a WDM driver, or any other Kernel Mode Driver.

Before a driver forwards an existing I/O request or sends a new
request, it must create a WDFIOTARGET object to represent either a
local or remote target for the I/O request. The local I/O target is the next
lower driver in the device stack and is the default target or a filter or FDO
device object. A remote I/O target is any other driver that might be the tar-
get of an I/O request. A driver might use a remote I/O target if it requires
data from another device to complete an I/O request. A function driver
might also use a remote I/O target to send a device I/O control request to
its bus driver. In this case, the I/O request originates with the function
driver itself, rather than originating with some other process.

The WDFIOTARGET object formats I/O requests to send to other
drivers, handles changes in device state, and defines callbacks through
which a driver can request notification about target device removal. A
driver can call methods on the WDFIOTARGET to

■ Open a device object or device stack by name.
■ Format read, write, and device I/O control requests to send to the

target. Some types of targets, such as WDFUSBDEVICE and
WDFUSBPIPE, can format bus-specific requests in addition to the
standard request types.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 157

■ Send read, write, and device I/O control requests synchronously or
asynchronously.

■ Determine the Plug and Play state of the target.

Internally, KMDF calls IoCallDriver to send the request. It takes out a
reference on the WDFREQUEST object to prevent the freeing of associ-
ated resources while the request is pending for the target device object.

The WDFIOTARGET object racks queued and sent requests and can
cancel them when the state of the target device or of the issuing driver
changes. From the driver’s perspective, the I/O target object behaves like
a cancel-safe queue that retains forwarded requests until KMDF can
deliver them. KMDF does not free the WDFIOTARGET object until all
the I/O requests that have been sent to it are complete.

By default, KMDF sends a request only when the target is in the
proper state to receive it. However, a driver can also request that KMDF
ignore the state of the target and send the request anyway. If the target
device has been stopped (but not removed), KMDF queues the request to
send later after the target device resumes. If the issuing driver specifies a
time-out value, the timer starts when the request is added to the queue.

If the device that is associated with a remote I/O target is removed,
KMDF stops and closes the I/O target object, but does not notify the driver
unless the driver has registered an EvtIoTargetXxx callback. If the driver
must perform any special processing of I/O requests that it sent to the I/O
target, it should register one or more such callbacks. When the removal of
the target device is queried, canceled, or completed, KMDF calls the cor-
responding functions and then processes the target state changes on
its own.

For local I/O targets, no such callbacks are defined. Because the driver
and the target device are in the same device stack, the driver is notified of
device removal requests through its Plug and Play and power management
callbacks.

6.7.6 Creating Buffers for I/O Requests
Drivers that issue I/O requests must supply buffers for the results of those
requests. The buffers in a synchronous request can be allocated from
any type of memory, such as the nonpaged pool or an MDL, as well
as a WDFMEMORY object. Asynchronous requests must use

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

158 Chapter 6 Windows 7 KMD Overview and Operations

WDFMEMORY object so that KMDF can ensure that the buffers persist
until the I/O request has completed back to the issuing driver.

If the driver uses a WDFMEMORY object, the I/O target object takes
out a reference on the WDFMEMORY object when it formats the object
to send to the I/O target. The target object retains this reference until one
of the following occurs:

■ The request has been completed.
■ The driver reformats the WDFREQUEST object.
■ The driver calls WdfRequestReuse to send a request to another

target.

A driver can retrieve a WDFMEMORY object from an incoming
WDFREQUEST and reuse it later in a new request to a different target.
However, if the driver has not yet completed the original request, the orig-
inal I/O target still has a reference on the WDFMEMORY object. To
avoid a bug check, the driver must call WdfRequestReuse in its I/O com-
pletion routine before it completes the original request.

6.7.7 Canceled and Suspended Requests
Windows I/O is inherently asynchronous. The system can request that a
driver stop processing an I/O request at any time for many reasons, of
which these are the most common:

■ The thread or process that issued the request cancels it or exits.
■ A system Plug and Play or power event such as hibernation occurs.
■ The device is being, or has been, removed.

The actions that a driver takes to stop processing an I/O request depend on
the reason for suspension or cancellation. In general, the driver can either
cancel the request or complete it with an error. In some situations, the sys-
tem might request that a driver suspend (temporarily pause) processing;
the system notifies the driver later when to resume processing.

To provide a good user experience, drivers should provide callbacks to
handle cancellation and suspension of any I/O request that might take a
long time to complete or that might not complete, such as a request for
asynchronous input.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 159

6.7.7.1 Request Cancellation
How KMDF proceeds to cancel an I/O request depends on whether the
request has already been delivered to the target driver:

■ If the request has never been delivered—either because KMDF has
not yet queued it or because it is still in a queue—KMDF cancels
or suspends it automatically. If the original IRP has been canceled,
KMDF completes the request with a cancellation status.

■ If the request has been delivered and then requeued, KMDF noti-
fies the driver of cancellation only if the driver has registered an
EvtIoCanceledOnQueue callback for the queue.

After a request has been delivered, it cannot be canceled unless the driver
that owns it explicitly marks it cancelable by calling the WdfRequest-
MarkCancelable method on the request and registering a cancellation
callback (EvtRequestCancel) for the request.

A driver should mark a request cancelable and register an I/O cancel-
lation callback if either of the following is true:

■ The request involves a long-term operation.
■ The request might never succeed; for example, the request is wait-

ing for synchronous input.

In the EvtRequestCancel callback, the driver must perform any tasks
that are required to cancel the request, such as stopping any device I/O
operations that are in progress and canceling any related requests that it
has already forwarded to an I/O target. Eventually, the driver must com-
plete the request with the status STATUS_CANCELLED.

Requests that are marked cancelable cannot be forwarded to another
queue. Before requeuing a request, the driver must first make it non-
cancelable by calling WdfRequestUnmarkCancelable. After the
request has been added to the new queue, KMDF once again considers it
cancelable until that queue dispatches it to the driver.

If the driver does not mark a request cancelable, it can call
WdfRequestIsCanceled to determine whether the I/O manager or orig-
inal requester has attempted to cancel the request. A driver that processes
data on a periodic basis might use this approach. For example, a driver
involved in image processing might complete a transfer request in small

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

chunks and poll for cancellation after processing each chunk. In this case,
the driver supports cancellation of the I/O request, but only after each dis-
crete chunk of processing is complete. If the driver determines that the
request has been canceled, it performs any required cleanup and com-
pletes the request with the status STATUS_CANCELLED.

6.7.7.2 Request Suspension
When the system transitions to a sleep state—typically because the user
has requested hibernation or closed the lid on a laptop—a driver can com-
plete, requeue, or continue to hold any in-flight requests. KMDF notifies
the driver of the impending power change by calling the EvtIoStop call-
back for each in-flight request. Each call includes flags that indicate the
reason for stopping the queue and whether the I/O request is currently
cancelable.

Depending on the value of the flags, the driver can complete the
request, requeue the request, acknowledge the event but continue to hold
the request, or ignore the event if the current request will complete in a
timely manner. If the queue is stopping because the device is being
removed (either by an orderly removal or a surprise removal), the driver
must complete the request immediately.

Drivers should handle EvtIoStop events for any request that might
take a long time to complete or that might not complete, such as a request
for asynchronous input. Handling EvtIoStop provides a good user experi-
ence for laptops and other power-managed systems.

6.7.8 Completing I/O Requests
To complete an I/O request, a driver calls WdfRequestComplete. In
response, KMDF completes the underlying IRP and then deletes the
WDFREQUEST object and any child objects. If the driver has set an
EvtCleanupCallback for the WDFREQUEST object, KMDF invokes
the callback before completing the underlying IRP, so that the IRP itself is
still valid when the callback runs.

After WdfRequestComplete returns, the WDFREQUEST object’s
handle is invalid and its resources have been released. The driver must not
attempt to access the handle or any of its resources, such as parameters
and memory buffers that were passed in the request.

160 Chapter 6 Windows 7 KMD Overview and Operations

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.7 KMDF I/O Model 161

If the request was dispatched from a sequential queue, the driver’s call
to complete the IRP might cause KMDF to deliver the next request in the
queue. (If the queue is configured for parallel dispatching, KMDF can
deliver another request at any time.) If the driver holds any locks while it
calls WdfRequestComplete, it must ensure that its event callbacks for
the queue do not use the same locks because a deadlock might occur. In
practice, this is difficult to ensure, so the best practice is not to call
WdfRequestComplete while holding a lock.

6.7.9 Self-Managed I/O
Although the I/O support that is built into KMDF is recommended for
most drivers, some drivers have I/O paths that do not pass through queues
or are not subject to power management. KMDF provides self-managed
I/O features for this purpose. For example, the PCIDRV sample uses self-
managed I/O callbacks to start and stop a watchdog timer DPC.

The self-managed I/O callbacks correspond directly to WDM Plug and
Play and power management state changes. These routines are called with
a handle to the device object and no other parameters. If a driver registers
these callbacks, KMDF calls them at the designated times so that the
driver can perform whatever actions it requires.

6.7.10 Accessing IRPs and WDM Structures
KMDF includes a mechanism nicknamed “the great escape” through
which a driver can access the underlying WDM structures and the I/O
request packet as it was delivered from the operating system. Although
this mechanism exposes the driver to all the complexity of the WDM
model, it can often be useful in converting a WDM driver to KMDF, such
as processing for some types of IRPs. Such drivers can use KMDF for
most features but can rely on the “great escape” to gain access to the
WDM features that they require.

To use the “great escape,” a driver calls WdfDeviceInit-
AssignWdmIrpPreprocessCallback to register an EvtDeviceWdm-
IrpPreprocess event callback function for an IRP major function code.
When KMDF receives an IRP with that function code, it invokes the call-
back. The driver must then handle the request just as a WDM driver
would, by using I/O manager functions such as IoCallDriver to forward

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

162 Chapter 6 Windows 7 KMD Overview and Operations

the request and IoCompleteRequest to complete it. The Serial driver
sample shows how to use this feature.

In addition to the “great escape,” KMDF provides methods with which
a driver can access the WDM objects that the KMDF objects represent.
For example, a driver can access the IRP that underlies a WDFRE-
QUEST object, the WDM device object that underlies a WDFDEVICE
object, and so forth.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

163

C H A P T E R 7

PLUG AND PLAY AND
POWER MANAGEMENT

The Windows Driver foundation (WDF) implements a fully integrated
model for Plug and Play and power management. In this chapter, we will
cover the Kernel Mode Driver Framework (KMDF) guidelines for imple-
menting Plug and Play and power management. The model provides intel-
ligent defaults so that some drivers do not require any code to support
simple Plug and Play or power management.

7.1 Plug and Play and Power Management Overview

KMDF implements integrated Plug and Play and power management
support as an internal state machine. An event is associated with the
transition to each state, and a driver can supply callback routines that are
invoked at each such state change.

If you are familiar with WDM drivers, you probably remember that any
time the system power state changes, the WDM driver must determine the
correct power state for its device and then issue power management
requests to put the device in that state at the appropriate time. The KMDF
state machine automatically handles the translation of system power events
to device power events. For example, KMDF notifies the driver to

■ Transition the device to low power when the system hibernates or
goes to sleep.

■ Enable the device’s wake signal so that it can be triggered while the
system is running, if the device is idle.

■ Enable the device’s wake signal so that it can be triggered while the
system is in a sleep state.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

KMDF automatically provides for the correct behavior in device
parent/child relationships. If both a parent and a child device are powered
down and the child must power up, KMDF automatically returns the
parent to full power and then powers up the child.

To manage idle devices, the KMDF state machine notifies the driver
to remove the device from the working state and put it in the designated
low-power state when the device is idle and to return the device to the
working state when there are requests to process.

To accomplish these power transitions, a driver includes a set of call-
back routines. These routines are called in a defined order, and each
conforms to a “contract” so that both the device and the system are
guaranteed to be in a particular state when the driver is called to
perform an action. This support makes it much easier for drivers to
power down idle devices. The driver simply sets an appropriate time-out
value and low-power state for its device and notifies KMDF of these
values; KMDF calls the driver to power down the device at the correct
times.

In addition, requests received by the framework and not yet delivered
to the device driver can affect the power state of the device. If the driver
has not configured a queue for power management, the framework can
automatically restore device power before it delivers the request to the
driver. It can also automatically stop and start the queue in response to
Plug and Play and power events.

Finally, the driver that manages power policy for the device can spec-
ify whether a user can control both the behavior of the device while it is
idle and the capability of the device to wake up the system. All the driver
must do is specify the appropriate enumerator value when it initializes
certain power policy settings. KMDF enables the necessary property sheet
through Windows Management Instrumentation (WMI), and Device
Manager displays it.

7.2 Device Enumeration and Startup

To prepare the device for operation, KMDF calls the driver’s callback rou-
tines in a fixed sequence. The sequence varies somewhat depending on the
driver’s role in the device stack.

164 Chapter 7 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.2 Device Enumeration and Startup 165

Device Operational
Enable self-managed I/O, EvtDeviceSelfManagedIoInit
if driver supports it or

EvtDeviceSelfManagedIoRestart
Start power-managed EvtIoResume
queues (called only if
EvtIoStop was
previously called during
power-down)
Disarm wake signal, EvtDeviceDisarmWakeFromSx
if it was armed EvtDeviceDisarmWakeFromSO

(called only during power-up; not
called during resource rebalance)

Enable DMA, if driver EvtDmaEnablerSelfManagedIoStart
supports it EvtDmaEnablerEnable

EvtDmaEnableFill
Connect interrupts EvtDeviceDOEntryPostInterruptsEnabled

EvtInterruptEnable
Notify driver of state EvtDeviceDOEntry
change

Restart from here if device is in low-power state

Prepare hardware for EvtDevicePrepareHardware
power
Change resource EvtDeviceRemoveAddedResources
requirements EvtDeviceFilterAddResourceRequirements

EvtDeviceFilterRemoveResourceRequirements

Restart from here if rebalancing resources

Create device object EvtDriverDeviceAdd

Device Inserted

7.2.1 Startup Sequence for a Function
or Filter Device Object

The following example shows the callbacks for an FDO or filter DO that is
involved in bringing a device to the fully operational state, starting from the
Device Inserted state at the bottom of the figure.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The spaces between the entries in the preceding example mark the
steps that are involved in starting a device. The column on the left side of
the figure describes the step, and the column on the right lists the event
callbacks that accomplish it.

At the bottom of the figure, the device is not present on the system.
When the user inserts it, KMDF begins by calling the driver’s
EvtDriverDeviceAdd callback so that the driver can create a device object
to represent the device. KMDF continues calling the driver’s callback rou-
tines by progressing up through the sequence until the device is operational.
Remember that KMDF invokes the event callbacks in bottom-up order as
shown in the figure, so EvtDeviceFilterRemoveResourceRequirements
is called before EvtDeviceFilterAddResourceRequirements, and so
forth.

If the device was stopped to rebalance resources or was physically
present but not in the working state, not all of the steps are required as the
figure shows.

7.2.2 Startup Sequence for a Physical Device Object
The following shows the callbacks for a bus driver (PDO) that are involved
in bringing a device to the fully operational state, starting Device Inserted
state at the bottom of the figure.

166 Chapter 7 Plug and Play and Power Management

Device Operational
Enable wake signal, if a wake EvtDeviceEnableWakeAtBus
request from the previous
power-down is still pending
Enable self-managed I/O, EvtDeviceSelfManagedIoInit
if driver supports it or

EvtDeviceSelfManagedIoRestart
Start power-managed queues EvtIoResume

(called only if EvtIoStop was called
during power-down)

Enable DMA, if driver EvtDmaEnablerSelfManagedIoStart
supports it EvtDmaEnablerEnable

EvtDmaEnablerFill
Connect interrupts EvtDeviceDOEntryPostInterruptsEnabled

EvtInterruptEnable

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptgKMDF does not physically delete a PDO until the corresponding device
is physically removed from the system. For example, if a user disables the
device in Device Manager but does not physically remove it, KMDF retains
its device object. Thus, the three steps at the bottom of the preceding exam-
ple occur only during Plug and Play enumeration—that is, during initial boot
or when the user plugs in a new device.

If the device was previously disabled but not physically removed,
KMDF starts by calling the EvtDevicePrepareHardware callback.

7.2.3 Device Power-Down and Removal
KMDF can remove a device from the operational state for several reasons:

■ To put the device in a low-power state because it is idle or the
system is entering a sleep state.

■ To rebalance resources.
■ To remove the device after the user has requested an orderly removal.
■ To disable the device in response to the user’s request in Device

Manager.

As in enumeration and power-up, the sequence of callbacks depends on
the driver’s role in device management.

7.2 Device Enumeration and Startup 167

Notify driver of state change EvtDeviceDOEntry
Disable wake signal, if it was EvtDeviceDisableWakeAtBus

(called only during power-up; not
called during resource rebalance)

Restart from here if device is in low-power state

Prepare hardware for power EvtDevicePrepareHardware

Restart from here if rebalancing resources or if device remained
physically present after logical removal

Create device object EvtDriverDeviceAdd
Report resource EvtDeviceResourceRequirementsQuery
requirements EvtDeviceResourcesQuery
Enumerate child devices EvtChildListCreateDevice

Device Inserted

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.2.3.1 Power-Down and Removal Sequence for
a Function or Filter Driver Object

The following shows the sequence of callbacks that are involved in power-
down and removal for an FDO or filter DO. The sequence starts at the top of
the figure with an operational device that is in the working power state (DO).

168 Chapter 7 Plug and Play and Power Management

Device Operational
Suspend self-managed I/O, EvtDeviceSelfManagedIoSuspend
if driver supports it
Stop power-managed queues EvtIoStop
Arm wake signal, if driver EvtDeviceArmWakeFromSx
supports it EvtDeviceArmWakeFromSO

(called only during transitions to low
power, not during resource rebalance or
device removal)

Disable DMA, if driver EvtDmaEnablerSelfManagedIoStop
supports it EvtDmaEnablerDisable

EvtDmaEnableFlush
Disconnect interrupts EvtDeviceDOExitPreInterruptsDisabled

EvtInterruptDisable
Notify driver of state change EvtDeviceDOExit

Stop here if transitioning to low-power state

Release hardware EvtDeviceReleaseHardware

Stop here if rebalancing resources

Purge power-managed queues EvtIoStop
Flush I/O buffers, if driver EvtDeviceSelfManagedIoFlush
supports self-managed I/O
Purge non-power-managed EvtIoStop
queues
Clean up I/O buffers, if driver EvtDeviceSelfManagedIoCleanup
supports self-managed I/O
Delete device object’s EvtCleanupContext
context area EvtDestroyContext

Device Removed

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

As the preceding example shows, the KMDF power-down and removal
sequence involves calling the corresponding “undo” callbacks in the
reverse order from which KMDF called the functions that are involved in
making the device operational.

7.2.3.2 Power-Down and Removal Sequence for
a Physical Device Object

The following example shows the callbacks involved in power-down and
removal for a PDO.

7.2 Device Enumeration and Startup 169

Device Operational
Enable wake signal, if driver EvtDeviceEnableWakeAtBus
supports it (called only during
transitions to lower power, not
during resource rebalance or
device removal)
Suspend self-managed I/O, EvtDeviceSelfManagedIoSuspend
if driver supports it
Stop power-managed queues EvtIoStop
Disable DMA, if driver EvtDmaEnablerSelfManagedIoStop
supports it EvtDmaEnablerDisable

EvtDmaEnableFlush
Disconnect interrupts EvtDeviceDOExitPreInterruptsDisabled

EvtInterruptDisable
Notify driver of state change EvtDeviceDOExit
Disable wake signal, if it is EvtDeviceDisableWakeAtBus
enabled (called only during device removal)

Stop here if transitioning to low-power state

Release hardware EvtDeviceReleaseHardware
Stop here if rebalancing
resources
Purge power-managed I/O EvtIoStop
queues

(continues)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

KMDF does not physically delete the PDO until the device is physically
removed from the system. For example, if a user disables the device in
Device Manager or uses the Safely Remove Hardware utility to stop the
device but does not physically remove it, KMDF retains the PDO. If the
device is later re-enabled, KMDF uses the EvtDevicePrepareHardware
callback, as previously shown in section 7.2.2, “Startup Sequence for a
Physical Device Object.”

7.2.3.3 Surprise-Removal Sequence
If the user removes the device without warning, by simply unplugging it
without using Device Manager or the Safely Remove Hardware utility, the
device is considered surprise removed. When this occurs, KMDF follows
a slightly different removal sequence. It also follows the surprise-removal
sequence if another driver calls IoInvalidateDeviceState on the device,
even if the device is still physically present.

In the surprise-removal sequence, KMDF calls the EvtDevice-
SurpriseRemoval callback before calling any of the other callbacks in the
removal sequence. When the sequence is complete, KMDF destroys the
device object.

Drivers for all removable devices must ensure that the callbacks in
both the shutdown and startup paths can handle failure, particularly fail-
ures caused by the removal of the hardware. Any attempts to access the
hardware should not wait indefinitely, but should be subject to time-outs
or a watchdog timer.

The following example shows the surprise-removal sequence.

170 Chapter 7 Plug and Play and Power Management

Flush I/O buffers, if driver EvtDeviceSelfManagedIoFlush
supports

Stop here if device is still physically present

Purge non-power-managed I/O EvtIoStop
Clean up I/O buffers, if driver EvtDeviceSelfManagedIoCleanup
supports self-managed I/O
Delete device object’s context EvtCleanupContext
area EvtDestroyContext

Device Physically Removed

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.2 Device Enumeration and Startup 171

Device Removal
Notify driver that device EvtDeviceSurpriseRemoval
has been surprise removed
Suspend self-managed I/O EvtDeviceSelfManagedIoSuspend
(called only if the device was in
the working state at removal)
Stop power-managed queues EvtIoStop
(called only if the device
was in the working state at
removal)
Disable DMA, if driver EvtDmaEnablerSelfManagedIoStop
supports it (called only if EvtDmaEnablerDisable
the device was in the working EvtDmaEnablerFlush
state at removal)
Disconnect interrupts EvtDeviceDOExitPreInterruptsDisabled
(called only if the device was EvtInterruptDisable
in the working state at removal)
Notify driver of state change EvtDeviceDOExit
(called only if the device was
in the working state at removal)
Release hardware EvtDeviceReleaseHardware
Purge power-managed queues EvtIoStop
Flush and clean up I/O EvtDeviceSelfManagedIoFlush
buffers, if driver supports
self-managed I/O
Purge non-power-managed EvtIoStop
queues
Clean up I/O buffers, if driver EvtDeviceSelfManagedIoCleanup
supports self-managed I/O
Delete device object’s EvtCleanupContext
context area EvtDestroyContext

Removal Processing Complete

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

If the device was not in the working state when it was removed, KMDF
calls the EvtDeviceReleaseHardware event callback immediately after
EvtDeviceSurpriseRemoval. It omits the intervening steps, which were
already performed when the device exited from the working state.

7.3 WMI Request Handler

WMI provides a way for drivers to export information to other compo-
nents. Drivers typically use WMI to enable the following:

■ User mode applications to query and set device-related information,
such as time-out values.

■ An administrator with the necessary privileges to control a device by
running an application on a remote system.

A driver that supports WMI registers as a provider of information and
registers one or more instances of that information. Each WMI provider is
associated with a particular Globally Unique Identifier (GUID). Another
component can register with the same GUID to consume the data
from the instances. User mode components request WMI instance data
by calling COM functions, which the system translates into IRP_MJ_
SYSTEM_CONTROL requests and sends to the target providers.

KMDF supports WMI requests through its WMI request handler,
which provides the following features for drivers:

■ A default WMI implementation. Drivers that do not provide WMI
data are not required to register as WMI providers; KMDF handles
all IRP_MJ_SYSTEM_CONTROL requests.

■ Callbacks on individual instances, rather than just at the device
object level, so that different instances can behave differently.

■ Validation of buffer sizes to ensure that buffers that are used in
WMI queries meet the size requirements of the associated provider
and instance.

The default WMI implementation includes support for the check boxes on
the Power Management tab of Device Manager. These check boxes enable a
user to control whether the device can wake the system and whether the
system can power down the device when it is idle. WDM drivers must include

172 Chapter 7 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

code to support the WMI controls that map to these check boxes, but KMDF
drivers do not require such code. If the driver enables this feature in its power
policy options, KMDF handles these requests automatically.

The driver enables buffer size validation when it configures a WMI
provider object (WDFWMIPROVIDER). In the WDF_WMI_
PROVIDER_CONFIG structure, the driver can specify the minimum
size of the buffer that is required for the provider’s EvtWmiInstance-
QueryInstance and EvtWmiInstanceSetInstance callbacks. If the
driver specifies such a value, KMDF validates the buffer size when the
IRP_MJ_SYSTEM_CONTROL request arrives and calls the callbacks
only if the supplied buffer is large enough. If the driver does not configure
a buffer size—because the instance size is either dynamic or is not avail-
able when the provider is created—the driver should specify zero for this
field and the callbacks themselves should validate the buffer size.

When KMDF receives an IRP_MJ_SYSTEM_CONTROL request
that is targeted at a KMDF driver, it proceeds as follows:

■ If the driver has registered as a WMI provider and registered one or
more instances, the WMI handler invokes the callbacks for those
instances as appropriate.

■ If the driver has not registered any WMI instances, the WMI handler
responds to the request by providing the requested data (if it can),
passing the request to the next lower driver, or failing the request.

Like all KMDF objects, WMI instance objects (WDFWMIINSTANCE)
have a context area. A driver can use the context area of a WDFWMIIN-
STANCE object as a source of read-only data, thus enabling easy data col-
lection with minimal effort. A driver can delete WDFWMIINSTANCE
objects any time after their creation.

WMI callbacks are not synchronized with the Plug and Play and power
management state of the device. Therefore, when WMI events occur, KMDF
calls a driver’s WMI callbacks even if the device is not in the working state.

7.4 Synchronization Issues

Because Windows is a pre-emptive, multitasking operating system, multi-
ple threads can try to access shared data structures or resources concur-
rently and multiple driver routines can run concurrently. To ensure data

7.4 Synchronization Issues 173

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

integrity, all drivers must synchronize access to shared data structures.
Correctly implementing such synchronization can be difficult in WDM
drivers.

For KMDF drivers, ensuring proper synchronization requires attention
to several areas:

■ The number of concurrently active requests that are dispatched
from a particular queue.

■ The number of concurrently active callbacks for a particular object.
■ The driver utility functions that access object-specific data.
■ The IRQL at which an object’s callbacks run.

The dispatch method for an I/O queue controls the number of requests
from the queue that can be concurrently active in the driver, as described
previously in the section “Dispatch Type” in both Chapters 3 and 6.
Limiting concurrent requests does not, however, resolve all potential
synchronization issues. Concurrently active callbacks on the same object
might require access to shared object-specific data, such as the information
that is stored in the object context area. Similarly, driver utility functions
might share object-specific data with callbacks. Furthermore, a driver
must be aware of the IRQL at which its callbacks can be invoked. At
DISPATCH_LEVEL and above, drivers must not access pageable data
and thread pre-emption does not occur.

KMDF simplifies synchronization for driver by providing automatic
synchronization of many callbacks. Calls to most PDO, FDO, Plug and Play,
and power event callback functions are synchronized so that only one such
callback function is invoked at a time for each device. These callback
functions are called at IRQL PASSIVE_LEVEL. Note, however, that calls
to the EvtDeviceSurpriseRemoval, EvtDeviceQueryRemove, and
EvtDeviceQueryStop callbacks are not synchronized with the other
callbacks and so occur while the device is changing power state or is not in the
working state.

For other types of callbacks—primarily I/O related callbacks—the
driver can specify the synchronization scope (degree of concurrency) and
the maximum execution level (IRQL).

KMDF provides the following configurable synchronization features:

■ Synchronization scope
■ Execution level
■ Locks

174 Chapter 7 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Although implementing synchronization is much less complicated in
KMDF drivers than in WDM drivers, you should nevertheless be familiar
with the basics of Windows IRQL, synchronization, and locking.

7.4.1 Synchronization Scope
KMDF provides configurable concurrency control, called synchronization
scope, for the callbacks of several types of objects. An object’s synchro-
nization scope determines whether KMDF invokes certain event callbacks
on the object concurrently.

KMDF define the following synchronization scopes:

■ Device scope means that KMDF does not call certain I/O
event callbacks concurrently for an individual device object or
any file objects or queues that are children of the device object.
Specifically, device scope applies to the following event call-
backs: EvtDeviceFileCreate, EvtFileCleanup, EvtFileClose,
EvtIoDefault, EvtIoRead, EvtIoWrite, EvtIoDeviceControl,
EvtIoInternalDeviceControl, EvtIoStop, EvtIoResume, EvtIo-
QueueState, EvtIoCanceledOnQueue, and EvtRequestCancel.

However, callbacks for different device objects that were cre-
ated by the same driver object can be called concurrently. Internally,
KMDF creates a synchronization lock for each device object. To
implement device synchronization scope, KMDF acquires this lock
before invoking any of the device callbacks.

■ Queue scope means that KMDF does not call certain I/O callbacks
concurrently on a per-queue basis. If a Kernel Mode Driver speci-
fies queue scope for a device object, some callbacks for the device
object and its queues can run concurrently. However, the following
callbacks for an individual queue object are not called concurrently:
EvtIoDefault, EvtIoRead, EvtIoWrite, EvtIoDeviceControl,
EvtIoInternalDeviceControl, EvtIoStop, EvtIoResume,
EvtIoQueueState, EvtIoCanceledOnQueue, and EvtRequest-
Cancel. If the driver specifies queue scope, KMDF creates a syn-
chronization lock for each queue object and acquires this lock
before invoking any of the listed callbacks.

■ No scope means that KMDF does not acquire any locks and can
call any event callback concurrently with any other event callback.
The driver must create and acquire all its own locks. By default,

7.4 Synchronization Issues 175

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

KMDF uses no scope. A driver must “opt in” to synchronization for
its objects by setting device scope explicitly.

Each KMDF object inherits its scope from its parent object
(WdfSynchronizationScopeInheritFromParent). The parent of each
WDFDEVICE object is the WDFDRIVER object, and the default value
of the synchronization scope for the WDFDRIVER object is
WdfSynchronizationScopeNone. Thus, a driver must explicitly set the
synchronization scope on its objects to use frameworks synchronization.

A driver can change the scope by setting a value in the
WDR_OBJECT_ATTRIBUTES structure when it creates the object.
Because scope is inherited, a driver can easily set synchronization for most
of its objects by setting the scope for the device object, which is the parent
to most KMDF objects. (For the complete hierarchy, refer to Figure 6.1.)

For example, to set the concurrency for its I/O callback functions,
a driver sets the SynchronizationScope in the WDF_OBJECT_
ATTRIBUTES for the device object that is the parent to the I/O queues. If
the driver sets device scope (WdfSynchronizationScopeDevice), KMDF
calls only one I/O callback function at a time across all the queues. To use
queue scope, the driver sets WdfSynchronizationScopeQueue for the
device object and WdfSynchronizationScopeInheritFromParent for the
queue object. Queue scope means that only one of the listed callback func-
tions can be active for the queue at any time. A driver cannot set concurrency
separately for each queue. Restricting the concurrency of I/O callbacks can
help to manage access to shared data in the WDFQUEUE context memory.

By default, a file object inherits its scope from its parent device object.
Attempting to set queue scope for a file object causes an error. Therefore,
drivers that set queue scope for a device object must manually set the syn-
chronization scope for any file objects that are its children. The best prac-
tice for file objects is to use no scope and to acquire locks in the event
callback functions when they are required to synchronize access.

If a driver sets device scope for a file object, it must also set the pas-
sive execution level for the object, as described in the upcoming section
“Execution Level.” The reason is that the framework uses spin locks
(which raise IRQL to DISPATCH_LEVEL) to synchronize access to
objects with device scope. However, the EvtDeviceFileCreate,
EvtFileClose, and EvtFileCleanup callbacks run in the caller’s
thread context and use pageable data, so they must be called at

176 Chapter 7 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

PASSIVE_LEVEL. At PASSIVE_LEVEL, the framework uses a
FAST_MUTEX instead of a spin lock for synchronization.

Interrupt objects are the children of device objects. KMDF acquires
the interrupt object’s spin lock at device interrupt request level (DIRQL)
to synchronize calls to the EvtInterruptEnable, EvtInterruptDisable,
and EvtInterruptlsr callbacks. A driver can also ensure that calls to its
interrupt object’s EvtInterruptDpc callback are serialized with other call-
backs on the parent device object.

Deferred Procedure Call (DPC), timer, and work item objects can be
children of device objects or of queue objects. To simplify a driver’s imple-
mentation of callbacks for DPCs, timers, and work items, KMDF enables
the driver to synchronize their callbacks with those of either the associated
queue object or the device object (which might be the parent or the grand-
parent of the DPC, timer, or work item).

A driver sets callback synchronization on interrupt, DPC, timer, and
work item objects by setting AutomaticSerialization in the object’s con-
figuration structure during object creation.

7.4.2 Execution Level
KMDF drivers can specify the maximum IRQL at which the callbacks for
driver, device, file, and general objects are invoked. Like synchronization
scope, execution level is an attribute that the driver can configure when it
creates the object. KMDF supports the following execution levels:

■ Default execution level indicates that the driver has placed no
particular constraints on the IRQL at which the callbacks for the
object can be invoked. For most objects, this is the default.

■ Passive execution level (WdfExecutionLevelPassive) means
that all event callbacks for the object occur at PASSIVE_LEVEL.
If necessary, KMDF invokes the callback from a system worker
thread. Drivers can set this level only for device and file object.
Typically, a driver should set passive execution level only if the call-
backs access pageable code or data or call other functions that must
be called at PASSIVE_LEVEL.

Callbacks for events on file objects (WDFFILEOBJECT type)
are always called at PASSIVE_LEVEL because these functions
must be able to access pageable code and data.

7.4 Synchronization Issues 177

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ Dispatch execution level (WdfExecutionLevelDispatch)
means that KMDF can invoke the callbacks from any IRQL up to
and including DISPATCH_LEVEL. This setting does not force all
callbacks to occur at DISPATCH_LEVEL. However, if a callback
requires synchronization, KMDF uses a spin lock, which raises
IRQL to DISPATCH_LEVEL. Drivers can set dispatch execution
level but nevertheless ensure that some tasks are performed at
PASSIVE_LEVEL by using work items (WDFWORKITEM
objects). Work item callbacks are always invoked at PASSIVE_
LEVEL in the context of a system thread.

By default, an object inherits its execution level from its parent object.
The default execution level for the WDFDRIVER object is
WdfExecutionLevelDispatch.

7.4.3 Locks
In addition to internal synchronization, synchronization scope, and execu-
tion level, KMDF provides the following additional ways for a driver to
synchronize operations:

■ Acquire the lock that is associated with a device or queue object.
■ Create and use additional, KMDF-defined, driver-created lock

objects.

Driver code that runs outside an event callback sometimes must synchro-
nize with code that runs inside an event callback. To accomplish this syn-
chronization, KMDF provides methods (WdfObjectAcquireLock and
WdfObjectReleaseLock) through which the driver can acquire and
release the internal framework lock that is associated with a particular
device or queue object.

Given the handle to a device or queue object, WdfObjectAcquireLock
acquires the lock that protects that object. After acquiring the lock, the
driver can safely access the object context data or properties and can
perform other actions that affect the object. If the driver has set
WdfExecutionLevelPassive for the object (or if the object has inherited
this value from its parent), KMDF uses a PASSIVE_LEVEL synchroniza-
tion primitive (a fast mutex) for the lock. If the object does not have this
constraint, use of the lock raises IRQL to DISPATCH_LEVEL and, while

178 Chapter 7 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

the driver holds the lock, it must not touch pageable code or data or call
functions that must run at PASSIVE_LEVEL.

KMDF also defines two types of lock objects:

■ Wait locks (WDFWAITLOCK) synchronize access from code that
runs at IRQL PASSIVE_LEVEL or APC_LEVEL. Such locks
prevent thread suspension. Internally, KMDF implements wait
locks by using kernel dispatcher events, so each wait lock is associ-
ated with an optional time-out value (as are the kernel dispatcher
events). If the time-out value is zero, the driver can acquire the lock
at DISPATCH_LEVEL.

■ Spin locks (WDFSPINLOCK) synchronize access from code that
runs at any IRQL up to DISPATCH_LEVEL. Because code that
holds a spin lock runs at DISPATCH_LEVEL, it cannot take a
page fault and therefore must not access any pageable data. The
WDFSPINLOCK object keeps track of its acquisition history and
ensures that deadlocks cannot occur. Internally, KMDF uses the
system’s spin lock mechanisms to implement spin lock objects.

As with all other KMDF objects, each instance of a lock object can have its
own context area that holds lock-specific information.

Drivers that do not use the built-in frameworks locking (synchroniza-
tion scope, execution level, and AutomaticSerialization) can implement
their own locking schemes by using KMDF wait locks and spin locks.
Drivers that use frameworks locking can use KMDF wait locks and spin
locks to synchronize access to data that is not associated with a particular
device or queue object. In general, drivers can rely on frameworks locking
while communicating with their own hardware and calling within their
own code. Drivers that communicate with other drivers generally must
implement their own locking schemes.

7.4.4 Interaction of Synchronization Mechanisms
Synchronization scope and execution level interact because of the way in
which KMDF implements synchronization. By default, KMDF uses spin
locks, which raise IRQL to DISPATCH_LEVEL, to synchronize
callbacks. Therefore, if the driver specifies device or queue synchroniza-
tion scope, its device and queue callbacks must be able to run at
DISPATCH_LEVEL.

7.4 Synchronization Issues 179

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

If the driver sets the WdfExecutionLevelPassive constraint for a
parent device or queue object, KMDF uses a fast mutex instead of a spin lock.
In this case, however, KMDF cannot automatically synchronize callbacks for
timer and DPC child objects (including the DPC object that is associated
with the interrupt object) because DPC and timer callbacks, by definition,
always run at DISPATCH_LEVEL. Trying to create any of these objects
with AutomaticSerialization fails if the WdfExecutionLevelPassive
constraint is set for the parent object.

Instead, the driver can synchronize the event callbacks for these objects
by using a WDFSPINLOCK object. The driver acquires and releases the
lock manually by the KMDF locking methods WdfSpinLockAcquire
and WdfSpinLockRelease.

Alternatively, the driver can perform whatever processing is required
within the DPC or timer callback and then queue a work item that is syn-
chronized with the callbacks at PASSIVE_LEVEL to perform further
detailed processing.

7.5 Security

KMDF is designed to enhance the creation of secure driver by providing:

■ Safe defaults
■ Parameter validation
■ Counted Unicode strings
■ Safe device naming techniques

7.5.1 Safe Defaults
Unless the driver specifies otherwise, KMDF provides access control lists
(ACLs) that require Administrator privileges for access to any exposed
driver constructs, such as names, device IDs, WMI management inter-
faces, and so forth. In addition, KMDF automatically handles I/O requests
for which a driver has not registered by completing them with
STATUS_INVALID_DEVICE_REQUEST.

7.5.2 Parameter Validation
One of the most common driver security problems involves improper han-
dling of buffers in IOCTL requests, particularly requests that specify

180 Chapter 7 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

neither buffered nor direct I/O (METHOD_NEITHER). By default,
KMDF does not grant drivers direct access to user mode buffer pointers,
which is inherently unsafe. Instead, it provides methods for accessing the
user mode buffer pointer that require probing and locking, and it provides
methods to probe and lock the buffer for reading and writing.

All KMDF DDIs that require a buffer take a length parameter that spec-
ifies a required minimum buffer size. I/O buffers use the WDFMEMORY
object, which provides data access methods that automatically validate length
and determine whether the buffer permissions allow write access to the
underlying memory.

7.5.3 Counted UNICODE Strings
To help prevent string handling errors, KMDF DDIs use only counted
PUNICCODE_STRING values. To aid drivers in using and formatting
UNICODE_STRING values, the safe string routines in ntstrsafe.h have
been updated to take PUNICODE_STRING parameters.

7.5.4 Safe Device Naming Techniques
KMDF device objects do not have fixed names. KMDF sets
FILE_AUTOGENERATED_DEVICE_NAME in the device’s charac-
teristics for PDOs, according to the WDM requirements.

KMDF also supports the creation and registration of device interfaces
on all Plug and Play devices and manages device interfaces for its drivers.
Whenever possible, you should use device interfaces instead of the older
fixed name/symbolic link techniques.

However, if legacy applications require that a device has a name,
KMDF enables you to name a device and to specify its security description
definition language (SDDL). The SDDL controls which users can open
the device.

By convention, a fixed device name is associated with a fixed symbolic
link name (such as \DosDevices\MyDeviceName). KMDF supports the
creation and management of a symbolic link and automatically deletes the
link when the device is destroyed. KMDF also enables the creation of a
symbolic link name for an unnamed Plug and Play device.

7.5 Security 181

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

183

C H A P T E R 8

KERNEL MODE INSTALLATION
AND BUILD

In this chapter, we will cover the kernel mode installation and build
approach.

Although KMDF supports a completely new device-driver interface
(DDI) and programming model, the basic process of implementing and
building a KMDF driver still has much in common with Windows Driver
Model (WDM). If you are new to driver development, here are a few key
points:

■ Drivers are normally written in C. C++ can be used for driver devel-
opment in only a very limited way. You can safely use some basic
C++ features, but the object-oriented features of C++ produce gen-
erated code that is not guaranteed to work correctly in kernel mode.

■ You can use a .cpp extension with the C++ compiler to compile
driver code. The C++ compiler works fine with C code and provides
better error detection and type safety than the C compiler.

■ Include Ntddk.h and Wdf.h. These are standard header files that
are used for all KMDF drivers.

■ Drivers must be built with the WDK or DDK build tools. Microsoft
Visual Studio is not designed to support driver development and can
be used only in a limited way.

8.1 WDK Build Tools

KMDF drivers are built with the WDK build utility build.exe. This is a
command line tool that is essentially identical to the tool that is used to
build Windows itself. The build utility can be used for a variety of project
types including user mode applications, but it must be used for drivers.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The build utility requires a number of supporting files. The following
are required for any project:

■ Source code files—A project must have at least one source code
file (.c or .cpp) and typically one or more header files (.h).

■ Make file—This file contains build instruction. It should be named
makefile and consist of the following statement that includes the
standard WDK make file:

!INCLUDE $(NTMAKEENV)\makefile.def

■ Sources file—This file contains project-specific information that is
used to build the driver, such as the list of source files. The following
example shows the content of a basic Sources file. An example of a some-
what more complex Sources file along with an explanation of its element
is given in the “Building Featured Toaster,” later in this section.

TARGETNAME=WdfSimple
TARGETTYPE=DRIVER
KMDF_VERSION=1
SOURCES=WdfSimple.c

Optional files include

■ Makefile.inc—Project with custom targets, such as Windows
Management Instrumentation-(WMI)-related files, must put the
necessary directives in Makefile.inc. Do not modify the standard
make file.

■ Dirs—This file is used by projects that have source files in multiple
subfolders or to build multiple projects with a single build com-
mand.

■ Resource files (.rc)—These files contain resources such as string
tables.

■ Managed object format (MOF) resource files (.mof)—Drivers
that support WMI must have a MOF resource file (.mof).

■ INX file (.inx)—An INX file is an architecture-independent INF
file. When the appropriate instructions are specified, the Build util-
ity uses the data in an INX file to produce an appropriate INF file
for the project.

You can use any names that are convenient for most project files and
folders, with one important restriction: the names cannot contain spaces or

184 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

nonANSI characters. However, the build utility assumes by default that the
make, makefile.inc, Sources, and Dirs files are named makefile, make-
file.inc, sources, and dirs, respectively.

The supporting files must all be created manually. However, you can
usually simplify the process by copying the files from an appropriate sam-
ple and modifying them to suit the project.

Visual Studio can be used in only a limited way for driver development.
In particular, its compiler and debugger are not designed to be used with
drivers. However, if you are accustomed to using Visual Studio, you can
still use its integrated development environment (IDE) to edit source code
and build the driver. Essentially, you reprogram the Visual Studio Build
command to bypass the Visual build utility and instead run a command line
that launches the WDK build utility. You still must manually create the
build utility supporting files that were discussed earlier in this section.

KMDF drivers, like WDM drivers, are built in the WDK build envi-
ronment. KMDF drivers include the header files Wdf.h (shipped with
KMDF) and ntddk.h.

To build a KMDF driver, you must set the /GS flag on the compiler
and the KMDF_VERSION environment variable in the Sources file.
Setting KMDF_VERSION=1 indicates that the driver should be built
with the first version of KMDF.

8.2 Build Environment

There are two basic types of build:

■ Checked builds are similar to the Debug builds that are used in
application development. They generate detailed debugging infor-
mation and enable certain types of debugging-related code such as
ASSERT macros. Checked builds are normally used during the
earlier stages of driver development because they are much easier
to debug than free builds. Checked builds are typically somewhat
slow.

■ Free builds are similar to the Release builds that are used in
application development. They lack the detailed debugging informa-
tion of a checked build and are fully optimized. Free builds are
more difficult to debug, so they are typically used at the end of the
development cycle for final testing and performance tuning.

8.2 Build Environment 185

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To simplify the process of setting up the build environment, the WDK
includes a set of console windows with the correct settings for each build
environment/platform/architecture combination.

To open a build environment window:

1. On the taskbar, click Start, and then click All Programs.
2. Click Windows Driver Kits, click the latest WDK version, and

then click Build Environments.
3. Click the appropriate CPU architecture, and then open a checked or

free build environment window for the appropriate Windows version.

The build environment window for a specified version of Windows works
for that version and all later versions.

8.3 Building a Project

After you have launched the correct build window, use cd to move to the
project folder and run the build utility to compile and link the driver. The
command syntax is simple:

build –a[b[c]...]

The build utility assumes by default that the project has a make file
that is named makefile, a Sources file with the list of source files, and so
on. There is no need to specify these files explicitly. a[b[c]...] represents
the build arguments, most of which consists of a single case-sensitive
character. The WDK has a complete list of flags, but here are some of the
commonly used ones:

■ ?—Displays a list of all command-line flags.
■ c—Deletes all object files.
■ e—Generates log, error, and warning files.
■ g—Uses colored text to display warnings, errors, and summaries.
■ Z—Prevents dependency checking or scanning of source files.

The following example shows a commonly used build command:

build –ceZ

The build utility produces several output files, including

186 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ TargetName.sys—The driver binaries.
■ SourceFileName.obj—Object files that are produced from the

corresponding source files.
■ TargetName.pdb—The driver’s symbol tables.
■ TargetName.inf—The project’s INF file. This file is produced by

the build utility only if the project uses an INX file. Otherwise, you
must create the INF file separately.

The output normally goes in a subfolder of the project folder. The default
output folder name depends on the build environment. For example, the
default output folder for a Windows XP x86 free build is named Project-
Folder\objfre_wxp_x86\i386.

8.4 Building Featured Toaster

The Toaster sample is set of simple software drivers that were created by
Microsoft as a learning tool for new driver developers. If you are new to
KMDF driver development, it’s the first sample you should look at.
Not only does Toaster provide a simple example of how to write
drivers by using the best coding practices, it includes detailed
comments that explain every step. Toaster is located at WinDDK\
BuildNmber\src\kmdf\toaster.

Toaster includes a number of drivers, including two function
drivers. One is a minimal version that is named Simple and the other a
full-featured version that is named Featured. This section uses the
Featured Toaster sample as a convenient way to demonstrate the
basics of the build, install, and debug process. We will walk through how
to create a Windows 7 checked build of Featured Toaster. We will dis-
cuss some of the supporting files that are mentioned in the previous
material. The KMDF version of Toaster is essentially a port of the
WDM Toaster sample. If you are familiar with the WDM version, com-
pare it to the KMDF version to see just how much KMDF can simplify
driver code.

8.4.1 Makefile and Makefile.inc
The contents of Makefile are the same for all driver projects. Featured
Toaster also includes an optional file, Makefile.inc. This file contains

8.4 Building Featured Toaster 187

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

some additional make directives that handle two targets that aren’t covered
by makefile.def. The following example shows the contents of Featured
Toaster’s makefile.inc file:

_LNG=$(LANGUAGE)
_INX=.
STAMP=$(STAMPINF_PATH) –f $@ -a $(_BUILDARCH) -v 1.0.0.0

$(OBJ_PATH)\$(0)\$(INF_NAME) .inf: $(_INX)\$(INF_NAME .inx
copy $(_INX)\$(@B) .inx $@

$(STAMP)

mofcomp: $(OBJ_PATH)\$(0)\toaster.bmf

$(OBJ_PATH)\$(0)\toaster.bmf: toaster.mof
mofcomp –WMI –B:$(OBJ_PATH)\$0\toaster.bmf toaster.mof
wmimofck –m –h$(OBJ_PATH)\$0\ToasterMof.h –

w$(OBJ_PATH)\$0\htm $(OBJ_PATH)\$(0)\toaster.bmf

The first part of makefile.inc uses the project’s INX file, wdffea-
tured.inx, to produce an architecture-specific INF file. The second part
of makefile.inc produces the WMI target file.

8.4.2 The Sources File
The Sources file contains most of the project-specific information that the
build utility uses to build the project. It consists of a series of directives that
assign project-specific values to a set of macros and environment variables.
The following example shows the contents of the Featured Toaster
Sources file, which is a typical Sources file for a simple KMDF driver:

TARGETNAME=wdffeatured
TARGETTYPE=DRIVER

KMDF_VERSION=1.5

INF_NAME=wdffeatured
MISCFILES=$(OBJ_PATH)\$(0)\$(INF_NAME) .inf
INCLUDES = $(INCLUDES) ;..\..\inc;..\shared

NTTARGETFILES=
NTTARGETDILE0=mofcomp

#
List of source files to compile.

188 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

#
SOURCES= \

toaster.rc \
toaster.c \
power.c \
wmi.c

C_DEFINES=

!include $(WDF_ROOT)\project.mk

The following list gives brief descriptions of the macros and
environment variables in this file. For a complete list, see the WDK
documentation.

■ TARGETNAME—Required. This macro specifies wdffeatured as the
name to be used for output files such as the project’s .sys and .pdb files.

■ TARGETTYPE—Required. The build utility can be used to build
a variety of binary types. This macro specifies which type of binary
is to be built; DRIVER indicates a Kernel Mode Driver.

■ KMDF_VERSION—Required. This environment variable specifies
the KMDF version number. This project uses KMDF version 1.5.

■ INF_NAME—Optional. INF_NAME is a custom macro for proj-
ects that use INX files. It specifies that the INF file that is gener-
ated from the projects INX file is to be named wdffeatured.inf.

■ MISCFILES—Optional. MISCFILES is a custom macro for proj-
ects that use INX files. It specifies where to place the INF file that
is generated. In this example, the INF file is placed in the output
folder with the other output files.

■ INNLUDES—Optional. This macro specifies the location of
folders, other than the project folder, that contain header files.
These are typically header files that are shared across multiple
projects.

■ NTTARGETFILE0—Optional. This macro is used to specify
additional targets and dependencies that are not covered by make-
file.def. In this case, it is used for WMI-related aspects of the build.

■ SOURCES—Required. This macro lists the project’s source files. By
default, the files must be on a single line. The backslash (\) is a line-con-
tinuation character that allows the files to be listed on separate lines.

■ C_DEFINES—Required for Unicode builds. Specifies any
compile-time switches that must be passed to the C compiler.

8.4 Building Featured Toaster 189

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.4.3 The Build
The following procedure shows how to build Featured Toaster. For sim-
plicity, assume that the WDK’s root folder is C:\WinDDK\6000.

1. Launch the Windows 7 Checked Build Environment console
window. It opens in the c:\WinDDK\6000 folder.

2. Use cd to move to the project folder. The project folder is at
C:\WinDDK\6000\src\kmdf\toaster\func\featured.

3. Build the project by running the following command. This isn’t the
only way to build the project, but it’s a commonly used set of flags.

build –ceZ

The output files go in the featured\objchk\w7_x86\i386 subfolder.

8.5 Installing a KMDF Driver

Drivers must be installed before they can be used—either by the developer
to test and debug the driver or by the end user who wants to use the related
device. The procedures for installing a driver are distinctly different from
those that are used to install applications. This section discusses how to cre-
ate a WDF installation package and install it on a system.

There is a variety of ways to install drivers on a user’s system. One com-
mon way is to simply attach the associated hardware to the user’s system.
The Plug and Play manager detects new hardware and prompts the user to
insert a disk that contains the driver package. The system then installs the
driver. Users can also install drivers manually with the New Hardware
application in Control Panel.

KMDF driver packages contain at least three files in addition to the
driver binaries:

■ The KMDF co-installer dynamic-link library (DLL).
■ An INF file.
■ A digitally signed catalog (.cat) file. This file is not necessary for test

installations.

Driver packages can optionally contain files such as icons, property sheet
providers, supporting DLLs, and so on. This section discusses the relatively
simple driver package and test-installation procedure for Featured Toaster.

190 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.5.1 The WDF Co-Installer
A KMDF driver package must include the redistributable WDF co-install
DLL. Its primary purpose is to install the KMDF run time. The WDF
co-installer is located under the WinDDK\BuildNumber\Redis\Wdf
folder. There are six co-installers—a checked and a free build for each
supported process architecture (x86, Intel Itanium, and amd64). To install
the WDF co-installer, add the appropriate DLL to the driver package and
add the appropriate directives to the INF file.

The WDF co-installer version number must be greater than or equal
to the KMDF version with which the driver is compiled. The version
number is embedded in the DLL’s name. For example, the co-installer
for KMDF version 1.5 is named WdfCoInstaller01005.dll. The KMDF
run-time version and the KMDF co-installer version that are specified in
the project’s INF must be identical. The build type of the co-installer
must match that of the Windows version on which the driver will be
installed. You cannot use the checked build of a co-installer to install a
driver on a free build of Windows, or vice versa.

8.5.2 The INF
The INF is the core of the installation package. It is a text file that contains
most of the information that the system uses to install a driver, including

■ General information about the device such as the device’s manufac-
turer, installation class, and version number.

■ Names and locations of files on the distribution disk and where they
should be installed on the user’s system.

■ Directives for creating or modifying registry entries for the driver or
device.

■ Installation directives for which drivers are to be installed, which
binaries contain the driver, and a list of drivers to be loaded on the
device.

■ Directives for setting KMDF-specific configuration information.

The INF format is much like the earlier Windows .ini files. Each line con-
tains a single entry, and there are two basic types of entries:

■ Section—Each INF contains a number of sections, indicated by
square brackets—for example, [Version].

8.5 Installing a KMDF Driver 191

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ Directive—Each section contains one or more directives. A direc-
tive is a key-value pair and is used to specify various types of instal-
lation-related data. For example, the Class=Mouse directive in the
Version section specifies the mouse device class.

8.5.3 INFs for KMDF Drivers
Most of the contents of an INF for a KMDF driver are similar to those that
are used for WDM drivers and aren’t discussed here. For further informa-
tion, see the WDK document or examine the INF for Featured Toaster,
wdffeatured.inf. The major difference is that INFs for KMDF drivers
must contain several additional sections that are devoted to the KMDF co-
installer. These sections instruct the system to run the co-installer and pro-
vide it with necessary data. The co-installer unpacks and installs a number
of files that KMDF drivers require, including the KMDF run-time library.

8.5.4 wdffeatured.inf
The following sample shows the WDF co-installer sections from the
Featured Toaster sample’s INF file, wdffeatured.inf. It was produced
from an INX file by the build described earlier.

[DestinationDirs]
ToasterClasInstallerCopyFiles = 11

[Toaster_Device.NT.CoInstallers]
AddReg=Toaster_Device_CoInstaller_AddReg
CopyFiles=Toaster_Device_CoInstaller_CopyFiles

[Toaster_Device_CoInstaller_AddReg]
HKR, ,CoInstallers32, 0x00010000,
“WdfCoinstaller01000.dll,WdfCoInstaller”

[Toaster_Device_CoInstaller_CopyFiles]
WdfCoinstaller01000.dll

[SourceDisksFiles]
WdfCoinstaller01000.dll=1

[Toaster_Device.NT.Wdf]
KmdfService = wdffeatured, wdffeatured_wdfsect

192 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

[wdffeatured_wdfsect]
KmdfLibraryVersion = 1.1

To modify this code for your driver, replace the text that is specific to
Featured Toaster with custom text of your choosing. The following example is
a generic version of the co-installer section for a driver that is named MyDevice:

[DestinationDirs]
MyDeviceClassInstallerCopyFiles = 11

[MyDevice.NT.CoInstallers]
AddReg=MyDevice_CoInstaller_AddReg
CopyFiles= MyDeviceClassInstallerCopyFiles

[MyDevice_CoInstaller_AddReg]
HKR, ,CoInstallers32,0x00010000,
“WdfCoinstaller01000.dll,WdfCoInstaller”

[MyDevice_CoInstaller_CopyFiles]
wdfCoinstller01000.dll

[SourceDisksFiles]
wdfCoinstaller01000.dll=1 ;

[MyDevice.NT.Wdf]
KmdfService = MyDevice, MyDevice_wdfsect
[MyDevice_wdfsect]
KmdfLibraryVersion = 1.0

8.6 Catalog Files and Digital Signature

Because Kernel Mode Drivers have essentially unrestricted access to the
system, they should be digitally signed. Digitally signing the package sim-
plifies the installation process, but it also provides customers with two very
important additional benefits:

■ Customers can use the signature to identify the origin of the
package.

■ Customers can use the signature to verify that the contents of the
package have not been tampered with since it was signed. For exam-
ple, this assures them that the driver has not been modified into a
root kit or infected with a virus.

8.6 Catalog Files and Digital Signature 193

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

With recent versions of Windows, unsigned drivers can be installed only by
an administrator, and even administrators receive a warning dialog box that
requires them to explicitly approve the installation.

A signed catalog file (.cat) contains the digital signature for the entire
driver package. The signing process ties the catalog file to a specific driver
package. If anyone subsequently modifies any member of the package by
even a single byte, it invalidates the signature. If you modify a driver pack-
age, it must have a new signed catalog file.

There are two ways to obtain a signed catalog file for a driver package:

■ Obtain a Windows logo. Drivers that pass the Windows Hardware
Quality Lab (WHQL) testing and receive a Windows logo also
receive a catalog file for the driver package, signed with the WHQL
certificate.

■ Create your own signed catalog file. You can obtain a digital certifi-
cate from a certificate authority (CA). The WDK provides tools to
create a catalog file and sign it with the certificate.

For testing purposes, you can create a test certificate and install it in the
trusted publishers’ certificates store on the test computer. Sign the test
driver packages with the test certificate and the driver will install without
warning messages.

The CatalogFile entry in the INF file’s Version section specifies
a package’s catalog file. The following example is from the Featured
Toaster sample’s INF file and declares KmdfSamples.cat as the pack-
age’s catalog file:

[Version]
Signature=”$WINDOWS NT$”
Class=TOASTER
ClassGuid={B85B7C50-6A01-11d2-B841-00C04FAD5171}
Provider=%MSFT%
DriverVer=02/22/2006, 1.0.0.0
CatalogFile=KmdfSamples.cat

8.7 Installing Featured Toaster

Kernel Mode Drivers under development are normally installed on a sep-
arate test computer that is used specifically for testing and debugging

194 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

drivers. If you are new to drivers, there are two primary reasons for this
practice:

■ Kernel Mode Drivers have essentially unrestricted access to the
system. This means that a misbehaving driver can corrupt system
memory and possibly the contents of the hard disk. Drivers under
development invariably have bugs, and it is better to have any
related damage happen to a stripped-down test computer that can
be easily reformatted.

■ Debugging Kernel Mode Drivers normally requires two computers:
one to host the driver being debugged and one to host the debug-
ging software. One important reason for this arrangement is that
driver bugs often hang or crash the system. Hosting the debugger
on a separate system protects it from crashing along with the target
computer and allows you to immediately analyze the problem.

This section describes how to install Featured Toaster on a test
computer. The driver is installed on a root-enumerated physical device
object, which is the simplest approach. More commonly, drivers are
installed on a bus-enumerated physical device object. The Toaster sam-
ple also includes a bus driver that can be used for this type of installation.

Remember that Featured Toaster is a software driver, not a device
driver. This means that there is nothing for the Plug and Play manager to
detect, so the driver must be installed manually. Because the test driver is
unsigned, installing it requires administrator rights and an extra step. For
a more streamlined process, install a test certificate on the test computer
and use the certificate to sign the package. The steps involved in installing
the Featured Toaster are as follows:

1. Copy the driver binary (WdfFeatured.sys) and INF file
(WdfFeatured.inf) to installable media such as a USB drive.

2. Copy the WDF co-installer to the same media.
3. Put the media on the test computer, start the Control Panel Add

Hardware wizard, and go to page 2.
4. Page 2: Click Yes, I Have Already Added the Hardware.
5. Page 3: Select Add a New Hardware Device, from the bottom of

the list.
6. Page 4: Click Install the Hardware That I Manually Select From a

List.

8.7 Installing Featured Toaster 195

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Page 5: Select Show All Devices from the top of the list. It may
take awhile for page 6 to appear.

8. Page 6: Click Have Disk, which opens the Install From a Disk dia-
log box.

9. Enter the drive letter for the media that contains the driver pack-
age and click OK to return to the wizard.

10. Page 8: Select the Featured Toaster driver from the list and click Next
on this page and the following page. The system then loads the driver.

11. Page 10: Click Finish to complete the process.

Device Manager is the simplest way to uninstall the driver. On Windows 7,
you can also use System Restore to restore the system to the state it had
before the driver installation—that uninstalls the driver, along with any
other system changes that took place in the interim.

8.8 Testing a KMDF Driver

Testing drivers is a large and complicated subject. This section touches on
only a few KMDF-specific issues.

There are two basic approaches to testing:

■ Static testing by using tools that analyze the source code for errors
without actually executing it.

■ Dynamic testing that puts an installed driver through its paces in
hopes of activating a bug and causing the driver to fail in some way.

Some related techniques, such as tracing tools, record the actions of a
driver. This section only provides a brief introduction to the testing tools
that WDF provides for KMDF drivers.

8.8.1 PREfast
PREfast is a static source code analysis tool that detects certain classes of
errors not easily found by a compiler. PREfast steps through all possible
execution paths in each function and evaluates each path for problems by
simulating execution. PREfast does not actually execute code and cannot
find all possible errors. However, it can find errors that the compiler might
not catch and that can be difficult to find during debugging.

196 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

PREfast is a general-purpose tool that can be used with any type of
project. WDF includes a customized version of PREfast that checks for
driver-specific issues such as the correct interrupt request level (IRQL),
use of preferred driver routines, and misuse of driver routines. It also
aggressively checks for memory and resource leaks.

PREfast is run in conjunction with a build. The following is a simple
example of how to run a PREfast build. For the purposes of illustration,
the command uses a typical set of build flags, but any build flags can be
used with PREfast. The second line opens the PREfast viewer to display
the error log.

prefast build –ceZ
prefast view

8.8.2 Static Driver Verifier
Static Driver Verifier (SDV) is a static compile-time unit-testing tool that
symbolically executes the source code. SDV does deeper testing than
PREfast and creates what is in effect a hostile environment for the driver.
It systematically tests all code paths by looking for violations of usage rules.
The symbolic execution makes very few assumptions about the state of the
operating system or the initial state of the driver, so SDV can create sce-
narios that are difficult to handle with traditional testing.

The set of rules that are packaged with SDV define how device drivers
should use the DDI. The categories of rules tested include the following.

8.8 Testing a KMDF Driver 197

Category Tests

IRP Functions that use I/O request packets
IRQL Functions that use interrupt request levels
PnP Functions that use Plug and Play
PM Functions that use power management
WMI Functions that use Windows Management

Instrumentation
Sync Functions that use synchronization,

including spin locks, semaphores, timers,
mutexes, and other methods of access
control

Other Functions that are not fully described by
any of the other categories

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

198 Chapter 8 Kernel Mode Installation and Build

8.8.3 KMDF Log
KMDF includes an internal trace logger that is based on the Windows soft-
ware trace preprocessor (WPP). It tracks the progress of I/O request pack-
ets (IRPs) through the framework and the corresponding
WDFREQUEST objects through the driver. The KMDF log maintains a
record of recent race events—currently, approximately the last 100—for
each driver instance. Each KMDF driver has its own log.

You can use WDF debugger extensions to view and save the KMDF
log during interactive debugging. The typical saved log file is small (10 to
20 KB) and written in a binary format. You can also make logs available as
part of a small-memory dump for inspection after a crash.

8.8.4 KMDF Verifier
KMDF Verifier operates on an installed and running driver. It comple-
ments Driver Verifier and supports a number of WDF-specific features.
In addition, if the target driver is not loaded, KMDF Verifier can be
turned on without rebooting the system. In general, you should run both
Driver Verifier and KMDF Verifier during development.

KMDF Verifier provides extensive tracing messages that supply
detailed information about activities within the framework. It tracks refer-
ences to each WDF object and builds a trace that can be sent to the
debugger. In particular, KMDF Verifier

■ Checks lock acquisition and hierarchies.
■ Ensures that calls to the framework occur at the correct IRQL.
■ Verifies correct I/O cancellation and queue usage.
■ Ensures that the driver and framework follow the documented

contracts.

KMDF Verifier can also simulate low-memory and out-of-memory
conditions. It tests a driver’s response to these situations to determine
whether the driver responds properly without crashing, hanging, or failing
to unload.

8.8.5 Debugging a KMDF Driver
Debuggers are an essential development tool; programs under develop-
ment always have bugs, especially in the early stages. Debuggers can also

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

be used as learning tools, to step through sample code and understand in
detail how it functions.

Debugging is normally done at run time to determine why a driver is
failing. The exception to this rule is that kernel debuggers can also be used
to analyze crash-dump files. If you are new to driver development, you will
find kernel debugging a bit different from application debugging. One
immediately noticeable difference is that kernel debugging requires three
hardware components:

■ A host computer running WinDbg. This is typically the computer
that is used to develop and build the driver.

■ A test computer running an appropriate build of Windows with the
driver installed and kernel debugging enabled. Debugging is typi-
cally done with a checked build of the driver because checked builds
are much easier to debug. Test computers also often run a checked
build of Windows.

■ A way for the two computers to communicate. Historically, this was
handled by connecting serial ports on the host and test computers with
a null-modem cable. An alternative is to use USB or IEEE 1394 cables.

The kernel debugging tools are available as a separate package from
WHDC that includes the debugging tools, documentation, and some
related files. The procedures for setting up systems for kernel debugging
are covered in detail in the debugging documentation.

The debugging package includes two kernel debuggers, WinDbg and
KD. They have essentially the same capabilities, but WinDbg has a graph-
ical user interface (GUI) that many developers find convenient. The exam-
ples we use are from WinDbg. We will cover a walkthrough of a simple
debugging session with Featured Toaster that demonstrates the basics of
how to use WinDbg with a KMDF driver.

WinDbg is a debugger, not an IDE like Visual Studio. It comes into
play only after you have successfully built the driver and installed it on a
test machine. There are two basic ways to use WinDbg:

■ Kernel debugging—In this mode, WinDbg is connected to an active
test machine and can interact with a running driver.

■ Crash dump analysis—If the system crashes, you can use WinDbg
to analyze the crash dump data to try to determine the cause.

8.8 Testing a KMDF Driver 199

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

When you launch WinDbg, you must first point it to the driver’s source and
symbol files. To start a kernel debugging session, on the File menu, click
Kernel Debug. You won’t be able to do much until the system breaks into
the debugger. This essentially stops the test computer and turns its opera-
tion over to WinDbg. The following are common ways to cause a test sys-
tem to break into the debugger:

■ You instruct WinDbg to force a break. This can be done from the
UI, on the Debug menu by clicking Break, or by clicking the cor-
responding toolbar button. You can also run the break command.

■ You use WinDbg to dynamically insert breakpoints into the running
driver. This approach is quite flexible because it allows breakpoints
to be inserted, disabled, enabled, or removed during the debugging
session.

■ You insert DbgBreakPoint statements in the driver’s source code.
This approach is simpler but less flexible because the driver must be
recompiled and reinstalled to change a breakpoint.

■ The driver bug checks and crashes the test computer. At this point,
you can use WinDbg to examine crash dump data, but the computer
must be rebooted before it can run again. You can force a system
crash by running the .crash command.

8.8.6 Kernel Debugging
With the first two cases in the previous discussion, after the driver breaks
into the debugger, you can do most of the usual debugging procedure: exam-
ine variables, step through lines of code, examine the call stack, and so on.

Much of the interaction with WinDbg is through the command-line
interface. There are two basic types of commands:

■ Debugger commands are native to the debugger and are used to
obtain basic information. Commands are typically one or two letter
strings, often followed by one or more arguments. For example, k and
related commands display a thread’s stack frame and some related
information. When you are finished, use the g command to break out
of the debugger and return the driver and test computer to normal
operation. Some simple commands have corresponding menu items
or toolbar buttons, but many can be run from the command line.

200 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ Debugger extensions extend the basic set of debugger com-
mands. A number of them are included with the debugger package
and are launched from the command window in much the same way
as debugger commands. The first character of a debugger extension
is always an exclamation point (!), to distinguish it from a debugger
command. For example, a particularly useful debugger extension is
!analyze, which is used to analyze crash dumps. In addition to the
debugger extensions that are included with the debugger package,
it is also possible to write custom debugger extensions.

The debugging Help file includes a complete reference for debugging
commands, standard debugger extensions, and the API that is used to
create custom extensions. In the next section, we will discuss some debug-
ger extensions that were created specifically for KMDF drivers.

If a driver bug causes a system crash, the computer must be rebooted
before it can run again. However, if WinDbg is running and connected when
the test computer crashes, the system breaks into the debugger and you can
analyze the crash dump immediately. You can also configure your test computer
to attempt to create a crash dump file when it crashes. If the file is successfully
created, you can load it into WinDbg and analyze the crash after the fact.
WinDbg doesn’t have to be connected to the test computer for this purpose.

8.8.7 KMDF Driver Features
Debugging a KMDF driver is similar in many ways to debugging any Kernel
Mode Driver. However, some debugging features are specific to KMDF.

8.8.7.1 Registry Settings
A number of the WDF debugging features must be enabled by setting
registry values for the driver’s Parameters\Wdf subkey. The driver key
itself is named for the driver and located under HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Services.

Table 8.1 summarizes the values that can be added to the Wdf subkey.
The features are disabled by default. To enable most of these features, cre-
ate the associated value and set it to a nonzero number. To enable handle
tracking, set TrackHandles to a MULTI_SZ string that contains the
names of the objects that you want to track. The settings do not take effect
until the next time that the driver is loaded. The simplest way to reload a

8.8 Testing a KMDF Driver 201

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

driver is to use Device Manager to disable and then reenable the driver.
Table 8.1 shows some of the settings.

Table 8.1 Registry Values

202 Chapter 8 Kernel Mode Installation and Build

Category Type Tests

VerifierOn REG_DWORD Set to a nonzero value to enable the
KMDF verifier.

VerifyOn Set to a nonzero value to enable the
WDFVERIFY macro. If VerifierOn
is set, WDFVERIFY is automatically
enabled.

DbgBreakOnError REG_DWORD Set to a nonzero value to instruct the
framework to break into the
debugger when a driver calls
WdfVerifierDbgBreakPoint.

VerboseOn REG_DWORD Set to a nonzero value to capture
verbose information in the KMDF
logger.

LogPages REG_DWORD Set to a value from 1 to 10 to specify
the number of memory pages that
the framework assigns to its logger.
The default value is 1.

VerifierAllocateFailCount REG_DWORD Set to a nonzero value to test low-
memory conditions. When
VerifierAllocateFailCount is set to n,
the framework fails every attempt to
allocate memory for the driver’s
objects after the nth allocation. This
value works only if VerifierOn is
also set.

TrackHandles MULTI_SZ Set to a MULTI_SZ string that
contains the names of one or more
object types to track handle
references to those types. This
feature can help find memory leaks
that are caused by unreleased
references. To track all objects types,
set TrackHandles to “*”.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.8.7.2 Symbols
You must explicitly provide WinDbg with paths to all the relevant symbols
files. For KMDF drivers, this normally includes the symbols for the driver,
Windows, and the KMDF run time. The symbols file is named
Wdf01000.pdb and is located under %WDF_ROOT%\Symbols\Build-
Environment\wdf\sys. There are six Build Environment folders, one for
each of the standard build types and architectures. For most debugging,
you should use the checked build for the appropriate architecture.

8.9 Debugging Macros and Routines

KMDF drivers can include any of the standard debugging macros and rou-
tines, such as ASSERT or DbgPrintEx. Several routines and macros are
also specific to WDF as summarized in Table 8.2.

Table 8.2 Debugging Macros

8.9 Debugging Macros and Routines 203

Category Type Tests

ForceLogsInMiniDump REG_DWORD Set to a nonzero value to include the
KMDF log in a small memory dump
file if the system crashes.

Category Tests

WdfVerifierDbgBreakPoint This routine breaks into the debugger if the
DbgBreakOnError value is set in the registry.

WDFVERIFY If the VerifyOn value is set in the registry, this macro
tests a logical expression and breaks into the kernel
debugger if the expression evaluates to FALSE.
Unlike ASSERT, this macro is included in both
checked and free builds.

VERIFY_IS_IRQL_ If the VerifyOn value is set in the register, this macro
PASSIVE_LEVEL breaks into the kernel debugger if the driver is not

executing at IRQL=PASSIVE_LEVEL.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

204 Chapter 8 Kernel Mode Installation and Build

Category Tests

!wdfhelp Displays the list of debugger extensions.
!wdfcrashdump Displays a crash dump that includes the framework’s log

information.
!wdfdevice Displays information that is associated with a WDFDEVICE-

typed handle.
!wdfdevicequeues Displays information about all the queue objects that belong to

a specified device.
!wdfdriverinfo Displays information about a framework-based driver, such as its

run-time version and hierarchy of object handles.
!wdfhandle Displays information about a specified KMDF handle.
!wdfIotarget Displays information about a WDFIOTARGET-typed object

handle.
!wdfdr Displays all loaded WDF drivers.
!wdfIodump Displays the framework’s log information.
!wdfqueue Displays information about a WDFQUEUE-typed object

handle.
!wdfrequest Displays information about a WDFREQUEST-typed object

handle.

8.10 WDF Debugger Extension Commands

KMDF includes a set of debugger extension commands that can be
invoked in the debugger’s command window to obtain a variety of WDF-
related data. The output often includes command strings that can be
pasted into the command line to retrieve additional related information.
Table 8.3 shows some of the more commonly used commands.

Table 8.3 Debugger Extension Commands

When KMDF Verifier is enabled, several of the WDF debugger
extension commands provide more information than is available otherwise.
For example, !wdfdriverinfo reports leaked handles.

The code for the WDF debugger extensions is contained in a DLL that
is named wdfkd.dll. The DLL is included with WDK debugging tools and
is stored in Program Files\Debugging Tools for Windows\winext.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Check it against the most recent version of the DLL, which is included
with the latest KMDF distribution. Wdfkd.dll is stored under WinDDK\
BuildNumber\bin\. There are actually three versions of wdfkd.dll, one
for each supported architecture (amd64, Intel Itanium, or x86). If neces-
sary, overwrite the version that came with the debugger with the most
recent version.

8.11 Using WPP Tracing with a KMDF Driver

WPP tracing works in essentially the same way with a KMDF driver as it
does with a WDM driver. However, KMDF provides hundreds of frame-
work-specific tracing messages. To enable KMDF support for WPP,
include the following RUN_WPP directive in the project’s Sources file:

RUN_WPP = $(SOURCES) \
-km \
-func:TraceEvents(LEVEL,FLAGS,MSG,...) \
-gen:{km-WdfDefault.tpl}*.tmh

8.12 Using WinDbg with Featured Toaster

Featured Toaster doesn’t have any known bugs, but WinDbg is still a
useful tool to walk through the source and see how the driver works. The
walkthrough also demonstrates the basics of how to use WinDbg.

The test computer should be running Windows with kernel debugging
enabled and be connected to the host computer. For convenience, this sec-
tion assumes that the COM ports are connected with a null-modem cable.

The simplest way to use the debugger is to run a test application that accesses
the driver and hits a breakpoint, causing the driver to break into the debugger.
KMDF doesn’t include a test application for Toaster, but the WDM test appli-
cation, Toast.exe, works just as well with the KMDF version of the driver.

The source code for Toast.exe is located at WinDDK\BuildNumber
\src\general\toaster\exe\toast. Use the same console window and build
commands to build Toast.exe as for Featured Toaster. Unlike most proj-
ects, the output folder is not a subfolder of the project folder. Copy
Toast.exe from the output folder WinDDK\BuildNumber\src\gen-
eral\toaster\disk\chk_wxp_x86\i386 to a convenient folder on the test
computer.

8.12 Using WinDbg with Featured Toaster 205

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To get WinDbg ready to debug Featured Toaster:

1. Launch WinDbg.
2. On the File menu, click Symbol File Path, which causes the

Symbols Search Path dialog box to appear. It should have paths
for the Featured Toaster, Windows, KMDF run time, and
wdfkd.dll symbols files.

3. Select the Reload check box, which forces WinDbg to load the
current symbols, and close the dialog box.

4. On the File menu, click Source File Path, and add the path to
the Featured Toaster’s source files.

5. On the File menu, click Open Source File. Open Featured
Toaster’s Toaster.c file.

6. On the File menu, click Kernel Debug. This puts WinDbg into kernel
debugging mode and establishes the connection with the test computer.

7. Enter the appropriate baud rate and COM port in the Kernel
Debugging dialog box, and click OK to start the debugging session.

8. On the Debug menu, click Break, which forces a break and
allows you to run debugging commands.

9. Use the bp command as follows to set a breakpoint in Featured
Toaster’s ToasterEvtIoRead routine.

bp ToasterEvtIoRead

To start debugging:

1. Go to the test computer, launch a command window, and run
Toast.exe. Type any character other than “q” to cause Toast.exe
to send a read request to the driver. Toast.exe then calls
Featured Toaster’s ToasterEvtIoRead routine. When the
driver hits the breakpoint, it breaks into the debugger.

2. On the Debug menu, select the Source Mode check box if it isn’t
already selected. This mode allows you to step through the source
code. Notice that the corresponding assembler appears in the
Command window. Even if you never write a line of assembler,
it’s still useful to know something about it for debugging purposes.

3. Set the cursor on a line of source code. On the Debug menu, click
Run to Cursor. The selected line should be highlighted in blue.

4. On the Debug menu, click Step Over to execute the next line.
There’s also a Toolbar button for this purpose, located under-
neath the Window menu.

206 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To get detailed information, call one of the debugger extensions. One use-
ful WDF debugger extension is !wdfdriverinfo, which returns general
information about the driver. It takes the name of the driver as a required
argument plus a flag that controls exactly what data is returned. 0xF0
returns essentially everything. The following example shows the output
from !wdfdriverinfo for Featured Toaster:

kd> !wdfdriverinfo wdfeatured 0xf0

Default driver image name: wdffeatured
WDF runtime image name: Wdf01000

FxDriverGlobals 0x829a3c80
WdfBindInfo 0xf7991b8c

Version v1.0 build(1234)

Driver Handles:
WDFDRIVER 0x7d6494f8 dt FxDriver 0x829b6b00

WDFDEVICE 0x7d4e1588 dt FxDevice 0x82b1ea70
Context 82b1ec30

Cleanup f7992dc0
WDF INTERNAL dt FxDefaultIrpHandler 0x82aca158
WDF INTERNAL dt FxPkgGeneral 0x829e8160
WDF INTERNAL dt FxWmiIrpHandler 0x82aa8cb0
WDF INTERNAL dt FxPkgIo 0x82b1cef0

WDFQUEUE 0x7d4e1250 dt FxIoQueue 0x82b1eda8
WDFQUEUE 0x7d552720 dt FxIoQueue 0x82aad8d8

WDF INTERNAL dt FxPkgFd0 0x82aa9d50
WDFCMRESLIST 0x7d4e6340 dt FxCmResList 0x82b19cb8
WDFCMRESLIST 0x7d4e1e10 dt FxCmResList 0x82b1e1e8
WDFCHILDLIST 0x7d639ba8 dt FxChildList 0x829c6450
WDFIOTARGET 0x7d6462d8 dt FxIoTarget 0x829b9d20
WDF INTERNAL dt FxWmiProvider 0x829b6698

WDF INTERNAL dt FxWmiInstanceExternal 0x82b1e098
WDFWMIPROVIDER 0x7d644088 dt FxWmiProvider 0x829bbf70

WDFWMIINSTANCE 0x7d560080 dt FxWmiInstanceExternal
0x82a9ff78 Context 82a9ffe8

WDFWMIPROVIDER 0x7d6436d0 dt FxWmiProvider 0x829c928
WDFWMIINSTANCE 0x7d550d78 dt FxWmiInstanceExternal

0x82aaf280
WDFWMIPROVIDER 0x7d6432a8 dt FxWmiProvider 0x829bcd50

WDFWMIINSTANCE 0x7d5295e0 dt FxWmiInstanceExternal
Ox82ad6a18 Context 82ad6a88

WDFFILEOBJECT 0x7d4edc18 dt FxFileObject 0x82b123e0

Many debugger commands and extensions require a handle to an
object. For example, !wdfrequest takes a WDFREQUEST object handle

8.12 Using WinDbg with Featured Toaster 207

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

and returns information about the object. To get such a handle, on the
View menu, click Locals. Assuming that the debugger is still in the
ToasterEvtIoRead routine, the associated WDFREQUEST object is
name Request. The handle appears in the corresponding Value field in
the Locals window.

8.13 Versioning and Dynamic Binding

When Windows loads a KMDF driver, the driver is dynamically bound to
the KMDF run-time library (WdfMM000.sys). Multiple drivers can share
the same run-time library (DLL) image, and the run-time libraries for two
major versions can co-exist side-by-side.

When you build a KMDF driver, you link it with WdfDriverEntry.lib.
This library contains information about the KMDF version in a static data
structure that becomes part of the driver binary. The internal
FxDriverEntry function in WdfDriverEntry.lib wraps the driver’s
DriverEntry routine, so that when the driver is loaded, FxDriverEntry
becomes the driver’s entry point. At load time, the following occurs:

■ FxDriverEntry calls the internal function WdfVersionBind
(defined in wdfldr.sys) and passes the version number of the
KMDF run-time library with which to bind.

■ The loader determines whether the specified major version of the
framework library is already loaded. If not, it starts the service that
represents the framework library and loads the library and the
driver. If so, it adds the driver as a client of the service and returns
the relevant information to the FxDriverEntry function. If the
driver requires a newer version of the run-time library than the one
already loaded, the loader fails and logs the failed attempt in the sys-
tem event log.

■ FxDriverEntry calls the driver’s DriverEntry function, which in
turn calls back to KMDF to create the KMDF driver object.

Although two major versions of KMDF can run side-by-side
simultaneously, two minor versions of the same major version cannot.
At installation, a more recent minor version of the KMDF run-time library
overwrites an existing, older minor version. If the older version is already

208 Chapter 8 Kernel Mode Installation and Build

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

loaded when a user attempts to install a driver with a newer version, the
user must reboot the system.

For a boot driver, the loading scenario is different because the KMDF
run-time library must be loaded before the driver. At installation, the
co-installer reads the INF (or the registry) to determine whether the
driver is a boot driver. If so, the co-installer both changes the start type of
the KMDF service so that the Windows loader starts it at boot time and
sets its load order so that it is loaded before the client driver.

8.13 Versioning and Dynamic Binding 209

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

211

C H A P T E R 9

PROGRAMMING DRIVERS FOR
THE KERNEL MODE DRIVER
FRAMEWORK

The Windows Driver Framework (WDF) release includes several sample
Kernel Mode Drivers. You can use sample drivers as a basis for your own
drivers and refer to them for examples of specific implementation tech-
niques. The KMDF sample drivers are installed in the Src\Kmdf subdi-
rectory of the WDF installation directory.

This chapter lists and discusses the samples in three ways: by name, by
device function, and by the features that they demonstrate. We will show
various listings of the various sample drivers and discuss the listing.
Table 9.1 lists the samples by name.

Table 9.1 KMDF Samples by Name

Sample Name Description

1394 Virtual (1394vdev.sys) and physical (1394diag.sys) diagnostic
drivers for IEEE 1394 devices that interface with the upper edge
of the 1394 stack.

AMCC5933 Sample driver for devices based on or similar to the AMCC5933
chip for PCI or ISA.

Echo Demonstration driver that does not control any hardware. It uses
a serial I/O queue to serialize read and write requests that are
targeted at the device and shows how to handle request
cancellation.

FakeModem Driver for controllerless modem (soft modem).

(continues)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

If none of the sample drivers supports your specific device type, you
might be able to find a sample that supports a device that has similar
characteristics or is used in a similar way. Table 9.2 lists the device charac-
teristics and usage models that the KMDF samples support.

212 Chapter 9 Programming Drivers for the KMDF

Firefly Filter driver for a human interface device (HID).
Kbfiltr Filter driver for a keyboard. It exposes a raw physical device

object (PDO) for communication with user-mode application.
NdisEdge Driver that exposes an NDIS miniport interface at its upper edge

and interacts with other drivers such as USB, IEEE1394, and
serial at its lower edge.

NdisProt Driver that exposes a WDF interface at its upper edge and an
NDIS interface at its lower edge.

Nonpnp Legacy, NT 4.0-style driver that does not support Plug and Play
or interact with hardware. It handles four different device I/O
control (IOCTL) requests and shows how to handle
METHOD_NEITHER I/O. It provides kernel-level services to a
user application, which dynamically loads and unloads it.

OsrUsbFx2 Driver for OSR USB-FX2 Learning kit. It shows how to perform
bulk and isochronous data transfers to a generic USB device and
how to write a bus driver.

Pcidrv Function driver for Intel 82557/82558-based PCI Ethernet
Adapter (10/100) and Intel compatibles.

Pix9x5x Sample function driver for devices based on the PLx
PCI19056RDK-Lite Adapter, a PCI/DMA device.

Ramdisk RAM disk driver that shows how to create a virtual disk in
memory.

Serial WDF version of the in-box serial driver.
Toaster Function, filter, and bus drivers for a hypothetical toaster device.

Table 9.1 KMDF Samples by Name (continued)

Sample Name Description

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Table 9.2 KMDF Samples by Device Usage Model

Chapter 9 Programming Drivers for the KMDF 213

Device Usage Model Device or Driver Type KMDF Sample

Hardware that supports
only port-mapped I/O

Driver that handles I/O
operations serially and
reads or writes one port
at a time
Driver that polls read
operation at regular
intervals from either a
deferred procedure call
(DPC) or a dedicated
kernel thread
Hardware that supports
port-mapped I/O and
interrupts to notify the
driver about input data
and other asynchronous
events
Same as previous, but also
supports memory-mapped
I/O

Same as previous, but also
supports bus master
DMA channels to read
and write
Hardware that has more
than one function or
emulates more than one
device

Driver that supports a
virtual bus

Parallel port, legacy
joystick port, and ISA
devices

Serial port, parallel port,
IDE controller, and PS/2
controller

Typical PCI and EISA
devices for data
acquisition that use direct
memory access (DMA)
Network adapters and
similar PCI drivers

Multifunction PCI
devices that do not
confirm to the PCI
specification, multiport
serial cards, and multiport
network cards
Serial cards, and
multiport network cards

AMCC5933 ISA
sample (S5933DK1)

Serial

PLX9x5x

PCIDRV

Toaster bus driver

(continues)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

You can also refer to the samples to find out how to use specific KMDF
features. Table 9.3 lists the samples that support each fundamental feature.

214 Chapter 9 Programming Drivers for the KMDF

Device Usage Model Device or Driver Type KMDF Sample

Filter driver that modifies
I/O requests and provides
an interface for applica-
tions to directly control
the filter
Filter driver that modifies
the hardware resources
Driver that interacts with
an Unrelated device stack
to perform I/O

Driver that supports a
USB client
Software-only drivers or
drivers that are not part
of any Plug and Play stack
Legacy NT 4.0-style
drivers that do not
support Plug and Play
Driver that must run in
the context of the user
application so that it can
handle METHOD_IOCTs
or map memory into user
address space
Drivers that registers
in-process context
callback to handle
METHOD_NEITHER
I/O requests

Keyboard and mouse
filters, storage class filter
drivers, and serial devices

NDIS protocol drivers,
Asyncmac, transport
driver interface (TDI)
client drivers, and Ftdisk
or volsnap
Any USB device

No device or legacy
devices

Video capture devices,
audio cards, and high-
speed data acquisition
devices

Toaster filter driver

NdisEdge and
NdisProt

Osrusbfx2

Nonpnp

Nonpnp

Table 9.2 KMDF Samples by Device Usage Model (continued)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Table 9.3 KMDF Feature Support in Samples

Chapter 9 Programming Drivers for the KMDF 215

KMDF Feature Sample

Buffered I/O Ndisprot
Child device enumeration OsrUsbFx2, Toaster bus
Collection PCIDRV, Toaster bus
Direct I/O Ramdisk
DMA AMCC5933, PCIDRV, PLX9x5x
DPC PCIDRV, PLX9x5x
Event tracing AMCC5933, NonPnp, OxrUsbFx2, PCIDRV
Functional device object All samples
(FDO) interface
File object NonPnP
Filter driver Firefly, Kbfiltr
I/O request cancellation Echo
I/O requests and I/O queues All samples
(serial/parallel/manual)
I/O target objects 1394, Firefly, NdisEdge, OsrUsbFx2
Idle detection PCIDRV, serial
In-process callback to handle NonPnP
events in caller’s thread context
Interrupt handling PLX9x5x, Serial
Memory pool All samples
METHOD_NEITHER I/O NonPnP
Non-Plug and Play, NT 4.0 Ndisprot
style device objects (also called
control device objects)
Physical Device object (PDO) Kbfiltr, OsrUsbFx2/EnumSwitches,
interface Toaster bus
Plug and Play device interface AMCC5933, PCIDRV, PIX9x5x, Toaster

function
Plug and Play hardware resources PCIDRV, PLX9x5x, AMCC5933
Plug and Play query interfaces Toaster bus
Power policy owner PCIDRV

(continues)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.1 Differences between KMDF and WDM Samples

The KMDF samples are based on the similarly named Windows Driver
Model (WDM) samples that are provided in the Windows Driver Kit
(WDK). With a few exceptions, the corresponding drivers support similar
features. If you are experienced with WDM, you might find useful a com-
parison of the KMDF and WDM samples.

The primary difference between the samples is that the KMDF sam-
ples are much shorter and less complex. The reason is that KMDF imple-
ments most of the details of WMD, so that you can avoid writing many
lines of code that perform common tasks and implement common features
required in all drivers. Instead, you define callbacks for the conditions and
events that your driver must handle.

For example, KMDF driver, like WDM drivers, support Plug and Play
and power management for their devices. WDM drivers typically include
thousands of lines of code to ensure that they handle every possible state

216 Chapter 9 Programming Drivers for the KMDF

Preprocessing callbacks for Serial
IRP_MJ_FLUSH_BUFFERS,
IRP_MJ_QUERY_INFORMATION,
and IRP_MJ_SET_INFORMATION
Raw PDO Kbfiltr, OsrUsbFx2
Registry Fakemodem, PCIDRV, Ramdisk, Serial,

Toaster bus
Self-managed I/O Echo, PCIDRV
Symbolic links to device names Fakemodem, Ramdisk
Synchronization scope Echo
Timer objects Echo
USB device support OsrUsbFx2
Wake signal support OsrUsbFx2, PCIDRV, Serial
Windows management Firefly, PCIDRV, Serial, Toaster function
instrumentation (WMI)
Work items AMCC5933, PCIDRV

Table 9.3 KMDF Feature Support in Samples (continued)

KMDF Feature Sample

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

and minor I/O request packet (IRP) code; drivers often require code to
handle IRPs that they don’t even support. A KMDF driver, however,
includes code to handle only those features and requests that its device
supports. All other Plug and Play and power requests are handled by WDF
in a default manner. These defaults make possible the incremental devel-
opment of KMDF drivers. You can implement a skeletal set of features,
test the implementation, and then incrementally add code to support addi-
tional features or perform more complicated tasks.

In a practical sense, the most significant difference between KMDF
and WDM drivers is the number and complexity of the required func-
tions. For an example of this difference, compare the simplest form of the
WDM Toaster sample (src/general/toaster/func/Incomplete1 in the WDK
installation directory) with the simplest KMDF Toaster sample (src/kmdf/
toaster/func/simple in the WDF installation directory).

Both drivers support basic Plug and Play, power, and WMI requests. The
KMDF sample also includes stub functions to handle read, write, and IOCTL
requests. However, the KMDF sample contains many fewer lines of code than
the WDM sample. Table 9.4 compares the functions in these two drivers.

Table 9.4 Comparison of a KMDF Simple Toaster and WDM incomplete1 Toaster Samples

9.1 Differences between KMDF and WDM Samples 217

WDM Function Equivalent KMDF Function Comments

DriverEntry DriverEntry Function has same
prototype. KMDF driver
creates WDF driver
object.

ToasterAddDevice ToasterEvtDeviceAdd KMDF driver creates a
default queue for I/O
requests.

ToasterUnload None KMDF driver uses
defaults.

ToasterDispatchPnP None KMDF driver uses
defaults.

ToasterSendIrp- None WDM driver passes IRPs
Synchronously down the stack to be

completed synchronously.
KMDF driver uses
defaults.

(continues)

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.2 Macros Used in KMDF Samples

Many of the KMDF samples use two macros that might be unfamiliar:

■ PAGED_CODE
■ UNREFERENCED_PARAMETER

The PAGED_CODE macro causes the driver to assert if the function is
called at IRQL DISPATCH_LEVEL or higher. The macro is defined in
ntddk.h and takes no arguments. It works only in a checked build.

218 Chapter 9 Programming Drivers for the KMDF

ToasterDispatchPnP- None KMDF driver uses
Complete defaults.
ToasterDispatch- None KMDF driver uses
Power defaults.
Toaster System None WDM function passes
Control WMI IRPs to the next

lower driver. KMDF
driver uses defaults.

None ToasterEvtIoRead WDM function handles
and completes read
request. KMDF function
is a stub.

None ToasterEvtIoWrite WDM function handles
and completes write
requests. KMDF function
is a stub.

None ToasterEvtIoDeviceControl WDM function handles
and completes device I/O
control request. KMDF
function is a stub.

Table 9.4 Comparison of a KMDF Simple Toaster and WDM incomplete1 Toaster
Samples (continued)

WDM Function Equivalent KMDF Function Comments

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The UNREFERENCED_PARAMETER is defined in the standard
WDK header file ntdef.h, which is included by ntddk.h. It disables com-
piler warnings about unreferenced parameters. It can be used in any Kernel
Mode Driver.

9.3 KMDF Driver Structure and Concepts

KMDF drivers are object-oriented, event-driven drivers that link dynami-
cally with the Kernel Mode Driver Framework at run time. This discussion
provides a brief overview of KMDF concepts.

The KMDF object model defines object types to represent common
driver constructs. Each object exports methods (functions) and properties
(data) that drivers can access and is associated with object-specific events,
which drivers can support by providing event callbacks. The objects them-
selves are opaque to the driver. KMDF and the driver instantiate the
objects that are required to service the device. The driver provides call-
backs for the events for which the KMDF defaults do not suit its device
and calls methods on the object to get and set properties and perform any
additional actions. Thus, a KMDF driver consists of a DriverEntry func-
tion, callback routines for events that affect the driver or its devices, and
whatever utility functions the driver requires.

All KMDF drivers create a WDFDRIVER object to represent the
driver and a WDFDEVICE object to represent each device that the
driver supports. Most drivers also create one or more WDFQUEUE
objects to represent the driver’s I/O queues. KMDF places I/O requests
into the queues until the driver is ready to handle them.

Drivers can create additional objects as their device hardware and
driver features require. KMDF objects are organized hierarchically, with
the WDFDRIVER object as the root. The object hierarchy defines the
object’s lifetime—each object is deleted when its parent is deleted.

All KMDF objects are created in the same way, by using KMDF-
defined initialization functions and an object creation method. Any KMDF
object has one or more driver-defined object context areas, in which the
driver can store data that is specific to that particular instance of the object.

The following discussions provide more information on object creation
and context areas and on I/O queues and requests, which are fundamental
to KMDF drivers.

9.3 KMDF Driver Structure and Concepts 219

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.3.1 Object Creation
To create a KMDF object, a driver follows these steps:

1. Initialize the configuration structure for the object, if one exists.
2. Initialize the attributes structure for the object, if necessary.
3. Call the creation method to create the object.

The object configuration structure and the object attributes structure
supply basic information about the object and how the driver uses it. All
object types have the same attributes structure, but the configuration
structure for each type of object is different and some objects do not
have one.

The configuration structure holds pointers to object-specific informa-
tion, such as the driver’s event callback functions for the object. The
driver fills in this structure and then passes it to the framework when it
calls the object creation method. The framework uses the information
from the configuration structure to initialize the object. For example, the
WDFDRIVER object contains a pointer to the driver’s EvtDriver-
DeviceAdd callback function, which KMDF invokes when a Plug and
Play add-device event occurs.

KMDF defines functions named WDF_Object_Config_INIT to
initialize the configuration structures, where Object represents the name
of the object type. Not all object types have configuration structures or the
corresponding initialization functions.

The object attributes structure (WDF_OBJECT_ATTRIBUTES)
specifies attributes that are common to all objects:

■ Callbacks to handle object cleanup and destruction.
■ The interrupt request level (IRQL) at which the objects’ callback

functions are invoked and its locks are held.
■ An object context area.
■ Information about the context area, such as its size and type.

KMDF defines the following for use in initializing object attributes:

■ WDF_OBJECT_ATTRIBUTES_INIT
■ WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE
■ WDF_OBJECT_ATTIBUTES_SET_CONTEXT_TYPE

220 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The WDF_OBJECT_ATTRIBUTES_INIT function sets values for
synchronization and execution level, which determine which of the driver’s
callbacks KMDF invokes concurrently and the highest IRQL at which they
can be called. The two context-type initialization macros set information
about the object’s context area, which is described in the next section.

Although attributes can apply to any type of object, the defaults are
typically acceptable for objects for which the driver does not define a con-
text area. To accept the defaults, a driver specifies WDF_NO_
OBJECT_ATTRIBUTES, in which WDK defines a NULL.

After initializing the object’s configuration structure and attributes, the
driver creates an instance of the object by calling the creation method for
the object type with pointer to the attributes structure and any other
object-type-specific parameters. Creation methods are all named
WdfObjectCreate, where Object indicates the type of object. The cre-
ation method returns a handle to the created object. The driver subse-
quently uses the handle to refer to the object.

9.3.2 Object Context Area
Every instance of an object can have one or more object context areas. The
object context area is a driver-defined storage area for data that is related to
that particular instance, such as a driver-allocated event. The driver deter-
mines the size and layout of the object context area. For a device object, the
object context area is the equivalent of the WDM device extension.

A driver initializes the context area and specifies its size and type when
it creates the object. When KMDF creates the object, it allocates memory
for the context areas from the nonpaged pool and initializes them accord-
ing to the driver’s specification. When KMDF deletes the object, the con-
text areas are deleted along with the object.

The context area is considered part of the object, which is opaque to
drivers. Therefore, the driver must use an accessor method to get a pointer
to the context area. Each context area has its own accessor method, and
KMDF provides macros to create these methods.

For the driver, defining and initializing a context area is a multistep
process. First, the driver defines a data structure that describes the context
area. This definition typically appears in a header file.

Next, the driver declares the type of the context area, by using either
the WDF_DECLARE_CONTEXT_TYPE or WDF_DECLARE_
CONTEXT_TYPE_WITH_NAME macro. These macros associate a type

9.3 KMDF Driver Structure and Concepts 221

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

with the context area and create a named accessor method that returns a
pointer to the context area. WDF_DECLARE_CONTEXT_TYPE_
WITH_NAME assigns a driver-specified name to the accessor method.
WDF_DECLARE_CONTEXT_TYPE assigns the default name Wdf-
ObjectGet_ContextStructure, where ContextStructure is the name
of the context structure. This step, too, can be performed in a
header file.

Finally, the driver associates the context area with a specific instance
of an object. To do so, the driver initializes the object attribute structure
with information about the context area by using the WDF_
OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE or WDF_OBJECT_
ATTRIBUTES_SET_CONTEXT_TYPE macro. The WDF_OBJECT_
ATTRIBUTES_SET_CONTEXT_TYPE macro records information
about the context area in an attributes structure, which the driver later
supplies when it creates the object. WDF_OBJECT_ATTRIBUTES_
INIT_CONTEXT_TYPE combines the actions of WDF_OBJECT_
ATTRIBUTES_INIT and WDF_OBJECT_ATTRIBUTES_SET_
CONTEXT_TYPE—that is, it initializes the attribute structure with
settings for synchronization scope and execution level in addition to
information about the context. The driver passes the resulting attribute
structure when it calls the creation method for the object.

9.3.3 I/O Queues
KMDF I/O queues manage requests that are targeted at the driver.
A driver typically creates one or more queues, each of which can accept
one or more types of request. A driver can have any number of queues, and
they can all be configured differently. Both KMDF and the driver itself can
queue I/O request.

The most important characteristics of any queue are the types of
requests it accepts, the way in which it dispatches those requests, and
whether KMDF handles power management for it.

A queue can accept one or more types of requests. For example, a
driver might have one queue for read and write request and another that
accepts only device I/O control requests.

The dispatch method determines how many requests the driver serv-
ices at a given time. Queues can dispatch requests sequentially, in parallel,
or manually. A sequential queue dispatches one request at a time. A paral-
lel queue dispatches requests as soon as they arrive. A manual queue does

222 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

not dispatch requests automatically; the driver must call a method on the
queue each time it is ready to handle another request.

By default, all KMDF I/O queues are power managed, which means
that KMDF handles starting and stopping the queue according to the
power management state of the device and the system. In addition, KMDF
can use an empty queue as a cue to start its idle-device timer.

The driver uses a WDF_IO_QUEUE_CONFIG structure to config-
ure a queue. For each queue, the driver can specify

■ The types of I/O requests that are placed in the queue.
■ The dispatch method for the queue.
■ The power management options for the queue.
■ The I/O event callback functions registered to handle I/O requests

from the queue.
■ Whether the queue accepts requests that have a zero-length buffer.

WDF supplies two functions to initialize the WDF_QUEUE_CONFIG
structure:

■ WDF_IO_QUEUE_CONFIG_INIT, which configures a power-
managed queue with a driver-specified dispatch method.

■ WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE,
which configures a power-managed queue with a driver-specified
dispatch method and designates it as the driver’s default queue, into
which KMDF places all read, write, and device I/O control requests
for which no other queue is configured.

Like all other objects, queues have attributes. In many cases, the default
attributes are acceptable for queues. A driver might override the defaults
for one of the following reasons:

■ To create one or more queue-specific context areas in which to save
data specific to the queue.

■ To specify a callback function to be invoked when the queue is
deleted.

■ To specify a parent object for the queue. By default, the parent
object is the device object.

9.3 KMDF Driver Structure and Concepts 223

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.3.4 I/O Requests
The WDFREQUEST object represents the IRP sent by the application that
initiated the I/O request. Like other KMDF objects, the WDFREQUEST
object is opaque to driver writers and is managed by the framework. Most
KMDF drivers never directly see the underlying IRP.

When KMDF calls one of the driver’s I/O event callback functions, it
passes a handle to a WDFREQUEST object, along with additional infor-
mation that the driver might require to handle the request. The WDFRE-
QUEST object encapsulates the information passed in the original IRP.

KMDF drivers that support buffered or direct I/O can use the buffer
passed by the originator of the I/O request or can use a WDFMEMORY
object that represents the output buffer. Using a WDFMEMORY object
is simpler and requires less code because the framework handles all vali-
dation and addressing issues. For example, the handle to the WDFMEMORY
object contains the size of the buffer, thus ensuring that buffer overruns do
not occur.

9.4 A Minimal KMDF Driver: The Simple Toaster

The Simple Toaster sample provided in toaster\func\simple is a min-
imal, software-only function driver. It creates a driver object, a device
object, a device interface, and a single I\O queue. The driver handles
read, write, and device I/O control requests that are targeted at its
device.

This minimal driver includes the following functions:

■ A DriverEntry routine, which creates the driver object.
■ An EvtDriverDeviceAdd event callback, which creates the device

object, a device interface, and a default I/O queue.
■ I/O callback functions for read, write, and device I/O control requests.

The driver does not manage any physical hardware, so no code to support
Plug and Play or power management is required; the driver uses the WDF
defaults.

224 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.4.1 Creating a WDF Driver Object: DriverEntry
Every KMDF driver must have a DriverEntry routine. The Driver-
Entry routine is the first driver function called when the driver is loaded.
The KMDF DriverEntry routine has the same prototype as that of a
WDM driver:

NTSTATUS
DriverEntry(

IN PDRIVER_OBJECT DriverObject,
In PUNICODE_STRING RegistryPath
);

The DriverEntry routine performs the following tasks:

■ Creates a driver object (WDFDRIVER), which represents the
loaded instance of the driver in memory. In effect, creating this
object “registers” the driver with KMDF.

■ Registers the driver’s EvtDriverDeviceAdd callback. KMDF calls
this function during device enumeration.

■ Optionally initializes event tracing for the driver.
■ Optionally allocates resources that are required on a driver-wide

(rather than per-device) basis.

The following shows the DriverEntry function for the Simple Toaster
sample:

NTSTATUS
DriverEntry(

IN PDRIVER_OBJ DriverObject,
IN PUNICODE_STRING RegistryPath
)

{
NTSTATUS status = STATUS_SUCCESS;
WDF_DRIVER_CONFIG config;

KdPrint((“Toaster Function Driver Sample-”
Driver Framework Edition.\n));

KdPrint((“Built %s %s\n”, __DATE__, __TIME__));

9.4 A Minimal KMDF Driver: The Simple Toaster 225

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WDF_DRIVER_CONFIG_INIT(
&config,
ToasterEvtDeviceAdd
);

//
// Create a framework driver object.
//
Status = WdfDriverCreate(

DriverObject,
RegistryPath,
WDF_NO_OBJECT_ATTRIBUTES // Driver Attributes
&config, // Driver Config Info
WDF_NO_HANDLE
);

if (!NT_SUCCESS(status)) {
KdPrint((“WdfDriverCreate failed with”

“status 0x%x\n”, status));
}

return status;
}

Before creating the WDFDRIVER object, the driver must initialize a
driver-object configuration structure (WDF_DRIVER_CONFIG) by
using the WDF_DRIVER_CONFIG_INIT function. The function zeroes
the structure and then initializes it with a pointer to the driver’s
EvtDriverDeviceAdd callback function, which is named ToasterEvt-
DeviceAdd. KMDF calls this function during device enumeration, when it
handles an add-device request that is targeted at the driver.

After setting up the configuration structure, DriverEntry calls
WdfDriverCreate to create the WDFDRIVER object, passing as
parameters the DriverObject and RegistryPath that were supplied to
it, a pointer to the driver object attributes, and a pointer to the filled-in
driver configuration structure. The framework’s default attributes are
acceptable for the Simple Toaster’s WDFDRIVER object, so the sam-
ple specifies WDF_NO_OBJECT_ATTRIBUTES, which KMDF
defines as NULL.

WdfDriverCreate can optionally return a handle to the created
WDFDRIVER object. The Simple Toaster driver does not require a local
copy of this handle, so instead of passing a location to receive the handle, it
passes WDF_NO_HANDLE, which is a null pointer.

226 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A WDM driver would typically save pointers to the DriverObject and
RegistryPath, but a KMDF driver does not require them because KMDF
maintains this information on behalf of the driver.

9.4.2 Creating the Device Object, Device Interface,
and I/O Queue: EvtDriverDeviceAdd

Every KMDF driver that supports Plug and Play must have an
EvtDriverDeviceAdd callback function, which is called each time the sys-
tem enumerates a device that belongs to the driver. This callback performs
actions required at device enumeration, such as the following:

■ Creates and initializes a device object (WDFDEVICE) and corre-
sponding context areas.

■ Sets entry points for the driver’s Plug and Play and power manage-
ment callbacks.

■ Creates a device interface.
■ Configures and creates one or more I/O queues.
■ Creates an interrupt object, if the device controls physical hardware

that generates interrupts.

The EvtDriverDeviceAdd function is called with two parameters: a han-
dle to the WDFDRIVER object that the driver created during Driver-
Entry and a handle to a WDFDEVICE_INIT object.

The Simple Toaster does not control hardware, so it does not set Plug
and Play or power management callbacks, nor does it create an interrupt
object. Its EvtDriverDeviceAdd callback creates the device object and
context area, device interface, and a single default I/O queue. The follow-
ing shows the source code for this function:

NTSTATUS
ToasterEvtDeviceAdd(

IN WDFDRIVER Driver,
IN PWDFDEVICE_INIT DeviceInit
)

{
NTSTATUS status = STATUS_SUCCESS;
PFDO_DATA fdoData;
WDF_IO_QUEUE_CONFIG queueConfig;
WDF_OBJECT_ATTRIBUTES fdoAttributes;
WDFDEVICE hDevice;
WDFQUEUE queue;

9.4 A Minimal KMDF Driver: The Simple Toaster 227

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

UNREFERENCED_PARAMETER(Driver);

PAGED_CODE();
KdPrint((“ToasterEvtDEviceAdd called\n”));
//
// Initialize attributes and a context area for the
// device object.
//
//
WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE

(&fdoAttributes, FDO_DATA);

//
// Create a framework device object.
status = WdfDEviceCreate(&DeviceInit, &fdoAttributes,

&hDevice);
if(!NT_SUCCESS(status)) {

KdPrint((“WdfDeviceCreate failed with status code”
“0x%x\n”, status));

return status;
}

// Get the device context by using the accessor function
// specified in the WDF_DECLARE_CONTEXT_TYPE_WITH_NAME
// macro for FDO_DATA.
//
fdoData = ToasterFdoGetData(hDevice);

//
// Create device interface.
//
status = WdfDEviceCreateDeviceInterface(

hDevice,
(LPUID) &GUID)DEVINTERFACE_TOASTER,
NULL // Reference String
);

if(!NT_SUCCESS(status)) {
KdPrint((“WdfDeviceCreateDeviceInterface failed

“0x%x\n”, status));
return status;

}

//
// Configure the default I/O queue.
//

228 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&queueConfig,
WdfIoQueueDispatchParallel);

// Register I/O callbacks for IRP_MJ_READ, IRP_MJ_WRITE,
// and IRP_MJ_DEVICE_CONTROL request.

queueConfig.EvtIoRead = ToasterEvtIoRead;
queueConfig.EvtIoWrite = ToasterEvtIoWrite;
queueConfig.EvtIoDeviceControl =

ToasterEvtIoDeviceControl;

// Create the queue.

status = WdfIoQueueCreate (
hDevice,
&queueConfig,
WDF_NO_OBJECT_ATTRIBUTES,
&queue
);

if(!NT_SUCCESS (status)) {
KdPrint((“WdfIoQueueCreate failed 0x%x\n, status));
return status;

}

return status;
}

The following discussions step through the actions of this function.

9.4.3 Device Object and Device Context Area
The first task of the ToasterEvtDeviceAdd callback is to initialize the
context area and attributes for the WDFDEVICE object. The context
area for this device object is a structure of type FDO_DATA, which is
defined as follows in the header file toaster.h:

typedef struct _FDO_DATA
{

WDFWMIINSTANCE WmiDeviceArrivalEvent;
BOOLEAN WmiPowerDeviceEnableRegistered;
TOASTER_INTERFACE_STANDARD BusInterface;

} FDO_DATA, *PFDO_DATA;

WDF_DECLARE_CONTEXT_TYPE_WITH(FDO_DATA, ToasterFdoGetData)

9.4 A Minimal KMDF Driver: The Simple Toaster 229

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

As the example shows, the header file defines the context area and
then invokes the WDF_DECLARE_CONTEXT_TYPE_WITH_
NAME macro. This macro creates an accessor method that is associated
with a context type. Thus, when the ToasterEvtDeviceAdd function is
called, the accessor method ToasterFdoGetData has already been cre-
ated to read and write a context area of type FDO_DATA.

To associate the named context area with an object, the driver must ini-
tialize the object’s attribute structure with information about the context
area. The ToasterEvtDeviceAdd function invokes the WDF_OBJECT_
ATTRIBUTES_INIT_CONTEXT_TYPE macro to do this:

WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&fdoAttributes,
FDO_DATA);

This macro performs the following tasks:

■ Initializes fdoAttributes, which is a WDF_OBJECT_ATTRIBUTES
structure.

■ Sets pointers to the name and length of the context area and to the
context area itself in the WDF_OBJECT_ATTRIBUTES structure.

The variable fdoData, of type PFDO_DATA, is defined to hold a pointer
to the context area.

Next, the driver creates the WDFDEVICE object by calling
WdfDeviceCreate, passing as parameters the addresses of the
WDFDEVICE_INIT and WDF_OBJECT_ATTRIBUTES structures
and a location to receive a handle to the create object:

status = WdfDeviceCreate(&DeviceInit, &fdoAttributes,
&hDevice);

The framework allocates the WDFDEVICE_INIT structure, which is
opaque to the driver writer. This object supports several methods that a
driver can use to initialize device and driver characteristics, including the
type of I/O that the driver supports, the device name, and a security
descriptor definition language (SDDL) string for the device, among others.
(These settings correspond to the device characteristics fields of the WDM
device object, which is familiar to WDM driver writers.) By default, KMDF
sets the I/O type to buffered I/O. This default, along with all the others, is

230 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

appropriate for the Simple Toaster, so the driver does not call any meth-
ods on this object.

WdfDeviceCreate creates a WDFDEVICE object that is associated
with an underlying WDM device object, connects the device object to the
device stack, and sets the appropriate flags and attributes. It returns a han-
dle to the WDFDEVICE object in hDevice.

After creating the device object, the driver gets a pointer to the con-
text area by calling the accessor method ToasterFdoGetData:

fdoData = ToasterFdoGetData(hDevice);

The ToasterEvtDeviceAdd function does not use the returned
pointer; this statement appears only for demonstration purposes.

9.4.4 Device Interface
Every device that a user-mode application or system component opens
must have an interface. A device interface can be created in any of three
ways:

■ A user-mode installation application can create the interface using
SetupDi function.

■ An INF can create the interface by including a DDInstall-
.Interfaces section.

■ The driver can create the interface by calling WdfDeviceCreate-
Interface.

The following shows how the Simple Toaster driver creates an interface:

status = WdfDeviceCreateDeviceInterface (
hDevice,
(LPUID) &GUID_DEVINTERFACE_TOASTER,
NULL
);

If (!NT_SUCCESS (status)) {
KdPrinte((“WdfDeviceCreateDeviceInterface failed”

“0x%x\n”, status));
return status;

}

9.4 A Minimal KMDF Driver: The Simple Toaster 231

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The driver passes a handle to the device object, a pointer to a Globally
Unique Identifier (GUID), and a pointer to an optional string. The GUID
identifies the interface and is defined in the driver.h header file. The
string enables the driver to distinguish two or more devices of the same
interface class (that is, two or more devices that have identical GUIDs).
The Simple Toaster driver passes NULL for the string.

9.4.5 Default I/O Queue
The SimpleToaster driver uses a default I/O queue, for which KMDF
handles power management. The default queue receives all I/O requests
for which the driver does not specifically configure another queue. In this
case, the default queue receives all read, write, and device I/O control
requests that are targeted at the Simple Toaster driver. Default queues
do not receive create requests.

The driver configures the queue by using the WDF_IO_QUEUE_
CONFIG_INIT_DEFAULT_QUEUE function, which sets initial values
in a configuration structure for the queue:

WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE (&ioEvents,
WdfIoQueueDispatchParallel);

The function takes two parameters: a pointer to a WDF_IO_QUEUE_
CONFIG structure (ioEvents) and an enumerator of the WDF_IO_
QUEUE_DISPATCH_TYPE, which indicates how to dispatch requests
from the queue. By specifying WdfIoQueueDispatch-Parallel, the
driver indicates that KMDF should dispatch I/O requests from the queue as
soon as they arrive and that the driver can handle multiple requests in
parallel.

After configuring the queue, the driver registers its callbacks for I/O
events. The Simple Toaster supports only read, write, and device I/O
control requests, so it sets callbacks for only these three events in the
ioEvents configuration structure. It then calls WdfIoQueueCreate to
create the WDFQUEUE object, as the following code shows:

ioEvents.EvtIoRead = ToasterEvtIoRead;
ioEvents.EvtIoWrite = ToasterEvtIoWrite;
ioEvents.EvtIoDeviceControl = ToasterEvtIoDeviceControl;

status = WdfIoQueueCreate (
hDevice,
&ioEvents,

232 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WDF_NO_OBJECT_ATTRIBUTES,
&queue // pointer to default queue
);

When the driver calls WdfIoQueueCreate, it passes a handle to the
WDFDEVICE object (hDevice) and a pointer to the ioEvents configu-
ration structure. The driver accepts the default attributes for the queue, so
it passes WDF_NO_OBJECT_ATTRIBUTES. The method returns a
handle to the queue at &queue. By default, KMDF places all read, write,
and device I/O requests targeted at the device into this queue.

9.4.6 Handling I/O Request: EvtIoRead, EvtIoWrite,
EvtIoDeviceControl

A driver can include one or more of the following I/O callback functions to
handle the I/O requests that are dispatched from its queues:

■ EvtIoRead
■ EvtIoWrite
■ EvtIoDeviceControl
■ EvtIoInternalDeviceControl
■ EvtIoDefault

For each queue, the driver registers one or more such callbacks. When an
I/O request arrives, KMDF invokes the callback that is registered for that
type of request, if one exists. For example, when a read request arrives,
KMDF dispatches it to the EvtIoRead callback. Write requests are dis-
patched to the EvtIoWrite callback, and so forth. KMDF calls the
EvtIoDefault callback when a request arrives for which the driver has not
registered another callback. (In some cases, EvtIoDefault is also called to
handle create request.)

KMDF queues and dispatches only the request for which the driver
configures a queue. If KMDF receives any other I/O requests targeted at
the Simple Toaster driver, it fails the requests with STATUS_INVALID_
DEVICE_REQUEST.

As the preceding section mentions, the Simple Toaster driver han-
dles only read, write, and device I/O control requests, so it includes
only the EvtIoRead, EvtIoWrite, and EvtIoDeviceControl callback
functions.

9.4 A Minimal KMDF Driver: The Simple Toaster 233

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

When KMDF invokes these callbacks, it passes a handle to the
WDFQUEUE object, a handle to the WDFREQUEST object that rep-
resents the I/O request, and one or more additional parameters that pro-
vide details about the request. The additional parameters vary depending
on the specific callback.

If the driver supports buffered or direct I/O, it can use either the
buffer passed by the originator of the request or a WDFMEMORY object
that represents that buffer. Using a WDFMEMORY object is simpler and
requires less code because the framework handles all validation and
addressing issues. For example, the handle to the WDFMEMORY object
contains the size of the buffer, thus ensuring that buffer overruns does not
occur. The Simple Toaster driver uses this technique.

To get a handle to the WDFMEMORY object, the driver calls
WdfRequestRetrieveOutputMemory for a read request and
WdfRequestRetrieveInputMemory for a write request. Each of these
methods creates a WDFMEMORY object that represents the correspon-
ding buffer and is associated with the WDFREQUEST object.

To handle a read request, the driver then gets the data from its device
and uses WdfMemoryCopyFromBuffer to copy the data from its inter-
nal buffer into the WDFMEMORY object that is associated with the
request.

To handle a write request, the driver has three options:

■ Calling WdfMemoryCopyToBuffer to copy data from the
WDFREQUEST object to the driver’s internal buffer, from which
the driver can write to the device.

■ Getting the buffer pointer from the request by calling WdfRequest-
RetrieveInputBuffer, which also returns the number of bytes to
write.

■ Getting the buffer pointer and the number of bytes to write by call-
ing WdfMemoryGetBuffer.

For most write requests, drivers should use WdfMemoryCopyToBuffer
to copy data supplied in the I/O request (and now stored in the associated
WDFMEMORY object) to the driver’s output buffer. This function copies
the data and returns an error if a buffer overflow occurs. Use the
WdfRequestRetrieveInputBuffer and WdfMemoryGetBuffer meth-
ods only if you require the buffer pointer so that you can cast it to a struc-
ture, which might be necessary when handling a device I/O control request.

234 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Initially, the names WdfMemoryCopyFromBuffer and Wdf-
MemoryCopyToBuffer might appear somewhat confusing. Remember
that the word “Memory” in the name means that the function acts on a
WDFMEMORY object and copies data to or from a program buffer into
that object. Thus, WdfMemoryCopyFromBuffer copies data from the
driver’s internal buffer into a WDFMEMORY object, so it is used for read
requests. WdfMemoryCopyToBuffer copies data to the driver’s internal
buffer, so it is used for write requests.

When the driver has satisfied the I/O request, it calls WdfRequest-
CompleteWithInformation, which completes the underlying I/O
request with the specified status and passes the number of bytes read or
written.

The Simple Toaster sample’s EvtIoRead, EvtIoWrite, and EvtIo-
DeviceControl callbacks are essentially stubs. Although the Toaster-
EvtIoRead function calls WdfRequestRetrieveOutput-Memory to get
the output buffer and the ToasterEvtIoWrite function calls Wdf-
RequestRetrieveInputMemory to get the input buffer, neither function
reads, writes, or returns any data. Therefore, none of these I/O event call-
backs is reproduced here.

9.5 Sample Software-Only Driver

The Featured Toaster sample extends the Simple Toaster sample by
adding support for the following features:

■ File create and close requests.
■ Additional device object attributes.
■ Plug and Play and power management events.
■ Windows management instrumentation (WMI).

This sample is supplied in Toaster\Func\Featured and supports the
same features as the Featured2 Toaster sample for WDM, which is pro-
vided in the WDK.

9.5.1 File Create and Close Requests
File object events occur when applications and kernel-mode components
that open a handle to the device issue create, close, and cleanup requests

9.5 Sample Software-Only Driver 235

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

on the device. Drivers that handle such requests must configure the device
object with the appropriate callbacks.

To handle create events, a driver can either receive the events from a
queue or can supply an event callback that is invoked immediately. The
driver’s options are the following:

■ To be called immediately, the driver supplies an EvtDeviceFile-
Create callback and registers it from the EvtDriverDeviceAdd
callback by calling WdfDeviceInitSetFileObjectConfig.

■ To configure a queue to receive the requests, the driver calls
WdfDeviceConfigureRequestDispatching and specifies Wdf-
RequestTypeCreate. If the queue is not manual, the driver must
register an EvtIoDefault callback, which is called when a create
request arrives.

Queuing takes precedence over the EvtDeviceFileCreate callback—that
is, if the driver both registers for EvtDeviceFileCreate events and con-
figures a queue to receive such requests, KMDF queues the requests and
does not invoke the callback. KMDF does not queue requests to a default
queue; the driver must explicitly configure a queue to receive them.

In a function or bus driver, if a create request arrives for which the
driver has neither registered an EvtDeviceFileCreate callback function
nor configured a queue to receive create request, KMDF opens a file
object to represent the device and completes the request with
STATUS_SUCCESS. Therefore, any function or bus driver that does not
accept create or open requests from user-mode applications—and thus
does not register a device interface—must register an EvtDeviceFile-
Create callback that explicitly fails such requests. Supplying a callback to
fail create requests ensures that a rogue user-mode application cannot gain
access to the device.

If a filter driver does not handle create requests, KMDF by default
forwards all create, cleanup, and close requests to the default I/O target
(the next lower driver).

Filter drivers that handle create requests should perform whatever
filtering tasks are required and then forward such requests to the default
I/O target. If the filter driver completes a create request for a file object,
it should set AutoForwardCleanupClose to WdfFalse in the file object
configuration so that KMDF completes cleanup and close requests for the
file object instead of forwarding them.

236 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To handle file close and cleanup requests on a device handle, the
driver supplies the EvtFileClose and EvtFileCleanup callbacks. It reg-
isters both of these callbacks in its EvtDriverDeviceAdd function.

9.5.1.1 Register EvtDeviceFileCreate and EvtFileClose
Callbacks

The following code is excerpted from the Featured Toaster’s
ToasterEvtDeviceAdd function. It shows how the driver registers the
EvtDeviceFileCreate and EvtFileClose callbacks.

WDF_FILEOBJECT_CONFIG_INIT(
&fileConfig,
ToasterEvtDeviceFileCreate,
ToasterEvtFileClose,
WDF_NO_EVENT_CALLBACK // not interested in Cleanup
);

WdfDeviceInitSetFileObjectConfig(DeviceInit,
&fileConfig,
WDF_NO_OBJECT_ATTRIBUTES);

As the example shows, the driver initializes a WDF_FILEOBJECT_
CONFIG structure by calling the configuration function and supplying
pointers to its EvtDeviceFileCreate and EvtFileClose callbacks. The
driver does not implement the EvtFileCleanup callback, so it supplies
WDF_NO_EVENT_CALLBACK instead of a third function pointer.

It then calls WdfDeviceInitSetFileObjectConfig to record these
settings in the WDFDEVICE_INIT structure (DeviceInit), which the
framework uses later when it creates the device object.

The EvtDeviceFileCreate and EvtFileClose functions are stubs in
the Featured Toaster driver, so they are not shown here.

9.5.2 Additional Device Object Attributes
The Featured Toaster sample sets three more attributes for the device
object than the Simple Toaster sample does:

■ Synchronization scope
■ Execution level
■ An EvtCleanupCallback function

9.5 Sample Software-Only Driver 237

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.5.2.1 Synchronization Scope
The synchronization scope determines which of the callbacks for a device
or queue object KMDF calls concurrently and which it calls sequentially.
The following are the possible scopes:

■ Device scope (WdfSynchronizationScopeDevice) means that
KMDF does not make concurrent calls to certain I/O event call-
backs for the queue or file objects that are children of the device
object.

■ Queue scope (WdfSynchronizationScopeQueue) means that
KMDF does not call certain I/O event callbacks concurrently for
the individual queue objects that are children of the object.

■ No scope (WdfSynchronizationScopeNone) means that KMDF
does not acquire any locks and can call any event callback concur-
rently with any other event callback. This is the default value for the
WDFDRIVER object, which is the root object.

■ Default scope (WdfSynchronizationScopeInheritFromParent)
means that the object uses the same scope as its parent object. This
is the default value for all objects other than the WDFDRIVER
object.

By setting synchronization scope to device level (WdfSynchronization-
ScopeDevice), a driver tells KMDF to synchronize calls to certain I/O
event callbacks (such as EvtIoRead, EvtIoWrite, and so forth) for queue
and file objects that are children of the device object so that only one such
callback executes at any given time. In effect, the callbacks execute syn-
chronously. Because only one callback runs at a time, the driver is not
required to hold locks to protect data that the callbacks share, such as the
device context area.

Drivers can use these KMDF synchronization techniques (some-
times called frameworks locking) to synchronize access to their own
hardware and their internal data. However, drivers should not use these
techniques when calling externally, particularly to WDM drivers,
because KMDF might hold a lock when the WDM driver does not
expect it. This problem can occur because of IRQL restrictions or when
the WDM driver eventually calls back into the KMDF driver, which
results in a deadlock.

238 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.5.2.2 Execution Level
The execution level indicates the IRQL at which KMDF should call the
event callback for the object. A driver can select PASSIVE_LEVEL
(WdfExecutionLevelPassive), DISPATCH_LEVEL (WdfExecution-
LevelDispatch), or the default level (WdfExecutionLevelDefault).
If the driver sets the default execution level for an object, KMDF does
not guarantee callbacks at a particular IRQL, but can call them at any
IRQL <= Dispatch_Level. For example, KMDF would call the routines
at DISPATCH_LEVEL if an upper-level driver or KMDF itself already
holds a spin lock.

Setting dispatch execution level for an object does not force its call-
backs to occur at DISPATCH_LEVEL. Instead, it indicates that the
callbacks are designed to be called at DISPATCH_LEVEL and so do
not take any actions that might cause a page fault. If such a callback
requires synchronization, KMDF uses a spin lock, which raises IRQL to
DISPATCH_LEVEL.

Selecting passive execution level means that KMDF calls the callbacks
at PASSIVE_LEVEL, even if it must queue a work item to do so. This level
is typically useful only for very basic drivers, such as the Toaster sample.
The Featured Toaster driver specifies WdfExecutionLevelPassive,
thus ensuring that certain callbacks are called at PASSIVE_LEVEL so it
can use pageable data in all such callbacks.

Most drivers must coexist in a stack with WDM drivers and therefore
should accept the default.

9.5.2.3 EvtCleanupCallback Function
KMDF calls the object’s EvtCleanupCallback callback when the object
is being deleted, so that the driver can perform any cleanup related to the
object. Device objects are typically deleted during device removal pro-
cessing, so the EvtCleanupCallback for a device object is not called
unless the device is removed.

If the device explicitly takes out a reference on an object (by calling
WdfObjectReference), it must implement EvtCleanupCallback for
that object so that it can release the reference. This callback also typically
deallocates memory buffers that the driver previously allocated on a per-
object basis and stored in the object context area.

9.5 Sample Software-Only Driver 239

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In many drivers, this callback is not required. Remember that KMDF
destroys the child objects of each parent object before deleting the parent
object itself. If you allocate a WDFMEMORY buffer for object-specific
storage and ensure that the ParentObject field in the attributes structure
of the buffer points to the device object, you can often avoid the necessity
of deallocating the buffer because KMDF deletes it automatically

In the Featured Toaster sample, this function is simply a stub.

9.5.3 Setting Additional Device Object Attributes
The following listing shows how the Featured Toaster driver sets these
additional attributes and creates the WDFDEVICE_OBJECT:

//
// Set the Synchronization scope to device so that only one Evt
// callback for this device is executing at any time. This
// eliminates the need to hold any lock to synchronize access
// to the device context area.
//
// By specifying passive execution level, driver ensures
// that the framework will never call the I/O callbacks
// at DISPATCH_LEVEL.
//

fdoAttributes.SynchronizationScope =
WdfSynchronizationScopeDevice;

fdoAttributes.ExecutionLevel = WdfExecutionLevelPassive;

//
// Set a context cleanup routine to clean up any resources
// that are not defined in the parent to this device. This
// cleanup routine will be called during remove-device
// processing when the framework deletes the device object.
//

fdoAttributes.EvtCleanupCallback =
ToasterEvtDeviceContextCleanup;

//
// DeviceInit is completely initialized. Now call the
// framework to create the device object.
//

240 Chapter 9 Programming Drivers for the KMDF

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

status = WdfDeviceCreate(&DeviceInit, &fdoAttributes,
&device);

if(!NT_SUCCESS(status)) {
KdPrint((“WdfDEviceCreate failed with Stats code 0x%x\n”,

status));
return status;

}

The driver sets the attributes in fdoAttributes, and then creates the
WDFDEVICE object.

9.5 Sample Software-Only Driver 241

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

243

C H A P T E R 1 0

PROGRAMMING PLUG AND PLAY
AND POWER MANAGEMENT

A few drivers, like the Simple Toaster sample, can use the WDF default
for Plug and Play and power management. Most drivers, however, must
perform device-specific activities in response to Plug and Play and power
management requests.

The Featured Toaster driver is the power policy manager for its
device and supports wake signals and idling in a low-power state. To
implement such support, the driver must

■ Register callbacks for Plug and Play, power, and power policy
events.

■ Set power policy options for its device.
■ Implement callbacks to handle wake-up when a wake signal arrives.
■ Implement callbacks for power-up and power-down to support

idling in a low-power state.

This chapter provides an introduction to these features as they are imple-
mented in the Featured Toaster sample. The chapter briefly outlines the
purpose of these functions. However, because the Featured Toaster
sample does not drive physical hardware, all of the callbacks are essentially
stubs.

10.1 Registering Callbacks

Plug and Play and power events are defined for the device object, so the
driver must register them in its EvtDriverDeviceAdd callback when it
creates the device object. Most of the Plug and Play and power callbacks
are defined in pairs: One event occurs when the device is added or

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

powered up, and the other occurs when the device is removed or powered
down. The following are the two most commonly used pairs:

■ EvtDeviceDOEntry and EvtDeviceDOExit, which are called
immediately after the device enters the working state and before it
exits the working state.

■ EvtDevicePrepareHardware and EvtDeviceReleaseHardware,
which are called before the device enters the working state and after it
exits the working state. Typically, drivers map and unmap hardware
resources in these callbacks.

KMDF defines the WDF_PNPPOWER_EVENT_CALLBACKS struc-
ture to hold the Plug and Play and power settings and provides a function
to record the information from that structure into the WDFDEVICE_
INIT structure. It also includes a method to set the Plug and Play and
power management callbacks. Thus, to register its Plug and Play and
power management callbacks, a driver

1. Calls WDF_PNPPOWER_EVENT_CALLBACKS_INIT to ini-
tialize a WDF_PNPPOWER_EVENT_CALLBACKS structure.

2. Sets entry points in the WDF_PNPPOWER_EVENT_CALL-
BACKS structure for its Plug and Play and power management
event callbacks.

3. Calls WdfDeviceInitSetPnpPowerEventCallbacks, passing
pointers to the WDFDEVICE_INIT structure and the com-
pleted WDF_PNPPOWER_EVENT_CALLBACKS structure.

A driver that manages power policy for its devices also must provide
callback functions for power policy events, such as arming and disarming
wake signals. The following are the power policy event callbacks:

■ EvtDeviceArmWakeFromSO, which is called to arm the device
to wake the system from SO, the system working state.

■ EvtDeviceDisarmWakeFromSO, which is called to disarm wake
signals from SO.

■ EvtDeviceWakeFromSOTriggered, which is called when the
system is in SO and the wake signal is triggered.

■ EvtDeviceArmWakeFromSx, which is called to arm the device to
wake the system from one of the lower-powered system sleep states.

244 Chapter 10 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ EvtDeviceDisarmWakeFromSx, which is called to disarm the wake
signal, set by the EvtDeviceArmWakeFromSx callback.

■ EvtDeviceWakeFromSxTriggered, which is called when the wake
signal is triggered and the system is not in the working state.

Like the power management callbacks, the power policy event callbacks
are required to initialize the device object. KMDF defines a structure and
function that the driver can use to record this information in the
DEVICE_INIT structure. The driver proceeds as follows:

1. Calls WDF_POWER_POLICY_EVENT_CALLBACKS_INIT
to initialize a WDF_POWER_POLICY_EVENT_CALLBACKS
structure.

2. Sets entry points for the power policy event callbacks that are sup-
ported by the driver.

3. Calls WdfDeviceInitSetPowerPolicyEventCallbacks with point-
ers to the WDFDEVICE_INIT structure and the completed
WDF_POWER_POLICY_EVENT_CALLBACKS structure.

After creating the device object, the driver sets addition power policy
options.

10.1.1 Sample Code to Register Plug and Play
and Power Callbacks

The following code is excerpted from the Featured Toaster’s EvtDriver-
DeviceAdd callback (ToasterEvtDeviceAdd). It shows how to register
the Plug and Play, power management, and power policy callbacks.

//
// Initialize the pnpPowerCallbacks structure. Callback events
// for PNP and Power are specified here. If you don’t supply any
// callbacks, KMDF will take appropriate default actions based on
// whether DeviceInit is initialized as an FDO, a PDO, or a
// filter device object.
//

WDF_PNPPOWER_EVENT_CALLBACKS_INIT (&pnpPowerCallbacks);

//
// Register PNP callbacks.
//

10.1 Registering Callbacks 245

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

pnpPowerCallbacks.EvtDevicePrepareHardware =
ToasterEvtDevicePrepareHardware;

pnpPowerCallbacks.EvtDeviceReleaseHardware =
ToasterEvtDeviceReleaseHardware;

//
// Register Power callbacks.
//

pnpPowerCallbacks.EvtDeviceDOEntry = ToasterEvtDeviceDOEntry;
pnpPowerCallbacks.EvtDeviceDOExit = ToasterEvtDeviceDOExit;

WdfDeviceInitSetPnpPowerEventCallbacks(DeviceInit,
&pnpPowerCallbacks);

//
// Register power policy event callbacks so that driver is called
// to arm/disarm the hardware to handle wait wake and
// when the wake event is triggered by the hardware.
//

WDF_POWER_POLICY_EVENT_CALLBACKS_INIT(
&powerPolicyCallbacks);

//
// This group of three callbacks allows this sample driver to
// arm the device for wake from the SO or Sx state. We don’t
// differentiate between SO and Sx state.
//

powerPolicyCallbacks.EvtDeviceArmWakeFromSO =
ToasterEvtDeviceWakeArm;

powerPolicyCallbacks.EvtDeviceDisarmWakeFromSO =
ToasterEvtDeviceWakeDisarm;

powerPolicyCallBack.EvtDeviceWakeFromSOTriggered =
ToasterEvtDeviceWakeTriggered;

powerPolicyCallbacks.EvtDeviceArmWakeFromSx =
ToasterEvtDeviceWakeArm;

powerPolicyCallbacks.EvtDeviceDisarmWakeFromSx =
ToasterEvtDeviceWakeDisarm;

powerPolicyCallbacks.EvtDeviceWakeFromSxTriggered =
ToasterEvtDeviceWakeTriggered;

//
// Register the power policy callbacks.
//

246 Chapter 10 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WdfDeviceInitSetPowerPolicyEventCallbacks(DeviceInit,
&powerPolicyCallbacks);

//
// Additional code to initialize other features such as
// device file callbacks, the device context area, and
// other device object attributes is shown in the
// previous discussions
//
//
// Call the framework to create the
// device and attach it to the lower stack.
//

status = WdfDeviceCreate(&DeviceInit, &fdoAttributes, &device);
if (!NT_SUCCESS(status)) {

KdPrint((“WdfDeviceCreate failed with Status Code 0x%x\n”,
status));

return status;
}

The Featured Toaster driver sets callbacks for the EvtDevicePrepare-
Hardware, EvtDeviceReleaseHardware, EvtDeviceDOEntry, and
EvtDeviceDOExit events in pnpPowerCallbacks, which is a
WDF_PNPPOWER_EVENT_CALLBACKS structure. It then calls
WdfDeviceInitSetPnpPowerEventCallbacks to record this informa-
tion in DeviceInit, which is a WDFDEVICE_INIT structure.

The Featured Toaster driver also sets callbacks for EvtDevice-
PrepareHardware and EvtDeviceReleaseHardware, in which a driver
can map and unmap resources. However, because this driver does not
operate physical hardware, these functions are essentially stubs.

The driver sets callbacks for power policy in powerPolicyCallbacks,
which is a WDF_POWER_POLICY_EVENT_CALLBACKS structure.
The Featured Toaster device requires the same driver actions regardless
of the system state in which wake-up is armed, disarmed, or triggered.
Therefore, the Featured Toaster sample provides only three callbacks for
the six possible power policy events:

■ ToasterEvtDeviceWakeArm arms the device for wake-up.
■ ToasterEvtDeviceWakeDisarm disarms the device for wake-up.
■ ToasterEvtDeviceWakeTrigger handles the wake-up signal.

10.1 Registering Callbacks 247

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The driver calls WdfDeviceInitSetPowerPolicyEventCallbacks to
record these callbacks in the DeviceInit structure. Finally, it passes the
DeviceInit structure in its call to WdfDeviceCreate to create the
WDFDEVICE object. (The excerpt shown here omits the code that reg-
isters file object events and sets additional device object attributes; this
code was shown previously.)

10.2 Managing Power Policy

After the driver creates the device object, it sets additional power policy
options related to idling and wake signals before its EvtDriver-
DeviceAdd callback returns.

The idle settings include the following:

■ Idle time-outs, so that KMDF can transition the device out of the
working state when it is not being used.

■ The power state in which to idle the device.
■ A Boolean that indicates whether a user can change the idle

settings.

The WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS_INIT
function initializes the structure that holds the idle settings. The driver
passes a pointer to the structure and an enumerator that describes whether
the device can generate a wake signal when the system is in SO (the fully
powered, operational state). The IdleCannotWakeFromSO enumerator
indicates that the device and driver do not support wake-up for SO.
IdleCanWakeFromSO indicates that the device and driver support
wake-up from SO. USB drivers that support Selective Suspend specify
IdleUsbSelectiveSuspend.

The driver also sets a 60-second idle time-out, which indicates that the
framework will attempt to put the device in a low-power state when it has
been idle for more than 60 seconds.

By default, KMDF puts the driver in state D3 when idle and enables
the user to control the idle settings. A driver can change these defaults by
setting values for the DxState field and the UserControlOfIdleSettings
field in the WDF_DEVICE_POWER_POWER_IDLE_SETTINGS
structure.

248 Chapter 10 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To register these settings, the driver then calls the WdfDEvice-
AssignSOIdleSettings method on the WDFDEVICE object.

Next, the driver sets the wake-up policy. To initialize the policy settings
to default values, the driver uses the WDF_DEVICE_POWER_
POLICY_WAKE_SETTINGS_INIT function. The defaults provide for
the following:

■ The device can wake up the system, but a user can override this
default through a property page in Control Panel. This setting is
appropriate for drivers that use the framework’s WMI support to
provide a property page through which a user can select the devices
that are enabled to wake up the system.

■ The device is put in its lowest powered state (D3) when the system
goes into a sleep state.

A call to WdfDeviceAssignSxWakeSettings registers these settings.

10.2.1 Code to Set Power Policy
The following code shows how the Featured Toaster sets these power
policy settings. This code is excerpted from the ToasterEvtDeviceAdd
function in the file toaster.c.

//
// Set the idle power policy to put the device in Dx if the
// device
// is not used for the specified IdleTimeout time. Since
// this is a
// virtual device, we tell the framework that we cannot wake it
// if we sleep in SO. The only way to bring the device to DO is
// if the device receives an I/O request from the system.
//

WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS_INIT(&idleSettings,
IdleCannotWakeFromSO);

idleSettings.IdleTimeout = 60000; // 60 secs idle timeout
status = WdfDeviceAssignSOIdleSettings(device, &idleSettings);
if(!NT_SUCCESS(status)) {

KdPrint((“WdfDEviceAssignSOIdleSettings failed 0x%x\n”,
status));

return status;
}

10.2 Managing Power Policy 249

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

//
// Set the wait-wake policy.
//

WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS_INIT(
&wakeSettings);

status = WdfDeviceAssignSxWakeSettings(device, &wakeSettings);
if(!NT_SUCCESS(status)) {

//
// We are probably enumerated on a bus that doesn’t support
// Sx-wake. Do not fail the device add just because we can’t
// support wait-wake.
//

KdPrint((“WdfDEviceAssignSxWakeSettings failed 0x%x\n”,
status));

status = STATUS_SUCCESS;
}

The sample driver sets power policy idle characteristics and an idle time-
out in the idleSetting structure, and then calls WdfDEvice-
AssignSOIdleSettings method, passing as parameters this structure and
the handle to the device object that is received when it created the
device object. It then proceeds in a similar fashion to set the wake-up
characteristics.

If the call to WdfDeviceAssignScWakeSettings fails, the sample
driver resets the failure status to STATUS_SUCCESS. The reason is that
this method fails if the underlying bus does not support wake from Sx states.
If the device is on such a bus, the driver should not fail the add-device
request. Instead, it simply resets the failure status and continues processing.

10.3 Callbacks for Power-Up and Power-Down

Drivers implement the EvtDeviceDOEntry and EvtDeviceDOExit
callbacks to be notified when the device enters and exits the working state,
respectively.

In a function driver (FDO), KMDF calls the EvtDeviceDOEntry
callback after the device has entered the DO power state. The function
driver’s EvtDeviceDOEntry callback should initialize the device and per-
form any other tasks that are required each time the device enters the
working state.

250 Chapter 10 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In a bus driver (PDO), KMDF calls the EvtDeviceDOEntry callback
to put the device into the DO power state. (If you are familiar with WDM
drivers, you probably remember that a request to power up a device must
be handled by the bus driver first and then other drivers higher in the
device stack. For a request to lower the power state, the opposite is true.)
A bus driver’s EvtDeviceDOEntry callback should put the device hard-
ware in the DO state and perform any additional initialization that the
device requires at this time.

The EvtDeviceDOEntry callback is called with a pointer to the
WDFDEVICE object and a pointer to an enumerator that identifies the
most recent power state of the device, before the transition to DO began.

KMDF calls the EvtDeviceDOExit callback any time the device
must leave the DO state. The callback is passed a pointer to the WDFDE-
VICE object and a pointer to an enumerator that identifies the new power
state. In a function driver (FDO), the callback should perform any final
tasks that are required before the device changes power state. In a bus
driver, the callback should change the power state of the physical hardware.

In the Featured Toaster sample, both of these functions are stubs.

10.4 Callback for Wake Signal Support

Drivers for devices that can generate wake signals implement the
following callbacks to support wake-up:

■ EvtDeviceArmWakeFromSO and EvtDeviceDisarmWake-
FromSO

■ EvtDeviceWakeFromSOTriggered
■ EvtDeviceArmWakeFromSx and EvtDeviceDisarmWake-

FromSx
■ EvtDeviceWakeFromSxTriggered

To enable the wake signal, KMDF calls EvtDeviceArmWakeFromSO
and EvtDeviceArmWakeFromSx while the device is in DO, but while
power-managed I/O is stopped. Therefore, the driver does not receive I/O
requests from power-managed queues while arming its device and so is not
required to synchronize its I/O operations with these callbacks.

In the wake-arming callbacks, a function driver should handle any
device-specific tasks that are required to enable the device to generate a

10.4 Callback for Wake Signal Support 251

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

wake signal. KMDF transitions the device out of the DO state soon after
the wake signal is successfully enabled. The driver should not yet perform
any tasks related to power state change; KMDF calls the driver’s
EvtDeviceDOExit function to do that.

The EvtDeviceDisarmWakeFromSO and EvtDeviceDisarm-
WakeFromSx callbacks should undo any device-specific tasks that the
driver performed to enable the wake signal for its device. KMDF calls the
disarm callbacks after EvtDeviceDOEntry has returned the device to
the DO state.

The Featured Toaster sample registers the ToasterEvtDevice-
WakeArm function for both the EvtDeviceArmWakeFromSO and
EvtDeviceArmWakeFromSx events. Likewise, it registers Toaster-
EvtDeviceWakeDisarm for both the EvtDeviceDisarmWakeFromSO
and EvtDeviceDisarmWakeFromSx events.

In the Featured Toasted sample, these callbacks are stubs.
If the device triggers a wake signal when the system is in SO or Sx, the

EvtDeviceWakeFromSOTriggered and EvtDeviceWakeFromSx-
Triggered events occur, respectively. KMDF calls these functions after
the driver’s EvtDeviceDOEntry callback and before the EvtDevice-
DisarmWakeFromSO or EvtDeviceDisarmWakeFromSx callback.
The wake-triggered callback should perform any tasks that are required
after the wake signal is triggered, but should not disarm the wake signal.

The Featured Toaster sample registers the ToasterEvtDevice-
WakeTriggered callback for both the EvtDeviceWakeFrom-
SOTriggered and EvtDeviceWakeFromSxTriggered events. In the
sample, this callback is a stub.

252 Chapter 10 Plug and Play and Power Management

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

253

C H A P T E R 1 1

PROGRAMMING WMI SUPPORT

This chapter covers the importance of using the Windows Management
Instrumentation (WMI) in the development and utilization of a device
driver.

By making your driver a Windows Management Instrumentation
(WMI) provider, you can

■ Make custom data available to WMI consumers.
■ Permit WMI consumers to configure a device through a standard

interface rather than a custom control panel application.
■ Notify WMI consumers of driver-defined events without requiring

the consumer to poll or send IRPs.
■ Reduce driver overhead by collection and sending only requested

data to a single destination.
■ Annotate data and event blocks with descriptive driver-defined class

names and optional descriptions that WMI clients can enumerate
and display to users.

11.1 WMI Architecture

To support WMI, your driver registers as a WMI provider. A WMI
provider is a Win32 dynamic-link library (DLL) that handles WMI
requests and supplies WMI instrumentation data.

After your driver is registered as a WMI provider, WMI consumers
then request data or invoke methods exposed by providers.

Query requests travel from user mode consumers down to WMI ker-
nel mode service, which in turn send IRP requests to your driver.

For instance, when a WMI client requests a given data block, the WMI
kernel component sends a query request to the driver to retrieve or set
data. Figure 11.1 shows this data flow.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Figure 11.1 WMI Architecture Data Flow

11.2 Registering as a WMI Data Provider

A driver that supports WMI must register as a WMI data provider to make
its data and event blocks available to WMI clients. A driver typically regis-
ters with WMI when starting its device, after the device has been initial-
ized to the point that the driver can handle WMI IRPs. During the
registration process, the driver passes WMI a pointer to its device object
and information about the data and event blocks it supports.

254 Chapter 11 Programming WMI Support

Instrumented
Applications

Management
Applications and

Platforms

CIM Object Manager (CIMOM)

CIM-Compliant Store

WMI Provider for WDM

WDM/WMI

User Mode

Kernel Mode

WDM Class Driver SCSI Port Driver NDIS Class Driver

WDM Minidrivers SCSI Minidrivers
NDIS Miniport

Drivers

WDM Devices SCSI Minidrivers NICs

Query Request Event Notification

Query Request Event Notification

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A driver registers with WMI in two phases:

1. The driver calls IoWMIRegistrationControl with the action
WMIREG_ACTION_REGISTER and a pointer to the device
object passed to the driver’s AddDevice routine.

2. The driver handles the IRP_MN_REGINFO or IRP_MN_
REGINFO_EX request that WMI sends in response to the driv-
er’s IoWMIRegistrationControl call. The Parameters.WMI.
DataPath member of the IRP is set to WMIREGISTER and
Parameters.WMI.ProviderId is set to the driver’s device object
pointer. The driver supplies WMI with registration information
about data and event blocks, either by using the WMI Library, or
by handling the IRP_MN_REGINFO or IRP_MN_REGINFO_
EX requests.

11.3 Handling WMI Requests

All drivers must set a dispatch table entry point for a Dispatch
SystemControl routine to handle WMI requests. If a driver registers as a
WMI data provider, it must handle all WMI requests. Otherwise, the
driver must forward all WMI requests to the next lower driver.

All WMI IRPs have the major code IRP_MJ_SYSTEM_CONTROL
and one of the following minor codes:

■ IRP_MN_REGINFO or IRP_MN_REGINFO_EX—Queries or
updates a driver’s registration information after the driver has called
IoWMIRegistrationControl.

■ IRP_MN_QUERY_All_DATA or IRP_MN_QUERY_SINGLE_
INSTANCE—Queries for all instances or a single instance of a
given data block.

■ IRP_MN_CHANGE_SINGLE_ITEM, IRP_MN_CHANGE_
SINGLE_INSTANCE—Requests the driver to change a single
item or multiple items in an instance of a data block.

■ IRP_MN_ENABLE_COLLECTION, IRP_MN_DISABLE_
COLLECTION—Requests the driver to start accumulating data

11.3 Handling WMI Requests 255

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

for a block that the driver registered as expensive to collect, or to
stop accumulating data for such a block.

■ IRP_MN_ENABLE_EVENTS, IRP_MN_DISABLE_EVENTS
—Requests the driver to start sending notification of a given event
if the event occurs while it is enabled, or to stop sending notification
of such an event.

■ IRP_MN_EXECUTE_METHOD—Requests the driver to exe-
cute a method associated with a data block.

The WMI kernel mode component sends WMI IRPs any time following a
driver’s successful registration as a WMI data provider, typically when a
user mode data consumer has requested WMI information for a driver’s
device. If a driver registers as a WMI data provider by calling IoWMI-
RegistrationControl, it must handle each subsequent WMI request in
one of the following ways:

■ Call the kernel mode WMI library routine WmiSystemControl to
handle requests concerning only blocks that do not use dynamic
instance names, and that base static instance names on a single base
name string or the device instance ID of a PDO.

■ In its DispatchSystemControl routine, process and complete any
such request tagged with the pointer to its device object that the
driver passed in its call to IoWMIRegistrationControl, and for-
ward other IRP_MJ_SYSTEM_CONTROL requests to the next
lower driver.

11.4 WMI Requirements for WDM Drivers

A driver that handles IRPs registers with WMI as a data provider. System-
supplied storage port drivers, class drivers, and NDIS protocol drivers fall
into this category.

A driver that does not handle IRPs should simply forward WMI
requests to the next-lower driver in the driver stack. The next-lower driver
then registers with WMI and handles WMI requests on the first driver’s
behalf. For instance, SCSI miniport drivers and NDIS miniport drivers
can register as WMI providers and supply WMI data to their correspon-
ding class drivers.

256 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A driver that supplies WMI data to a class or port driver must
support the driver-type-specific WMI interfaces that are defined by the
class or port driver. For example, a SCSI miniport driver must set
WmiData Provider to TRUE in the PORT_CONFIGURATION_
INFORMATION structure and handle SRB_FUNCTION_WMI
requests from the SCSI port driver.

Similarly, a connection-oriented NDIS miniport driver that defines
custom data blocks must support OID_GEN_CO_SUPPORTED_
GUIDS; otherwise, NDIS maps those OIDs and status indications
returned from OID_GEN_SUPPORTED_LIST that are common and
known to NDIS to GUIDS defined by NDIS.

11.5 WMI Class Names and Base Classes

WMI class names are case-insensitive, must start with a letter, and cannot
begin or end with an underscore. All remaining characters must be letters,
digits, or underscores.

WMI client applications can access a driver’s WMI class names and
display them to users. Descriptive class names can help make classes more
intuitive to use.

WMI class names must be unique within the WMI name space.
Consequently, a driver’s WMI class names cannot duplicate those defined
by another driver.

To help prevent name collisions, a driver writer can define a driver-
specific base class and derive all of the driver’s WMI classes from that base
class. The class name and base class name together are more likely to yield
a unique name. For example, the following shows an abstract base class for
a serial driver’s data blocks:

// Serial drivers’ base class for data blocks
[abstract]
class MSSerial {
}

// Example class definition for a data block
[

// Class qualifiers
]
class MSSerial_StandardSerialInformation : MSSerial
{

// Data items
}

11.5 WMI Class Names and Base Classes 257

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Device-specific custom data blocks should include the manufacturer,
model, and type of driver or device in the base class name. For example:

[abstract]
class Adaptec1542 {
}
class Adaptec1542_Bandwidth : Adaptec 1542 {

// Data items
}
class Adaptec1542_Speed : Adaptec1542 {

// Data items
}

WMI allows only one abstract base class in a given class hierarchy. Classes
that define event blocks must derive from WmiEvent, which is an abstract
base class, so the abstract qualifier cannot be used in a driver-defined base
class for event blocks. Instead, derive a nonabstract base class from
WmiEvent, then derive individual event classes from that base class. The
following examples show class definitions from the schema of a serial port
driver. Not that the guid values shown in these examples are placeholders.
Each class definition must have a unique GUID generated by
guidgen.exe or uuidgen.exe (which are included in the Microsoft
Windows SDK).

// Standard class for reporting serial port information
// Class qualifiers
[WMI, guid(“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”),
Dynamic, Provider(“WMIProv”),
WmiExpense(1),
Locale(“MS\\0x409”),
Description(“Description of class”]

// Class name
class Vendor_SerialInfo {
// Required items

[key, read]
string InstanceName;

[read]
boolean Active;

// Bytes sent on port
// Property qualifiers

[read,

258 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WmiDataId(1),
WmiScale(0),
WmiComplexity(1),
WmiVolatility(1000)]

Description(“Description of property”);
// Data item

uint64 BytesSent;
// Bytes received on port

[read,
write,
WmiDataId(2),
WmiScale(0),
WmiVolatility(1000)]

uint64 BytesReceived
// Who owns the port

[read,
WmiDataId(4),
WmiScale(0),
WmiVolatility(6000)]

string Owner;
// Status bit array

[read, write,
WmiDataId(3),
WmiScale(0)]

byte Status[16];
// The number of items in the XmitBufferSize array

[read,
WmiDataId(5),
WmiScale(0),
WmiComplexity(1),
Wmivolatility(1000)]

uint32 XmitDescriptionCount;
// Array of XmitDescription classes

[read,
WmiDataId(6),
WmiSizeIs(“XmitDescriptionCount”),
WmiScale(0),
Wmicomplexity(1),
WmiVolatility(1000)]

Vendor_XmitDescriptor XmitBufferSize[];
}

The following is the class definition for the embedded class shown in the
preceding example. Note that this class does not contain InstanceName
or Active items.

11.5 WMI Class Names and Base Classes 259

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

// Example of an embedded class
[WMI, guid(“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”),
class Vendor_XmitDescriptor {

[read, WmiDataId(1)] int32 DestinationIndex;
[read, WmiDataId(2)] int32 DestinationTarget;

}

The following is a class definition for an event block. The class is derived
from WmiEvent.

// Example of an event
[WMI, guid(“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”),
Dynamic, Provider(“WMIProve”),
Locale(“MS\\0x409),
Description(“Serial Send Event”),
WmiExpense(1)]

class Vendor_SerialSentEvent : WMIEvent
{
// Required items

[key, read]
string InstanceName;

[read]
boolean Active;

11.6 Firing WMI Events

In the Featured Toaster sample driver, the ToasterFireArrivalEvent
function shows how to generate a WMI event that has a dynamic instance
name. The WMI event contains the name of the device model, which
WMI records to log the arrival of this device. The driver calls this function
from its EvtDevicePrepareHardware callback to indicate that the
device has been configured. Parts of this function are standard WMI tasks
and have little to do with KMDF. This discussion focuses on the KMDF-
specific code:

NTSTATUS
ToasterFireArrivalEvent(

IN WDFDEIVE Device
)

{
WDFMEMORY memory;
PWNODE_SINGLE_INSTANCE wnode;
ULONG wnodeSize;

260 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

ULONG wnodeDataBlockSize;
ULONG wnodeInstanceNameSize;
ULONG size;
ULONG length;
UNICODE_STRING deviceName;
UNICODE_STRING modelName;
NTSTATUS status;

//
// *NOTE*
// WdfWmiFireEvent only fires single instance events at
// the present, so continue to use this method of firing
// events
// *NOTE*
//

RtlInitUnicodeString(&modelName, L“Sonali\0\0”);

//
// Get the device name.
//

status = GetDeviceFriendlyName(&Device, &memory);
if(!NT_SUCCESS(status)) {

return status;
}

RtlInitUnicodeString(&deviceName, (PWSTR)
WdfMemoryGetBuffer(memory, NULL));

//
//Determine the amount of wnode information we need.
//

wnodeSize = sizeof(WNODE_SINGLE_INSTANCE);
wnodeInstanceNameSize = deviceName.Length + sizeof(USHORT);
wnodeDataBlockSize = modelName.Length + sizeof(USHORT);

size = wnodeSize + wnodeInstanceNameSize +
wnodeDataBlockSize;

//
// Allocate memory for the WNODE from NonPagedPool
//

11.6 Firing WMI Events 261

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

wnode = ExAllocatePoolWithTag(NoPagedPool, size,
TOASTER_POOL_TAG);

If(NULL != wnode) {
RtlZeroMemory(wnode, size);
wnode->WnodeHeader.BufferSize = size
wnode->WnodeHeader.ProviderId =

IoWMIDeviceObjectToProviderId(
WdfDeviceWdmGetDeviceObject(Device));

wnode->WnodeHeader.Version = 1;
KeQuerySystemTime(&wnode->WnodeHeader.TimeStamp);

RtlCopyMemory(&wnode->WnodeHeader.Guid,
&TOASTER_NOTIFY_DEVICE_ARRIVAL_EVENT,
Sizeof(GUID));

//
// Set flags to indicate that you are creating dynamic
// instance names. This driver supports dynamic
// instances because it can fire the events at any time.
// If it used static instance names instead, it could only
// fire events after WMI queries for IRP_MN_REGINFO,
// which happens after the device has been started.
// Note also that if you are firing an event after the
// device is started, you should
// check whether the event is enabled, because that
// indicates that someone is interested in receiving the
// event. Why waste system resources by firing an event
// when nobody is interested?
//

wnode->WnodeHeader.Flags = WNODE_FLAG_EVENT_ITEM |
WNODE_FLAG_SINGLE_INSTANCE;

wnode->OffsetInstanceName = wnodeSize;
wnode->DataBlockOffset= wnodeSize + wnodeInstanceNameSize;
wnode->SizeDataBlock = wnodeDataBlockSize;

//
// Write the instance name.
//

262 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

size -= wnodeSize;
status = WDF_WMI_BUFFER_APPEND_STRING(

WDF_PTR_ADD_OFFSET(wnode, wnod->OffsetInstance),
size,
&deviceName,
&length
);

//
// Size was precomputed, so this should never fail.
//

ASSERT(NT_SUCCESS(status));

//
// Write the data, which is the model name as a

string.
//

size = -= wnodeInstanceNameSize;
WDF_WMI_BUFFER_APPEND_STRING(

WDF_PTR_ADD_OFFSET(wnode, wnode->DataBlockOffset),
size,
&modelName,
&length
);

//
// Size was precomputed, so this should never fail.
//

ASSERT(NT_SUCCESS(status));

//
// Indicate the event to WMI. WMI will take care of
// freeing the WMI struct back to pool.
//

status = IoWMIWriteEvent(wnode);

if(!NT_SUCCESS(status)) {
KdPrint((“IoWMIWriteEvent failed %x\n”, status));
ExFreePool(wnode);

}
}

11.6 Firing WMI Events 263

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

else {
status = STATUS_INSUFFICIENT_RESOURCES;

}

//
// Free the memory allocated by GetDeviceFriendlyName
// function.
//

WdfObjectDelete(memory);
return status;

}

ToasterfireArrivalEvent first defines a model name for its device and
then retrieves the friendly name for the device by calling the internal rou-
tine GetDeviceFriendlyName. GetDeviceFriendlyName takes a han-
dle to the device object and returns a handle to a WDFMEMORY object
that contains a buffer that holds the name.

The driver passes the returned WDFMEMORY object handle to
WdfGetMemoryBuffer to retrieve a pointer to the buffer itself and calls
RtlUnicodeString to copy the contents of the buffer into the Unicode
string variable deviceName, as follows:

RtlInitUnicodeString(&deviceName,
(PWSTR)WdfMemoryGetBuffer(memory, NULL));

The driver now constructs the WMI event by using standard WMI
structures and routines (defined in wmistr.h) along with standard
Windows device driver interfaces (DDIs), which are defined in wdm.h
and ntddk.h. The driver allocates memory from the nonpaged pool for
the WNODE_SINGLE_INSTANCE structure (wnode) by calling
ExAllocatePoolWithTag. If memory allocation succeeds, the driver zero-
initializes the wnode structure and then fills it in the usual way for WMI.
To supply the WMI provider ID, the driver calls IoWmiDevice-
ObjectToProviderId, passing as a parameter the WDM device object
returned by WdfDeviceWdmGetDeviceObject.

After the wnode structure is filled, the driver calls the WDF_
WMI_BUFFER_APPEND_STRING function once to append the
instance name to the WNODE_SINGLE_INSTANCE structure and a
second time to append the model name.

264 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Finally, the driver fires the event by calling IoWMIWriteEvent. WMI
records the data and frees the memory allocated for the WNODE_SIN-
GLE_INSTANCE structure.

11.7 Troubleshooting Specific WMI Problems

The following paragraphs cover some of the common problems found in
setting up and using WMI.

11.7.1 Driver’s WMI Classes Do Not Appear in the
\root\wmi Namespace

The following steps cover how we would approach the troubleshooting of
this particular problem.

1. Use wmimofck driver.bmf to check if the binary MOF file for-
mat is correct. Additional error messages may be found in
mofcomp.log.

2. Check the system event log to see if the driver is returning a mal-
formed WMIREGINFO data structure in response to the regis-
tration request.

3. Check that the driver is returning the correct values for
RegistryPath and MofResourceName within the WMIREG-
INFO structure.

4. If the driver provides its MOF data in a separate file, check that
the MofImagePath registry value for the driver is set correctly.

5. Check the WMI WDM provider log for errors.
6. Use Mofcomp to recompile and reload your MOF text file. For

example, the command mofcomp –N:root/wmi driver.mof tries
to recompile and reload any MOF data in the driver.mof file.
Check to see what error messages Mofcomp generates in
mofcomp.log. Note that if your MOF file uses preprocessor
directives such as #define, you need to use the already pre-
processed MOF file, and not the original source file. If the opera-
tion succeeds, it actually registers the new WMI class data with the
system. You need to delete these classes (by using Wbemtest, for
example) to test if your driver’s MOF data is being read correctly.

11.7 Troubleshooting Specific WMI Problems 265

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

If this step succeeds, the most likely problem is that the mem-
bers of WMIREGINFO, such as MofResourceName, are speci-
fied incorrectly. Alternatively, the problem could be that your MOF
file specifies a class derived from a base class that doesn’t exist.

7. If the driver is using dynamic MOF data, check that the driver is
receiving WMI IRP requests for the MSWmi_MofData_GUID
GUID and that is completing the IRP successfully and with no
error logged.

11.7.2 Driver’s WMI Properties or Methods Cannot
Be Accessed

Use the following steps if you cannot access the driver’s WMI properties or
methods:

1. Use wmimofck driver.bmf to check if the binary MOF file for-
mat is correct.

2. Check the system event log for errors.
3. Check the WMI WDM Provider log for errors.
4. Make sure the driver receives a WMI IRP whenever you use

Wbemtest to query the driver’s classes. If not, check that the spec-
ified GUID in the MOF file matches the GUID the driver is
expecting. Also check that the driver is receiving the WMI regis-
tration request, it is succeeding, and the driver is registering the
right GUIDs.

5. If the driver receives the IRP, ensure that the IRP is completed
successfully, and that the driver is returning the right type of
WNOFE_XXX structure.

6. If Wbemtest returns an error, click the More Information button
and check the Description property for a description of the error.

7. For methods, check that your driver supports handling the IRP_
MN_QUERY_ALL_DATA and IRP_MN_QUERY_SIGLE_
INSTANCE requests for the method’s GUID. WMI always per-
forms one of those two requests before executing a method.

266 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.7.3 Driver’s WMI Events Are Not Being Received
Use the following steps if the driver’s WMI events are not being received:

1. Check the system event log for errors. For example, if the driver
specifies a static event name when calling IoWMIWriteEvent but
the driver did not register any static event names, this would pro-
duce an entry in the system event log.

2. Check the WMI WDM provider log for errors.
Note: If the driver is sending an event reference, the driver

should receive an IRP_MN_QUERY_SINGLE_INSTANCE
request immediately after sending the event reference. If the driver
does not receive the IRP, the WNODE_EVENT_REFERENCE
structure may have been malformed. If the driver receives the IRP,
it should be completing it with status STATUS_SUCCESS.

3. If the driver uses IoWMIWriteEvent to send the event or event
reference, make sure the event structure (either WNODE_
SINGLE_INSTANCE or WNODE_EVENT_REFERENCE)
is filled out correctly. In particular, if the event GUID is registered
for static instance names, make sure that the correct instance index
and provider ID are provided. If the event GUID is registered for
dynamic instance names, make sure the instance name is included
when the event is sent. If using the WNODE_EVENT_REFER-
ENCE structure to specify the event, check that Wnode.Guid
matches TargetGuid.

4. If the driver uses WmiFireEvent to send the event, make sure the
correct value is passed for the Guid and InstanceIndex parameters.

11.7.4 Changes in Security Settings for WMI
Requests Do Not Take Effect

If the changes we made in security settings for WMI Request do not take
effect, you should do the following.

Unload and reload the WMI WDM Provider. For WMI data blocks
registered with the WMIREG_FLAG_EXPENSIVE flag, the provider
keeps a handle open to the data blocks as long as there are consumers for
that block. The new security settings will not take effect until the provider
closes the handle. Unloading and reloading the provider makes sure the
handle has been closed.

11.7 Troubleshooting Specific WMI Problems 267

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.8 Techniques for Testing WMI Driver Support

There are several tools you can use to test WMI support in your driver:

■ Wbemtest—The operating system includes the Wbemtest tool,
which provides a GUI you can use to query for WMI classes and
class instances, change property values, execute methods, and
receive event notifications. Connect to the root\wmi namespace to
test your driver support.

■ Wmic—Microsoft Windows 7 operating system includes the Wmic,
which provides a command shell you can use to issue WMI-related
commands to test your driver.

■ Wmimofck—The wmimofck command can be used to check the
syntax of your binary MOF files. You can also use the wmimofck –t
command to generate a VBScript file. You can use this script to test
your driver’s handling of WMI class instance queries. The wmi-
mofck –w command generates Web pages that can test querying
and setting classes, executing methods, and receiving events. Note
that the Web pages do not support executing methods that use com-
plex parameters or return values (such as an array of embedded
classes). In such cases, you can use Wbemtest instead.

You can also test your driver’s WMI support by writing a custom WMI
client application, using the WMI user mode API. For more information
about this user mode API, which allows applications to provide or consume
WMI information, refer to the Windows Management Instrumentation
information in the Microsoft Windows SDK documents.

A WMI client application performs the following tasks to test a driver:

1. It connects to WMI. To connect to WMI, the application calls the
Component Object Model (COM) function, CoCreateInstance,
to retrieve a pointer to the IWbemLocator interface. The appli-
cation then calls the IWbemLocator::ConnectServer method to
connect to WMI. From this call, the application receives a pointer
to the IWbemServices interface.

2. It accesses information in the driver. To access information and to
register for events, the application uses the methods of the
IWbemServices interface.

268 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.8.1 WMI IRPs and the System Event Log
WMI errors that occur strictly in kernel mode are logged to the system
event log. You can use the Event Viewer to examine the system event log.

The two main sources of such errors are malformed replies to WMI
requests and incorrect parameters to event notifications. For example, if
the driver returns a malformed WMIREGINFO data structure in
response to an IRP_MN_REGINFO or IRP_MN_REGINFO_EX
request, the system will log that to the system event log. The system would
also log an invalid call to IoWMIWriteEvent and WmiFireEvent to
issue a WMI event notification.

11.8.2 WMI WDM Provider Log
WMI errors that occur while being handled by the WMI WDM provider
(wmiprov.dll) are logged to the log file for the WMI WDM Provider,
wmiprov.log. This is a text file that can be found in %windir%\
system32\wbem\logs\wmiprov.log. Errors, such as a bad or missing
MOF resource for the driver, are logged here. In the case of a bad MOF
resource, the file %windir%\system32\mofcomp.log might have addi-
tional information related to the error.

You can change the logging settings for all WMI providers by using the
Wmimgmt.msc application. You can disable or reenable logging, change
the directory where WMI log files are kept, as well as set the maximum
size for such files.

11.9 WMI Event Tracing

This discussion describes the WMI extensions to WDM that Kernel Mode
Drivers, as information providers, can use to provide information to infor-
mation consumers. Drivers typically provide information that a consumer
uses to determine the driver’s configuration and resource usage. In addi-
tion to the WMI extensions to WDM, a user mode API supports providers
or consumers of WMI event information.

The event tracing logger supports up to 32 instances. One of the
instances is reserved for tracing the kernel. The logger supports tracing a
high event rate.

11.9 WMI Event Tracing 269

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Trace events are defined in the same manner as other WMI events.
WMI events are described in the MOF file.

The process by which Kernel Mode Drivers log information is inte-
grated into the existing WMI infrastructure. To log trace events, a driver
does the following:

1. Register as a WMI provider by calling IoWMIRegistration
Control.

2. Mark events as traceable by setting WMIREG_FLAG_TRACED_
GUID in the Flags member of the WMIREGGUID structure
that is passed when the driver registers events with WMI.

3. Specify one event as the control event for overall enabling/dis-
abling of a set of trace events by setting WMIREG_FLAG_
TRACE_CONTROL_GUID in the Flags member of the
WMIREGGUID structure that is passed when the driver regis-
ters events with WMI.

4. Upon receiving a request from WMI to enable events where the
GUID matches the trace control GUID, the driver should store
the handle to the logger. The value will be needed when writing an
event. For information about how to use this handle, see step 6.
The logger handle value is contained in the HistoricalContext
member of the WNODE_HEADER portion of the WMI buffer
that is part of the parameters in the enable events request.

5. Decide whether the trace event will be sent to WMI event con-
sumers or is targeted for the WMI event logger only. This deter-
mines where the memory for the EVENT_TRACE_HEADER
structure should come from. This memory eventually is passed to
IoWMIWriteEvent.

If the event is a log event only, the memory is not deleted by
WMI. In this case, the driver should pass in a buffer on the stack
or should be reusing an allocated buffer for this purpose. For per-
formance reasons, the driver should minimize any unnecessary
calls to allocate or free memory. Failure to comply with this rec-
ommendation compromises the integrity of the timing information
contained in the log file.

If the event is to be sent to both the logger and to WMI event
consumers, the memory must be allocated from a nonpaged pool.
In this case, the event is sent to the logger and then forwarded to
WMI to be sent to WMI event consumers who have requested

270 Chapter 11 Programming WMI Support

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

notification of the event. The memory for the event is then freed
by WMI according to the behavior of IoWMIWriteEvent.

6. After the memory for the EVENT_TRACE_HEADER and any
driver event data, if any, has been secured, the following informa-
tion should be set:
■ Set the Size member to the size of (EVENT_TRACE

_HEADER) plus the size of any additional driver event data
that will be appended on to the end of EVENT_TRACE
_HEADER.

■ Set the Flags member to WNODE_FLAG_TRACED_GUID
to have the event sent to the logger. If the event is to be sent to
WMI event consumers as well, set the WNODE_FLAG_LOG
_WNODE. Note, it is not necessary to set WNODE_FLAG_
TRACED_GUID if setting WNODE_FLAG_LOG_
WNODE. If both are set, WNODE_FLAG_TRACED_
GUID takes precedence and the event is not sent to WMI
event consumers.

■ Set the Guid or the GuidPtr member. If using GuidPtr, set
WNODE_FLAG_USE_GUID_PTR in the Flags member.
Optionally, specify a value for TimeStamp. If the driver does not
specify a TimeStamp value, the logger fills this in. If the driver
does not want the logger to set the time stamp, it should set
WNODE_FLAG_USE_TIMESTAMP in the Flags member.

■ Set any of the following EVENT_TRACE_HEADER mem-
bers that have meaning to the driver—that is, Class.Type,
Class.Level, and Class.Version.

■ Finally, cast the EVENT_TRACE_HEADER to a WNODE_
HEADER and set the HistoricalContext value of the Wnode
to the logger handle that was saved in the preceding step 4.

7. Call IoWMIWriteEvent with the pointer to the EVENT_
TRACE_HEADER structure.

The driver should continue logging trace events associated with the control
GUID until the driver receives notification to disable event logging via an
IRP_MN_DISABLE_EVENTS request.

11.9 WMI Event Tracing 271

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

273

C H A P T E R 1 2

PROGRAMMING KMDF
HARDWARE DRIVER

This chapter will cover the sample PCIDRV sample driver, and how to use
it to create a KMDF hardware driver.

The sample PCIDRV driver is a fully functional KMDF driver for the
Intel 82557/82558 based-PCI Ethernet Adapter (10/100) and Intel com-
patibles. This device can use either port or memory resources to control
the device. It can be stopped and started at run time and supports a low-
power state. The driver supports multiple concurrent read and write
requests for the device.

The PCIDRV sample is installed in the samples directory at
pcidrv\sys. The sample supports the following features in addition to
those previously described for the Toaster samples:

■ Handling Plug and Play and power events
■ Supporting DMA interfaces
■ Performing event tracing
■ Handling interrupts
■ Mapping resources
■ Using multiple I/O queues and performing device I/O
■ Reading and writing to the registry
■ Using self-managed I/O to implement a watchdog timer

The PCIDRV sample supports physical hardware and contains many lines
of device-specific code, so it is significantly more complicated than the
Toaster drivers.

The sample also uses event tracing for Windows to record driver data
for debugging and logging purposes. Event tracing is supported for all
Windows drivers.

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12.1 Support Device Interrupts

To support interrupt handling for its device, a KMDF driver must

■ Create an interrupt object.
■ Enable and disable the interrupt.
■ Optionally perform pre-enable and post-disable processing that is

related to the interrupt.
■ Handle interrupts as they occur.

12.1.1 Creating an Interrupt Object
A driver typically creates its interrupt objects (WDFINTERRUPT) in its
EvtDriverDeviceAdd callback. The driver must have an interrupt object
for each interrupt vector or message-signaled interrupt (MSI) that each of
its devices support. Each interrupt object must include pointers to
EvtInterruptIsr and EvtInterruptDpc event callback functions and
may also include additional information.

The framework calls EvtInterruptIsr when an interrupt occurs. This
callback runs at device interrupt request level (DIRQL) for the device and
is the equivalent of the WDM InterruptService function. The
EvtInterruptIsr callback queues a DPC to perform additional interrupt-
related processing. The framework calls the driver’s EvtInterruptDpc
callback when the DPC is ready to run. The EvtInterruptDpc callback
runs at DISPATCH_LEVEL and is equivalent of the WDM DpcForisr
function.

Creating an interrupt object, like creating any other WDF object,
involves filling in a configuration structure and calling a creation method.
The driver calls the WDF_INTERRUPT_CONFIG_INIT function to
initialize the WDF_INTERRUPT_CONFIG structure with pointers to
the EvtInterruptIsr and EvtInterruptDpc callbacks. After initializing
the structure, the driver can set additional information in it, including a
pointer to a spin lock and pointers to the EvtInterruptEnable and
EvtInterruptDisable callbacks, which enable and disable interrupts for
the device. KMDF calls these functions at DIRQL while holding the
interrupt spin lock during device power state transitions and when the
driver calls WdfEnableInterrupt or WdfDisableInterrupt.

If the driver must perform additional tasks immediately after
the interrupt is enabled and before it is disabled, it should also register

274 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

the EvtDeviceDOEntryPostInterruptsEnabled and EvtDevice-
DOExitPreInterruptsDisabled callbacks. KMDF calls both of these
functions at PASSIVE_LEVEL without holding the interrupt spin lock.

To create the interrupt object, the driver calls the WdfInterrupt-
Create method and passes a handle to the device object, a pointer to the
interrupt configuration structure, a pointer to an attribute configuration
block, and a pointer to a variable that receives the handle to the interrupt
object. Drivers typically specify WDF_NO_ATTRIBUTES when creating
an interrupt object.

12.1.2 Code to Create an Interrupt Object
The PCIDRV sample creates its interrupt object in the NICAllocate-
SoftwareResources function, which is called by PciDrvEvtDeviceAdd
(the driver’s EvtDriverDeviceAdd callback). The following code shows
how the PCIDRV sample creates its interrupt object:

WDF_INTERRUPT_CONFIG_INIT(&interruptConfig,
NICEvtInterruptIsr,
NICEvtInterruptDpc);

interruptConfig.EvtInterruptEnable =
NICEvtInterruptEnable;

interruptConfig.EvtInterruptDisable =
NICEvtInterruptDisable;

status = WdfInterruptCreate(FdoData->WdfDevice,
&interruptConfig,
WDF_NO_OBJECT_ATTRIBUTES,
&FdoData->WdfInterrupt);

If(!NT_SUCCESS (status)) {
return status;

}

The PCIDRV sample configures the interrupt object by specifying
pointers to NICEvtInterruptIsr and NICEvtInterruptDpc, which are
called to handle interrupts and to perform deferred interrupt processing at
IRQ DISPATCH_LEVEL, respectively. The driver also sets pointers to
NICEvtInterruptEnable and NICEvtInterruptDisable, which enable
and disable interrupts in the hardware. The call to WdfInterruptCreate
returns a handle to the interrupt object, which the driver stores in the con-
text area of its device object.

12.1 Support Device Interrupts 275

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12.1.3 Enabling and Disabling Interrupts
A KMDF driver’s EvtInterruptEnable callback enables interrupts for its
device. KMDF calls this function during a device transition to DO, after
EvtDeviceDOEntry has returned. The callback is called at DIRQL for
the device with the interrupt spin lock held; therefore, the callback should
quickly enable the interrupt and return. If the driver requires additional
processing after enabling its interrupt, it should set an EvtDeviceDO-
EntryPostInterruptsEnable callback, which KMDF calls at PASSIVE_
LEVEL.

EvtInterruptEnable is called with two parameters: a handle to the
interrupt object and a handle to the device object that is associated with
the interrupt object. The driver passes the device object handle to the
accessor function for its device context area, where it has stored informa-
tion about its device registers. With the returned pointer, the driver can
access the hardware registers as required to enable the interrupt.

A KMDF driver’s EvtInterruptDisable callback disables interrupts
for its device. KMDF calls this function during a device transition out of
the DO state, but before it calls EvtDeviceDOExit. Like EvtInterrupt-
Enable, EvtInterruptDisable is called at DIRQL for the device and
with the interrupt spin lock held; therefore, it should quickly disable the
interrupt and return. If the driver requires additional processing before
disabling its interrupt, it should set an EvtDeviceDOExit-
PreInterruptsDisabled callback, which KMDF calls at PASSIVE_
LEVEL.

The EvtInterruptDisable callback is passed the same two parame-
ters as the EvtInterruptEnable callback and proceeds to undo the
actions that were performed in that callback.

12.1.4 Code to Enable Interrupts
In the PCIDRV sample, the EvtInterruptEnable callback appears in
isrdpc.c. The required code is quite simple, as the following shows:

NTSTATUS
NICEvtInterruptEnable(

IN WDFINTERRUPT Interrupt,
IN WDFDEVICE AssociateDevice
)

{
PFDO_DATA fdoData;

276 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

fdoData = FdoGetData(AssociateDevice);
NICEnalbeInterrupt(Interrupt, fdoData);
return STATUS_SUCCESS;

}

NICEnableInterupt is simply a macro that sets the PCI device
register to enable interrupts.

12.1.5 Code to Disable Interrupts
In the PCIDRV sample, the EvtInterruptDisable callback (also in
isrdpc.c) simply calls the internal NICDisableInterrupt macro to set the
PCI device register to disable interrupts. The following is the code:

NTSTATUS
NICEvtInterruptDisable(

IN WDFINTERRUPT Interrupt,
IN WDFDEVICE AssociatedDevice
)

{
PFDO_DATA fdoData;

fdoData = FdoGetData(AssociatedDevice);
NICDisableInterrupt(fdoData);
return STATUS_SUCCESS;

}

12.1.6 Post-Interrupt Enable and Pre-Interrupt
Disable Processing

Some devices cause interrupt storms if they are initialized after their inter-
rupts are enabled. The driver for such a device must therefore be able to
perform initialization after the device enters DO but before its interrupt is
enabled. Other devices, however, cannot be initialized until the interrupt
is enabled. To enable correct operation of both types of devices, KMDF
supplies post-interrupt enable and pre-interrupt disable events for which
drivers can register.

When powering up a device, KMDF invokes a driver’s callbacks in the
following order:

1. EvtDeviceDOEntry
2. EvtInterruptEnable
3. EvtDeviceDOEntryPostInterruptsEnabled

12.1 Support Device Interrupts 277

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

KMDF calls EvtDeviceDOEntry first. Drivers that must initialize their
devices before the interrupt is connected (for example, to prevent inter-
rupt storms) should do so in this callback. Next, KMDF calls
EvtInterruptEnable. Drivers should enable their interrupts and do little
or nothing else in this function because it is called at DIRQL. Finally,
KMDF calls EvtDeviceDOEntryPostInterruptsEnabled at PASSIVE_
LEVEL. Drivers that must initialize their devices after the interrupt is
connected should do so in this callback.

At power-down, KMDF calls the corresponding paired functions in the
opposite order:

1. EvtDeviceDOExitPreInterruptsDisabled
2. EvtInterruptDisable
3. EvtDeviceDOEXit

To undo work done by the EvtDeviceDOEntryPostInterrupts-
Enabled, a driver registers an EvtDeviceDOExitPreInterrupts-
Disabled function. Like the post-enable function, the pre-disable function
does work at PASSIVE_LEVEL in preparation for disabling the interrupt.

A driver must register the post-interrupt enable and pre-interrupt dis-
able callbacks in the WDF_PNPPOWER_EVENT_CALLBACKS struc-
ture before creating the device object. The PCIDRV sample fills this
structure in its EvtDriverDeviceAdd callback, as follows:

pnpPowerCallbacks.EvtDeviceDOEntryPostInterruptsEnabled =
NICEvtDeviceDOEntryPostInterruptsEnabled;

pnpPowerCallbacks.EvtDeviceDOExitPreInterruptsDisabled =
NICEvtDeviceDOExitPreInterruptsDisabled;

In the current version of the PCIDRV sample, both of these functions
are stubs.

12.2 Handling Interrupts

When a device interrupts, Windows calls the driver to service the interrupt.
However, more than one device can be connected to a single interrupt vec-
tor. Internally, the operating system keeps a list of the InterruptService
routines of the drivers for devices that interrupt at the same level. When an
interrupt signal arrives, Windows traverses the list and calls the drivers in
sequence until one of them acknowledges and services the interrupt.

278 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

KMDF intercepts the call from the operating system and, in turn, calls
the EvtInterruptIsr callback that the driver registered. Like traditional
InterruptService functions, this callback runs at DIRQL. Because
EvtInterruptIsr runs at such a high IRQL, it should do its work quickly
and then return. Remember that it cannot take any action that would cause
a page fault (or wait on any dispatcher objects) because it runs at an IRQL
greater than APC_LEVEL.

The EvtInterruptIsr callback should perform the following tasks, and
nothing more:

■ Determine whether its device is interrupting, and if not, return
FALSE immediately.

■ Stop the device from interrupting.
■ Queue a DPC to perform any work related to the interrupt.

The EvtInterruptIsr function is called with a handle to the interrupt
object for the driver’s device and a ULONG value that specifies the mes-
sage ID if the device is configured for MSIs and zero otherwise.

12.2.1 Code for EvtInterruptIsr Callback
The following is the PCIDRV sample’s EvtInterruptIsr callback (which
is defined in pcidrv\sys\hw\isrdpc.c):

BOOLEAN
NICEvtInterruptIsr(

IN WDFINTERRUPT Interrupt,
IN ULONG MessageID
)

{
BOOLEAN InterruptRecognized = FALSE;
PFDO_DATA FdoData = NULL;
USHORT IntStatus;

UNREFERENCED_PARAMETER (MessageID);

FdoData = FdoGetData (WdfInterruptGetDevice (Interrupt));

//
// Process the interrupt if it is enabled
// and active.
//

12.2 Handling Interrupts 279

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

If (!NIC_INTERRUPT_DISABLED (FdoData) &&
NIC_INTERRUPT_ACTIVE (FdoData))

{
InterruptRecognized = TRUE;

//
// Disable the interrupt. It will be reenabled in
// NICEvtInterruptDpc.
//

NICDisableInterrupt (FdoData);

//
// Acknowledge the interrupt (s) and get status
//

NIC_ACK_INTERRUPT (FdoData, IntStatus);
WdfInterruptQueueDpcForIsr (Interrupt);

}
return InterruptRecognized;

}

The PCIDRV sample’s first step is to determine whether its device
is interrupting. To do so, it must check its device registers. It gets a han-
dle to the device object that is associated with the interrupt object by
calling the WdfInterruptGetDevice method and then passes that
handle to FdoGetData to get a pointer to the device context area. In
the context area, the driver stored a pointer to its mapped hardware
registers.

The NIC_INTERRUPT_DISABLED and NIC_INTERRUPT_
ACTIVE macros (defined in pcidrv\sys\Hw\Nic_def.h) check the hard-
ware registers to determine whether interrupts have been disabled for the
device and whether they are currently active. If interrupts have been dis-
abled, the device cannot possibly have generated the interrupt. The same
is true if the device’s interrupt is enabled but not currently active. In either
case, the driver returns with InterruptRecognized set to FALSE. (For
most drivers, checking whether device interrupts have been disabled is
unnecessary.)

However, if interrupts have not been disabled and an interrupt is cur-
rently active, the device must have generated the interrupts. In this case,
the driver sets InterruptRecognized to TRUE.

280 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To stop the device from interrupting, the driver calls NICDisable-
Interrupt and then uses the driver-defined NIC_ACK_INTERRUPT
macro to acknowledge the interrupt in the hardware. Finally, it queues a
DPC by calling WdfInterruptQueueDpcForIsr and then returns.

12.2.2 Deferred Processing for Interrupts
When the DPC runs, KMDF calls the driver’s EvtInterruptDpc call-
back. This function performs device-specific interrupt processing and
reenables the interrupt for the device. It runs at DISPATCH_LEVEL
and therefore must not attempt any operations that might cause a page
fault (or wait on any dispatcher objects).

12.2.2.1 Code for EvtInterruptDpc Callback
The following is the PCIDRV sample’s EvtInterruptDpc callback:

VOID
NICEvtInterruptDpc(

IN WDFINTERRUPT WdfInterrupt,
IN WDFOBJECT WdfDevice
)

{
PFDO_DATA fdoData = NULL;

fdoData = FdoGetData (WdfDevice);

WdfSpinLockAcquire (fdoData->RcvLock);
NICHandleRecvInterrupt (fdoData);
WdfSpinLockRelease (fdoData->RcvLock);

//
// Handle send interrupt.
//

WdfSpinLockAcquire (fdoData->SendLock);
NICHandleSendInterrupt (fdoData);
WdfSpinLockRelease (fdoData->SendLock);

//
// Check if any queued sends need to be reprocessed.
//

12.2 Handling Interrupts 281

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

NICCheckForQueuedSends (fdoData);

//
// Start the receive unit if it was stopped
//

WdfSpinLockAcquire (fdoData->RcvLock);
NICStartRecv (fdoData);
WdfSpinLockRelease (fdoData->RcvLock);

//
// Reenable the interrupt.
//

WdfInterruptSynchronize (
WdfInterrupt,
NICEnableInterrupt,
fdoData);

return;
}

Most of the code in this callback is device specific. However, its use of
spin locks is worth noting.

When the driver created its I/O queues, it also created two spin locks
and stored their handles in its device context area. One (RcvLock) pro-
tects read-related buffers and operations, and the (SendLock) protects
write-related buffers and operations. In this function, it uses these spin
locks to protect against preemption and concurrent users while it processes
the results of the I/O operation. The driver calls WdfSpinLockAcquire
and WdfSpinLockRelease to acquire and release the locks.

When the driver has completed all device-specific processing, it reen-
ables the interrupt. The function that reenables the interrupt
(NICEnableInterrupt) must run at DIRQL, so the driver calls
WdfInterruptSynchronize to run it. WdfInterruptSynchronize takes
a handle to the interrupt object, a pointer to the function to be run
(NICEnableInterrupt), and a pointer to the device context area, which it
passed as an argument to NICEnableInterrupt. WdfInterrupt-
Synchronize raises IRQL to DIRQL and calls NICEnableInterrupt.
When NICEnableInterrupt completes, KMDF lowers the IRQL to
DISPATCH_LEVEL and returns.

282 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12.3 Mapping Resources

A KMDF driver maps resources for its hardware as part of its
EvtDevicePrepareHardware callback and unmaps them in its
EvtDeviceReleaseHardware callback. These callbacks provide a way
for a driver to prepare its device hardware immediately before the
device enters and after the device leaves the operational (DO) state.
These two routines are always called in pairs—that is, after KMDF calls
EvtDevicePrepareHardware, it always calls EvtDeviceRelease-
Hardware before calling EvtDevicePrepareHardware again.

KMDF calls a driver’s EvtDevicePrepareHardware callback
before calling EvtDeviceDOEntry whenever resources are assigned to
the device—specifically, during initial device enumeration and during
power-up after resource rebalancing. EvtDevicePrepareHardware
should map device resources but should not load firmware or perform
other device initialization tasks. Drivers for USB devices might also get
device and configuration descriptors and select configurations in this call-
back. Drivers should not attempt to access their device hardware in this
callback.

EvtDeviceReleaseHardware undoes any work that was done by
EvtDevicePrepareHardware. For example, if EvtDevicePrepare-
Hardware maps resources, EvtDeviceReleaseHardware releases them.

Within its EvtDevicePrepareHardware function, a driver calls
WdfCmResourceListGetCount to get the number of resources that the
system has assigned to its device and then calls WdfCmResourceList-
GetDescriptor to get details about a particular resource from the list.

The chipset on an individual machine can map hardware resources
into either I/O or memory space, regardless of how the device itself is
designed. To be platform independent, all drivers should support both
types of mapping, just as the PCIDRV sample does. For I/O and memory-
mapped resources, a KMDF driver takes steps that are similar to those a
WDM driver would take:

■ For an I/O-mapped resource (CmResourceTypePort), the driver
saves the base address and range at which the resource is mapped
and saves a pointer to the HAL’s *_PORT_* functions that it will use
to access the resource.

12.3 Mapping Resources 283

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

■ For a memory-mapped resource (CmResourceTypeMemory),
the driver checks that the allocated size is adequate. If so, it maps
the returned physical address to a virtual address by calling
MmMapIoSpace and saves pointers to the HAL’s *_REGISTER_*
functions that it will use to access the resource.

For interrupt resources, a KMDF driver simply creates an interrupt object
as part of EvtDriverDeviceAdd processing, as described in the previous
discussion. The object itself picks up its resources with no required driver
intervention.

12.3.1 Code to Map Resources
The PCI device supported by the sample driver has three base address
registers (BARs): BAR 0 is memory mapped, BAR 1 is I/O mapped, and
BAR 3 is flash-memory mapped. The driver determines whether to use
the I/O-mapped BAR or the memory-mapped BAR to access the control
and status registers.

The sample driver checks for registers in both memory and I/O space.
On some platforms, the I/O registers can be mapped into memory space;
every driver should be coded to handle this.

In the PDIDRV sample, the code to map resources is isolated in the
NICMapHwResources function, which is called by PciDrvEvtDevice-
PrepareHardware. NICMapHwResources has two parameters: a
pointer to the device context area (FdoData) and a handle to the list of
translated resources (ResourcesTranslated) that was passed to
PciDrvEvtDevicePrepareHardware. The driver must use the trans-
lated resources to map device registers into port and memory space.

The following sample code is excerpted from the pcidrv\sys\Hw\
Nic_init.c file. It shows how the PCIDRV sample maps hardware resources.

NTSTATUS
NICMapHwResources (

IN OUT PFDO_DATA FdoData,
WDFCMRESLIST ResourcesTranslated
)

{
PCM_PARTIAL_RESOURCE_DESCRIPTOR descriptor;
ULONG i;
NTSTATUS status = STATUS_SUCCESS;
BOOLEAN bResPort = FALSE;

284 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

BOOLEAN bResInterrupt = FALSE;
BOOLEAN bResMemory = FALSE;
ULONG numberOfBARSs = 0;

PAGED_CODE ();

for (i = 0; i<WdfCmResourceListGetCount
(ResourcesTranslated); i++)

{
descriptor =

WdfCmResourceListGetDescriptor
(RessourcesTranslated, i);

If (!descriptor)
{

return STATUS_DEVICE_CONFIGURATION_ERROR;
}

switch (descriptor->Type)
{
case CmResosurceTypePort:

//
// We will increment the BAR count only for valid
// resources. Do not count the private device types
// added by the PCI bus driver.
//

numberOfBars++;

//
// The resources are listed in the same order as the
// BARSs in the configuration space, so this should
// be the second one.
//

if (numberOfBars != 2)
{
status = STATUS_DEVICE_CONFIGURATION_ERROR;
return status;
}
//
// The port is in I/O space on this machine.
// We should use READ_PORT_Xxx
// and WRITE_PORT_Xxx functions to read or
// write to the port.
//

12.3 Mapping Resources 285

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

FdoData->IoBaseAddress =
ULongToPtr (descriptor->u.Port.Start.LowPart);

FdoData->IoRange = descriptor->u.Port.Length;

//
// Since all our accesses are USHORT wide, we will
// create an accessor table just for these two
// functions.
//

FdoData->ReadPort = NICReadPortUShort;
FdoData->WritePort = NICWritePortUShort;

bResPort = TRUE;
FdoData->MappedPorts = FALSE;
break;

case CmResourceTypeMemory:
numberOfBARs++;
if (numberOfBARs == 1)
{

//
// Our CSR memory space should be 0x1000 in
// size.
//

ASSERT (descriptor->u.Memory.Length == 0x1000);
FdoData->MemPhysAddress =

descriptor->u.Memory.Start;
FdoData->CSRAddress = MmMapIoSpace (

descriptor->u.Memory.Start,
NIC_MAP_IOSPACE_LEGTH,
MmNonCached);

bResMemory = TRUE;
}

else if (numberOfBARs == 2)
{

//
// The port is in memory space on this machine.
// Call MmMapIoSpace to map the
// physical to virtual address, and use the
// READ/WRITE_REGISTER_xxx function
// to read or write to the port.
//
FdoData->IoBaseAddress = MmMapIoSpace (

descriptor->u.Memory.Start,
descriptor->u.Memory.Length,
MmNonCached);

286 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

FdoData->ReadPort = NICReadRegisterUShort;
FdoData->WritePort = NICWriteRegisterUShort;
FdoData->MappedPorts = TRUE;
bResPort = TRUE;

}
else if (numberOfBARs == 3)
{

//
// Our flash memory should be 1MB in size. We
// don’t access it, so do not bother mapping it.
//
// ASSERT (descriptor->u.Memory.Length ==
// 0x100000);

}
else
{

status =
STATUS_DEVICE_CONFIGURATION_ERROR;
return status;

}
break;

case CmResourceTypeInterrupt:
ASSERT (!bResInterrupt);
bResInterrupt = TRUE;
break;

default:
//
// This could be a device-private type added by
// the PCI bus driver. We shouldn’t filter this
// or change the information contained in it.
//
break;

}
}

// Make sure we got all the resources to work with.
//

if (! (bResPort && bResInterrupt && bResMemory))
{

status =
STATUS_DEVICE_CONFIGURATION_ERROR;

}
return status;

}

12.3 Mapping Resources 287

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The driver parses the list of translated resources in a loop that starts at
zero and ends when it has reached the last resource in the list. The driver
determines the number of resources in the list by calling the
WdfCmResourceListGetCount function.

For each resource in the list, the driver calls WdfCmResource-
ListGetDescriptor to get a pointer to the resource descriptor. The
resource descriptor is an enumerator that indicates the type of
the resource. (If you are familiar with WDM drivers, you will notice that
the resource types are the same as those for WDM.)

For the CmResourceTypePort resources, the driver saves the start-
ing address and range in the device context area and then sets the
addresses of the functions that it uses to access the port resources.

For CmResourceTypeMemory resources, the driver also saves the
starting address and range in the device context area, but then uses
MmMapIoSpace to map the resources and get a virtual address through
which it can access them.

For CmResourceTypeInterrupt resources, the driver is not
required to save the resource information because KMDF handles this
transparently for the driver when the driver creates the WDFINTER-
RUPT object. The sample driver merely checks this resource for com-
pleteness.

12.3.2 Code to Unmap Resources
When the device is removed or when the system rebalances resources, the
driver must release its mapped resources in an EvtDeviceRelease-
Hardware callback. KMDF calls this function after calling the driver
EvtDeviceDOExit function.

The PCIDRV sample does so in the internal function NICUnmap-
HwResources, which is called by its EvtDeviceReleaseHardware.
NICUnmapHwResources appears in the pcidrv\sys\hw\nic_init.c
source file and releases the resources as follows:

if (FdoData->CSRAddress)
{

MmUnmapIoSpace (FdoData->CSRAddress,
NIC_MAP_IOSPACE_LENGTH);

288 Chapter 12 Programming KMDF Hardware Driver

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

FdoData->CSRAddress = NULL;

}
if (FdoData->MappedPorts)
{

MmUnMapIoSpace (FdoData->IoBaseAddress,
FdoData->IoRange);

FdoData->IoBaseAddress = NULL;
}

12.3 Mapping Resources 289

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

291

C H A P T E R 1 3

PROGRAMMING MULTIPLE I/O
QUEUES AND PROGRAMMING I/O

This chapter covers the important aspect of device driver development
involving the handling of I/O queues.

13.1 Introduction to Programming I/O Queues

Drivers have several options when creating and configuring I/O queues.
The most important are which I/O requests to queue, what type of dis-
patching to use, and whether to let KMDF manage the queue. A device
object can have any number of I/O queues, and each can be configured
differently.

One queue for each device object can be configured as a default
queue, into which KMDF places requests for which the driver has not
specifically configured any other queue. If the device object has a default
queue and one or more other queues, KMDF queues specific requests to
the correspondingly configured queues and queues all other requests to
the default queue. If the device object does not have a default queue,
KMDF queues only the specific request types to the configured queues
and, for a function or bus driver, fails all other requests. (For a filter driver,
it passes all other requests to the next lower driver.)

A queue’s dispatch type determines when KMDF presents I/O
requests from the queue to the driver. KMDF supports three dispatch
types:

■ Sequential
■ Parallel
■ Manual

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

KMDF presents requests from a sequential queue to the driver one at a
time. When the first request arrives, KMDF calls the event callback that
was specified for the request type and queue. After the driver completes
the request, KMDF calls the event callback for another request if the
queue is not empty. A sequential queue is thus used for synchronous I/O.
By default, queues are configured as sequential (WdfIoQueueDispatch-
Sequential).

For a parallel queue, KMDF presents requests to the driver as soon as
they arrive. KMDF does not wait for any “inflight” requests to complete
before sending another request. An inflight request is an I/O request that
is currently active—that is, it is not in a queue and has not been completed.
A parallel queue can thus be used for asynchronous I/O.

For a manual queue, KMDF does not present requests to the driver.
Instead, the driver must call WdfIoQueueRetrieveRequest when it is
ready to handle a request. A driver can thus use manual queuing for either
synchronous or asynchronous I/O.

A driver can temporarily stop the delivery of requests from a sequen-
tial or parallel queue by calling WdfIoQueueStop or WdfIoQueue-
StopSynchronously, depending on the type of queue and the reasons for
pausing delivery. To restart the queue, the driver calls WdfIoQueueStart.

By default, KMDF handles I/O cancellation for queued I/O requests.
Consequently, if the user cancels an I/O request after KMDF has queued
it but before KMDF has delivered it to the driver, KMDF removes it from
the queue and completes it with STATUS_CANCELED. The driver can
request notification by registering an EvtIoCanceledOnQueue callback
for the queue; otherwise, KMDF cancels the request without notifying the
driver.

After a request has been dispatched to the driver, it cannot be canceled
unless the driver specifically marks it as cancelable and registers an
EvtRequestCancel callback. If the driver forwards the request to another
queue, it immediately becomes cancelable again.

Also by default, KMDF handles power management for I/O queues,
and each I/O queue inherits the power state of its associated device.
During Plug and Play or power state transitions and any time the device is
not in the working state, KMDF queues incoming I/O requests but does
not dispatch them to the driver. Therefore, if the driver creates its queues
before the device enters DO, the queues are in the WDF_IO_
QUEUE_STOPPED state, and KMDF queues any I/O requests targeted
at the device. When the device enters the working state, KMDF resumes

292 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

presenting requests. A driver can change this default when it configures
each queue by setting the PowerManaged field of the configuration
structure to FALSE.

A driver can also specify whether a queue accepts I/O requests that
have a zero-length buffer. By default, KMDF does not dispatch such
requests to the driver; instead, it completes them with STATUS_
SUCCESS.

13.2 Creating and Configuring the Queues

To create and configure a queue, a driver takes the following steps:

1. Defines a WDF_IO_QUEUE_CONFIG structure to hold con-
figuration settings for the queue.

2. Initializes the configuration structure by calling the WDF_IO_
QUEUE_CONFIG_INIT or WDF_IO_QUEUE_CONFIG_
INIT_DEFAULT_QUEUE function (for a default queue). These
functions take a pointer to the configuration structure and an enu-
merator that defines the dispatching type for the queue.

3. Sets the event callbacks for this queue in the
WDF_IO_QUEUE_CONFIG structure, if the queue uses
sequential or parallel dispatching. A driver can set callbacks for
one or more of the following I/O events: EvtIoRead,
EvtIoWrite, EvtIoDeviceIoControl, EvtIoInternalDeviceIo-
Control, EvtIoDefault, EvtIoStop, EvtIoResume, and
EvtIoCanceledOnQueue.

4. Sets Boolean values for the PowerManaged and AllowZero-
LengthRequests fields in the queue configuration structure if the
default values are not suitable.

5. Creates the queue by calling WdfIoQueueCreate, passing a han-
dle to the WDFDEVICE object, a pointer to the filled-in
WDF_IO_QUEUE_CONFIG structure, a pointer to a
WDF_OBJECT_ATTRIBUTES structure, and a pointer to
receive a handle to the created queue instance.

6. Specifies which I/O requests KMDF should direct to the queue by
calling WdfDeviceConfigureRequestDispatching.

13.2 Creating and Configuring the Queues 293

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The PCIDRV sample creates two parallel queues and three manual
queues, which are used as follows:

■ For write requests, the driver creates a parallel queue. If a write
request cannot be satisfied immediately, the driver puts the request
into an internal manual queue. (The queue is considered internal
because only the driver, and not KMDF, adds requests to it.)

■ For read requests, the driver creates a manual queue.
■ For IOCTL requests, the driver creates a parallel queue. If the

IOCTL cannot be satisfied immediately, the driver puts the request
into an internal manual queue.

In this driver, each I/O queue is configured for a particular type of I/O
request. Therefore, the driver does not create a default queue.

The code to create all the queues is excerpted from the
NICAllocateSoftwareResources function (in the file cidrv\sys\
hw\Nic_init.c), which is called from the driver’s EvtDriverDeviceAdd
callback.

13.2.1 Code to Create Queues for Write Requests
The following excerpt shows how the PCIDRV sample creates a parallel
queue for incoming write requests. While requests are in this queue,
KMDF handles cancellation without notifying the driver.

NTSTATUS status;
WDF_IO_QUEUE_CONFIG ioQueueConfig;
WDF_OBJECT_ATTRIBUTES attributes;

……

WDF_IO_QUEUE_CONFIG_INIT (
&ioQueueConfig,
WdfIoQueueDispatchParallel

);

ioQueueConfig.EvtIoWrite = PciDrvEvtIoWrite;

status = WdfIoQueueCreate (
FdoData->WdfDevice,
&ioQueueConfig,
WDF_NO_OBJECT_ATTRIBUTES,

294 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

&FdoData->WriteQueue // queue handle
);

if (!NT_SUCCESS (status))
{

return status;
}

status = WdfDeviceconfigureRequestDispatching (
FdoData->WdfDevice,
FdoData->WriteQueue,
WdfRequestTypeWrite);

if (!NT_SUCCESS (status))
{

ASSERT (NT_SUCCESS (status));
return status;

}

The driver calls WDF_IO_QUEUE_CONFIG_INIT to initialize the
queue as a parallel queue. The queue holds only write requests, so the driver
sets only an EvtIoWrite callback in the ioQueueConfig structure. It cre-
ates the queue, and then calls WdfDeviceConfigureRequest-
Dispatching to configure the queue for requests of type
WdfRequestTypeWrite only. All other I/O requests are directed to a
queue that is configured for them or, if the driver has not configured a queue
for them, are handled by the framework without being sent to the driver.

The PCIDRV sample also creates a manual queue into which to place
pending write requests. The driver’s EvtIoWrite callback places an I/O
request in this internal queue when it cannot handle the request
immediately.

The driver creates this queue as follows:

WDF_IO_QUEUE_CONFIG_INIT (
&ioQueueConfig,
WdfIoQueueDispatchManual
);

status = WdfIoQueueCreate (
FdoData->WdfDevice,
&ioQueueConfig,
WDF_NO_OBJECT_ATTRIBUTES,
&FdoData->PndingWriteQueue
);

13.2 Creating and Configuring the Queues 295

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

if (!NT_SUCCESS (status))
{

return status;
}

To create the manual internal queue for its pending write requests, the
driver configures a WDF_IO_QUEUE_CONFIG structure, this time
setting the queue type to WdfIoDispatchManual, which indicates that
the driver requests items from the queue when it is ready. It then
creates the queue by calling WdfIoQueueCreate. The driver does not
configure the queue for any particular type of I/O request because the
driver itself determines which request to queue. KMDF does not put any
request in this queue because the driver did not call WdfDevice-
configureRequestDispatching. However, KMDF handles power man-
agement and request cancellation.

13.2.2 Code to Create Queues for Read Requests
The driver creates a manual queue for read requests in the same way that
it did for write requests. The only difference is that it configures the queue
for request dispatching, so that KMDF places read requests directly into
the queue. The driver creates the queue as follows:

WDF_IO_QUEUE_CONFIG_INIT (
&ioQueueConfig,
WdfIoQueueDispatchManual
);

status = WdfIoQueueCreate (
FdoData->WdfDevice,
&ioQueueConfig,
WDF_NO_OBJECT_ATTRIBUTES,
&FdoData->PendingReadQueue

);

if (!NT_SUCCESS (status))
{

return status;
}

Status = WdfDeviceConfigureRequestDispatching (
FdoData->WdfDevice,
FdoData->PendingReadQueue,
WdfRequesttypeRead

);

296 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

if (!NT_SUCCESS (status))
{

ASSERT (NT_SUCCESS (status));
return status;

}

13.2.3 Code to Create Queues for Device I/O
Control Requests

The driver creates a second pair of parallel and internal manual queues for
IRP_MJ_DEVICE_IO_CONTROL requests, just as it did for write
requests, as follows:

WDF_IO_QUEUE_CONFIG_INIT (
&ioQueueConfig,
WdfIoQueueDispatchParallel
);

ioQueueConfig.EvtIoDeviceControl =
PciDrvEvtIoDeviceControl;

status = WdfIoQueueCreate (
FdoData->WdfDevice,
&ioQueueConfig,
WDF_NO_OBJECT_ATTRIBUTES,
&FdoData->IoctlQueue

);

if (!NT_SUCCESS (status))
{

return status;
}

status = WdfDeviceConfigureRequestDispatching (
FdoData->WdfDevice,
FdoData->IoctlQueue,
WdfRequestTypeDeviceControl

);

if (!NT_SUCCESS (status))

13.2 Creating and Configuring the Queues 297

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

{
ASSERT (NT_SUCCESS (status));
return status;

}

// Create internal queue for pending IOCTL requests.

WDF_IO_QUEUE_CONFIG_INIT (
&ioQueueConfig,
WdfIoQueueDispatchManual
);

status = WdfIoQueueCreate (
FdoData->WdfDevice,
&ioQueueConfig,
WDF_NO_OBJECT_ATTRIBUTES,
&FdoData-PendingIoctlQueue

);

if (!NT_SUCCESS (status))
{

return status;
}

The driver configures these two queues exactly as it did the parallel
and manual queues for write requests. The only difference is that it set a
callback for EvtDeviceIoControl instead of EvtIoWrite and configures
request dispatching for WdfRequestTypeDeviceControl instead of
WdfRequestTypeWrite.

13.3 Handling Requests from a Parallel Queue

KMDF delivers I/O requests from a parallel queue by calling the appro-
priate callback function that the driver registered for the queue. For exam-
ple, the PCIDRV sample configures its parallel device I/O control queue,
which accepts only WdfRequestTypeDeviceControl requests, with an
EvtIoDeviceControl callback.

The driver’s actions in the callback depend on the type of I/O that is
required to satisfy the request. If the request required DMA, the driver
should retrieve a pointer to the device context area and then set up the
DMA transaction.

298 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

For I/O requests that do not involve DMA, a driver takes the follow-
ing steps:

1. Gets the parameters for the I/O request.
2. Parses the parameters.
3. Performs the requested I/O or manually requeues the request for

later processing.

13.3.1 Code to Handle I/O Requests
The following code shows how the PCIDRV sample handles certain
device I/O control requests. The PciDrvEvtIoControl function is the dri-
ver’s EvtIoDeviceControl callback for one of its parallel queues and
appears in the pcidrv\sys\Pcidrv.c source file.

VOID
PciDrvEvtIoDeviceControl (

IN WDFQUEUE Queue,
IN WDFREQUEST Request,
IN size_t OutputBufferLength,
IN size_t InputBufferLength,
IN ULONG IoControlCode
)

{
NTSTATUS status = STATUS_SUCCESS;
PFDO_DATA fdoData = NULL;
WDFDEVICE hDevice;
WDF_REQUEST_PARAMETERS params;

UNREFERENCED_PARAMETER (OutputBufferLength);
UNREFERENCED_PARAMETER (InputBufferLength);

hDevice = WdfIoQueueGetDevice (Queue);
fdoData = FdoGetData (hDevice);

WDF_REQUEST_PARAMETERS_INIT (¶ms);

WdfRequestGetParameters (
Request,
¶ms
);

13.3 Handling Requests from a Parallel Queue 299

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

switch (IoControlCode)
{

case IOCTL_NDISPROT_QUERY_OID_VALUE:
ASSERT ((IoControlCode * 0x3) ==

METHOD_BUFFERED);
NICHandleQueryOldRequest (

Queue,
Request,
¶ms
);

break;

// code omitted
// …..
//

case IOCTL_NDISPROT_INDICATE_STAUS:
status = WdfRequestForwardToIoQueue (Request,

fdoData->PendingIoctlQueue);
if (!NT_SUCCESS (status))
{

WdfRequestcomplete (Request, status);
break;
}

break;

default:
ASSERTMSG (FALSE, “Invalid IOCTL request\n”);
WdfRequestComplete (Request,

STATUS_INVALID_DEVICE_REQUEST);
break;

}
return;

}

The driver requires access to its device object context area, so it starts
by calling WdfIoQueueGetDevice, which returns a handle to the device
object that is associated with the I/O queue. It then passes the returned
handle to FdoGetData, the accessor function for its device context area,
which returns a pointer to the context area.

Next, the driver retrieves the parameters that were passed with the I/O
request. KMDF defines the WDF_REQUEST_PARAMETERS struc-
ture for this purpose. The driver initializes the structure by calling
WDF_REQUEST_PARAMETERS_INIT and then passes it to the
WdfRequestParameters method. This method fills in the requested

300 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

parameters. The driver must retrieve the parameters from the request
structure before it performs the I/O.

The driver’s action depends on the I/O control code that was specified
in the request. For most control codes, the driver calls a device-specific
function to handle the request. If the control code is valid, the driver per-
forms the requested action. If the control code is not valid, the driver com-
pletes the request by calling WdfRequestComplete with the handle to
the request and the status STATUS_INVALID_DEVICE_REQUEST.

In response to the two control codes shown in the code, the driver
takes two different actions. If the control code is IOCTL_NDISPROT_
QUERY_OID_VALUE, the driver performs buffered I/O. If the control
code is IOCTL_NDISPROT_INDICATE_STATUS, the driver forwards
the request to a different I/O queue. The next two sections describe these
actions.

13.3.2 Performing Buffered I/O
The WDFREQUEST object contains pointers to the input and output
buffers for the I/O request. The driver can obtain these pointers by calling
WdfRequestRetrieveOutputBuffer and WdfRequestRetrieveInput-
Buffer.

For METHOD_BUFFERED requests, however, the input and out-
put buffers are the same, so both of these methods return the same
pointer. Therefore, when performing buffered I/O, a driver must read all
input data from the buffer before writing any output data to the buffer.

The NICHandleQueryOidRequest function, defined in the
pcidrv\sys\hw\Nic_req.c file, gets the input and output buffers from the
WDFREQUEST object and retrieves the requested information. Most of
this function performs device-specific tasks, so this section describes only
the KMDF-specific actions.

The sample retrieves the buffer by calling WdfRequestRetrieve-
OutputBuffer, as follows:

status = WdfRequestRetrieveOutputBuffer (Request,
sizeof (NDISPROT_QUERY_OID),
&DataBuffer,
&BufferLength
);

if (!NT_SUCCESS (status))

13.3 Handling Requests from a Parallel Queue 301

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

{
WdfRequestcomplete (Request, status);
return;

}

The input parameters to WdfRequestRetrieveOutputBuffer are
the handle to the request object and the minimum required size for the
buffer. The method returns a pointer to the buffer and a pointer to its
length. If the length is smaller than the minimum required or if some other
error occurs, WdfRequestRetrieveOutputBuffer returns a failure sta-
tus and the driver immediately completes the request with that status.

The driver then performs device-specific queries for the requested
information and writes the returned data into the output buffer. If the
buffer is too small to hold the data, the driver sets status to
STATUS_BUFFER_TOO_SMALL.

Next, the driver updates the buffer length to include the number of
bytes of data, the size of the structure that holds it, and any padding bytes
that are required to align the structure correctly. The driver performs this
calculation even if the buffer is too small, so that it can return the buffer
length that would be required to successfully complete the request.
Finally, the driver completes the request by calling WdfRequest-
CompleteWithInformation with the handle to the request, the previ-
ously set status value, and the calculated buffer length, as follows:

//
// Adjust the size to include the structure.
//
ulInfoLen += FIELD_OFFSET (NDISPROT_QUERY_OID, Data);

WdfRequestCompleteWithInformation (Request,
Status, ulInfoLen);

13.4 Forwarding Requests to a Queue

In some situations, a driver must requeue requests on its own, after it has
received them from KMDF. For example, a driver might be able to
respond to some device I/O control requests immediately, but might have
to handle others at a later time. Because the requests are all of the same
type (WdfRequestTypeDeviceControl), KMDF cannot deliver some to

302 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

one queue and some to another. Instead, the driver must sort the requests
as KMDF delivers them and place any that it cannot satisfy immediately
into a manual, internal queue to handle later.

To forward a request to a queue, a KMDF driver calls WdfRequest-
ForwardToIoQueue, passing as parameters the handle to the request
and the handle to the queue. If the request is added successfully, KMDF
returns the status STATUS_SUCCESS. A driver cannot return a request
to the queue from which the driver most recently received it.

The PCIDRV sample uses this technique to delay processing
IOCTL_NDISPROT_INDICATE_STATUS requests, as the following
excerpt from its EvtIoDeviceControl callback (in pcidrv.c) shows:

case IOCTL_NDISPROT_INDICATE_STATUS:
status = WdfRequestForwardToIoQueue (Request,

fdoData->PendingIoctlQueue);
ASSERT (status == STATUS_WDF_FORWARDED);
break;

13.5 Retrieving Requests from a Manual Queue

When the driver is ready to handle a request from a manual queue, it calls
a method on the queue object to retrieve one. A KMDF driver can

■ Retrieve the next request from the queue.
■ Retrieve the oldest request in the queue that pertains to a particu-

lar file object.
■ Search the queue until it finds a particular request and then retrieve

that request.

To remove the next item from a manual queue, a driver calls WdfIo-
QueueRetrieveNextRequest with a handle to the queue and a pointer
to a location to receive the handle to the request.

To remove the oldest request that specifies a particular file object, a
driver calls WdfIoQueueRetrieveRequestByFileObject. The driver
passes a handle to the file object along with the handle to the queue and a
pointer to a location to receive the handle to the request. This method
updates an internal queue pointer, so that the next time the driver calls it,
it returns the next-oldest item, and so forth.

13.5 Retrieving Requests from a Manual Queue 303

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To search the queue for a particular request, the driver calls
WdfIoQueueFindRequest. This method returns a handle to the request
but does not remove the request from the queue. The driver can inspect
the request to determine whether it is the one that the driver was seeking.
If not, the request stays in the queue and the driver can search again. If so,
the driver can dequeue the request by calling WdfIoQueue-
RetrieveFoundRequest.

After the driver has removed a request from the queue, the driver
“owns” that request. The driver must complete the request, forward it to
another driver, or forward it to a different queue.

13.5.1 Code to Find a Request
The following function shows how the PCIDRV sample searches its man-
ual device I/O control queue for a request with a particular function code
and then retrieves that request. (The code is from the source file
pcidrv\sys\hw\nic_req.c, and it has been slightly abridged.)

NICGETIoctlRequest (
IN WDFQUEUE Queue,
IN ULONG FunctionCode,
OUT WDFREQUEST* Request
)

{
NTSTATUS status = STATUS_UNSUCCESSFUL
WDF_REQUEST_PARAMETERS params;
WDFREQUEST tagRequest;
WDFREQUEST prevTagRequest;

WDF_REQUEST_PARAMETER_INIT (¶ms);

*Request = NULL;
prevTagRequest = tagRequest = NULL;

do
{

WDF_REQUEST_PARAMETERS_INIT (¶ms);
status = WdfIoQueueFindRequest (Queue,

prevTagRequest,
NULL,
¶ms,
&tagRequest);

304 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

// WdfIoQueueFindRequest takes an extra reference on
// the returned tagRequest to prevent the memory
// being freed. However, the tagRequest is still
// in the queue and can be canceled or removed by
// another thread and completed.
//

if (prevTagRequest)
{

WdfObjectDereference (prevTagRequest);
}

if (status == STATUS_NO_MORE_ENTRIES)
{

status = STATUS_UNSUCCESSFUL;
break;

}

if (status == STATUS_NOT_FOUND)
{

//
// The prevTagRequest disappeared from the
// queue for some reason – either it was
// canceled or dispatched to the driver. There
// might be other requests that match our
// criteria so restart the search.
//
prevTagRequest = tagRequest = NULL;
continue;

}

if (!NT_SUCCESS (status))
{

status = STATUS_UNSUCCESSFUL;
break;

}

if (FunctionCode ==
params.Parameters.DeviceIoControl.IoControlCode)

{
status = WdfIoQueueRetrieveFoundRequest (

Queue,
tagRequest, // TagRequest
Request

);

13.5 Retrieving Requests from a Manual Queue 305

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WdfObjectDereference (tagRequest);

if (status == STATUS_NOT_FOUND)
{

//
// The TagRequest disappeared
// for some reason – either it was
// canceled or dispatched to the driver.
// Other requests might match our
// criteria so restart the search.
//
prevTagRequest = tagRequest = NULL;
continue;

}

if (!NT_SUCCESS (status))
{

status = STATUS_UNSUCCESSFUL;
break;

}

//
// Found a request. Drop the extra reference
// before returning.
//
ASSERT (*Request == tagRequest);
status = STATUS_SUCCESS;
break;

}
else
{

//
// This is not the request we need. Drop the
// reference on the tagRequest after looking for
// the next request.
prevTagRequest = tagRequest;
continue;

}
} WHILE (TRUE);
return status;

}

The sample driver starts by calling WDF_REQUEST_
PARAMETERS_INIT to initialize a WDF_REQUEST_PARAMETERS
structure. Later, when the driver calls WdfIoQueueFindRequest,
KMDF returns the parameters for the request in this structure.

306 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Next, the driver initializes the variables that it uses to keep track of the
requests it has searched through. The variable prevTagRequest holds a
handle to the previous request that the driver inspected, and tagRequest
holds a handle to the current request. The driver initializes both values to
NULL before it starts searching.

The search is conducted in a loop. Each time NICGetIoctlRequest
calls WdfIoQueueFindRequest, it passes prevTagRequest to indicate
where KMDF should start searching and passes a pointer to tagRequest
to receive the handle to the current request. WdfIoQueueFindRequest
also takes a handle to the queue, a handle to the related file object, and a
pointer to the initialized WDF_REQUEST_PARAMETERS structure.
The PCIDRV sample does not use file objects, so it passes NULL
for the file object handle. Note that the driver reinitializes the
WDF_REQUEST_PARAMETERS structure before each call, thus
ensuring that it does not receive old data.

On the first iteration of the loop, preTagRequest is NULL.
Therefore, the search starts at the beginning of the queue. WdfIo-
QueueFindRequest searches the queue and returns the request’s param-
eters (in the Params variable) and a handle to the request (in
tagRequest). To prevent another component from deleting the request
while the driver inspects it, WdfIoQueueFindRequest takes out a refer-
ence on request.

NICGetIoctlRequest compares the function code value that was
returned in the request’s parameters structure with the function code that
the caller passed in. If the codes match, the driver calls WdfIo-
QueueRetrieveFoundRequest to dequeue the request. WdfIoQueue-
RetrieveFoundRequest takes three parameters: the handle to the
queue, the handle returned by WdfIoQueueFindRequest that indicates
which request to dequeue, and pointer to a location that will receive a han-
dle to the dequeued request.

When WdfIoQueueRetrieveFoundRequest returns successfully,
the driver “owns” the retrieved request. It deletes extra reference previ-
ously taken on the request by calling WdfObjectDeference. It then exits
from the loop, and the NICGetIoctlRequest function returns a handle to
the retrieved request. The caller can then perform the I/O operations that
are required to satisfy the request.

If the function codes do not match, the driver sets prevTagRequest
to tagRequest so that the search starts at the current location in the
queue. However, the driver does not yet dereference the request object

13.5 Retrieving Requests from a Manual Queue 307

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

that prevTagRequest represents. It must maintain this reference until
WdfIoQueueFindRequest has returned on the next iteration of the loop.
The loop then executes again. This time, if WdfIoQueueFindRequest
successfully finds a request, the driver deletes the reference that
WdfIoQueueFindRequest acquired for the prevTagRequest and then
compares the function codes as it did in the previous iteration.

If the request is no longer in the queue, WdfIoQueueFindRequest
returns STATUS_NOT_FOUND. For example, the request might not be
in the queue if it was canceled or was already retrieved by another thread.
WdfIoQueueRetrieveFoundRequest can also return this same status if
the handle passed in tagRequest is not valid. If either of these errors
occurs, the driver restarts the search at the beginning. If either of these
methods fails for any other reason, such as exhausting the queue, the driver
exits from the loop.

13.6 Reading and Writing the Registry

KMDF includes numerous methods with which a driver can read and
write the registry. These methods enable the driver to create, open, and
close a registry key, and to query, change, and delete the values of keys
and individual data items within them.

To read the value of a registry key, a driver opens the registry key and
then calls a method that queries the registry for data. A driver can read the
registry either before or after creating its device object.

To read the registry before creating the device object, a driver calls the
WdfFdoInitOpenRegistryKey method with the following parameters:

■ A handle to the WDFDEVICE_INIT structure that was passed to
its EvtDriverDeviceAdd function.

■ A ULONG value that identifies the key to open.
■ A bit mask that indicates the type of required access.
■ An optional attribute structure.
■ A location to receive a handle to a WDFKEY object.

The WDFDEVICE_INIT structure contains settings that the framework
requires before the device object has been created. WdfFdoInit-
OpenRegisterKey requires some of this information so that it can find
the requested key.

308 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

To read the registry after creating the device object, a driver calls
WdfDeviceOpenRegistryKey with a handle to the device object instead
of the WDFDEVICE_INIT structure.

To get the value of a single setting within the key, the driver must
query the key. KMDF provides several query methods, each of which
returns a different type of value. For example, if the information is stored
as a ULONG, the driver calls WdfRegisteryQueryUlong with the han-
dle to the keys, a pointer to the name of the value, and a pointer to a
ULONG variable to receive the value. After completing its query, the
driver closes the registry key by calling WdfRegistryClose.

13.6.1 Code to Read and Write the Registry
The PCIDRV sample provides functions that

■ Read a REG_DWORD registry value that was written by another
user mode or kernel mode component.

■ Read a REG_DWORD registry value that was stored under the
device key.

■ Write a REG_DWORD registry value that was stored under the
device key.

These functions are in the pcidrv.c source file.
The PCIDRV sample driver’s PciDrvReadFdoRegistryKeyValue

function is called from the EvtDriverDeviceAdd callback, before the
driver creates the device object. It reads a key that the driver’s INF wrote
at installation, which indicates whether the driver was installed as an NDIS
upper-edge miniport driver. This information is important because it
determines whether the driver registers certain power policy and I/O event
callbacks. If the driver was installed as an upper-edge miniport driver, it is
not the power policy manager for its device; NDIS manages power policy.

The following is the source code for this function:

BOOLEAN
PciDrvReadFdoRegistryKeyValue (

__in PWDFDEVICE_INIT DeviceInit,
__in PWCHAR Name,
__out PULONG Value
)

{
WDFKEY hKey = NULL;

13.6 Reading and Writing the Registry 309

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

NTSTATUS status;
BOOLEAN retValue = FALSE;
UNICODE_STRING valueName;

PAGED_CODE();

*Value = 0;
status = WdfFdoInitOpenRegistryKey (DeviceInit,

PLUGPLAY_REGKEY_DEVICE,
STANDARD_RIGHTS_ALL,
WDF_NO_OBJECT_ATTRIBUTES,
&hKey
);

if (NT_SUCCESS (status))
{

RtlInitUnicodeString (&valueName, Name);
status = WdfRegistryQueryULong (hKey,

&valueName,
Value
);

if (NT_SUCCESS (status))
{

retValue = TRUE;
}
WdfRegistryClose (hKey);

}
return retValue;

}

First, the driver initializes the Value parameter that will receive the
requested key value. Next, it opens the registry key by calling
WdfFdoInitOpenRegistryKey. The WDF_DEVICEINIT object pro-
vides information that is required to identify the driver-specific key. The
next parameter is a ULONG that contains flags that identify the key to
open; the constant PLUGPLAY_REGKEY_DEVICE indicates the
device’s hardware key. Although the sample requests all access rights to the
registry (STANDARD_RIGHTS_ALL), the driver only reads the key and
does not write it, so STANDARD_RIGHTS_READ would also work.
Finally, the driver specifies WDF_NO_OBJECT_ATTRIBUTES to indi-
cate that it is not passing an attribute structure for the key object. The out-
put parameter hKey receives a handle to the returned WDFKEY object.

If the driver successfully opens the hardware key, it can query the key
for the requested value. The name of the value is passed into the current
function as a pointer to a string. However, the KMDF query method

310 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

requires the name in a counted Unicode string. Therefore, before query-
ing for the value, the driver calls RtInitUnicodeString to copy the input
string into a string of the correct format.

The driver then queries for the value by calling WdfRegistry-
QueryUlong, which returns the ULONG value of the key in the Value
parameter. The driver then closes the key by calling WdfRegisterClose
and the function returns.

The driver’s other function to read the registry is similar. The only dif-
ference is that PciDrvReadRegistryValue is always called after the
WDFDEVICE object has been created and therefore uses a handle to the
WDFDEVICE object instead of a handle to the WDFDEVICE_INIT
object.

The following is the code for this function:

BOOLEAN
PciDrvReadRegistryValue (

__in PFDO_DATA FdoData,
__in PWCHAR Name,

__out PULONG Value
)

{
WDFKEY hKey = NULL;
NTSTATUS status;
BOOLEAN retValue = FALSE;
UNICODE_STRING valueName;

PAGED_CODE ();

*Value = 0;
status = WdfDeviceOpenRegistryKey (FdoData->WdfDevice,

PLUGPLAY_REGKEY_DEVICE,
STANDARD_RIGHTS_ALL,
WDF_NO_OBJECT_ATTRIBUTES,
&hKey
);

if (NT_SUCCESS (status))
{

RtlInitUnicodeString (&valueName, Name);
status = WdfRegistryQueryULong (hKey,

&valueName, Value
);

if (NT_SUCCESS (status))
{

retValue = TRUE;
}

13.6 Reading and Writing the Registry 311

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WdfRegistryClost (hKey);
}
return retValue;

}

This function is passed a pointer to the device context area (FdoData),
where the driver keeps a handle to the device object. It passes the device
object handle to the WdfDeviceOpenRegistryKey method. The driver
then proceeds in exactly the same way as the previously discussed
PciDrvReadFdoRegisterKeyValue function: It calls RtlUnicode-
StringCopyString to build a Unicode string that holds the requested
value name, calls WdfRegistryQueryUlong to get the ULONG value of
the key, and calls WdfRegistryClose when it is finished.

The third registry function in the driver is PciDrvWriteRegistry-
Value, which writes a ULONG value to the registry. This function differs
from PciDrvReadRegistryValue in only two aspects:

■ The value of the key is an input parameter to PciDrvWrite-
RegistryValue but an output parameter to PciDrvReadRegistry-
Value.

■ PciDrvWriteRegistryValue calls WdfRegistryAssignULong to
write a new value for the key, whereas PciDrvReadRegistryValue
calls WdfRegistryQueryULong to read the current value of
the key.

Otherwise, the functions are identical. The following statement shows how
the driver writes the new value for the key:

status = WdfREgistryAssignULong (hKey, &valueName, Value);

Currently, the PCIDRV sample driver does not call PciDrv-
WriteRegistryValue; this function is included only for demonstration.

13.7 WatchDog Timer: Self-Managed I/O

Some drivers perform I/O activities that are not related to queued I/O
requests or must be synchronized with activities of WDM drivers in the
same device stack. For example, a driver might maintain a timer that

312 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

monitors the status of its device. Similarly, a driver might be required to
communicate with its device or another driver at a particular point during
the device’s start-up or shut-down sequence. KMDF provides self-man-
aged I/O to accommodate such requirements. The self-managed I/O call-
backs correspond more closely to the underlying WDM Plug and Play and
power management IRPs than do other WDF Plug and Play and power
management callbacks.

To use self-managed I/O, a driver implements the self-managed I/O
event callbacks. KMDF calls these callbacks during Plug and Play and
power state transitions when the device is added to or removed from the
system, when the device is stopped to rebalance resources, when the idle
device transitions to a low-power state, and when the device returns to the
working state from a low-power idle state.

The following are the self-managed I/O callbacks:

■ EvtDeviceSelfManagedIoInit
■ EvtDeviceSelfManagedIoSuspend
■ EvtDeviceSelfManagedIoFlush
■ EvtDeviceSelfManagedIoCleanup
■ EvtDEviceSelfManagedIoRestart

13.7.1 Self-Managed I/O Device Startup and Restart
When the system is booted or the user plugs in the device, KMDF calls the
driver’s EvtDeviceSelfManagedIoInit callback after the driver’s
EvtDeviceDOEntry function has returned but before KMDF completes
the underlying Plug and Play or power IRP. KMDF calls this function only
during the initial start-up sequence; it does not call this function when the
device returns to the working state from a low-power state.

The EvtDeviceSelfManagedIoInit callback should perform what-
ever tasks are required to initiate the I/O that the framework doesn’t man-
age. For example, a driver that must monitor the state of its device might
initialize and start a timer.

When the device returns to the working state from a low-power state,
such as occurs when the device has been idle or has been stopped to rebal-
ance resources, KMDF calls the EvtDeviceSelfManagedIoRestart
callback.

Like the self-managed I/O initialization callback, this function is the last
one that is called after the device returns to the working state, but before

13.7 WatchDog Timer: Self-Managed I/O 313

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WDF completes the underlying IRP. EvtDeviceSelfManaged-
IoRestart should resume any I/O activities that EvtDeviceSelfManaged-
IoInit initialized and that were later suspended when the device exited
from the working state. Typically, this means that it reverses the actions of
EvtDeviceSelfManagedIoSuspend.

EvtDeviceSelfManagedIoRestart is called only after EvtDevice-
SelfManagedIoSuspend has previously been called. This function is
called only when the device has been in a low-power state or its resources
have been rebalanced; it is not called when the user initially plugs in the
device.

13.7.2 Self-Managed I/O During Device
Power-Down and Removal

When the device is powered down or removed, KMDF calls one or more
of the self-managed I/O callbacks so that the driver can stop and clean up
after its self-managed I/O operations.

Every time the device goes through the power-down sequence—
whether because it is idle, it is being removed, or system resources are
being rebalanced—KMDF calls the EvtDeviceSelfManagedIo-
Suspend callback. This function should stop any self-managed I/O activi-
ties that are in progress and must be handled while the device is present.
During rebalance, power-down, and orderly removal, it is called while the
device is still operational, before EvtDeviceDOExit. During surprise
removal, it is called before EvtDeviceSurpriseRemoval if the device
was in a low-power state and afterward if the device was in the DO
state.

If the device is being removed, KMDF calls EvtDevice-
SelfManagedIoFlush after the device has been stopped. This function
should fail any I/O requests that the driver did not complete before the
device was removed. It is called after the driver’s EvtDEvice-
SelfManagedIoSuspend and EvtDeviceDOExit functions have
returned.

Finally, KMDF calls EvtDeviceSelfManagedIoCleanup after
device removal is complete. This function should ensure that all self-
managed I/O has stopped completely and should release any resources
that EvtDEviceSelfManagedIoInit allocated for self-managed I/O. The
clean-up function is called only once.

314 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.7.3 Implementing a Watchdog Timer
The PCIDRV sample uses self-managed I/O to implement a watchdog
timer, which is used during hardware link detection to check for hangs.
Implementing the watchdog timer involves the following driver tasks:

■ Setting callbacks for the self-managed I/O events.
■ Initializing the timer in EvtDeviceSelfManagedIoInit.
■ Stopping the timer in EvtDeviceSelf-ManagedIoSuspend.
■ Restarting the timer in EvtDeviceSelfManagedIoRestart.
■ Deleting the timer and resources in EvtDeviceSelfManaged-

IoCleanup.

The PCIDRV sample does not implement the EvtDeviceSelf-
ManagedIoFlush callback because no I/O requests are involved in its
self-managed I/O. The suspend and clean-up callbacks are sufficient.

A driver registers its self-managed I/O callbacks by setting their entry
points in the WDF_PNP_POWER_CALLBACKS structure along with
the other Plug and Play and power event callbacks (such as
EvtDEviceDOEntry and EvtDeviceDOExit, among others). The
driver sets these in the EvtDriverDeviceAdd callback, before it creates
the WDFDEVICE object.

13.7.3.1 Code to Set Self-Managed I/O Callbacks
The PCIDRV sample registers these callbacks in the PciDrvEvtDevice-
Add function in pcidrv.c:

WDF_PNPPOWER_EVENT_CALLBACKS pnpPowerCallbacks;

//
// Initialize the PnpPowerCallbacks structure.
//
WDF_PNPPOWER_EVENT_CALLBACK_INIT (&pnpPowerCallbacks);

//
// Set entry points for self-managed I/O callbacks.
//
pnpPowerCallbacks.EvtDeviceSElfManagedIoInit =

PciDrvEvtDEvicesSelfManagedIoInit;
pnpPowerCallbacks.EvtDeviceSelfManagedIoCleanup =

PciDrvEvtDeviceSelfManagedIoCleanup;

13.7 WatchDog Timer: Self-Managed I/O 315

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

pnpPowerCallbacks.EvtDeviceSelfManagedIoSuspend =
PciDrvEvtDeviceSelfManagedIoSuspend;

pnpPowerCallbacks.EvtDeviceSelfManageIoRestart =
PciDrvEvtDeviceSelfManagedIoRestart;

//
// Register the PnP and power callbacks.
//
WdfDeviceInitSetPnpPowerEventCallbacks (DeviceInit,

&pnpPowerCallbacks);

As the example shows, the PCIDRV sample sets callbacks for
EvtDeviceSelfManagedIoInit, EvtDeviceSelfManagedIoCleanup,
EvtDeviceSelfManagedIoSuspend, and EvtDeviceSelfManagedIo-
Restart.

13.7.3.2 Code to Create and Initialize the Timer
The PCIDRV sample creates, initializes, and starts the watchdog timer in
its EvtDeviceSelfManagedIoInit callback. The watchdog timer is a
WDF time object (WDFTIMER). When the timer expires, KMDF
queues a DPC, which calls the driver’s EvtTimerFunc.

The following code is the sample’s EvtDeviceSelfManagedIoInit
callback, which appears in the pcidrv.c source file:

NTSTATUS
PciDrvEvtDeviceSelfManagedIoInit (

IN WDFDEVICE Device
)

{
PFDO_DATA fdoData = NULL;
WDF_TIMER_CONFIG wdfTimerconfig;
NTSTATUS status;
WDF_OBJECT_ATTRIBUTES timerAttributes;

PAGED_CODE ();

TraceEvents (TRACE_LEVEL_INFORMATION, DBG_PNP,
“--> PciDrvEvtDeviceSelfManagedIoInit\n”);

fdoData = FdoGetData (Device);

//
// To minimize init-time, create a timer DPC to do link
// detection. The DPC will also be used to check for hardware
// hang.

316 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WDF_TIMER_CONFIG_INIT (&wdfTimerconfig,
NICWatchDogEvtTimerFunc);

WDF_OBJECT_ATTRIBUTES_INIT (&timerAttributes);
timerAttributes.ParentObject = fdoData->WdfDevice;

status = WdfTimerCreate (
&wdfTimerConfig,
&timerAttributes,
&fdoData->WatchDogTimer
);

if (!NT_SUCCESS (status))
{

TraceEvents (TRACE_LEVEL_ERROR, DBG_PNP,
“Error: WdfTimerCreate create failed 0x%x\n”,
Status);

return status;
}

NICStartWatchDogTimer (fdoData);

TraceEvents (TRACE_LEVEL_INFORMATION, DBG_PNP,
“<-PciDrvEvtDeviceSelfManagedIoInit\n”);

return status;
}

The driver declares two structures for use in creating the timer: a
WDF_TIMER_CONFIG structure named wdfTimerConfig and a
WDF_OBJECT_ATTRIBUTES structure named timerAttributes.
To initialize the WdfTimerConfig structure, the driver uses the
WDF_TIMER_CONFIG_INIT function, passing as parameters the
WdfTimerConfig structure and a pointer to NICWatchdogEvtTimer-
Func, which is the driver’s EvtTimerFunc callback.

Next, the driver initializes the attribute’s structure by using the
WDF_OBJECT_ATTRIBUTES_INIT function. By default, a timer
object has no parent, so the driver sets the ParentObject field to the
device object (WdfDevice) so that KMDF deletes the timer when it
deletes the device object.

Finally, the driver calls WdfTimerCreate to create the timer, passing
as parameters the configuration structure, the attribute’s structure, and a
location to receive the handle to the timer. If KMDF successfully creates
the timer, PCIDRV calls the internal function NICStartWatchDog-
Timer to start the timer.

13.7 WatchDog Timer: Self-Managed I/O 317

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.7.3.3 Code to Start the Timer
The NICStartWatchDogTimer function appears in the sys/HW/
isrdpc.c source file, as follows:

VOID
NICStartWatchDogTimer (

IN PFDO_DATA FdoData
)

{
LARGE_INTEGER dueTime;

if (!FdoData->CheckForHang)
{

//
// Set the link detection flag to indicate that
// NICWatchDogEvtTimerFunc
// is first doing link detection.
//
MP_SET_FLAG (FdoData,

fMP_ADAPTER_LINK_DETECTION);
FdoData->CheckforHang = FALSE;
FdoData->bLinkDetectionWait = FALSE;
FdoData->bLookForLink = FALSE;
dueTime.QuadPart = NIC_LINK_DETECTION_DELAY;

}
else
{

dueTime.QuadPart = NIC_CHECK_FOR_HANG_DELAY;
}
WdfTimerStart (FdoData->WatchDogTimer,

dueTime.QuadPart
);

return;
}

This function sets the expiration time for the timer to a hardware-
dependent value, depending on whether the driver is attempting to detect
a link or check for a device hang. It then starts the timer by calling
WdfTimerStart. When the timer expires, KMDF queues a DPC that
invokes the driver’s timer function, NICWatchDogEvtTimerFunc. The
timer function performs the required task (link detection or check for
hang) and then restarts the timer by calling WdfTimerStart in the same
way shown in the preceding example.

318 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.7.3.4 Code to Stop the Timer
When the device leaves the working state or is removed from the system,
KMDF calls the EvtDeviceSelfManagedIoSuspend callback. In the
PCIDRV sample, this callback stops the timer, as the following code from
pcidrv.c shows:

NTSTATUS
PciDrvEvtDeviceSelfManagedIoSuspend (

IN WDFDEVICE Device
)

{
PFDO_DATA fdoData = NULL;

PAGED_CODE ();

fdoData = FdoGetData (Device);

//
// Stop the watchdog timer and wait for DPC to run
// to completion
// if it has already fired.
//
WdfTimerStop (fdoData->WatchDogTimer, TRUE);
return STATUS_SUCCESS;

}

To stop the timer, the driver simply calls WdfTimerStop, passing as
parameters the handle to the timer and a Boolean value. The PCIDRV
sample passes TRUE to specify that if the driver has any DPCs in the
DPC queue (including the NICWatchDogEvtTimerFunc timer DPC
function), KMDF should wait until all of those functions have returned
before stopping the timer. Specifying FALSE means that KMDF should
stop the timer immediately without waiting for any DPCs to complete.

WdfTimerStop is defined as a Boolean function, which returns
TRUE if the timer object was in the system’s timer queue. However, the
PCIDRV sample does not check the return value because it waits for all
the driver’s DPCs to complete, so whether the timer was already set is not
important.

13.7.3.5 Code to Restart the Timer
When the device returns to the working state after being in low-power
state, KMDF calls the EvtDeviceSelfManagedIoRestart callback.

13.7 WatchDog Timer: Self-Managed I/O 319

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

In the PCIDRV driver, this callback restarts the timer as follows, from the
pcidrv.c source file:

NTSTATUS
PciDrvEvtDeviceSelfManagedIoRestart (

IN WDFDEVICE Device
)

{
PFDO_DATA fdoData;

PAGED_CODE ();

fdoData = FdoGetData (Device);

//
// Restart the watchdog timer.
//
NICStartWatchDogTimer (fdoData);
return STATUS_SUCCESS;

}

Restarting the timer simply requires a call to the internal
NICStartWatchDogTimer, as previously discussed. Because the device
object and the timer (a child of the device object) were not deleted when
the device transitioned out of the working state, the driver is not required
to reinitialize or recreate the timer object.

13.7.5.6 Code to Delete the Timer
When the device is removed, the driver deletes the timer in its
EvtDeviceSelfManagedIoCleanup function, as follows:

VOID
PciDrvEvtDeviceSelfManagedIoCleanup (

IN WDFDEVICE Device
)

{
PFDO_DATA fdoData = NULL;

PAGED_CODE ();

fdoData = FdoGetData (Device);

if (fdoData->WatchDogTimer)
{

320 Chapter 13 Programming Multiple I/O Queues

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WdfObjectDelete (fdoData->WatchDogTimer);
}
return;

}

To delete the timer, the driver simply calls WdfObjectDelete, pass-
ing a handle to the timer object. If the driver had allocated any additional
resources related to the timer, it would release those resources in this
function.

13.7 WatchDog Timer: Self-Managed I/O 321

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

323

A P P E N D I X

DRIVER INFORMATION
WEB SITES

This appendix contains a list of relevant topics available on the Internet.
These were accurate and active at the time this book was written; however,
URLs change and some may no longer be active.

1. Using WinUSB for User-Mode to USB Device Communication
http://www.osronline.com/article.cfm?article=532

2. Getting Started with Windows Drivers
http://go.microsoft.com/fwlink/?LinkId=79284

3. Kernel-Mode Driver Architecture
http://go.microsoft.com/fwlink/?LinkId=79288

4. Device and Driver Installation
http://go.microsoft.com/fwlink/?LinkId=79294

5. Driver Developer Tools
http://go.microsoft.com/fwlink/?LinkId=79298

6. Using Checked Builds of Windows
http://go.microsoft.com/fwlink/?LinkId=79304

7. Download Windows Symbol Packages
http://go.microsoft.com/fwlink/?LinkId=79331

8. Windows Driver Foundation (WDF)
http://go.microsoft.com/fwlink/?LinkId=79335

9. About WDK and Developer Tools
http://go.microsoft.com/fwlink/?LinkId=79337

10. Getting Started with Driver Development
http://go.microsoft.com/fwlink/?LinkId=79338

11. Managing Hardware Priorities
http://go.microsoft.com/fwlink/?LinkId=79339

12. User-Mode Driver Framework Design Guide
http://go.microsoft.com/fwlink/?LinkId=79341

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.osronline.com/article.cfm?article=532
http://go.microsoft.com/fwlink/?LinkId=79284
http://go.microsoft.com/fwlink/?LinkId=79288
http://go.microsoft.com/fwlink/?LinkId=79294
http://go.microsoft.com/fwlink/?LinkId=79298
http://go.microsoft.com/fwlink/?LinkId=79304
http://go.microsoft.com/fwlink/?LinkId=79331
http://go.microsoft.com/fwlink/?LinkId=79335
http://go.microsoft.com/fwlink/?LinkId=79337
http://go.microsoft.com/fwlink/?LinkId=79338
http://go.microsoft.com/fwlink/?LinkId=79339
http://go.microsoft.com/fwlink/?LinkId=79341
http://www.it-ebooks.info/

ptg

13. Kernel-Mode Driver Framework Design Guide
http://go.microsoft.com/fwlink/?LinkId=79342

14. Installing UMDF Drivers
http://go.microsoft.com/fwlink/?LinkId=79345

15. Building and Loading a Framework-Based Driver
http://go.microsoft.com/fwlink/?LinkId=79347

16. Building Drivers
http://go.microsoft.com/fwlink/?LinkId=79348

17. Build Utility Reference
http://go.microsoft.com/fwlink/?LinkId=79349

18. Utilizing a Sources File Template
http://go.microsoft.com/fwlink/?LinkId=79350

19. Roadmaps
http://go.microsoft.com/fwlink/?LinkId=79351

20. Installing a Framework-Based Driver
http://go.microsoft.com/fwlink/?LinkId=79352

21. Installation and Driver Signing—Papers
http://go.microsoft.com/fwlink/?LinkId=79354

22. Framework Library Versions
http://go.microsoft.com/fwlink/?LinkId=79355

23. Driver Signing Requirements for Windows
http://go.microsoft.com/fwlink/?LinkId=79358

24. Windows Logo Program—Overview
http://go.microsoft.com/fwlink/?LinkId=79359

25. Creating a Catalog file for a PnP Driver Package
http://go.microsoft.com/fwlink/?LinkId=79360

26. Code-Signing Best Practices
http://go.microsoft.com/fwlink/?LinkId=79361

27. Distributing Drivers on Windows Update
http://go.microsoft.com/fwlink/?LinkId=79362

28. Kernel-Mode Code Signing Walkthrough
http://go.microsoft.com/fwlink/?LinkId=79363

29. How Setup Selects Drivers—PnP Manager
http://go.microsoft.com/fwlink/?LinkId=79364

30. Driver Installation Rules
http://go.microsoft.com/fwlink/?LinkId=79365

31. Using Driver Install Frameworks (DIFx)
http://go.microsoft.com/fwlink/?LinkId=79366

324 Appendix Driver Information Web Sites

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://go.microsoft.com/fwlink/?LinkId=79342
http://go.microsoft.com/fwlink/?LinkId=79345
http://go.microsoft.com/fwlink/?LinkId=79347
http://go.microsoft.com/fwlink/?LinkId=79348
http://go.microsoft.com/fwlink/?LinkId=79349
http://go.microsoft.com/fwlink/?LinkId=79350
http://go.microsoft.com/fwlink/?LinkId=79351
http://go.microsoft.com/fwlink/?LinkId=79352
http://go.microsoft.com/fwlink/?LinkId=79354
http://go.microsoft.com/fwlink/?LinkId=79355
http://go.microsoft.com/fwlink/?LinkId=79358
http://go.microsoft.com/fwlink/?LinkId=79359
http://go.microsoft.com/fwlink/?LinkId=79360
http://go.microsoft.com/fwlink/?LinkId=79361
http://go.microsoft.com/fwlink/?LinkId=79362
http://go.microsoft.com/fwlink/?LinkId=79363
http://go.microsoft.com/fwlink/?LinkId=79364
http://go.microsoft.com/fwlink/?LinkId=79365
http://go.microsoft.com/fwlink/?LinkId=79366
http://www.it-ebooks.info/

ptg

32. Writing a Device Installation Application
http://go.microsoft.com/fwlink/?LinkId=79367

33. Troubleshooting Device and Driver Installation
http://go.microsoft.com/fwlink/?LinkId=79370

34. Guidelines for Using SetAPI
http://go.microsoft.com/fwlink/?LinkId=79371

35. Hardware and Driver Developer Blogs
http://go.microsoft.com/fwlink/?LinkId=79579

36. Hardware and Driver Developer Community
http://go.microsoft.com/fwlink/?LinkId=79580

37. UMDF Objects and Interfaces
http://go.microsoft.com/fwlink/?LinkId=79583

38. Kernel-Mode Driver Framework Objects
http://go.microsoft.com/fwlink/?LinkId=79584

39. Driver Verifier
http://go.microsoft.com/fwlink/?LinkId=79588

40. Microsoft Application Verifier
http://go.microsoft.com/fwlink/?LinkId=79601

41. How do I keep my driver from running out of kernel-mode stack?
http://go.microsoft.com/fwlink/?LinkId=79604

42. Component Object Model
http://go.microsoft.com/fwlink/?LinkId=79770

43. Inside COM
http://go.microsoft.com/fwlink/?LinkId=79771

44. ATL (Active Template Library)
http://go.microsoft.com/fwlink/?LinkId=79772

45. Installing Just the Checked Operating System and HAL
http://go.microsoft.com/fwlink/?LinkId=79774

46. ChkIN—INF Syntax Checker
http://go.microsoft.com/fwlink/?LinkId=79776

47. DevCon WDK Command-Line Tool
http://go.microsoft.com/fwlink/?LinkId=79777

48. Device Path Exerciser
http://go.microsoft.com/fwlink/?LinkId=79778

49. KrView—The Kernrate Viewer
http://go.microsoft.com/fwlink/?LinkId=79779

50. Plug and Play Driver Test
http://go.microsoft.com/fwlink/?LinkId=79780

Appendix Driver Information Web Sites 325

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://go.microsoft.com/fwlink/?LinkId=79367
http://go.microsoft.com/fwlink/?LinkId=79370
http://go.microsoft.com/fwlink/?LinkId=79371
http://go.microsoft.com/fwlink/?LinkId=79579
http://go.microsoft.com/fwlink/?LinkId=79580
http://go.microsoft.com/fwlink/?LinkId=79583
http://go.microsoft.com/fwlink/?LinkId=79584
http://go.microsoft.com/fwlink/?LinkId=79588
http://go.microsoft.com/fwlink/?LinkId=79601
http://go.microsoft.com/fwlink/?LinkId=79604
http://go.microsoft.com/fwlink/?LinkId=79770
http://go.microsoft.com/fwlink/?LinkId=79771
http://go.microsoft.com/fwlink/?LinkId=79772
http://go.microsoft.com/fwlink/?LinkId=79774
http://go.microsoft.com/fwlink/?LinkId=79776
http://go.microsoft.com/fwlink/?LinkId=79777
http://go.microsoft.com/fwlink/?LinkId=79778
http://go.microsoft.com/fwlink/?LinkId=79779
http://go.microsoft.com/fwlink/?LinkId=79780
http://www.it-ebooks.info/

ptg

51. PNPCPU
http://go.microsoft.com/fwlink/?LinkId=79781

52. PoolMon
http://go.microsoft.com/fwlink/?LinkId=79782

53. PwrTest
http://go.microsoft.com/fwlink/?LinkId=79783

54. Windows Device Testing Framework
http://go.microsoft.com/fwlink/?LinkId=79785

55. Verifier Command Line
http://go.microsoft.com/fwlink/?LinkId=79788

56. Driver Verifier Manager
http://go.microsoft.com/fwlink/?LinkId=79789

57. Debugging a Framework-Based Driver
http://go.microsoft.com/fwlink/?LinkId=79790

58. Windows Error Reporting: Getting Started
http://go.microsoft.com/fwlink/?LinkId=79792

59. Handing Driver Failures—UMDF drivers
http://go.microsoft.com/fwlink/?LinkId=79794

60. Scanning the Driver
http://go.microsoft.com/fwlink/?LinkId=80057

61. Adding the Reflector
http://go.microsoft.com/fwlink/?LinkId=80058

62. Build Utility Limitations and Rules
http://go.microsoft.com/fwlink/?LinkId=80059

63. C++ for Kernel Mode Drivers: Pros and Cons
http://go.microsoft.com/fwlink/?LinkId=80060

64. Can I customize DoTraceMessage?
http://go.microsoft.com/fwlink/?LinkId=80061

65. Creating Reliable and Secure Drivers
http://go.microsoft.com/fwlink/?LinkId=80063

66. Debugging Tools for Windows—Overview
http://go.microsoft.com/fwlink/?LinkId=80065

67. Defect Viewer
http://go.microsoft.com/fwlink/?LinkId=80066

68. Device Manager Error Messages
http://go.microsoft.com/fwlink/?LinkId=80068

69. DllMain Callback Function
http://go.microsoft.com/fwlink/?LinkId=80069

326 Appendix Driver Information Web Sites

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://go.microsoft.com/fwlink/?LinkId=79781
http://go.microsoft.com/fwlink/?LinkId=79782
http://go.microsoft.com/fwlink/?LinkId=79783
http://go.microsoft.com/fwlink/?LinkId=79785
http://go.microsoft.com/fwlink/?LinkId=79788
http://go.microsoft.com/fwlink/?LinkId=79789
http://go.microsoft.com/fwlink/?LinkId=79790
http://go.microsoft.com/fwlink/?LinkId=79792
http://go.microsoft.com/fwlink/?LinkId=79794
http://go.microsoft.com/fwlink/?LinkId=80057
http://go.microsoft.com/fwlink/?LinkId=80058
http://go.microsoft.com/fwlink/?LinkId=80059
http://go.microsoft.com/fwlink/?LinkId=80060
http://go.microsoft.com/fwlink/?LinkId=80061
http://go.microsoft.com/fwlink/?LinkId=80063
http://go.microsoft.com/fwlink/?LinkId=80065
http://go.microsoft.com/fwlink/?LinkId=80066
http://go.microsoft.com/fwlink/?LinkId=80068
http://go.microsoft.com/fwlink/?LinkId=80069
http://www.it-ebooks.info/

ptg

70. DMA Verification
http://go.microsoft.com/fwlink/?LinkId=80070

71. Waits and APCs
http://go.microsoft.com/fwlink/?LinkId=80071

72. Handling DMA Operations in Framework-Based Drivers
http://go.microsoft.com/fwlink/?LinkId=80073

73. Interface Definition Language (IDL) File
http://go.microsoft.com/fwlink/?LinkId=80074

74. Library Processing in Static Driver Verifier
http://go.microsoft.com/fwlink/?LinkId=80077

75. PREfast for Drivers
http://go.microsoft.com/fwlink/?LinkId=80079

76. Results Pane in the Static Driver Verifier Report
http://go.microsoft.com/fwlink/?LinkId=80081

77. Static Driver Verifier—WHDC Web Site
http://go.microsoft.com/fwlink/?LinkId=80082

78. Static Driver Verifier—WDK Documentation
http://go.microsoft.com/fwlink/?LinkId=80084

79. Static Driver Verifier Commands
http://go.microsoft.com/fwlink/?LinkId=80085

80. Static Driver Verifier Limitations
http://go.microsoft.com/fwlink/?LinkId=80086

81. Uninstalling Drivers and Devices
http://go.microsoft.com/fwlink/?LinkId=80089

82. WPP Software Tracing
http://go.microsoft.com/fwlink/?LinkId=80090

83. Preparing to Run Static Driver Verifier
http://go.microsoft.com/fwlink/?LinkId=80606

84. Build (Build Utility)
http://go.microsoft.com/fwlink/?LinkId=80609

85. Thorough Static Analysis of Device Drivers
http://go.microsoft.com/fwlink/?LinkId=80612

86. Handling I/O Requests in Framework-Based Drivers
http://go.microsoft.com/fwlink/?LinkId=80613

87. Object Names
http://go.microsoft.com/fwlink/?LinkId=80615

88. ACCESS_MASK
http://go.microsoft.com/fwlink/?LinkId=80616

Appendix Driver Information Web Sites 327

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://go.microsoft.com/fwlink/?LinkId=80070
http://go.microsoft.com/fwlink/?LinkId=80071
http://go.microsoft.com/fwlink/?LinkId=80073
http://go.microsoft.com/fwlink/?LinkId=80074
http://go.microsoft.com/fwlink/?LinkId=80077
http://go.microsoft.com/fwlink/?LinkId=80079
http://go.microsoft.com/fwlink/?LinkId=80081
http://go.microsoft.com/fwlink/?LinkId=80082
http://go.microsoft.com/fwlink/?LinkId=80084
http://go.microsoft.com/fwlink/?LinkId=80085
http://go.microsoft.com/fwlink/?LinkId=80086
http://go.microsoft.com/fwlink/?LinkId=80089
http://go.microsoft.com/fwlink/?LinkId=80090
http://go.microsoft.com/fwlink/?LinkId=80606
http://go.microsoft.com/fwlink/?LinkId=80609
http://go.microsoft.com/fwlink/?LinkId=80612
http://go.microsoft.com/fwlink/?LinkId=80613
http://go.microsoft.com/fwlink/?LinkId=80615
http://go.microsoft.com/fwlink/?LinkId=80616
http://www.it-ebooks.info/

ptg

89. Boot Options for Driver Testing and Debugging
http://go.microsoft.com/fwlink/?LinkId=80622

90. Trace Message Prefix
http://go.microsoft.com/fwlink/?LinkId=80623

91. Securing Device Objects
http://go.microsoft.com/fwlink/?LinkId=80624

92. Creating Secure Device Installations
http://go.microsoft.com/fwlink/?LinkId=80625

93. SDDL for Device Objects
http://go.microsoft.com/fwlink/?LinkId=80626

94. Synchronization
http://go.microsoft.com/fwlink/?LinkId=80899

95. How to: Specify Additional Code Information
http://go.microsoft.com/fwlink/?LinkId=80906

96. Using a Pragma Warning Directive
http://go.microsoft.com/fwlink/?LinkId=80908

97. Developing Drivers with WDF
http://go.microsoft.com/fwlink/?LinkId=80911

98. Boot Configuration Data
http://go.microsoft.com/fwlink/?LinkId=80914

99. Device Interface Classes
http://go.microsoft.com/fwlink/?LinkId=81577

100. Using Device Interfaces
http://go.microsoft.com/fwlink/?LinkId=81578

101. Controlling Device Access in Framework-Based Drivers
http://go.microsoft.com/fwlink/?LinkId=81579

102. Implementing WMI
http://go.microsoft.com/fwlink/?LinkId=81581

103. Specifying Priority Boosts When Completing I/O Requests
http://go.microsoft.com/fwlink/?LinkId=81582

104. Writing a Bug Check Callback Routine
http://go.microsoft.com/fwlink/?LinkId=81587

105. KeRegisterNmiCallback
http://go.microsoft.com/fwlink/?LinkId=81588

106. HAL Library Routines
http://go.microsoft.com/fwlink/?LinkId=81591

107. Using Device Installation Functions
http://go.microsoft.com/fwlink/?LinkId=82107

328 Appendix Driver Information Web Sites

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://go.microsoft.com/fwlink/?LinkId=80622
http://go.microsoft.com/fwlink/?LinkId=80623
http://go.microsoft.com/fwlink/?LinkId=80624
http://go.microsoft.com/fwlink/?LinkId=80625
http://go.microsoft.com/fwlink/?LinkId=80899
http://go.microsoft.com/fwlink/?LinkId=80626
http://go.microsoft.com/fwlink/?LinkId=80906
http://go.microsoft.com/fwlink/?LinkId=80908
http://go.microsoft.com/fwlink/?LinkId=80911
http://go.microsoft.com/fwlink/?LinkId=80914
http://go.microsoft.com/fwlink/?LinkId=81577
http://go.microsoft.com/fwlink/?LinkId=81578
http://go.microsoft.com/fwlink/?LinkId=81579
http://go.microsoft.com/fwlink/?LinkId=81581
http://go.microsoft.com/fwlink/?LinkId=81582
http://go.microsoft.com/fwlink/?LinkId=81587
http://go.microsoft.com/fwlink/?LinkId=81588
http://go.microsoft.com/fwlink/?LinkId=81591
http://go.microsoft.com/fwlink/?LinkId=82107
http://www.it-ebooks.info/

ptg

108. Using GUIDs in Drivers
http://go.microsoft.com/fwlink/?LinkId=82109

109. PnP and Power Management in Framework-Based Drivers
http://go.microsoft.com/fwlink/?LinkId=82110

110. USB Power Management
http://go.microsoft.com/fwlink/?LinkId=82114

111. Plug and Play—Architecture and Driver Support
http://go.microsoft.com/fwlink/?LinkId=82116

112. Managing Kernel Objects
http://go.microsoft.com/fwlink/?LinkId=82272

113. Device Management
http://go.microsoft.com/fwlink/?LinkId=82273

114. Introduction to UMDF
http://go.microsoft.com/fwlink/?LinkId=82316

115. Getting Started with Kernel-Mode Driver Framework
http://go.microsoft.com/fwlink/?LinkId=82317

116. Service User Accounts
http://go.microsoft.com/fwlink/?LinkId=82318

117. WDM to KMDF Porting Guide
http://go.microsoft.com/fwlink/?LinkId=82319

118. Interpreting Bug Check Codes
http://go.microsoft.com/fwlink/?LinkId=82820

119. I/O Completion/Cancellation Guidelines
http://go.microsoft.com/fwlink/?LinkId=82321

120. Introduction to WMI
http://go.microsoft.com/fwlink/?LinkId=82322

121. ExAllocatePoolWithTag
http://go.microsoft.com/fwlink/?LinkId=82323

122. Locks, Deadlocks, and Synchronization
http://go.microsoft.com/fwlink/?LinkId=82717

123. Operating Systems, Stallings
http://go.microsoft.com/fwlink/?LinkId=82718

124. Locking Pageable Code or Data
http://go.microsoft.com/fwlink/?LinkId=82719

125. Microsoft Windows Internals Fourth Edition
http://go.microsoft.com/fwlink/?LinkId=82721

126. PAGED_CODE
http://go.microsoft.com/fwlink/?LinkId=82722

Appendix Driver Information Web Sites 329

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://go.microsoft.com/fwlink/?LinkId=82109
http://go.microsoft.com/fwlink/?LinkId=82110
http://go.microsoft.com/fwlink/?LinkId=82114
http://go.microsoft.com/fwlink/?LinkId=82116
http://go.microsoft.com/fwlink/?LinkId=82272
http://go.microsoft.com/fwlink/?LinkId=82273
http://go.microsoft.com/fwlink/?LinkId=82316
http://go.microsoft.com/fwlink/?LinkId=82317
http://go.microsoft.com/fwlink/?LinkId=82318
http://go.microsoft.com/fwlink/?LinkId=82319
http://go.microsoft.com/fwlink/?LinkId=82820
http://go.microsoft.com/fwlink/?LinkId=82321
http://go.microsoft.com/fwlink/?LinkId=82322
http://go.microsoft.com/fwlink/?LinkId=82323
http://go.microsoft.com/fwlink/?LinkId=82717
http://go.microsoft.com/fwlink/?LinkId=82718
http://go.microsoft.com/fwlink/?LinkId=82719
http://go.microsoft.com/fwlink/?LinkId=82721
http://go.microsoft.com/fwlink/?LinkId=82722
http://www.it-ebooks.info/

ptg

127. PAGED_CODE_LOCKED
http://go.microsoft.com/fwlink/?LinkId=82723

128. SECURITY_IMPERSONATE_LEVEL Enumeration
http://go.microsoft.com/fwlink/?LinkId=82952

129. Specifying WDF Directives in INF Files
http://go.microsoft.com/fwlink/?LinkId=82953

130. WINUSB_SETUP_PACKET
http://go.microsoft.com/fwlink/?LinkId=83355

131. Event Tracing
http://go.microsoft.com/fwlink/?LinkId=84477

132. Engineering Windows 7 Blog
http://blogs.msdn.com/e7

133. Microsoft Developer Network
http://msdn.microsoft.com

134. Microsoft Hardware Newsletter
http://www.microsoft.com/whdc

135. Microsoft Research: SLAM—Automatically Checks C-Based
Programs
http://research.microsoft.com/slam

136. Obtain the WDK version 7.0.0
http://www.microsoft.com/whdc

137. Using WinUSB for User-Mode to USB Device Communication
http://www.osronline.com/article.cfm?article=532

138. The Windows Blog
http://windowsteamblog.com/blogs/developers/default.aspx

139. The Windows 7 Team Blog
http://windowsteamblog.com/blogs/windows7/default.aspx

140. Windows 7 Device Drivers Available for Download
www.blogsdna.com/2462/official_windows_7_device_drivers_
available_for_download.htm

141. Windows 7 Sensor Windows Driver Kit
www.pctipsbox.com/windows_7_sensor_windows.driver_kit

142. Windows 7 WDK—New for Device and Driver Installation
msdn.microsoft.com/en-us/library/dd835060.aspx

330 Appendix Driver Information Web Sites

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.microsoft.com/whdc
http://www.microsoft.com/whdc
http://www.osronline.com/article.cfm?article=532
www.blogsdna.com/2462/official_windows_7_device_drivers_available_for_download.htm
www.blogsdna.com/2462/official_windows_7_device_drivers_available_for_download.htm
www.pctipsbox.com/windows_7_sensor_windows.driver_kit
http://go.microsoft.com/fwlink/?LinkId=82723
http://go.microsoft.com/fwlink/?LinkId=82952
http://go.microsoft.com/fwlink/?LinkId=82953
http://go.microsoft.com/fwlink/?LinkId=83355
http://go.microsoft.com/fwlink/?LinkId=84477
http://blogs.msdn.com/e7
http://msdn.microsoft.com
http://research.microsoft.com/slam
http://windowsteamblog.com/blogs/developers/default.aspx
http://windowsteamblog.com/blogs/windows7/default.aspx
http://www.it-ebooks.info/

ptg

331

BIBLIOGRAPHY

Anderson, Don. Universal Serial Bus System Architecture, Second Edition.
Addison-Wesley, 2001. ISBN 0-201-30975-0

Booch, Grady. Object-Oriented Analysis and Design with Applications,
Third Edition. Addison-Wesley, 2007. ISBN 0-201-89551-X

Deitel, Paul J., and Harvey M. Deitel. C++ How to Program, Seventh
Edition. Prentice Hall, 2009. ISBN 0-13-611726-0

Deitel, Paul J., and Harvey M. Deitel. C How to Program, Sixth Edition.
Prentice Hall, 2009. ISBN 0-13-612356-2

Gamma, Erich, and Richard Helm, Ralph Johnson, John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994. ISBN 0-201-63361-2

Hewardt, Mario, and Daniel Pravat. Advanced Windows Debugging.
Addison-Wesley, 2007. ISBN 0-321-37446-0

Oney, Walter. Programming the Microsoft Windows Driver Model, Second
Edition. Microsoft Press, 2002. ISBN 0-73-561803-8

Rogerson, Dale. Inside COM: Microsoft’s Component Object Model.
Microsoft Press, 1997. ISBN 1-57-231349-8

Russinovich, Mark E., and David A. Solomon. Windows Internals, Fifth
Edition. Microsoft Press, 2009. ISBN 0-73-562530-1

Shanley, Tom, and Don Anderson. PCI System Architecture, Fourth
Edition. Addison-Wesley, 1999. ISBN 0-201-30974-2

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A
abstract data types

data types vs., 8–9
objects (components) based on, 10

ACLs (access control lists), in KMDF, 180
AcquireLock method, IWDFObject, 70
Active Template Library (ATL), UMDF, 85, 112
adaptive time-outs, I/O requests, 66–67
AddRef method, IUnknown

defined, 82, 95
implementing, 125
rules for reference counting, 120
UMDF object model, 45

Administrators, privileges of, 180
algorithms, 8–9
Algorithms + Data Structures = Programs

(Wirth), 8
The Annotated C++ Reference Manual

(Stroustrup), 8
applications, UMDF driver architecture,

44, 83
architecture

device driver objects, 7–12
UMDF, 82–84
WDF. See WDF (Windows Driver

Foundation)
Windows I/O layered, 79–81
WMI, 253–254

Aristotle, on characteristics of objects and
concepts, 7

ATL (Active Template Library), UMDF,
85, 112

attributes
initializing for KMDF objects, 220–221
initializing for WDFDEVICE, 229–231
of KMDF objects, 144–145
setting, 237, 240–241

automatic forwarding, UMDF drivers config-
uring, 54–55

automobiles, functionality of control interfaces
in, 11–12

B
base classes, WMI, 257–260
behaviors, defining abstract data type, 9
Brooch, Grady, 7
buffers

creating for I/O requests, 63–64, 157–158
performing buffered I/O, 301–302
retrieving from I/O requests, 61, 155–156

build.exe, WDK build utility, 183
builds, KMDF

building a project, 186–187
building Toaster example, 187–190
types of, 185–186
WDK build tools, 183–185

builds, UMDF, 75–77
bus drivers, in KMDF

creating, 29
overview of, 135, 137–138

C
C programming language

DDIs (device-driver interfaces), 129
driver development and, 183

C# programming language, abstract data type
behaviors in, 9

C++ How to Program, Seventh Edition (Deitel
2009), 112

C++ programming language
development of, 8
driver development and, 183
object-oriented software development and, 10
supplying notation for writing OOP, 10

INDEX

333

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

C++ template libraries, UMDF drivers using,
112

callbacks
code for registering, 245–248
code for setting self-managed I/O, 315–316
creating and deleting objects, 53–55, 147,

239–240
device callback object, 100–106
driver callback object, 96–100
EvtInterruptDpc callback, 281–282
EvtInterruptIsr callback, 279–281
interfaces for UMDF driver, 47–49
I/O request suspension, 65
Plug and Play support and, 227
power management notification, 71
for power-up/power-down, 250–251
registering for Plug and Play and power

management, 243–245
retrieving buffers from I/O requests, 62
self-managed I/O, 67–68, 161
surprise removal sequence, 75
UMDF driver implementation and, 122–125
wake signal support, 251–252

cancellation
guidelines for I/O requests, 66–67
integrated I/O queuing and, 22–26
of I/O request, 64–65

CAs (certificate authorities), obtaining signed
catalog file from, 194

catalog files (.cat)
in KMDF driver package, 190
obtaining for driver package, 193–194

certificate authorities (CAs), obtaining signed
catalog file from, 194

checked builds, types of builds, 185
class factories, implementing UMDF drivers

with, 122
class IDs (CLSIDs), used by COM, 112
class member variables, defining abstract data

type representations as, 9
classes

definition of, 8
implementing objects as, 10
Skeleton driver, 89–90
troubleshooting WMI, 265
WMI class name, 257–260

cleanup requests
deleting objects, 147, 239–240
device callback, 105
driver callback, 48
in filter driver, 55
I/O requests in KMDF, 149–150
UMDF drivers handling, 53–55

client-server model, COM based on, 82
close requests

devices, 105
files, 48, 235–237
in filter driver, 55
UMDF drivers handling, 53–55

CLSIDs (class IDs), used by COM, 112
CMyDriver object, Skeleton driver, 91
CMyDriver::CreateInstance method, 96–98
co-install DLL, WDF, 191
co-installer section, INF file, 76
COM (component object model)

UMDF driver development and, 81–82
UMDF interfaces based on, 45
UMDF objects based on, 19–20, 45
User Mode Driver host process, 44–45

COM (component object model), creating
UMDF drivers

basic infrastructure implementation,
120–126

COM fundamentals and, 112–114
getting started, 111–112
HRESULT, 114–116
overview of, 111
using COM objects, 116–120

COM (component object model), UMDF
support for device callback
object, 100–106

driver callback object, 96–100
IClassFactory methods, 96
IUnknown methods, 95
overview of, 95

COM clients, 116
Complete or CompleteWithInformation method,

IWDFIoRequest, 65–66
components

defined, 7
KMDF, 131–132
software components, 11–12

334 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WDF, 13–14
WMI exporting information from drivers to

other components, 172–173
Comsup.cpp source file, 95, 108
Comsup.h source file, 95
concurrency

managing in Windows drivers, 22–23
UMDF and, 69

Configure method, device callback objects,
105–106

context. See object context
control device drivers, for legacy (NT 4.0-style)

devices, 29
control device objects

in KMDF, 138–139
overview of, 135
in UMDF, 52

counted UNICODE strings, KMDF security
and, 181

create requests
CreateRequest method, IWDFDevice, 62
driver callback, 47–48
files, 235–237
filter drivers, 55
flow of I/O control requests, 56–57
UMDF drivers handling, 53–55

CreateInstance method, IClassFactory
creating driver callback object, 96
defined, 82, 96
implementing, 122
UMDF driver functionality, 87

CreateInstance method, of device callback
object, 101–102

CreateIOQueue method, IWdfDevice,
109

CreatePreallocatedWdfMemory method,
IWdfDriver, 61, 63–64

CreateRequest method, IWDFDevice, 62
CreateWdfMemory method, IWdfDriver, 63–64
CUnknown class, 123
CUnknown method, IUnknown, 95

D
data providers, registering drivers as WMI data

provider, 254–255
data types, abstract data types vs., 8–9

Data Types (Cleaveland), 8
DDIs (device-driver interfaces)

C-language, 129
driver frameworks, 28
in KMDF drivers, 183
in WDM drivers, 14–15

debugger extensions
for KMDF drivers, 204–205
for UMDF drivers, 75
for WDF drivers, 37
in WinDbg, 201

debugging
driver verification, 198
drivers, 198–200
kernel mode drivers, 200–201
macros and routines for, 203
PREfast tool for, 196–197
registry settings and, 201–203
SDV (Static Driver Verifier) tool, 197
symbols file and, 203
trace logging and, 198
WinDbg applied to Toaster example, 205–208
WinDbg commands, 200–201
WPP tracing and, 205

defaults
configuring default I/O queue, 232–233
execution level in KMDF, 177
safe defaults in KMDF security, 180
synchronization scope in KMDF, 238

design
WDF component functions for, 13
WDF goals, 14–15

Design Patterns (Gamma), 9
DestinationDirs section, INF file, 76
device callback object

overview of, 100–106
Skeleton driver, UMDF, 96–100

device driver architecture overview
objects, 7–12
WDF. See WDF (Windows Driver

Foundation)
device I/O requests

code for creating queues for device I/O control
requests, 297–298

code for finding manual requests, 304–308
code for handling, 299–301

Index 335

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

device I/O requests (contd.)
KMDF, 150
UMDF drivers, 56–57
WDF architecture, 25–26

device objects (DOs), KMDF
bus drivers and PDOs, 135, 137–138
filter drivers and FDO, 135–136
function drivers and functional device objects,

135–137
legacy drivers and control device objects,

138–139
overview of, 135–136
power-down and removal of FDOs, 168–169
power-down and removal of PDOs, 169–170
startup sequence for FDOs, 165–166
startup sequence for PDOs, 166–167

device property store, UMDF, 50–51
device scope

KMDF synchronization, 175, 238
UMDF synchronization, 69–70
WDF architecture, 23

device usage model, KMD driver samples listed
by, 213–215

Device.cpp, adding device-specific code to, 109
device-driver interfaces. See DDIs (device-driver

interfaces)
devices

control device objects in. See control device
objects

creating device interface, 231–232
enumeration and startup in KMDF, 164
enumeration and startup in UMDF, 71–72
filters. See filter DOs (filter device objects)
functional device objects. See FDOs

(functional device objects)
initializing device context area, 229–231
KMDF supported, 129–131
physical device objects. See PDOs (physical

device objects)
power-down and removal in KMDF, 168–170
power-down and removal in UMDF, 72–75
safe naming techniques, 181
setting attributes, 237, 240–241
startup sequence for, 165–167
support for device interrupts, 274
support in WDF, 15–16

supported in User Mode, 42
surprise removal sequence in KMDF, 170–172

DIFx (Driver Install Frameworks), 14
digital signatures, 193–194
direct memory access (DMA), 42
Dirs, optional files in builds, 184
dispatch execution level, KMDF synchronization,

178
dispatch types

handling WMI requests, 255–256
I/O queues, 58–59, 153–154
KMDF supported, 291–292

DLL_PROCESS_ATTACH, 91–92
DLL_PROCESS_DETACH, 91–92
DllGetClassObject function, UMDF

defined, 49
driver functionality, 84–86
implementing UMDF driver infrastructure,

121–122
overview of, 93–95

DllMain export
as driver entry main point, 91–92
implementing UMDF driver infrastructure,

121
UMDF driver functionality and, 84–86

DLLs (dynamic-link libraries)
in KMDF driver package, 190
UMDF as, 33, 82–83
UMDF driver functionality and, 84–85
WDF debugger extensions in, 37
WMI providers and, 253

DMA (direct memory access), 42
DMDF. See KMDF (Kernel Mode Driver

Framework)
DOs. See device objects (DOs)
down device object, I/O requests, 52
DPC, deferred processing of interrupts, 281
driver callback object

creating, 98–100
implementing UMDF driver with class factory,

122
UMDF functions supporting COM, 96–100

driver frameworks, WDF, 28–32
driver host process, in Windows kernel, 32
driver information, web sites for, 323–330
Driver Install Frameworks (DIFx), 14

336 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

driver manager
in UMDF driver architecture, 43–44,

83–84
in Windows kernel, 33

driver model, KMDF, 129–131
driver model, UMDF, 43–45
driver model, WDF

functions of, 13–14
overview of, 16–17
support for Windows 7, 15–16

driver roles, KMDF, 135–136
driver signing, WDF, 14
driver.cpp file

adding device-specific code to, 109
creating driver callback object, 98

DriverEntry object
creating, 225–227
in KMDF drivers, 132

dynamic binding, in KMDF, 208
dynamic testing, in KMDF, 196
dynamic-link libraries. See DLLs (dynamic-link

libraries)

E
Echo driver, UMDF, 42, 88
enumeration

KMDF devices, 164
UMDF devices, 71–72

ERROR_CANCELLED, I/O requests, 65
errors, detecting with PREfast utility, 34–35
ETW (Event Tracing for Windows)

defined, 14
Kernel Mode Drivers using, 36–37
UMDF drivers using, 75

events
drivers implementing callback interfaces for

important, 47–49
driver’s WMI events are not being received,

267
firing WMI events, 260–265
KMDF object model, 139–141
trace events, 269–271
WDF object model, 18
WMI system event log, 269

EvtCleanupCallback routine, 147, 239–240
EvtDestroyCallback routine, 147

EvtDevicePrepareHardware, 283
EvtDeviceReleaseHardware, 283
EvtDriverDeviceAdd callback

managing power policy, 248–249
Plug and Play support and, 227
registering callbacks, 243

EvtInterruptDisable callback, 277
EvtInterruptDpc callback, 281–282
EvtInterruptEnable callback, 276–277
EvtInterruptlsr callback, 279–281
EvtIo* callback, 132
execution levels, KMDF

interaction with synchronization scope,
179–180

overview of, 177–178
setting, 239

Exports.def file, 107
extensions. See debugger extensions

F
Facility field, HRESULT, 114–115
FAILED macro, HRESULT, 115–117
FDOs (functional device objects)

overview of, 135–137
power-down and removal, 168–169, 250
startup sequence for, 165–166

features
KMDF driver, 215–216
UMDF driver, 49–51

fields, HRESULT, 114–115
file close request, I/O requests in KMDF,

235–237
file create request, I/O requests in KMDF,

235–237
filter DOs (filter device objects)

overview of, 135–136
power managed queues and, 152–153

filter drivers
create, cleanup, and close in, 55
KMDF supporting creation of, 29
UMDF drivers identifying themselves as, 55

flags, WDK, 186
frameworks, WDF

component functions for, 13–14
verifier, 36

free builds, types of builds, 185

Index 337

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

functional device objects. See FDOs (functional
device objects)

function drivers
KMDF, 29, 135–137
UMDF, 55

FxDeviceInit, 102–105
FxWdfDriver, 118

G
GetDefaultIoTarget method, IWDFDevice,

61–62
globally unique identifiers. See GUIDs (globally

unique identifiers)
GUIDs (globally unique identifiers)

guidgen.exe, 258
used by COM, 112–113
WMI and, 172

H
HAL (Hardware Abstraction Layer), 2
hardware resources

code for mapping, 284–288
code for unmapping, 288–289
mapping, 283–284

hierarchical arrangement
of KMDF objects, 141–144
of objects, 18

host process, UMDF driver architecture, 43–45,
82–84

HRESULT
overview of, 114–116
testing for simple success or failure, 117

I
IClassFactory interface, UMDF

defined, 82
driver support for, 49, 85–87
implementing UMDF driver infrastructure,

122
methods, 96

IDeviceInitialize interface, 109
IDriverEntry interface, UMDF

device enumeration and startup, 72
driver support for, 48–50, 85–87
methods, 98
Skeleton driver, 90–91

IDWFxx interfacesUMDF, 46–47
IFileCallbackCleanup interface, UMDF

defined, 48
device callback object, 105
handling cleanup and close in function drivers,

55
handling cleanup request, 53–55

IFileCallbackClose interface, UMDF
defined, 48
device callback object, 105
handling cleanup and close in function drivers,

55
handling cleanup request, 53–55

IFR (in-flight recorder), 36
IIDs (interface IDs)

implementing QueryInterface, 125
used by COM, 112–113

IImpersonateCallback interface, UMDF, 50
Impersonate method, IWDFIoRequest, 50
impersonation, UMDF driver, 50
INF files

creating device interface, 231
for KMDF drivers, 190–193
specifying maximum impersonation level of

UMDF driver, 50
for UMDF drivers, 76–77
using Skeleton driver as basis for development,

108
for WDF drivers, 14

in-flight recorder (IFR), 36
in-flight requests, suspending, 160
inheritance, software using, 10–11
Initialize method

adding device-specific code to Device.cpp,
109

device callback object, 102–105
installation

KMDF drivers, 190–193
in Toaster example, 194–196
UMDF drivers, 76–77
WDF drivers, 14

integrated I/O queuing and cancellation, WDF,
22–26, 117

interface IDs (IIDs)
implementing QueryInterface, 125
used by COM, 112–113

338 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

interface pointers, COM
obtaining interface on UMDF object with,

117–118
overview of, 113–114
reference counting and, 120

interfaces
COM, 82, 113
creating device interface for Simple Toaster

example, 231–232
obtaining on UMDF objects, 117–119
Skeleton driver, 90–91
UMDF, 45–47
ways to create device interfaces, 231–232

internal device I/O request, KMDF, 150
internal trace logging, 36–37
interrupt request level (IRLQ), 23
interrupts

code for creating, 275–276
code for enabling, 276–277
code for EvtInterruptDpc callback, 281–282
creating, 274–275
deferred processing of, 281
enabling/disabling, 276
handling, 278–279
overview of, 273
post- interrupt enable and pre-interrupt

disable processing, 277–278
support for, 274
writing Kernel Mode Drivers for handling, 42

InterruptService routines, 278
INX files

optional files in builds, 184
using Skeleton driver as basis for development,

108
I/O manager

defined, 1–2
in Windows kernel, 32–33

I/O mapped resources, 283–284
I/O model, KMDF

accessing IRPs and WDM structures, 161–162
cancelling/suspending requests, 158–160
completing requests, 160–161
creating buffers for requests, 157–158
integrated queuing and cancellation,

22–26, 111
overview of, 147–149
queues, 152–154

request handler, 149–151
request objects, 154
retrieving buffers from requests, 155–156
self-managed callbacks, 161
targets, 156–157
Windows layered architecture for, 79–81

I/O queues
adding device-specific code to Device.cpp, 109
configuring, 293–294
integrated I/O queuing and cancellation,

22–26, 47–49
programming. See programming I/O queues

I/O queues, KMDF
configuring, 222–223
dispatch types and, 153–154
power management and, 152–153
WDFQUEUE object, 152

I/O queues, UMDF
callback interfaces, 47
dispatch types, 58–59
dispatching I/O request to UMDF driver, 53
overview of, 56–58
power management and, 59–60

I/O queues, WDF
integrated queuing and cancellation, 22–26,

279–281
interfaces for UMDF object types, 20

I/O request packets. See IRPs (I/O request
packets)

I/O requests
code for finding, 304–308
code for handling device I/O requests,

299–301
forwarding requests to queues, 302–303
retrieving requests from manual queues,

303–304
WMI, 255–256

I/O requests, KMDF
cancelling/suspending, 158–160
completing, 160–161
configuring, 224
creating, cleaning up, and closing, 149–150
file create and close requests, 235–237
flow of requests through request handler, 151
handling in Simple Toaster example, 233–235
reading, writing, device I/O control, and

internal device I/O control, 150

Index 339

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

I/O requests, KMDF (contd.)
request handler, 149–151
request objects, 154
retrieving buffers from, 155–156

I/O requests, UMDF
adaptive time-outs, 66–67
canceled and suspended, 64–66
completing, 66
creating buffers for, 63–64
I/O queues and, 56–60
overview of, 51–56, 60–61
retrieving buffers from, 61
self-managed I/O, 67–68
sending to I/O target, 61–63

I/O requests, WDF
driver frameworks, 28–30
driver model, 16
integrated queuing and cancellation, 22–26,

232–233
overview of, 24–25

I/O target
creating buffers for I/O requests, 63–64
in KMDF, 156–157
sending I/O requests to, 61–63

IObjectCleanup interface, 48
IOCTL requests, parameter validation and,

180–181
IPnpCallback interface, UMDF

adding device-specific code to Device.cpp, 109
driver callback, 47–48
power management notification, 71
surprise removal sequence, 74–75

IPnpCallbackHardware interface, UMDF
driver callback, 47–48
power management notification, 71
surprise removal sequence, 75

IPnpCallbackSelfManagedIo interface, UMDF
driver callback, 47–48
self-managed I/O callbacks, 67–68

IQueueCallbackCreate interface
create, cleanup, and close in filter drivers, 55
create request in function drivers, 55
driver callback, 47–48
handling create requests, 53–55

IQueueCallbackDefaultIoHandler interface, 48
IQueueCallbackDeviceIoControl interface, 49
IQueueCallbackIoResume interface, 49

IQueueCallbackIoStop interface, UMDF
defined, 49
I/O request suspension, 65
power-managed queues, 59

IQueueCallbackRead interface, UMDF, 47–49
IQueueCallbackWrite interface, UMDF, 49
IRequestCallbackCancel interface, UMDF

defined, 49
I/O request cancellation, 65
retrieving buffers from I/O requests, 62

IRequestCallbackCompletion interface, UMDF,
62

IRequestCallbackRequestCompletion interface,
UMDF, 49

IRLQ (interrupt request level), 23
IRP_MJ_SYSTEM_CONTROL requests,

172–173, 255–256
IRPs (I/O request packets)

accessing from KMDF, 161–162
creating in Windows kernel, 32–33
handling WMI requests, 255–256
I/O request flow to UMDF driver and, 52–53
overview of, 23–24
Windows I/O architecture and, 81
WMI IRPs and system event log, 269

IsEqualID function, comparing IIDs, 125–126
IUnknown interface, COM

as core COM interface, 112
defined, 82
device callback objects and, 105
implementing UMDF callback objects,

123–125
method names, 95

IWDFDevice interface, UMDF
creating targets, 62
device callback object, 105
self-managed I/O callbacks, 67–68
sending I/O requests to I/O target, 61–62
Skeleton driver, 91

IWDFDeviceInitialize interface, UMDF
configuring automatic forwarding, 54–55
create, cleanup, and close in filter drivers, 55
device callback object and, 102–105
driver callback object and, 98
Skeleton driver, 91
UMDF driver creating property store,

50–51

340 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

IWdfDriver interface, UMDF
creating buffers for I/O requests, 63–64
creating driver callback object, 98
retrieving buffers from I/O requests, 61
Skeleton driver, 91

IWDFFileHandleTargetFactory interface, 62
IWdfIoQueue interface, UMDF

device callback object, 105
overview of, 56–58
Start method, 60
Stop method, 60
StopSynchronously method, 60

IWDFIoRequest interface, UMDF
impersonation requests, 50
I/O request cancellation, 65
UMDF driver impersonation requests, 66

IWDFIoTarget interface, UMDF, 61–62
IWDFIoTargetStateManagement interface,

UMDF, 63
IWDFloRequest interface, UMDF, 60–61
IWDFMemory interface, UMDF, 61
IWDFNamedPropertyStore interface, UMDF,

50–51
IWDFObject interface, drivers, 70
IWDFoRequest interface, UMDF, 62
IWDFUsbTargetFactory interface, UMDF, 62

K
Kant, Immanuel, 7
KD, for kernel debugging, 199
Kernel Mode Driver Framework. See KMDF

(Kernel Mode Driver Framework)
kernel mode drivers

debugging, 200–201
internal trace logging for, 36–37
UMDF driver architecture and, 43, 45, 82–84
WDF component functions for, 13–14
WMI requests for, 27
writing, 42

KMDF (Kernel Mode Driver Framework)
bus drivers and physical device objects, 135,

137–138
comparing KMDF drivers with WDM drivers,

132–135
components of, 131–132
design goals for WDF, 15
device and driver support in WDF, 15–16

device objects and driver roles, 135–136
driver structure, 132
filter drivers and filter device objects, 135–136
function drivers and functional device objects,

135–137
internal trace logging for, 36–37
I/O model. See I/O model, KMDF
legacy drivers and control device objects,

138–139
object model. See object model, KMDF
overview of, 129
plug and play and power management support.

See Plug and Play and power
management

programming drivers for. See programming
KMDF drivers

programming hardware drivers. See program-
ming KMDF hardware drivers

supported devices and driver types, 129–131
understanding, 28–30
WDF component functions for, 14
WDF driver model, 16–17

KMDF installation and build
building a project, 186–187
building Toaster example, 187–190
catalog files and digital signatures, 193–194
debugger extensions, 204–205
debugging drivers, 198–200
debugging kernel mode drivers, 200–201
driver verification, 198
installing drivers, 190–193
installing Toaster example, 194–196
macros and routines for debugging, 203
overview of, 183
PREfast debugging tool, 196–197
registry settings and debugging features,

201–203
SDV (Static Driver Verifier) tool, 197
symbols file and debugging features, 203
testing approaches, 196
trace logging, 198
types of builds, 185–186
versioning and dynamic binding and, 208–209
WDK build tools, 183–185
WinDbg applied to Toaster example, 205–208
WPP tracing and, 205

KMDF Verifier, 198

Index 341

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

L
legacy drivers, in KMDF, 138–139
lines of code, comparing KMDF drivers with

WDM drivers, 134
LocalService security context, UMDF drivers, 50
locking constraint, UMDF, 23, 69
locks

comparing KMDF drivers with WDM drivers,
134

KMDF drivers, 178–179
UMDF drivers, 70

LockServer method, IClassFactory, 96, 122
logs

system event log, 269
trace logging. See trace logging
WMI WDM provider log, 269

M
macros

for debugging in KMDF, 203
for declaring object context, 221–222
initializing context area and attributes for

device objects, 230–231
used in KMDF samples, 218–219
using HRESULT, 115–117

makefile
required files in builds, 184
in Toaster sample, 187–188

Makefile.inc
optional files in builds, 184
in Toaster sample, 187–188

managed object format (.mof) resource
files, 184

manual dispatch type
code for finding manual requests, 304–308
creating manual queues, 294
I/O queues and, 59
KMDF and, 154, 291–292
retrieving requests from manual queues,

303–304
mapping hardware resources

code for, 284–288
overview of, 283–284

MarkCancelable method, IWDFIoRequest, 65
member functions, abstract data type algorithms

as, 9

memory
creating buffers for I/O requests, 63–64
retrieving buffers from I/O requests, 61

memory-mapped resources, 284
methods

COM, 113
KMDF objects, 139–141
return from COM, 114–116
unable to access driver’s WMI method, 266
WDF objects, 18

.mof (managed object format) resource files, 184
morphology, of objects, 12

N
names

KMD driver samples listed by, 211–212
security of KMDF names, 181
simplifying GUID, 112–113

network-connected devices, UMDF support for, 42
no scope

KMDF, 175, 238
UMDF, 70
WDF, 23

nonpaged pools, writing kernel mode drivers
for, 42

nonpower-managed queues, UMDF, 60
notations, Object Oriented Design, 10
NT_SUCCESS macro, 115
NTSTATUS, converting into HRESULT,

116–117
NTTARGETFILES statement, 107

O
OBG (Object Management Group), 8
object context

initializing device context area, 229–231
in KMDF object model, 145–146
programming KMDF drivers and, 221–222

Object Management Group (OBG), 8
object model

classes incorporating attributes of, 10
defined, 10
inheritance as attribute of, 10–11
software components, 11–12
UMDF, 45
WDF, 17–20

342 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

object model, KMDF
creating objects, 146–147, 220–221
deleting objects, 146–147, 239–240
driver structure and concepts and, 219
hierarchical structure of, 141–144
methods, properties, and events, 139–141
object attributes, 144–145
object context, 145–146, 221–222
object types, 18–19
overview of, 139
setting object attributes, 144–145, 237,

240–241
types of objects, 142–144

Object-Oriented Analysis and Design with
Applications, Third Edition (Booch),
9, 10

Object Oriented Programming (OOP)
evolution into object model, 10
software techniques, 7

objects
COM, 112–113
creating driver objects, 225–227
defining software, 8–9
driver callback, 47–49
nature of, 7–8
Skeleton driver, 90–91
software components, 11–12
UMDF driver, 45–47
understanding, 10–11

OnCancel method, IRequestCallbackCancel,
62, 65

OnCompletion method,
IRequestCallbackCompletion, 62

OnCreateFile method, IQueueCallbackCreate,
UMDF create request in function
drivers, 55

OnDeInitialize method, IDriverEntry,
85, 98

OnDeviceAdd method, IDriverEntry
adding device-specific code to Driver.cpp, 109
creating driver callback object, 98–100
device enumeration and startup, 72
UMDF driver functionality, 85–87

OnImpersonation method, UMDF drivers, 50
OnInitialize method, IDriverEntry, 85–87, 98
OnIoStop method, IQueueCallbackIoStop,

59, 65

OnReleaseHardware method,
IPnpCallbackHardware, 75

OnSurpriseRemoval method, IPnpCallback, 47,
74–75

OOP (Object Oriented Programming)
evolution into object model, 10
software techniques, 7

Operation, in KMDF object model, 139

P
PAGED_CODE macro, 218
parallel dispatch type

creating parallel queues, 294
handling requests from parallel queues,

298–299
I/O queues and, 58
KMDF supported, 154, 291–292

parameter validation, KMDF security, 180–181
parent/child relationships, in KMDF object

model, 141–144
passive execution level, KMDF synchronization,

177
PCIDRV driver. See also programming KMDF

hardware drivers, 273
PDOs (physical device objects)

in KMDF, 137–138
overview of, 135
power-down and removal, 169–170
power managed queues and, 152–153
power-up/power-down, 251
startup sequence for, 166–167

performance goals, impacting device driver
authors, 2–3

persistence, implementing in software object, 12
PFD (PREFAST for Drivers). See PREfast

debugging tool
physical device objects. See PDOs (physical

device objects)
Plato, on characteristics of objects and concepts, 7
Plug and Play and power management

flow of I/O control requests, 56–57
integrated I/O queuing and cancellation,

22–26, 55
I/O queues and, 59–60
overview of, 20–22
programming. See Programming Plug and Play

and power management

Index 343

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Plug and Play and power management (contd.)
UMDF notification, 70–71
UMDF support for, 31
WDF driver model including, 16
WDF support for, 20–22

Plug and Play and power management, in
KMDF

counted UNICODE strings, 181
device enumeration and startup, 164
execution levels, 177–178
interactions of synchronization mechanisms,

179–180
I/O queues and, 152–153
locks, 178–179
overview of, 163–164
parameter validation, 180–181
power down and removal of filter DOs,

168–169
power down and removal of physical DOs,

169–170
safe defaults, 180
safe device naming techniques, 181
security, 180
startup sequence for function and filter DOs,

165–166
startup sequence for physical DOs, 166–167
support for, 29–30
surprise removal sequence, 170–172
synchronization issues, 173–175
synchronization scope, 175–177
WMI request handler, 172–173

Plug and Play callback interface, 47–48
policies

power management and, 244–245, 248–249
sample code for setting power policy,

249–250
polymorphic behavior, implementing in software

object, 12
power down

callbacks for, 250–251
of filter DOs, 168–169
overview of, 167
of physical DOs, 169–170
self-managed I/O during device power down

and removal, 314
surprise removal sequence, 170–172

UMDF device, 72–74
power management. See Plug and Play and

power management
power up, callbacks for, 250–251
power-managed queues, UMDF, 59
PREfast debugging tool

source code analysis with, 196–197
UMDF drivers using, 76
WDF testing tool, 34–35

privileges, administrators, 180
programming I/O queues

buffered I/O and, 301–302
code for creating and initializing watchdog

timer, 316–317
code for creating queues for device I/O control

requests, 297–298
code for creating queues for read requests,

296–297
code for creating queues for write requests,

294–296
code for deleting watchdog timer, 320–321
code for finding requests, 304–308
code for handling device I/O requests,

299–301
code for reading/writing the registry, 309–312
code for restarting watchdog timer, 319–320
code for setting self-managed I/O callbacks,

315–316
code for starting watchdog timer, 317
code for stopping watchdog timer, 318
creating and configuring, 293–294
forwarding requests to queues, 302–303
handling requests from parallel queues,

298–299
implementing watchdog timers, 315
overview of, 291–293
reading/writing the registry, 308–309
retrieving requests from manual queues,

303–304
self-managed I/O device startup and restart,

313–314
self-managed I/O during device power down

and removal, 314
watchdog timer for self-managed I/O, 312–313

programming KMDF drivers
creating objects, 220–221

344 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

driver structure and concepts and, 219
I/O queues, 222–223
I/O requests, 224
macros used in KMDF samples, 218–219
object context areas, 221–222
overview of, 211
samples listed by device usage model, 213–215
samples listed by features supported, 215–216
samples listed by name, 211–212
WDM samples compared with KMDF

samples, 216–218
programming KMDF drivers, in Featured

Toaster example
deleting objects, 239–240
file create and close requests, 235–237
overview of, 235
setting device object attributes, 237, 240–241
setting execution levels, 239
setting synchronization scope, 238

programming KMDF drivers, in Simple Toaster
example

configuring default I/O queue, 232–233
creating device interface, 231–232
creating DriverEntry object, 225–227
initializing device context area, 229–231
I/O request handler, 233–235
overview of, 224

programming KMDF hardware drivers
code for creating interrupts, 275–276
code for enabling interrupts, 276–277
code for EvtInterruptDpc callback, 281–282
code for EvtInterruptIsr callback, 279–281
code for mapping resources, 284–288
code for unmapping resources, 288–289
creating interrupts, 274–275
deferred processing for interrupts, 281
enabling/disabling interrupts, 276
handling interrupts, 278–279
mapping resources, 283–284
overview of, 273
post-interrupt enable and pre-interrupt disable

processing, 277–278
supporting device interrupts, 274

programming Plug and Play and power
management

callback for wake signal support, 251–252

callbacks for power-up/power-down, 250–251
managing power policy, 248–249
overview of, 243
registering callbacks, 243–245
sample code for callbacks, 245–248
sample code for setting power policy,

249–250
programming UMDF drivers

brief COM information, 81–82
driver DDL and exports, 91–95
functions for COM support. See COM

(component object model), UMDF
support for

overview of, 79
required driver functionality, 84–87
sample drivers, 87–91
UMDF architecture, 82–84
using Skeleton driver as basis for development,

106–110
Windows I/O, 79–81

programming WMI support
class names and base classes, 257–260
event tracing, 269–271
firing events, 260–265
handling WMI requests, 255–256
overview of, 253
registering driver as WMI data provider,

254–255
requirements for WDM drivers,

256–257
testing driver support, 268–269
troubleshooting, 265–268
WMI architecture and, 253–254

properties
KMDF object model, 139–141
unable to access driver’s WMI properties, 266
WDF object model, 18

Q
QI (query-interface), COM, 82
QueryIClassFactory method, IClassFactory, 96
query-interface (QI), COM, 82
QueryInterface method, IClassFactory, 96
QueryInterface method, IUnknown

defined, 82, 95
device callback object, 106

Index 345

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

QueryInterface method, IUnknown (contd.)
implementing, 125–126
obtaining interface on UMDF object, 117, 119
obtaining interface pointer in COM, 113
UMDF object model, 45

QueryIUnknown method, IUnknown
defined, 95
device callback object, 105

queue scope
KMDF, 175, 238
WDF, 23

queues, I/O. See I/O queues

R
.rc (resource files), optional files in builds, 184
read requests

code for creating queues for, 296–297
creating manual queues, 294
flow of I/O control requests, 56–57
KMDF I/O requests, 150

reference counting
implementing UMDF callback objects, 125
overview of, 119–120

reflector
I/O request flow to UMDF driver, 52, 83–84
in UMDF driver architecture, 43–44
in Windows kernel, 32

registry
code for reading/writing, 309–312
KMDF debugging features and, 201–203
reading/writing, 308–309

Release method, IUnknown
defined, 82, 95
implementing, 125
rules for reference counting, 120
UMDF object model, 45

ReleaseLock method, IWDFObject, 70
removal, KMDF devices

filter DOs, 168–169
overview of, 167
physical DOs, 169–170
surprise removal sequence, 170–172

removal, of devices, 314
removal, UMDF device

overview of, 72–74
surprise removal sequence, 74–75

representations, abstract data type, 8–9
requests. See I/O requests
resource files (.rc), optional files in builds, 184
RetrieveDevicePropertyStore method,

IWDFDeviceInitialize, 50–51
Return code field, HRESULT, 114–115
\root\wmi class, 265–266
ROSE tool, 10
routines, for debugging in KMDF, 203
run-time environment

UMDF driver architecture, 43
using UMDF COM objects in, 116–120

S
S_FALSE return value, HRESULT, 115–116
S_OK return value, HRESULT, 55, 115–116
SDDL (security description definition

language), 181
SDV (Static Driver Verifier) tool

compile-time unit-testing with, 197
overview of, 35–36
PFD helping to prepare for, 35

security, KMDF
counted UNICODE strings, 181
overview of, 180
parameter validation, 180–181
safe defaults, 180
safe device naming techniques, 181

security, WMI, 267
security description definition language (SDDL),

181
self-managed I/O

callbacks in KMDF, 161
callbacks in UMDF, 67–68
code for creating and initializing watchdog

timer, 316–317
code for deleting watchdog timer, 320–321
code for restarting watchdog timer, 319–320
code for setting self-managed I/O callbacks,

315–316
code for starting watchdog timer, 317
code for stopping watchdog timer, 318
during device power-down and removal, 314
device startup and restart, 313–314
implementing watchdog timers, 315
watchdog timer for, 312–313

346 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

semantics, abstract data type, 8–9
sequential dispatch type

I/O queues and, 58
KMDF support for, 154, 291–292

service control manager, 1–2
Service Processes, 1–2
serviceability, WDF support for, 37–38
SetFilter method

IDeviceInitialize, 109
IWDFDeviceInitialize, 55

SetLockingConstraint method,
IWdfDeviceInitialize, 105

Severity field, HRESULT, 114–115
Skeleton driver, UMDF

as basis for development, 106–110
classes, objects and interfaces, 89–90
component source files, 89
defined, 42, 88
device callback object, 96–106
overview of, 88

small-scale integration (SSI) in software, 11
software

defining objects, 8–9
gaining understanding, 10–11
on nature of objects, 7–8

software-only drivers, UMDF supporting, 42
source code files

analysis with PREfast tool, 196–197
required files in builds, 184

sources files
required files in builds, 184
in Toaster sample, 188–189
using Skeleton driver as basis for

development, 107
SOURCES statement, customizing Sources

file, 107
spin locks, in KMDF synchronization, 179–180
SSI (small-scale integration) in software, 11
Standard Template Library (STL), UMDF

drivers, 112
Start method, IWDFIoQueue, 60
startup

for functions and filter DOs, 165–166
KMDF devices, 164
for physical DOs, 166–167

self-managed I/O for, 313–314
UMDF devices, 71–72

state machine, 21–22
state variables, 134
static analysis, 14
Static Driver Verifier. See SDV (Static Driver

Verifier)
static testing, KMDF approaches to testing, 196
STL (Standard Template Library), UMDF

drivers, 112
Stop method, IWDFIoQueue, 60
StopSynchronously method,

IWDFIoQueue, 60
strict timing loops, kernel mode drivers for, 42
strings, preventing string handling errors in

KMDF, 181
SUCCEEDED macro, HRESULT,

115–117
Support Processes, 1–2
surprise removal sequence

KMDF devices, 170–172
UMDF devices, 74–75

suspension, of I/O requests, 65–67
symbols file, KMDF debugging and, 203
synchronization, KMDF

comparing KMDF drivers with WDM
drivers, 134

execution levels, 177–178, 239
interactions of synchronization mechanisms,

179–180
issues, 173–175
locks, 178–179
scope, 175–177
scope options, 238
setting synchronization scope for Featured

Toaster example, 238
synchronization, UMDF

issues, 68–70
overview of, 69

synchronization scope
KMDF and, 175–177
options for, 238
WDF and, 23
syntax, abstract data type, 8–9
system event log, 269

Index 347

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

T
TARGETNAME statement, customizing sources

file, 107
targets, I/O

creating buffers for I/O requests, 63–64
KMDF, 156–157
sending I/O requests to, 61–63

template libraries, UMDF drivers using
C++, 112

testing. See also debugging
KMDF approaches to, 196
UMDF drivers, 75–77
WDF component functions for, 14
WDF tools for, 33–38
WMI driver support, 268–269

timers. See watchdog timer
Toaster sample

building, 190
installing, 194–196
makefile and Makefile.inc, 187–188
sources files in, 188–189
WinDbg applied to, 205–208

trace logging
KMDF, 198
WDF component functions for, 14
WDF support for, 36–37
WMI, 269–271
WPP, 205

troubleshooting WMI
changes in WMI security settings not taking

effects, 267
driver’s WMI events are not being received,

267
overview of, 265–268
unable to access driver’s WMI properties and

methods, 266

U
UMDF (User Mode Driver Framework)

build, test and debug, 75–77
COM support. See COM (component object

model), UMDF support for
design goals for WDF, 15
developing drivers with COM. See COM

(component object model), creating
UMDF drivers

device and driver support in WDF, 15–16

device enumeration and startup, 71–72
device power-down and removal, 72–75
devices supported, 42
driver callback interfaces, 47–49
driver features, 49–51
driver model, 43–45
integrated I/O queuing and cancellation,

22–26, 179–180
interfaces for object types, 19–20
internal trace logging for, 36–37
I/O queues, 56–60
I/O request flow, 51–56
I/O request objects, 60–67
KMDF vs., 41
locking constraint, 23
locks, 70
object model, 45
objects, 45–47
overview of, 28, 41
Plug and Play and power management

notification, 70–71
Plug and Play and power management

support, 20–22
programming drivers for. See programming

UMDF drivers
self-managed I/O, 67–68
synchronization issues, 68–70
understanding, 31–32
WDF component functions for, 14
WDF driver model, 16–17
when to use User Mode Drivers, 129
in Windows kernel, 32–33

UML (Universal Modeling Language), 10
UNICODE, counted UNICODE strings, 181
unit testing, with SDV (Static Driver Verifier),

197
Universal Modeling Language (UML), 10
Universal Serial Bus (USB) devices, 42
UnmarkCancelable method, IWDFIoRequest,

65
UNREFERENCED_PARAMETER macro,

218–219
up device object, 52
updates, UMDF drivers, 77
USB (Universal Serial Bus) devices, 42
USB/Echo Driver, UMDF, 42
USB/Filter driver, UMDF, 42, 88

348 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

USB/FX2_Driver, UMDF, 42
User Mode DDI, 33
User Mode Driver Framework. See UMDF

(User Mode Driver Framework)
user mode drivers

host process, 44–45
when to use User Mode Drivers, 129

uuidgen.exe, 258

V
values, of data types vs. abstract data types, 8
VB.NET programming language, 9
verification, using Static Driver Verifier

for, 35–36
Verifier, KMDF, 198
versioning

KMDF drivers and, 208–209
UMDF drivers and, 77
WDF driver model including, 16
WDF support for, 14, 37–38

VTable pointers, COM, 114

W
wait locks, in KMDF synchronization, 179
wake signal support, 251–252
watchdog timer

code for deleting watchdog timer, 320–321
code for restarting watchdog timer, 319–320
code for setting self-managed I/O callbacks,

315–316
code for starting watchdog timer, 317
code for stopping watchdog timer, 318
implementing watchdog timers, 315
for self-managed I/O, 312–313
self-managed I/O device startup and restart,

313–314
self-managed I/O during device power down

and removal, 314
Wbemtest, testing WMI support, 268
WDF (Windows Driver Foundation)

co-install DLL, 191
component functions, 13–14
defined, 3
design goals for, 14–15
device and driver support in, 15–16
driver frameworks, 28–32
driver model, 16–17

execution levels, 177–178
installation package, 190
integrated I/O queuing and cancellation,

22–26, 88
KMD driver samples listed by device usage,

213–214
KMD driver samples listed by features

supported, 215–216
KMD driver samples listed by name, 211–212
locks, 178–179
object model, 17–20
obtaining interface on UMDF object,

117–118
Plug and Play and power management

support, 20–22, 163
synchronization scope, 175–177
Windows kernel, 32–33
WMI requests for kernel mode drivers only, 27

WDF (Windows Driver Foundation), develop-
ment and testing tools

debugger extensions, 37
defined, 13
frameworks verifier, 36
overview of, 33–34
PREfast debugging tool, 34–35
serviceability and versioning, 37–38
Static Driver Verifier (SDV), 35–36
trace logging, 36–37

Wdf section, INF file, 76
WDF_IO_QUEUE_CONFIG, 223
WdfDefault, 54–55
WDFDEVICE

creating and initializing, 227, 316–317
initializing context area and attributes for,

229–231
KMDF driver structure and concepts, 219

WDFDRIVER
creating, 226
KMDF driver structure and concepts, 219
as root object of KMDF object model, 141

WDFINTERRUPT, 274
WDFIOTARGET object, 156–157
WdfKd.dll, 37
WDFMEMORY object, 155–158
WDFQUEUE object, 152, 219
WDFREQUEST object, 154, 224
WdfTrue, 54–55

Index 349

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

WDFWMIINSTANCE, 173
WDK (Windows Driver Kit)

building UMDF drivers with, 75
flags, 186
functions, 13–14
KMDF distributed via, 131
PFD tool in, 34–35

WDM (Windows Driver Model)
accessing WDM structures from KMDF,

161–162
comparing KMDF drivers with WDM drivers,

132–135
complexity and limitations of, 14–15
defined, 3
KMDF and, 183
KMDF as replacement for, 129–130
power state changes and, 163
signing WDF drivers same way as drivers

in, 14
WDM samples compared with KMDF

samples, 216–218
WMI requirements for WDM drivers,

256–257
WMI WDM provider log, 269

web sites, for driver information, 323–330
WinDbg

applied to Toaster example, 205–208
kernel debugging, 199–200
symbols files and, 203
types of commands, 200–201

WindDbg, 199
Windows Driver Foundation. See WDF

(Windows Driver Foundation)
Windows Driver Kit. See WDK (Windows Driver

Kit)
Windows Driver Model. See WDM (Windows

Driver Model)
Windows Internals, Fifth Edition (Russinovich

and Solomon), 79
Windows I/O architecture, 79–81

Windows kernel
UMDF, 43–44, 83
WDF, 32–33

Windows Management Instrumentation. See
WMI (Windows Management
Instrumentation)

Windows Software Trace Preprocessor. See WPP
(Windows Software Trace Preprocessor)

WMI (Windows Management Instrumentation)
architecture data flow, 54–55, 253–254
class names and base classes, 257–260
event tracing, 269–271
exporting information from drivers to other

components, 172–173
firing events, 260–265
for Kernel Mode Drivers only, 27
programming support for. See programming

WMI support
registering driver as WMI data provider,

254–255
request handling, 255–256
requirements for WDM drivers, 256–257
testing driver support, 268–269
troubleshooting, 265–268

Wmic, testing WMI support in driver, 268
WmiEvent class, 258, 260
Wmimofck, testing WMI support in driver, 268
wmiprov.log, 269
WPP (Windows Software Trace Preprocessor)

applying to KMDF drivers, 205
kernel mode drivers using, 36–37
KMDF trace logging based on, 198

write requests
code for creating queues for, 294–296
creating parallel queues, 294
flow of I/O control requests, 56–57
KMDF I/O requests, 150
options for, 234

wudfdd.h, 123
WudfExt.dll, 37

350 Index

Wow! eBook <WoweBook.Com>

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents
	Preface
	About the Author
	Introduction
	PART I: DEVICE DRIVER ARCHITECTURE OVERVIEW
	Chapter 1 Objects
	1.1 Nature of an Object
	1.2 What Is a Software Object?
	1.3 Gaining an Understanding
	1.4 Software Components

	Chapter 2 Windows Driver Foundation (WDF) Architecture
	2.1 WDF Component Functions
	2.2 Design Goals for WDF
	2.3 Device and Driver Support in WDF
	2.4 WDF Driver Model
	2.5 WDF Object Model
	2.6 Plug and Play and Power Management Support
	2.7 Integrated I/O Queuing and Cancellation
	2.8 WMI Requests (Kernel Mode Drivers Only)
	2.9 Driver Frameworks
	2.10 Windows Kernel
	2.11 Tools for Development and Testing

	PART II: USER MODE DRIVERS
	Chapter 3 Windows 7 User Mode Drivers Overview and Operation
	3.1 Devices Supported in User Mode
	3.2 UMDF Model Overview
	3.3 Driver Callback Interfaces
	3.4 UMDF Driver Features
	3.5 I/O Request Flow
	3.6 I/O Queues
	3.7 I/O Request Objects
	3.8 Self-Managed I/O
	3.9 Synchronization Issues
	3.10 Locks
	3.11 Plug and Play and Power Management Notification
	3.12 Device Enumeration and Startup
	3.13 Device Power-Down and Removal
	3.14 Build, Test, and Debug

	Chapter 4 Programming Drivers for the User Mode Driver Framework
	4.1 Windows I/O Overview
	4.2 Brief COM Information
	4.3 UMDF Architecture
	4.4 Required Driver Functionality
	4.5 UMDF Sample Drivers
	4.6 Driver Dynamic-Link Library and Exports
	4.7 Functions for COM Support
	4.8 Using the Skeleton Driver as a Basis for Development

	Chapter 5 Using COM to Develop UMDF Drivers
	5.1 Getting Started
	5.2 Using UMDF COM Objects
	5.3 Basic Infrastructure Implementation

	PART III: KERNEL MODE DRIVERS
	Chapter 6 Windows 7 Kernel Mode Drivers Overview and Operations
	6.1 KMDF Supported Devices
	6.2 KMDF Components
	6.3 KMDF Driver Structure
	6.4 Comparing KMDF and WDM Drivers
	6.5 Device Objects and Driver Roles
	6.6 KMDF Object Model
	6.7 KMDF I/O Model

	Chapter 7 Plug and Play and Power Management
	7.1 Plug and Play and Power Management Overview
	7.2 Device Enumeration and Startup
	7.3 WMI Request Handler
	7.4 Synchronization Issues
	7.5 Security

	Chapter 8 Kernel Mode Installation and Build
	8.1 WDK Build Tools
	8.2 Build Environment
	8.3 Building a Project
	8.4 Building Featured Toaster
	8.5 Installing a KMDF Driver
	8.6 Catalog Files and Digital Signature
	8.7 Installing Featured Toaster
	8.8 Testing a KMDF Driver
	8.9 Debugging Macros and Routines
	8.10 WDF Debugger Extension Commands
	8.11 Using WPP Tracing with a KMDF Driver
	8.12 Using WinDbg with Featured Toaster
	8.13 Versioning and Dynamic Binding

	Chapter 9 Programming Drivers for the Kernel Mode Driver Framework
	9.1 Differences Between KMDF and WDM Samples
	9.2 Macros Used in KMDF Samples
	9.3 KMDF Driver Structure and Concepts
	9.4 A Minimal KMDF Driver: The Simple Toaster
	9.5 Sample Software-Only Driver

	Chapter 10 Programming Plug and Play and Power Management
	10.1 Registering Callbacks
	10.2 Managing Power Policy
	10.3 Callbacks for Power-Up and Power-Down
	10.4 Callback for Wake Signal Support

	Chapter 11 Programming WMI Support
	11.1 WMI Architecture
	11.2 Registering as a WMI Data Provider
	11.3 Handling WMI Requests
	11.4 WMI Requirements for WDM Drivers
	11.5 WMI Class Names and Base Classes
	11.6 Firing WMI Events
	11.7 Troubleshooting Specific WMI Problems
	11.8 Techniques for Testing WMI Driver Support
	11.9 WMI Event Tracing

	Chapter 12 Programming KMDF Hardware Driver
	12.1 Support Device Interrupts
	12.2 Handling Interrupts
	12.3 Mapping Resources

	Chapter 13 Programming Multiple I/O Queues and Programming I/O
	13.1 Introduction to Programming I/O Queues
	13.2 Creating and Configuring the Queues
	13.3 Handling Requests from a Parallel Queue
	13.4 Forwarding Requests to a Queue
	13.5 Retrieving Requests from a Manual Queue
	13.6 Reading and Writing the Registry
	13.7 Watchdog Timer: Self-Managed I/O

	Appendix: Driver Information Web Sites
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

