
[Next]

 Copyright © 2000 by David A. Solomon and
Mark E. Russinovich



[Previous] [Next]

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by David A. Solomon and Mark E.
Russinovich

All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Solomon, David A.
       Inside Microsoft Windows 2000 / David A. Solomon,
Mark Russinovich.
           p.   cm.
       ISBN 0-7356-1021-5
       1. Microsoft Windows (Computer file)   2. Operating
systems (Computers)   I.
    Russinovich, Mark.   II. Title.

QA76.76.O63 S6285 2000
005.4'4769--
dc21                                                                       00-
031888

Portions previously published in Windows NT Magazine and
Windows 2000 Magazine. Copyright ©
1997, 1998, 1999, 2000 by Windows 2000 Magazine.
Reprinted and modified with permission.

Printed and bound in the United States of America.



1 2 3 4 5 6 7 8 9     WCWC     5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the
British Library.

Microsoft Press books are available through booksellers and
distributors worldwide. For 
further information about international editions, contact
your local Microsoft Corporation 
office or contact Microsoft Press International directly at fax
(425) 936-7329. Visit our Web 
site at mspress.microsoft.com. Send comments to
mspinput@microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc.
Intel is a registered trademark of Intel Corporation. Active
Directory, ActiveX, DirectX, Microsoft, Microsoft Press,
MSDN, MS-DOS, Visual Basic, Visual C++, Visual Studio,
Win32, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Other product and
company names mentioned herein may be the trademarks
of their respective owners.

Unless otherwise noted, the example companies,
organizations, products, people, and events
depicted herein are fictitious. No association with any real
company, organization, product,
person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Sally Stickney
Technical Editor: Jean Ross

http://mspress.microsoft.com/
mailto:mspinput@microsoft.com


[Previous] [Next]

To my wife, Shelly, my partner in life. I'll always love you.
—D.S.

For Susan, my soul mate.
—M.R.



[Previous] [Next]



Historical Perspective
It is a pleasure to be able to write a few words about such a
significant work as this book, and I thank the authors for
providing me the opportunity to do so.

I first met David Solomon when I was working at Digital
Equipment Corporation on the VMS operating system for
VAX and he was only 16. Since that time he has been
involved with operating system development and teaching
operating system internals. I met Mark Russinovich
relatively recently but have been aware of his expertise in
the area of operating systems for some time. He has done
some amazing work, such as his NTFS file system running
on Microsoft Windows 98 and his "live" Microsoft Windows
2000 kernel debugger that can be used to peer into the
Windows 2000 system while it is running.

The beginnings of Windows NT started in October 1988 with
a set of goals to produce a portable system that addressed
OS/2 compatibility, security, POSIX, multiprocessing,
integrated networking, and reliability. With the advent and
huge success of Windows 3.0, the system goals were soon
changed to natively address Windows compatibility directly
and move OS/2 compatibility to a subsystem.

We originally thought we could produce the first Windows
NT system in a little over two years. It actually ended up
taking us four and a half years to the first release in the
summer of 1993, and that release supported the Intel i386,
the Intel i486, and the MIPS R4000 processors. Six weeks
later we also introduced support for the Digital Alpha
processors.



The first release of Windows NT was larger and slower than
expected, so the next major push was a project called
Daytona, after the speedway in Florida. The main goals for
this release were reducing the size of the system,
increasing the speed of the system, and of course trying to
make it more reliable. Six months after the release of
Windows NT 3.5 in the fall of 1994, we released Windows
NT 3.51, which was an updated version containing support
for the IBM PowerPC processor.

The push for the next version of Windows NT was to update
the user interface to be compatible with Windows 95 and to
incorporate the Cairo technologies that had been under
development at Microsoft for a couple of years. This system
took two more years to develop and was introduced in the
summer of 1996 as Windows NT 4.0.

That brings us to the Windows 2000 system and what this
book is about. Windows 2000 is built on the same Windows
NT technology as the previous versions and introduces
significant new features such as Active Directory. Windows
2000 took three and a half years to produce and is the most
tested and tuned version of Windows NT technology
produced to date. Windows 2000 is the culmination of over
eleven years of development spanning implementations on
four architectures. The Windows 2000 code base is
currently being ported to the new Intel IA-64 architecture.
Windows 2000 is by far the best version of Windows NT
technology we have produced to date, but there's more to
come and we are busy working on the next release.

This book is the only definitive work on the internal
structure and workings of Windows 2000. The authors have
done a remarkable job of assimilating the details of the
Windows NT code base and producing examples and tools
that help the reader understand how things work. Every



serious operating system developer should have a copy of
this book on his or her desk.

David N. Cutler
Senior Distinguished Engineer
Microsoft Corporation



[Previous] [Next]



Foreword
We began in earnest on Microsoft Windows 2000 in August
1996. About three and a half years later, on December 15,
1999, we released Windows 2000 Professional, Windows
2000 Server, and Windows 2000 Advanced Server to
manufacturing. With more than 5000 people contributing in
one way or another, Windows 2000 represents the single
largest operating system effort ever within Microsoft and
probably within the entire industry. It also presents the
most reliable and comprehensive system we have ever
produced. It was quite a journey.

Today, Windows 2000 runs some of the largest Internet
Web sites and enterprises in the world and is quickly
becoming the standard client operating system for
businesses and even some homes. Windows 2000 includes
an amazing amount of technology. It can be used for
desktop or laptop systems, and an astonishing array of
servers, including file, print, Web, transactioning, dial-in,
routing, streaming media, database, line-of-business
applications, and many others. Understanding all these
pieces is a daunting task. But if you start at the core
concepts of the system and work out, the puzzle fits
together a lot easier.

If you're like me, you like to figure out how things really
work. Reading "how to use" books or standard Help
information has never been sufficient for me. If you
understand how something works internally, you know how
to better use it, maximize performance and security,
diagnose failures, and frankly have more fun. That's what
this book is about.



David and Mark have done an outstanding job detailing the
real "inside" technical story of Windows 2000. And the tools
that are highlighted (or included) are a great resource for
direct hands-on training and diagnostics work. After you
read this book, you'll have a much greater understanding of
how the system fits together, the improvements done as
part of this release, and how to get the most out of the
system.

I know Windows 2000 pretty well, but reading this book
taught me a few things about the system that I didn't know.
So open the book and open the hood on one of the most
impressive operating systems ever created.

Jim Allchin
Group Vice President, Platforms
Microsoft Corporation



[Previous] [Next]



Acknowledgments
This book wouldn't contain the depth of technical detail or
the level of accuracy it has without the review, input, and
support of key members of the Microsoft Windows 2000
development team. Therefore, we would like to jointly thank
the following people from Microsoft for both their technical
review as well as the time they spent with us explaining the
rationale for the myriad details that comprise this world-
renowned operating system:

First and foremost, Dave Cutler, Senior Distinguished
Engineer and the original architect of Microsoft Windows
NT. Dave originally approved David Solomon's source
code access and has been supportive of his work to
explain the internals of Windows NT through his training
business as well as during the writing of Inside Windows
NT, second edition. Besides reviewing the chapter on
processes and threads, Dave answered many questions
on the kernel architecture of the system and wrote a
historical perspective for this edition.

Jim Allchin, for writing the Foreword to this book and for
prodding us to add a chapter on networking.

Lou Perazzoli, Distinguished Engineer (previously
director of the Windows 2000 Base Team and author of
the original memory manager for Windows NT). Lou was
the primary champion for Inside Windows NT, second
edition (he wrote the Foreword) and continued this role
during the initial phases of the development of Windows
2000.

Rob Short, vice president of the Windows 2000 Base
Team, who made sure we had the resources we needed



as well as access to the relevant people. Rob also
provided direction on the overall content of the book.

Landy Wang, lead developer for the memory manager,
for making us feel welcome on the numerous times we
stopped by and interrupted him to ask questions. Landy
was always willing to take time to review chapter drafts
as well as provide the rationale for the intricacies of this
very complicated part of the system, even when others
were waiting in line in the hallway to see him!

Mark Lucovsky, Distinguished Engineer and architect in
the Windows 2000 Base Team, for answering technical
questions about many areas of the system.

Richard Ward, for reviewing multiple drafts of the
security chapter as well as the section on services.
Richard also met with us more than once to provide
technical review input.

John Vert, who reviewed the sections on interrupt
handling, the HAL, and the registry. John was also a key
source for the rationale behind early Windows NT design
decisions.

Neil Clift, whose intimate knowledge of the Windows
2000 kernel components helped us iron out several
details about the object manager and other areas.

Dan Lovinger, for reviewing the cache manager, storage
management, and file systems chapters.

Adrian Oney and Nar Ganapathy, for reviewing the I/O
chapter and helping to make the presentation of Plug
and Play more lucid. Adrian was especially generous
with his time and clarified some of the trickier aspects
of the I/O system.



Tom Fout, who guided the content of the networking
chapter and coordinated the chapter's review by the key
developers.

Dragos Sambotin, for reviewing the registry section.

Praerit Garg and Robert Reichel, for reviewing the
security chapter.

Michael Maston and Alan Warwick, for reviewing the
WMI section.

Keith Kaplan, for reviewing the storage and file systems
chapters

Catharine van Ingen for reviewing the storage chapter.

David Golds, Brian Andrews, and Mark Zbikowski, for
reviewing the file systems chapter.

Tim Moore, Ryszard Kott, Mario Goertzel, Yun Lin,
Steven Nelson, Ilan Caron, Gurdeep Singh Pall, David
Orbits, and the other networking developers, who
improved the accuracy and organization of the
networking chapter.

Andre Vachon, for helping us with facets of the kernel
debuggers (and for building a new set!).

Jon Schwartz, who reviewed the most chapters of any
single Microsoft employee—thanks for your excellent
comments!

Joseph Joy, for reviewing the first two chapters from the
reader's point of view.



We also want to thank the following people from Microsoft
Press (two of whom have since left) for their contribution to
this book:

Eric Stroo, previously acquisitions manager (but now
enjoying the spoils of life after Microsoft), who, as with
the previous edition, maintained a stern but supportive
stance in regard to the book schedule.

Ben Ryan, previously acquisitions editor (but now with
another publisher), who took the reins from Eric but
was gentler in his prodding for chapter deliveries.

Sally Stickney, project editor, whose art and skill with
the English language combined with her dogged
attention to detail yet again amazed us throughout the
whole process. Sally: you were kinder this time.

Jean Ross, technical editor, who strove to catch each
and every technical inconsistency. Jean continually
amazed both of us with her tenacious verification of
technical details.

We also want to thank Mark Smith, Karen Forster, Dianne
Russell, and the rest of the staff of Windows 2000 Magazine
(www.win2000mag.com) for granting us permission to draw
content from Mark's "Internals" columns for the book.

Finally, the following external reviewers also merit special
thanks:

Jamie Hanrahan, of Azius Developer Training
(www.azius.com), who coauthored the Windows
NT/Windows 2000 Internal Architecture class from
which this book was based. Jamie, who has a real knack
for explaining complicated concepts in a simple and

http://www.win2000mag.com/
http://www.azius.com/


practical fashion, developed several of the explanations
and a number of the diagrams and figures.

Brian Catlin, also of Azius Developer Training, for
reviewing Chapters 2, 3, and 9 and for providing both
technical input as well as excellent suggestions that
improved the clarity of presentation.

Jeffrey Richter, of Wintellect (www.wintellect.com), who,
as with the previous edition, reviewed several chapters
and cajoled the authors throughout the entire process.
All those dinners in Bellevue with Jeff at the end of long
hard days of writing kept us going.

Rich Neves, of ReefEdge Inc. (www.reefedge.com), for
reviewing the I/O and networking chapters.

Andrew Tanenbaum, of the University of Amsterdam,
who provided us with a slew of suggestions for
improving the file systems chapter's organization and
presentation.

John Tracey, of IBM Research, for reviewing the
networking chapter.

Keith Moore, previously of Microsoft, for reviewing the
networking chapter.

There were others who answered questions in the hallway
or cafeteria and provided technical material—if we missed
you, please forgive us!

The next two sections contain the authors' individual
acknowledgements.

http://www.wintellect.com/
http://www.reefedge.com/


[Previous] [Next]



Acknowledgments from David
Solomon
When Mark Russinovich first approached me about
collaborating on this third edition, I was both excited and
nervous—would Microsoft accept such a notorious hacker of
Windows NT to work on the official book about the internal
architecture of their premier operating system? Would I be
able to meet the technical challenge of working with such a
Windows NT expert?

Fortunately, the answer to both questions was yes, and
Mark and I had a ball working together on this project.
Although Mark didn't look at the source code (only I did), I
was constantly amazed at how quickly he could solve
technical questions using his disassembled binary of
Ntoskrnl.exe in combination with SoftICE. I know my
knowledge of Windows 2000 has deepened. (We even kept
track of "dumb things learned" for the times we would say
to each other "I can't believe you didn't know that!")

I have to thank Mark for much of the new content in this
third edition: Chapters 4, 5, 10, and 13 were completely
new chapters based on his original content. Mark also made
significant contributions to the detail in Chapters 3, 8, 9,
and 12.

I also want to thank Mark's wife, Susan, for putting up with
me on the long work days at Mark's house and for providing
such yummy lunches and dinners (and the strong coffee!).

I thank Frank Artale for originally asking me to write Inside
Windows NT, second edition, and for all the support from
Windows NT Development (especially from Lou Perazzoli



and Dave Cutler) while it was being written back in 1997
and 1998.

I want to thank my Mom and Dad for bringing me up and
for giving me the support, guidance, and opportunities that
molded me into who I am today.

Last but not least, I want to thank wife, Shelly, and our
three children, Daniel, Rebecca, and Sarah, for going
through the pain of another book project. This time, I got
less sympathy for being late on deadlines—and rightly so.
Thanks for bearing up.



[Previous] [Next]



Acknowledgments from Mark
Russinovich
When I picked up a copy of Inside Windows NT, second
edition, I was suitably impressed. Dave had done a fantastic
job of detailing the operation of Windows NT, while at the
same time making the description accessible through
interesting experiments and lucid writing. I was working on
my own Windows NT internals book but was quickly
realizing the enormous effort required to pull off something
like Dave had. On the off chance that he would agree, I e-
mailed Dave with the suggestion that we work together on
the third edition. I was thrilled when he brought me on
board, and I thank him for the opportunity.

As Dave has said already, we learned a tremendous amount
from each other and had a great time. There are as many
"dumb things Mark learned from Dave" as "dumb things
Dave learned from Mark" (well, not quite as many), which
just highlights how our different perspectives made the
book better. Often, neither of us would know the answer to
a complex question about Windows NT behavior one of us
had pondered for years, triggering furious multihour
research efforts in which only our combined resources met
the challenge. I look forward to working with him on future
editions.

I also have to thank Bryce Cogswell and Edwin Brasch of
Winternals Software for their patience and support while I
devoted several months to the book.

I owe Rich Neves thanks for being a good friend and for
enabling my effort on the book to be part of my official
responsibilities while I worked at IBM Research.



My parents, Nicholas and Vera Russinovich, provided
unlimited support and encouragement through my
educational years, instilling in me the desire to learn as
much as I can. My father, who passed away while I was
writing this book, would have been especially proud of this
achievement.

Finally, I want to thank my wife, Susan, who is the most
important person in my life. She not only sacrificed the
many nights and weekends that I devoted to this book by
keeping me company, but also encouraged me through the
whole process. Her tolerance of my omnipresent computers
without a doubt merits a medal.



[Previous] [Next]



Introduction
The third edition of Inside Microsoft Windows 2000 is
intended for advanced computer professionals (both
developers and system administrators) who want to
understand how the core components of the Microsoft
Windows 2000 operating system work internally. With this
knowledge, developers can better comprehend the rationale
behind design choices when building applications specific to
the Windows 2000 platform. Such knowledge can also help
developers debug complex problems. System administrators
can benefit from this information as well because
understanding how the operating system works under the
covers facilitates understanding the performance behavior
of the system and makes it easier to troubleshoot system
problems when things go wrong. After reading this book,
you should have a better understanding of how Windows
2000 works and why it behaves as it does.



[Previous] [Next]



Structure of the Book
The first two chapters (Concepts and Tools, and System
Architecture) lay the foundation with terms and concepts
used throughout the rest of the book. The next three
chapters—System Mechanisms, Startup and Shutdown, and
Management Mechanisms—describe key underlying
mechanisms in the system. The remaining chapters—
Processes, Threads, and Jobs; Memory Management;
Security; I/O System; Storage Management; Cache
Manager; File Systems; and Networking—explain the core
components of the Windows 2000 operating system.



[Previous] [Next]



Differences in the Third Edition
This new edition of Inside Microsoft Windows 2000 covers
many topics that weren't in the second edition of Inside
Windows NT, such as startup and shutdown, service
internals, registry internals, file system drivers, and
networking. It also covers the kernel-related changes and
enhancements in Windows 2000, such as the Windows
Driver Model (WDM), Plug and Play, power management,
Windows Management Instrumentation (WMI), encryption,
the job object, and Terminal Services.

For the first time, the book includes a companion CD with
useful tools for exploring Windows 2000 system internals.
Also included on the CD is a searchable electronic version of
the book. Also, many new hands-on experiments have been
added to the book that show how to use tools such as the
kernel debugger to examine internal Windows 2000 system
state.



[Previous] [Next]



Hands-on Experiments
When a tool can be used to expose or demonstrate some
aspect of Windows 2000 internal behavior, the steps
necessary to try the tool yourself are listed in "Experiment"
boxes. These appear throughout the book, and we
encourage you to try these as you're reading—seeing visible
proof of how Windows 2000 works internally will make
much more of an impression on you than just reading about
it. Many of the experiments use the kernel debugger. The
live kernel debugger tool (LiveKd) included on the book's
companion CD makes these experiments easy and safe to
try.



[Previous] [Next]



Topics Not Covered
Windows 2000 is a large and complex operating system.
This book doesn't cover everything relevant to Windows
2000 internals but instead focuses on the base system
components. For example, this book doesn't describe
COM+, the foundation of the Windows distributed object-
oriented programming infrastructure.

Because this is an internals book and not a user,
programming, or system administration book, it doesn't
describe how to use, program, or configure Windows 2000.



[Previous] [Next]



A Warning and Caveat
Because this book describes the internal architecture and
operation of Windows 2000, much of the information is
subject to change between releases (although external
interfaces, such as the Win32 API, are not subject to
incompatible changes). For example, we refer to internal
Windows 2000 system routines, data structures, and kernel
variables as well as to algorithms and values used internally
to make resource-sizing and performance-related decisions.
These details, by definition, can change between releases.

By "subject to change," we don't necessarily mean that
details described in this book will change between releases
—but you can't count on them not changing. Any software
that uses these undocumented interfaces might not work on
future releases of Windows 2000. Even worse, software that
runs in kernel mode (such as device drivers) that uses
these undocumented interfaces might result in a system
crash when upgrading to a newer release of Windows 2000.



[Previous] [Next]



Using the Companion CD
The CD included with this book contains the complete
contents of the Sysinternals Web site
(www.sysinternals.com)—the Web site maintained by Mark
Russinovich (this book's coauthor) and Bryce Cogswell—as
well as other helpful tools. The CD also includes a fully
searchable electronic version of the book as well as
debugging tools and symbols. (See the Readme.txt file on
the CD for information on using the debugging tools and the
symbols.)

To view the contents of the CD, insert the CD into your CD-
ROM drive. If you have the autorun feature in Windows
enabled, a splash screen will automatically appear on your
screen that will provide you with viewing options. To start
this screen manually, run StartCD from the root directory of
the CD.

http://www.sysinternals.com/


Sysinternals

The contents of the Web site www.sysinternals.com have
been included on this CD for your convenience. You can find
the tools from this Web site that are used in the
experiments in this book in the \Sysint folder. You can run
these tools from the CD, or you can install them onto your
hard drive by selecting Run Setup from the autorun splash
screen and following the instructions in Setup.

You can also browse the CD version of the entire Web site
by selecting Browse CD Sysinternals from the autorun
splash screen or by opening Ntinternals.htm from the
\Sysinternals-WebSite folder. You can copy the entire Web
site to your hard disk by selecting Run Setup from the
splash screen and following the Setup instructions.

For the most up-to-date versions of the Sysinternals Web
site and tools, visit www.sysinternals.com (which you can
do from the splash screen by selecting Browse Online
Sysinternals).

http://www.sysinternals.com/
http://www.sysinternals.com/


Tools

Additional tools have been provided on this CD and are
located in the \Tools folder. Among the tools is a
performance monitor DLL extension (KVarPerf) that allows
you to monitor internal Windows 2000 kernel variables from
the Performance tool. Another tool is LiveKd, a special tool
that allows use of the standard Microsoft kernel debugger
tools (such as Kd.exe, Windbg.exe, I386kd.exe, and so on)
on a live system with no special debugging options enabled.

To install the tools, select the Run Setup option from the
autorun splash screen (or run Setup.exe in the \Setup
folder) and follow the Setup instructions. You can also run
these tools directly from the CD, although LiveKd must be
run from the \Debuggers directory on the CD rather than
the \Tools directory. See the Readme.txt file in the root of
the companion CD for more information on running LiveKd
from the CD and on setting up your system for kernel
debugging.



System Requirements

The following is a list of system requirements necessary to
use the contents of the companion CD:

Any supported Microsoft Windows 2000 Professional,
Server, Advanced Server, or Datacenter Server
configuration.

To install the tools needed for the experiments from the
Tools and Sysint folders, approximately 5 MB of disk
space is required. If you choose to install the copy of
the www.sysinternals.com site, approximately 30 MB of
disk space is required. Installing the contents of the
Debuggers folder requires approximately 20 MB of disk
space, and the full contents of Symbols requires 20 MB.

Some of the experiments in this book require the use of
tools from the Windows 2000 Support Tools, debugging
tools, and resource kit (Professional or Server edition).
These tools and their locations are listed in Chapter 1.

http://www.sysinternals.com/


E-book

This CD contains an electronic version of the book. This e-
book allows you to view the book text on screen and to
search the contents. For information on installing and using
the e-book, see the Readme.txt file in the \Ebook folder.



[Previous] [Next]



Support
Every effort has been made to ensure the accuracy of this
book and the contents of the companion CD. Should you
run into any problems or issues, please refer to the
following sources.



From the Authors

This book isn't perfect. No doubt it contains some
inaccuracies; or possibly, we've omitted some topics we
should have covered. If you find anything you think is
incorrect or if you believe we should have included material
that isn't here, please feel free to send e-mail to
insidew2k@sysinternals.com. Updates and corrections will
be posted on the page
www.sysinternals.com/insidew2k.htm.

http://www.sysinternals.com/insidew2k.htm


From Microsoft Press

Microsoft also provides corrections for books through the
World Wide Web at the following address:

http://mspress.microsoft.com/support/

In addition to sending feedback directly to the authors, if
you have comments, questions, or ideas regarding the
presentation or use of this book or the companion CD you
can send them to Microsoft using either of the following
methods:

Postal Mail:

Microsoft Press
Attn: Inside Microsoft Window 2000 Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:

MSPINPUT@MICROSOFT.COM

Please note that product support isn't offered through the
above mail addresses. For support information regarding
Microsoft Windows 2000, go to
www.microsoft.com/windows2000. You can also call
Standard Support at (425) 635-7011 weekdays between 6
a.m. and 6 p.m. Pacific time, or you can search Microsoft's
Support Online at support.microsoft.com/support.

http://mspress.microsoft.com/support/
http://www.microsoft.com/windows2000
http://support.microsoft.com/support


[Previous] [Next]

Chapter 1



Concepts and Tools
In this chapter, we'll introduce the key Microsoft Windows
2000 concepts and terms we'll be using throughout this
book, such as the Microsoft Win32 API, processes, threads,
virtual memory, kernel mode and user mode, objects,
handles, security, and the registry. We'll also introduce the
tools that you can use to explore Windows 2000 internals,
such as the Performance tool, the kernel debugger, the
special tools on the companion CD, and the various add-on
tool packages such as the Windows 2000 Support Tools,
Windows 2000 debugging tools, Windows 2000 resource
kits, and the Platform Software Development Kit (SDK). In
addition, we'll explain how you can use the Windows 2000
Device Driver Kit (DDK) as a resource for finding further
information on Windows 2000 internals.

Be sure that you understand everything in this chapter—the
remainder of the book is written assuming that you do.



[Previous] [Next]



Foundation Concepts and Terms
In the course of this book, we'll be referring to some
structures and concepts that might be unfamiliar to some
readers. In this section, we'll define the terms we'll be using
throughout. You should become familiar with them before
proceeding to subsequent chapters.



Win32 API

The Win32 application programming interface (API) is the
primary programming interface to the Microsoft Windows
operating system family, including Windows 2000, Windows
95, Windows 98, Windows Millennium Edition, and Windows
CE. Although we don't describe the Win32 API in this book,
we do explain the internal behavior and implementation of
key Win32 API functions. For a comprehensive guide to
programming the Win32 API, see Jeffrey Richter's book
Programming Applications for Microsoft Windows (fourth
edition, Microsoft Press, 1999).

Each operating system implements a different subset of
Win32. For the most part, Windows 2000 is a superset of all
Win32 implementations. The specifics of which services are
implemented on which platforms are included in the
reference documentation for the Win32 API. This
documentation is available for free viewing on line at
msdn.microsoft.com and is on the MSDN Library CDROMs.
The information in this documentation is also detailed in the
file \Program Files\Microsoft Platform SDK\Lib\Win32api.csv
(a comma-delimited text file) installed as part of the
Platform SDK, which comes with MSDN Professional or can
be downloaded for free from msdn.microsoft.com. (See the
section "Platform Software Development Kit (SDK)" later in
this chapter.)

NOTE

MSDN stands for Microsoft Developer Network,
Microsoft's support program for developers. MSDN
offers three CD-ROM subscription programs: MSDN
Library, Professional, and Universal. The content of

http://msdn.microsoft.com/
http://msdn.microsoft.com/


MSDN Library is also available for free on line at the
MSDN Web site. For more information, see
msdn.microsoft.com.

For the purposes of this book, the Win32 API refers to the
base set of functions that cover areas such as processes,
threads, memory management, security, I/O, windowing,
and graphics. The Win32 API is included as part of the
Platform SDK. The internals of the other major categories in
the Platform SDK, such as transactions, databases,
messaging, multimedia, and networking services, are not
covered in this book.

Although Windows 2000 was designed to support multiple
programming interfaces, Win32 is the primary, or preferred,
interface to the operating system. Win32 has this position
because, of the three environment subsystems (Win32,
POSIX, and OS/2), it provides the greatest access to the
underlying Windows 2000 system services. As we'll explain
in Chapter 2, application programs on Windows 2000 don't
call native Windows 2000 system services directly—rather,
they must use one of the APIs provided by an environment
subsystem.

History of the Win32 API

Interestingly, Win32 wasn't slated to be the original
programming interface to Microsoft Windows NT.
Because the Windows NT project started as a
replacement for OS/2 version 2, the primary
programming interface was the 32-bit OS/2
Presentation Manager API. A year into the project,

http://msdn.microsoft.com/


however, Microsoft Windows 3.0 hit the market and
took off. As a result, Microsoft changed direction and
made Windows NT the future replacement for the
Windows family of products as opposed to the
replacement for OS/2. It was at this juncture that the
need to specify the Win32 API arose—before this, the
Windows API existed only as a 16-bit interface.

Although the Win32 API would introduce many new
functions that hadn't been available on Windows 3.1,
Microsoft decided to make the new API compatible
with the 16-bit Windows API function names,
semantics, and use of data types whenever possible
to ease the burden of porting existing 16-bit Windows
applications to Windows NT. So those of you who are
looking at the Win32 API for the first time and
wondering why many function names and interfaces
seem inconsistent should keep in mind that one
reason for the inconsistency was to ensure that the
Win32 API is compatible with the old 16-bit Windows
API.



Services, Functions, and Routines

Several terms in the Windows 2000 user and programming
documentation have different meanings in different contexts.
For example, the word service can refer to a callable routine
in the operating system, a device driver, or a server process.
The following list describes what certain terms mean in this
book:

Win32 API functions Documented, callable
subroutines in the Win32 API. Examples include
CreateProcess, CreateFile, and GetMessage.

System services (or executive system services)
Native functions in the Windows 2000 operating system
that are callable from user mode. (For a definition of
native functions, see the section "System Service
Dispatching" in Chapter 3.) For example,
NtCreateProcess is the internal system service the Win32
CreateProcess function calls to create a new process.

Kernel support functions (or routines) Subroutines
inside the kernel-mode (defined later in this chapter)
part of the Windows 2000 operating system. For
example, ExAllocatePool is the routine that device
drivers call to allocate memory from the Windows 2000
system heaps.

Win32 services Processes started by the Windows
2000 service control manager. (Although the registry
defines Windows 2000 device drivers as "services," we
don't refer to them as such in this book.) For example,
the Task Scheduler service is a user-mode process that
supports the at command (which is similar to the UNIX
commands at or cron).



DLL (dynamic-link library) A set of callable
subroutines linkedtogether as a binary file that can be
dynamically loaded by applications that use the
subroutines. Examples include Msvcrt.dll (the C run-time
library) and Kernel32.dll (one of the Win32 API
subsystem libraries). Windows 2000 user-mode
components and applications use DLLs extensively. The
advantage DLLs provide over static libraries is that
applications can share DLLs, and Windows 2000 ensures
that there is only one in-memory copy of a DLL's code
among the applications that are referencing it.



Processes, Threads, and Jobs

Although programs and processes appear similar on the
surface, they are fundamentally different. A program is a
static sequence of instructions, whereas a process is a
container for a set of resources used by the threads that
execute the instance of the program. At the highest level of
abstraction, a Windows 2000 process comprises the
following:

A private virtual address space, which is a set of virtual
memory addresses that the process can use

An executable program, which defines initial code and
data and is mapped into the process's virtual address
space

A list of open handles to various system resources, such
as semaphores, communication ports, and files, that are
accessible to all threads in the process

A security context called an access token that identifies
the user, security groups, and privileges associated with
the process

A unique identifier called a process ID (internally called a
client ID)

At least one thread of execution

A thread is the entity within a process that Windows 2000
schedules for execution. Without it, the process's program
can't run. A thread includes the following essential
components:



The contents of a set of CPU registers representing the
state of the processor

Two stacks, one for the thread to use while executing in
kernel mode and one for executing in user mode

A private storage area called thread-local storage (TLS)
for use by subsystems, run-time libraries, and DLLs

A unique identifier called a thread ID (also internally
called a client ID—process IDs and thread IDs are
generated out of the same namespace, so they never
overlap)

Threads sometimes have their own security context that
is often used by multithreaded server applications that
impersonate the security context of the clients that they
serve

The volatile registers, the stacks, and the private storage
area are called the thread's context. Because this
information is different for each machine architecture that
Windows 2000 runs on, this structure, by necessity, is
architecture-specific. In fact, the CONTEXT structure
returned by the Win32 GetThreadContext function is the
only public data structure in the Win32 API that is machine-
dependent.

Although threads have their own execution context, every
thread within a process shares the process's virtual address
space (in addition to the rest of the resources belonging to
the process), meaning that all the threads in a process can
write to and read from each other's memory. Threads can't
reference the address space of another process, however,
unless the other process makes available part of its private
address space as a shared memory section (called a file
mapping object in the Win32 API) or unless one process



opens another process and uses the ReadProcessMemory
and WriteProcessMemory functions.

In addition to a private address space and one or more
threads, each process has a security identification and a list
of open handles to objects such as files, shared memory
sections, or one of the synchronization objects such as
mutexes, events, or semaphores, as illustrated in Figure 1-
1.

Figure 1-1 A process and its resources

Every process has a security context that is stored in an
object called an access token. The process access token
contains the security identification and credentials for the
process. By default, threads don't have their own access
token, but they can obtain one, thus allowing individual
threads to impersonate the security context of another
process—including processes running on a remote Windows
2000 system—without affecting other threads in the process.
(See Chapter 8 for more details on process and thread
security.)

The virtual address descriptors (VADs) are data structures
that the memory manager uses to keep track of the virtual

javascript:fullSize('F01yj01x.htm')


addresses the process is using. These data structures are
described in more depth in Chapter 7.

Windows 2000 introduces an extension to the process model
called a job. A job object's main function is to allow groups
of processes to be managed and manipulated as a unit. A
job object allows control of certain attributes and provides
limits for the process or processes associated with the job. It
also records basic accounting information for all processes
associated with the job and for all processes that were
associated with the job but have since terminated. In some
ways, the job object compensates for the lack of a
structured process tree in Windows 2000—yet in many ways
is more powerful than a UNIX-style process tree.

You'll find out much more about the internal structure of
jobs, processes and threads, the mechanics of process and
thread creation, and the thread-scheduling algorithms in
Chapter 6.



Virtual Memory

Windows 2000 implements a virtual memory system based
on a flat (linear) 32bit address space. Thirty-two bits of
address space translates into 4 GB of virtual memory. On
most systems, Windows 2000 allocates half this address
space (the lower half of the 4-GB virtual address space, from
x00000000 through x7FFFFFFF) to processes for their unique
private storage and uses the other half (the upper half,
addresses x80000000 through xFFFFFFFF) for its own
protected operating system memory utilization. The
mappings of the lower half change to reflect the virtual
address space of the currently executing process, but the
mappings of the upper half always consist of the operating
system's virtual memory. Windows 2000 Advanced Server
and Datacenter Server support a boot-time option (the /3GB
qualifier in Boot.ini) that gives processes running specially
marked programs (the large address space aware flag must
be set in the header of the executable image) a 3-GB private
address space (leaving 1 GB for the operating system). This
option allows applications such as database servers to keep
larger portions of a database in the process address space,
thus reducing the need to map subset views of the database.
Figure 1-2 shows the two virtual address space layouts
supported by Windows 2000.



Figure 1-2 Address space layouts supported by Windows
2000

Although 3 GB is better than 2 GB, it's still not enough
virtual address space to map very large (multigigabyte)
databases. To address this need, Windows 2000 has a new
mechanism called Address Windowing Extensions (AWE),
which allows a 32-bit application to allocate up to 64 GB of
physical memory and then map views, or windows, into its
2-GB virtual address space. Although using AWE puts the
burden of managing mappings of virtual to physical memory
on the programmer, it does solve the immediate need of
being able to directly access more physical memory than can
be mapped at any one time in a 32-bit process address
space. The long-term solution to this address space
limitation is 64-bit Windows.

Recall that a process's virtual address space is the set of
addresses available for the process's threads to use. Virtual
memory provides a logical view of memory that might not
correspond to its physical layout. At run time the memory
manager, with assistance from hardware, translates, or
maps, the virtual addresses into physical addresses, where
the data is actually stored. By controlling the protection and
mapping, the operating system can ensure that individual

javascript:fullSize('F01yj02x.htm')


processes don't bump into one another or overwrite
operating system data. Figure 1-3 illustrates three virtually
contiguous pages mapped to three discontiguous pages in
physical memory.

Figure 1-3 Mapping virtual memory to physical memory

Because most systems have much less physical memory
than the total virtual memory in use by the running
processes (2 GB or 3 GB for each process), the memory
manager transfers, or pages, some of the memory contents
to disk. Paging data to disk frees physical memory so that it
can be used for other processes or for the operating system
itself. When a thread accesses a virtual address that has
been paged to disk, the virtual memory manager loads the
information back into memory from disk. Applications don't
have to be altered in any way to take advantage of paging
because hardware support enables the memory manager to
page without the knowledge or assistance of processes or
threads.

Details of the implementation of the memory manager,
including how address translation works and how Windows
2000 manages physical memory, are described in detail in
Chapter 7.

javascript:fullSize('F01yj03x.htm')


Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying
critical operating system data, Windows 2000 uses two
processor access modes (even if the processor on which
Windows 2000 is running supports more than two): user
mode and kernel mode. User application code runs in user
mode, whereas operating system code (such as system
services and device drivers) runs in kernel mode. Kernel
mode refers to a mode of execution in a processor that
grants access to all system memory and all CPU instructions.
By providing the operating system software with a higher
privilege level than the application software has, the
processor provides a necessary foundation for operating
system designers to ensure that a misbehaving application
can't disrupt the stability of the system as a whole.

NOTE

The architecture of the Intel x86 processor defines
four privilege levels, or rings, to protect system code
and data from being overwritten either inadvertently
or maliciously by code of lesser privilege. Windows
2000 uses privilege level 0 (or ring 0) for kernel
mode and privilege level 3 (or ring 3) for user mode.
The reason Windows 2000 uses only two levels is that
some of the hardware architectures that were
supported in the past (such as Compaq Alpha and
Silicon Graphics MIPS) implemented only two
privilege levels.



Although each Win32 process has its own private memory
space, kernel-mode operating system and device driver code
share a single virtual address space. Each page in virtual
memory is tagged as to what access mode the processor
must be in to read and/or write the page. Pages in system
space can be accessed only from kernel mode, whereas all
pages in the user address space are accessible from user
mode. Read-only pages (such as those that contain
executable code) are not writable from any mode.

Windows 2000 doesn't provide any protection to private
read/write system memory being used by components
running in kernel mode. In other words, once in kernel
mode, operating system and device driver code has
complete access to system space memory and can bypass
Windows 2000 security to access objects. Because the bulk
of the Windows 2000 operating system code runs in kernel
mode, it is vital that components that run in kernel mode be
carefully designed and tested to ensure that they don't
violate system security.

This lack of protection also emphasizes the need to take care
when loading a third-party device driver, because once in
kernel mode the software has complete access to all
operating system data. This vulnerability was one of the
reasons behind the driver-signing mechanism introduced in
Windows 2000, which warns the user if an attempt is made
to add an unauthorized (unsigned) driver. (See Chapter 9 for
more information on driver signing.) Also, a mechanism
called Driver Verifier helps device driver writers to find bugs
(such as memory leaks). Driver Verifier is explained in
Chapter 7.

As you'll see in Chapter 2, user applications switch from user
mode to kernel mode when they make a system service call.
For example, a Win32 ReadFile function eventually needs to



call the internal Windows 2000 routine that actually handles
reading data from a file. That routine, because it accesses
internal system data structures, must run in kernel mode.
The transition from user mode to kernel mode is
accomplished by the use of a special processor instruction
that causes the processor to switch to kernel mode. The
operating system traps this instruction, notices that a
system service is being requested, validates the arguments
the thread passed to the system function, and then executes
the internal function. Before returning control to the user
thread, the processor mode is switched back to user mode.
In this way, the operating system protects itself and its data
from perusal and modification by user processes.

NOTE

A transition from user mode to kernel mode (and
back) does not affect thread scheduling per se—a
mode transition is not a context switch. Further
details on system service dispatching are included in
Chapter 3.

Thus, it's normal for a user thread to spend part of its time
executing in user mode and part in kernel mode. In fact,
because the bulk of the graphics and windowing system also
runs in kernel mode, graphics-intensive applications spend
more of their time in kernel mode than in user mode. An
easy way to test this is to run a graphics-intensive
application such as Microsoft Paint or Microsoft Pinball and
watch the time split between user mode and kernel mode
using one of the performance counters listed in Table 1-1.

Table 1-1 Mode-Related Performance Counters



Object:
Counter Function

Processor:
%
Privileged
Time

Percentage of time that an individual CPU
(or all CPUs) has run in kernel mode during
a specified interval

Processor:
% User
Time

Percentage of time that an individual CPU
(or all CPUs) has run in user mode during a
specified interval

Process: %
Privileged
Time

Percentage of time that the threads in a
process have run in kernel mode during a
specified interval

Process: %
User Time

Percentage of time that the threads in a
process have run in user mode during a
specified interval

Thread: %
Privileged
Time

Percentage of time that a thread has run in
kernel mode during a specified interval

Thread: %
User Time

Percentage of time that a thread has run in
user mode during a specified interval

EXPERIMENT

Kernel Mode vs. User Mode

You can use the Performance tool to see how much
time your system spends executing in kernel mode
vs. in user mode. Follow these steps:

1. Run the Performance tool by opening the Start
menu and selecting Programs/Administrative



Tools/Performance.

2. Click the Add button (+) on the toolbar.

3. With the Processor performance object selected,
click the % Privileged Time counter and, while
holding down the Ctrl key, click the % User Time
counter.

4. Click Add, and then click Close.

5. Move the mouse rapidly back and forth. You
should notice the % Privileged Time line going up
when you move the mouse around, reflecting the
time spent servicing the mouse interrupts and the
time spent in the graphics part of the windowing
system (which, as explained in Chapter 2, runs
primarily as a device driver in kernel mode). (See
Figure 1-4.)

6. When you're finished, click the New Counter Set
button on the toolbar (or just close the tool).

You can also quickly see this activity by using Task
Manager. Just click the Performance tab, and then
select Show Kernel Times from the View menu. The
CPU usage bar will show user-mode time in green and
kernel-mode time in red.



Figure 1-4 Performance tool showing time split
between kernel mode and user mode

To see how the Performance tool itself uses kernel
time and user time, run it again, but add the
individual Process counters % User Time and %
Privileged Time for every process in the system:

1. If it's not already running, run the Performance
tool again. (If it is already running, start with a
blank display by pressing the New Counter Set
button on the toolbar.)

2. Click the Add button (+) on the toolbar.

3. Change the Performance Object to Process.

4. Select the % Privileged Time and % User Time
counters.

5. Select all processes in the Instance box (except
the _Total process).

6. Click Add, and then click Close.

javascript:fullSize('F01yj04x.htm')


7. Move the mouse rapidly back and forth.

8. Press Ctrl+H to turn on highlighting mode. This
highlights the currently selected counter in white.

9. Scroll through the counters at the bottom of the
display to identify the processes whose threads
were running when you moved the mouse, and
note whether they were running in user mode or
kernel mode.

You should see the Performance tool process (look in
the Instance column for the mmc process) kernel-
mode and user-mode time go up when you move the
mouse because it is executing application code in
user mode and calling Win32 functions that run in
kernel mode. You'll also notice kernel-mode thread
activity in a process named csrss when you move the
mouse. This activity occurs because the Win32
subsystem's kernel-mode raw input thread, which
handles keyboard and mouse input, is attached to
this process. (See Chapter 2 for more information
about system threads.) Finally, the process named
Idle that you see spending nearly 100 percent of its
time in kernel mode isn't really a process—it's a fake
process used to account for idle CPU cycles. As you
can observe from the mode in which the threads in
the Idle process run, when Windows 2000 has
nothing to do, it does it in kernel mode.



Objects and Handles

In the Windows 2000 operating system, an object is a
single, run-time instance of a statically defined object type.
An object type comprises a system-defined data type,
functions that operate on instances of the data type, and a
set of object attributes. If you write Win32 applications, you
might encounter process, thread, file, and event objects, to
name just a few examples. These objects are based on
lower-level objects that Windows 2000 creates and
manages. In Windows 2000, a process is an instance of the
process object type, a file is an instance of the file object
type, and so on.

An object attribute is a field of data in an object that
partially defines the object's state. An object of type
process, for example, would have attributes that include the
process ID, a base scheduling priority, and a pointer to an
access token object. Object methods, the means for
manipulating objects, usually read or change the object
attributes. For example, the open method for a process
would accept a process identifier as input and return a
pointer to the object as output.

NOTE

Although there is a parameter named
ObjectAttributes that a caller supplies when creating
an object using either the Win32 API or native object
services, that parameter shouldn't be confused with
the more general meaning of the term as used in this
book.



The most fundamental difference between an object and an
ordinary data structure is that the internal structure of an
object is hidden. You must call an object service to get data
out of an object or to put data into it. You can't directly read
or change data inside an object. This difference separates
the underlying implementation of the object from code that
merely uses it, a technique that allows object
implementations to be changed easily over time.

Objects provide a convenient means for accomplishing the
following four important operating system tasks:

Providing human-readable names for system resources

Sharing resources and data among processes

Protecting resources from unauthorized access

Reference tracking, which allows the system to know
when an object is no longer in use so that it can be
automatically deallocated

Not all data structures in the Windows 2000 operating
system are objects. Only data that needs to be shared,
protected, named, or made visible to user-mode programs
(via system services) is placed in objects. Structures used
by only one component of the operating system to
implement internal functions are not objects. Objects and
handles (references to an instance of an object) are
discussed in more detail in Chapter 3.



Security

Windows 2000 supports C2-level security as defined by the
U.S. Department of Defense Trusted Computer System
Evaluation Criteria (DoD 5200.28-STD, December 1985).
This standard includes discretionary (need-to-know)
protection for all shareable system objects (such as files,
directories, processes, threads, and so forth), security
auditing (for accountability of subjects, or users, and the
actions they initiate), password authentication at logon, and
the prevention of one user from accessing uninitialized
resources (such as free memory or disk space) that another
user has deallocated.

Windows NT 4 was formally evaluated at the C2 level and is
on the U.S. government Evaluated Products List. (Windows
2000 is still in the evaluation process.) Also, Windows NT 4
has met the European organization ITSEC (IT Security
Evaluation Criteria) at the FC2/E3 (functional level C2 and
assurance level E3, something normally associated only with
B-level systems) security level. Achieving a government-
approved security rating allows an operating system to
compete in that arena. Of course, many of these required
capabilities are advantageous features for any multiuser
system.

Windows 2000 has two forms of access control over objects.
The first form—discretionary access control—is the
protection mechanism that most people think of when they
think of protection under Windows 2000. It's the method by
which owners of objects (such as files or printers) grant or
deny access to others. When users log in, they are given a
set of security credentials, or a security context. When they
attempt to access objects, their security context is compared
to the access control list on the object they are trying to



access to determine whether they have permission to
perform the requested operation.

Privileged access control is necessary for those times when
discretionary access control isn't enough. It's a method of
ensuring that someone can get to protected objects if the
owner isn't available. For example, if an employee leaves a
company, the administrator needs a way to gain access to
files that might have been accessible only to that employee.
In that case, under Windows 2000, the administrator can
take ownership of the file so that you can manage its rights
as necessary.

Security pervades the interface of the Win32 API. The Win32
subsystem implements object-based security in the same
way the operating system does; the Win32 subsystem
protects shared Windows objects from unauthorized access
by placing Windows 2000 security descriptors on them. The
first time an application tries to access a shared object, the
Win32 subsystem verifies the application's right to do so. If
the security check succeeds, the Win32 subsystem allows
the application to proceed.

The Win32 subsystem implements object security on a
number of shared objects, some of which were built on top
of native Windows 2000 objects. The Win32 objects include
desktop objects, window objects, menu objects, files,
processes, threads, and several synchronization objects.

For a comprehensive description of Windows 2000 security,
see Chapter 8.



Registry

If you've worked at all with Windows operating systems,
you've probably heard about or looked at the registry. You
can't talk much about Windows 2000 internals without
referring to the registry because it's the system database
that contains the information required to boot and configure
the system, systemwide software settings that control the
operation of Windows 2000, the security database, and per-
user configuration settings (such as which screen saver to
use).

In addition, the registry is a window into in-memory volatile
data, such as the current hardware state of the system
(what device drivers are loaded, the resources they are
using, and so on) as well as the Windows 2000 performance
counters. The performance counters, which aren't actually
"in" the registry, are accessed through the registry functions.
See Chapter 5 for more on how performance counter
information is accessed from the registry.

Although many Windows 2000 users and administrators will
never need to look directly into the registry (since you can
view or change most of the configuration settings with
standard administrative utilities), it is still a useful source of
Windows 2000 internals information because it contains
many settings that affect system performance and behavior.
(If you decide to directly change registry settings, you must
exercise extreme caution; any changes might adversely
affect system performance or, worse, cause the system to
fail to boot successfully.) You'll find references to individual
registry keys throughout this book as they pertain to the
component being described. Most registry keys referred to in
this book are under HKEY_LOCAL_MACHINE, which we'll
abbreviate throughout as HKLM.



For further information on the registry and its internal
structure, see Chapter 5.



Unicode

Windows 2000 differs from most other operating systems in
that most internal text strings are stored and processed as
16-bit-wide Unicode characters. Unicode is an international
character set standard that defines unique 16-bit values for
most of the world's known character sets. (For more
information about Unicode, see www.unicode.org as well as
the programming documentation in the MSDN Library.)

Because many applications deal with 8-bit (single-byte)
ANSI character strings, Win32 functions that accept string
parameters have two entry points: a Unicode (wide, 16-bit)
and an ANSI (narrow, 8-bit) version. The Windows 95,
Windows 98, and Windows Millennium Edition
implementations of Win32 don't implement all the Unicode
interfaces to all the Win32 functions, so applications
designed to run on one of these operating systems as well
as Windows 2000 typically use the narrow versions. If you
call the narrow version of a Win32 function, input string
parameters are converted to Unicode before being processed
by the system and output parameters are converted from
Unicode to ANSI before being returned to the application.
Thus, if you have an older service or piece of code that you
need to run on Windows 2000 but this code is written using
ANSI character text strings, Windows 2000 will convert the
ANSI characters into Unicode for its own use. However,
Windows 2000 never converts the data inside files—it's up to
the application to decide whether to store data as Unicode or
as ANSI.

In previous editions of Windows NT, Asian and Middle East
editions were a superset of the core U.S. and European
editions and contained additional Win32 functions to handle
more complex text input and layout requirements (such as

http://www.unicode.org/


right to left text input). In Windows 2000, all language
editions contain the same Win32 functions. Instead of
having separate language versions, Windows 2000 has a
single worldwide binary so that a single installation can
support multiple languages (by adding various language
packs). Applications can also take advantage of Win32
functions that allow single worldwide application binaries
that can support multiple languages.



[Previous] [Next]



Digging into Windows 2000 Internals
Although much of the information in this book is based on
the Windows 2000 source code, you don't have to take
everything on faith. Many details about the internals of
Windows 2000 can be exposed and demonstrated by using a
variety of available tools, such as those that come with
Windows 2000, the Windows 2000 Support Tools, the
Windows 2000 resource kits, and the Windows 2000
debugging tools. These tool packages are briefly described
later in this section.

To encourage your exploration of Windows 2000 internals,
we've included "Experiment" sidebars throughout the book
that describe steps you can take to examine a particular
aspect of Windows 2000 internal behavior. (You already saw
one of these sections earlier in this chapter.) We encourage
you to try these experiments so that you can see in action
many of the internals topics described in this book.

In addition, this book comes with a CD-ROM that contains
the latest version of the tools from www.sysinternals.com (a
popular site for 32-bit Windows internals-related tools and
information), as well as tools available only with this book.

Table 1-2 shows a list of the tools used in this book and
where they come from. Although the capabilities of many of
these tools overlap quite a bit in terms of the information
that they can display, each of them shows at least one
unique piece of information not available in any other utility.

Table 1-2 Tools for Viewing Windows 2000 Internals

Tool Image
Name Origin

http://www.sysinternals.com/


Dependency
Walker

DEPENDS Support Tools, Platform SDK

Dump
Check

DUMPCHK Support Tools, debugging tools,
Platform SDK, Windows 2000
DDK

EFS
Information
Dumper

EFSDUMP www.sysinternals.com*

File Monitor FILEMON www.sysinternals.com

Get SID tool GETSID Resource kits

Global Flags GFLAGS Support Tools, Platform SDK,
Windows 2000 DDK

Handle/DLL
Viewer

HANDLEEX,
NTHANDLE

www.sysinternals.com

Junction
tool

JUNCTION www.sysinternals.com/misc.htm

Kernel I386KD ,
WINDBG,
KD

Debugging tools, Platform SDK,
debuggers Windows 2000 DDK

Object
Viewer

WINOBJ Platform SDK,
www.sysinternals.com

Open
Handles

OH Resource kits

Page Fault
Monitor

PFMON Resource kits, Platform SDK

Performance
tool

PERFMON Windows 2000

PipeList tool PIPELIST www.sysinternals.com/tips.htm

Pool Monitor POOLMON Support Tools, Windows 2000

http://www.sysinternals.com/
http://www.sysinternals.com/
http://www.sysinternals.com/
http://www.sysinternals.com/misc.htm
http://www.sysinternals.com/
http://www.sysinternals.com/tips.htm


DDK

Process
Explode

PVIEW www.reskit.com

Process
Statistics

PSTAT Platform SDK, www.reskit.com

Process
Viewer

PVIEWER
(in Support
Tools,
Platform
SDK the
Support
Tools) or
PVIEW (in
the
Platform
SDK)

Support Tools, Platform SDK

Quantum QUANTUM companion CD

Quick Slice QSLICE Resource kits

Registry
Monitor

REGMON www.sysinternals.com

Service
Control tool

SC Resource kits

Task
(Process)
List

TLIST Support Tools

Task
Manager

TASKMAN Windows 2000

TDImon TDIMON www.sysinternals.com

* All tools from www.sysinternals.com are also included on
the companion CD.

http://www.reskit.com/
http://www.reskit.com/
http://www.sysinternals.com/
http://www.sysinternals.com/
http://www.sysinternals.com/


Tools on the Companion CD

The companion CD contains the following unique tools that
will assist you in exploring the internals of Windows 2000:

LiveKd This tool allows you to use the standard
Microsoft kernel debuggers, I386kd.exe and Windbg.exe
as well as the new Kd.exe, which replaces both of these
tools in newer versions of the debugging tools, to display
internal information from the currently running system,
without requiring a second computer to act as the host
(via a null modem cable). This tool is explained in the
section "Kernel Debugging Tools" later in this chapter.

Kernel variable performance counter extension
DLL This extension to the Windows 2000 Performance
tool allows you to examine the value of any exported
kernel variable from the core kernel image,
Ntoskrnl.exe.

Many of the experiments throughout this book use the
kernel debugger because it can easily display many internal
Windows 2000 data structures and other details not
available from any user-mode utility. Therefore, LiveKd will
make trying these experiments much easier because it
allows the kernel debugger to be used on a live system
without requiring a second computer.

Whereas LiveKd displays internal kernel variables, the kernel
variable performance counter extension DLL monitors the
values of these variables over time. For example, these
variables can contain numeric values of interest that might
not be accessible through any of the Windows 2000
performance counters.



For more information about these tools, see the
documentation provided on the CD as part of the tools
installation. As a reminder, only people who buy this book
can install and use these tools. They can't be further
distributed. (See the license agreement in the back of this
book for details.)



Performance Tool

We'll refer to the Performance tool found in the
Administrative Tools folder on the Start menu (or via Control
Panel) throughout this book. The Performance tool has three
functions: system monitoring, viewing performance counter
logs, and setting alerts. For simplicity, when we refer to the
Performance tool, we are referring to the System Monitor
function within the tool.

The Performance tool can provide more information about
how your system is operating than any other single utility. It
includes hundreds of counters for various objects. For each
major topic described in this book, a table of the relevant
Windows 2000 performance counters is included.

The Performance tool contains a brief description for each
counter. To see the descriptions, select a counter in the Add
Counter window and click the Explain button. Or open the
Performance Counter Reference help file in the resource kit.
For information on how to interpret these counters to detect
bottlenecks or plan capacity, see the section "Performance
Monitoring" in the Windows 2000 Server Operations Guide,
which is part of the Windows 2000 Server Resource Kit.
These chapters provide an excellent description to anyone
seriously interested in understanding Windows 2000
performance.

Note that all the Windows 2000 performance counters are
accessible programmatically. The section
"HKEY_PERFORMANCE_DATA" in Chapter 5 has a brief
description of the components involved in retrieving
performance counters through the Win32 API.



Windows 2000 Support Tools

The Windows 2000 Support Tools consist of about 40 tools
useful in administering and troubleshooting Windows 2000
systems. Many of these tools were formerly part of the
Windows NT 4 resource kits.

You can install the Support Tools by running Setup.exe in the
\Support\Tools folder on any Windows 2000 product
distribution CD. (That is, the Support Tools are the same on
Windows 2000 Professional, Server, and Advanced Server.)



Windows 2000 Resource Kits

The Windows 2000 resource kits supplement the Support
Tools, adding some 200 additional tools. Besides including
many tools useful for displaying internal system state, they
contain useful internals documentation, such as the Registry
Reference and Performance Counters help files.

There are two editions of the resource kits: the Windows
2000 Professional Resource Kit and the Windows 2000
Server Resource Kit. Although the latter kit is a superset of
the former and can be installed on Windows 2000
Professional systems, none of the experiments in this book
use the tools that are included only with the Windows 2000
Server Resource Kit. Be sure you visit www.reskit.com for
updates to tools as well as for new tools.

http://www.reskit.com/


Kernel Debugging Tools

Kernel debuggers are tools that device driver developers use
to debug their drivers and support personnel use to
troubleshoot hung systems and examine crash dumps (a
copy of system memory saved in a file that can be analyzed
to try and determine the cause of the system crash).
Although a kernel debugger is used mainly for analyzing
crash dumps or debugging device drivers, it is also a useful
tool for investigating Windows 2000 internals because it can
display internal Windows 2000 system information not
visible through any standard utility. For example, it can
dump internal data structures such as thread blocks, process
blocks, page tables, I/O, and pool structures. Throughout
this book, the relevant kernel debugger commands and
output are included as they apply to each topic being
discussed.

Microsoft Kernel Debuggers

There are two versions of the Microsoft kernel debuggers: a
command-line version (I386kd.exe for x86 systems*) and a
graphical user interface (GUI) version (Windbg.exe). There
is also a new version, Kd.exe, that replaces both of these.
These tools are part of the debugger tools package, which is
shipped in three places:

Windows 2000 Customer Support Diagnostics
(downloadable from www.microsoft.com)

Platform SDK (part of MSDN Professional and Universal,
and downloadable from msdn.microsoft.com)

Windows 2000 DDK (Device Driver Kit—also part of
MSDN and freely downloadable from
www.microsoft.com/hwdev)

http://www.microsoft.com/
http://msdn.microsoft.com/
http://www.microsoft.com/hwdev


NOTE

New versions of the debugging tools package are
released independently of new versions of Windows
2000. Hence, you should occasionally check the
Download section of Microsoft's Web site for the latest
versions of these three packages. The debugging
tools include a package called the OEM Support Tools,
which is updated independently of the debugging
tools and therefore might have newer versions of
debugging-related tools (such as Kdex2x86.dll, a
kernel debugger extension DLL with additional
debugging commands).

The debugging tools help file, provided with each of the
three packages just mentioned, explains how to set up and
use the kernel debuggers (as well as other debugging and
support tools that are part of the package). Additional
details on using the kernel debuggers that are aimed
primarily at device driver writers can be found in the
Windows 2000 DDK documentation. There are also several
useful Knowledge Base articles on the kernel debugger.
Search for "debugref" in the Windows 2000 Knowledge Base
(an online database of technical articles) on
support.microsoft.com.

The kernel debugger has two modes of operation:

Open a crash dump file created as a result of a Windows
2000 or Windows NT 4 system crash. (See the section
"System Crashes" in Chapter 4 for more information on
crash dumps.)

http://support.microsoft.com/


Connect to a live, running system and examine the
system state (or set breakpoints, if you're debugging
device driver code). This operation requires two
computers—a target and a host. The target is the
system being debugged, and the host is the system
running the debugger. The target system can be either
local (connected to the host via a null modem cable) or
remote (connecting to the host via a modem). The
target system must be booted with the /DEBUG qualifier
(either by pressing F8 during the boot process and
selecting Debug Mode or by adding a boot selection
entry in C:\Boot.ini).

Detailed setup instructions can be found in the debugging
tools documentation referred to previously.

LiveKd Tool

The companion CD contains a tool called LiveKd that allows
the use of the standard Microsoft kernel debugger on a live
system, without needing two computers. LiveKd can be used
for most of the experiments in the book and thus will be a
helpful tool in exploring Windows 2000 internals.

You run LiveKd just as you would I386kd, Windbg, or Kd.
LiveKd passes any command-line options you specify
through to the debugger you select. By default, LiveKd runs
the new command-line kernel debugger (Kd). If Kd is not
found in the current directory, LiveKd tries I386kd. To run
the GUI debugger (Windbg) specify the -w switch. To see the
help on the switches for LiveKd, specify the -? switch.

LiveKd presents a simulated crash dump file to the
debugger, so you can perform any operations in LiveKd that
are supported on a crash dump. Because LiveKd is relying on
physical memory to back the simulated dump, the kernel



debugger might run into situations in which data structures
are in the middle of being changed by the system and are
inconsistent. Each time the debugger is launched, it gets a
snapshot of system state, so if you want to refresh the
snapshot, quit the debugger (with the "q" command) and
LiveKd will ask you whether you want to start it again. If the
debugger gets in a loop in printing output, press Ctrl+C to
interrupt the output, quit, and rerun it. If it hangs, press
Ctrl+Break, which will terminate the debugger process and
ask you whether you want to run the debugger again.

SoftICE

Another debugging tool that doesn't require two machines
for live kernel debugging is a third-party kernel debugger
called SoftICE, which you can buy from Compuware
NuMega. (See www.numega.com for details.)

Symbols for Kernel Debugging

To use any of the kernel debugging tools listed previously to
examine internal Windows 2000 data structures (such as the
process list, thread blocks, loaded driver list, memory usage
information, and so on), you must have the correct symbol
files for at least the kernel image, Ntoskrnl.exe. (The section
"Architecture Overview" in Chapter 2 explains more about
this file). The symbols are part of the Customer Support
Diagnostics package (which, as mentioned earlier, is
downloadable from www.microsoft.com). They are installed
separately from the debugging tools and by default reside in
the \Winnt\Symbols folder.

Later in the book, you'll see how you can use these symbol
table files to display the names of internal Windows 2000
system routines and global variables.

http://www.numega.com/
http://www.microsoft.com/


NOTE

Symbol table files must match the version of the
image they were taken from. For example, if you
install a Windows 2000 Service Pack, you must obtain
the matching, updated symbol files for at least the
kernel image; otherwise, you'll get a checksum error
when you try to load them with the kernel debugger.
These updated symbol files are not typically included
or installed when you download and install a Service
Pack from www.microsoft.com—they must be
downloaded separately. (If you receive MSDN
Professional or TechNet, they're included on the
Service Pack CD-ROMs.)

http://www.microsoft.com/


Platform Software Development Kit (SDK)

The Platform SDK is part of the MSDN Professional (and
Universal) subscription and can also be downloaded for free
from msdn.microsoft.com. It contains the C header files and
libraries necessary to compile and link Win32 applications.
(Although Microsoft Visual C++ comes with a copy of these
header files, the versions contained in the Platform SDK
always match the latest version of the Windows operating
systems, whereas the version that comes with Visual C++
might be an older version that was current when Visual C++
was released.) From an internals perspective, items of
interest in the Platform SDK include the Win32 API header
files (\Program Files\Microsoft Platform SDK\Include) as well
as several utilities (Pfmon.exe, Pstat.exe, Winobj.exe). Some
of the tools in the Platform SDK also come with the resource
kits. Finally, a few of these tools are also shipped as example
source code in both the Platform SDK and the MSDN Library.

http://msdn.microsoft.com/


Device Driver Kit (DDK)

The Windows 2000 DDK is part of the MSDN Professional
(and Universal) subscription, but it is also available for free
download at www.microsoft.com/hwdev. Although the DDK
is aimed at device driver developers, the DDK is an
abundant source of Windows 2000 internals information. For
example, the DDK documentation contains a comprehensive
description of the Windows 2000 I/O system in both a
tutorial and reference form, including the internal system
routines and data structures used by device drivers.

Besides the documentation, the DDK contains header files
that define key internal data structures and constants as
well as interfaces to many internal system routines (in
particular, Ntddk.h). These files are useful when exploring
Windows 2000 internal data structures with the kernel
debugger because although the general layout and content
of these structures are shown in this book, detailed field-
level descriptions (such as size and data types) are not. A
number of these data structures (such as object dispatcher
headers, wait blocks, events, mutants, semaphores, and so
on) are, however, fully defined in the DDK. In addition, the
!dso command in the kernel debugger displays the format of
many internal Windows 2000 data structures that are not
defined in the DDK header files.

http://www.microsoft.com/hwdev


Systems Internals Tools

Many of the experiments in this book use freeware tools that
you can download from www.sysinternals.com. Mark
Russinovich, coauthor of this book, wrote most of these
tools. Copies of these tools are in the \Sysint directory on
the companion CD. In addition, a complete copy of the Web
site www.sysinternals.com is also on the CD. (Keep in mind
that although the version of www.sysinternals.com on the
companion CD has the latest versions of tools available when
this book was published, it won't have any new tools or
updates that have been added to the live site later.) Many of
these utilities involve the installation and execution of
kernel-mode device drivers and thus require administrator
privileges.

http://www.sysinternals.com/
http://www.sysinternals.com/
http://www.sysinternals.com/


[Previous] [Next]



Conclusion
In this chapter, you've been introduced to the key Windows
2000 technical concepts and terms that will be used
throughout the book. You've also glimpsed at the many
useful tools available for digging into Windows 2000
internals. Now we're ready to begin our exploration of the
internal design of the system, beginning with an overall
view of the system architecture and its key components.



[Previous] [Next]

Chapter 2



System Architecture
Now that we've covered the terms, concepts, and tools you
need to be familiar with, we're ready to start our
exploration of the internal design goals and structure of
Microsoft Windows 2000 (originally Windows NT). This
chapter explains the overall architecture of the system—the
key components, how they interact with each other, and the
context in which they run. To provide a framework for
understanding the internals of Windows 2000, let's first
review the requirements and goals that shaped the original
design and specification of the system.



[Previous] [Next]



Requirements and Design Goals
The following requirements drove the specification of
Windows NT back in 1989:

Provide a true 32-bit, preemptive, reentrant, virtual
memory operating system

Run on multiple hardware architectures and platforms

Run and scale well on symmetric multiprocessing
systems

Be a great distributed computing platform, both as a
network client and as a server

Run most existing 16-bit MS-DOS and Microsoft
Windows 3.1 applications

Meet government requirements for POSIX 1003.1
compliance

Meet government and industry requirements for
operating system security

Be easily adaptable to the global market by supporting
Unicode

To guide the thousands of decisions that had to be made to
create a system that met these requirements, the Windows
NT design team adopted the following design goals at the
beginning of the project:

Extensibility The code must be written to comfortably
grow and change as market requirements change.



Portability The system must be able to run on multiple
hardware architectures and must be able to move with
relative ease to new ones as market demands dictate.

Reliability and robustness The system should protect
itself from both internal malfunction and external
tampering. Applications should not be able to harm the
operating system or other applications.

Compatibility Although Windows NT should extend
existing technology, its user interface and APIs should be
compatible with older versions of Windows and with MS-
DOS. It should also interoperate well with other systems
such as UNIX, OS/2, and NetWare.

Performance Within the constraints of the other design
goals, the system should be as fast and responsive as
possible on each hardware platform.

As we explore the details of the internal structure and
operation of Windows 2000, you'll see how these original
design goals and market requirements were woven
successfully into the construction of the system. But before
we start that exploration, let's examine the overall design
model for Windows 2000 and compare it with other modern
operating systems.

Windows 2000 vs. Consumer Windows

Windows 2000 and Consumer Windows (Windows 95,
Windows 98, and Windows Millennium Edition) are
part of the "Windows family of operating systems,"
sharing a common subset API (Win32 and COM) and
in some cases operating system code. Windows 2000,
Windows 98, and Windows Millennium Edition also



share a common subset device driver model called
the Windows Driver Model (WDM), which is explained
in more detail in Chapter 9.

From the initial announcement of Windows NT,
Microsoft has always made it clear that this operating
system was to be the strategic platform for the future
—not just for servers and business desktops but
eventually for consumer systems as well. The
following list highlights some of the architectural
differences and advantages that Windows 2000 has
over Consumer Windows:

Windows 2000 supports multiprocessor systems—
Consumer Windows doesn't.

The Windows 2000 file system supports security
(such as discretionary access control). The
Consumer Windows file system doesn't.

Windows 2000 is a fully 32-bit operating system
—it contains no 16-bit code, other than support
code for running 16-bit Windows applications.
Consumer Windows contains a large amount of
old 16-bit code from its predecessors, Windows
3.1 and MS-DOS.

Windows 2000 is fully reentrant—significant parts
of Consumer Windows are nonreentrant (mainly
the 16-bit code taken from Windows 3.1). This
nonreentrant code includes the majority of the
graphics and window management functions (GDI
and USER). When a 32-bit application on
Consumer Windows attempts to call a system
service implemented in nonreentrant 16-bit code,
the application must first obtain a systemwide
lock (or mutex) to block other threads from



entering the nonreentrant code base. And even
worse, a 16-bit application holds this lock while
running. As a result, although the core of
Consumer Windows contains a preemptive 32-bit
multithreaded scheduler, applications often run
single threaded because so much of the system is
still implemented in nonreentrant code.

Windows 2000 provides an option to run 16-bit
Windows applications in their own address space
—Consumer Windows always runs 16-bit
Windows applications in a shared address space,
in which they can corrupt (and hang) each other.

Shared memory on Windows 2000 is visible only
to the processes that are mapping the same
shared memory section. (In the Win32 API, a
shared memory section is called a file mapping
object.) On Consumer Windows, all shared
memory is visible and writable from all processes.
Thus, any process can write to any file mapping
object.

Consumer Windows has some critical operating
system pages that are writable from user mode,
thus allowing a user application to corrupt or
crash the system.

The one thing Consumer Windows can do that
Windows 2000 will never do is run all older MS-DOS
and Windows 3.1 applications (notably applications
that require direct hardware access) as well as 16bit
MS-DOS device drivers. Whereas 100 percent
compatibility with MS-DOS and Windows 3.1 was a
mandatory goal for Windows 95, the original goal for
Windows NT was to run most existing 16-bit



applications while preserving the integrity and
reliability of the system.



[Previous] [Next]



Operating System Model
In most multiuser operating systems, applications are
separated from the operating system itself—the operating
system code runs in a privileged processor mode (referred to
as kernel mode in this book), with access to system data
and to the hardware; application code runs in a
nonprivileged processor mode (called user mode), with a
limited set of interfaces available, limited access to system
data, and no direct access to hardware. When a user-mode
program calls a system service, the processor traps the call
and then switches the calling thread to kernel mode. When
the system service completes, the operating system
switches the thread context back to user mode and allows
the caller to continue.

Windows 2000 is similar to most UNIX systems in that it's a
monolithic operating system in the sense that the bulk of the
operating system and device driver code shares the same
kernel-mode protected memory space. This means that any
operating system component or device driver can potentially
corrupt data being used by other operating system
components.

Is Windows 2000 a Microkernel-Based System?

Although some claim it as such, Windows 2000 isn't a
microkernel-based operating system in the classic
definition of microkernels, where the principal
operating system components (such as the memory
manager, process manager, and I/O manager) run as
separate processes in their own private address
spaces, layered on a primitive set of services the
microkernel provides. For example, the Carnegie



Mellon University Mach operating system, a
contemporary example of a microkernel architecture,
implements a minimal kernel that comprises thread
scheduling, message passing, virtual memory, and
device drivers. Everything else, including various
APIs, file systems, and networking, runs in user
mode. However, commercial implementations of the
Mach microkernel operating system typically run at
least all file system, networking, and memory
management code in kernel mode. The reason is
simple: the pure microkernel design is commercially
impractical because it's too inefficient.

Does the fact that so much of Windows 2000 runs in
kernel mode mean that it's more susceptible to
crashes than a true microkernel operating system?
Not at all. Consider the following scenario. Suppose
the file system code of an operating system has a
bug that causes it to crash from time to time. In a
traditional operating system or a modified
microkernel operating system, a bug in kernel-mode
code such as the memory manager or the file system
would likely crash the entire operating system. In a
pure microkernel operating system, such components
run in user mode, so theoretically a bug would simply
mean that the component's process exits. But in
practical terms, the system would crash because
recovering from the failure of such a critical process
would likely be impossible.

All these operating system components are, of course, fully
protected from errant applications because applications don't
have direct access to the code and data of the privileged
part of the operating system (though they can quickly call



other kernel services). This protection is one of the reasons
that Windows 2000 has the reputation for being both robust
and stable as an application server and as a workstation
platform yet fast and nimble from the perspective of core
operating system services, such as virtual memory
management, file I/O, networking, and file and print
sharing.

The kernel-mode components of Windows 2000 also embody
basic object-oriented design principles. For example, they
don't reach into one another's data structures to access
information maintained by individual components. Instead,
they use formal interfaces to pass parameters and access
and/or modify data structures.

Despite its pervasive use of objects to represent shared
system resources, Windows 2000 is not an object-oriented
system in the strict sense. Most of the operating system
code is written in C for portability and because C
development tools are widely available. C doesn't directly
support object-oriented constructs, such as dynamic binding
of data types, polymorphic functions, or class inheritance.
Therefore, the C-based implementation of objects in
Windows 2000 borrows from, but doesn't depend on,
features of particular object-oriented languages.



Portability

Windows 2000 was designed to run on a variety of hardware
architectures, including Intel-based CISC systems as well as
RISC systems. The initial release of Windows NT supported
the x86 and MIPS architecture. Support for the Digital
Equipment Corporation (DEC) Alpha AXP was added shortly
thereafter. Support for a fourth processor architecture, the
Motorola PowerPC, was added in Windows NT 3.51. Because
of changing market demands, however, support for the MIPS
and PowerPC architectures was dropped before development
began on Windows 2000. Later Compaq withdrew support
for the Alpha AXP architecture, resulting in Windows 2000
being supported only on the x86 architecture.

NOTE

The next architecture to be supported by a future
version of Windows 2000 is the new Intel Itanium
processor family, the first implementation of the 64-
bit architecture family being jointly developed by
Intel and Hewlett-Packard, called IA-64 (for Intel
Architecture 64). The 64-bit version of Windows will
provide a much larger address space for both user
processes and the system. Although this is a major
enhancement that extends the scalability of the
system significantly, to date, moving Windows 2000
to a 64-bit platform hasn't necessitated major
changes in the kernel architecture of the system
(other than the support in the memory manager, of
course). For information on preparing applications
now so that they can be ported to 64-bit Windows
more easily later, see the section of the Platform SDK
documentation entitled "Win64 Programming



Preview" (also available online at
msdn.microsoft.com). For general information on 64-
bit Windows, search for the keyword "64-bit" on
www.microsoft.com/windows.

Windows 2000 achieves portability across hardware
architectures and platforms in two primary ways:

Windows 2000 has a layered design, with low-level
portions of the system that are processor-architecture-
specific or platform-specific isolated into separate
modules so that upper layers of the system can be
shielded from the differences between architectures and
among hardware platforms. The two key components
that provide operating system portability are the kernel
(contained in Ntoskrnl.exe) and the hardware
abstraction layer (contained in Hal.dll). (Both these
components are described in more detail later in this
chapter.) Functions that are architecture-specific (such
as thread context switching and trap dispatching) are
implemented in the kernel. Functions that can differ
among systems within the same architecture (for
example, different motherboards) are implemented in
the HAL.

The vast majority of Windows 2000 is written in C, with
some portions in C++. Assembly language is used only
for those parts of the operating system that need to
communicate directly with system hardware (such as the
interrupt trap handler) or that are extremely
performance-sensitive (such as context switching).
Assembly language code exists not only in the kernel
and the HAL but also in a few other places within the
core operating system (such as the routines that
implement interlocked instructions as well as one

http://msdn.microsoft.com/
http://www.microsoft.com/windows


module in the local procedure call facility), in the kernel-
mode part of the Win32 subsystem, and even in some
user-mode libraries, such as the process startup code in
Ntdll.dll (a system library explained later in this
chapter).



Symmetric Multiprocessing

Multitasking is the operating system technique for sharing a
single processor among multiple threads of execution. When
a computer has more than one processor, however, it can
execute two threads simultaneously. Thus, whereas a
multitasking operating system only appears to execute
multiple threads at the same time, a multiprocessing
operating system actually does it, executing one thread on
each of its processors.

As mentioned at the beginning of this chapter, one of the
key design goals for Windows NT was that it had to run well
on multiprocessor computer systems. Windows 2000 is also
a symmetric multiprocessing (SMP) operating system. There
is no master processor—the operating system as well as
user threads can be scheduled to run on any processor. Also,
all the processors share just one memory space. This model
contrasts with asymmetric multiprocessing (ASMP), in which
the operating system typically selects one processor to
execute operating system code while other processors run
only user code. The differences in the two multiprocessing
models are illustrated in Figure 2-1.



Figure 2-1 Symmetric vs. asymmetric multiprocessing

Although Windows NT was originally designed to support up
to 32 processors, nothing inherent in the multiprocessor
design limits the number of processors to 32—that number
is simply an obvious and convenient limit because 32
processors can easily be represented as a bit mask using a
native 32bit data type.

The actual number of supported processors depends on the
edition of Windows 2000 being used. (The various editions of
Windows 2000 are described in the next section.) This
number is stored in the registry value
HKLM\SYSTEM\CurrentControlSet\Control\Session\Manager\
Licensed Processors. Keep in mind that tampering with that
data is a violation of the software license and will likely
result in a system crash upon rebooting because modifying
the registry to allow use of more processors involves more
than just changing this value.

javascript:fullSize('F02yj01x.htm')


Scalability

One of the key issues with multiprocessor systems is
scalability. To run correctly on an SMP system, operating
system code must adhere to strict guidelines and rules.
Resource contention and other performance issues are more
complicated in multiprocessing systems than in uniprocessor
systems and must be accounted for in the system's design.
Windows 2000 incorporates several features that are crucial
to its success as a multiprocessor operating system:

The ability to run operating system code on any
available processor and on multiple processors at the
same time

Multiple threads of execution within a single process,
each of which can execute simultaneously on different
processors

Fine-grained synchronization within the kernel as well as
within device drivers and server processes, which allows
more components to run concurrently on multiple
processors

In addition, Windows 2000 provides mechanisms (such as
I/O completion ports—described in Chapter 9) that facilitate
the efficient implementation of multithreaded server
processes that can scale well on multiprocessor systems.

Multiprocessor synchronization is described in Chapter 3.
Multiprocessor thread scheduling details are covered in
Chapter 6.



[Previous] [Next]



Architecture Overview
With this brief overview of the design goals and packaging
of Windows 2000, let's take a look at the key system
components that comprise its architecture. A simplified
version of this architecture is shown in Figure 2-2. Keep in
mind that this diagram is basic—it doesn't show everything.
The various components of Windows 2000 are covered in
detail later in this chapter.

Figure 2-2 Simplified Windows 2000 architecture

In Figure 2-2, first notice the line dividing the user-mode
and kernel-mode parts of the Windows 2000 operating
system. The boxes above the line represent user-mode
processes, and the components below the line are kernel-
mode operating system services. As mentioned in Chapter
1, user-mode threads execute in a protected process
address space (although while they are executing in kernel
mode, they have access to system space). Thus, system
support processes, service processes, user applications, and
environment subsystems each have their own private
process address space.

The four basic types of user-mode processes are described
as follows:

javascript:fullSize('F02yj02x.htm')


Fixed (or hardwired) system support processes, such as
the logon process and the session manager, that are not
Windows 2000 services (that is, not started by the
service control manager).

Service processes that host Win32 services, such as the
Task Scheduler and Spooler services. Many Windows
2000 server applications, such as Microsoft SQL Server
and Microsoft Exchange Server, also include components
that run as services.

User applications, which can be one of five types:
Win32, Windows 3.1, MS-DOS, POSIX, or OS/2 1.2.

Environment subsystems, which expose the native
operating system services to user applications through
a set of callable functions, thus providing an operating
system environment, or personality. Windows 2000
ships with three environment subsystems: Win32,
POSIX, and OS/2.

In Figure 2-2, notice the "Subsystem DLLs" box below the
"Service processes" and "User applications" boxes. Under
Windows 2000, user applications don't call the native
Windows 2000 operating system services directly; rather,
they go through one or more subsystem dynamic-link
libraries (DLLs). The role of the subsystem DLLs is to
translate a documented function into the appropriate
internal (and undocumented) Windows 2000 system service
calls. This translation might or might not involve sending a
message to the environment subsystem process that is
serving the user application.

The kernel-mode components of Windows 2000 include the
following:



The Windows 2000 executive contains the base
operating system services, such as memory
management, process and thread management,
security, I/O, and interprocess communication.

The Windows 2000 kernel consists of low-level
operating system functions, such as thread scheduling,
interrupt and exception dispatching, and multiprocessor
synchronization. It also provides a set of routines and
basic objects that the rest of the executive uses to
implement higher-level constructs.

Device drivers include both hardware device drivers that
translate user I/O function calls into specific hardware
device I/O requests as well as file system and network
drivers.

The hardware abstraction layer (HAL) is a layer of code
that isolates the kernel, device drivers, and the rest of
the Windows 2000 executive from platform-specific
hardware differences (such as differences between
motherboards).

The windowing and graphics system implements the
graphical user interface (GUI) functions (better known
as the Win32 USER and GDI functions), such as dealing
with windows, user interface controls, and drawing.

Table 2-1 lists the filenames of the core Windows 2000
operating system components. (You'll need to know these
filenames because we'll be referring to some system files by
name.) Each of these components is covered in greater
detail both later in this chapter and in the chapters that
follow.

Table 2-1 Core Windows 2000 System Files



Filename Components

Ntoskrnl.exe Executive and kernel

Ntkrnlpa.exe Executive and kernel with support for
Physical Address Extension (PAE), which
allows addressing of up to 64 GB of
physical memory

Hal.dll Hardware abstraction layer

Win32k.sys Kernel-mode part of the Win32
subsystem

Ntdll.dll Internal support functions and system
service dispatch stubs to executive
functions

Kernel32.dll,
Advapi32.dll,
User32.dll,
Gdi32.dll

Core Win32 subsystem DLLs

Before we dig into the details of these system components,
though, let's examine the differences between Windows
2000 Professional and the various editions of Windows 2000
Server.



[Previous] [Next]



Windows 2000 Product Packaging
There are four editions of Windows 2000: Windows 2000
Professional, Windows 2000 Server, Windows 2000 Advanced Server,
and Windows 2000 Datacenter Server. These editions differ by:

The number of processors supported

The amount of physical memory supported

The number of concurrent network connections supported

Layered services that come with Server editions that don't come
with the Professional edition

These differences are summarized in Table 2-2.

Table 2-2 Differences Between Windows 2000 Professional and
Server Editions

Edition
Number of
Processors
Supported

Physical
Memory

Supported

Number of
Concurrent

Client
Network

Connections*

Additional
Layered
Services

Windows
2000
Professional

2 4 GB 10

Windows
2000
Server

4 4 GB Unlimited Ability to be
a Server
domain
controller,
Active
Directory
service,
software-
based RAID,
Dynamic
Host
Configuration



Protocol
(DHCP)
server,
Domain
Name
System
(DNS)
server,
Distributed
File System
(DFS) server,
Certificate
Services,
Remote
install, and
Terminal
Services

Windows
2000
Advanced
Server

8 8 GB Unlimited Two-node
clusters

Windows
2000
Datacenter
Server

32 64 GB** Unlimited Four-node
clusters,
Process
Control
Manager
tool†

* The End-User License Agreement for Windows 2000 Professional (contained in \Winnt\System32\Eula.txt) states,
"You may permit a maximum of ten (10) computers or other electronic devices (each a "Device") to connect to the
Workstation Computer to utilize the services of the Product solely for file and print services, internet information
services, and remote access (including connection sharing and telephony services)." This limit is enforced for file and
print sharing and remote access but not for Internet Information Services.

** Theoretical limit—the supported limit might be less than this due to availability of commercial hardware.

† See Chapter 6 for more on the Process Control Manager tool.

What is not different between the various flavors of Windows 2000
are the core system files: the kernel image, Ntoskrnl.exe (and the
PAE version, Ntkrnlpa.exe); the HAL libraries; the device drivers; and
the base system utilities and DLLs. All these files are the same for all



editions of Windows 2000. For example, there are no special server
versions of the HAL.

However, a number of these components operate differently
depending on which edition is running. Windows 2000 Server
systems are optimized for system throughput as high-performance
application servers, whereas Windows 2000 Professional, although it
has server capabilities, is optimized for response time for interactive
desktop use. For example, based on the product type, several
resource allocation decisions are made differently at system boot
time, such as the size and number of operating system heaps (or
pools), the number of internal system worker threads, and the size of
the system data cache. Also, run-time policy decisions, such as the
way the memory manager trades off system and process memory
demands, differ between the Windows 2000 Server editions and
Windows 2000 Professional. Even some thread-scheduling details
have different default behavior in the two edition families. Where
there are significant operational differences in the two products,
these are highlighted in the pertinent chapters throughout the rest of
this book. Unless otherwise noted, everything in this book applies to
both the Windows 2000 Server editions as well as Windows 2000
Professional.

If the kernel image is the same across the various product editions of
Windows 2000, how does the system know which edition is booted?
By querying the registry values ProductType and ProductSuite under
the HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key.
ProductType is used to distinguish whether the system is a Windows
2000 Professional system or a Windows 2000 Server system (any
edition). The valid values are listed in Table 2-3. The result is stored
in the system global variable MmProductType, which can be queried
from a device driver using the kernel-mode support function
MmIsThisAnNtAsSystem, documented in the Windows 2000 DDK.

Table 2-3 ProductType Registry Values

Edition of Windows 2000 Value of
ProductType

Windows 2000 Professional WinNT

Windows 2000 Server (domain LanmanNT



controller)

Windows 2000 Server (server only) ServerNT

A different registry value, ProductSuite, distinguishes Windows 2000
Server, Advanced Server, and Datacenter Server as well as whether
Terminal Services have been installed (Server systems only). On
Windows 2000 Professional systems, this value is blank.

If user programs need to determine which edition of Windows 2000
is running, they can call the Win32 VerifyVersionInfo function,
documented in the Platform SDK. Device drivers can call the kernel-
mode function RtlGetVersion, documented in the Windows 2000
DDK.



Checked Build

There is a special debug version of Windows 2000 Professional called
the checked build. This version is available only with the MSDN
Professional (or Universal) CD subscription. It is provided to aid
device driver developers—the checked build performs more stringent
error checking on kernel-mode functions called by device drivers or
other system code. For example, if a driver (or some other piece of
kernel-mode code) makes an invalid call to a system function that is
checking parameters (such as acquiring a spinlock at the wrong
interrupt level), the system will stop execution when the problem is
detected rather than allow some data structure to be corrupted and
the system to possibly crash at a later time.

The checked build is a recompilation of the Windows 2000 source
code with the compile-time flag DEBUG set to TRUE. Much of the
additional code in the checked-build binaries is a result of using the
ASSERT macro, which is defined in the DDK header file Ntddk.h and
documented in the DDK documentation. This macro tests a condition
(such as the validity of a data structure or parameter), and if the
expression evaluates to FALSE, the macro calls the kernel-mode
function RtlAssert, which calls DbgPrint to pass the text of the debug
message to a kernel debugger (if one is attached) to be displayed
and then prompts the user for what to do (breakpoint, ignore,
terminate process, or terminate thread). If the system wasn't booted
with the kernel debugger (using the /DEBUG switch in Boot.ini) and
no kernel debugger is currently attached, failure of an ASSERT test
will crash the system.

Although Microsoft doesn't supply a checked-build version of
Windows 2000 Server, Advanced Server, or Datacenter Server, you
can manually copy the checked (debug) version of the kernel image
onto a Windows 2000 Server system, reboot, and run with a checked
kernel. (You could also do this for other system files, but most
developers who use the checked build really only need the checked
version of the kernel image—not the checked versions of every
device driver, utility, and DLL.)



Multiprocessor-Specific System Files

Six system files* are different on a multiprocessor system than on a
uniprocessor system. (See Table 2-4.) At installation time, the
appropriate file is selected and copied to the local \Winnt\System32
directory. To determine which files were copied, see the file
\Winnt\Repair\Setup.log, which itemizes all the files that were copied
to the local system disk and where they came from off the
distribution media.

Table 2-4 Multiprocessor-Specific vs. Uniprocessor-Specific System
Files

Name of
File on
System

Disk

Name of Uniprocessor
Version on CD

Name of
Multiprocessor
Version on CD

Ntoskrnl.exe \I386\Ntoskrnl.exe \I386\Ntkrnlmp.exe

Ntkrnlpa.exe Ntkrnlpa.exe in
\I386\Driver.cab

Ntkrpamp.exe in
\I386\Driver.cab

Hal.dll Depends on system type
(See the list of HALs in
Table 2-5.)

Depends on system
type (See the list of
HALs in Table 2-5.)

Win32k.sys \I386\UNIPROC\Win32k.sys Win32k.sys in
\I386\Driver.cab

Ntdll.dll \I386\UNIPROC\Ntdll.dll \I386\Ntdll.dll

Kernel32.dll \I386\UNIPROC\Kernel32.dll \I386\Kernel32.dll

EXPERIMENT

Looking at Multiprocessor-Specific Support Files

You can see the files that are different for a multiprocessor
system by looking at the driver details for the Computer in
Device Manager:



1. Open the System properties (either by selecting System
from Control Panel or by right-clicking on the My
Computer icon on your desktop and selecting Properties).

2. Click on the Hardware tab.

3. Click Device Manager.

4. Expand the Computer object.

5. Double-click on the child node underneath Computer.

6. Click on the Driver tab.

7. Click Driver Details.

You should see this dialog box for a multiprocessor system:

The reason for having uniprocessor versions of these key system files
is performance—multiprocessor synchronization is inherently more
complex and time consuming than the use of a single processor, so
by having special uniprocessor versions of the key system files, this



overhead is avoided on uniprocessor systems (which constitute the
vast majority of systems running Windows 2000).

Interestingly, although the uniprocessor and multiprocessor versions
of Ntoskrnl are generated using conditionally compiled source code,
the uniprocessor versions of Ntdll.dll and Kernel32.dll are created by
patching the x86 LOCK and UNLOCK instructions, which are used to
synchronize multiple threads with no-operation (NOP) instructions
(which do nothing).

The rest of the system files that comprise Windows 2000 (including
all utilities, libraries, and device drivers) have the same version on
both uniprocessor and multiprocessor systems (that is, they handle
multiprocessor synchronization issues correctly). You should use this
approach on any software you build, whether it is a Win32
application or a device driver—keep multiprocessor synchronization
issues in mind when you design your software, and test the software
on both uniprocessor and multiprocessor systems.

On the checked build CD, if you compare Ntoskrnl.exe and
Ntkrnlmp.exe or Ntkrnlpa.exe and Ntkrpamp.exe, you'll find that they
are identical—they are all multiprocessor versions of the same files.
In other words, there is no debug uniprocessor version of the kernel
images provided with the checked build.

EXPERIMENT

Checking Which Ntoskrnl Version You're Running

With Windows NT 4, you can tell which version of Ntoskrnl
you're running by clicking on the Version tab in Windows NT
Diagnostics (Winmsd.exe). In Windows 2000, there is no
utility to show this information. However, an Event Log entry
is written each time the system boots that does record the
type of kernel image (uniprocessor vs. multiprocessor and
free vs. checked), as shown in the screen shot below. (From
the Start menu select Programs/Administrative Tools/Event
Viewer, select System Log, and double-click on an Event Log
entry with an Event ID of 6009, indicating the entry was
written at the system start.)



This Event Log entry doesn't indicate whether you booted the
PAE version of the kernel image that supports more than 4
GB of physical memory (Ntkrnlpa.exe). However, you can tell
if you booted the PAE kernel by looking at the registry value
HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOption
s. Also, if you boot the PAE kernel, the registry value
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PhysicalAddressExtension is
set to 1.

You can also determine whether you installed the
multiprocessor version of Ntoskrnl (or Ntkrnlpa) by examining
the file properties: run Windows Explorer, right-click on
Ntoskrnl.exe in your \Winnt\System32 folder, and select
Properties. Then click on the Version tab, and select the
Original Filename property—if you're running the
multiprocessor version, you'll see the dialog box below.



Finally, as mentioned earlier, you can see exactly which kernel
image and HAL were selected at installation time by looking
at the file \Winnt\Repair\Setup.log.



[Previous] [Next]



Key System Components
Now that we've looked at the high-level architecture of Windows 2000, let's delve deeper
into the internal structure and the role each of the key operating system components
plays. Figure 2-3 is a more detailed and complete diagram of the Windows 2000 system
architecture and components than was shown earlier in the chapter (in Figure 2-2).

The following sections elaborate on each major element of this diagram. Chapter 3
explains the primary control mechanisms the system uses (such as the object manager,
interrupts, and so forth). Chapter 4 describes the process of starting and shutting down
Windows 2000, and Chapter 5 details management mechanisms such as the registry,
service processes, and Windows Management Instrumentation (WMI). Then the remaining
chapters explore in even more detail the internal structure and operation of key areas such
as processes and threads, memory management, security, the I/O manager, storage
management, the cache manager, the Windows 2000 file system (NTFS), and networking.

Figure 2-3 Windows 2000 architecture

javascript:fullSize('F02yj03x.htm')


Environment Subsystems and Subsystem DLLs

As shown in Figure 2-3, Windows 2000 has three environment subsystems: OS/2, POSIX,
and Win32. As we'll explain shortly, of the three, the Win32 subsystem is special in that
Windows 2000 can't run without it. (It owns the keyboard, mouse, and display, and it is
required to be present even on server systems with no interactive users logged in.) In fact,
the other two subsystems are configured to start on demand, whereas the Win32
subsystem must always be running.

The subsystem startup information is stored under the registry key
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems. Figure 2-4 shows
the values under this key.

Figure 2-4 Registry Editor showing Windows 2000 startup information

The Required value lists the subsystems that load when the system boots. The value has
two strings: Windows and Debug. The Windows value contains the file specification of the
Win32 subsystem, Csrss.exe, which stands for Client/Server Run-Time Subsystem.* Debug
is blank (it's used for internal testing) and therefore does nothing. The Optional value
indicates that the OS/2 and POSIX subsystems will be started on demand. The registry
value Kmode contains the filename of the kernel-mode portion of the Win32 subsystem,
Win32k.sys (explained later in this chapter).

The role of an environment subsystem is to expose some subset of the base Windows
2000 executive system services to application programs. Each subsystem can provide
access to different subsets of the native services in Windows 2000. That means that some
things can be done from an application built on one subsystem that can't be done by an
application built on another subsystem. For example, a Win32 application can't use the
POSIX fork function.

Each executable image (.exe) is bound to one and only one subsystem. When an image is
run, the process creation code examines the subsystem type code in the image header so
that it can notify the proper subsystem of the new process. This type code is specified with
the /SUBSYSTEM qualifier of the link command in Microsoft Visual C++ and can be viewed
with the Exetype tool in the Windows 2000 resource kits.

Function calls can't be mixed between subsystems. In other words, a POSIX application
can call only services exported by the POSIX subsystem, and a Win32 application can call
only services exported by the Win32 subsystem. As you'll see later, this restriction is the
reason that the POSIX subsystem, which implements a very limited set of functions (only
POSIX 1003.1), isn't a useful environment for porting UNIX applications.

As mentioned earlier, user applications don't call Windows 2000 system services directly.
Instead, they go through one or more subsystem DLLs. These libraries export the
documented interface that the programs linked to that subsystem can call. For example,
the Win32 subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll)

javascript:fullSize('F02yj04x.htm')


implement the Win32 API functions. The POSIX subsystem DLL implements the POSIX
1003.1 API.

EXPERIMENT

Viewing the Image Subsystem Type

You can see the image subsystem type by using either the Exetype tool in the
Windows 2000 resource kits or the Dependency Walker tool (Depends.exe) in the
Windows 2000 Support Tools and Platform SDK. For example, notice the image
types for two different Win32 images, Notepad.exe (the simple text editor) and
Cmd.exe (the Windows 2000 command prompt):

C:\>exetype \winnt\system32\notepad.exe 
File "\winnt\system32\notepad.exe" is of the following type: 
    Windows NT 
    32 bit machine 
    Built for the Intel 80386 processor 
    Runs under the Windows GUI subsystem 
 
C:\>exetype \winnt\system32\cmd.exe 
File "\winnt\system32\cmd.exe" is of the following type: 
    Windows NT 
    32 bit machine 
    Built for the Intel 80386 processor 
    Runs under the Windows character-based subsystem 

In reality, there is just one Windows subsystem, not separate ones for graphical
images and for character-based, or console, images. Also, Windows 2000 isn't
supported on the Intel 386 processor (or the 486 for that matter)—the text output
by the Exetype program hasn't been updated.

When an application calls a function in a subsystem DLL, one of three things can occur:

The function is entirely implemented in user mode inside the subsystem DLL. In other
words, no message is sent to the environment subsystem process, and no Windows
2000 executive system services are called. The function is performed in user mode,
and the results are returned to the caller. Examples of such functions include
GetCurrentProcess (which always returns -1, a value that is defined to refer to the
current process in all process-related functions) and GetCurrentProcessId (the process
ID doesn't change for a running process, so this ID is retrieved from a cached location,
thus avoiding the need to call into the kernel).

The function requires one or more calls to the Windows 2000 executive. For example,
the Win32 ReadFile and WriteFile functions involve calling the underlying internal (and
undocumented) Windows 2000 I/O system services NtReadFile and NtWriteFile,
respectively.



The function requires some work to be done in the environment subsystem process.
(The environment subsystem processes, running in user mode, are responsible for
maintaining the state of the client applications running under their control.) In this
case, a client/server request is made to the environment subsystem via a message
sent to the subsystem to perform some operation. The subsystem DLL then waits for a
reply before returning to the caller.

Some functions can be a combination of the second and third items above, such as the
Win32 CreateProcess and CreateThread functions.

Although Windows 2000 was designed to support multiple, independent environment
subsystems, from a practical perspective, having each subsystem implement all the code
to handle windowing and display I/O would result in a large amount of duplication of
system functions that, ultimately, would have negatively affected both system size and
performance. Because Win32 was the primary subsystem, the Windows 2000 designers
decided to locate these basic functions there and have the other subsystems call on the
Win32 subsystem to perform display I/O. Thus, the POSIX and OS/2 subsystems call
services in the Win32 subsystem to perform display I/O. (In fact, if you examine the
subsystem type for these images, you'll see that they are Win32 executables.)

Let's take a closer look at each of the environment subsystems.

Win32 Subsystem

The Win32 subsystem consists of the following major components:

The environment subsystem process (Csrss.exe) contains support for:

Console (text) windows

Creating and deleting processes and threads

Portions of the support for 16-bit virtual DOS machine (VDM) processes

Other miscellaneous functions, such as GetTempFile, DefineDosDevice,
ExitWindowsEx, and several natural language support functions

The kernel-mode device driver (Win32k.sys) contains:

The window manager, which controls window displays; manages screen output;
collects input from keyboard, mouse, and other devices; and passes user
messages to applications.

The Graphics Device Interface (GDI), which is a library of functions for graphics
output devices. It includes functions for line, text, and figure drawing and for
graphics manipulation.

Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll)
translate documented Win32 API functions into the appropriate undocumented kernel-
mode system service calls to Ntoskrnl.exe and Win32k.sys.

Graphics device drivers are hardware-dependent graphics display drivers, printer
drivers, and video miniport drivers.

Applications call the standard USER functions to create user interface controls, such as
windows and buttons, on the display. The window manager communicates these requests



to the GDI, which passes them to the graphics device drivers, where they are formatted
for the display device. A display driver is paired with a video miniport driver to complete
video display support.

The GDI provides a set of standard two-dimensional functions that let applications
communicate with graphics devices without knowing anything about the devices. GDI
functions mediate between applications and graphics devices such as display drivers and
printer drivers. The GDI interprets application requests for graphic output and sends the
requests to graphics display drivers. It also provides a standard interface for applications
to use varying graphics output devices. This interface enables application code to be
independent of the hardware devices and their drivers. The GDI tailors its messages to the
capabilities of the device, often dividing the request into manageable parts. For example,
some devices can understand directions to draw an ellipse; others require the GDI to
interpret the command as a series of pixels placed at certain coordinates. For more
information about the graphics and video driver architecture, see the Design Guide section
of the book Graphics Drivers in the Windows 2000 DDK.

Prior to Windows NT 4, the window manager and graphics services were part of the user-
mode Win32 subsystem process. In Windows NT 4, the bulk of the windowing and graphics
code was moved from running in the context of the Win32 subsystem process to a set of
callable services running in kernel mode (in the file Win32k.sys). The primary reason for
this shift was to improve overall system performance. Having a separate server process
that contains the Win32 graphics subsystem required multiple thread and process context
switches, which consumed considerable CPU cycles and memory resources even though
the original design was highly optimized.

For example, for each thread on the client side there was a dedicated, paired server thread
in the Win32 subsystem process waiting on the client thread for requests. A special
interprocess communication facility called fast LPC was used to send messages between
these threads. Unlike normal thread context switches, transitions between paired threads
via fast LPC don't cause a rescheduling event in the kernel, thereby enabling the server
thread to run for the remaining time slice of the client thread before having to take its turn
in the kernel's preemptive thread scheduler. Moreover, shared memory buffers were used
to allow fast passing of large data structures, such as bitmaps, and clients had direct but
read-only access to key server data structures to minimize the need for thread/process
transitions between clients and the Win32 server. Also, GDI operations were (and still are)
batched. Batching means that a series of graphics calls by a Win32 application aren't
"pushed" over to the server and drawn on the output device until a GDI batching queue is
filled. You can set the size of the queue by using the Win32 GdiSetBatchLimit function, and
you can flush the queue at any time with GdiFlush. Conversely, read-only properties and
data structures of GDI, once they were obtained from the Win32 subsystem process, were
cached on the client side for fast subsequent access.

Despite these optimizations, however, the overall system performance was still not
adequate for graphics-intensive applications. The obvious solution was to eliminate the
need for the additional threads and resulting context switches by moving the windowing
and graphics system into kernel mode. Also, once applications have called into the window
manager and the GDI, those subsystems can access other Windows 2000 executive
components directly without the cost of user-mode or kernel-mode transitions. This direct
access is especially important in the case of the GDI calling through video drivers, a
process that involves interaction with video hardware at high frequencies and high
bandwidths.



Is Windows 2000 Less Stable with Win32 USER and GDI in Kernel Mode?

Some people wondered whether moving this much code into kernel mode would
substantially affect system stability. The reason the impact on system stability has
been minimal is that prior to Windows NT 4 (and this is still true today), a bug
(such as an access violation) in the user-mode Win32 subsystem process
(Csrss.exe) resulted in a system crash. This crash occurs because the parent
process of Csrss (the session manager, Smss, which is described in the section
"Session Manager (Smss)") does a wait operation on the process handle to Csrss,
and if the wait ever returns, Smss crashes the system—because the Win32
subsystem process was (and still is) a vital process to the running of the system.
Because it was the process that contained the data structures that described the
windows on the display, the death of that process would kill the user interface.
However, even a Windows 2000 system operating as a server, with no interactive
processes, can't run without this process, since server processes might be using
window messaging to drive the internal state of the application. With Windows
2000, an access violation in the same code now running in kernel mode simply
crashes the system more quickly, since exceptions in kernel mode result in a
system crash.

There is, however, one additional theoretical danger that didn't exist prior to
moving the windowing and graphics system into kernel mode. Because this body
of code is now running in kernel mode, a bug (such as the use of a bad pointer)
could result in corrupting kernel-mode protected data structures. Prior to Windows
NT 4, such references would have caused an access violation because kernel-
mode pages aren't writable from user mode. But a system crash would have then
resulted, as described earlier. With the code now running in kernel mode, a bad
pointer reference that caused a write operation to some kernel-mode page might
not immediately cause a system crash, but if it corrupted some data structure, a
crash would likely result soon after. There is a small chance, however, that such a
reference could corrupt a memory buffer (rather than a data structure), possibly
resulting in returning corrupt data to a user program or writing bad data to the
disk.

Another area of possible impact can come from the move of the graphics drivers
into kernel mode. Previously, some portions of a graphics driver ran within Csrss,
and others ran in kernel mode. Now, the entire driver runs in kernel mode.
Although Microsoft doesn't develop all of the graphics device drivers supported in
Windows 2000, it does work directly with hardware manufacturers to help ensure
that they are able to produce reliable and efficient drivers. All drivers shipped with
the system are submitted to the same rigorous testing as other executive
components.

Finally, it's important to understand that this design (running the windowing and
graphics subsystem in kernel mode) is not fundamentally risky. It is identical to
the approaches many other device drivers use (for example, network card drivers
and hard disk drivers). All these drivers have been operating in kernel mode since
the inception of Windows NT with a high degree of reliability.

Some people speculated that the move of the window manager and the GDI into
kernel mode would hurt the preemptive multitasking capability of Windows 2000.
The theory was that with all the additional Win32 processing time spent in kernel
mode, other threads would have less opportunity to be run preemptively. This



view was based on a misunderstanding of the Windows 2000 architecture. It is
true that in many other nominally preemptive operating systems, executing in
kernel mode is never preempted by the operating system scheduler—or is
preempted only at a certain limited number of predefined points of kernel
reentrancy. In Windows 2000, however, threads running anywhere in the
executive are preempted and scheduled alongside threads running in user mode,
and all code within the executive is fully reentrant. Among other reasons, this
capability is necessary to achieve a high degree of system scalability on SMP
hardware.

Another line of speculation was that SMP scaling would be hurt by this change.
The theory went like this: Previously, an interaction between an application and
the window manager or the GDI involved two threads, one in the application and
one in Csrss.exe. Therefore, on an SMP system, the two threads could run in
parallel, thus improving throughput. This analysis shows a misunderstanding of
how Windows NT technology worked prior to Windows NT 4. In most cases, calls
from a client application to the Win32 subsystem process run synchronously; that
is, the client thread entirely blocks waiting on the server thread and begins to run
again only when the server thread has completed the call. Therefore, no
parallelism on SMP hardware can ever be achieved. This phenomenon is easily
observable with a busy graphics application using the Performance tool on an SMP
system. The observer will discover that on a two-processor system each processor
is approximately 50 percent loaded, and it's relatively easy to find the single Csrss
thread that is paired off with the busy application thread. Indeed, because the two
threads are fairly intimate with each other and sharing state, the processors'
caches must be flushed constantly to maintain coherency. This constant flushing is
the reason that with Windows NT 3.51 a single-threaded graphics application
typically runs slightly slower on an SMP machine than on a single processor
system.

As a result, the changes in Windows NT 4 increased SMP throughput of
applications that make heavy use of the window manager and the GDI, especially
when more than one application thread is busy. When two application threads are
busy on a two-processor Windows NT 3.51-based machine, a total of four threads
(two in the application plus two in Csrss) are battling for time on the two
processors. Although only two are typically ready to run at any given time, the
lack of a consistent pattern in which threads run results in a loss of locality of
reference and cache coherency. This loss occurs because the busy threads are
likely to get shuffled from one processor to another. In the Windows NT 4 design,
each of the two application threads essentially has its own processor, and the
automatic thread affinity of Windows 2000 tends to run the same thread on the
same processor indefinitely, thus maximizing locality of reference and minimizing
the need to synchronize the private per-processor memory caches.

So in summary, moving the window manager and the GDI from user mode to
kernel mode has provided improved performance without any significant decrease
in system stability or reliability.

So, what remains in the user-mode process part of the Win32 subsystem? All the drawing
and updating for console or text windows are handled by it, since console applications have
no notion of repainting a window. It's easy to see this activity—simply open a command
prompt and drag another window over it, and you'll see the Win32 subsystem process



running like crazy as it repaints the console window. But other than console window
support, only a few Win32 functions result in sending a message to the Win32 subsystem
process anymore: process and thread creation and termination, network drive letter
mapping, and creation of temporary files. In general, a running Win32 application won't be
causing many, if any, context switches to the Win32 subsystem process.

POSIX Subsystem

POSIX, an acronym loosely defined as "a portable operating system interface based on
UNIX," refers to a collection of international standards for UNIX-style operating system
interfaces. The POSIX standards encourage vendors implementing UNIX-style interfaces to
make them compatible so that programmers can move their applications easily from one
system to another.

Windows 2000 implements only one of the many POSIX standards, POSIX.1, formally
known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990. This standard was
included primarily to meet U.S. government procurement requirements set in the mid-to-
late 1980s that mandated POSIX.1 compliance as specified in Federal Information
Processing Standard (FIPS) 151-2, developed by the National Institute of Standards and
Technology. Windows NT 3.5, 3.51, and 4 have been formally tested and certified
according to FIPS 151-2.

Because POSIX.1 compliance was a mandatory goal for Windows 2000, the operating
system was designed to ensure that the required base system support was present to
allow for the implementation of a POSIX.1 subsystem (such as the fork function, which is
implemented in the Windows 2000 executive, and the support for hard file links in the
Windows 2000 file system). However, because POSIX.1 defines a limited set of services
(such as process control, interprocess communication, simple character cell I/O, and so
on), the POSIX subsystem that comes with Windows 2000 isn't a complete programming
environment. And because applications can't mix calls between subsystems on Windows
2000, by default, POSIX applications are limited to the strict set of services defined in
POSIX.1. This restriction means that a POSIX executable on Windows 2000 can't create a
thread or a window or use remote procedure calls (RPCs) or sockets.

To address this limitation, Microsoft provides a product called Interix, which includes an
enhanced POSIX subsystem environment that provides nearly 2000 UNIX functions and
300 UNIX-like tools and utilities. (See
www.microsoft.com/WINDOWS2000/guide/server/solutions/interix.asp for more
information on Microsoft Interix.) With this enhancement, it is more viable to port UNIX
applications to the POSIX subsystem. However, because the programs are still linked as
POSIX executables, they cannot call Win32 functions.

To port UNIX applications to Windows 2000 and allow the use of Win32 functions, you can
purchase a UNIX-to-Win32 porting library, such as the one included with the MKS
NuTCRACKER Professional product available from Mortice Kern Systems Inc.
(www.mks.com). With this approach, a UNIX application can be recompiled and relinked as
a Win32 executable and can slowly start to integrate calls to native Win32 functions.

EXPERIMENT

Watching the POSIX Subsystem Start

http://www.microsoft.com/WINDOWS2000/guide/server/solutions/interix.asp
http://www.mks.com/


The POSIX subsystem is configured by default to start the first time a POSIX
executable is run, so you can watch it start by running a POSIX program, such as
one of the POSIX utilities that comes with the Windows 2000 resource kits. (You
can find these POSIX utilities in the \Apps\POSIX folder on the resource kit CD—
they are not installed as part of the resource kit tools installation.) Follow these
steps to watch the POSIX subsystem start:

1. Start a command prompt.

2. Type tlist /t, and check that the POSIX subsystem isn't already running (that
is, that there's no Psxss.exe process underneath Smss.exe).

3. Run one of the POSIX utilities available on the Windows 2000 resource kit
CDs, such as \Apps\POSIX\Ls.exe.

4. You'll notice a slight pause while the POSIX subsystem starts and the Ls
command displays the directory contents.

5. Run tlist /t again. This time, notice the existence of Psxss.exe as a child of
Smss.exe.

6. Rerun Ls.exe a second time; you'll notice a quicker response (now that the
POSIX subsystem is already started).

7. Rerun Ls.exe, but pause the output by pressing Ctrl+S; issue a tlist /t from
another command prompt, and notice that the POSIX support image
(Posix.exe) was the process created from the first command prompt and that
it in turn created the Ls.exe process. You should see something similar to the
following annotated output:

To compile and link a POSIX application in Windows 2000 requires the POSIX headers and
libraries from the Platform SDK. POSIX executables are linked against the POSIX
subsystem library, Psxdll.dll. Because by default Windows 2000 is configured to start the
POSIX subsystem on demand, the first time you run a POSIX application, the POSIX
subsystem process (Psxss.exe) must be started. It remains running until the system
reboots. (If you kill the POSIX subsystem process, you won't be able to run more POSIX
applications until you reboot.) The POSIX image itself isn't run directly—instead, a special
support image called Posix.exe is launched, which in turn creates a child process to run the
POSIX application.

For more information about the POSIX subsystem and about porting UNIX applications to
Windows 2000, do a search for POSIX and UNIX in MSDN Library.

OS/2 Subsystem

javascript:fullSize('g02yj04x.htm')


The OS/2 environment subsystem, like the built-in POSIX subsystem, is fairly limited in
usefulness in that it supports only OS/2 1.2 16-bit character-based or video I/O (VIO)
applications. Although Microsoft did sell a replacement OS/2 1.2 Presentation Manager
subsystem for Windows NT 4, it didn't support OS/2 2.x (or later) applications (and it isn't
available for Windows 2000).

Also, because Windows 2000 doesn't allow direct hardware access by user applications,
OS/2 programs that contain I/O privilege segments that attempt to perform IN/OUT
instructions (to access some hardware device) as well as advanced video I/O (AVIO) aren't
supported. Applications that use the CLI/STI instructions are supported—but all the other
OS/2 applications in the system and all the other threads in the OS/2 process issuing the
CLI instructions are suspended until an STI instruction is executed. Also worth noting is
the special support for calling 32-bit DLLs from OS/2 16-bit applications on Windows 2000,
which can be useful in porting programs.

The 16-MB memory limitation on native OS/2 1.2 doesn't apply to Windows 2000—the
OS/2 subsystem uses the 32-bit virtual address space of Windows 2000 to provide up to
512 MB of memory to OS/2 1.2 applications, as illustrated in Figure 2-5.

Figure 2-5 OS/2 subsystem virtual memory layout

The tiled area is 512 MB of virtual address space that is reserved up front and then
committed or decommitted when 16-bit applications need segments. The OS/2 subsystem
maintains a local descriptor table (LDT) for each process, with shared memory segments at
the same LDT slot for all OS/2 processes.

As we'll discuss in detail in Chapter 6, threads are the elements of a program that execute,
and as such they must be scheduled for processor time. Although Windows 2000 priority
levels range from 0 through 31, the 64 OS/2 priority levels (0 through 63) are mapped to
Windows 2000 dynamic priorities 1 through 15. OS/2 threads never receive Windows 2000
real-time priorities 16 through 31.

As with the POSIX subsystem, the OS/2 subsystem starts automatically the first time you
activate a compatible OS/2 image. It remains running until the system is rebooted.

For more information on how Windows 2000 handles running POSIX and OS/2 applications,
see the section "Flow of CreateProcess" in Chapter 6 of this book.

javascript:fullSize('F02yj05x.htm')


Ntdll.dll

Ntdll.dll is a special system support library primarily for the use of subsystem DLLs. It
contains two types of functions:

System service dispatch stubs to Windows 2000 executive system services

Internal support functions used by subsystems, subsystem DLLs, and other native
images

The first group of functions provides the interface to the Windows 2000 executive system
services that can be called from user mode. There are more than 200 such functions, such
as NtCreateFile, NtSetEvent, and so on. As noted earlier, most of the capabilities of these
functions are accessible through the Win32 API. (A number are not, however, and are for
Microsoft internal use only.)

For each of these functions, Ntdll contains an entry point with the same name. The code
inside the function contains the architecture-specific instruction that causes a transition
into kernel mode to invoke the system service dispatcher (explained in more detail in
Chapter 3), which after verifying some parameters, calls the actual kernel-mode system
service that contains the real code inside Ntoskrnl.exe.

Ntdll also contains many support functions, such as the image loader (functions that start
with Ldr), the heap manager, and Win32 subsystem process communication functions
(functions that start with Csr), as well as general run-time library routines (functions that
start with Rtl). It also contains the user-mode asynchronous procedure call (APC)
dispatcher and exception dispatcher. (APCs and exceptions are explained in Chapter 3.)



Executive

The Windows 2000 executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower
layer.) The executive includes the following types of functions:

Functions that are exported and callable from user mode. These functions are called
system services and are exported via Ntdll. Most of the services are accessible through
the Win32 API or the APIs of another environment subsystem. A few services,
however, aren't available through any documented subsystem function. (Examples
include LPCs and various query functions such as NtQueryInformationxxx, specialized
functions such as NtCreatePagingFile, and so on.)

Functions that can be called only from kernel mode that are exported and documented
in the Windows 2000 DDK or Windows 2000 Installable File System (IFS) Kit. (For
information on the Windows 2000 IFS Kit, go to www.microsoft.com/ddk/ifskit.)

Functions that are exported and callable from kernel mode but are not documented in
the Windows 2000 DDK or IFS Kit (such as the functions called by the boot video
driver, which start with Inbv).

Functions that are defined as global symbols but are not exported. These would include
internal support functions called within Ntoskrnl, such as those that start with Iop
(internal I/O manager support functions) or Mi (internal memory management support
functions).

Functions that are internal to a module that are not defined as global symbols.

The executive contains the following major components, each of which is covered in detail
in a subsequent chapter of this book:

The configuration manager (explained in Chapter 5) is responsible for implementing
and managing the system registry.

The process and thread manager (explained in Chapter 6) creates and terminates
processes and threads. The underlying support for processes and threads is
implemented in the Windows 2000 kernel; the executive adds additional semantics and
functions to these lower-level objects.

The security reference monitor (described in Chapter 8) enforces security policies on
the local computer. It guards operating system resources, performing run-time object
protection and auditing.

The I/O manager (explained in Chapter 9) implements device-independent I/O and is
responsible for dispatching to the appropriate device drivers for further processing.

The Plug and Play (PnP) manager (explained in Chapter 9) determines which drivers
are required to support a particular device and loads those drivers. It retrieves the
hardware resource requirements for each device during enumeration. Based on the
resource requirements of each device, the PnP manager assigns the appropriate
hardware resources such as I/O ports, IRQs, DMA channels, and memory locations. It
is also responsible for sending proper event notification for device changes (addition or
removal of a device) on the system.

The power manager (explained in Chapter 9) coordinates power events and generates
power management I/O notifications to device drivers. When the system is idle, the

http://www.microsoft.com/ddk/ifskit


power manager can be configured to reduce power consumption by putting the CPU to
sleep. Changes in power consumption by individual devices are handled by device
drivers but are coordinated by the power manager.

The WDM Windows Management Instrumentation routines (explained in Chapter 5)
enable device drivers to publish performance and configuration information and receive
commands from the user-mode WMI service. Consumers of WMI information can be on
the local machine or remote across the network.

The cache manager (explained in Chapter 11) improves the performance of file-based
I/O by causing recently referenced disk data to reside in main memory for quick access
(and by deferring disk writes by holding the updates in memory for a short time before
sending them to the disk). As you'll see, it does this by using the memory manager's
support for mapped files.

The virtual memory manager (explained in Chapter 7) implements virtual memory, a
memory management scheme that provides a large, private address space for each
process that can exceed available physical memory. The memory manager also
provides the underlying support for the cache manager.

In addition, the executive contains four main groups of support functions that are used by
the executive components just listed. About a third of these support functions are
documented in the DDK because device drivers also use them. These are the four
categories of support functions:

The object manager, which creates, manages, and deletes Windows 2000 executive
objects and abstract data types that are used to represent operating system resources
such as processes, threads, and the various synchronization objects. The object
manager is explained in Chapter 3.

The LPC facility (explained in Chapter 3) passes messages between a client process
and a server process on the same computer. LPC is a flexible, optimized version of
remote procedure call (RPC), an industry-standard communication facility for client
and server processes across a network.

A broad set of common run-time library functions, such as string processing,
arithmetic operations, data type conversion, and security structure processing.

Executive support routines, such as system memory allocation (paged and nonpaged
pool), interlocked memory access, as well as two special types of synchronization
objects: resources and fast mutexes.



Kernel

The kernel consists of a set of functions in Ntoskrnl.exe that provide fundamental
mechanisms (such as thread scheduling and synchronization services) used by the
executive components, as well as low-level hardware architecture-dependent support
(such as interrupt and exception dispatching), that are different on each processor
architecture. The kernel code is written primarily in C, with assembly code reserved for
those tasks that require access to specialized processor instructions and registers not
easily accessible from C.

Like the various executive support functions mentioned in the preceding section, a number
of functions in the kernel are documented in the DDK (search for functions beginning with
Ke) because they are needed to implement device drivers.

Kernel Objects

The kernel provides a low-level base of well-defined, predictable operating system
primitives and mechanisms that allow higher-level components of the executive to do what
they need to do. The kernel separates itself from the rest of the executive by implementing
operating system mechanisms and avoiding policy making. It leaves nearly all policy
decisions to the executive, with the exception of thread scheduling and dispatching, which
the kernel implements.

Outside the kernel, the executive represents threads and other shareable resources as
objects. These objects require some policy overhead, such as object handles to manipulate
them, security checks to protect them, and resource quotas to be deducted when they are
created. This overhead is eliminated in the kernel, which implements a set of simpler
objects, called kernel objects, that help the kernel control central processing and support
the creation of executive objects. Most executive-level objects encapsulate one or more
kernel objects, incorporating their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for controlling
various operating system functions. This set includes the APC object, the deferred
procedure call (DPC)object, and several objects the I/O manager uses, such as the
interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates synchronization
capabilities that alter or affect thread scheduling. The dispatcher objects include the kernel
thread, mutex (called mutant internally), event, kernel event pair, semaphore, timer, and
waitable timer. The executive uses kernel functions to create instances of kernel objects, to
manipulate them, and to construct the more complex objects it provides to user mode.
Objects are explained in more detail in Chapter 3, and processes and threads are
described in Chapter 6.

Hardware Support

The other major job of the kernel is to abstract or isolate the executive and device drivers
from variations between the hardware architectures supported by Windows 2000. This job
includes handling variations in functions such as interrupt handling, exception dispatching,
and multiprocessor synchronization.

Even for these hardware-related functions, the design of the kernel attempts to maximize
the amount of common code. The kernel supports a set of interfaces that are portable and



semantically identical across architectures. Most of the code that implements this portable
interface is also identical across architectures.

Some of these interfaces are implemented differently on different architectures, however,
or some of the interfaces are partially implemented with architecture-specific code. These
architecturally independent interfaces can be called on any machine, and the semantics of
the interface will be the same whether or not the code varies by architecture. Some kernel
interfaces (such as spinlock routines, which are described in Chapter 3) are actually
implemented in the HAL (described in the next section) because their implementation can
vary for systems within the same architecture family.

The kernel also contains a small amount of code with x86-specific interfaces needed to
support old MS-DOS programs. These x86 interfaces aren't portable in the sense that they
can't be called on a machine based on any other architecture; they won't be present. This
x86-specific code, for example, supports calls to manipulate global descriptor tables
(GDTs) and LDTs, hardware features of the x86.

Other examples of architecture-specific code in the kernel include the interface to provide
translation buffer and CPU cache support. This support requires different code for the
different architectures because of the way caches are implemented.

Another example is context switching. Although at a high level the same algorithm is used
for thread selection and context switching (the context of the previous thread is saved, the
context of the new thread is loaded, and the new thread is started), there are architectural
differences among the implementations on different processors. Because the context is
described by the processor state (registers and so on), what is saved and loaded varies
depending on the architecture.



Hardware Abstraction Layer (HAL)

As mentioned at the beginning of this chapter, one of the crucial elements of the Windows
2000 design is its portability across a variety of hardware platforms. The HAL is a key part
of making this portability possible. The HAL is a loadable kernel-mode module (Hal.dll) that
provides the low-level interface to the hardware platform on which Windows 2000 is
running. It hides hardware-dependent details such as I/O interfaces, interrupt controllers,
and multiprocessor communication mechanisms—any functions that are both architecture-
specific and machine-dependent.

So rather than access hardware directly, Windows 2000 internal components as well as
user-written device drivers maintain portability by calling the HAL routines when they need
platform-dependent information. For this reason, the HAL routines are documented in the
Windows 2000 DDK. To find out more about the HAL and its use by device drivers, refer to
the DDK.

Although several HALs are included on the Windows 2000 CD (see Table 25), only one is
chosen at installation time and copied to the system disk with the filename Hal.dll. (Other
operating systems, such as VMS, select the equivalent of the HAL at system boot time.)
Therefore, you can't assume that a system disk from one x86 installation will boot on a
different processor if the HAL that supports the other processor is different.

Table 2-5 List of HALs

HAL File Name Systems Supported

Hal.dll Standard PCs

Halacpi.dll Advanced Configuration and Power Interface (ACPI) PCs

Halapic.dll Advanced Programmable Interrupt Controller (APIC) PCs

Halaacpi.dll APIC ACPI PCs

Halmps.dll Multiprocessor PCs

Halmacpi.dll Multiprocessor ACPI PCs

Halborg.dll Silicon Graphics Workstation (no longer marketed)

Halsp.dll Compaq SystemPro

EXPERIMENT

Determining Which HAL You're Running

There are two ways to determine which HAL you're running:

1. Open the file \Winnt\Repair\Setup.log, search for Hal.dll, and look at the
filename after the equals sign. This is the name of the HAL on the distribution
media extracted from Driver.cab.

2. In Device Manager (right-click on the My Computer icon on your desktop,
select Properties, click on the Hardware tab, and then click Device Manager),
look at the name of the "driver" under the Computer device type. For
example, the following screen shot is from a system running the ACPI HAL:



javascript:fullSize('G02yj05x.htm')


Device Drivers

Although device drivers are explained in detail in Chapter 9, this section provides a brief
overview of the types of drivers and explains how to list the drivers installed and loaded on
your system.

Device drivers are loadable kernel-mode modules (typically ending in .sys) that interface
between the I/O manager and the relevant hardware. They run in kernel mode in one of
three contexts:

In the context of the user thread that initiated an I/O function

In the context of a kernel-mode system thread

As a result of an interrupt (and therefore not in the context of any particular process or
thread—whichever process or thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows 2000 don't manipulate
hardware directly, but rather they call functions in the HAL to interface with the hardware.
Drivers are typically written in C (sometimes C++) and therefore, with proper use of HAL
routines, can be source code portable across the CPU architectures supported by Windows
2000 and binary portable within an architecture family.

There are several types of device drivers:

Hardware device drivers manipulate hardware (using the HAL) to write output to or
retrieve input from a physical device or network. There are many types of hardware
device drivers, such as bus drivers, human interface drivers, mass storage drivers, and
so on.

File system drivers are Windows 2000 drivers that accept file-oriented I/O requests
and translate them into I/O requests bound for a particular device.

File system filter drivers, such as those that perform disk mirroring and encryption,
intercept I/Os and perform some added-value processing before passing the I/O to the
next layer.

Network redirectors and servers are file system drivers that transmit file system I/O
requests to a machine on the network and receive such requests, respectively.

Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and
IPX/SPX.

Kernel streaming filter drivers are chained together to perform signal processing on
data streams, such as recording or displaying audio and video.

Because installing a device driver is the only way to add user-written kernel-mode code to
the system, some programmers have written device drivers simply as a way to access
internal operating system functions or data structures that are not accessible from user
mode (but that are documented and supported in the DDK). For example, many of the
utilities from www.sysinternals.com combine a Win32 GUI application and a device driver
that is used to gather internal system state not accessible from the Win32 API.

Windows 2000 Device Driver Enhancements

http://www.sysinternals.com/


Windows 2000 adds support for Plug and Play, Power Options, and an extension to the
Windows NT driver model called the Windows Driver Model (WDM). Windows 2000 can run
legacy Windows NT 4 drivers, but because these don't support Plug and Play and Power
Options, systems running these drivers will have reduced capabilities in these two areas.

From the WDM perspective, there are three kinds of drivers:

A bus driver services a bus controller, adapter, bridge, or any device that has child
devices. Bus drivers are required drivers, and Microsoft generally provides them; each
type of bus (such as PCI, PCMCIA, and USB) on a system has one bus driver. Third
parties can write bus drivers to provide support for new buses, such as VMEbus,
Multibus, and Futurebus.

A function driver is the main device driver and provides the operational interface for its
device. It is a required driver unless the device is used raw (an implementation in
which I/O is done by the bus driver and any bus filter drivers, such as SCSI PassThru).
A function driver is by definition the driver that knows the most about a particular
device, and it is usually the only driver that accesses device-specific registers.

A filter driver is used to add functionality to a device (or existing driver) or to modify
I/O requests or responses from other drivers (often used to fix hardware that provides
incorrect information about its hardware resource requirements). Filter drivers are
optional and can exist in any number, placed above or below a function driver and
above a bus driver. Usually, system original equipment manufacturers (OEMs) or
independent hardware vendors (IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus
driver is concerned with reporting the devices on its bus to the PnP manager, while a
function driver manipulates the device.

In most cases, lower-level filter drivers modify the behavior of device hardware. For
example, if a device reports to its bus driver that it requires four I/O ports when it actually
requires 16 I/O ports, a lower-level device-specific function filter driver could intercept the
list of hardware resources reported by the bus driver to the PnP manager, and update the
count of I/O ports.

Upper-level filter drivers usually provide added-value features for a device. For example,
an upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3. Further details about the I/O manager,
WDM, Plug and Play, and Power Options are included in Chapter 9.

EXPERIMENT

Viewing the Installed Device Drivers

You can list the installed drivers by running Computer Management. (From the
Start menu, select Programs, Administrative Tools, and then Computer
Management; or from Control Panel, open Administrative Tools and select
Computer Management.) From within Computer Management, expand System
Information and then Software Environment, and open Drivers. Here's an example
output of the list of installed drivers:



This window displays the list of device drivers defined in the registry, their type,
and their state (Running or Stopped). Device drivers and Win32 service processes
are both defined in the same place: HKLM\SYSTEM\CurrentControlSet\Services.
However, they are distinguished by a type code—type 1 is a kernel-mode device
driver, and type 2 is a file system driver. For further details on the information
stored in the registry for device drivers, see the Technical Reference to the
Windows 2000 Registry help file (Regentry.chm) in the Windows 2000 resource
kits under the topic HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services.

Alternatively, you list the currently loaded device drivers with the Drivers utility
(Drivers.exe in the Windows 2000 resource kits) or the Pstat utility (Pstat.exe in
the Platform SDK). Here is a partial output from the Drivers utility:

C:\>drivers 
  ModuleName   Code   Data  Bss   Paged    Init          LinkDate 
---------------------------------------------------------------- 
ntoskrnl.exe 429184  96896   0  775360  138880  Tue Dec 07 18:41:1
     hal.dll  25856   6016   0   16160   10240  Tue Nov 02 20:14:2
 BOOTVID.DLL   5664   2464   0       0     320  Wed Nov 03 20:24:3
    ACPI.sys  92096   8960   0   43488    4448  Wed Nov 10 20:06:0
  WMILIB.SYS    512      0   0    1152     192  Sat Sep 25 14:36:4
     pci.sys  12704   1536   0   31264    4608  Wed Oct 27 19:11:0
  isapnp.sys  14368    832   0   22944    2048  Sat Oct 02 16:00:3
compbatt.sys   2496      0   0    2880    1216  Fri Oct 22 18:32:4
   BATTC.SYS    800      0   0    2976     704  Sun Oct 10 19:45:3
intelide.sys   1760     32   0       0     128  Thu Oct 28 19:20:0
 PCIIDEX.SYS   4544    480   0   10944    1632  Wed Oct 27 19:02:1
  pcmcia.sys  32800   8864   0   23680    6240  Fri Oct 29 19:20:0
  ftdisk.sys   4640     32   0   95072    3392  Mon Nov 22 14:36:2
 
---------------------------------------------------------------- 
      Total 4363360  580320  0 3251424  432992 

Each loaded kernel-mode component (Ntoskrnl, the HAL, as well as device drivers)
is shown, along with the sizes of the sections in each image.

The Pstat utility also shows the loaded driver list, but only after it first displays the
process list and the threads in each process. Pstat includes one important piece of
information that the Drivers utility doesn't: the load address of the module in
system space. As we'll explain later, this address is crucial to mapping running
system threads to the device driver in which they exist.

javascript:fullSize('G02yj06x.htm')


Peering into Undocumented Interfaces

Just examining the names of the exported or global symbols in key system images (such
as Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds
of things Windows 2000 can do versus what happens to be documented and supported
today. Of course, just because you know the names of these functions doesn't mean that
you can or should call them—the interfaces are undocumented and are subject to change.
We suggest that you look at these functions purely to gain more insight into the kinds of
internal functions Windows 2000 performs, not to bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dll gives you the list of all the system
services that Windows 2000 provides to user-mode subsystem DLLs versus the subset that
each subsystem exposes. Although many of these functions map clearly to documented
and supported Win32 functions, several are not exposed via the Win32 API. (See the
article "Inside the Native API" from www.sysinternals.com, a copy of which is on this
book's companion CD.)

Conversely, it's also interesting to examine the imports of Win32 subsystem DLLs (such as
Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.

Another interesting image to dump is Ntoskrnl.exe—although many of the exported
routines that kernel-mode device drivers use are documented in the Windows 2000 DDK,
quite a few are not. You might also find it interesting to take a look at the import table for
Ntoskrnl and the HAL; this table shows the list of functions in the HAL that Ntoskrnl uses
and vice versa.

Table 2-6 lists most of the commonly used function name prefixes for the executive
components. Each of these major executive components also uses a variation of the prefix
to denote internal functions—either the first letter of the prefix followed by an i (for
internal) or the full prefix followed by a p (for private). For example, Ki represents internal
kernel functions, and Psp refers to internal process support functions.

Table 2-6 Commonly Used Prefixes

Prefix Component

Cc Cache manager

Cm Configuration manager

Ex Executive support routines

FsRtl File system driver run-time library

Hal Hardware abstraction layer

Io I/O manager

Ke Kernel

Lpc Local Procedure Call

Lsa Local security authentication

Mm Memory manager

Nt Windows 2000 system services (most of which are exported as Win32
functions)

http://www.sysinternals.com/


Ob Object manager

Po Power manager

Pp PnP manager

Ps Process support

Rtl Run-time library

Se Security

Wmi Windows Management Instrumentation

Zw Mirror entry point for system services (beginning with Nt) that sets previous
access mode to kernel, which eliminates parameter validation, since Nt
system services validate parameters only if previous access mode is user

EXPERIMENT

Listing Undocumented Functions

You can dump the export and import tables of an image by using the Dependency
Walker tool (Depends.exe), which is contained in the Windows 2000 Support Tools
and the Platform SDK. To examine an image in the Dependency Walker, select
Open from the File menu to open the desired image file.

Here is a sample of output you can see by viewing the dependencies of Ntoskrnl
using this tool:

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against
Ntoskrnl. (They both use functions in each other.) Ntoskrnl is also linked against
Bootvid.dll, the boot video driver that is used to display the new GUI startup
screen in Windows 2000.

For a detailed description of the information displayed by this tool, see the
Dependency Walker help file (Depends.hlp).

You can decipher the names of these exported functions more easily if you understand the
naming convention for Windows 2000 system routines. The general format is:

<Prefix><Operation><Object> 

javascript:fullSize('G02yj07x.htm')


In this format, Prefix is the internal component that exports the routine, Operation tells
what is being done to the object or resource, and Object identifies what is being operated
on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from
paged or nonpaged pool. KeInitializeThread is the routine that allocates and sets up a
kernel thread object.



System Processes

The following system processes appear on every Windows 2000 system. (Two of these—
Idle and System—are not full processes, as they are not running a user-mode executable.)

Idle process (contains one thread per CPU to account for idle CPU time)

System process (contains the majority of the kernel-mode system threads)

Session manager (Smss.exe)

Win32 subsystem (Csrss.exe)

Logon process (Winlogon.exe)

Service control manager (Services.exe) and the child service processes it creates

Local security authentication server (Lsass.exe)

To help you understand the relationship of these processes, use the tlist /t command in the
Windows 2000 Support Tools to display the process "tree," that is, the parent/child
relationship between processes. Here is a partial annotated output from tlist /t:

System Process (0)            Idle process 
System (8)                    System process (default home for system
  smss.exe (144)              Session Manager 
    csrss.exe (172)           Win32 subsystem process 
    winlogon.exe (192)        Logon process (also contains NetDDE ser
      services.exe (220)      Service control manager 
        svchost.exe (384)     Generic service host image 
        spoolsv.exe (480)     Spooler service 
        regsvc.exe (636)      Remote registry service 
        mstask.exe (664)      Task Scheduler service 
      lsass.exe (232)         Local security authentication server 

The next sections explain the key system processes shown in this output. Although these
sections briefly indicate the order of process startup, Chapter 4 contains a detailed
description of the steps involved in booting and starting Windows 2000.

Idle Process

Despite the name shown, the first process listed in the preceding sample tlist /t output
(process ID 0) is actually the System Idle process. As we'll explain in Chapter 6, processes
are identified by their image name. However, this process (as well as process ID 8, named
System) isn't running a real user-mode image. Hence, the names shown by the various
system display utilities differ from utility to utility. Although most utilities call process ID 8
"System," not all do. Table 27 lists several of the names given to the Idle process (process
ID 0). The Idle process is explained in detail in Chapter 6.

Table 2-7 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0



Task Manager System Idle Process

Process Viewer (Pviewer.exe) Idle

Process Status (Pstat.exe) Idle Process

Process Explode (Pview.exe) System Process

Task List (Tlist.exe) System Process

QuickSlice (Qslice.exe) Systemprocess

Now let's look at system threads and the purpose of each of the system processes that are
running real images.

System Process and System Threads

The System process (always process ID 8) is the home for a special kind of thread that
runs only in kernel mode: a kernel-mode system thread. System threads have all the
attributes and contexts of regular user-mode threads (such as a hardware context, priority,
and so on) but are different in that they run only in kernel-mode executing code loaded in
system space, whether that is in Ntoskrnl.exe or in any other loaded device driver. In
addition, system threads don't have a user process address space and hence must allocate
any dynamic storage from operating system memory heaps, such as paged or nonpaged
pool.

System threads are created by the PsCreateSystemThread function (documented in the
DDK), which can be called only from kernel mode. Windows 2000 as well as various device
drivers create system threads during system initialization to perform operations that
require thread context, such as issuing and waiting for I/Os or other objects or polling a
device. For example, the memory manager uses system threads to implement such
functions as writing dirty pages to the page file or mapped files, swapping processes in and
out of memory, and so forth. The kernel creates a system thread called the balance set
manager that wakes up once per second to possibly initiate various scheduling and
memory management-related events. The cache manager also uses system threads to
implement both read-ahead and write-behind I/Os. The file server device driver (Srv.sys)
uses system threads to respond to network I/O requests for file data on disk partitions
shared to the network. Even the floppy driver has a system thread to poll the floppy device
(polling is more efficient in this case because an interrupt-driven floppy driver consumes a
large amount of system resources). Further information on specific system threads is
included in the chapters in which the component is described.

By default, system threads are owned by the System process, but a device driver can
create a system thread in any process. For example, the Win32 subsystem device driver
(Win32k.sys) creates system threads in the Win32 subsystem process (Csrss.exe) so that
they can easily access data in the user-mode address space of that process.

When you're troubleshooting or going through a system analysis, it's useful to be able to
map the execution of individual system threads back to the driver or even to the
subroutine that contains the code. For example, on a heavily loaded file server, the System
process will likely be consuming considerable CPU time. But the knowledge that when the
System process is running "some system thread" is running isn't enough to determine
which device driver or operating system component is running.

So if the System process is running, look at the execution of the threads within that
process (for example, with the Performance tool). Once you find the thread (or threads)
that is running, look up in which driver the system thread began execution (which at least



tells you which driver likely created the thread) or examine the call stack (or at least the
current address) of the thread in question, which would indicate where the thread is
currently executing.

Both of these techniques are illustrated in the following experiments.

EXPERIMENT

Identifying System Threads in the System Process

You can see that the threads inside the System process must be kernel-mode
system threads because the start address for each thread is greater than the start
address of system space (which by default begins at 0x80000000, unless the
system was booted with the /3GB Boot.ini switch). Also, if you look at the CPU
time for these threads, you'll see that those that have accumulated any CPU time
have run only in kernel mode.

To find out which driver created the system thread, look up the start address of
the thread (which you can display with Pviewer.exe) and look for the driver whose
base address is closest to (but before) the start address of the thread. Both the
Pstat utility (at the end of its output) as well as the !drivers kernel debugger
command list the base address of each loaded device driver.

To quickly find the current address of the thread, use the !stacks 0 command in
the kernel debugger. Here is an example output from a live system (using
LiveKd):

kd> !stacks 0 
Proc.Thread  Thread  ThreadState  Blocker 
                                    [System] 
 8.000004  8146edb0  BLOCKED  ntoskrnl!MmZeroPageThread+0x5f 
 8.00000c  8146e730  BLOCKED  ?? Kernel stack not resident ?? 
 8.000010  8146e4b0  BLOCKED  ntoskrnl!ExpWorkerThread+0x73 
 8.000014  8146d030  BLOCKED  ?? Kernel stack not resident ?? 
 8.000018  8146ddb0  BLOCKED  ntoskrnl!ExpWorkerThread+0x73 
 8.00001c  8146db30  BLOCKED  ntoskrnl!ExpWorkerThread+0x73 
 8.000020  8146d8b0  BLOCKED  ntoskrnl!ExpWorkerThread+0x73 
 8.000024  8146d630  BLOCKED  ntoskrnl!ExpWorkerThread+0x73 
 8.000028  8146d3b0  BLOCKED  ntoskrnl!ExpWorkerThread+0x73 
 8.00002c  8146c030  BLOCKED  ntoskrnl!ExpWorkerThread+0x73 
 8.000030  8146cdb0  BLOCKED  ntoskrnl!ExpWorkerThreadBalanceManag
 8.000034  8146b470  BLOCKED  ntoskrnl!MiDereferenceSegmentThread+
 8.000038  8146b1f0  BLOCKED  ntoskrnl!MiModifiedPageWriterWorker+
 8.00003c  8146a030  BLOCKED  ntoskrnl!KeBalanceSetManager+0x7e 
 8.000040  8146adb0  BLOCKED  ntoskrnl!KeSwapProcessOrStack+0x24 
 8.000044  8146a5b0  BLOCKED  ntoskrnl!FsRtlWorkerThread+0x33 
 8.000048  8146a330  BLOCKED  ntoskrnl!FsRtlWorkerThread+0x33 
 8.00004c  81461030  BLOCKED  ACPI!ACPIWorker+0x46 
 8.000050  8143a770  BLOCKED  ntoskrnl!MiMappedPageWriter+0x4d 



 8.000054  81439730  BLOCKED  dmio!voliod_loop+0x399 
 8.000058  81436c90  BLOCKED  NDIS!ndisWorkerThread+0x22 
 8.00005c  813d9170  BLOCKED  ltmdmntt!WakeupTimerThread+0x27 
 8.000060  813d8030  BLOCKED  ltmdmntt!WriteRegistryThread+0x1c 
 8.000070  8139c850  BLOCKED  raspptp!MainPassiveLevelThread+0x78 
 8.000074  8139c5d0  BLOCKED  raspptp!PacketWorkingThread+0xc0 
 8.00006c  81384030  BLOCKED  rasacd!AcdNotificationRequestThread+
 8.000080  81333330  BLOCKED  rdbss!RxpWorkerThreadDispatcher+0x6f
 8.000084  813330b0  BLOCKED  rdbss!RxSpinUpRequestsDispatcher+0x5
 8.00008c  81321db0  BLOCKED  ?? Kernel stack not resident ?? 
 8.00015c  81205570  BLOCKED  INO_FLTR+0x68bd 
 8.000160  81204570  BLOCKED  INO_FLTR+0x80e9 
 8.000178  811fcdb0  BLOCKED  irda!RxThread+0xfa 
 8.0002d0  811694f0  BLOCKED  ?? Kernel stack not resident ?? 
 8.0002d4  81168030  BLOCKED  ?? Kernel stack not resident ?? 
 8.000404  811002b0  BLOCKED  rdbss!RxpWorkerThreadDispatcher+0x6f
 8.000430  810f4990  READY    parallel!ParallelThread+0x3e 
 8.00069c  80993030  READY    rdbss!RxpWorkerThreadDispatcher+0x6f

The first column is the process ID and thread ID (in the form "process ID.thread
ID"). The second column is the current address of the thread. The third column
indicates whether the thread is in a wait state, ready state, or running state. (See
Chapter 6 for a description of thread states.) The last column is the top-most
address on the thread's stack. The information in this last column makes it easy to
see which driver each thread started in. For the threads in Ntoskrnl, the name of
the function gives a further indication of what the thread is doing.

However, if the thread running is one of the system worker threads
(ExpWorkerThread), you still don't really know what the thread is doing, since any
device driver can submit work to a system worker thread. Therefore, the only way
to trace back worker thread activity is to set a breakpoint at ExQueueWorkItem.
When you reach the breakpoint, type !dso work_queue_item esp+4. This
command will dump the first argument to ExQueueWorkItem (a work queue
structure), which in turn contains the address of the worker routine to be called in
the context of the worker thread. Alternatively, you can look at the caller by using
the k command in the kernel debugger, which displays the current call stack. The
current call stack will show the driver that is queuing the work to the worker
thread (as opposed to the routine to be called from the worker thread).

EXPERIMENT

Mapping a System Thread to a Device Driver

In this experiment, we'll find the Raw Mouse Input thread, a system thread in the
Win32 subsystem device driver (Win32k.sys) that determines which threads
should be notified of mouse movements and events. To cause this system thread
to run, simply move the mouse back and forth rapidly while monitoring process
CPU time (using Task Manager, the Performance tool, or the Windows 2000



resource kit QuickSlice utility), and notice that the Csrss process runs for a short
period.

The following steps show how to go down to the thread granularity to find out
which driver contains the system thread that is running. Although this example
demonstrates system thread activity in the Csrss process, the technique applies to
mapping system thread activity in the System process back to the device driver
that created the thread.

First, we need to set up the Performance tool to watch the activity of each system
thread on the System Monitor:

1. Run the Performance tool.

2. Select System Monitor, and click the Add button (the plus sign on the toolbar).

3. Select the Thread object in the Performance Object drop-down list box.

4. Select the % Processor Time counter (or % Privileged Time—the value will be
identical).

5. In the Instances box, scroll down to the thread named csrss/0. Click on this
entry, and drag the mouse down until you've selected all the threads in the
csrss process. (If you were monitoring threads in the System process, you
would select the threads from System/0 through to the last numbered thread
in the System process.)

6. Click Add.

7. Your screen at this point should look similar to the screen shot below.

8. Click Close.

Now change the vertical scale maximum from 100 to 10. This change will make it
easier to see system thread activity because system threads usually run for very
brief periods of time. To change the vertical scale, follow these steps:

9. Right-click on the graph.

10. Select Properties.

11. Click on the Graph tab.



12. Change the Vertical Scale Maximum from 100 to 10.

13. Click OK.

Now that we're monitoring the Csrss process, let's generate some activity
artificially by moving the mouse around, causing threads in the Win32k.sys device
driver to run. Then we'll confirm which driver created the system thread that is
running when we move the mouse:

14. Move the mouse rapidly back and forth until you see one or two of the system
threads running in the Performance tool's display.

15. Press Ctrl+H to turn on highlighting mode. (This highlights the currently
selected counter in white.)

16. Scroll through the counters to identify a thread that was running when you
moved the mouse (more than one might have run).

17. Notice the relative thread number in the Instance column on the bottom of the
Performance tool's graph window (thread 7 in csrss in the following screen
shot).

In this case, thread 7 in csrss ran. Now we need to find the start address of the
thread by using Process Viewer in the Windows 2000 Support Tools.

18. Run Process Viewer.

19. Click on the csrss process line in the process display list box.

20. Scroll through the list of threads until you find the thread with the same
relative thread number you obtained in step 17.

21. Select this thread.

If you found one of the system threads in csrss, the start address (displayed at
the bottom of the Process Viewer window in the Thread Information section)
should be 0xa0009cbf. (This address might be different if you're running a newer
version of Windows 2000.)

22. Finally, run Pstat.exe, from the Platform SDK.

At the end of the output from Pstat is a listing of each loaded device driver,
including its start address in system virtual memory. Find the driver that has the

javascript:fullSize('G02yj09x.htm')


closest start address before the start address of the thread in question. The
following is an excerpt from this last section of the Pstat utility:

ModuleName   Load Addr   Code    Data   Paged           LinkDate 
---------------------------------------------------------------- 
ntoskrnl.exe 80400000  429184   96896  775360 Tue Dec 07 18:41:11 
     hal.dll 80062000   25856    6016   16160 Tue Nov 02 20:14:22 
 BOOTVID.DLL F7410000    5664    2464       0 Wed Nov 03 20:24:33 
    ACPI.sys BFFD8000   92096    8960   43488 Wed Nov 10 20:06:04 
  WMILIB.SYS F75C8000     512       0    1152 Sat Sep 25 14:36:47 
     pci.sys F7000000   12704    1536   31264 Wed Oct 27 19:11:08 
  isapnp.sys F7010000   14368     832   22944 Sat Oct 02 16:00:35 
 
  win32k.sys A0000000 1520960   54944       0 Tue Nov 30 03:51:03 
   rdbss.sys BEC8F000   27808    1952   86656 Tue Nov 30 03:52:29 
  mrxsmb.sys BEBF7000   91616   21824  237568 Tue Nov 30 03:52:10 
 
   ntdll.dll 77F80000  294912   12288   16384 Wed Oct 27 16:06:08 
---------------------------------------------------------------- 
       Total          4375648  547040 3164960 

The start address of the thread in question, 0xa0009cbf, is clearly part of
Win32k.sys, since there is no other driver with a closer start address.

If the address falls within Ntoskrnl.exe, then the thread is executing a subroutine
in the main kernel image. This information alone is not enough to determine what
the thread is really doing—you need to find out the name of the function at that
address. You can do that by looking it up in the list of global symbols contained in
the associated symbol table file Ntoskrnl.dbg.

The easiest way to generate the list of global symbols in Ntoskrnl is to start the
kernel debugger (either by connecting to a live system or by opening a crash
dump file) and type the x nt!* command in the kernel debugger with just
Ntoskrnl.dbg loaded. Before typing the x nt!* command, use the .logopen
command to create a log file of your kernel-debugging session. That way, you can
save the output in a file and then search for the addresses in question. You can
also use the Visual C++ Dumpbin utility (type dumpbin /symbols ntoskrnl.dbg),
but you then have to search for the address minus the base address of Ntoskrnl,
since only the offsets are listed.

Alternatively, as noted in the previous experiment, the kernel debugger !stacks 0
command can be used to display the name of the driver and function at the
current address for a thread (assuming you have the proper symbols loaded).

Session Manager (Smss)

The Session Manager (\Winnt\System32\Smss.exe) is the first user-mode process created
in the system. The kernel-mode system thread that performs the final phase of the
initialization of the executive and kernel creates the actual Smss process.



The Session Manager is responsible for a number of important steps in starting Windows
2000, such as opening additional page files, performing delayed file rename and delete
operations, and creating system environment variables. It also launches the subsystem
processes (normally just Csrss.exe) and the Winlogon process, which in turn creates the
rest of the system processes.

Much of the configuration information in the registry that drives the initialization steps of
Smss can be found under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager.
You'll find it interesting to examine the kinds of data stored there. (For a description of the
keys and values, see the Registry Entries help file, Regentry.chm, in the Windows 2000
resource kits.)

After performing these initialization steps, the main thread in Smss waits forever on the
process handles to Csrss and Winlogon. If either of these processes terminates
unexpectedly, Smss crashes the system, since Windows 2000 relies on their existence.
Meanwhile, Smss waits for requests to load subsystems, new subsystems starting up, and
debug events. It also acts as a switch and monitor between applications and debuggers.

Logon (Winlogon)

The Windows 2000 logon process (\Winnt\System32\Winlogon.exe) handles interactive
user logons and logoffs. Winlogon is notified of a user logon request when the secure
attention sequence (SAS) keystroke combination is entered. The default SAS on Windows
2000 is the combination Ctrl+Alt+Delete. The reason for the SAS is to protect users from
password-capture programs that simulate the logon process. Once the username and
password have been captured, they are sent to the local security authentication server
process (described in the next section) to be validated. If they match, Winlogon extracts
the value of the Userinit registry value under the registry key
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon and creates a process
to run each executable image listed in that value. The default is to run a process named
Userinit.exe.

EXPERIMENT

Viewing Multiple Sessions

If Terminal Services are installed, Session Manager creates a separate instance of
both Csrss and Winlogon for each connected user session. The list of sessions can
be displayed with the !session command in the kernel debugger. In the following
example, there were three sessions active on the system. (The !session command
shows only the Csrss.exe process in each session, even though there are more
processes in each session.)

kd> !session 
**** NT ACTIVE SESSION DUMP **** 
PROCESS 813531e0  Cid: 00c8    Peb: 7ffdf000  SessionId: 00000000 
    DirBase: 03639000  ObjectTable: 81353508  TableSize: 371. 
    Image: csrss.exe 
 
PROCESS 81180c80  Cid: 0364    Peb: 7ffdf000  SessionId: 00000001 
    DirBase: 00fcc000  ObjectTable: 812c7288  TableSize: 115. 



    Image: csrss.exe 
 
PROCESS 811358e0  Cid: 0618    Peb: 7ffdf000  SessionId: 00000002 
    DirBase: 040f0000  ObjectTable: 8114bcc8  TableSize: 111. 
    Image: csrss.exe 

This process performs some initialization of the user environment (such as restoring
mapped drive letters, running the login script, and applying group policies) and then looks
in the registry at the Shell value (under the same Winlogon key referred to previously) and
creates a process to run the system-defined shell (by default, Explorer.exe). Then Userinit
exits. This is the reason Explorer.exe is shown with no parent—its parent has exited, and
as explained earlier, tlist left-justifies processes whose parent isn't running. (Another way
of looking at it is that Explorer is the grandchild of Winlogon.)

The identification and authentication aspects of the logon process are implemented in a
replaceable DLL named GINA (Graphical Identification and Authentication). The standard
Windows 2000 GINA, Msgina.dll, implements the default Windows 2000 logon interface.
However, developers can provide their own GINA DLL to implement other identification and
authentication mechanisms in place of the standard Windows 2000 username/password
method (such as one based on a voice print). In addition, Winlogon can load additional
network provider DLLs that need to perform secondary authentication. This capability
allows multiple network providers to gather identification and authentication information all
at one time during normal logon.

Winlogon is active not only during user logon and logoff but also whenever it intercepts the
SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged in, the
Windows Security dialog box comes up, providing the options to log off, start the Task
Manager, lock the workstation, shut down the system, and so forth. Winlogon is the
process that handles this interaction.

For more details on Winlogon, see Chapter 8.

Local Security Authentication Server (LSASS)

The local security authentication server process (\Winnt\System32\Lsass.exe) receives
authentication requests from Winlogon and calls the appropriate authentication package
(implemented as a DLL) to perform the actual verification, such as checking whether a
password matches what is stored in the active directory or the SAM (the part of the
registry that contains the definition of the users and groups).

Upon a successful authentication, Lsass generates an access token object that contains the
user's security profile. Winlogon then uses this access token to create the initial shell
process. Processes launched from the shell then by default inherit this access token.

For more details about Lsass and security authentication, see Chapter 8. For details on the
callable functions that interface with Lsass (the functions that start with Lsa), see the
documentation in the Platform SDK.

Service Control Manager (SCM)

Recall from earlier in the chapter that "services" on Windows 2000 can refer either to a
server process or to a device driver. This section deals with services that are user-mode



processes. Services are like UNIX "daemon processes" or VMS "detached processes" in
that they can be configured to start automatically at system boot time without requiring an
interactive logon. They can also be started manually (such as by running the Services
administrative tool or by calling the Win32 StartService function). Typically, services do not
interact with the logged on user, though there are special conditions when this is possible.
(See Chapter 5.)

The service control manager is a special system process running the image
\Winnt\System32\Services.exe that is responsible for starting, stopping, and interacting
with service processes. Service programs are really just Win32 images that call special
Win32 functions to interact with the service control manager to perform such actions as
registering the service's successful startup, responding to status requests, or pausing or
shutting down the service. Services are defined in the registry under
HKLM\SYSTEM\CurrentControlSet \Services. The resource kit Registry Entries help file
(Regentry.chm) documents the subkeys and values for services.

Keep in mind that services have three names: the process name you see running on the
system, the internal name in the registry, and the display name shown in the Services
administrative tool. (Not all services have a display name—if a service doesn't have a
display name, the internal name is shown.) With Windows 2000, services can also have a
description field that can contain up to 1024 characters that further detail what the service
does.

To map a service process to the services contained in that process, use the tlist /s
command. Note that there isn't always one-to-one mapping between service process and
running services, however, because some services share a process with other services. In
the registry, the type code indicates whether the service runs in its own process or shares
a process with other services in the image.

A number of Windows 2000 components are implemented as services, such as the spooler,
Event Log, Task Scheduler, and various other networking components.

EXPERIMENT

Listing Installed Services

To list the installed services, select Administrative Tools from Control Panel, and
then select Services. You should see output like this:

To see the detailed properties about a service, right-click on a service and select
Properties. For example, here are the properties for the Print Spooler service

javascript:fullSize('G02yj11x.htm')


(highlighted in the previous figure):

Notice that the Path To Executable field identifies the program that contains this
service. Remember that some services share a process with other services—
mapping isn't always one to one.

For more details on services, see Chapter 5.

javascript:fullSize('G02yj12x.htm')


[Previous] [Next]



Conclusion
In this chapter, we've taken a broad look at the overall
system architecture of Windows 2000. We've examined the
key components of Windows 2000 and seen how they
interrelate. In the next chapter, we'll look in more detail at
the core system mechanisms that these components are
built on, such as the object manager and synchronization.



[Previous] [Next]

Chapter 3



System Mechanisms
Microsoft Windows 2000 provides several base mechanisms
that kernel-mode components such as the executive, the
kernel, and device drivers use. This chapter explains the
following system mechanisms and describes how they are
used:

Trap dispatching, including interrupts, deferred
procedure calls (DPCs), asynchronous procedure calls
(APCs), exception dispatching, and system service
dispatching

The executive object manager

Synchronization, including spinlocks, kernel dispatcher
objects, and how waits are implemented

System worker threads

Miscellaneous mechanisms such as Windows 2000
global flags

Local procedure calls (LPCs)



[Previous] [Next]



Trap Dispatching
Interrupts and exceptions are operating system conditions that divert the processor to
code outside the normal flow of control. Either hardware or software can detect them. The
term trap refers to a processor's mechanism for capturing an executing thread when an
exception or an interrupt occurs and transferring control to a fixed location in the operating
system. In Windows 2000, the processor transfers control to a trap handler, a function
specific to a particular interrupt or exception. Figure 3-1 illustrates some of the conditions
that activate trap handlers.

Figure 3-1 Trap dispatching

The kernel distinguishes between interrupts and exceptions in the following way. An
interrupt is an asynchronous event (one that can occur at any time) that is unrelated to
what the processor is executing. Interrupts are generated primarily by I/O devices,
processor clocks, or timers, and they can be enabled (turned on) or disabled (turned off).
An exception, in contrast, is a synchronous condition that results from the execution of a
particular instruction. Running a program a second time with the same data under the
same conditions can reproduce exceptions. Examples of exceptions include memory access
violations, certain debugger instructions, and divide-by-zero errors. The kernel also
regards system service calls as exceptions (although technically they're system traps).

Either hardware or software can generate exceptions and interrupts. For example, a bus
error exception is caused by a hardware problem, whereas a divide-by-zero exception is
the result of a software bug. Likewise, an I/O device can generate an interrupt, or the
kernel itself can issue a software interrupt (such as an APC or DPC, described later in this
chapter).

When a hardware exception or interrupt is generated, the processor records enough
machine state so that it can return to that point in the control flow and continue execution
as if nothing had happened. To do this, the processor creates a trap frame on the kernel
stack of the interrupted thread into which it stores the execution state of the thread. The
trap frame is usually a subset of a thread's complete context. (Thread context is described
in Chapter 6.) The kernel handles software interrupts either as part of hardware interrupt
handling or synchronously when a thread invokes kernel functions related to the software
interrupt.

In most cases, the kernel installs front-end trap handling functions that perform general
trap handling tasks before and after transferring control to other functions that field the

javascript:fullSize('F03yj01x.htm')


trap. For example, if the condition was a device interrupt, a kernel hardware interrupt trap
handler transfers control to the interrupt service routine (ISR) that the device driver
provided for the interrupting device. If the condition was caused by a call to a system
service, the general system service trap handler transfers control to the specified system
service function in the executive. The kernel also installs trap handlers for traps that it
doesn't expect to see or doesn't handle. These trap handlers typically execute the system
function KeBugCheckEx, which halts the computer when the kernel detects problematic or
incorrect behavior that, if left unchecked, could result in data corruption. (For more
information on bug checks, see the section "System Crashes" beginning in Chapter 4.) The
following sections describe interrupt, exception, and system service dispatching in greater
detail.



Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O devices that must notify the
processor when they need service. Interrupt-driven devices allow the operating system to
get the maximum use out of the processor by overlapping central processing with I/O
operations. A thread starts an I/O transfer to or from a device and then can execute other
useful work while the device completes the transfer. When the device is finished, it
interrupts the processor for service. Pointing devices, printers, keyboards, disk drives, and
network cards are generally interrupt driven.

System software can also generate interrupts. For example, the kernel can issue a
software interrupt to initiate thread dispatching and to asynchronously break into the
execution of a thread. The kernel can also disable interrupts so that the processor isn't
interrupted, but it does so only infrequently—at critical moments while it's processing an
interrupt or dispatching an exception, for example.

The kernel installs interrupt trap handlers to respond to device interrupts. Interrupt trap
handlers transfer control either to an external routine (the ISR) that handles the interrupt
or to an internal kernel routine that responds to the interrupt. Device drivers supply ISRs
to service device interrupts, and the kernel provides interrupt handling routines for other
types of interrupts.

In the following subsections, you'll find out how the hardware notifies the processor of
device interrupts, the types of interrupts the kernel supports, the way device drivers
interact with the kernel (as a part of interrupt processing), and the software interrupts the
kernel recognizes (plus the kernel objects that are used to implement them).

Hardware Interrupt Processing

On x86 systems, external I/O interrupts come into one of the lines on an interrupt
controller. The controller in turn interrupts the processor on a single line. Once the
processor is interrupted, it queries the controller to get the interrupt request (IRQ). The
interrupt controller translates the IRQ to an interrupt number, uses this number as an
index into a structure called the interrupt dispatch table (IDT), and transfers control to the
appropriate interrupt dispatch routine. At system boot time, Windows 2000 fills in the IDT
with pointers to the kernel routines that handle each interrupt and exception.

EXPERIMENT

Viewing the IDT

You can view the contents of the IDT, including information on what trap handlers
Windows 2000 has assigned to interrupts (including exceptions and IRQs), using
the !idt command implemented in the Kdex2x86.dll debugger extension library.
Passing the !idt command a 0 flag shows device driver ISRs that are registered for
hardware device interrupts.

The following example shows how you load the Kdex2x86.dll debugger extension
library and what the output of the !idt command looks like:

kd> .load kdex2x86 
Loaded kdex2x86 extension DLL 



kd> !idt 0 
    00: 80463440 (ntkrnlmp!KiTrap00) 
    01: 80463590 (ntkrnlmp!KiTrap01) 
    02: 0000144e 
    03: 8046386c (ntkrnlmp!KiTrap03) 
    04: 804639d4 (ntkrnlmp!KiTrap04) 
    05: 80463b18 (ntkrnlmp!KiTrap05) 
    06: 80463c78 (ntkrnlmp!KiTrap06) 
    07: 804641bc (ntkrnlmp!KiTrap07) 
    08: 000014a8 
    09: 80464558 (ntkrnlmp!KiTrap09) 
    0a: 80464660 (ntkrnlmp!KiTrap0A) 
    0b: 8046478c (ntkrnlmp!KiTrap0B) 
    0c: 80464a90 (ntkrnlmp!KiTrap0C) 
    0d: 80464c9c (ntkrnlmp!KiTrap0D) 
    0e: 80465708 (ntkrnlmp!KiTrap0E) 
    0f: 80465aac (ntkrnlmp!KiTrap0F) 
    10: 80465bb4 (ntkrnlmp!KiTrap10) 
    11: 80465cd8 (ntkrnlmp!KiTrap11) 
    12: 80465aac (ntkrnlmp!KiTrap0F) 
     
    29: 00000000 
    2a: 804628fe (ntkrnlmp!KiGetTickCount) 
    2b: 804629f0 (ntkrnlmp!KiCallbackReturn) 
    2c: 80462b10 (ntkrnlmp!KiSetLowWaitHighThread) 
    2d: 8046375c (ntkrnlmp!KiDebugService) 
    2e: 80462420 (ntkrnlmp!KiSystemService) 
    2f: 80465aac (ntkrnlmp!KiTrap0F) 
    30: 80461a50 (ntkrnlmp!KiStartUnexpectedRange) 
     
    51: 80461b9a (ntkrnlmp!KiUnexpectedInterrupt33) 
    52: 813dbbe4 (Vector:52,Irql:4,SyncIrql:5,Connected:TRUE, ¬ 
                  No:0,ShareVector:FALSE,Mode:Latched,        ¬ 
                  ISR:i8042prt!I8042KeyboardInterruptService(f04b1
    53: 80461bae (ntkrnlmp!KiUnexpectedInterrupt35) 
    54: 80461bb8 (ntkrnlmp!KiUnexpectedInterrupt36) 
     
    d0: 80462090 (ntkrnlmp!KiUnexpectedInterrupt160) 
    d1: 800638d4 (halmps!HalpClockInterrupt) 
    d2: 804620a4 (ntkrnlmp!KiUnexpectedInterrupt162) 
    

Some of the interrupt numbers of interest in the example are in the range 0x0 to
0x10, which includes x86 exception interrupts (for example, a page fault, which is
exception 0xe, is handled by KiTrap0E) and the range 0x2a to 0x2e, which
includes the system service dispatcher and other software interrupts that the
kernel uses internally as fast entry points into the kernel from environment
subsystems. On the system used to provide the output for this experiment, the



clock interrupt handler is at interrupt number 0xd1 and the keyboard device
driver's (I8042prt.sys) keyboard ISR is at interrupt number 0x52.

Windows 2000 maps hardware IRQs to interrupt numbers into the IDT, and the system
also uses the IDT to configure trap handlers for exceptions. For example, the x86
exception number for a page fault (an exception that occurs when a thread attempts to
access a page of virtual memory that isn't defined or present) is 0xe. Thus, entry 0xe in
the IDT points to the system's page fault handler. Although the x86 architecture can
support up to 256 IDT entries, the number of IRQs a particular machine can support is
determined by the design of the interrupt controller the machine uses.

Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a
variant of the i82489 Advanced Programmable Interrupt Controller (APIC); the majority of
new computers include an APIC. The PIC standard originates with the original IBM PC. PICs
work only with uniprocessor systems and have 15 interrupt lines. APICs work with
multiprocessor systems and have 256 interrupt lines. Intel and other companies have
defined the Multiprocessor Specification (MP Specification), a design standard for x86
multiprocessor systems that centers on the use of APIC. To provide compatibility with
uniprocessor operating systems and boot code that starts a multiprocessor system in
uniprocessor mode, APICs support a PIC compatibility mode with 15 interrupts and
delivery of interrupts to only the primary processor. Figure 3-2 depicts the APIC
architecture. The APIC actually consists of several components: an I/O APIC that receives
interrupts from devices, local APICs that receive interrupts from the I/O APIC and that
interrupt the CPU they are associated with, and an i8259A-compatible interrupt controller
that translates APIC input into PIC-equivalent signals. The I/O APIC is responsible for
implementing interrupt routing algorithms—which are software-selectable (the HAL makes
the selection on Windows 2000)—that both balance the interrupt load across processors
and attempt to take advantage of locality, delivering interrupts to the same processor that
has just fielded a previous interrupt of the same type.

Figure 3-2 x86 APIC architecture

Each processor has a separate IDT so that different processors can run different ISRs, if
appropriate. For example, in a multiprocessor system, each processor receives the clock
interrupt, but only one processor updates the system clock in response to this interrupt. All



the processors, however, use the interrupt to measure thread quantum and to initiate
rescheduling when a thread's quantum ends. Similarly, some system configurations might
require that a particular processor handle certain device interrupts.

EXPERIMENT

Viewing the PIC and APIC

You can view the configuration of the PIC on a uniprocessor and the APIC on a
multiprocessor by using the !pic and !apic I386kd (or Kd) commands, respectively.
(You can't use LiveKd for this experiment because LiveKd can't access hardware.)
Here's the output of the !pic command on a uniprocessor. (Note that the !pic
command doesn't work if your system is using an APIC HAL.)

kd> !pic 
----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0
Physically in service:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  
Physically masked:      .  .  .  .  Y  .  Y  Y  .  Y  Y  Y  .  Y  
Physically requested:   Y  .  .  .  .  .  .  .  .  .  .  .  .  .  

Here's the output of the !apic command on a system running with the MPS HAL.
The "0:" prefix for the I386kd prompt indicates that commands are running on
processor 0, so this is the I/O APIC for processor 0:

0: kd> !apic 
Apic @ fffe0000  ID:1 (40011) LogDesc:01000000 DestFmt:ffffffff  T
TimeCnt: 03f66780clk  SpurVec:1f  FaultVec:e3  error:80 
Ipi Cmd: 000008e1  Vec:E1  FixedDel  Lg:02000000       edg 
Timer..: 000300fd  Vec:FD  FixedDel    Dest=Self       edg        
Linti0.: 0001001f  Vec:1F  FixedDel    Dest=Self       edg        
Linti1.: 000084ff  Vec:FF  NMI         Dest=Self       lvl 
TMR: 93, a3 
IRR: 41, d1, e3 
ISR: d1 

The following output is for the !ioapic command, which displays the configuration
of the I/O APIC, the interrupt controller component connected to devices.

0: kd> !ioapic 
IoApic @ ffd02000  ID:8 (11)  Arb:0 
Inti00.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti01.: 00000962  Vec:62  LowestDl  Lg:03000000  edg 
Inti02.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti03.: 00000971  Vec:71  LowestDl  Lg:03000000  edg 
Inti04.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti05.: 00000961  Vec:61  LowestDl  Lg:03000000  edg 
Inti06.: 00010982  Vec:82  LowestDl  Lg:02000000  edg  masked 
Inti07.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 



Inti08.: 000008d1  Vec:D1  FixedDel  Lg:01000000  edg 
Inti09.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti0A.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti0B.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti0C.: 00000972  Vec:72  LowestDl  Lg:03000000  edg 
Inti0D.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti0E.: 00000992  Vec:92  LowestDl  Lg:03000000  edg 
Inti0F.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti10.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti11.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti12.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti13.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti14.: 0000a9a3  Vec:A3  LowestDl  Lg:03000000  lvl 
Inti15.: 0000a993  Vec:93  LowestDl  Lg:03000000  lvl 
Inti16.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 
Inti17.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked 

Most of the routines that handle interrupts reside in the kernel. The kernel updates the
clock time, for example. However, external devices such as keyboards, pointing devices,
and disk drives also generate many interrupts, and device drivers need a way to tell the
kernel which routine to call when a device interrupt occurs.

Software Interrupt Request Levels (IRQLs)

Although interrupt controllers perform a level of interrupt prioritization, Windows 2000
imposes its own interrupt priority scheme known as interrupt request levels (IRQLs). The
kernel represents IRQLs internally as a number from 0 through 31, with higher numbers
representing higher-priority interrupts. Although the kernel defines the standard set of
IRQLs for software interrupts, the HAL maps hardware-interrupt numbers to the IRQLs.
Figure 3-3 shows IRQLs defined for the x86 architecture.

Figure 3-3 Interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the
servicing of a lower-priority interrupt. When a high-priority interrupt occurs, the processor

javascript:fullSize('F03yj03x.htm')


saves the interrupted thread's state and invokes the trap dispatchers associated with the
interrupt. The trap dispatcher raises the IRQL and calls the interrupt's service routine.
After the service routine executes, the interrupt dispatcher lowers the processor's IRQL to
where it was before the interrupt occurred and then loads the saved machine state. The
interrupted thread resumes executing where it left off. When the kernel lowers the IRQL,
lower-priority interrupts that were masked might materialize. If this happens, the kernel
repeats the process to handle the new interrupts.

IRQL priority levels have a completely different meaning than thread-scheduling priorities
(which are described in Chapter 6). A scheduling priority is an attribute of a thread,
whereas an IRQL is an attribute of an interrupt source, such as a keyboard or a mouse. In
addition, each processor has an IRQL setting that changes as operating system code
executes.

EXPERIMENT

Viewing the IRQL

A data structure called the processor control region (PCR) and its extension the
processor control block (PRCB) contain information about the state of each
processor in the system, such as the current IRQL, a pointer to the hardware IDT,
the currently running thread, and the next thread selected to run. The kernel and
the HAL use this information to perform architecture-specific and machine-specific
actions. Portions of the PCR and PRCB structures are defined publicly in the
Windows 2000 Device Driver Kit (DDK) header file Ntddk.h, so examine that file if
you want a complete definition of these structures.

You can view the contents of the PCR with the kernel debugger by using the !pcr
command:

kd> !pcr 
PCR Processor 0 @ffdff000 
        NtTib.ExceptionList: f8effc68 
            NtTib.StackBase: f8effdf0 
           NtTib.StackLimit: f8efd000 
         NtTib.SubSystemTib: 00000000 
              NtTib.Version: 00000000 
          NtTib.UserPointer: 00000000 
              NtTib.SelfTib: 7ffde000 
 
                    SelfPcr: ffdff000 
                       Prcb: ffdff120 
                       Irql: 00000000 
                        IRR: 00000000 
                        IDR: ffff28e8 
              InterruptMode: 00000000 
                        IDT: 80036400 
                        GDT: 80036000 
                        TSS: 802b5000 
 



              CurrentThread: 81638020 
                 NextThread: 00000000 
                 IdleThread: 8046bdf0 

Each processor's IRQL setting determines which interrupts that processor can receive.
IRQLs are also used to synchronize access to kernel-mode data structures. (You'll find out
more about synchronization later in this chapter.) As a kernel-mode thread runs, it raises
or lowers the processor's IRQL either directly by calling KeRaiseIrql and KeLowerIrql or,
more commonly, indirectly via calls to functions that acquire kernel synchronization
objects. As Figure 3-4 illustrates, interrupts from a source with an IRQL above the current
level interrupt the processor, whereas interrupts from sources with IRQLs equal to or below
the current level are masked until an executing thread lowers the IRQL.

Figure 3-4 Masking interrupts

Because accessing a PIC is a relatively slow operation, HALs that use a PIC implement a
performance optimization, called lazy IRQL, that avoids PIC accesses. When the IRQL is
raised, the HAL notes the new IRQL internally instead of changing the interrupt mask. If a
lower-priority interrupt subsequently occurs, the HAL sets the interrupt mask to the
settings appropriate for the first interrupt and postpones the lower-priority interrupt until
the IRQL is lowered. Thus, if no lower-priority interrupts occur while the IRQL is raised, the
HAL doesn't need to modify the PIC.

A kernel-mode thread raises and lowers the IRQL of the processor on which it's running,
depending on what it's trying to do. For example, when an interrupt occurs, the trap
handler (or perhaps the processor) raises the processor's IRQL to the assigned IRQL of the
interrupt source. This elevation masks all interrupts at and below that IRQL (on that
processor only), which ensures that the processor servicing the interrupt isn't waylaid by
an interrupt at the same or a lower level. The masked interrupts are either handled by
another processor or held back until the IRQL drops. Therefore, all components of the
system, including the kernel and device drivers, attempt to keep the IRQL at passive level
(sometimes called low level). They do this because device drivers can respond to hardware
interrupts in a timelier manner if the IRQL isn't kept unnecessarily elevated for long
periods.

Because changing a processor's IRQL has such a significant effect on system operation, the
change can be made only in kernel mode—user-mode threads can't change the processor's
IRQL. This means that a processor's IRQL is always at passive level when it's executing
user-mode code. Only when the processor is executing kernel-mode code can the IRQL be
higher.

javascript:fullSize('F03yj04x.htm')


Each interrupt level has a specific purpose. For example, the kernel issues an inter-
processor interrupt (IPI) to request that another processor perform an action, such as
dispatching a particular thread for execution or updating its translation look-aside buffer
cache. The system clock generates an interrupt at regular intervals, and the kernel
responds by updating the clock and measuring thread execution time. If a hardware
platform supports two clocks, the kernel adds another clock interrupt level to measure
performance. The HAL provides a number of interrupt levels for use by interrupt-driven
devices; the exact number varies with the processor and system configuration. The kernel
uses software interrupts (described later in this chapter) to initiate thread scheduling and
to asynchronously break into a thread's execution.

Mapping interrupts to IRQLs These IRQL levels aren't the same as the interrupt
requests (IRQs) of the x86 system—the x86 architecture doesn't implement the concept of
IRQLs in hardware. So how does Windows 2000 determine what IRQL to assign to an
interrupt? The answer lies in the HAL. In Windows 2000, a type of device driver called a
bus driver determines the presence of devices on its bus (PCI, USB, and so on) and what
interrupts can be assigned to a device. The bus driver reports this information to the Plug
and Play manager, which decides, after taking into account the acceptable interrupt
assignments for all other devices, which interrupt will be assigned to each device. Then it
calls the HAL function HalpGetSystemInterruptVector, which maps interrupts to IRQLs.

The algorithm for assignment differs for the uniprocessor and multiprocessor HALs that
Windows 2000 includes. On a uniprocessor system, the HAL performs a straightforward
translation: the IRQL of a given interrupt vector is calculated by subtracting the interrupt
vector from 27. Thus, if a device uses interrupt level 5, its ISR executes at IRQL 22. On a
multiprocessor system, the mapping isn't as simple. APICs support over 100 interrupt
vectors, so there aren't enough IRQLs for a one-to-one correspondence. The
multiprocessor HAL therefore assigns IRQLs to interrupt vectors in a round-robin manner,
cycling through the device IRQL (DIRQL) range. As a result, on a multiprocessor system
there's no easy way for you to predict or to know what IRQL Windows 2000 assigns to
APIC IRQs. You can use the !idt kernel debugger command (shown earlier in the chapter)
to view IRQL assignments for hardware interrupts.

Predefined IRQLs Let's take a closer look at the use of the predefined IRQLs, starting
from the highest level shown in Figure 3-4:

The kernel uses high level only when it's halting the system in KeBugCheckEx and
masking out all interrupts.

Power fail level originated in the original Microsoft Windows NT design documents,
which specified the behavior of system power failure code, but this IRQL has never
been used.

Inter-processor interrupt level is used to request another processor to perform an
action, such as dispatching a particular thread for execution, updating the processor's
translation look-aside buffer (TLB) cache, system shutdown, or system crash.

Clock level is used for the system's clock, which the kernel uses to track the time of
day as well as to measure and allot CPU time to threads.

The system's real-time clock uses profile level when kernel profiling, a performance
measurement mechanism, is enabled. When kernel profiling is active, the kernel's
profiling trap handler records the address of the code that was executing when the
interrupt occurred. A table of address samples is constructed over time that tools can
extract and analyze. The Windows 2000 resource kits include a tool called Kernel



Profiler (Kernprof.exe) that you can use to configure and view profiling-generated
statistics. See the Kernel Profiler experiment for more information on using Kernprof.

The device IRQLs are used to prioritize device interrupts. (See the previous section for
how hardware interrupt levels are mapped to IRQLs.)

DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel and
device drivers generate. (DPCs and APCs are explained in more detail later in this
chapter.)

The lowest IRQL, passive level, isn't really an interrupt level at all; it's the setting at
which normal thread execution takes place and all interrupts are allowed to occur.

EXPERIMENT

Using Kernel Profiler to Profile Execution

You can use the Kernel Profiler tool that comes with the Windows 2000 resource
kits to enable the system profiling timer, collect samples of the code that is
executing when the timer fires, and display a summary showing the frequency
distribution across image files and functions. Kernel Profiler is most useful in
situations in which performance-critical code is running in a repeatable manner
and you want to obtain a breakdown of where the system is spending time when
the code executes. For the output to be useful, Kernel Profiler requires that the
Windows 2000 symbols be installed on your system. Below is sample output from
Kernel Profiler after collecting information for 30 seconds on a system that was
relatively idle. (Notice that the majority of the samples were in KiIdleLoop, the idle
thread loop, which is explained in Chapter 6.)

C:\kernprof -a -d -x -p -v -t 5 30 
Symbols loaded: 80400000  ntoskrnl.exe 
 
delaying for 30 seconds... report on values with 5 hits 
end of delay 
Processor 0: 30404 Total hits 
30404 Total hits 
 
PROCESSOR 0 
 
   28708         ntoskrnl.exe --Total Hits--  
       5  0  ntoskrnl.exe memmove 0x08045AEF0 0 3 
       5  0  ntoskrnl.exe ExAcquireResourceExclusiveLite 0x080413A
       6  0  ntoskrnl.exe ExReleaseResourceLite 0x080413E5E 0 3 
      79  0  ntoskrnl.exe KiXMMIZeroPageNoSave 0x080430B88 0 3 
       8  0  ntoskrnl.exe MiInsertPageInList 0x080442E1E 0 3 
       6  0  ntoskrnl.exe MiRemovePageByColor 0x080443756 0 3 
       6  0  ntoskrnl.exe ObReferenceObjectByHandle 0x08044986C 0 
   28384  0  ntoskrnl.exe KiIdleLoop 0x08045E98C 0 3 
       9  0  ntoskrnl.exe KiSystemService 0x08045F4A0 0 3 
       6  0  ntoskrnl.exe ExAllocatePoolWithTag 0x080465080 0 3 



       5  0  ntoskrnl.exe SepPrivilegeCheck 0x0804F7638 0 3 
       5  0  ntoskrnl.exe IopParseDevice 0x0804B8F20 0 3 
 
     563              hal.dll --Total Hits--  
       5  0  hal.dll KfRaiseIrql 0x080062E90 0 2 
      22  0  hal.dll KfLowerIrql 0x080062F00 0 2 
 
       5  0  hal.dll READ_PORT_UCHAR 0x080067960 0 2 
      14  0  hal.dll WRITE_PORT_UCHAR 0x0800679C8 0 2 
     503  0  hal.dll HalAcpiC1Idle 0x080068334 0 2 
 
       6            atapi.sys --Total Hits--  
 
      15          Fastfat.sys --Total Hits--  
 
     109             Ntfs.sys --Total Hits--  
       6  0  Ntfs.SYS NtfsInitializeIrpContext 0x0F99CE432 0 2 
      15  0  Ntfs.SYS NtfsCommonWrite 0x0F99CF480 0 2 
       7  0  Ntfs.SYS NtfsCommonCleanup 0x0F99D6190 0 2 
       7  0  Ntfs.SYS NtfsQueryDirectory 0x0F99DC430 0 2 
 
       8           win32k.sys --Total Hits--  
 
     229            ntdll.dll --Total Hits--  
      22  0  ntdll.dll RtlIsValidHandle 0x077F9ADEE 0 2 
       5  0  ntdll.dll ZwReleaseSemaphore 0x077F8872C 0 2 
      14  0  ntdll.dll RtlpFreeToHeapLookaside 0x077FB0358 0 2 
      17  0  ntdll.dll RtlpInterlockedPushEntrySList 0x077FB7620 0
       7  0  ntdll.dll RtlTimeToTimeFields 0x077FA7BFE 0 2 
       8  0  ntdll.dll RtlEnterCriticalSection 0x077F87B30 0 2 
       8  0  ntdll.dll wcslen 0x077FB3D6E 0 2 
       8  0  ntdll.dll RtlpAllocateFromHeapLookaside 0x077FB02E4 0
      24  0  ntdll.dll RtlpInterlockedPopEntrySList 0x077FB75FC 0 
      17  0  ntdll.dll RtlpFindAndCommitPages 0x077FC8DF6 0 2 
      33  0  ntdll.dll RtlAllocateHeap 0x077FC6BF8 0 2 
      21  0  ntdll.dll RtlFreeHeap 0x077FC7426 0 2 
       5  0  ntdll.dll RtlAllocateHeap 0x077FC6BF8 0 2 
 
     756            User Mode --Total Hits-- (NO SYMBOLS) 
 
Context Switch Information 
    Find any processor             0 
    Find last processor            0 
    Idle any processor             0 
    Idle current processor         0 
    Idle last processor            0 
    Preempt any processor          0 
    Preempt current processor      0 



    Preempt last processor         0 
    Switch to idle                 0 
 
    Total context switches      3255 

One important restriction on code running at DPC/dispatch level or above is that it can't
wait on an object if doing so would necessitate the scheduler to select another thread to
execute. Another restriction is that only nonpaged memory can be accessed at IRQL
DPC/dispatch level or higher. This rule is actually a side effect of the first restriction
because attempting to access memory that isn't resident results in a page fault. When a
page fault occurs, the memory manager initiates a disk I/O and then needs to wait for the
file system driver to read the page in from disk. This wait would in turn require the
scheduler to perform a context switch (perhaps to the idle thread if no user thread is
waiting to run), thus violating the rule that the scheduler can't be invoked (because the
IRQL is still DPC/dispatch level or higher at the time of the disk read). If either of these
two restrictions is violated, the system crashes with an IRQL_NOT_LESS_OR_EQUAL crash
code. (See Chapter 4 for a thorough discussion of system crashes.) Violating these
restrictions is a common bug in device drivers. The Windows 2000 Driver Verifier,
explained in the section "Driver Verifier" in Chapter 7 has an option you can set to assist in
finding this particular type of bug.

Interrupt objects The kernel provides a portable mechanism—a kernel control object
called an interrupt object—that allows device drivers to register ISRs for their devices. An
interrupt object contains all the information the kernel needs to associate a device ISR
with a particular level of interrupt, including the address of the ISR, the IRQL at which the
device interrupts, and the entry in the kernel's IDT with which the ISR should be
associated. When an interrupt object is initialized, a few instructions of assembly language
code, called the dispatch code, are copied from an interrupt handling template,
KiInterruptTemplate, and stored in the object. When an interrupt occurs, this code is
executed.

This interrupt-object resident code calls the real interrupt dispatcher, the kernel's
KiInterruptDispatch routine, passing it a pointer to the interrupt object. The interrupt
object contains information this second dispatcher routine needs in order to locate and
properly call the ISR the device driver provides.

The interrupt object also stores the IRQL associated with the interrupt so that another
routine, KiDispatchInterrupt, can raise the IRQL to the correct level before calling the ISR
and then lower the IRQL after the ISR has returned. This two-step process is required
because there's no way to pass a pointer to the interrupt object (or any other argument for
that matter) on the initial dispatch since the initial dispatch is done by hardware. On a
multiprocessor system, the kernel allocates and initializes an interrupt object for each CPU,
enabling the local APIC on that CPU to accept the particular interrupt.

Windows 2000 and Real-Time Processing

Deadline requirements, either hard or soft, characterize real-time environments.
Hard real-time systems (for example, a nuclear power plant control system) have
deadlines that the system must meet to avoid catastrophic failures such as loss of
equipment or life. Soft real-time systems (for example, a car's fuel-economy



optimization system) have deadlines that the system can miss, but timeliness is
still a desirable trait. In real-time systems, computers have sensor input devices
and control output devices. The designer of a real-time computer system must
know worst-case delays between the time an input device generates an interrupt
and the time the device's driver can control the output device to respond. This
worst-case analysis must take into account the delays the operating system
introduces as well as the delays the application and device drivers impose.

Because Windows 2000 doesn't prioritize device IRQs in any controllable way and
user-level applications execute only when a processor's IRQL is at passive level,
Windows 2000 isn't always suitable as a real-time operating system. The system's
devices and device drivers—not Windows 2000—ultimately determine the worst-
case delay. This factor becomes a problem when the real-time system's designer
uses off-the-shelf hardware. The designer can have difficulty determining how
long every off-the-shelf device's ISR or DPC might take in the worst case. Even
after testing, the designer can't guarantee that a special case in a live system
won't cause the system to miss an important deadline. Furthermore, the sum of
all the delays a system's DPCs and ISRs can introduce usually far exceeds the
tolerance of a time-sensitive system.

Although many types of embedded systems (for example, printers and automotive
computers) have real-time requirements, the special embedded version of
Windows NT (currently based on Windows NT 4 but eventually to be updated for a
future version of Windows 2000) doesn't have real-time characteristics. It is
simply a version of Windows NT that makes it possible, using system designer
technology that Microsoft licensed from VenturCom, to produce small-footprint
versions of Windows NT suitable for running on devices with limited resources. For
example, a device that has no networking capability would omit all the Windows
NT components, including network management tools and adapter and protocol
stack device drivers, related to networking.

Still, there are third-party vendors that supply real-time kernels for Windows NT 4
and Windows 2000. The approach these vendors take is to embed their real-time
kernel in a custom HAL and to have Windows 2000 or Windows NT 4 run as a task
in the real-time operating system. The task running Windows 2000 or Windows NT
serves as the user interface to the system and has a lower priority than the tasks
responsible for managing the device. See VenturCom's Web site,
www.venturcom.com, for an example of a third-party real-time kernel extension
for Windows NT or Windows 2000.

Associating an ISR with a particular level of interrupt is called connecting an interrupt
object, and dissociating an ISR from an IDT entry is called disconnecting an interrupt
object. These operations, accomplished by calling the kernel functions IoConnectInterrupt
and IoDisconnectInterrupt, allow a device driver to "turn on" an ISR when the driver is
loaded into the system and to "turn off" the ISR if the driver is unloaded.

Using the interrupt object to register an ISR prevents device drivers from fiddling directly
with interrupt hardware (which differs among processor architectures) and from needing to
know any details about the IDT. This kernel feature aids in creating portable device drivers
because it eliminates the need to code in assembly language or to reflect processor
differences in device drivers.

http://www.venturcom.com/


Interrupt objects provide other benefits as well. By using the interrupt object, the kernel
can synchronize the execution of the ISR with other parts of a device driver that might
share data with the ISR. (See Chapter 9 for more information about how device drivers
respond to interrupts.)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any
interrupt level. If multiple device drivers create interrupt objects and connect them to the
same IDT entry, the interrupt dispatcher calls each routine when an interrupt occurs at the
specified interrupt line. This capability allows the kernel to easily support "daisy-chain"
configurations, in which several devices share the same interrupt line. The chain breaks
when one of the ISRs claims ownership for the interrupt by returning a status to the
interrupt dispatcher. If multiple devices sharing the same interrupt require service at the
same time, devices not acknowledged by their ISRs will interrupt the system again once
the interrupt dispatcher has lowered the IRQL. Chaining is permitted only if all the device
drivers wanting to use the same interrupt indicate to the kernel that they can share the
interrupt; if they can't, the Plug and Play manager reorganizes their interrupt assignments
to ensure that it honors the sharing requirements of each.

Software Interrupts

Although hardware generates most interrupts, the Windows 2000 kernel also generates
software interrupts for a variety of tasks, including these:

Initiating thread dispatching

Non-time-critical interrupt processing

Handling timer expiration

Asynchronously executing a procedure in the context of a particular thread

Supporting asynchronous I/O operations

These tasks are described in the following subsections.

Dispatch or deferred procedure call (DPC) interrupts When a thread can no longer
continue executing, perhaps because it has terminated or because it voluntarily enters a
wait state, the kernel calls the dispatcher directly to effect an immediate context switch.
Sometimes, however, the kernel detects that rescheduling should occur when it is deep
within many layers of code. In this situation, the ideal solution is to request dispatching
but defer its occurrence until the kernel completes its current activity. Using a DPC
software interrupt is a convenient way to achieve this delay.

The kernel always raises the processor's IRQL to DPC/dispatch level or above when it
needs to synchronize access to shared kernel structures. This disables additional software
interrupts and thread dispatching. When the kernel detects that dispatching should occur,
it requests a DPC/dispatch-level interrupt; but because the IRQL is at or above that level,
the processor holds the interrupt in check. When the kernel completes its current activity,
it sees that it's going to lower the IRQL below DPC/dispatch level and checks to see
whether any dispatch interrupts are pending. If there are, the IRQL drops to DPC/dispatch
level and the dispatch interrupts are processed. Activating the thread dispatcher by using a
software interrupt is a way to defer dispatching until conditions are right. However,
Windows 2000 uses software interrupts to defer other types of processing as well.



In addition to thread dispatching, the kernel also processes deferred procedure calls
(DPCs) at this IRQL. A DPC is a function that performs a system task—a task that is less
time-critical than the current one. The functions are called deferred because they might
not execute immediately.

DPCs provide the operating system with the capability to generate an interrupt and
execute a system function in kernel mode. The kernel uses DPCs to process timer
expiration (and release threads waiting on the timers) and to reschedule the processor
after a thread's quantum expires. Device drivers use DPCs to complete I/O requests. To
provide timely service for hardware interrupts, Windows 2000—with the cooperation of
device drivers—attempts to keep the IRQL below device IRQL levels. One way that this
goal is achieved is for device driver ISRs to perform the minimal work necessary to
acknowledge their device, save volatile interrupt state, and defer data transfer or other
less time-critical interrupt processing activity for execution in a DPC at DPC/dispatch IRQL.
(See Chapter 9 for more information on DPCs and the I/O system.)

A DPC is represented by a DPC object, a kernel control object that is not visible to user-
mode programs but is visible to device drivers and other system code. The most important
piece of information the DPC object contains is the address of the system function that the
kernel will call when it processes the DPC interrupt. DPC routines that are waiting to
execute are stored in kernel-managed queues, one per processor, called DPC queues. To
request a DPC, system code calls the kernel to initialize a DPC object and then places it in
a DPC queue.

By default, the kernel places DPC objects at the end of the DPC queue of the processor on
which the DPC was requested (typically the processor on which the ISR executed). A
device driver can override this behavior, however, by specifying a DPC priority (low,
medium, or high, where medium is the default) and by targeting the DPC at a particular
processor. A DPC aimed at a specific CPU is known as a targeted DPC. If the DPC has a low
or medium priority, the kernel places the DPC object at the end of the queue; if the DPC
has a high priority, the kernel inserts the DPC object at the front of the queue.

When the processor's IRQL is about to drop from an IRQL of DPC/dispatch level or higher
to a lower IRQL (APC or passive level), the kernel processes DPCs. Windows 2000 ensures
that the IRQL remains at DPC/dispatch level and pulls DPC objects off the current
processor's queue until the queue is empty (that is, the kernel "drains" the queue), calling
each DPC function in turn. Only when the queue is empty will the kernel let the IRQL drop
below DPC/dispatch level and let regular thread execution continue. DPC processing is
depicted in Figure 3-5.

Figure 3-5 Delivering a DPC

javascript:fullSize('F03yj05x.htm')


DPC priorities can affect system behavior another way. The kernel usually initiates DPC
queue draining with a DPC/dispatch-level interrupt. The kernel generates such an interrupt
only if the DPC is directed at the processor the ISR is requested on and the DPC has a high
or medium priority. If the DPC has a low priority, the kernel requests the interrupt only if
the number of outstanding DPC requests for the processor rises above a threshold or if the
number of DPCs requested on the processor within a time window is low. If a DPC is
targeted at a CPU different from the one on which the ISR is running and the DPC's priority
is high, the kernel immediately signals the target CPU (by sending it a dispatch IPI) to
drain its DPC queue. If the priority is medium or low, the number of DPCs queued on the
target processor must exceed a threshold for the kernel to trigger a DPC/dispatch
interrupt. The system idle thread also drains the DPC queue for the processor it runs on.
Although DPC targeting and priority levels are flexible, device drivers rarely need to
change the default behavior of their DPC objects. Table 3-1 summarizes the situations that
initiate DPC queue draining.

Table 3-1 DPC Interrupt Generation Rules

DPC
Priority DPC Targeted at ISR's Processor DPC Targeted at Another

Processor

Low DPC queue length exceeds maximum DPC
queue length or DPC request rate is less than
minimum DPC request rate

DPC queue length exceeds
maximum DPC queue length
or System is idle

Medium Always DPC queue length exceeds
maximum DPC queue length
or System is idle

High Always Always

Because user-mode threads execute at low IRQL, the chances are good that a DPC will
interrupt the execution of an ordinary user's thread. DPC routines execute without regard
to what thread is running, meaning that when a DPC routine runs, it can't assume what
process address space is currently mapped. DPC routines can call kernel functions, but
they can't call system services, generate page faults, or create or wait on dispatcher
objects (explained later in this chapter). They can, however, access nonpaged system
memory addresses, since system address space is always mapped regardless of what the
current process is.

DPCs are provided primarily for device drivers, but the kernel uses them too. The kernel
most frequently uses a DPC to handle quantum expiration. At every tick of the system
clock, an interrupt occurs at clock IRQL. The clock interrupt handler (running at clock
IRQL) updates the system time and then decrements a counter that tracks how long the
current thread has run. When the counter reaches 0, the thread's time quantum has
expired and the kernel might need to reschedule the processor, a lower-priority task that
should be done at DPC/dispatch IRQL. The clock interrupt handler queues a DPC to initiate
thread dispatching and then finishes its work and lowers the processor's IRQL. Because the
DPC interrupt has a lower priority than do device interrupts, any pending device interrupts
that surface before the clock interrupt completes are handled before the DPC interrupt
occurs.

EXPERIMENT

Monitoring Interrupt and DPC Activity



Using the Windows 2000 Performance tool, you can watch the percentage of time
your system spends on handling interrupts and DPCs. The Processor object has %
Interrupt Time and % DPC Time counters, including Total and per-processor
instances, which means you can monitor the activity on a per-CPU or a
systemwide basis. These objects also have counters to measure the number of
interrupts and DPCs per second.

One situation in which you might want to look at these counters is if your system
is spending an inordinate amount of time in kernel mode and you can't attribute
all the kernel-mode CPU time to processes. If total kernel-mode CPU time is
greater than the total kernel-mode CPU time of all processes, the remaining time
has to be interrupts or DPCs because time spent at interrupt level and DPC level
isn't charged to any thread's CPU time performance counter. Be aware that there
are inherent inaccuracies in the way Windows 2000 accounts for CPU time,
inaccuracies that relate to the granularity of the system timer. (See the section
"Quantum Accounting" in Chapter 6 for an explanation of how time accounting
works.)

Asynchronous procedure call (APC) interrupts Asynchronous procedure calls (APCs)
provide a way for user programs and system code to execute in the context of a particular
user thread (and hence a particular process address space). Because APCs are queued to
execute in the context of a particular thread and run at an IRQL less than 2, they don't
operate under the same restrictions as a DPC. An APC routine can acquire resources
(objects), wait on object handles, incur page faults, and call system services.

APCs are described by a kernel control object, called an APC object. APCs waiting to
execute reside in a kernel-managed APC queue. Unlike the DPC queue, which is
systemwide, the APC queue is thread-specific—each thread has its own APC queue. When
asked to queue an APC, the kernel inserts it into the queue belonging to the thread that
will execute the APC routine. The kernel, in turn, requests a software interrupt at APC
level, and when the thread eventually begins running, it executes the APC.

There are two kinds of APCs: kernel mode and user mode. Kernel-mode APCs don't require
"permission" from a target thread to run in that thread's context, while user-mode APCs
do. Kernel-mode APCs interrupt a thread and execute a procedure without the thread's
intervention or consent.

The executive uses kernel-mode APCs to perform operating system work that must be
completed within the address space (in the context) of a particular thread. It can use
kernel-mode APCs to direct a thread to stop executing an interruptible system service, for
example, or to record the results of an asynchronous I/O operation in a thread's address
space. Environment subsystems use kernel-mode APCs to make a thread suspend or
terminate itself or to get or set its user-mode execution context. The POSIX subsystem
uses kernel-mode APCs to emulate the delivery of POSIX signals to POSIX processes.

Device drivers also use kernel-mode APCs. For example, if an I/O operation is initiated and
a thread goes into a wait state, another thread in another process can be scheduled to run.
When the device finishes transferring data, the I/O system must somehow get back into
the context of the thread that initiated the I/O so that it can copy the results of the I/O
operation to the buffer in the address space of the process containing that thread. The I/O
system uses a kernel-mode APC to perform this action. (The use of APCs in the I/O system
is discussed in more detail in Chapter 9.)



Several Win32 APIs, such as ReadFileEx, WriteFileEx, and QueueUserAPC, use user-mode
APCs. For example, the ReadFileEx and WriteFileEx functions allow the caller to specify a
completion routine to be called when the I/O operation finishes. The I/O completion is
implemented by queueing an APC to the thread that issued the I/O. However, the callback
to the completion routine doesn't necessarily take place when the APC is queued because
user-mode APCs are delivered to a thread only when it's in an alertable wait state. A
thread can enter a wait state either by waiting on an object handle and specifying that its
wait is alertable (with the Win32 WaitForMultipleObjectsEx function) or by testing directly
whether it has a pending APC (using SleepEx). In both cases, if a user-mode APC is
pending, the kernel interrupts (alerts) the thread, transfers control to the APC routine, and
resumes the thread's execution when the APC routine completes.

APC delivery can reorder the wait queues—the lists of which threads are waiting on what,
and in what order they are waiting. (Wait resolution is described in the section "Executive
Synchronization" later in this chapter.) If the thread is in a wait state when an APC is
delivered, after the APC routine completes, the wait is reissued or reexecuted. If the wait
still isn't resolved, the thread returns to the wait state, but now it will be at the end of the
list of objects it's waiting on. For example, because APCs are used to suspend a thread
from execution, if the thread is waiting on any objects, its wait will be removed until the
thread is resumed, after which that thread will be at the end of the list of threads waiting
to access the objects it was waiting on.



Exception Dispatching

In contrast to interrupts, which can occur at any time, exceptions are conditions that result
directly from the execution of the program that is running. Win32 introduced a facility
known as structured exception handling, which allows applications to gain control when
exceptions occur. The application can then fix the condition and return to the place the
exception occurred, unwind the stack (thus terminating execution of the subroutine that
raised the exception), or declare back to the system that the exception isn't recognized
and the system should continue searching for an exception handler that might process the
exception. This section assumes you're familiar with the basic concepts behind Win32
structured exception handling—if you're not, you should read the overview in the Win32
API reference documentation on the Platform SDK or chapters 23-25 in Jeffrey Richter's
book Programming Applications for Microsoft Windows (fourth edition, Microsoft Press,
2000) before proceeding. Keep in mind that although exception handling is made
accessible through language extensions (for example, the __try construct in Microsoft
Visual C++), it is a system mechanism and hence isn't language-specific. Other examples
of consumers of Windows 2000 exception handling include C++ and Java exceptions.

On the x86, all exceptions have predefined interrupt numbers that directly correspond to
the entry in the IDT that points to the trap handler for a particular exception. Table 3-2
shows x86-defined exceptions and their assigned interrupt numbers. Because the first
entries of the IDT are used for exceptions, hardware interrupts are assigned entries later in
the table, as mentioned earlier.

Table 3-2 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 DEBUG TRAP

2 NMI/NPX Error

3 Breakpoint

4 Overflow

5 BOUND/Print Screen

6 Invalid Opcode

7 NPX Not Available

8 Double Exception

9 NPX Segment Overrun

A Invalid Task State Segment (TSS)

B Segment Not Present

C Stack Fault

D General Protection

E Page Fault

F Intel Reserved

10 Floating Point



11 Alignment Check

All exceptions, except those simple enough to be resolved by the trap handler, are serviced
by a kernel module called the exception dispatcher. The exception dispatcher's job is to
find an exception handler that can "dispose of" the exception. Examples of architecture-
independent exceptions that the kernel defines include memory access violations, integer
divide-by-zero, integer overflow, floating-point exceptions, and debugger breakpoints. For
a complete list of architecture-independent exceptions, consult the Win32 API reference
documentation.

The kernel traps and handles some of these exceptions transparently to user programs.
For example, encountering a breakpoint while executing a program being debugged
generates an exception, which the kernel handles by calling the debugger. The kernel
handles certain other exceptions by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For example, a
memory access violation or an arithmetic overflow generates an exception that the
operating system doesn't handle. An environment subsystem can establish frame-based
exception handlers to deal with these exceptions. The term frame-based refers to an
exception handler's association with a particular procedure activation. When a procedure is
invoked, a stack frame representing that activation of the procedure is pushed onto the
stack. A stack frame can have one or more exception handlers associated with it, each of
which protects a particular block of code in the source program. When an exception
occurs, the kernel searches for an exception handler associated with the current stack
frame. If none exists, the kernel searches for an exception handler associated with the
previous stack frame, and so on, until it finds a frame-based exception handler. If no
exception handler is found, the kernel calls its own default exception handlers.

When an exception occurs, whether it is explicitly raised by software or implicitly raised by
hardware, a chain of events begins in the kernel. The CPU hardware transfers control to
the kernel trap handler, which creates a trap frame (as it does when an interrupt occurs).
The trap frame allows the system to resume where it left off if the exception is resolved.
The trap handler also creates an exception record that contains the reason for the
exception and other pertinent information.

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to
locate a frame-based exception handler that will handle the exception. Because unhandled
kernel-mode exceptions are considered fatal operating system errors, you can assume that
the dispatcher always finds an exception handler.

If the exception occurred in user mode, the exception dispatcher does something more
elaborate. As you'll see in Chapter 6, the Win32 subsystem has a debugger port and an
exception port to receive notification of user-mode exceptions in Win32 processes. The
kernel uses these in its default exception handling, as illustrated in Figure 3-6.



Figure 3-6 Dispatching an exception

Debugger breakpoints are common sources of exceptions. Therefore, the first action the
exception dispatcher takes is to see whether the process that incurred the exception has
an associated debugger process. If so, it sends the first-chance debug message (via an
LPC port) to the debugger port associated with the process that incurred the exception.
(The message is sent to the session manager process, which then dispatches it to the
appropriate debugger process.)

If the process has no debugger process attached, or if the debugger doesn't handle the
exception, the exception dispatcher switches into user mode and calls a routine to find a
frame-based exception handler. If none is found, or if none handles the exception, the
exception dispatcher switches back into kernel mode and calls the debugger again to allow
the user to do more debugging. (This is called the second-chance notification.)

All Win32 threads have an exception handler declared at the top of the stack that
processes unhandled exceptions. This exception handler is declared in the internal Win32
start-of-process or start-of-thread function. The start-of-process function runs when the
first thread in a process begins execution. It calls the main entry point in the image. The
start-of-thread function runs when a user creates additional threads. It calls the user-
supplied thread start routine specified in the CreateThread call.

EXPERIMENT

Viewing the Real User Start Address for Win32 Threads

The fact that each Win32 thread begins execution in a system-supplied function
(and not the user-supplied function) explains why the start address for thread 0 is
the same for every Win32 process in the system (and why the start addresses for
secondary threads are also the same). The start address for thread 0 in Win32
processes is the Win32 start-of-process function; the start address for any other
threads would be the Win32 start-of-thread function. To see the user-supplied
function address, use the Tlist utility in the Windows 2000 Support Tools. Type tlist
process-name or tlist process-id to get the detailed process output that includes
this information. For example, compare the thread start addresses for the
Windows Explorer process as reported by Pstat (in the Platform SDK) and Tlist:

C:\> pstat 

javascript:fullSize('F03yj06x.htm')


 
pid:3f8 pri: 8 Hnd:  329 Pf:  80043 Ws:   4620K explorer.exe 
 tid pri Ctx Swtch StrtAddr   User Time Kernel Time  State 
  7c   9     16442 77E878C1 0:00:01.241 0:00:01.251 Wait:UserReque
 42c  11    157888 77E92C50 0:00:07.110 0:00:34.309 Wait:UserReque
 44c   8      6357 77E92C50 0:00:00.070 0:00:00.140 Wait:UserReque
 1cc   8      3318 77E92C50 0:00:00.030 0:00:00.070 Wait:DelayExec
  
 
C:\> tlist explorer 
 1016 explorer.exe      Program Manager 
   CWD:     C:\  
   CmdLine: Explorer.exe 
   VirtualSize:    25348 KB   PeakVirtualSize:    31052 KB 
   WorkingSetSize:  1804 KB   PeakWorkingSetSize:  3276 KB 
   NumberOfThreads: 4 
    149 Win32StartAddr:0x01009dbd LastErr:0x0000007e State:Waiting
     86 Win32StartAddr:0x77c5d4a5 LastErr:0x00000000 State:Waiting
     62 Win32StartAddr:0x00000977 LastErr:0x00000000 State:Waiting
    179 Win32StartAddr:0x0100d8d4 LastErr:0x00000002 State:Waiting
    

The start address of thread 0 reported by Pstat is the internal Win32 start-of-
process function; the start addresses for threads 1 through 3 are the internal
Win32 start-of-thread functions. Tlist, on the other hand, shows the user-supplied
Win32 start address (the user function called by the internal Win32 start
function).

The generic code for these internal start functions is shown here:

void Win32StartOfProcess( 
    LPTHREAD_START_ROUTINE lpStartAddr, 
    LPVOID lpvThreadParm){ 
 
    __try { 
 
        DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm); 
        ExitThread(dwThreadExitCode); 
 
    } __except(UnhandledExceptionFilter( 
            GetExceptionInformation())) { 
 
        ExitProcess(GetExceptionCode()); 
    } 
} 



Notice that the Win32 unhandled exception filter is called if the thread has an exception
that it doesn't handle. This function looks in the registry in the
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug key to determine
whether to run a debugger immediately or to ask the user first.

The default "debugger" on Windows 2000 is \Winnt\System32\Drwtsn32.exe (Dr. Watson),
which isn't really a debugger but rather a postmortem tool that captures the state of the
application "crash" and records it in a log file (Drwtsn32.log) and a process crash dump file
(User.dmp), both found by default in the \Documents And Settings\All
Users\Documents\DrWatson folder. To see (or modify) the configuration for Dr. Watson,
run it interactively—it displays a window with the current settings, as shown in Figure 3-7.

The log file contains basic information such as the exception code, the name of the image
that failed, a list of loaded DLLs, and a stack and instruction trace for the thread that
incurred the exception. For a detailed description of the contents of the log file, run Dr.
Watson and click the Help button shown in Figure 3-7.

Figure 3-7 Dr. Watson default settings

The crash dump file contains the private pages in the process at the time of the exception.
(The file doesn't include code pages from EXEs or DLLs.) This file can be opened by
WinDbg, the Windows debugger that comes with the Windows 2000 debugging tools
package (which is part of Windows 2000 Customer Support Diagnostics, Platform SDK, and
DDK). Because the User.dmp file is overwritten each time a process crashes, unless you
rename or copy the file after each process crash, you'll have only the latest one on your
system.

If you install one of the Microsoft Visual Studio compilers, the Debugger value of the
AeDebug registry key is changed to Msdev.exe (including the path), so that you can debug
programs that incur unhandled exceptions. Another product that changes the Debugger
value is Lotus Notes—it runs a Notes-specific postmortem tool named Qnc.exe.

If the debugger isn't running and no frame-based handlers are found, the kernel sends a
message to the exception port associated with the thread's process. This exception port, if
one exists, was registered by the environment subsystem that controls this thread. The



exception port gives the environment subsystem, which presumably is listening at the
port, the opportunity to translate the exception into an environment-specific signal or
exception. For example, when POSIX gets a message from the kernel that one of its
threads generated an exception, the POSIX subsystem sends a POSIX-style signal to the
thread that caused the exception. However, if the kernel progresses this far in processing
the exception and the subsystem doesn't handle the exception, the kernel executes a
default exception handler that simply terminates the process whose thread caused the
exception.

EXPERIMENT

Unhandled Exceptions

To see an example Dr. Watson log file, run the program \Tools\Accvio.exe from
this book's companion CD. This program generates a memory access violation by
attempting to write to address 0, which is always an invalid address in Win32
processes. (See Table 7-6 in Chapter 7.)

1. Run the Registry Editor, and locate HKLM\SOFTWARE\ Microsoft\Windows
NT\CurrentVersion\AeDebug.

2. If the Debugger value is "drwtsn32 -p %ld -e %ld -g," your system is set up
to run Dr. Watson as the default debugger. Proceed to step 4.

3. If the value of Debugger was not set up to run Drwtsn32.exe, you can still test
Dr. Watson by temporarily installing it and then restoring your previous
debugger settings:

Save the current value somewhere (for example, in a Notepad file or in
the current paste buffer).

Select Run from the taskbar Start menu, and then enter drwtsn32 -i. (This
initializes the Debugger field to run Dr. Watson.)

4. Run the test program \Tools\Accvio.exe.

5. The Program Error message box should come up—when the log file and crash
dump have been created, the button will change from Cancel to OK. (Note:
This error message occurs by default only on Windows 2000 Professional
installations of Dr. Watson—Windows 2000 Server by default will not show a
message box, but the dump files will still be created. You also might see a
different error message if Dr. Watson is not your default debugger.)

6. Click OK to dismiss the message box.

7. Run Drwtsn32.exe. (Select Run from the Start menu, and then enter
drwtsn32.)

8. In the list of Application Errors, click on the last entry and then click the View
button—the portion of the Dr. Watson log file containing the details of the
access violation from Accvio.exe will be displayed. (For details on the log file
format, press Help in the Dr. Watson For Windows 2000 dialog box and select
Dr. Watson Log File Overview.)



9. If the original value of Debugger wasn't the default Dr. Watson settings,
restore the saved value from step 1.

As another experiment, try changing the value of Debugger to another program,
such as Notepad.exe (Notepad editor) or Sol.exe (Solitaire). Rerun Accvio.exe,
and notice that whatever program is specified in the Debugger value is run—that
is, there's no validation that the program defined in Debugger is actually a
debugger. Make sure you restore your registry settings. (As noted in step 3b, to
reset to the system default Dr. Watson settings, type drwtsn32 -i in the Run dialog
box or at a command prompt.)



System Service Dispatching

As Figure 3-1 illustrated, the kernel's trap handlers dispatch interrupts, exceptions, and
system service calls. In the preceding sections, you've seen how interrupt and exception
handling work; in this section, you'll learn about system services. A system service
dispatch is triggered as a result of executing an int 0x2e instruction (46 decimal) on x86
processors. Because executing the int instruction results in a trap, Windows 2000 fills in
entry 46 in the IDT to point to the system service dispatcher. (Refer to Table 3-1.) The trap
causes the executing thread to transition into kernel mode and enter the system service
dispatcher. A numeric argument passed in the EAX processor register indicates the system
service number being requested. The EBX register points to the list of parameters the
caller passes to the system service. The following code illustrates the generic code for a
system service request:

NtWriteFile: 
  mov  eax, 0x0E ; build 2195 system service number for NtWriteFile 
  mov  ebx, esp  ; point to parameters 
  int  0x2E      ; execute system service trap 
  ret  0x2C      ; pop parameters off stack and return to caller 

As Figure 3-8 illustrates, the kernel uses this argument to locate the system service
information in the system service dispatch table. This table is similar to the interrupt
dispatch table described earlier in the chapter except that each entry contains a pointer to
a system service rather than to an interrupt handling routine.

NOTE

System service numbers can change between service packs—Microsoft
occasionally adds or removes system services, and the system service numbers
are generated automatically as part of a kernel compile.

Figure 3-8 System service exceptions

The system service dispatcher, KiSystemService, verifies the correct minimum number of
arguments, copies the caller's arguments from the thread's user-mode stack to its kernel-
mode stack (so that the user can't change the arguments as the kernel is accessing them),
and then executes the system service. If the arguments passed to a system service point

javascript:fullSize('F03yj08x.htm')


to buffers in user space, these buffers must be probed for accessibility before kernel-mode
code can copy data to or from them.

As you'll see in Chapter 6, each thread has a pointer to its system service table. Windows
2000 has two built-in system service tables, but up to four are supported. The system
service dispatcher determines which table contains the requested service by interpreting a
2-bit field in the 32-bit system service number as a table index. The low 12 bits of the
system service number serve as the index into the table specified by the table index. The
fields are shown in Figure 3-9.

Figure 3-9 System service number to system service translation

A primary default array table, KeServiceDescriptorTable, defines the core executive system
services implemented in Ntosrknl.exe. The other table array,
KeServiceDescriptorTableShadow, includes the Win32 USER and GDI services implemented
in the kernel-mode part of the Win32 subsystem, Win32k.sys. The first time a Win32
thread calls a Win32 USER or GDI service, the address of the thread's system service table
is changed to point to a table that includes the Win32 USER and GDI services. The
KeAddSystemServiceTable function allows Win32k.sys and other device drivers to add
system service tables. If you install Internet Information Services (IIS) on Windows 2000,
its support driver (Spud.sys) upon loading defines an additional service table, leaving only
one left for definition by third parties. With the exception of the Win32k.sys service table,
a service table added with KeAddSystemServiceTable is copied into both the
KeServiceDescriptorTable array and the KeServiceDescriptorTableShadow array.

The system service dispatch instructions for Windows 2000 executive services exist in the
system library Ntdll.dll. Subsystem DLLs call functions in Ntdll to implement their
documented functions. The exception is Win32 USER and GDI functions, in which the
system service dispatch instructions are implemented directly in User32.dll and Gdi32.dll—
there is no Ntdll.dll. These two cases are shown in Figure 3-10.

javascript:fullSize('F03yj09x.htm')


Figure 3-10 System service dispatching

As shown in Figure 3-10, the Win32 WriteFile function in Kernel32.dll calls the NtWriteFile
function in Ntdll.dll, which in turn executes the appropriate instruction to cause a system
service trap, passing the system service number representing NtWriteFile. The system
service dispatcher (function KiSystemService in Ntoskrnl.exe) then calls the real
NtWriteFile to process the I/O request. For Win32 USER and GDI functions, the system
service dispatch calls functions in the loadable kernel-mode part of the Win32 subsystem,
Win32k.sys.

EXPERIMENT

Viewing System Service Activity

You can monitor system service activity by watching the System Calls/Sec
performance counter in the System object. Run the Performance tool, and in chart
view, click the Add button to add a counter to the chart; select the System object,
select the System Calls/Sec counter, and then click the Add button to add the
counter to the chart.

javascript:fullSize('F03yj10x.htm')


[Previous] [Next]



Object Manager
As mentioned in Chapter 2, Windows 2000 implements an object model to provide
consistent and secure access to the various internal services implemented in the executive.
This section describes the Windows 2000 object manager, the executive component
responsible for creating, deleting, protecting, and tracking objects. The object manager
centralizes resource control operations that otherwise would be scattered throughout the
operating system. It was designed to meet the goals listed in Chapter 2.

EXPERIMENT

Exploring the Object Manager

Throughout this section, you'll find experiments that show you how to peer into
the object manager database. These experiments use the following tools, which
you should become familiar with if you aren't already:

Object viewer There are two versions of this tool: the version from
www.sysinternals.com (on this book's companion CD as \Sysint\Winobj.exe)
and a different version in (the Platform SDK (in \Program Files\Microsoft
Platform SDK\Bin\ Winnt\Winobj.exe). The object viewer from
www.sysinternals.com displays more accurate information about objects (such
as the reference count, the number of open handles, security descriptors, and
so forth) than the object viewer in the Platform SDK does.

Open handles Two tools from www.sysinternals.com show open handles: a
GUI tool (on this book's companion CD in \Sysint\Handleex.exe) and a
command-line tool (on the companion CD in \Sysint\Nthandle.exe). The
Windows 2000 resource kits include another tool that shows open handles,
called Oh.exe.

The kernel debugger !handle command.

The object viewer provides a way to traverse the namespace that the object
manager maintains. (As we'll explain later, not all objects have names.) Try
running the WinObj object manager utility from the companion CD and examining
the layout, shown here:

In the Windows 2000 Resource Kit Tools Help for OH, you'll find out that if object
tracking—an internal debugging feature in the executive—isn't enabled, OH will

http://www.sysinternals.com/
http://www.sysinternals.com/
http://www.sysinternals.com/
javascript:fullSize('G03yj01x.htm')


enable it by setting a Windows 2000 global flag in the registry and then rebooting
your system. Neither Nthandle nor Handleex from the companion CD require
object tracking. (You can enable object tracking by manually setting the flag and
rebooting your system. See the section "Windows 2000 Global Flags" for more on
global flags.) Because this flag uses additional memory to track object usage
information, you should disable it with the Gflags utility after you've experimented
with OH and then reboot your system again.

The object manager was designed to meet these goals:

Provide a common, uniform mechanism for using system resources

Isolate object protection to one location in the operating system so that C2 security
compliance can be achieved

Provide a mechanism to charge processes for their use of objects so that limits can be
placed on the usage of system resources

Establish an object-naming scheme that can readily incorporate existing objects, such
as the devices, files, and directories of a file system, or other independent collections
of objects

Support the requirements of various operating system environments, such as the
ability of a process to inherit resources from a parent process (needed by Win32 and
POSIX) and the ability to create case-sensitive filenames (needed by POSIX)

Establish uniform rules for object retention (that is, keeping an

object available until all processes have finished using it)

Internally, Windows 2000 has two kinds of objects: executive objects and kernel objects.
Executive objects are objects implemented by various components of the executive (such
as the process manager, memory manager, I/O subsystem, and so on). Kernel objects are
a more primitive set of objects implemented by the Windows 2000 kernel. These objects
are not visible to user-mode code but are created and used only within the executive.
Kernel objects provide fundamental capabilities, such as synchronization, on which
executive objects are built. Thus, many executive objects contain (encapsulate) one or
more kernel objects, as shown in Figure 3-11.

Details about the structure of kernel objects and how they are used to implement
synchronization are given later in this chapter. In the remainder of this section, we'll focus
on how the object manager works and on the structure of executive objects, handles, and
handle tables. Here we'll just briefly describe how objects are involved in implementing
Windows 2000 security access checking; we'll cover this topic thoroughly in Chapter 8.



Figure 3-11 Executive objects that contain kernel objects



Executive Objects

Each Windows 2000 environment subsystem projects to its applications a different image
of the operating system. The executive objects and object services are primitives that the
environment subsystems use to construct their own versions of objects and other
resources.

Executive objects are typically created either by an environment subsystem on behalf of a
user application or by various components of the operating system as part of their normal
operation. For example, to create a file, a Win32 application calls the Win32 CreateFile
function, implemented in the Win32 subsystem DLL Kernel32.dll. After some validation and
initialization, CreateFile in turn calls the native Windows 2000 service NtCreateFile to
create an executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or
smaller than the set the executive provides. The Win32 subsystem uses executive objects
to export its own set of objects, many of which correspond directly to executive objects.
For example, the Win32 mutexes and semaphores are directly based on executive objects
(which are in turn based on corresponding kernel objects). In addition, the Win32
subsystem supplies named pipes and mailslots, resources that are based on executive file
objects. Some subsystems, such as POSIX, don't support objects as objects at all. The
POSIX subsystem uses executive objects and services as the basis for presenting POSIX-
style processes, pipes, and other resources to its applications.

Table 3-3 lists the primary objects the executive provides and briefly describes what they
represent. You can find further details on executive objects in the chapters that describe
the related executive components (or in the case of executive objects directly exported to
Win32, in the Win32 API reference documentation).

NOTE

The executive implements a total of 27 object types in Windows 2000, many of
which are for use only by the executive component that defines them and not
directly accessible by Win32 APIs. Examples of these objects include Driver,
Device, and EventPair.

Table 3-3 Executive Objects Exposed to Win32

Object Type Represents

Symbolic link A mechanism for referring to an object name indirectly.

Process The virtual address space and control information necessary for the
execution of a set of thread objects.

Thread An executable entity within a process.

Job A collection of processes manageable as a single entity through the
job.

Section A region of shared memory (called a file mapping object in Win32).

File An instance of an opened file or an I/O device.



Access token The security profile (security ID, user rights, and so on) of a process
or a thread

Event An object with a persistent state (signaled or not signaled) that can
be used for synchronization or notification.

Semaphore A counter that provides a resource gate by allowing some maximum
number of threads to access the resources protected by the
semaphore.

Mutex* A synchronization mechanism used to serialize access to a resource.

Timer A mechanism to notify a thread when a fixed period of time elapses.

IoCompletion A method for threads to enqueue and dequeue notifications of the
completion of I/O operations (called an I/O completion port in the
Win32 API).

Key A mechanism to refer to data in the registry. Although keys appear
in the object manager namespace, they are managed by the
configuration manager, in a way similar to that in which file objects
are managed by file system drivers. Zero or more key values are
associated with a key object; key values contain data about the key.

WindowStation An object that contains a clipboard, a set of global atoms, and a
group of desktop objects.

Desktop An object contained within a window station. A desktop has a logical
display surface and contains windows, menus, and hooks.

* Externally in the Win32 API, mutants are called mutexes. Internally, the kernel object
that underlies mutexes is called a mutant.



Object Structure

As shown in Figure 3-12, each object has an object header and an object body. The object
manager controls the object headers, and the owning executive components control the
object bodies of the object types they create. In addition, each object header points to the
list of processes that have the object open and to a special object called the type object
that contains information common to each instance of the object.

Figure 3-12 Structure of an object

Object Headers and Bodies

The object manager uses the data stored in an object's header to manage objects without
regard to their type. Table 3-4 briefly describes the object header attributes.

Table 3-4 Standard Object Header Attributes

Attribute Purpose

Object name Makes an object visible to other processes for sharing

Object
directory

Provides a hierarchical structure in which to store object names

Security
descriptor

Determines who can use the object and what they can do with it

Quota
charges

Lists the resource charges levied against a process when it opens a
handle to the object

Open handle
count

Counts the number of times a handle has been opened to the object

Open
handles list

Points to the list of processes that have opened handles to the object

Object type Points to a type object that contains attributes common to objects of
this type

Reference
count

Counts the number of times a kernel-mode component has referenced
the address of the object

In addition to an object header, each object has an object body whose format and contents
are unique to its object type; all objects of the same type share the same object body

javascript:fullSize('F03yj12x.htm')


format. By creating an object type and supplying services for it, an executive component
can control the manipulation of data in all object bodies of that type.

The object manager provides a small set of generic services that operate on the attributes
stored in an object's header and can be used on objects of any type (although some
generic services don't make sense for certain objects). These generic services, some of
which the Win32 subsystem makes available to Win32 applications, are listed in Table 3-5.

Table 3-5 Generic Object Services

Service Purpose

Close Closes a handle to an object

Duplicate Shares an object by duplicating a handle and giving it to
another process

Query object Gets information about an object's standard attributes

Query security Gets an object's security descriptor

Set security Changes the protection on an object

Wait for a single
object

Synchronizes a thread's execution with one object

Wait for multiple
objects

Synchronizes a thread's execution with multiple objects

Although these generic object services are supported for all object types, each object has
its own create, open, and query services. For example, the I/O system implements a
create file service for its file objects, and the process manager implements a create
process service for its process objects. Although a single create object service could have
been implemented, such a routine would have been quite complicated, because the set of
parameters required to initialize a file object, for example, differs markedly from that
required to initialize a process object. Also, the object manager would have incurred
additional processing overhead each time a thread called an object service to determine
the type of object the handle referred to and to call the appropriate version of the service.
For these reasons and others, the create, open, and query services are implemented
separately for each object type.

Type Objects

Object headers contain data that is common to all objects but that can take on different
values for each instance of an object. For example, each object has a unique name and
can have a unique security descriptor. However, objects also contain some data that
remains constant for all objects of a particular type. For example, you can select from a
set of access rights specific to a type of object when you open a handle to objects of that
type. The executive supplies terminate and suspend access (among others) for thread
objects and read, write, append, and delete access (among others) for file objects.
Another example of an object-type-specific attribute is synchronization, which is described
shortly.

To conserve memory, the object manager stores these static, object-type-specific
attributes once when creating a new object type. It uses an object of its own, a type
object, to record this data. As Figure 3-13 illustrates, if the object-tracking debug flag
(described in the Experiment "Exploring the Object Manager") is set, a type object also



links together all objects of the same type (in this case the Process type), allowing the
object manager to find and enumerate them, if necessary.

Figure 3-13 Process objects and the process type object

EXPERIMENT

Viewing the Type Objects

You can see the list of type objects declared to the object manager with the Object
Viewer utility on this book's companion CD. Just run \Sysint\Winobj.exe, and then
in the Winobj object manager open the \ObjectTypes directory, as shown here:

Type objects can't be manipulated from user mode because the object manager supplies
no services for them. However, some of the attributes they define are visible through
certain native services and through Win32 API routines. The attributes stored in the type
objects are described in Table 3-6.

Table 3-6 Type Object Attributes

Attribute Purpose

Type name The name for objects of this type("process," "event," "port, " and so
on)

Pool type Whether objects of this type should be allocated from paged or
nonpaged memory

Default quota charges Default paged and nonpaged pool values to charge to
process quotas

javascript:fullSize('F03yj13x.htm')
javascript:fullSize('G03yj02x.htm')


Access types The types of access a thread can request when opening a handle to
an object of this type ("read," "write," "terminate," "suspend," and
so on)

Generic access
rights mapping

A mapping between the four generic access rights (read, write,
execute, and all) to the type-specific access rights

Synchronization Whether a thread can wait on objects of this type

Methods One or more routines that the object manager calls automatically at
certain points in an object's lifetime

Synchronization, one of the attributes visible to Win32 applications, refers to a thread's
ability to synchronize its execution by waiting for an object to change from one state to
another. A thread can synchronize with executive job, process, thread, file, event,
semaphore, mutex, and timer objects. Other executive objects don't support
synchronization. An object's ability to support synchronization is based on whether the
object contains an embedded dispatcher object, a kernel object that is covered in the
section "Executive Synchronization" later in this chapter.

Object Methods

The last attribute in Table 3-6, methods, comprises a set of internal routines that are
similar to C++ constructors and destructors—that is, routines that are automatically called
when an object is created or destroyed. The object manager extends this idea by calling an
object method in other situations as well, such as when someone opens or closes a handle
to an object or when someone attempts to change the protection on an object. Some
object types specify methods, whereas others don't, depending on how the object type is
to be used.

When an executive component creates a new object type, it can register one or more
methods with the object manager. Thereafter, the object manager calls the methods at
well-defined points in the lifetime of objects of that type, usually when an object is
created, deleted, or modified in some way. The methods that the object manager supports
are listed in Table 3-7.

Table 3-7 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query
name

When a thread requests the name of an object, such as a file, that exists in
a secondary object domain

Parse When the object manager is searching for an object name that exists in a
secondary object domain

Security When a process reads or changes the protection of an object, such as a
file, that exists in a secondary object domain

The object manager calls the open method whenever it creates a handle to an object,
which it does when an object is created or opened. However, only one object type, the
Desktop, defines an open method. The Desktop object type requires an open method so



that Win32k can share a piece of memory with the process that serves as a desktop-
related memory pool.

An example of the use of a close method occurs in the I/O system. The I/O manager
registers a close method for the file object type, and the object manager calls the close
method each time it closes a file object handle. This close method checks whether the
process that is closing the file handle owns any outstanding locks on the file and, if so,
removes them. Checking for file locks isn't something the object manager itself could or
should do.

The object manager calls a delete method, if one is registered, before it deletes a
temporary object from memory. The memory manager, for example, registers a delete
method for the section object type that frees the physical pages being used by the section.
It also verifies that any internal data structures the memory manager has allocated for a
section are deleted before the section object is deleted. Once again, the object manager
can't do this work because it knows nothing about the internal workings of the memory
manager. Delete methods for other types of objects perform similar functions.

The parse method (and similarly, the query name method) allows the object manager to
relinquish control of finding an object to a secondary object manager if it finds an object
that exists outside the object manager namespace. When the object manager looks up an
object name, it suspends its search when it encounters an object in the path that has an
associated parse method. The object manager calls the parse method, passing to it the
remainder of the object name it is looking for. There are two namespaces in Windows 2000
in addition to the object manager's: the registry namespace, which the configuration
manager implements, and the file system namespace, which the I/O manager implements
with the aid of file system drivers. (See Chapter 5 for more information on the
configuration manager and Chapter 9 for more about the I/O manager and file system
drivers.)

For example, when a process opens a handle to the object named
\Device\Floppy0\docs\resume.doc, the object manager traverses its name tree until it
reaches the device object named Floppy0. It sees that a parse method is associated with
this object, and it calls the method, passing to it the rest of the object name it was
searching for—in this case, the string \docs\resume.doc. The parse method for device
objects is an I/O routine because the I/O manager defines the device object type and
registers a parse method for it. The I/O manager's parse routine takes the name string
and passes it to the appropriate file system, which finds the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse method. It is
called whenever a thread tries to query or change the security information protecting a
file. This information is different for files than for other objects because security
information is stored in the file itself rather than in memory. The I/O system, therefore,
must be called in order to find the security information and read or change it.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives a handle that represents
its access to the object. Referring to an object by its handle is faster than using its name
because the object manager can skip the name lookup and find the object directly.
Processes can also acquire handles to objects by inheriting handles at process creation
time (if the creator specifies the inherit handle flag on the CreateProcess call and the
handle was marked as inheritable, either at the time it was created or afterward by using



the Win32 SetHandleInformation function) or by receiving a duplicated handle from
another process. (See the Win32 DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads can use the
object. Using handles to manipulate system resources isn't a new idea. C and Pascal (and
other language) run-time libraries, for example, return handles to opened files. Handles
serve as indirect pointers to system resources; this indirection keeps application programs
from fiddling directly with system data structures.

NOTE

Executive components and device drivers can access objects directly because they
are running in kernel mode and therefore have access to the object structures in
system memory. However, they must declare their usage of the object by
incrementing either the open handle count or the reference count so that the
object won't be deallocated while it's still being used. (See the section "Object
Retention" for more details.)

Object handles provide additional benefits. First, except for what they refer to, there is no
difference between a file handle, an event handle, and a process handle. This similarity
provides a consistent interface to reference objects, regardless of their type. Second, the
object manager has the exclusive right to create handles and to locate an object that a
handle refers to. This means that the object manager can scrutinize every user-mode
action that affects an object to see whether the security profile of the caller allows the
operation requested on the object in question.

EXPERIMENT

Viewing Open Handles with Nthandle

As shown in the following example, the Nthandle tool (\Sysint\ Nthandle.exe,
which you'll find on this book's companion CD) can display the handles open by
any or all processes:

C:\>nthandle -a -p system 
 
Handle V1.2 
Copyright (C) 1997-2000 Mark Russinovich 
Systems Internals - http://www.sysinternals.com 
------------------------------------------------------------------
System pid: 8 
   4: Process 
   8: Key   \REGISTRY 
   c: Thread 
  10: Key   HKLM\SYSTEM\ControlSet003\Control\ProductOptions 
  14: Key   HKLM\SYSTEM\Setup 
  18: Key   HKLM\SYSTEM\ControlSet003\Control\IDConfigDB\CurrentDo



  1c: Key   HKLM\SYSTEM\ControlSet003\Hardware Profiles\Current 
  20: Key   HKLM\HARDWARE\DESCRIPTION\SYSTEM\MultifunctionAdapter 

The display above shows the first eight open handles in the System process. The
process name and ID are displayed first, followed by a line for each handle. The
handle value, object type, and object name are shown for each handle. Because
we specified the -a flag, handles to objects that don't have names (handle
numbers 0x4, 0xc, and 0x18) are included.

An object handle is an index into a process-specific handle table, pointed to by the
executive process (EPROCESS) block (described in Chapter 6). The first handle index is 4,
the second 8, and so on. A process's handle table contains pointers to all the objects that
the process has opened a handle to. Handle tables are implemented as a three-level
scheme, similar to the way that the x86 memory management unit implements virtual to
physical address translation. (See Chapter 7 for details about memory management in x86
systems.) When a process is created, the object manager allocates the top level of the
handle table, which contains pointers to the middle-level tables; the middle level, which
contains the first array of pointers to subhandle tables; and the lowest level, which
contains the first subhandle table. The arrays at each level consist of 256 entries, allowing
the initial handle table for a process to hold up to 255 handles. The reason that there are
only 255 handle entries instead of 256 is that the last entry in the subhandle table is
initialized with a value of -1. The -1 is an indicator to the object manager's handle
allocation routine that it has come to the last entry of a subhandle table and must move to
the next entry or allocate a new one if there are no free entries in the existing subhandle
table. The object manager treats the low 24 bits of an object handle's value as three 8-bit
fields that index into each of the three levels in the handle table. Figure 3-14 illustrates the
Windows 2000 handle table architecture.

Figure 3-14 Process handle table architecture in Windows 2000

NOTE

In Windows NT 4, a handle table consists of a fixed header and a variable size
portion. The variable size part is an array of handle table entries, each describing
one open handle. If a process opens more handles than can fit in the variable

javascript:fullSize('F03yj14x.htm')


portion, the system allocates a new, larger array and copies the old array into the
new one. The changes were made in Windows 2000 to improve handle table
performance by avoiding copy operations and minimizing scenarios where an
entire handle table must be locked.

As shown in Figure 3-15, each handle entry consists of a structure with two 32-bit
members. The first 32-bit member contains both a pointer to the object header and four
flags. Because object headers are always 32-bit aligned, the low-order 3 bits of this field
are free for use as flags. An entry's high bit is used as a lock. When the object manager
translates a handle to an object pointer, it locks the handle entry while the translation is in
progress. Because all objects are located in the system address space, the high bit of the
object pointer is set. (The addresses are guaranteed to be higher than 0x80000000 even
on systems with the /3GB boot switch.) Thus, the object manager can keep the high bit
clear when a handle table entry is unlocked and, in the process of locking the entry, set
the bit and obtain the object's correct pointer value. The object manager needs to lock a
process's entire handle table, using a handle table lock associated with each process, only
when the process creates a new handle or closes an existing handle. The second member
of a handle table entry is the granted access mask for that object. (Access masks are
described in Chapter 8.)

Figure 3-15 Structure of a handle table entry

The first flag is the inheritance designation—that is, whether processes created by this
process will get a copy of this handle in their handle tables. As already noted, handle
inheritance can be specified on handle creation or later with the SetHandleInformation
function. The second flag indicates whether the caller is allowed to close this handle. (This
flag can also be specified with the Win32 SetHandleInformation function.) The third flag
indicates whether closing the object should generate an audit message. (This flag isn't
exposed to Win32—the object manager uses it internally.)

System components and device drivers often need to open handles to objects that user-
mode applications shouldn't have access to. In Windows NT 4, such a handle had to be
created in the System process, a process reserved for system threads and kernel-mode
handles.

To reference a handle from the System process on Windows NT 4 when a kernel-mode
function is executing on a user-mode thread, and therefore running in the context of a
user-mode process where the handle table in effect is that of the user-mode process, the
function would have to somehow switch into the System process. Drivers and the
executive components accomplished this either by requesting that a system worker thread
(described in the section "System Worker Threads" later in this chapter), which executes in
the context of the System process, execute a function on the function's behalf to reference
the appropriate handle or by switching the current thread's process context to that of the
System process via the KeAttachProcess API function. Both options are tedious and can
negatively affect performance.

javascript:fullSize('F03yj15x.htm')


Microsoft introduces a special handle table called the kernel handle table in Windows 2000
(referenced internally with the name ObpKernelHandleTable). The handles in this table are
accessible only from kernel mode and in any process context. This means that a kernel-
mode function can reference the handle in any process context with no performance
impact. Handles from the kernel handle table are differentiated from those of the current
process's handle table because the high bit of the handle is set—that is, all handles from
the kernel handle table have values greater than 0x80000000.

EXPERIMENT

Viewing the Handle Table with the Kernel Debugger

The !handle command in the kernel debugger takes three arguments:

!handle <handle index> <flags> <processid> 

The handle index identifies the handle entry in the handle table. (Zero means
display all handles.) The first handle is index 4, the second 8, and so on. For
example, typing !handle 4 will show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means display only the
information in the handle entry, bit 1 means display free handles (not just used
handles), and bit 2 means display information about the object that the handle
refers to. The following command displays full details about the handle table for
process ID 0x408:

kd> !handle 0 7 408 
 
processor number 0 
Searching for Process with Cid == 408 
PROCESS 865f0790 SessionId: 0 Cid: 0408 Peb: 7ffdf000 ParentCid: 0
    DirBase: 04fd3000  ObjectTable: 856ca888  TableSize:  21. 
    Image: i386kd.exe 
 
Handle Table at e2125000 with 21 Entries in use 
0000: free handle 
0004: Object: e20da2e0  GrantedAccess: 000f001f 
Object: e20da2e0  Type: (81491b80) Section 
    ObjectHeader: e20da2c8 
        HandleCount: 1  PointerCount: 1 
 
0008: Object: 80b13330  GrantedAccess: 00100003 
Object: 80b13330  Type: (81495100) Event 
    ObjectHeader: 80b13318 
        HandleCount: 1  PointerCount: 1 

Object Security



When you open a file, you must specify whether you intend to read or to write. If you try
to write to a file that is opened for read access, you get an error. Likewise, in the
executive, when a process creates an object or opens a handle to an existing object, the
process must specify a set of desired access rights—that is, what it wants to do with the
object. It can request either a set of standard access rights (such as read, write, and
execute) that apply to all object types or specific access rights that vary depending on the
object type. For example, the process can request delete access or append access to a file
object. Similarly, it might require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the security
reference monitor, the kernel-mode portion of the security system, sending it the process's
set of desired access rights. The security reference monitor checks whether the object's
security descriptor permits the type of access the process is requesting. If it does, the
reference monitor returns a set of granted access rights that the process is allowed, and
the object manager stores them in the object handle it creates. How the security system
determines who gets access to which objects is explored in Chapter 8.

Thereafter, whenever the process's threads use the handle, the object manager can quickly
check whether the set of granted access rights stored in the handle corresponds to the
usage implied by the object service the threads have called. For example, if the caller
asked for read access to a section object but then calls a service to write to it, the service
fails.

Object Retention

Because all user-mode processes that access an object must first open a handle to it, the
object manager can easily track how many of these processes, and even which ones, are
using an object. Tracking these handles represents one part in implementing object
retention—that is, retaining temporary objects only as long as they are in use and then
deleting them.

The object manager implements object retention in two phases. The first phase is called
name retention, and it is controlled by the number of open handles to an object that exist.
Every time a process opens a handle to an object, the object manager increments the
open handle counter in the object's header. As processes finish using the object and close
their handles to it, the object manager decrements the open handle counter. When the
counter drops to 0, the object manager deletes the object's name from its global
namespace. This deletion prevents new processes from opening a handle to the object.

The second phase of object retention is to stop retaining the objects themselves (that is, to
delete them) when they are no longer in use. Because operating system code usually
accesses objects by using pointers instead of handles, the object manager must also
record how many object pointers it has dispensed to operating system processes. It
increments a reference count for an object each time it gives out a pointer to the object;
when kernel-mode components finish using the pointer, they call the object manager to
decrement the object's reference count. The system also increments the reference count
when it increments the handle count, and likewise decrements the reference count when
the handle count decrements, because a handle is also a reference to the object that must
be tracked. (For further details on object retention, see the DDK documentation on the
functions ObReferenceObjectByPointer and ObDereferenceObject.)

Figure 3-16 illustrates two event objects that are in use. Process A has the first event
open. Process B has both events open. In addition, the first event is being referenced by
some kernel-mode structure; thus, the reference count is 3. So even if processes A and B



closed their handles to the first event object, it would continue to exist because its
reference count is 1. However, when process B closes its handle to the second event
object, the object would be deallocated.

Figure 3-16 Handles and reference counts

So even after an object's open handle counter reaches 0, the object's reference count
might remain positive, indicating that the operating system is still using the object.
Ultimately, the reference count also drops to 0. When this happens, the object manager
deletes the object from memory.

Because of the way object retention works, an application can ensure that an object and
its name remain in memory simply by keeping a handle open to the object. Programmers
who write applications that contain two or more cooperating processes need not be
concerned that one process might delete an object before the other process has finished
using it. In addition, closing an application's object handles won't cause an object to be
deleted if the operating system is still using it. For example, one process might create a
second process to execute a program in the background; it then immediately closes its
handle to the process. Because the operating system needs the second process to run the
program, it maintains a reference to its process object. Only when the background
program finishes executing does the object manager decrement the second process's
reference count and then delete it.

Resource Accounting

Resource accounting, like object retention, is closely related to the use of object handles. A
positive open handle count indicates that some process is using that resource. It also
indicates that some process is being charged for the memory the object occupies. When an
object's handle count drops to 0, the process that was using the object should no longer
be charged for it.

Many operating systems use a quota system to limit processes' access to system
resources. However, the types of quotas imposed on processes are sometimes diverse and
complicated, and the code to track the quotas is spread throughout the operating system.
For example, in some operating systems, an I/O component might record and limit the
number of files a process can open, whereas a memory component might impose a limit
on the amount of memory a process's threads can allocate. A process component might
limit users to some maximum number of new processes they can create or a maximum
number of threads within a process. Each of these limits is tracked and enforced in
different parts of the operating system.

javascript:fullSize('F03yj16x.htm')


In contrast, the Windows 2000 object manager provides a central facility for resource
accounting. Each object header contains an attribute called quota charges that records
how much the object manager subtracts from a process's allotted paged and/or nonpaged
pool quota when a thread in the process opens a handle to the object.

Each process on Windows 2000 points to a quota structure that records the limits and
current values for nonpaged pool, paged pool, and page file usage. However, all the
processes in an interactive session share the same quota block (there's no documented
way to create processes with their own quota blocks), and system processes, such as
services, have no quota limits.

Although the system implements code to track quotas, it currently doesn't enforce them. A
process's paged pool and nonpaged pool quotas default to 0 (no limit). There are registry
values to override these defaults, but the limits are soft, in that the system attempts to
increase process quotas automatically when they are exceeded. If opening an object will
exceed the paged or nonpaged quota, the memory manager is called to see whether the
quotas can be increased. The memory manager makes this decision based on the amount
of memory remaining in the system pools. If it determines that the quota can't be
increased, the open request to the object fails with a "quota exceeded" error. But on most
systems, quotas continue to grow as needed.

EXPERIMENT

Viewing Process Quotas

You can view the paged pool, nonpaged pool, and page file current usage, peak
usage, and quota (limit) for a process with the Process Explode utility, Pview.exe,
available on www.reskit.com. (The Performance tool displays only the usage
information, not the quotas.) In the following example, the process selected has a
peak paged pool usage of 1062 KB, current usage of 1028 KB, and a quota of
1504 KB:

Object Names

An important consideration in creating a multitude of objects is devising a successful
system for keeping track of them. The object manager requires the following information
to help you do so:

A way to distinguish one object from another

http://www.reskit.com/
javascript:fullSize('G03yj03x.htm')


A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an
extension of what most operating systems provide—the ability to name selected resources,
files, pipes, or a block of shared memory, for example. The executive, in contrast, allows
any resource represented by an object to have a name. The second requirement, finding
and retrieving an object, is also satisfied by object names. If the object manager stores
objects by name, it can find an object by looking up its name.

Object names also satisfy a third requirement, which is to allow processes to share
objects. The executive's object namespace is a global one, visible to all processes in the
system. One process can create an object and place its name in the global namespace,
and a second process can open a handle to the object by specifying the object's name. If
an object isn't meant to be shared in this way, its creator doesn't need to give it a name.

To increase efficiency, the object manager doesn't look up an object's name each time
someone uses the object. Instead, it looks up a name under only two circumstances. The
first is when a process creates a named object: the object manager looks up the name to
verify that it doesn't already exist before storing the new name in the global namespace.
The second is when a process opens a handle to a named object: the object manager looks
up the name, finds the object, and then returns an object handle to the caller; thereafter,
the caller uses the handle to refer to the object. When looking up a name, the object
manager allows the caller to select either a case-sensitive or a case-insensitive search, a
feature that supports POSIX and other environments that use case-sensitive filenames.

Where the names of objects are stored depends on the object type. Table 38 lists the
standard object directories found on all Windows 2000 systems and what types of objects
have their names stored there. Of the directories listed, only \BaseNamedObjects and \??
are visible to user programs.

Because the base kernel objects such as mutexes, events, semaphores, waitable timers,
and sections have their names stored in a single object directory, no two of these objects
can have the same name, even if they are of a different type. This restriction emphasizes
the need to choose names carefully so that they don't collide with other names (for
example, prefix names with your company and product name).

Table 3-8 Standard Object Directories

Directory Types of Object Names Stored

\?? MS-DOS device names (\DosDevices is a symbolic link to this
directory.)

\BaseNamedObjects Mutexes, events, semaphores, waitable timers, and section
objects

\Callback Callback objects

\Device Device objects

\Driver Driver objects

\FileSystem File system driver objects and file system recognizer device
objects

\KnownDlls Section names and path for known DLLs (DLLs mapped by the
system at startup time)



\Nls Section names for mapped national language support tables

\ObjectTypes Names of types of objects

\RPC Control Port objects used by remote procedure calls (RPCs)

\Security Names of objects specific to the security subsystem

\Windows Win32 subsystem ports and window stations

Object names are global to a single computer (or to all processors on a multiprocessor
computer), but they're not visible across a network. However, the object manager's parse
method makes it possible to access named objects that exist on other computers. For
example, the I/O manager, which supplies file object services, extends the functions of the
object manager to remote files. When asked to open a remote file object, the object
manager calls a parse method, which allows the I/O manager to intercept the request and
deliver it to a network redirector, a driver that accesses files across the network. Server
code on the remote Windows system calls the object manager and the I/O manager on
that system to find the file object and return the information back across the network.

EXPERIMENT

Looking at the Base Named Objects

You can see the list of base objects that have names with the Object Viewer utility
on this book's companion CD. (Another version of this utility is also available with
the Platform SDK.) Run \Sysint\Winobj.exe, and click on \BaseNamedObjects, as
shown here:

The named objects are shown on the right. The icons indicate the object type.

Mutexes are indicated with a stop sign.

Sections (Win32 file mapping objects) are shown as memory chips.

Events are shown as exclamation points.

Semaphores are indicated with an icon that resembles a traffic signal.

Symbolic links have icons that are curved arrows.

javascript:fullSize('G03yj04x.htm')


Object directories The object directory object is the object manager's means for
supporting this hierarchical naming structure. This object is analogous to a file system
directory and contains the names of other objects, possibly even other object directories.
The object directory object maintains enough information to translate these object names
into pointers to the objects themselves. The object manager uses the pointers to construct
the object handles that it returns to user-mode callers. Both kernel-mode code (including
executive components and device drivers) and user-mode code (such as subsystems) can
create object directories in which to store objects. For example, the I/O manager creates
an object directory named \Device, which contains the names of objects representing I/O
devices.

Symbolic links In certain file systems (on NTFS and some UNIX systems, for example), a
symbolic link lets a user create a filename or a directory name that, when used, is
translated by the operating system into a different file or directory name. Using a symbolic
link is a simple method for allowing users to indirectly share a file or the contents of a
directory, creating a cross-link between different directories in the ordinarily hierarchical
directory structure.

The object manager implements an object called a symbolic link object, which performs a
similar function for object names in its object namespace. A symbolic link can occur
anywhere within an object name string. When a caller refers to a symbolic link object's
name, the object manager traverses its object namespace until it reaches the symbolic link
object. It looks inside the symbolic link and finds a string that it substitutes for the
symbolic link name. It then restarts its name lookup.

One place in which the executive uses symbolic link objects is in translating MS-DOS-style
device names into Windows 2000 internal device names. In Win32, a user refers to floppy
and hard disk drives using the names A:, B:, C:, and so on. Moreover, the user can add
pseudo drive names with the subst (substitute) command or by mapping a drive letter to a
network share. Once they are created, these drive names must be visible to all processes
on the system.

The Win32 subsystem makes drive letters protected, global data by placing them in the
object manager namespace under the \?? object directory. (Prior to Windows NT 4, this
directory was named \DosDevices; it was renamed \?? for performance reasons—that
name places it first alphabetically.) When the user or an application creates a new drive
letter, the Win32 subsystem adds another object under the \?? object directory.

Terminal Services Namespace

Windows NT was written with the assumption that only one user would log on to the
system interactively and that the system would run only one instance of any interactive
application. When you install Windows 2000 Terminal Services, these assumptions are
violated, so for Windows 2000 supporting multiple interactive users required changes to
the object manager.

A user logging on to the console has access to the global namespace, a namespace that
serves as the first instance of the namespace. Users logging on remotely at terminals are
given a view of the namespace known as a local namespace. The parts of the namespace
that are localized for each remote user include \DosDevices, \Windows, and
\BaseNamedObjects. Making separate copies of the same parts of the namespace is known
as instancing the namespace. Instancing \DosDevices makes it possible for each user to
have different drive letters and Win32 objects such as serial ports. The \Windows directory
is where Win32k.sys creates the interactive window station, \WinSta0. A Terminal Services



environment can support multiple interactive users, but each user needs an individual
version of WinSta0 to preserve the illusion that he or she is accessing the predefined
interactive window station in Windows 2000. Finally, applications and the system create
shared objects in \BaseNamedObjects, including events, mutexes, and memory sections. If
two users are running an application that creates the named object ApplicationInitialized,
each user session must have a private version of the object so that the two instances of
the application don't interfere with one another by accessing the same object.

The object manager implements a local namespace by creating the private versions of the
three directories mentioned under a directory associated with the user's session under
\Sessions\X (where X is the session identifier of the user). When a Win32 application in
remote session two creates a named event, for example, the object manager transparently
redirects the object's name from \BaseNamedObjects to \Sessions\2\BaseNamedObjects.

All object manager functions related to namespace management are aware of the
instanced directories and participate in providing the illusion that nonconsole sessions use
the same namespace as the console session. As an optimization, the process object has a
field named DeviceMap that points to a data structure shared by other processes in the
same session, which locates the \DosDevices object manager directory that belongs to the
session as well as a list of drive letters that are valid for the session. The object manager
uses the data structure when looking up objects in \DosDevices.

Under certain circumstances, applications that are Terminal-Services aware need to access
objects in the console session even if the application is running in a remote session. The
application might want to do this to synchronize with instances of itself running in other
remote sessions or with the console session. For these cases, the object manager provides
the special override "\Global" that an application can prefix to any object name to access
the global namespace. For example, an application in session two opening an object
named \Global\ApplicationInitialized is directed to
\BasedNamedObjects\ApplicationInitialized instead of
\Sessions\2\BaseNamedObjects\ApplicationInitialized.

EXPERIMENT

Viewing Namespace Instancing

You can see the object manager instance the namespace on a Windows 2000
Server, Advanced Server, or Datacenter Server system on which you install
Terminal Services. Logon to the server using the Terminal Services client, and run
the \Sysint\Winobj.exe utility from this book's companion CD.

Click on the \Sessions directory, and you'll see a subdirectory with a numeric
name for each active remote session. If you open one of these directories, you'll
see subdirectories named \DosDevices, \Windows, and \BaseNamedObjects, which
are the local namespace subdirectories of the session. The following screen shot
shows a local namespace:



javascript:fullSize('G03yj05x.htm')


[Previous] [Next]



Synchronization
The concept of mutual exclusion is a crucial one in operating systems development. It
refers to the guarantee that one, and only one, thread can access a particular resource at
a time. Mutual exclusion is necessary when a resource doesn't lend itself to shared access
or when sharing would result in an unpredictable outcome. For example, if two threads
copy a file to a printer port at the same time, their output could be interspersed. Similarly,
if one thread reads a memory location while another one writes to it, the first thread will
receive unpredictable data. In general, writable resources can't be shared without
restrictions, whereas resources that aren't subject to modification can be shared. Figure 3-
17 illustrates what happens when two threads running on different processors both write
data to a circular queue.

Figure 3-17 Incorrect sharing of memory

Because the second thread got the value of the queue tail pointer before the first thread
had finished updating it, the second thread inserted its data into the same location that the
first thread had used, overwriting data and leaving one queue location empty. Even though
this figure illustrates what could happen on a multiprocessor system, the same error could
occur on a single-processor system if the operating system were to perform a context
switch to the second thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical sections. To ensure
correct code, only one thread at a time can execute in a critical section. While one thread
is writing to a file, updating a database, or modifying a shared variable, no other thread
can be allowed to access the same resource. The pseudocode shown in Figure 3-17 is a
critical section that incorrectly accesses a shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating systems, is especially
important (and intricate) for a tightly coupled, symmetric multiprocessing (SMP) operating
system such as Windows 2000, in which the same system code runs simultaneously on
more than one processor, sharing certain data structures stored in global memory. In
Windows 2000, it is the kernel's job to provide mechanisms that system code can use to
prevent two threads from modifying the same structure at the same time. The kernel
provides mutual-exclusion primitives that it and the rest of the executive use to
synchronize their access to global data structures.

In the following sections, you'll find out how the kernel uses mutual exclusion to protect its
global data structures and what mutual-exclusion and synchronization mechanisms the
kernel provides to the executive that it, in turn, provides to user mode.

javascript:fullSize('F03yj17x.htm')


Kernel Synchronization

At various stages during its execution, the kernel must guarantee that one, and only one,
processor at a time is executing within a critical section. Kernel critical sections are the
code segments that modify a global data structure such as the kernel's dispatcher
database or its DPC queue. The operating system can't function correctly unless the kernel
can guarantee that threads access these data structures in a mutually exclusive manner.

The biggest area of concern is interrupts. For example, the kernel might be updating a
global data structure when an interrupt occurs whose interrupt-handling routine also
modifies the structure. Simple single-processor operating systems sometimes prevent such
a scenario by disabling all interrupts each time they access global data, but the Windows
2000 kernel has a more sophisticated solution. Before using a global resource, the kernel
temporarily masks those interrupts whose interrupt handlers also use the resource. It does
so by raising the processor's IRQL to the highest level used by any potential interrupt
source that accesses the global data. For example, an interrupt at DPC/dispatch level
causes the dispatcher, which uses the dispatcher database, to run. Therefore, any other
part of the kernel that uses the dispatcher database raises the IRQL to DPC/dispatch level,
masking DPC/dispatch-level interrupts before using the dispatcher database.

This strategy is fine for a single-processor system, but it's inadequate for a multiprocessor
configuration. Raising the IRQL on one processor doesn't prevent an interrupt from
occurring on another processor. The kernel also needs to guarantee mutually exclusive
access across several processors.

The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a
spinlock. A spinlock is a locking primitive associated with a global data structure, such as
the DPC queue shown in Figure 3-18.

Figure 3-18 Using a spinlock

Before entering either critical section shown in the figure, the kernel must acquire the
spinlock associated with the protected DPC queue. If the spinlock isn't free, the kernel
keeps trying to acquire the lock until it succeeds. The spinlock gets its name from the fact
that the kernel (and thus, the processor) is held in limbo, "spinning," until it gets the lock.

Spinlocks, like the data structures they protect, reside in global memory. The code to
acquire and release a spinlock is written in assembly language for speed and to exploit
whatever locking mechanism the underlying processor architecture provides. On many
architectures, spinlocks are implemented with a hardware-supported test-and-set
operation, which tests the value of a lock variable and acquires the lock in one atomic
instruction. Testing and acquiring the lock in one instruction prevents a second thread from

javascript:fullSize('F03yj18x.htm')


grabbing the lock between the time when the first thread tests the variable and the time
when it acquires the lock.

All kernel-mode spinlocks in Windows 2000 have an associated IRQL that is always at
DPC/dispatch level or higher. Thus, when a thread is trying to acquire a spinlock, all other
activity at the spinlock's IRQL or lower ceases on that processor. Because thread
dispatching happens at DPC/dispatch level, a thread that holds a spinlock is never
preempted because the IRQL masks the dispatching mechanisms. This masking allows
code executing a critical section protected by a spinlock to continue executing so that it
will release the lock quickly. The kernel uses spinlocks with great care, minimizing the
number of instructions it executes while it holds a spinlock.

NOTE

Because the IRQL is an effective synchronization mechanism on uniprocessors, the
spinlock acquisition and release functions of uniprocessor HALs don't implement
spinlocks—they simply raise and lower the IRQL.

The kernel makes spinlocks available to other parts of the executive through a set of
kernel functions, including KeAcquireSpinlock and KeReleaseSpinlock. Device drivers, for
example, require spinlocks in order to guarantee that device registers and other global
data structures are accessed by only one part of a device driver (and from only one
processor) at a time. Spinlocks are not for use by user programs—user programs should
use the objects described in the next section.

Kernel spinlocks carry with them restrictions for code that uses them. Because spinlocks
always have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a
spinlock will crash the system if it attempts to make the scheduler perform a dispatch
operation or if it causes a page fault.

Windows 2000 introduces a special type of spinlock called a queued spinlock, which is used
only by the kernel and not exported for executive components or device drivers. A queued
spinlock is a form of spinlock that scales better on multiprocessors than a standard
spinlock. A queued spinlock work like this: When a processor wants to acquire a queued
spinlock that is currently held, it places its identifier in a queue associated with the
spinlock. When the processor that's holding the spinlock releases it, it hands the lock over
to the first processor identified in the queue. In the meantime, a processor waiting for a
busy spinlock checks the status not of the spinlock itself but of a per-processor flag that
the processor ahead of it in the queue sets to indicate that the waiting processor's turn has
arrived.

The fact that queued spinlocks result in spinning on per-processor flags rather than global
spinlocks has two effects. The first is that the multiprocessor's bus isn't as heavily
trafficked by interprocessor synchronization. The second is that instead of a random
processor in a waiting group acquiring a spinlock, the queued spinlock enforces first-in,
first-out (FIFO) ordering to the lock. FIFO ordering means more consistent performance
across processors accessing the same locks.

Microsoft hasn't converted all the kernel's locks to queued spinlocks, just the half-dozen or
so locks that protect the core data structures of the kernel, such as the cache manager's



database, the scheduler's thread database, and the memory manager's physical memory
database.

EXPERIMENT

Viewing Queued Spinlocks

You can view the state of queued spinlocks by using the !qlock kernel debugger
command. This command is meaningful only on a multiprocessor system because
uniprocessor HALs don't implement spinlocks. In the following example, the
dispatcher database queued spinlock is held by processor 1, and the other queued
spinlocks are not acquired. (The dispatcher database is described in Chapter 6.)

kd> !qlocks 
Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = C
 
                       Processor Number 
    Lock Name      0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
 
KE - Dispatcher       O 
KE - Context Swap 
MM - PFN 
MM - System Space 
CC - Vacb 
CC - Master 



Executive Synchronization

Executive software outside the kernel also needs to synchronize access to global data
structures in a multiprocessor environment. For example, the memory manager has only
one page frame database, which it accesses as a global data structure, and device drivers
need to ensure that they can gain exclusive access to their devices. By calling kernel
functions, the executive can create a spinlock, acquire it, and release it.

Spinlocks only partially fill the executive's needs for synchronization mechanisms, however.
Because waiting on a spinlock literally stalls a processor, spinlocks can be used only under
the following strictly limited circumstances:

The protected resource must be accessed quickly and without complicated interactions
with other code.

The critical section code can't be paged out of memory, can't make references to
pageable data, can't call external procedures (including system services), and can't
generate interrupts or exceptions.

These restrictions are confining and can't be met under all circumstances. Furthermore,
the executive needs to perform other types of synchronization in addition to mutual
exclusion, and it must also provide synchronization mechanisms to user mode.

The kernel furnishes additional synchronization mechanisms to the executive in the form of
kernel objects, known collectively as dispatcher objects. The user-visible synchronization
objects acquire their synchronization capabilities from these kernel dispatcher objects.
Each user-visible object that supports synchronization encapsulates at least one kernel
dispatcher object. The executive's synchronization semantics are visible to Win32
programmers through the WaitForSingleObject and WaitForMultipleObjects functions,
which the Win32 subsystem implements by calling analogous system services the object
manager supplies. A thread in a Win32 application can synchronize with a Win32 process,
thread, event, semaphore, mutex, waitable timer, I/O completion port, or file object.

One other type of executive synchronization object worth noting is called executive
resources. Executive resources provide both exclusive access (like a mutex) as well as
shared read access (multiple readers sharing read-only access to a structure). However,
they're available only to kernel-mode code and thus aren't accessible from the Win32 API.
Executive resources are not dispatcher objects but rather data structures allocated directly
from nonpaged pool that have their own specialized services to initialize, lock, release,
query, and wait on them. The executive resource structure is defined in Ntddk.h, and the
executive support routines are documented in the DDK reference documentation.

The remaining subsections describe the implementation details of waiting on dispatcher
objects.

Waiting on Dispatcher Objects

A thread can synchronize with a dispatcher object by waiting on the object's handle. Doing
so causes the kernel to suspend the thread and change its dispatcher state from running
to waiting, as shown in Figure 3-19. The kernel removes the thread from the dispatcher
ready queue and no longer considers it for execution.



NOTE

Figure 3-19 is a process state transition diagram with focus on the ready, waiting,
and running states (the states related to waiting on objects). The other states are
described in Chapter 6.

Figure 3-19 Waiting on a dispatcher object

At any given moment, a synchronization object is in one of two states: either the signaled
state or the nonsignaled state. A thread can't resume its execution until the kernel
changes its dispatcher state from waiting to ready. This change occurs when the dispatcher
object whose handle the thread is waiting on also undergoes a state change, from the
nonsignaled state to the signaled state (when a thread sets an event object, for example).
To synchronize with an object, a thread calls one of the wait system services the object
manager supplies, passing a handle to the object it wants to synchronize with. The thread
can wait on one or several objects and can also specify that its wait should be canceled if it
hasn't ended within a certain amount of time. Whenever the kernel sets an object to the
signaled state, the kernel's KiWaitTest function checks to see whether any threads are
waiting on the object. If they are, the kernel releases one or more of the threads from
their waiting state so that they can continue executing.

The following example of setting an event illustrates how synchronization interacts with
thread dispatching:

1. A user-mode thread waits on an event object's handle.

2. The kernel changes the thread's scheduling state from ready to waiting and then adds
the thread to a list of threads waiting for the event.

3. Another thread sets the event.

4. The kernel marches down the list of threads waiting on the event. If a thread's
conditions for waiting are satisfied, *the kernel changes the thread's state from waiting

javascript:fullSize('F03yj19x.htm')


to ready. If it is a variable-priority thread, the kernel might also boost its execution
priority.

5. Because a new thread has become ready to execute, the dispatcher reschedules. If it
finds a running thread with a priority lower than that of the newly ready thread, it
preempts the lower-priority thread and issues a software interrupt to initiate a context
switch to the higher-priority thread.

6. If no processor can be preempted, the dispatcher places the ready thread in the
dispatcher ready queue to be scheduled later.

What Signals an Object

The signaled state is defined differently for different objects. A thread object is in the
nonsignaled state during its lifetime and is set to the signaled state by the kernel when the
thread terminates. Similarly, the kernel sets a process object to the signaled state when
the process's last thread terminates. In contrast, the timer object, like an alarm, is set to
"go off" at a certain time. When its time expires, the kernel sets the timer object to the
signaled state.

When choosing a synchronization mechanism, a program must take into account the rules
governing the behavior of different synchronization objects. Whether a thread's wait ends
when an object is set to the signaled state varies with the type of object the thread is
waiting on, as Table 3-9 illustrates.

Table 3-9 Definitions of the Signaled State

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All released

Thread Thread terminates All released

File I/O operation completes All released

Event (notification
type)

Thread sets the event All released

Event
(synchronization
type)

Thread sets the event One thread released; event
object reset

Semaphore Semaphore count drops by 1 One thread released

Timer (notification
type)

Set time arrives or time
interval expires

All released

Timer
(synchronization
type)

Set time arrives or time
interval expires

One thread released

Mutex Thread releases the mutex One thread released

File I/O completes All threads released

Queue Item is placed on queue One thread released

When an object is set to the signaled state, waiting threads are generally released from
their wait states immediately. Some of the kernel dispatcher objects and the system



events that induce their state changes are shown in Figure 3-20.

Figure 3-20 Selected kernel dispatcher objects

For example, a notification event object (called a manual reset event in the Win32 API) is
used to announce the occurrence of some event. When the event object is set to the
signaled state, all threads waiting on the event are released. The exception is any thread
that is waiting on more than one object at a time; such a thread might be required to
continue waiting until additional objects reach the signaled state.

In contrast to an event object, a mutex object has ownership associated with it. It is used
to gain mutually exclusive access to a resource, and only one thread at a time can hold the
mutex. When the mutex object becomes free, the kernel sets it to the signaled state and
then selects one waiting thread to execute. The thread selected by the kernel acquires the
mutex object, and all other threads continue waiting.

This brief discussion wasn't meant to enumerate all the reasons and applications for using
the various executive objects but rather to list their basic functionality and synchronization
behavior. For information on how to put these objects to use in Win32 programs, see the
Win32 reference documentation on synchronization objects or Jeffrey Richter's
Programming Applications for Microsoft Windows.

Data Structures

Two data structures are key to tracking who is waiting on what: dispatcher headers and
wait blocks. Both these structures are publicly defined in the DDK include file Ntddk.h. The
definitions are reproduced here for convenience:

javascript:fullSize('F03yj20x.htm')


typedef struct _DISPATCHER_HEADER { 
    UCHAR Type; 
    UCHAR Absolute; 
    UCHAR Size; 
    UCHAR Inserted; 
    LONG SignalState; 
    LIST_ENTRY WaitListHead; 
} DISPATCHER_HEADER; 
 
typedef struct _KWAIT_BLOCK { 
    LIST_ENTRY WaitListEntry; 
    struct _KTHREAD *RESTRICTED_POINTER Thread; 
    PVOID Object; 
    struct _KWAIT_BLOCK *RESTRICTED_POINTER NextWaitBlock; 
    USHORT WaitKey; 
    USHORT WaitType; 
} KWAIT_BLOCK, *PKWAIT_BLOCK, *RESTRICTED_POINTER PRKWAIT_BLOCK; 

The dispatcher header contains the object type, signaled state, and a list of the threads
waiting on that object. The wait block represents a thread waiting on an object. Each
thread that is in a wait state has a list of the wait blocks that represent the objects the
thread is waiting on. Each dispatcher object has a list of the wait blocks that represent
which threads are waiting on the object. This list is kept so that when a dispatcher object
is signaled, the kernel can quickly determine who is waiting on that object. The wait block
has a pointer to the object being waited on, a pointer to the thread waiting on the object,
and a pointer to the next wait block (if the thread is waiting on more than one object). It
also records the type of wait (any or all) as well as the position of that entry in the array of
handles passed by the thread on the WaitForMultipleObjects call (zero if the thread was
waiting on only one object).

Figure 3-21 shows the relationship of dispatcher objects to wait blocks to threads. In this
example, thread 1 is waiting on object B, and thread 2 is waiting on objects A and B. If
object A is signaled, the kernel will see that because thread 2 is also waiting on another
object, thread 2 can't be readied for execution. On the other hand, if object B is signaled,
the kernel can ready thread 1 for execution right away since it isn't waiting on any other
objects.



Figure 3-21 Wait data structures

EXPERIMENT

Looking at Wait Queues

Although many process viewer utilities indicate whether a thread is in a wait state
(and if so, what kind of wait), you can see the list of objects a thread is waiting on
only with the kernel debugger !thread command. For example, the following
excerpt from the output of a !process command shows that the thread is waiting
on an event object:

kd> !process 
 
THREAD 80618030  Cid 97.7f  Teb: 7ffde000  Win32Thread: e199cea8 
WAIT: (WrUserRequest) UserMode Non-Alertable 
            805b4ab0  SynchronizationEvent 

Although the kernel debugger doesn't have a command for formatting the
contents of a dispatcher header, we know the layout (described in the previous
section "Data Structures") so we can interpret its contents manually:

kd> dd 805b4ab0 
0x805B4AB0  00040001 00000000 8061809c 8061809c ..........a...a. 

From this, we can ascertain that no other threads are waiting on this event object
because the wait list head forward and backward pointers (the third and fourth
32-bit values) point to the same location (a single wait block). Dumping the wait
block (at address 0x8061809c) yields the following:

kd> dd 8061809c 
0x8061809C  805b4ab8 805b4ab8 80618030 805b4ab0 .J[..J[.0.a..J[. 
0x806180AC  8061809c 00010000 00000000 00000000 ..a............. 

javascript:fullSize('F03yj21x.htm')


The first two 32-bit values point to the list head of the wait blocks in the
dispatcher header. The third 32-bit value is the pointer to the thread object. The
fourth value points to the dispatcher object itself. The fifth value (0x8061809c) is
the pointer to the next wait block. From this, we can conclude that the thread is
not waiting on any other objects, since the next wait block field points to the wait
block itself.



[Previous] [Next]



System Worker Threads
During system initialization, Windows 2000 creates several threads in the System process,
called system worker threads, that exist solely to perform work on behalf of other threads.
In many cases, threads executing at DPC/dispatch level need to execute functions that can
be performed only at a lower IRQL. For example, a DPC routine, which executes in an
arbitrary thread context (DPC execution can usurp any thread in the system) at
DPC/dispatch level IRQL, might need to access paged pool or wait on a dispatcher object
used to synchronize execution with an application thread. Because a DPC routine can't
lower the IRQL, it must pass such processing to a thread that executes at an IRQL below
DPC/dispatch level.

Some device drivers and executive components create their own threads dedicated to
processing work at passive level; however, most use system worker threads instead, which
avoids the unnecessary scheduling and memory overhead associated with having
additional threads in the system. A device driver or an executive component requests a
system worker thread's services by calling the executive functions ExQueueWorkItem or
IoQueueWorkItem. These functions place a work item on a queue dispatcher object where
the threads look for work. (Queue dispatcher objects are described in more detail in the
section "I/O Completion Ports"in Chapter 9.) Work items include a pointer to a routine and
a parameter that the thread passes to the routine when it processes the work item. The
routine is implemented by the device driver or executive component that requires passive-
level execution.

For example, a DPC routine that must wait on a dispatcher object can initialize a work item
that points to the routine in the driver that waits on the dispatcher object, and perhaps to
a pointer to the object. At some stage, a system worker thread will remove the work item
from its queue and execute the driver's routine. When the driver's routine finishes, the
system worker thread checks to see whether there are more work items to process. If
there aren't any more, the system worker thread blocks until a work item is placed on the
queue. The DPC routine might or might not have finished executing when the system
worker thread processes its work item. (On a uniprocessor system, a DPC routine always
finishes executing before its work item is processed because thread scheduling doesn't
take place when the IRQL is at DPC/dispatch level).

There are three types of system worker threads:

Delayed worker threads execute at priority 12, process work items that aren't
considered time-critical, and can have their stack paged out to a paging file while they
wait for work items.

Critical worker threads execute at priority 13, process time-critical work items, and on
Windows 2000 Server installations have their stacks present in physical memory at all
times.

A single hypercritical worker thread executes at priority 15 and also keeps its stack in
memory. The process manager uses the hypercritical work item to execute the thread
"reaper" function that frees terminated threads.

The number of delayed and critical worker threads created by the executive's
ExpWorkerInitialization function, which is called early in the boot process, depends on the
amount of memory present on the system and whether the system is a server. Table 3-10
shows the default number of threads created on different system configurations. You can
specify that ExpInitializeWorker create up to 16 additional delayed and 16 additional



critical worker threads with the AdditionalDelayedWorkerThreads and
AdditionalCriticalWorkerThreads values under the registry key
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Executive.

Table 3-10 Number of System Worker Threads

Worker Thread System Memory
12-19 MB 20-64 MB > 64 MB

Delayed 3 3 3

Critical 3 Professional: 3
Server: 6

Professional: 5
Server: 10

Hypercritical 1 1 1

The executive tries to match the number of critical worker threads with changing
workloads as the system executes. Once every second, the executive function
ExpWorkerThreadBalanceManager determines whether it should create a new critical
worker thread. The critical worker threads that are created by
ExpWorkerThreadBalanceManager are called dynamic worker threads, and all the following
conditions must be satisfied before such a thread is created:

Work items exist in the critical work queue.

The number of inactive critical worker threads (ones that are either blocked waiting for
work items or that have blocked on dispatcher objects while executing a work routine)
must be less than the number of processors on the system.

There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the workload
dictates, the executive can create up to 16 dynamic worker threads.

EXPERIMENT

Listing System Worker Threads

You can use the !exqueue kernel debugger command to see a listing of system
worker threads classified by their type:

kd> !exqueue 
Dumping ExWorkerQueue: 8046A5C0 
 
**** Critical WorkQueue( current = 0 maximum = 1 ) 
THREAD 818a2d40  Cid 8.c   Teb: 00000000  Win32Thread: 00000000 WA
THREAD 818a2ac0  Cid 8.10  Teb: 00000000  Win32Thread: 00000000 WA
THREAD 818a2840  Cid 8.14  Teb: 00000000  Win32Thread: 00000000 WA
THREAD 818a25c0  Cid 8.18  Teb: 00000000  Win32Thread: 00000000 WA
THREAD 818a2340  Cid 8.1c  Teb: 00000000  Win32Thread: 00000000 WA
 
**** Delayed WorkQueue( current = 0 maximum = 1 ) 



THREAD 818a20c0  Cid 8.20  Teb: 00000000  Win32Thread: 00000000 WA
THREAD 818a1020  Cid 8.24  Teb: 00000000  Win32Thread: 00000000 WA
THREAD 818a1da0  Cid 8.28  Teb: 00000000  Win32Thread: 00000000 WA
 
**** HyperCritical WorkQueue( current = 0 maximum = 1 ) 
THREAD 818a1b20  Cid 8.2c  Teb: 00000000  Win32Thread: 00000000 WA



[Previous] [Next]



Windows 2000 Global Flags
Windows 2000 has a set of flags stored in a systemwide global variable named
NtGlobalFlag that enable various internal debugging, tracing, and validation support
in the operating system. The system variable NtGlobalFlag is initialized from the
registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager in the value
GlobalFlag at system boot time. By default, this registry value is 0, so it's likely that
on your systems, you're not using any global flags. In addition, each image has a set
of global flags that also turn on internal tracing and validation code (though the bit
layout of these flags is entirely different than the systemwide global flags). These
flags aren't documented or supported for customer use, but they can be useful tools
for exploring the internal operation of Windows 2000.

Fortunately, the Platform SDK and the debugging tools contain a utility named
Gflags.exe that allows you to view and change the system global flags (either in the
registry or in the running system) as well as image global flags. Gflags has both a
command-line and a GUI interface. To see the command-line flags, type gflags /?. If
you run the utility without any switches, the dialog box shown in Figure 3-22 is
displayed.

Figure 3-22 Setting system debugging options with Gflags

You can toggle between the settings in the registry (by clicking System Registry) and
the current value of the variable in system memory (by clicking Kernel Mode). You
must press the Apply button to make the changes. (You'll exit if you press the OK
button.) Although you can change flag settings on a running system, most flags
require a reboot to take effect, and there's no documentation on which do and which
don't require rebooting. So when in doubt, reboot after changing a global flag.

The Image File Options choice requires that you fill in the filename of a valid
executable image. This option is used to change a set of global flags that apply to an

javascript:fullSize('F03yj22x.htm')


individual image (rather than to the whole system). In Figure 3-23, notice that the
flags are different than the operating system ones shown in Figure 3-22.

Figure 3-23 Setting image global flags with Gflags

EXPERIMENT

Enabling Image Loader Tracing and Viewing NtGlobalFlag

To see an example of the detailed tracing information you can obtain by
setting global flags, try running Gflags on a system booted with the kernel
debugger that is connected to a host system running Kd or Windbg, or that
is running LiveKd.

As an example, try enabling the Show Loader Snaps flag. To do this, select
Kernel Mode, click the Show Loader Snaps check box, and click the Apply
button. Then run an image on this machine, and in the kernel debugger
you'll see volumes of output like the following:

LDR: PID: 0xb8 started - 'notepad' 
LDR: NEW PROCESS 
     Image Path: C:\WINNT\system32\notepad.exe (notepad.exe) 
     Current Directory: C:\ddk\bin 
     Search Path: C:\WINNT\System32;C:\WINNT\system;C:\WINNT 
LDR: notepad.exe bound to comdlg32.dll 
LDR: ntdll.dll used by comdlg32.dll 
LDR: Snapping imports for comdlg32.dll from ntdll.dll 
     
LDR: KERNEL32.dll loaded. - Calling init routine at 77f01000 

javascript:fullSize('F03yj23x.htm')


 
LDR: RPCRT4.dll loaded. - Calling init routine at 77e1b6d5 
LDR: ADVAPI32.dll loaded. - Calling init routine at 77dc1000 
LDR: USER32.dll loaded. - Calling init routine at 77e78037 

You can use the !gflags and !gflag kernel debugger commands to view the
state of the NtGlobalFlag kernel variable. The !gflags command lists all the
flags, indicating which ones are enabled, whereas !gflag reports only the
flags that are enabled.

kd> !gflags 
 
NT!NtGlobalFlag 0x4400 
 
  STOP_ON_EXCEPTION               SHOW_LDR_SNAPS 
  DEBUG_INITIAL_COMMAND           STOP_ON_HUNG_GUI 
  HEAP_ENABLE_TAIL_CHECK          HEAP_ENABLE_FREE_CHECK 
  HEAP_VALIDATE_PARAMETERS        HEAP_VALIDATE_ALL 
 *POOL_ENABLE_TAGGING             HEAP_ENABLE_TAGGING 
  USER_STACK_TRACE_DB             KERNEL_STACK_TRACE_DB 
 *MAINTAIN_OBJECT_TYPELIST        HEAP_ENABLE_TAG_BY_DLL 
  ENABLE_CSRDEBUG                 ENABLE_KDEBUG_SYMBOL_LOAD 
  DISABLE_PAGE_KERNEL_STACKS      HEAP_DISABLE_COALESCING 
  ENABLE_CLOSE_EXCEPTIONS         ENABLE_EXCEPTION_LOGGING 
  ENABLE_HANDLE_TYPE_TAGGING      HEAP_PAGE_ALLOCS 
  DEBUG_INITIAL_COMMAND_EX        DISABLE_DBGPRINT 
 
kd> !gflag 
NtGlobalFlag at 8046a164 
Current NtGlobalFlag contents: 0x00004400 
    ptg - Enable pool tagging 
    otl - Maintain a list of objects for each type 



[Previous] [Next]



Local Procedure Calls (LPCs)
A local procedure call (LPC) is an interprocess communication facility for high-
speed message passing. It is not directly available through the Win32 API; it is an
internal mechanism available only to Windows 2000 operating system components.
Here are some examples of where LPCs are used:

Win32 applications that use remote procedure calls (RPCs), a documented API,
indirectly use LPCs when they specify local-RPC, a form of RPC used to
communicate between processes on the same system.

A few Win32 APIs result in sending messages to the Win32 subsystem process.

Winlogon uses LPCs to communicate with the local security authentication
server process, Lsass.

The security reference monitor (an executive component explained in Chapter
8) uses LPCs to communicate with the Lsass process.

EXPERIMENT

Viewing LPC Port Objects

You can see named LPC port objects with the Object Viewer utility included
on this book's companion CD. Run \Sysint\Winobj.exe, and select the root
directory. A plug icon identifies the port objects, as shown here:

To see the LPC port objects used by RPC, select the \RPC Control directory,
as shown here:

javascript:fullSize('G03yj06x.htm')


You can also view LPC port objects by using the !lpc kernel debugger
command. The command accepts parameters that direct it to show LPC
ports, LPC messages, and threads that are waiting or sending LPC
messages. To view the Lsass authentication port (the port that Winlogon
sends logon requests to), first obtain a list of the ports on the system:

kd> !lpc 
Usage: 
    !lpc                     - Display this help 
    !lpc message [MessageId] - Display the message with a 
                               given ID and all related 
                               information 
                               If MessageId is not  
                               specified, dump all messages 
    !lpc port [PortAddress]  - Display the port information 
    !lpc scan PortAddress    - Search this port and any  
                               connected port 
    !lpc thread [ThreadAddr] - Search the thread in rundown 
                               port queues and display the 
                               port info 
                               If ThreadAddr is missing, 
                               display all threads marked 
                               as doing some lpc operations 
 
kd> !lpc port 
Scanning 206 objects 
       1  Port: 0xe1360320 Connection: 0xe1360320 
          Communication: 0x00000000 'SeRmCommandPort' 
       1  Port: 0xe136bc20 Connection: 0xe136bc20 
          Communication: 0x00000000 'SmApiPort' 
       1  Port: 0xe133ba80 Connection: 0xe133ba80 
          Communication: 0x00000000 'DbgSsApiPort' 
       1  Port: 0xe13606e0 Connection: 0xe13606e0 
          Communication: 0x00000000 'DbgUiApiPort' 

javascript:fullSize('G03yj07x.htm')


        
       1  Port: 0xe205f040 Connection: 0xe205f040 
          Communication: 0x00000000 'LsaAuthenticationPort' 
       

Locate the port named LsaAuthenticationPort in the output and then
examine it by passing its address to the !lpc command:

kd> !lpc port 0xe205f040 
 
Server connection port e205f040 Name: LsaAuthenticationPort 
    Handles: 1   References: 37 
    Server process  : ff7d56c0 (lsass.exe) 
    Queue semaphore : ff7bfcc8 
    Semaphore state 0 (0x0) 
    The message queue is empty 
    The LpcDataInfoChainHead queue is empty 

Typically, LPCs are used between a server process and one or more client processes
of that server. An LPC connection can be established between two user-mode
processes or between a kernel-mode component and a user-mode process. For
example, as noted in Chapter 2, Win32 processes send occasional messages to the
Win32 subsystem by using LPCs. Also, some system processes use LPCs to
communicate, such as Winlogon and Lsass. An example of a kernel-mode
component using an LPC to talk to a user process is the communication between
the security reference monitor and the Lsass process.

LPCs are designed to allow three methods of exchanging messages:

A message that is shorter than 256 bytes can be sent by calling the LPC with a
buffer containing the message. This message is then copied from the address
space of the sending process into system address space, and from there to the
address space of the receiving process.

If a client and a server want to exchange more than 256 bytes of data, they
can choose to use a shared section to which both are mapped. The sender
places message data in the shared section and then sends a small message to
the receiver with pointers to where the data is to be found in the shared
section.

When a server wants to read or write larger amounts of data than will fit in a
shared section, data can be directly read from or written to a client's address
space. The LPC component supplies two functions that a server can use to
accomplish this. A message sent by the first function is used to synchronize the
message passing.



An LPC exports a single executive object called the port object to maintain the
state needed for communication. Although an LPC uses a single object type, it has
several kinds of ports:

Server connection port A named port that is a server connection request
point. Clients can connect to the server by connecting to this port.

Server communication port An unnamed port a server uses to communicate
with a particular client. The server has one such port per active client.

Client communication port An unnamed port a particular client thread uses
to communicate with a particular server.

Unnamed communication port An unnamed port created for use by two
threads in the same process.

LPCs are typically used as follows: A server creates a named server connection port
object. A client makes a connect request to this port. If the request is granted, two
new unnamed ports, a client communication port and a server communication port,
are created. The client gets a handle to the client communication port, and the
server gets a handle to the server communication port. The client and the server
will then use these new ports for their communication.

A completed connection between a client and a server is shown in Figure 3-24.

Figure 3-24 Use of LPC ports

javascript:fullSize('F03yj24x.htm')


[Previous] [Next]



Conclusion
In this chapter, we've examined the key base system
mechanisms on which the Windows 2000 executive is built.
The next chapter details the steps involved in booting
Windows 2000 and explains why Windows 2000 sometimes
crashes and what you can do about it.



[Previous] [Next]

Chapter 4



Startup and Shutdown
In this chapter, we'll describe the steps required to boot
Microsoft Windows 2000 and the options that can affect
system startup. We'll then explain what occurs on an
orderly system shutdown. Finally, we'll discuss the reasons
that Windows 2000 might crash and what you can do when
you're dealing with a system crash. Understanding the
details of the boot process will help you diagnose problems
that can arise during a boot.



[Previous] [Next]



Boot Process
In describing the Windows 2000 boot process, we'll start with the installation of
Windows 2000 and proceed through the execution of Ntldr and Ntdetect. Device drivers
are a crucial part of the boot process, so we'll explain the way that they control the
point in the boot process at which they load and initialize. Then we'll describe how the
executive subsystems initialize and how the kernel launches the user-mode portion of
Windows 2000 by starting the Session Manager process (Smss.exe), the Win32
subsystem, and the logon process (Winlogon). Along the way, we'll highlight the points
at which various text appears on the screen to help you correlate the internal process
with what you see when you watch Windows 2000 boot. Table 4-1 presents a summary
of boot-process components with their execution modes and responsibilities.

Table 4-1 Boot Process Components

Component Processor
Execution Responsibilities

Master boot
record
(MBR) code

16-bit real mode Reads and loads partition boot sectors

Boot sector 16-bit real mode Reads the root directory to load Ntldr

Ntldr 16-bit real mode
and 32-bit
protected
mode;turns on
paging

Reads Boot.ini, presents boot menu, and loads
Ntoskrnl.exe, Bootvid.dll, Hal.dll, and boot-
start device drivers

Ntoskrnl.exe 32-bit protected
mode with paging

Initializes executive subsystems and boot and
system-start device drivers, prepares the
system for running native applications, and
runs Smss.exe

Smss 32-bit native
application

Loads Win32 subsystem, including Win32k.sys
and Csrss.exe, and starts Winlogon process

Winlogon 32-bit native
application

Starts the service control manager (SCM), the
Local Security Subsystem (Lsass), and
presents interactive logon dialog box

Service
control
manager
(SCM)

32-bit native
application

Loads and initializes auto-start device drivers
and Win32 services



Preboot

The Windows 2000 boot process doesn't begin when you power on your computer or
press the reset button. It begins when you install Windows 2000 on your computer. At
some point during the execution of the Windows 2000 Setup program, the system's
primary hard disk is prepared with code that takes part in the boot process. Before we
get into what this code does, let's look at how and where Windows 2000 places the
code on a disk. Since the early days of MSDOS, a standard has existed on x86 systems
for the way physical hard disks are divided into volumes. Microsoft operating systems
split hard disks into discrete areas known as partitions and use file systems (such as
FAT and NTFS) to format each partition into a volume. A hard disk can contain up to
four primary partitions. Because this apportioning scheme would limit a disk to four
volumes, a special partition type, called an extended partition, further allocates up to
four additional partitions within each primary partition. Extended partitions can contain
extended partitions, which can contain extended partitions, and so on, making the
number of volumes an operating system can place on a disk effectively infinite. Figure
4-1 shows an example of a hard disk layout. (You can learn more about Windows 2000
partitioning in Chapter 10, which covers storage management.)

Figure 4-1 Example hard disk layout

Physical disks are addressed in units known as sectors. A hard disk sector on an IBM-
compatible PC is typically 512 bytes. Utilities that prepare hard disks for the definition
of logical drives, including the MS-DOS Fdisk utility or the Windows 2000 Setup
program, write a sector of data called a master boot record (MBR) to the first sector on
a hard disk. The MBR includes a fixed amount of space that contains executable
instructions (called boot code) and a table (called a partition table) with four entries
that define the locations of the primary partitions on the disk. When an IBM-compatible
computer boots, the first code it executes is called the BIOS, which is encoded into the
computer's ROM. The BIOS reads the MBR into memory and transfers control to the
code in the MBR.

The MBRs written by Microsoft partitioning tools, such as the one integrated into
Windows 2000 Setup and the Disk Management MMC snap-in, go through a similar
process of reading and transferring control. First, an MBR's code scans the primary
partition table until it locates a partition containing a flag that signals the partition is
bootable. When the MBR finds at least one such flag, it reads the first sector from the

javascript:fullSize('F04yj01x.htm')


flagged partition into memory and transfers control to code within the partition. This
type of partition is called a boot partition, and the first sector of such a partition is
called a boot sector.

Operating systems generally write boot sectors to disk without a user's involvement.
For example, when Windows 2000 Setup writes the MBR to a hard disk, it also writes a
boot sector to the first bootable partition of the disk. You might have used the MS-DOS
sys command to manually write MS-DOS boot sectors to disks. Windows 2000 Setup
checks to see whether the boot sector it will overwrite with a Windows 2000 boot
sector is a valid MS-DOS boot sector. If it is, Windows 2000 Setup copies the boot
sector's contents to a file named Bootsect.dos in the root directory of the partition.

Before writing to a partition's boot sector, Windows 2000 Setup ensures that the
partition is formatted with a file system that Windows 2000 supports (FAT, FAT32, or
NTFS) by formatting the boot partition (and any other partition) with a file system type
you specify. If partitions are already formatted, you can instruct Setup to skip this
step. After Setup formats the boot partition, Setup copies the files Windows 2000 uses
to the logical disk drive, including two files that are part of the boot sequence, Ntldr
and Ntdetect.com.

Another of Setup's roles is to create a boot menu file, Boot.ini, in the root directory of
the boot partition. This file contains options for starting the version of Windows 2000
that Setup installs and any preexisting Windows 2000 installations. If Bootsect.dos
contains a valid MS-DOS boot sector, one of the entries Boot.ini creates is to boot into
MS-DOS. The following output shows an example Boot.ini file from a dual-boot
computer on which MS-DOS is installed before Windows 2000:

[boot loader] 
timeout=30 
default=multi(0)disk(0)rdisk(0)partition(1)\WINNT 
[operating systems] 
multi(0)disk(0)rdisk(0)partition(1) 
\WINNT="Microsoft Windows 2000 Professional" /fastdetect 
C:\="Microsoft Windows" 



The Boot Sector and Ntldr

Setup must know the partition format before it writes a boot sector because the
contents of the boot sector vary depending on the format. For example, if the boot
partition is a FAT partition, Windows 2000 writes code to the boot sector that
understands the FAT file system. But if the partition is in NTFS format, Windows 2000
writes NTFS-capable code. The role of the boot-sector code is to give Windows 2000
information about the structure and format of a logical disk drive and to read in the
Ntldr file from the root directory of the logical disk drive. Thus, the boot-sector code
contains just enough read-only file system code to accomplish this task. After the boot-
sector code loads Ntldr into memory, it transfers control to Ntldr's entry point. If the
boot-sector code can't find Ntldr in the logical disk drive's root directory, it displays the
error message "BOOT: Couldn't find NTLDR" if the boot file system is FAT or "NTLDR is
missing" if the file system is NTFS.

Ntldr begins its existence while a system is executing in an x86 operating mode called
real mode. In real mode, no virtual-to-physical translation of memory addresses
occurs, which means that programs that use the memory addresses interpret them as
physical addresses and that only the first 1 MB of the computer's physical memory is
accessible. Simple MS-DOS programs execute in a real mode environment. However,
the first action Ntldr takes is to switch the system to protected mode. Still no virtual-
to-physical translation occurs at this point in the boot process, but a full 32 bits of
memory becomes accessible. After the system is in protected mode, Ntldr can access
all of physical memory. After creating enough page tables to make memory below 16
MB accessible with paging turned on, Ntldr enables paging. Protected mode with
paging enabled is the mode in which Windows 2000 executes in normal operation.

After Ntldr enables paging, it is fully operational. However, it still relies on functions
supplied by the boot code to access IDE-based system and boot disks as well as the
display. The boot-code functions briefly switch off paging and switch the processor back
to a mode in which services provided by the BIOS can be executed. If either the boot
or system drives are SCSI-based, Ntldr loads a file named Ntbootdd.sys and uses it
instead of the boot-code functions for disk access. Ntldr next reads the Boot.ini file
from the root directory using built-in file system code. Like the boot sector's code,
Ntldr contains read-only NTFS and FAT code; unlike the boot sector's code, however,
Ntldr's file system code can read subdirectories.

Ntldr clears the screen and if there is more than one boot-selection entry in Boot.ini, it
presents the user with the boot-selection menu. (If there is only one entry, Ntldr
bypasses the menu and proceeds to displaying the startup progress bar.) Selection
entries in Boot.ini direct Ntldr to the partition on which the Windows 2000 system
directory (typically \Winnt) of the selected installation resides. This partition might be
the same as the boot partition, or it might be another primary partition.

If the Boot.ini entry refers to an MS-DOS installation (that is, by referring to C:\ as the
system partition), Ntldr reads the contents of the Bootsect.dos file into memory,
switches back to 16-bit real mode, and calls the MBR code in Bootsect.dos. This action
causes the Bootsect.dos code to execute as if the MBR had read the code from disk.
Code in Bootsect.dos continues an MSDOSspecific boot, such as is used to boot
Microsoft Windows 98 or Microsoft Windows 95 on a computer on which these
operating systems are installed with Windows 2000.



Entries in Boot.ini can include optional arguments that Ntldr and other components
involved in the boot process interpret. Table 4-2 contains a complete list of these
options and their effects.

Table 4-2 Boot.ini Switches

Boot.ini Qualifier Meaning

/3GB Increases the size of the user process address space from
2 GB to 3 GB (and therefore reduces the size of system
space from 2 GB to 1 GB). Giving virtual-memory-
intensive applications such as database servers a larger
address space can improve their performance. For an
application to take advantage of this feature, however, two
additional conditions must be met: the system must be
running Windows 2000 Advanced Server or Datacenter
Server and the application .exe must be flagged as a 3-
GB-aware application. (See the section "Address Space
Layout" in Chapter 7 for more information.)

/BASEVIDEO Causes Windows 2000 to use the standard VGA display
driver for GUI-mode operations.

/BAUDRATE= Enables kernel-mode debugging and specifies anoverride
for the default baud rate (19200) at which aremote kernel
debugger host will connect.
Example:/BAUDRATE=115200.

/BOOTLOG Causes Windows 2000 to write a log of the boot to the file
%SystemRoot%\Ntbtlog.txt.

/BREAK Causes the hardware abstraction layer (HAL) to stop at a
breakpoint at HAL initialization. The first thing the
Windows 2000 kernel does when it initializes is to initialize
the HAL, so this breakpoint is the earliest one possible.
The HAL will wait indefinitely at the breakpoint until a
kernel-debugger connection is made. If the switch is used
without the /DEBUG switch, the system will Blue Screen
with STOP code of 0x00000078 (PHASE0_EXCEPTION).

/BURNMEMORY= Specifies an amount of memory Windows 2000 can't use
(similar to the /MAXMEM switch). The value is specified in
megabytes. Example: /BURNMEMORY=128 would indicate
that Windows 2000 can't use 128 MB of the total physical
memory on the machine.

/CLKLVL Causes the standard x86 multiprocessor HAL (Halmps.dll)
to configure itself for a level-sensitivesystem clock rather
then an edge-triggered clock. Level-sensitive and edge-
triggered are terms used to describe hardware interrupt
types.

/CRASHDEBUG Causes the kernel debugger to be loaded when the system
boots, but to remain inactive unless a crash occurs. This
allows the serial port that the kernel debugger would use



to be available for use by the system until the system
crashes (vs. /DEBUG, which causes the kernel debugger to
use the serial port for the life of the system session).

/DEBUG Enables kernel-mode debugging.

/DEBUGPORT= Enables kernel-mode debugging and specifies an override
for the default serial port (COM1) to which a remote
kernel-debugger host is connected.
Example:/DEBUGPORT=COM2.

/FASTDETECT Default boot option for Windows 2000. Replaces the
Windows NT 4 switch /NOSERIALMICE. The reason the
qualifier exists (vs. just having NTDETECT perform this
operation by default) is so that NTDETECT can support
booting Windows NT 4. Windows 2000 Plug and Play
device drivers perform detection of parallel and serial
devices, but Windows NT 4 expects NTDETECT to perform
the detection. Thus, specifying /FASTDETECT causes
NTDETECT to skip parallel and serial deviceenumeration
(actions that are not required when booting Windows
2000), whereas omitting the switch causes NTDETECT to
perform this enumeration (which isrequired for booting
Windows NT 4).

/INTAFFINITY Directs the standard x86 multiprocessor HAL(Halmps.dll)
to set interrupt affinities such that onlythe highest
numbered processor will receive interrupts. Without the
switch, the HAL defaults to its normalbehavior of letting all
processors receive interrupts.

/KERNEL= /HAL= Enable you to override Ntldr's default filename for the
kernel image (Ntoskrnl.exe) and/or the HAL (Hal.dll).
These options are useful for alternating between a
checked kernel environment and a free (retail) kernel
environment or even to manually select a different HAL. If
you want to boot a checked environment that consists
solely of the checked kernel and HAL, which is typically all
that is needed to test drivers, follow these steps on a
system installed with the free build:

1. Copy the checked versions of the kernel images from
the checked build CD to your
\Winnt\System32directory, giving the images different
names than the default. For example, if you're on a
uniprocessor, copy Ntoskrnl.exe to Ntoschk.exe and
Ntkrnlpa.exe to Ntoschkpa.exe. If you're on a
multiprocessor, copy Ntkrnlmp.exe to Ntoschk.exe and
Ntkrpamp.exe to Ntoschkpa.exe. The kernel filename
must be an 8.3-style short name.

2. Copy the checked version of the appropriate
HALneeded for your system from \I386\Driver.cab on
the checked build CD to your \Winnt\System32
directory, naming it Halchk.dll. To determine which



HAL to copy, open \Winnt\Repair\Setup.log and search
for Hal.dll; you'll find a line like
\WINNT\system32\hal.dll="halacpi.dll,""1d8a1." The
name immediately to the right of the equals sign is
the name of the HAL you should copy. The HAL
filename must be an 8.3-style short name.

3. Make a copy of the default line in the system'sBoot.ini
file.

4. In the string description of the boot selection, add
something that indicates that the new selection will be
for a checked build environment (for example,
"Windows 2000 Professional Checked").

5. Add the following to the end of the new selection's
line: /KERNEL=NTOSCHK.EXE /HAL=HALCHK.DLL

Now when the selection menu appears during the boot
process you can select the new entry to boot a checked
environment or select the entry you were using to boot
the free build.

/MAXMEM= Limits Windows 2000 to ignore (not use) physicalmemory
beyond the amount indicated. The number is interpreted
in megabytes. Example: /MAXMEM=32 would limit the
system to using the first 32 MB ofphysical memory even if
more were present.

/MAXPROCSPERCLUSTER= For the standard x86 multiprocessor HAL (Halmps.dll),
forces cluster-mode Advanced Programmable Interrupt
Controller (APIC) addressing (not supported on systems
with an 82489DX external APIC interrupt controller).

/NODEBUG Prevents kernel-mode debugging from being initialized.
Overrides the specification of any of the three debug-
related switches, /DEBUG, /DEBUGPORT, and/BAUDRATE.

/NOGUIBOOT Instructs Windows 2000 not to initialize the VGA video
driver responsible for presenting bitmapped graphics
during the boot process. The driver is used to display boot
progress information, so disabling it will disable the ability
of Windows 2000 to show this information.

/NOLOWMEM Requires that the /PAE switch be present and that the
system have more than 4 GB of physical memory. If these
conditions are met, the PAE-enabled version of
theWindows 2000 kernel, Ntkrnlpa.exe, won't use the first
4 GB of physical memory. Instead, it will load all
applications and device drivers, and allocate all memory
pools, from above that boundary. This switch is useful only
to test device driver compatibility with large memory
systems.

/NOPAE Forces Ntldr to load the non-Physical Address Extension
(PAE) version of the Windows 2000 kernel, even if the



system is detected as supporting x86 PAEs and has more
than 4 GB of physical memory.

/NOSERIALMICE=[COMx
|COMx,y,z...]

Obsolete Windows NT 4 qualifier—replaced by the absence
of the /FASTDETECT switch. Disables serial mouse
detection of the specified COM ports. Thisswitch was used
if you had a device other than a mouse attached to a
serial port during the startup sequence. Using
/NOSERIALMICE without specifying a COM port disables
serial mouse detection on all COM ports. See Microsoft
Knowledge Base article Q131976 for more information.

/NUMPROC= Specifies the number of CPUs that can be used on a
multiprocessor system. Example: /NUMPROC=2 on a four-
way system will prevent Windows 2000 from using two of
the four processors.

/ONECPU Causes Windows 2000 to use only one CPU on a
multiprocessor system.

/PAE Causes Ntldr to load Ntkrnlpa.exe, which is the version of
the x86 kernel that is able to take advantage of x86 PAEs.
The PAE version of the kernel presents 64-bit physical
addresses to device drivers, so this switch is helpful for
testing device driver support for large memory systems

/PCILOCK Stops Windows 2000 from dynamically assigning IO/IRQ
resources to PCI devices and leaves the devices
configured by the BIOS. See Microsoft Knowledge Base
article Q148501 for more information

/SAFEBOOT: Specifies options for a safe boot. You should never have to
specify this option manually, since Ntldr specifies it for you
when you use the F8 menu to perform a safe boot. (A safe
boot is a boot in which Windows 2000 only loads drivers
and services that are specified by name or group under
the Minimal or Network registry keys
underHKLM\SYSTEM\CurrentControlSet\Control\SafeBoot.)
Following the colon in the option you must specify one of
three additional switches: MINIMAL, NETWORK, or
DSREPAIR. The MINIMAL and NETWORK flags correspond
to safe boot with no network and safe boot with network
support, respectively. The DSREPAIR (Directory Services
Repair) switch causes Windows 2000 to boot into a mode
in which it restores the Active Directory directory service
from a backup medium you present. An additional option
you can append is (ALTERNATESHELL), which tells
Windows 2000 to use the program specified by the
HKLM\SYSTEM\CurrentControlSet\SafeBoot\AlternateShell
value as the graphical shell rather than to use the default,
which is Windows Explorer.

/SCSIORDINAL: Directs Windows 2000 to the SCSI ID of the controller.
(Adding a new SCSI device to a system with an on-board
SCSI controller can cause the controller's SCSI ID to



change.) See Microsoft Knowledge Base article Q103625
for more information.

/SOS Causes Windows 2000 to list the device drivers marked to
load at boot time and then to display the system version
number (including the build number), amount of physical
memory, and number of processors.

/TIMERES= Sets the resolution of the system timer on the standard
x86 multiprocessor HAL (Halmps.dll). The argument is a
number interpreted in hundreds of nanoseconds, but the
rate is set to the closest resolution the HAL supports that
isn't larger than the one requested. The HAL supports the
following resolutions:

Hundreds of nanoseconds Milliseconds (ms)

9766 0.98

19532 2.00

39063 3.90

78125 7.80

The default resolution is 7.8 ms. The system timer
resolution affects the resolution of waitable timers.
Example: /TIMERES=21000 would set the timer to a
resolution of 2.0 ms.

/USE8254 Instructs the HAL to use the 8254 timer chip as its base
timer (for systems with older BIOS's). See
MicrosoftKnowledge Base article Q169901 for more
information.

/WIN95 Directs Ntldr to boot the Consumer Windows boot sector
stored in Bootsect.w40. This switch is pertinent only on a
triple-boot system that has MS-DOS, Consumer Windows,
and Windows 2000 installed. See Microsoft Knowledge
Base article Q157992 for more information.

/WIN95DOS Directs Ntldr to boot the MS-DOS boot sector stored in
Bootsect.dos. This switch is pertinent only on a triple-boot
system that has MS-DOS, Consumer Windows, and
Windows 2000 installed. See Microsoft Knowledge Base
article Q157992 for more information.

/YEAR= Instructs the Windows 2000 core time function to ignore
the year that the computer's real-time clock reports and
instead use the one indicated. Thus, the year used in the
switch affects every piece of software on the
system,including the Windows 2000 kernel.
Example:/YEAR=2001. (This switch was created to assist
in Y2K testing.)



If the user doesn't select an entry from the selection menu within the timeout period
the Boot.ini file specifies, Ntldr chooses the default selection. Once the boot selection
has been made, Ntldr loads and executes Ntdetect.com, a 16-bit real-mode program
that uses a system's BIOS to query the computer for basic device and configuration
information. This information includes the following:

The time and date information stored in the system's CMOS (nonvolatile memory)

The types of buses (for example, ISA, PCI, EISA, Micro Channel Architecture
[MCA]) on the system and identifiers for devices attached to the buses

The number, size, and type of disk drives on the system

The types of mouse input devices connected to the system

The number and type of parallel ports configured on the system

This information is gathered into internal data structures that will be stored under the
HKLM\HARDWARE\DESCRIPTION registry key later in the boot.

Ntldr then clears the screen and displays the "Starting Windows" progress bar. This
progress bar remains empty until Ntldr begins loading boot drivers. (See step 5 in the
following list.) Below the progress bar is the message "For troubleshooting and
advanced startup options for Windows 2000, press F8." If the user presses F8, the
advanced boot menu is presented, which allows the user to select such options as
booting from last known good, safe mode, debug mode, and so on.

Next, Ntldr begins loading the files from the boot partition needed to start the kernel
initialization:

1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and Hal.dll by default).
If Ntldr fails to load either of these files, it prints the message "Windows 2000
could not start because the following file was missing or corrupt," followed by the
name of the file.

2. Reads in the SYSTEM registry hive, \Winnt\System32\Config\System, so that it can
determine which device drivers need to be loaded to accomplish the boot. (A hive
is a file that contains a registry subtree. You'll find more details about the registry
in Chapter 5.)

3. Scans the in-memory SYSTEM registry hive and locates all the boot device drivers.
Boot device drivers are drivers necessary to boot the system. These drivers are
indicated in the registry by a start value of SERVICE_BOOT_START. Every device
driver has a registry subkey under HKLM\SYSTEM\CurrentControlSet\Services. For
example, Services has a subkey named Dmio for the Logical Disk Manager driver,
which you can see in Figure 4-2. (For a detailed description of the Services registry
entries, see the section "Services" in Chapter 5.)



Figure 4-2 Logical Disk Manager driver service settings

4. Adds the file system driver that's responsible for implementing the code for the
type of partition (FAT, FAT32, or NTFS) on which the installation directory resides to
the list of boot drivers to load. Ntldr must load this driver at this time; if it didn't,
the kernel would require the drivers to load themselves, a requirement that would
introduce a circular dependency.

5. Loads the boot drivers. To indicate the progress of the loading, Ntldr updates a
progress bar displayed below the text "Starting Windows." The progress bar moves
for each driver loaded. (It assumes there are 80 boot device drivers—each
successful load moves the progress bar by 1.25 percent.) If the /SOS switch is
specified in the Boot.ini selection, Ntldr doesn't display the progress bar but
instead displays the filenames of each boot driver. Keep in mind that the drivers
are loaded but not initialized at this time—they initialize later in the boot sequence.

6. Prepares CPU registers for the execution of Ntoskrnl.exe.

This action is the end of Ntldr's role in the boot process. At this point, Ntldr calls the
main function in Ntoskrnl.exe to perform the rest of the system initialization.

javascript:fullSize('F04yj02x.htm')


Initializing the Kernel and Executive Subsystems

When Ntldr calls Ntoskrnl, it passes a data structure that contains a copy of the line in
Boot.ini that represents the selected menu option for this boot, a pointer to the
memory tables Ntldr generated to describe the physical memory on the system, a
pointer to the in-memory copy of the HARDWARE and SYSTEM registry hives, and a
pointer to the list of boot drivers Ntldr loaded.

Ntoskrnl then begins the first of its two-phase initialization process, called phase 0 and
phase 1. Most executive subsystems have an initialization function that takes a
parameter that identifies which phase is executing.

During phase 0, interrupts are disabled. The purpose of this phase is to build the
rudimentary structures required to allow the services needed in phase 1 to be invoked.
Ntoskrnl's main function calls KiSystemStartup, which in turn calls
HalInitializeProcessor and KiInitializeKernel for each CPU. KiInitializeKernel, if running
on the boot CPU, performs systemwide kernel initialization, such as initializing internal
listheads and other data structures that all CPUs share. Each instance of
KiInitializeKernel then calls the function responsible for orchestrating phase 0,
ExpInitializeExecutive.

ExpInitializeExecutive starts by calling the HAL function HalInitSystem, which gives the
HAL a chance to gain system control before Windows 2000 performs significant further
initialization. One responsibility of HalInitSystem is to prepare the system interrupt
controller of each CPU for interrupts and to configure the interval clock timer interrupt,
which is used for CPU time accounting. (See the section "Quantum Accounting"in
Chapter 6 for more on CPU time accounting.)

Only on the boot processor does ExpInitializeExecutive perform initialization other than
calling HalInitSystem. When HalInitSystem returns control, ExpInitializeExecutive on
the boot CPU proceeds by processing the/BURNMEMORY Boot.ini switch (if the switch is
present in the line from the Boot.ini file that corresponds to the menu selection the
user made when choosing which installation to boot) and discarding the amount of
memory the switch specifies.

Next, ExpInitializeExecutive calls the phase 0 initialization routines for the memory
manager, object manager, security reference monitor, process manager, and Plug and
Play manager. These components perform the following initialization steps:

1. The memory manager constructs page tables and internal data structures that are
necessary to provide basic memory services. The memory manager also builds and
reserves an area for the system file cache and creates memory areas for the paged
and nonpaged pools. The other executive subsystems, the kernel, and the device
drivers use these two memory pools for allocating their data structures.

2. During the object manager initialization, the objects that are necessary to
construct the object manager namespace are defined so that other subsystems can
insert objects into it. A handle table is created so that resource tracking can begin.

3. The security reference monitor initializes the token type object and then uses the
object to create and prepare the first token for assignment to the initial process.



4. The process manager performs most of its initialization in phase 0, defining the
process and thread object types and setting up lists to track active processes and
threads. The process manager also creates a process object for the initial process
and names it Idle. As its last step, the process manager creates the System
process and creates a system thread to execute the routine Phase1Initialization.
This thread doesn't start running right away because interrupts are still disabled.

5. The Plug and Play manager's phase 0 initialization then takes place, which involves
simply initializing an executive resource used to synchronize bus resources.

When control returns to the KiInitializeKernel function on each processor, control
proceeds to the Idle loop, which then causes the system thread created in step 4 of the
previous process description to begin executing phase 1. (Secondary processors wait to
begin their initialization until step 5 of phase 1, described in the following list.) Phase 1
consists of the following steps. (The steps at which the progress bar on the screen is
updated are included in this list.)

1. HalInitSystem is called to prepare the system to accept interrupts from devices
and to enable interrupts.

2. The boot video driver (\Winnt\System32\Bootvid.dll) is called, which in turn
displays the Windows 2000 startup screen.

3. The power manager's initialization is called.

4. The system time is initialized (by calling HalQueryRealTimeClock) and then stored
as the time the system booted.

5. On a multiprocessor system, the remaining processors are initialized and execution
starts.

6. The progress bar is set to 5 percent.

7. The object manager creates the namespace root directory, \ObjectTypes directory,
\?? directory, and the \DosDevices link to the \?? directory.

8. The executive is called to create the executive object types, including semaphore,
mutex, event, and timer.

9. The kernel initializes scheduler (dispatcher) data structures and the system service
dispatch table.

10. The security reference monitor creates the \Security directory in the object
manager namespace and initializes auditing data structures if auditing is enabled.

11. The progress bar is set to 10 percent.

12. The memory manager is called to create the section object and the memory
manager's system worker threads (explained in Chapter 7).

13. National language support (NLS) tables are mapped into system space.

14. Ntdll.dll is mapped into the system address space.



15. The cache manager initializes the file system cache data structures and creates its
worker threads.

16. The configuration manager creates the \Registry key object in the object manager
namespace and copies the initial registry data passed by Ntldr into the HARDWARE
and SYSTEM hives.

17. Global file system driver data structures are initialized.

18. The Plug and Play manager calls the Plug and Play BIOS.

19. The progress bar is set to 20 percent.

20. The local procedure call (LPC) subsystem initializes the LPC port type object.

21. If the system was booted with boot logging (/BOOTLOG), the boot log file is
initialized.

22. The progress bar is set to 25 percent.

23. The I/O manager initialization now takes place. This stage is a complex phase of
system startup that accounts for 50 percent of the "progress" reported in the
progress bar. The I/O manager considers each successful driver load to be another
2 percent of progress for the boot. (If there are more than 25 drivers to load, the
progress bar stops at 75 percent.)

The I/O manager first initializes various internal structures and creates the driver
and device object types. It then calls the Plug and Play manager, power manager,
and the HAL to begin the various stages of dynamic device enumeration and
initialization. (Because this process is complex and specific to the I/O system, we'll
save the details for Chapter 9.) Then the Windows Management Instrumentation
(WMI) subsystem is initialized, which provides WMI support for device drivers that
adhere to the Windows Driver Model(WDM). (See the section "Windows
Management Instrumentation" in Chapter 5 for more information.) Next, all the
boot-start drivers are called to perform their driver-specific initialization, and the
system-start device drivers are loaded and initialized. (Details on the processing of
the driver load control information on the registry are also covered in Chapter 9.)
Finally, the MS-DOS device names are created as symbolic links in the object
manager's namespace.

24. The progress bar is set to 75 percent.

25. If booting in safe mode, this fact is recorded in the registry.

26. Unless explicitly disabled in the registry, paging of kernel-mode code (in Ntoskrnl
and drivers) is enabled.

27. The progress bar is set to 80 percent.

28. The power manager is called to initialize various power management structures.

29. The progress bar is set to 85 percent.



30. The security reference monitor is called to create the Command Server Thread that
communicates with Lsass. (See the section "Security System Components" in
Chapter 8 for more on how security is enforced in Windows 2000.)

31. The progress bar is set to 90 percent.

32. The last step is to create the Session Manager subsystem (Smss) process
(introduced in Chapter 2). Smss is responsible for creating the user-mode
environment that provides the visible interface to Windows 2000—its initialization
steps are covered in the next section.

33. The progress bar is (finally) set to 100%.

As a final step before considering the executive and kernel initialization complete, the
phase 1 initialization thread waits on the handle to the Session Manager process with a
timeout value of 5 seconds. If the Session Manager process exits before the 5 seconds
elapses, the system crashes itself with a SESSION5_INITIALIZATION_FAILED bug
check code.

If the 5-second wait times out (that is, if 5 seconds elapse), the Session Manager is
assumed to have started successfully, and the phase 1 initialization function calls the
memory manager's zero page thread function (explained in Chapter 7). Thus, this
system thread becomes the zero page thread for the remainder of the life of the
system.



Smss, Csrss, and Winlogon

Smss is like any other user-mode process except for two differences: First, Windows
2000 considers Smss a trusted part of the operating system. Second, Smss is a native
application. Because it's a trusted operating system component, Smss can perform
actions few other processes can perform, such as creating security tokens. Because it's
a native application, Smss doesn't use Win32 APIs—it uses only core executive APIs
known collectively as the Windows 2000 native API. Smss doesn't use the Win32 APIs
because the Win32 subsystem isn't executing when Smss launches. In fact, one of
Smss's first tasks is to start the Win32 subsystem.

Smss then calls the configuration manager executive subsystem to finish initializing the
registry, fleshing the registry out to include all its keys. The configuration manager is
programmed to know where the core registry hives are stored on disk (excluding hives
corresponding to user profiles) and records the paths to the hives it loads in the
HKLM\SYSTEM\CurrentControlSet\Control\hivelist key.

The main thread of Smss performs the following initialization steps:

1. Creates an LPC port object (\SmApiPort) and two threads to wait for client requests
(such as to load a new subsystem or create a session).

2. Defines the symbolic links for MS-DOS device names (such as COM1 and LPT1).

3. If Terminal Services is installed, creates the \Sessions directory in the object
manager's namespace (for multiple sessions).

4. Runs any programs defined in HKLM\SYSTEM\CurrentControlSet\ Control\Session
Manager\BootExecute. Typically, this value contains one command to run Autochk
(the boot-time version of Chkdsk).

5. Performs delayed file rename operations as directed by
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\PendingFileRenameOperations. Pending file deletes are in
PendingFileRenameOperations2.

6. Opens known DLLs.

7. Creates additional paging files.

8. Initializes the registry. The configuration manager fleshes out the registry by
loading the registry hives for the HKLM\SAM, HKLM\SECURITY, and
HKLM\SOFTWARE keys. Although HKLM\SYSTEM\
CurrentControlSet\Control\hivelist locates the hive files on disk, the configuration
manager is coded to look for them in \Winnt\System32\Config.

9. Creates system environment variables.

10. Loads the kernel-mode part of the Win32 subsystem (Win23k.sys). Smss
determines the location of Win32k.sys and other components it loads by looking for
their paths in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. The
initialization code in Win32k.sys uses the video driver to switch the screen to the
resolution defined by the default profile, so this is the point at which the screen



changes from the VGA mode the boot video driver uses to the default resolution
chosen for the system.

11. Starts the subsystem processes, including Csrss. (As noted in Chapter 2, the
POSIX and OS/2 subsystems are defined to start on demand.)

12. Starts the logon process (Winlogon). The startup steps of Winlogon are described
shortly.

13. Creates LPC ports for debug event messages (DbgSsApiPort and DbgUiApiPort) and
threads to listen on those ports.

After performing these initialization steps, the main thread in Smss waits forever on
the process handles to Csrss and Winlogon. If either of these processes terminates
unexpectedly, Smss crashes the system, since Windows 2000 relies on their existence.

Winlogon then performs its startup steps, such as creating the initial window station
and desktop objects, loading GINA DLLs, and so on. It then creates the service control
manager (SCM) process (\Winnt\System32\Services.exe), which loads all services and
device drivers marked for auto-start, and the local security authentication subsystem
(Lsass) process (\Winnt\System32\Lsass.exe). (For more details on the startup
sequence for Winlogon and Lsass, see the section "Winlogon Initialization"in Chapter
8.)

After the SCM initializes the auto-start services and drivers and a user has successfully
logged on at the console, the SCM deems the boot successful. The registry last known
good control set (as indicated by HKLM\SYSTEM\Select\LastKnownGood) is updated to
match \CurrentControlSet. If a user chooses to boot to the last known good menu
during the first steps of a boot, or if a driver returns a severe or critical error, the
system uses the LastKnownGood value as the current control set. Doing so increases
the chances that the system will boot successfully, because at least one previous boot
using the last known good profile was successful.

That action brings us to the end of the boot process.



[Previous] [Next]



Safe Mode
Perhaps the most common reason Windows 2000 systems become
unbootable is that a device driver crashes the machine during the boot
sequence. Because software or hardware configurations can change over
time, latent bugs can surface in drivers at any time. Windows 2000 offers
a way for an administrator to attack the problem: booting in safe mode.
Safe mode is a concept Windows 2000 borrows from Consumer Windows
—a boot configuration that consists of the minimal set of device drivers
and services. By relying on only the drivers and services that are
necessary for booting, Windows 2000 avoids loading third-party and other
nonessential drivers that might crash.

When Windows 2000 boots, you press the F8 key to enter a special boot
menu that contains the safe-mode boot options. You typically choose from
three safe-mode variations: Safe Mode, Safe Mode With Networking, and
Safe Mode With Command Prompt. Standard safe mode comprises the
minimum number of device drivers and services necessary to boot
successfully. Networking-enabled safe mode adds network drivers and
services to the drivers and services that standard safe mode includes.
Finally, safe mode with command prompt is identical to standard safe
mode except that Windows 2000 runs the command prompt application
(Cmd.exe) instead of Windows Explorer as the shell when the system
enables GUI mode.

Windows 2000 includes a fourth safe mode—Directory Services Restore
mode—which is different from the standard and networking-enabled safe
modes. You use Directory Services Restore mode to boot the system into
a mode that lets you restore the Active Directory directory service of a
domain controller from backup media. All drivers and services load during
a Directory Services Restore mode boot; therefore, you wouldn't use
Directory Services Restore mode to boot unbootable systems.



Driver Loading in Safe Mode

How does Windows 2000 know which device drivers and services are part
of standard and networking-enabled safe boots? The answer lies in the
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot registry key. This key
contains the Minimal and Network subkeys. Each subkey contains more
subkeys that specify the names of device drivers or services or of groups
of drivers. For example, the vga.sys subkey identifies the VGA display
device driver that the startup configuration includes. The VGA display
driver provides basic graphics services for any PC-compatible display
adapter. The system uses this driver as the safe-mode display driver in
lieu of a driver that might take advantage of an adapter's advanced
hardware features but that might also prevent the system from booting.
Each subkey under the SafeBoot key has a default value that describes
what the subkey identifies; the vga.sys subkey's default value is Driver.

The Boot file system subkey has as its default value Driver Group. When
developers design a device driver's installation script, they can specify
that the device driver belong to a driver group. The driver groups that a
system defines are listed in the List value of the
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder key. A
developer specifies a driver as a member of a group to indicate to
Windows 2000 at what point during the boot process the driver should
start. The ServiceGroupOrder key's primary purpose is to define the order
in which driver groups load; some driver types must load either before or
after other driver types. The Group value beneath a driver's configuration
registry key associates the driver with a group. Driver and service
configuration keys reside beneath
HKLM\SYSTEM\CurrentControlSet\Services. If you look under this key,
you'll find the VgaSave key for the VGA display device driver, which you
can see in the registry is a member of the Video Save group. Any file
system drivers that Windows 2000 requires for access to the Windows
2000 system drive are in the Boot file system group. If the system drive
is NTFS, the NTFS driver is part of this group (the value of Group under
the Ntfs key is Boot file system); otherwise, the Fastfat file system driver
(which supports FAT12, FAT16, and FAT32 drives in Windows 2000) is part
of this group. Other file system drivers are part of the File system group,
which the standard and networking-enabled safe-mode configurations
also include.

When you boot into a safe-mode configuration, the boot loader (Ntldr)
passes an associated switch to the kernel (Ntoskrnl.exe) as a command-
line parameter, along with any switches you've specified in the Boot.ini



file for the installation you're booting. If you boot into any safe mode,
Ntldr passes the/SAFEBOOT: switch. Ntldr appends one or more additional
strings to/SAFEBOOT:, depending on which type of safe mode you select.
For standard safe mode, Ntldr appends MINIMAL, and for networking-
enabled safe mode, it adds NETWORK. Ntldr adds
MINIMAL(ALTERNATESHELL) for safe mode with command prompt and
DSREPAIR for Directory Services Restore mode.

The Windows 2000 kernel scans boot parameters in search of the safe-
mode switches early during the boot and sets the internal variable
InitSafeBootMode to a value that reflects the switches the kernel finds.
The kernel writes theInitSafeBootMode value to the registry value
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue
so that user-mode components, such as the SCM, can determine what
boot mode the system is in. In addition,if the system is booting safe
mode with command prompt, the kernel sets the
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\UseAlternate
Shell value to 1. The kernel records the parameters that Ntldr passes to it
in the value
HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that
HKLM\SYSTEM\CurrentControlSet\Services specifies, the I/O manager
executes the function IopLoadDriver. When the Plug and Play manager
detects a new device and wants to dynamically load the device driver for
the detected device, the Plug and Play manager executes the function
IopCallDriverAddDevice. Both these functions call the function
IopSafeBootDriverLoad before they load the driver in question.
IopSafeBootDriverLoad checks the value of InitSafeBootMode and
determines whether the driver should load. For example, if the system
boots in standard safe mode, IopSafeBootDriverLoad looks for the driver's
group, if the driver has one, under the Minimal subkey. If
IopSafeBootDriverLoad finds the driver's group listed,
IopSafeBootDriverLoad indicates to its caller that the driver can load.
Otherwise, IopSafeBootDriverLoad looks for the driver's name under the
Minimal subkey. If the driver's name is listed as a subkey, the driver can
load. If IopSafeBootDriverLoad can't find the driver group or driver name
subkeys, the driver can't load. If the system boots in networking-enabled
safe mode, IopSafeBootDriverLoad performs the searches on the Network
subkey. If the system doesn't boot in safe mode, IopSafeBootDriverLoad
lets all drivers load.

A loophole exists regarding the drivers that safe mode excludes from a
boot: Ntldr, rather than the kernel, loads any drivers with a Start value of



0 in their registry key, which specifies loading the drivers at boot time.
Because Ntldr doesn't check the SafeBoot registry key to identify which
drivers to load, Ntldr loads all boot-start drivers.



Safe-Mode-Aware User Programs

When the service control manager (SCM) user-mode component
(whichServices.exe implements) initializes during the boot process, the
SCM checks the value of
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue
to determine whether the system is performing a safe boot. If so, the
SCM mirrors the actions of IopSafeBootDriverLoad.Although the SCM
processes the services listed under
HKLM\SYSTEM\CurrentControlSet\Services, it loads only those services
that the appropriate safe-mode subkey specifies by name. You can find
more information on the SCM initialization process in the section
"Services"in Chapter 5.

Userinit (\Winnt\System32\Userinit.exe) is another user-mode component
that needs to know whether the system is booting in safe mode. Userinit,
the component that initializes a user's environment when the user logs
on, checks
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\UseAlternate
Value. If this value is set, Userinit runs the program specified as the
user's shell in the value
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Alternate Shell rather
than executing Explorer.exe. Windows 2000 writes the program name
Cmd.exe to the AlternateShell value during installation, making the Win32
command prompt the default shell for safe mode with command prompt.
Even though command prompt is the shell, you can type Explorer.exe at
the command prompt to start Windows Explorer, and you can run any
other GUI program from the command prompt as well.

How does an application determine whether the system is booting in safe
mode? By calling the Win32 GetSystemMetrics(SM_CLEANBOOT) function.
Batch scripts that need to perform certain operations when the system
boots in safe mode look for the SAFEBOOT_OPTION environment variable
because the system defines this environment variable only when booting
in safe mode.



Boot Logging in Safe Mode

When you direct the system to boot into safe mode, Ntldr hands the
string specified by the /BOOTLOG option to the Windows 2000 kernel as a
parameter, together with the parameter that requests safe mode. When
the kernel initializes, it checks for the presence of the boot log parameter,
whether or not any safe-mode parameter is present. If the kernel detects
a boot log string, the kernel records the action the kernel takes on every
device driver it considers for loading. For example, if
IopSafeBootDriverLoad tells the I/O manager not to load a driver, the I/O
manager calls IopBootLog to record that the driver wasn't loaded.
Likewise, after IopLoadDriver successfully loads a driver that is part of the
safe-mode configuration, IopLoadDriver calls IopBootLog to record that
the driver loaded. You can examine boot logs to see which device drivers
are part of a boot configuration.

Because the kernel wants to avoid modifying the disk until Chkdsk
executes, late in the boot process, IopBootLog can't simply dump
messages into a log file. Instead, IopBootLog records messages in the
HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first
user-mode component to load during a boot, the Session Manager
(\Winnt\System32\Smss.exe) executes Chkdsk to ensure the system
drives' consistency and then completes registry initialization by executing
the NtInitializeRegistry system call. The kernel takes this action as a cue
that it can safely open a log file on the disk, which it does, invoking the
function IopCopyBootLogRegistryToFile. This function creates the file
Ntbtlog.txt in the Windows 2000 system directory (\Winnt by default) and
copies the contents of the BootLog registry value to the file.
IopCopyBootLogRegistryToFile also sets a flag for IopBootLog that lets
IopBootLog know that writing directly to the log file, rather than recording
messages in the registry, is now OK. The following output shows the
partial contents of a sample boot log:

Microsoft (R) Windows 2000 (R) Version 5.0 (Build 2195) 
 2 11 2000 10:53:27.500 
Loaded driver \WINNT\System32\ntoskrnl.exe 
Loaded driver \WINNT\System32\hal.dll 
Loaded driver \WINNT\System32\BOOTVID.DLL 
Loaded driver ACPI.sys 
Loaded driver \WINNT\System32\DRIVERS\WMILIB.SYS 
Loaded driver pci.sys 
Loaded driver isapnp.sys 



Loaded driver compbatt.sys 
Loaded driver \WINNT\System32\DRIVERS\BATTC.SYS 
Loaded driver intelide.sys 
Loaded driver \WINNT\System32\DRIVERS\PCIIDEX.SYS 
Loaded driver pcmcia.sys 
Loaded driver ftdisk.sys 
Loaded driver Diskperf.sys 
Loaded driver dmload.sys 
Loaded driver dmio.sys 
 
Did not load driver Media Control Devices 
Did not load driver Communications Port 
Did not load driver Audio Codecs 



[Previous] [Next]



Recovery Console
Safe mode is a satisfactory fallback for systems that
become unbootable because a device driver crashes during
the boot sequence, but in some situations a safe-mode boot
won't help the system boot. For example, if a driver that
prevents the system from booting is a member of a Safe
group, safe-mode boots will fail. Another example of a
situation in which safe mode won't help the system boot is
when a third-party driver, such as a virus scanner driver,
that loads at the boot prevents the system from booting.
(Boot-start drivers load whether or not the system is in safe
mode.) Other situations in which safe-mode boots will fail
are when a system module or critical device driver file that
is part of a safe-mode configuration becomes corrupt or
when the system drive's master boot record (MBR) is
damaged. You can get around these problems by using the
Windows 2000 Recovery Console. The Recovery Console
allows you to boot into a limited command-line shell from
the Windows 2000 CD or boot disks to repair an installation
without having to boot the installation.

When you boot a system from the Windows 2000 CD or
boot disks, you eventually see a screen that gives you the
choice of either installing Windows 2000 or repairing an
existing installation. If you choose to repair an installation,
the system prompts you to insert the Windows 2000 CD (if
it isn't already loaded in the system's CD drive) and then to
choose among two repair options: to start the Recovery
Console or to initiate the emergency repair process. If you
press the F10 key at the Setup Welcome screen, you bypass
the menu options and take a shortcut directly to the
Recovery Console.



When you start the Recovery Console, it gives you a list of
Windows NT and Windows 2000 installations to choose from
that it compiled when it scanned the computer's hard disks.
After you make a selection, the system prompts you to
enter the Administrator account password to log on to the
installation as the administrator. If you successfully log on,
the system puts you into a command shell that is similar to
an MS-DOS environment. The command set is flexible and
lets you perform simple file operations (such as copy,
rename, and delete), enable and disable services and
drivers, and even repair MBRs and boot records. However,
the Recovery Console won't let you access directories other
than root directories, the system directory of the installation
you logged on to, or directories on removable drives such as
CDs and 3.5-inch floppy disks. This prohibition provides a
certain level of security for data that an administrator might
not usually be able to access.

The Recovery Console uses the native Windows 2000
system call interface to perform file I/O to support
commands such as Cd, Rename, and Move. The Enable and
Disable commands, which let you change the startup modes
of device drivers and services, work differently. For
example, when you tell the Recovery Console that you want
to disable a device driver, it reaches into the installation's
Services key and manipulates the Start value of the
specified driver's key, changing the value to
SERVICE_DISABLED. The next time the installation boots,
that device driver won't load. (The Recovery Console also
loads the SYSTEM hive [\Winnt\System32\Config\System]
for the installation you log on to. This hive contains the
information stored in the
HKLM\SYSTEM\CurrentControlSet\Services registry key.)

When you boot from the Windows 2000 CD or the boot
disks, by the time the system gives you the choice to install



or repair Windows 2000, the CD has booted a copy of the
Windows 2000 kernel, including all necessary supporting
device drivers (for example, NTFS or FAT drivers, SCSI
drivers, a video driver). On x86 systems, the Txtsetup.sif
file in the I386 directory of the Windows 2000 CD guides
the boot from the CD; the file contains directives that
identify which files need to load and where the files are
located on the CD. Just as when you boot Windows 2000
from a hard disk, the first user-mode program the kernel
executes is Session Manager (Smss.exe), located in the
I386\System32 folder. The Session Manager that Windows
2000 Setup uses differs from the standard-installation
Session Manager. The former component presents you with
the menus that let you install or repair Windows 2000 and
the menu that asks you what type of repair you want to
perform. If you're installing Windows 2000, Session
Manager is the component that guides you through
choosing a partition to install to and copies files to the hard
disk.

When you run the Recovery Console, Session Manager loads
and starts two device drivers that implement the Recovery
Console: Spcmdcon.sys and Setupdd.sys. Spcmdcon.sys
presents an interactive command prompt and performs
high-level command processing. Setupdd.sys is a support
driver that gives Spcmdcon.sys a set of functions that let
Spcmdcon.sys manage disk partitions, load registry hives,
and display and manage video output. Setupdd.sys also
communicates with disk drivers to manage disk partitions
and uses basic video support built into the Windows 2000
kernel to display messages on the screen.

When you choose an installation to log on to and the
Recovery Console accepts your password, the Recovery
Console must validate your logon attempt, even though the
installation's Windows 2000 security subsystem isn't up and



running. Thus, the Recovery Console alone must determine
whether your password matches the system's Administrator
account. The Recovery Console's first step in this process is
to use Setupdd.sys to load the installation's Security
Accounts Manager (SAM) registry hive, which stores
password information, from the hard disk. The SAM hive
resides in \Winnt\System32\Config\Sam. After loading the
hive, the Recovery Console locates the system key in the
installation's registry and uses the system key to decrypt
the in-memory copy of the SAM. SAM hive encryption is a
feature introduced in Windows NT 4 Service Pack 3 that
adds protection against MS-DOS-based password snoopers
who try to read passwords directly out of a hive file.

Next, the Recovery Console (Spcmdcon.sys) locates the
Administrator account password in the SAM, and in the final
authentication step, the Recovery Console uses the RC4
hash algorithm—the same algorithm that the Windows 2000
logon process uses—to hash the password entered and
compares the hash against the hashed password that the
SAM stores. If the Recovery Console finds a match, the
system considers you logged on. If the Recovery Console
doesn't find a match, the system denies you access to the
Recovery Console.



[Previous] [Next]



Shutdown
If someone is logged on and a process initiates a shutdown
by calling the Win32 ExitWindowsEx function, a message is
sent to Csrss instructing it to perform the shutdown. Csrss
in turn impersonates the caller and sends a Windows
message to a hidden window owned by Winlogon telling it
to perform a system shutdown. Winlogon then
impersonates the currently logged on user (who might or
might not have the same security context as the user who
initiated the system shutdown) and calls ExitWindowsEx
with some special internal flags. Again, this call causes a
message to be sent to Csrss requesting a system shutdown.

This time, Csrss sees that the request is from Winlogon and
loops through all the processes in the logon session of the
interactive user (again, not the user who requested a
shutdown). For each process that owns a top-level window,
Csrss sends the WM_QUERYENDSESSION message to each
thread in the process that has a Windows message loop. If
the thread returns TRUE, the system shutdown can
proceed. Csrss then sends the WM_ENDSESSION Windows
message to the thread to request it to exit. Csrss waits the
number of seconds defined in HKCU\Control
Panel\Desktop\HungAppTimeout for the thread to exit. (The
default is 5000 milliseconds.)

If the thread doesn't exit before the timeout, Csrss displays
the hung-program dialog box shown in Figure 4-3. (You can
disable this dialog box by changing the registry value
HKCU\Control Panel\Desktop\AutoEndTasks to 1). This
dialog box indicates that a program isn't shutting down in a
timely manner and gives the user a choice of either killing
the process or aborting the shutdown. (There is no timeout



on this dialog box, which means that a shutdown request
could wait forever at this point.)

Figure 4-3 Hung program dialog box

If the thread does exit before the timeout, Csrss continues
sending the WM_QUERYENDSESSION/WM_ENDSESSION
message pairs to the other threads in the process that own
windows. Once all the threads that own windows in the
process have exited, Csrss terminates the process and goes
on to the next process in the interactive session.

If Csrss finds a console application, it invokes the console
control handler by sending the CTRL_LOGOFF_EVENT event.
(Only service processes receive the
CTRL_SHUTDOWN_EVENT event on shutdown.) If the
handler returns FALSE, Csrss kills the process. If the
handler returns TRUE or doesn't respond by the number of
seconds defined by HKCU\Control
Panel\Desktop\WaitToKillAppTimeout (the default is 20000
milliseconds), Csrss displays the hung-program dialog box
shown in Figure 4-3.

Next, Winlogon calls ExitWindowsEx to have Csrss
terminate any COM processes that are part of the



interactive user's session.

At this point, all the processes in the interactive user's
session have been terminated. Winlogon calls
ExitWindowsEx again, but this time in the system process
context, which again sends a message to Csrss, which looks
at all the processes belonging to the system context and
performs and sends the
WM_QUERYENDSESSION/WM_ENDSESSION messages to
GUI threads (as before).Instead of sending
CTRL_LOGOFF_EVENT, however, it sends
CTRL_SHUTDOWN_EVENT to console applications that have
registered control handlers. Note that the SCM is a console
program that does register a control handler. When it
receives the shutdown request, it in turn sends the service
shutdown control message to all services that registered for
shutdown notification. For more details on service shutdown
(such as the shutdown timeout Csrss uses for the SCM), see
the "Services" section in Chapter 5.

Although Csrss performs the same timeouts as when it was
terminating the user processes, it doesn't display any dialog
boxes and doesn't kill any processes. (The registry values
for the system process timeouts are taken from the default
user profile.) These timeouts simply allow system processes
a chance to clean up and exit before the system shuts
down. Therefore, many system processes are in fact still
running when the system shuts down, such as Smss,
Winlogon, the SCM, and Lsass.

Once Csrss has finished its pass notifying system processes
that the system is shutting down, Winlogon finishes the
shutdown process by calling the executive subsystem
function NtShutdownSystem. This function calls
NtSetSystemPowerState to orchestrate the shutdown of
drivers and the rest of the executive subsystems (Plug and



Play manager, power manager, executive, I/O manager,
configuration manager, and memory manager).

For example, NtSetSystemPowerState calls the I/O manager
to send shutdown I/O packets to all device drivers that have
requested shutdown notification. This action gives device
drivers a chance to perform any special processing their
device might require before Windows 2000 exits. The
configuration manager flushes any modified registry data to
disk, and the memory manager writes all modified pages
containing file data back to their respective files. If the
option to clear the paging file at shutdown is enabled, the
memory manager clears the paging file at this time. The I/O
manager is called a second time to inform the file system
drivers that the system is shutting down. System shutdown
ends in the power manager. The action the power manager
takes depends on whether the user specified a shutdown, a
reboot, or a power down.



[Previous] [Next]



System Crashes
Almost every Windows NT or Windows 2000 user has heard
of, if not experienced, the infamous "blue screen of death."
This ominous term refers to the blue screen that is displayed
when Windows 2000 crashes, or stops executing, because of
a catastrophic fault or an internal condition that prevents the
system from continuing to run.

In this section, we'll cover the basic problems that cause
Windows 2000 to crash, describe the information presented
on the blue screen, and explain the various configuration
options available to create a crash dump, a record of system
memory at the time of a crash that can help you figure out
which component caused the crash. This section is not
intended to provide detailed troubleshooting information on
how to analyze a Windows 2000 system crash.



Why Does Windows 2000 Crash?

Windows 2000 crashes (stops execution and displays the
blue screen) for the following reasons:

A device driver or an operating system function running
in kernel mode incurs an unhandled exception, such as a
memory access violation (whether attempting to write to
a read-only page or attempting to read an address that
isn't currently mapped).

A call to a kernel support routine results in a reschedule,
such as waiting on an unsignaled dispatcher object,
when the interrupt request level (IRQL) is DPC/dispatch
level or higher. (See Chapter 3 for details on IRQLs.)

A page fault on memory backed by data in a paging file
or a memory mapped file occurs at an IRQL of
DPC/dispatch level or above (which would require the
memory manager to have to wait for an I/O operation to
occur—as just stated, waits can't occur at DPC/dispatch
level or higher because that would require a reschedule).

A device driver or operating system function explicitly
crashes the system (by calling the system function
KeBugCheckEx) because it detects an internal condition
that indicates either a corruption or some other situation
that indicates the system can't continue execution
without risking data corruption.

A hardware error, such as a machine check or a Non-
Maskable Interrupt (NMI), occurs.

When a kernel-mode device driver or subsystem causes an
illegal exception, Windows 2000 faces a difficult dilemma. It
has detected that a part of the operating system with the



ability to access any hardware device and any valid memory
has done something it wasn't supposed to do.

But why does that mean Windows 2000 has to crash?
Couldn't it just ignore the exception and let the device driver
or subsystem continue as if nothing had happened? The
possibility exists that the error was isolated and that the
component will somehow recover. But what's more likely is
that the detected exception resulted from deeper problems—
for example, from a general corruption of memory or from a
hardware device that's not functioning properly. Permitting
the system to continue operating would probably result in
more exceptions, and data stored on disk or other
peripherals could become corrupt—a risk that's too high to
take.



The Blue Screen

Regardless of the reason for a system crash, the function
that actually performs the crash is KeBugCheckEx
(documented in the Windows 2000 DDK). This function takes
a stop code (sometimes called a bug check code), and four
parameters that are interpreted on a per-stop code basis.
After KeBugCheckEx masks out all interrupts on all
processors of the system, it switches the display into blue-
screen mode (80-columns-by-50-lines text mode), paints a
blue background, and then displays the stop code, followed
by some text suggesting what the user can do. (It's possible
that system data structures have been so seriously
corrupted that the blue screen isn't displayed.) Figure 4-4
shows a sample blue screen.

Figure 4-4 Example blue screen

The first line lists the stop code and the four additional
parameters passed to KeBugCheckEx. The text line below
the stop code provides the text equivalent of the stop code's
numeric identifier. According to the example in Figure 4-4,
the stop code 0x0000000A is an
IRQL_NOT_LESS_OR_EQUAL crash. When a parameter
contains an address of a piece of operating system or device
driver code (as in Figure 4-4), Windows 2000 displays the
base address of the module the address falls in, the date
stamp, and the file name of the device driver. This
information alone might help you pinpoint the faulty
component.

javascript:fullSize('F04yj04x.htm')


Although there are more than a hundred unique stop codes,
most are rarely, if ever, seen on production systems.
Instead, just a few common stop codes represent the
majority of Windows 2000 system crashes. Also, the
meaning of the four additional parameters depends on the
stop code (and not all stop codes have extended parameter
information). Nevertheless, looking up the stop code and the
meaning of the parameters (if applicable) might at least
assist you in diagnosing the component that is failing (or the
hardware device that is causing the crash). You can find stop
code information in the following places:

The section "Bug Checks (Blue Screens)" in the
Debugging help file (Ddkdbg.chm), which is shipped in
three places: the Windows 2000 debugging tools
(Customer Support Diagnostics), the Platform SDK, and
the Windows 2000 DDK.

The subsection "Windows 2000 Stop Messages" in the
Troubleshooting chapter in the Windows 2000 Server
Operations Guide (part of the Windows 2000 Server
Resource Kit). This section includes details such as the
meaning of the stop code parameters for the common
stop codes.

You can also search Microsoft's online Knowledge Base
(support.microsoft.com) for the stop code and the name
of the suspect hardware or application. You might find
information about a workaround, an update, or a service
pack that fixes the problem you're having. Knowledge
Base article Q103059 lists the majority of the stop codes
and provides details on the meaning of the parameters.
(This article applies to Windows NT, but the information
holds true for Windows 2000.)

The Bugcodes.h file in the Windows 2000 DDK contains a
complete list of the 150 or so stop codes with some

http://support.microsoft.com/


additional details on the reasons for some of them.

You often begin seeing blue screens after you install a new
software product or piece of hardware. If you've just added
a driver, rebooted, and gotten a blue screen early in system
initialization, you can reset the machine, press the F8 key
when instructed, and then select Last Known Good
Configuration. Enabling last known good causes Windows
2000 to revert to a copy of the registry's device driver
registration key (HKLM\SYSTEM\CurrentControlSet\Services)
from the last successful boot (before you installed the
driver). From the perspective of last known good, a
successful boot is one in which all services and drivers have
finished loading and at least one logon has succeeded.

If you keep getting blue screens, an obvious approach is to
uninstall the components you added just before the first blue
screen appeared. If some time has passed since you added
something new or you added several things at about the
same time, you need to note the names of the device drivers
referenced in any of the parameters. If you recognize any of
the names as being related to something you just added
(such as Scsiport.sys if you put on a new SCSI drive), you've
possibly found your culprit.

Many device drivers have cryptic names, but one approach
you can take to figure out which application or hardware
device is associated with a name is to find out the name of
the service in the registry associated with a device driver by
searching for the name of the device driver under the
HKLM\SYSTEM\CurrentControlSet\Services key. This branch
of the registry is where Windows 2000 stores registration
information for every device driver in the system. If you find
a match, look for values named DisplayName
andDescription. Some drivers fill in these values to describe
the device driver's purpose. For example, you might find the



string "Virus Scanner" in the DisplayName value, which can
implicate the antivirus software you have running. The list of
drivers can be displayed in the Computer Management tool
(from the Start menu, select Programs/Administrative
Tools/Computer Management). In Computer Management,
expand System Tools, System Information, and Software
Environment, and then select Drivers.

More often than not, however, the stop code and the four
associated parameters aren't enough information to
troubleshoot a system crash. For example, you might need
to examine the kernel-mode call stack to pinpoint the driver
or system component that triggered the crash. Also, because
the default behavior on Windows 2000 systems is to
automatically reboot after a system crash, it's unlikely that
you would have time to record the information displayed on
the blue screen. That is why, by default, Windows 2000
attempts to record information about the system crash to
the disk for later analysis, which takes us to our final topic,
crash dump files.



Crash Dump Files

By default, all Windows 2000 systems are configured to
attempt to record information about the state of the system
when the system crashes. You can see these settings by
opening the System tool in Control Panel, then in the System
Properties dialog box, click the Advanced tab and then click
the Startup And Recovery button. The default settings for a
Windows 2000 Professional system are shown in Figure 4-5.

Figure 4-5 Crash dump settings

Three levels of information can be recorded on a system
crash:

Complete memory dump A complete memory dump
contains all of physical memory at the time of the crash.



This type of dump requires that a page file be at least
the size of physical memory. Because it can require an
inordinately large page file on large memory systems,
this type of dump file is the least common setting.
Windows NT 4 supported only this type of crash dump
file.

Kernel memory dump A kernel memory dump (the
default on Windows 2000 Server systems) contains only
the kernel-mode read/write pages present in physical
memory at the time of the crash. This type of dump
doesn't contain pages belonging to user processes.
Because only kernel-mode code can directly cause
Windows 2000 to crash, however, it's unlikely that user
process pages are necessary to debug a crash. There is
no way to predict the size of a kernel memory dump
because its size depends on the amount of kernel-mode
memory allocated by the operating system and drivers
present on the machine. As an example, on a test
system running Windows 2000 on a 128-MB laptop, a
kernel memory dump took up 35 MB.

Small memory dump A small memory dump (the
default on Windows 2000 Professional), which is 64 KB
in size, contains the stop code and parameters, the list
of loaded device drivers, the data structures that
describe the current process and thread (called the
EPROCESS and ETHREAD—described in Chapter 6), and
the kernel stack for the thread that caused the crash.

When Windows 2000 is configured to write crash dump
information, it writes the information to the paging file
because trying to create a new file on the disk would depend
on more of the system data structures being intact. (If there
is more than one paging file, the first or primary page file is
used.) After the system reboots, the logon process



(Winlogon.exe) creates a child process (Savedump.exe) to
copy the crash dump information out of the page file and
into a new file. Small memory dumps are by default created
in the directory \Winnt\Minidump and are given unique file
names consisting of the string "Mini" plus the date plus a
sequence number (for example, Mini031000-01.dmp).
Kernel memory and complete memory dumps are copied to
a file named \Winnt\Memory.dmp, which means that only
the latest dump file is retained on the disk.

As mentioned earlier, there's no guarantee that the crash
dump information will be recorded since the data structures
used to access the paging file might themselves be
corrupted, thus preventing the system from being able to
write anything to disk. If the system isn't able to record the
crash dump, you can try booting the crashing system with
the kernel debugger so that you can gain control from a host
debugger when the system crashes. In that way, you can
use the interactive kernel debugger to look at the kernel
stack or examine other operating system structures to try
and determine the reason for the crash. For more
information on how to set up the kernel debugger, see the
Windows 2000 Debugging help file (Ddkdbg.chm) mentioned
earlier.

Once you have a crash dump file (whether it's a small
memory dump, a kernel memory dump, or a complete
memory dump), how can you retrieve the stop code or
perform further analysis? The simplest tool to use is
Dumpchk (available in the Windows 2000 Support Tools, the
Platform SDK, the Windows 2000 DDK, and the debugging
tools). By default, Dumpchk opens a dump file and displays
the basic information about a crash, such as the operating
system version, stop code, and parameters. If you call it
with the "-e" option, it displays more details, such as the list
of loaded device drivers, the current process and thread, and



the kernel stack. (This option requires the symbol file for
Ntoskrnl.exe to match the version of Windows 2000 that
crashed. See the section "Symbols for Kernel Debugging" in
Chapter 1 for more information on symbol files).

Finally, an advanced tool called the Kernel Memory Space
Analyzer (Kanalyze.exe) might also be useful in debugging a
crash dump. This tool is part of the debugging tools
package, the Windows 2000 DDK, and the Platform SDK and
is documented in a separate Microsoft Word document called
OEM Tool Help. (You can find this file at \Program
Files\Debuggers\bin\kanalyze\userdocs.doc if you have the
Windows 2000 debugging tools installed. You can also find it
in the Platform SDK and the DDK directory trees.)

Unfortunately, you can't run a magical program to identify
the exact cause of blue screens or to make them go away.
Even with extensive knowledge of Windows 2000 internals
and device drivers, analyzing a blue screen or a crash dump
can be very difficult. However, being able to retrieve the stop
code and parameters can at least point you in the right
direction.

EXPERIMENT

Forcing a Crash and Retrieving the Stop Code

To generate a crash dump for the purposes of
experimenting with the dump analysis tools referred
to in this section, you can force Windows 2000 to
crash by either running the \Sysint\Bsod.exe tool on
this book's companion CD (this program loads a
device driver that calls KeBugCheckEx) or by enabling
the support added in Windows 2000 to force the
system to crash by holding the right Ctrl key down



and pressing Scroll Lock twice. To enable this feature,
add a DWORD value named CrashOnCtrlScroll with a
value of 1 to the registry key
HKLM\SYSTEM\CurrentControlSet\Services\i8042prt\
Parameters. You must reboot the system for this
change to take effect.

Once you've created a crash dump file, try using
Dumpchk to display the basic crash dump
information. Then try the Dumpchk -e option to
display the extended information. Finally, try opening
the crash dump file with the interactive kernel
debugger (Kd, I386kd.exe, or Windbg.exe) and using
some of the built-in kernel debugger extensions, such
as !process, !thread, and !drivers.

For instructions on how to use these tools, see the
Debugging help file (Ddkdbg.chm).



[Previous] [Next]



Conclusion
In this chapter, we've examined the detailed steps involved
in starting and shutting down Windows 2000 (both normally
and in error cases). In the next chapter, we'll look at three
important mechanisms involved in the management
infrastructure of Windows 2000: the registry, services, and
Windows Management Instrumentation (WMI).



[Previous] [Next]

Chapter 5



Management Mechanisms
This chapter describes three fundamental mechanisms in
Microsoft Windows 2000 that are critical to the
management and configuration of the system:

The registry

Services

Windows Management Instrumentation



[Previous] [Next]



The Registry
The registry plays a key role in the configuration and control of Windows 2000 systems. It
is the repository for both systemwide and per-user settings. Although most people think of
the registry as static data stored on the hard disk, as you'll see in this section, the registry
is also a window into various in-memory structures maintained by the Windows 2000
executive and kernel. This section isn't meant to be a complete reference to the contents
of the Windows 2000 registry. That kind of in-depth information is documented in the
Technical Reference to the Windows 2000 Registry help file in the Windows 2000 resource
kits (Regentry.chm).

We'll start by providing you with an overview of the registry structure, a discussion of the
data types it supports, and a brief tour of the key information Windows 2000 maintains in
the registry. Then we'll look inside the internals of the configuration manager, the
executive component responsible for implementing the registry database. Among the
topics we'll cover are the internal on-disk structure of the registry, how Windows 2000
retrieves configuration information when an application requests it, and what measures are
employed to protect this critical system database.



Registry Data Types

The registry is a database whose structure is similar to that of a logical disk drive. The
registry contains keys, which are similar to a disk's directories, and values, which are
comparable to files on a disk. A key is a container that can consist of other keys (subkeys)
or values. Values, on the other hand, store data. Top-level keys are root keys. Throughout
this section, we'll use the words subkey and key interchangeably. (Only root keys are not
subkeys.)

Both keys and values borrow their naming convention from the file system. Thus, you can
uniquely identify a value with the name mark, which is stored in a key called trade, with
the name trade\mark. One exception to this naming scheme is each key's unnamed value.
The two Registry Editor utilities, Regedit and Regedt32, display these values differently:
Regedit displays the unnamed value as (Default); Regedt32 uses <No Name>.

Values store different kinds of data and can be one of the 11 types listed in Table 5-1. The
majority of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of type
REG_DWORD can store numbers or Booleans (on/off values); REG_BINARY values can
store numbers larger than 32 bits or raw data such as encrypted passwords; REG_SZ
values store strings (Unicode, of course) that can represent elements such as names,
filenames, paths, and types.

Table 5-1 Registry Value Types

Value Type Description

REG_NONE No value type

REG_SZ Fixed-length Unicode NULL-terminated
string

REG_EXPAND_SZ Variable-length Unicode NULL-terminated
string that can have embedded environment
variables

REG_BINARY Arbitrary-length binary data

REG_DWORD 32-bit number

REG_DWORD_LITTLE_ENDIAN 32-bit number, low byte first. This is
equivalent to REG_DWORD.

REG_DWORD_BIG_ENDIAN 32-bit number, high byte first

REG_LINK Unicode symbolic link

REG_MULTI_SZq Array of Unicode NULL-terminated strings

REG_RESOURCE_LIST Hardware resource description

REG_FULL_RESOURCE_DESCRIPTOR Hardware resource description

REG_RESOURCE_REQUIREMENTS_LIST Resource requirements

The REG_LINK type is particularly interesting because it lets a value transparently point to
another key or value. When you traverse the registry through a link, the path searching
continues at the target of the link. For example, if \Root1\Link has a REG_LINK value of
\Root2\RegKey, and RegKey contains the value RegValue, two paths identify RegValue:
\Root1\Link\RegValue and \Root2\RegKey\RegValue. As explained in the next section,



Windows 2000 prominently uses registry links: three of the six registry root keys are links
to subkeys within the three nonlink root keys. Links aren't saved; they must be
dynamically created after each reboot.



Registry Logical Structure

You can chart the organization of the registry via the data stored within it. There are six
root keys (you can't add new root keys or delete existing ones) that store information as
follows:

HKEY_CURRENT_USER Stores data associated with the currently logged-on user

HKEY_USER Stores information about all the accounts on the machine

HKEY_CLASSES_ROOT Stores file association and Component Object Model (COM)
object registration information

HKEY_LOCAL_MACHINE Stores system-related information

HKEY_PERFORMANCE_DATA Stores performance information

HKEY_CURRENT_CONFIG Stores some information about the current hardware
profile

Why do root-key names begin with an H? Because the root-key names represent Win32
handles (H) to keys (KEY). As mentioned in Chapter 1, HKLM is an abbreviation used for
HKEY_LOCAL_MACHINE. Table 5-2 lists all the root keys and their abbreviations. The
following sections explain in detail the contents and purpose of each of these six root keys.
Again, see the Technical Reference to the Windows 2000 Registry help file (Regentry.chm)
in the Windows 2000 resource kits for details on the contents of these keys.

Table 5-2 Registry Root Keys

Root Key Abbreviation Description Link

HKEY_CURRENT_USER HKCU Points to the
user profile
of the
currently
logged-on
user

Subkey under HKEY_USERS corre
to currently logged-on user

HKEY_USERS HKU Contains
subkeys for
all loaded
user profiles

Not a link

HKEY_CLASSES_ROOT HKCR Contains file
association
and COM
registration
information

HKLM\SOFTWARE\ Classes

HKEY_LOCAL_MACHINE HKLM Placeholder
— contains
other keys

Not a link

HKEY_CURRENT_CONFIG HKCC Current
hardware
profile

HKLM\SYSTEM\CurrentControlSe
Profiles\Current



HKEY_PERFORMANCE_DATA HKPD Performance
counters

Not a link

HKEY_CURRENT_USER

The HKCU root key contains data regarding the preferences and software configuration of
the locally logged-on user. It points to the currently logged-on user's user profile, located
on the hard disk at \Documents and Settings\<username>\Ntuser.dat. (See the section
"Registry Internals" later in this chapter to find out how root keys are mapped to files on
the hard disk.) Whenever a user profile is loaded (such as at logon time or when a service
process runs under the context of a specific username), HKCU is created as a link to the
user's key under HKEY_USERS. Table 5-3 lists some of the subkeys under HKCU.

Table 5-3 HKEY_CURRENT_USER Subkeys

Subkey Description

AppEvents Sound/event associations

Console Command window settings (for example, width, height, and
colors)

Control Panel Screen saver, desktop scheme, keyboard, and mouse settings as
well as accessibility and regional settings

Environment Environment variable definitions

Keyboard Layout Keyboard layout setting (for example, U.S. or U.K.)

Network Network drive mappings and settings

Printers Printer connection settings

Software User-specific software preferences

UNICODE
Program Groups

User-specific start menu group definitions

Windows 3.1
Migration Status

File status data for systems that upgrade from Windows 3.x to
Windows 2000

HKEY_USERS

HKU contains a subkey for each loaded user profile and user class registration database on
the system. It also contains a subkey named HKU\.DEFAULT that is linked to the default
workstation profile (used by processes running under the local system account, described
in more detail in the section "Services" later in this chapter).

HKEY_CLASSES_ROOT

HKCR consists of two types of information: file extension associations and COM class
registrations. A key exists for every registered filename extension. Most keys contain a
REG_SZ value that points to another key in HKCR containing the association information
for the class of files that extension represents. For example, HKCR\.xls would point to
information on Microsoft Excel files in a key such as HKCU\Excel.Sheet.8. Other keys
contain configuration details for COM objects registered on the system.

The data under HKEY_CLASSES_ROOT comes from two sources:



The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file
on hard disk \Documents and Settings\<username> \Local Settings\Application
Data\Microsoft\Windows\Usrclass.dat)

Systemwide class registration data in HKLM\SOFTWARE\Classes

The addition of per-user class registration data is new to Windows 2000. This change was
made to separate per-user registration data from systemwide state so that roaming
profiles can contain these customizations. It also closes a security hole: in Microsoft
Windows NT 4, a nonprivileged user could change or delete keys in HKEY_CLASSES_ROOT,
thus affecting the operation of applications on the system. In Windows 2000, nonprivileged
users and applications can read systemwide data but can modify only their private data.

HKEY_LOCAL_MACHINE

HKLM is the root key that contains all the systemwide configuration subkeys: HARDWARE,
SAM, SECURITY, SOFTWARE, and SYSTEM.

The HKLM\HARDWARE subkey maintains descriptions of the system's hardware and all
hardware device-to-driver mappings. The Device Manager tool (available by running
System from Control Panel, clicking the Hardware tab, and then clicking Device Manager)
lets you view registry hardware information that it obtains by simply reading values out of
the HARDWARE key.

HKLM\SAM holds local account and group information, such as user passwords, group
definitions, and domain associations. Windows 2000 Server systems that are operating as
domain controllers store domain accounts and groups in Active Directory, a database that
stores domainwide settings and information. (Active Directory isn't described in this book.)
By default, the security descriptor on the SAM key is configured such that even the
administrator account doesn't have access. You can change the security descriptor to allow
read access to administrators if you want to peer inside, but that glimpse won't be very
revealing because the data is undocumented and the passwords are encrypted with one-
way mapping—that is, you can't determine a password from its encrypted form.

HKLM\SECURITY stores systemwide security policies and user-rights assignments.
HKLM\SAM is linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default,
you can't view the contents of HKLM\SECURITY or HKLM\SAM\SAM because the security
settings of those keys allow access only by the system account. (System accounts are
discussed in greater detail later in this chapter.)

HKLM\SOFTWARE is where Windows 2000 stores systemwide configuration information not
needed to boot the system. Also, third-party applications store their systemwide settings
here, such as paths to application files and directories, and licensing and expiration date
information.

HKLM\SYSTEM contains the systemwide configuration information needed to boot the
system, such as which device drivers to load and which services to start. Because this
information is critical to starting the system, Windows 2000 also maintains a copy of part
of this information, called the last known good control set, under this key. The
maintenance of a copy allows an administrator to select a previously working control set in
the case that configuration changes made to the current control set prevent the system
from booting. For details on when Window 2000 declares the current control set "good,"
see the section "Accepting the Boot and Last Known Good."

HKEY_CURRENT_CONFIG



HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under
HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current. Hardware profiles allow the
administrator to configure variations to the base system driver settings. Although the
underlying profile might change from boot to boot, applications can always reference the
currently active profile through this key.

EXPERIMENT

Viewing the SAM and SECURITY Keys

Although the SAM and SECURITY keys are protected with security settings that
permit access only by the system account, you can use a trick that will enable you
to explore their contents from a Registry Editor without changing their security.
The at command launches applications at a time you specify and starts them in
the system account. Therefore, if you specify Regedit.exe as the application and
tell at to start Regedit interactively, you'll have an instance of Regedit that is able
to look inside the SAM and SECURITY keys.

HKEY_PERFORMANCE_DATA

The registry is the mechanism to access performance counter values on Windows 2000,
whether those are from operating system components or server applications. One of the
side benefits of providing access to the performance counters via the registry is that
remote performance monitoring works "for free" because the registry is easily accessible
remotely through the normal registry APIs.

You can access the registry performance counter information directly by opening a special
key named HKEY_PERFORMANCE_DATA and querying values beneath it. You won't find this
key by looking in the Registry Editor; this key is available only programmatically through
the Win32 registry functions, such as RegQueryValueEx. Performance information isn't
actually stored in the registry; the registry functions use this key to locate the information
from performance data providers.

You can also access performance counter information by using the Performance Data
Helper (PDH) functions available through the Performance Data Helper API (Pdh.dll).
Figure 5-1 shows the components involved in accessing performance counter information.

Figure 5-1 Registry performance counter architecture

javascript:fullSize('F05yj01x.htm')


EXPERIMENT

Watching Registry Activity

The Registry Monitor utility (\Sysint\Regmon.exe on the companion CD) lets you
monitor registry activity as it occurs. For each registry access, Regmon shows you
the process that performed the access and the time, type, and result of the
access. This information is useful for understanding the way that applications and
the system rely on the registry, seeing where applications and the system store
configuration settings and troubleshooting problems related to applications having
missing registry keys or values. The following screen shot shows Regmon
displaying some of the registry accesses Microsoft Management Console (MMC)
performs as it launches the Computer Management snap-in. (Regmon also
includes a column showing the access time, but we've omitted that column from
this screen shot to save space.)

Regmon relies on system-call hooking, a technique whereby a kernel-mode driver
replaces the entries for registry-related functions in the system service dispatch
table. Whenever an application executes a Win32 registry call, such as
RegCreateKey, a corresponding system service (in this case, NtCreateKey) is
invoked, which results in the execution of Regmon's hook routine.

javascript:fullSize('G05yj01x.htm')


Registry Internals

In this section, you'll find out how the configuration manager—the executive subsystem
that implements the registry—organizes the registry's on-disk files. We'll examine how the
configuration manager manages the registry as applications and other operating system
components read and change registry keys and values. We'll also discuss the mechanisms
by which the configuration manager tries to ensure that the registry is always in a
recoverable state, even if the system crashes while the registry is being modified.

Hives

On disk, the registry isn't simply one large file but rather a set of discrete files called hives.
Each hive contains a registry tree, which has a key that serves as the root or starting point
of the tree. Subkeys and their values reside beneath the root. You might think that the
root keys displayed by the Registry Editor tools correlate to the root keys in the hives, but
such is not the case. Table 5-4 lists registry hives and their on-disk filenames. The
pathnames of all hives except for user profiles are coded into the configuration manager.
As the configuration manager loads hives, including system profiles, it notes each hive's
path in the values under the HKLM\SYSTEM\CurrentControlSet\Control\hivelist subkey,
removing the path if the hive is unloaded. (User profiles are unloaded when not
referenced.) It creates the root keys, linking these hives together to build the registry
structure you're familiar with and that the Registry Editor displays.

Table 5-4 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path Hive File Path

HKEY_LOCAL_MACHINE\SYSTEM \Winnt\System32\Config\System

HKEY_LOCAL_MACHINE\SAM \Winnt\System32\Config\Sam

HKEY_LOCAL_MACHINE\SECURITY \Winnt\System32\Config\Security

HKEY_LOCAL_MACHINE\SOFTWARE \Winnt\System32\Config\Software

HKEY_LOCAL_MACHINE\HARDWARE Volatile hive

HKEY_LOCAL_MACHINE\SYSTEM\Clone Volatile hive

HKEY_USERS\<security ID of
username>

\Documents and Settings\
<username>\Ntuser.dat

HKEY_USERS\<security ID of
username>_Classes

\Documents and Settings\
<username>\Local Settings\Application
Data\Microsoft\Windows\Usrclass.dat

HKEY_USERS\.DEFAULT \Winnt\System32\Config\Default

You'll notice that some of the hives listed in Table 5-4 are volatile and don't have
associated files. The system creates and manages these hives entirely in memory; the
hives are therefore temporary. The system creates volatile hives every time it boots. An
example of a volatile hive is the HKLM\HARDWARE hive, which stores information about
physical devices and the devices' assigned resources. Resource assignment and hardware
detection occur every time the system boots, so not storing this data on disk is logical.

EXPERIMENT



Looking at Hive Handles

The configuration manager opens hives by using the kernel handle table
(described in Chapter 3) so that it can access hives from any process context.
Using the kernel handle table is an efficient alternative to approaches that involve
using drivers or executive components to access from the system process only
handles that must be protected from user processes. You can use the HandleEx
utility, available on the companion CD in \Sysint\Handleex.exe, to see the hive
handles. Because the object manager reports kernel handle table handles as being
opened in the System Idle process, select System Idle Process in the top pane to
see the hive handles, as shown here. (Be sure View Handles is selected in the
View menu.)

A special type of key known as a symbolic link makes it possible for the configuration
manager to link hives to organize the registry. A symbolic link is a key that redirects the
configuration manager to another key. Thus, the key HKLM\SAM is a symbolic link to the
key at the root of the SAM hive.

Hive Structure

The configuration manager logically divides a hive into allocation units called blocks in
much the same way that a file system divides a disk into clusters. By definition, the
registry block size is 4096 bytes (4 KB). When new data expands a hive, the hive always
expands in block-granular increments. The first block of a hive is the base block. The base
block includes global information about the hive, including a signature—regf—that
identifies the file as a hive, updated sequence numbers, a time stamp that shows the last
time a write operation was initiated on the hive, the hive format version number, a
checksum, and the hive file's internal filename (for example,
\Device\HarddiskVolume1\WINNT\CONFIG\SAM). We'll clarify the significance of the
updated sequence numbers and time stamp when we describe how data is written to a
hive file. The hive format version number specifies the data format within the hive. Hive
formats changed from Windows NT 3.51 to Windows NT 4, so if you try to load a Windows
NT 4 or Windows 2000 hive on earlier versions of Windows NT, you'll fail.

Windows 2000 organizes the registry data that a hive stores in containers called cells. A
cell can hold a key, a value, a security descriptor, a list of subkeys, or a list of key values.
A field at the beginning of a cell's data describes the data's type. Table 5-5 describes each
cell data type in detail. A cell's header is a field that specifies the cell's size. When a cell
joins a hive and the hive must expand to contain the cell, the system creates an allocation
unit called a bin. A bin is the size of the new cell rounded up to the next block boundary.

javascript:fullSize('G05yj02x.htm')


The system considers any space between the end of the cell and the end of the bin free
space that it can allocate to other cells. Bins also have headers that contain a signature,
hbin, and a field that records the offset into the hive file of the bin and the bin's size.

Table 5-5 Cell Data Types

Data
Type Description

Key cell A cell that contains a registry key, also called a key node. A key cell
contains a signature (kn for a key, kl for a symbolic link), the time stamp
of the most recent update to the key, the cell index of the key's parent
key cell, the cell index of the subkey-list cell that identifies the key's
subkeys, a cell index for the key's security descriptor cell, a cell index for
a string key that specifies the class name of the key, and the name of the
key (for example, CurrentControlSet).

Value cell A cell that contains information about a key's value. This cell includes a
signature (kv), the value's type (for example, REG_DWORD or
REG_BINARY), and the value's name (for example, Boot-Execute). A
value cell also contains the cell index of the cell that contains the value's
data.

Subkey-
list cell

A cell composed of a list of cell indexes for key cells that are all subkeys
of a common parent key. Value-list cell A cell composed of a list of cell
indexes for value cells that are all values of a common parent key.

Security-
descriptor
cell

A cell that contains a security descriptor. Security-descriptor cells include
a signature (ks) at the head of the cell and a reference count that records
the number of key nodes that share the security descriptor. Multiple key
cells can share security-descriptor cells.

By using bins, instead of cells, to track active parts of the registry, Windows 2000
minimizes some management chores. For example, the system usually allocates and
deallocates bins less frequently than it does cells, which lets the configuration manager
manage memory more efficiently. When the configuration manager reads a registry hive
into memory, it can choose to read only bins that contain cells (that is, active bins) and to
ignore empty bins. When the system adds and deletes cells in a hive, the hive can contain
empty bins interspersed with active bins. This situation is similar to disk fragmentation,
which occurs when the system creates and deletes files on the disk. When a bin becomes
empty, the configuration manager joins to the empty bin any adjacent empty bins to form
as large a contiguous empty bin as possible. The configuration manager also joins adjacent
deleted cells to form larger free cells. (The configuration manager never tries to compact a
registry hive—you can compact the registry by backing it up and restoring it using the
Win32 RegSaveKey and RegReplaceKey functions, which are used by the Windows Backup
utility.)

The links that create the structure of a hive are called cell indexes. A cell index is the offset
of a cell into the hive file. Thus, a cell index is like a pointer from one cell to another cell
that the configuration manager interprets relative to the start of a hive. For example, as
you saw in Table 5-5, a cell that describes a key contains a field specifying the cell index of
its parent key; a cell index for a subkey specifies the cell that describes the subkeys that
are subordinate to the specified subkey. A subkey-list cell contains a list of cell indexes
that refer to the subkey's key cells. Therefore, if you want to locate, for example, the key
cell of subkey A, whose parent is key B, you must first locate the cell containing key B's
subkey list using the subkey-list cell index in key B's cell. Then you locate each of key B's



subkey cells by using the list of cell indexes in the subkey-list cell. For each subkey cell,
you check to see whether the subkey's name, which a key cell stores, matches the one you
want to locate, in this case, subkey A.

The distinction between cells, bins, and blocks can be confusing, so let's look at an
example of a simple registry hive layout to help clarify the differences. The sample registry
hive file in Figure 5-2 contains a base block and two bins. The first bin is empty, and the
second bin contains several cells. Logically, the hive has only two keys: the root key Root,
and a subkey of Root, Sub Key. Root has two values, Val 1 and Val 2. A subkey-list cell
locates the root key's subkey, and a value-list cell locates the root key's values. The free
spaces in the second bin are empty cells. The figure doesn't show the security cells for the
two keys, which would be present in a hive.

Figure 5-2 Internal structure of a registry hive

Figure 5-3 shows an example of the Disk Probe utility (Dskprobe.exe) examining the first
bin in a SYSTEM hive. Notice the bin's signature, hbin, at the top right side of the image.
Look beneath the bin signature and you'll see the signature nk. This signature is the
signature of a key cell (kn). The signature displays backward because of the way x86
computers store data. The cell is the SYSTEM hive's root cell, which the configuration
manager has named internally $$$PROTO.HIV, as specified by the name that follows the nk
signature.

Figure 5-3 Binary contents of first bin in the SYSTEM hive

To optimize searches for both values and subkeys, the configuration manager sorts
subkey-list cells alphabetically. The configuration manager can then perform a binary
search when it looks for a subkey within a list of subkeys. The configuration manager
examines the subkey in the middle of the list, and if the name of the subkey the
configuration manager is looking for is alphabetically before the name of the middle
subkey, the configuration manager knows that the subkey is in the first half of the subkey
list; otherwise, the subkey is in the second half of the subkey list. This splitting process

javascript:fullSize('F05yj02x.htm')
javascript:fullSize('F05yj03x.htm')


continues until the configuration manager locates the subkey or finds no match. Value-list
cells aren't sorted, however, so new values are always added to the end of the list.

Cell Maps

The configuration manager doesn't access a hive's image on disk every time a registry
access occurs. Instead, Windows 2000 keeps a version of every hive in the kernel's
address space. When a hive initializes, the configuration manager determines the size of
the hive file, allocates enough memory from the kernel's paged pool to store it, and reads
the hive file into memory. (For more information on paged pool, see Chapter 7.) Because
all loaded registry hives are read into paged pool, that registry data is typically the largest
consumer of paged pool. (To check paged pool allocation, use the Poolmon utility,
described in the experiment "Monitoring Pool Usage" in Chapter 7.)

If hives never grew, the configuration manager could perform all its registry management
on the in-memory version of a hive as if the hive were a file. Given a cell index, the
configuration manager could calculate the location in memory of a cell simply by adding
the cell index, which is a hive file offset, to the base of the in-memory hive image. Early in
the system boot, this process is exactly what Ntldr does with the SYSTEM hive: Ntldr reads
the entire SYSTEM hive into memory as a read-only hive and adds the cell indexes to the
base of the in-memory hive image to locate cells. Unfortunately, hives grow as they take
on new keys and values, which means the system must allocate paged pool memory to
store the new bins that contain added keys and values. Thus, the paged pool that keeps
the registry data in memory isn't necessarily contiguous.

EXPERIMENT

Viewing Hive Paged Pool Usage

There are no administrative-level tools that show you the amount of paged pool
that registry hives, including user profiles, are consuming. However, the !regpool
kernel debugger command shows you not only how many pages of paged pool
each loaded hive consumes but also how many of the pages store volatile and
nonvolatile data. The command prints the total hive memory usage at the end of
the output. (The command shows only the last 32 characters of a hive's name.)

kd> !regpool 
 
dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat) 
  Stable Length = 1000 
  1/1 pages present 
  Volatile Length = 0 
 
dumping hive at e215ee88 (ettings\Administrator\ntuser.dat) 
  Stable Length = f2000 
  242/242 pages present 
  Volatile Length = 2000 
  2/2 pages present 
 
dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM) 



  Stable Length = 5000 
  5/5 pages present 
  Volatile Length = 0 
 
dumping hive at e142fe68 (stemRoot\System32\Config\DEFAULT) 
  Stable Length = 24000 
  36/36 pages present 
  Volatile Length = 0 
 
dumping hive at e13fbb48 (temRoot\System32\Config\SOFTWARE) 
  Stable Length = b40000 
  1856/2880 pages present 
  Volatile Length = 1000 
  1/1 pages present 
 
dumping hive at e13fa948 (temRoot\System32\Config\SECURITY) 
  Stable Length = b000 
  11/11 pages present 
  Volatile Length = 1000 
  1/1 pages present 
 
dumping hive at e128c008 (NONAME) 
  Stable Length = d000 
  10/13 pages present 
  Volatile Length = 4000 
  4/4 pages present 
 
dumping hive at e1008528 (SYSTEM) 
  Stable Length = 274000 
  628/628 pages present 
  Volatile Length = 36000 
  54/54 pages present 
 
dumping hive at e10088e8 (NONAME) 
  Stable Length = 1000 
  1/1 pages present 
  Volatile Length = 0 
Total pages present = 2852 / 3879 

To deal with noncontiguous memory buffers storing hive data in memory, the configuration
manager adopts a strategy similar to what the Windows 2000 memory manager uses to
map virtual memory addresses to physical memory addresses. The configuration manager
employs a two-level scheme, which Figure 5-4 illustrates, that takes as input a cell index
(that is, a hive file offset) and returns as output both the address in memory of the block
the cell index resides in and the address in memory of the bin the cell resides in.
Remember that a bin can contain one or more blocks and that hives grow in bins, so



Windows 2000 always represents a bin with a contiguous memory buffer. Therefore, all
blocks within a bin occur within the same portion of a paged pool.

Figure 5-4 Structure of a cell index

To implement the mapping, the configuration manager divides a cell index logically into
fields, in the same way that the memory manager divides a virtual address into fields.
Windows 2000 interprets a cell index's first field as an index into a hive's cell map
directory. The cell map directory contains 1024 entries, each of which refers to a cell map
table that contains 512 map entries. An entry in this cell map table is specified by the
second field in the cell index. That entry locates the bin and block memory addresses of
the cell. In the final step of the translation process, the configuration manager interprets
the last field of the cell index as an offset into the identified block to precisely locate a cell
in memory. When a hive initializes, the configuration manager dynamically creates the
mapping tables, designating a map entry for each block in the hive, and adds and deletes
tables from the cell directory as the changing size of the hive requires.

The Registry Namespace and Operation

The configuration manager defines a key object object type to integrate the registry's
namespace with the kernel's general namespace. The configuration manager inserts a key
object named Registry into the root of the Windows 2000 namespace, which serves as the
entry point to the registry. Regedit shows key names in the form
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet, but the Win32 subsystem translates
such names into their object namespace form (for example,
\Registry\Machine\System\CurrentControlSet). When the Windows 2000 object manager
parses this name, it encounters the key object by the name of Registry first and hands the
rest of the name to the configuration manager. The configuration manager takes over the
name parsing, looking through its internal hive tree to find the desired key or value. Before
we describe the flow of control for a typical registry operation, we need to discuss key
objects and key control blocks. Whenever an application opens or creates a registry key,
the object manager gives a handle with which to reference the key to the application. The
handle corresponds to a key object that the configuration manager allocates with the help
of the object manager. By using the object manager's object support, the configuration
manager takes advantage of the security and reference-counting functionality that the
object manager provides.

For each open registry key, the configuration manager also allocates a key control block. A
key control block stores the full pathname of the key, includes the cell index of the key
node that the control block refers to, and contains a flag that notes whether the
configuration manager needs to delete the key cell that the key control block refers to
when the last handle for the key closes. Windows 2000 places all key control blocks into an
alphabetized binary tree to enable quick searches for existing key control blocks by name.
A key object points to its corresponding key control block, so if two applications open the

javascript:fullSize('F05yj04x.htm')


same registry key, each will receive a key object, and both key objects will point to a
common key control block.

When an application opens an existing registry key, the flow of control starts with the
application specifying the name of the key in a registry API that invokes the object
manager's name-parsing routine. The object manager, upon encountering the
configuration manager's registry key object in the namespace, hands the pathname to the
configuration manager. The configuration manager uses the in-memory hive data
structures to search through keys and subkeys to find the specified key. If the
configuration manager finds the key cell, the configuration manager searches the key
control block tree to determine whether the key is open (by the same or another
application). The search routine is optimized to always start from the closest ancestor with
a key control block already opened. For example, if an application opens
\Registry\Machine\Key1\Subkey2, and \Registry\Machine is already opened, the parse
routine uses the registry control block of \Registry\Machine as a starting point. If the key
is open, the configuration manager increments the existing key control block's reference
count. If the key isn't open, the configuration manager allocates a new key control block
and inserts it into the tree. Then the configuration manager allocates a key object, points
the key object at the key control block, and returns control to the object manager, which
returns a handle to the application.

When an application creates a new registry key, the configuration manager first finds the
key cell for the new key's parent. The configuration manager then searches the list of free
cells for the hive in which the new key will reside to determine whether cells exist that are
large enough to hold the new key cell. If there aren't, the configuration manager allocates
a new bin and uses it for the cell, placing any space at the end of the bin on the free cell
list. The new key cell fills with pertinent information—including the key's name—and the
configuration manager adds the key cell to the subkey list of the parent key's subkey-list
cell. Finally, the system stores the cell index of the parent cell in the new subkey's key cell.

The configuration manager uses a key control block's reference count to determine when
to delete the key control block. When all the handles that refer to a key in a key control
block close, the reference count becomes 0, which denotes that the key control block is no
longer necessary. If an application that calls an API to delete the key sets the delete flag,
the configuration manager can delete the associated key from the key's hive because it
knows that no application is keeping the key open.

Stable Storage

To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a
recoverable state, the configuration manager uses log hives. Each nonvolatile hive has an
associated log hive, which is a hidden file with the same base name as the hive and a .log
extension. For example, if you look in your \Winnt\System32\Config directory (and you
have the Show Hidden Files And Folders folder option selected), you'll see System.log,
Sam.log, and other .log files. When a hive initializes, the configuration manager allocates a
bit array in which each bit represents a 512-byte portion, or sector, of the hive. This array
is called the dirty sector array because an on bit in the array means that the system has
modified the corresponding sector in the hive in memory and must write the sector back to
the hive file. (An off bit means that the corresponding sector is up to date with the in-
memory hive's contents.)

When the creation of a new key or value or the modification of an existing key or value
takes place, the configuration manager notes the sectors of the hive that change in the
hive's dirty sector array. Then the configuration manager schedules a lazy write operation,



or a hive sync. The hive lazy writer system thread wakes up 5 seconds after the request to
synchronize the hive and writes dirty hive sectors for all hives from memory to the hive
files on disk. Thus, the system flushes, at the same time, all the registry modifications that
take place between the time a hive sync is requested and the time the hive sync occurs.
When a hive sync takes place, the next hive sync will occur no sooner than 5 seconds later.

If the lazy writer simply wrote all a hive's dirty sectors to the hive file and the system
crashed in midoperation, the hive file would be in an inconsistent (corrupted) and
unrecoverable state. To prevent such an occurrence, the lazy writer first dumps the hive's
dirty sector array and all the dirty sectors to the hive's log file, increasing the log file's size
if necessary. The lazy writer then updates a sequence number in the hive's base block and
writes the dirty sectors to the hive. When the lazy writer is finished, it updates a second
sequence number in the base block. Thus, if the system crashes during the write
operations to the hive, at the next reboot the configuration manager will notice that the
two sequence numbers in the hive's base block don't match. The configuration manager
can update the hive with the dirty sectors in the hive's log file to roll the hive forward. The
hive is then up to date and consistent.

To further protect the integrity of the crucial SYSTEM hive, the configuration manager
maintains a mirror of the SYSTEM hive on disk. If you look at the nonhidden files in your
\Winnt\System32\Config directory, you'll see three files with the base name System:
System, System.alt, and System.sav. System.alt is the alternate hive. Whenever a hive
sync flushes dirty sectors to the SYSTEM hive, the hive sync also updates the System.alt
hive. If the configuration manager detects that the SYSTEM hive is corrupt when the
system boots, the configuration manager attempts to load the hive's alternate. If that hive
is usable, it then uses that alternate to update the original SYSTEM hive.

System.sav is a copy of the SYSTEM hive that exists when Windows 2000 finishes
installing. This copy can be used, usually only in extreme circumstances, to restore the
computer's configuration to its initial state.

Registry Optimizations

The configuration manager makes a few noteworthy performance optimizations. First,
virtually every registry key has a security descriptor that protects access to the key.
Storing a unique security-descriptor copy for every key in a hive would be highly
inefficient, however, because the same security settings often apply to entire subtrees of
the registry. When the system applies security to a key, the configuration manager first
checks the security descriptors associated with the key's parent key and then checks all
the parent's subkeys. If any of those security descriptors match the security descriptor the
system is applying to the key, the configuration manager simply shares the existing
descriptors with the key, employing a reference count to track how many keys share the
same descriptor.

The configuration manager also optimizes the way it stores key and value names in a hive.
Although the registry is fully Unicode-capable and specifies all names using the Unicode
convention, if a name contains only ASCII characters, the configuration manager stores
the name in ASCII form in the hive. When the configuration manager reads the name
(such as when performing name lookups), it converts the name into Unicode form in
memory. Storing the name in ASCII form can significantly reduce the size of a hive.

To minimize memory usage, key control blocks don't store full key registry pathnames.
Instead, they reference only a key's name. For example, a key control block that refers to
\Registry\System\Control would refer to the name Control rather than to the full path. A



further memory optimization is that the configuration manager uses key name control
blocks to store key names, and all key control blocks for keys with the same name share
the same key name control block. To optimize performance, the configuration manager
stores the key control block names in a hash table for quick lookups.

To provide fast access to key control blocks, the configuration manager stores frequently
accessed key control blocks in the cache table, which is configured as a hash table. When
the configuration manager needs to look up a key control block, it first checks the cache
table. Finally, the configuration manager has another cache, the delayed close table, that
stores key control blocks that applications close, so that an application can quickly reopen
a key it has recently closed. The configuration manager removes the oldest key control
blocks from the delayed close table as it adds the most recently closed blocks to the table.



[Previous] [Next]



Services
Almost every operating system has a mechanism to start processes at system startup time
that provide services not tied to an interactive user. In Windows 2000, such processes are
called services, or Win32 services, because they rely on the Win32 API to interact with the
system. Services are similar to UNIX daemon processes and often implement the server
side of client/server applications. An example of a Win32 service might be a Web server
since it must be running regardless of whether anyone is logged on to the computer and it
must start running when the system starts so that an administrator doesn't have to
remember, or even be present, to start it.

Win32 services consist of three components: a service application, a service control
program (SCP), and the service control manager (SCM). First, we'll describe service
applications, service accounts, and the operations of the SCM. Then we'll explain how
auto-start services are started during the system boot. We'll also cover the steps the SCM
takes when a service fails during its startup and the way the SCM shuts down services.



Service Applications

Service applications, such as Web servers, consist of at least one executable that runs as a
Win32 service. A user wanting to start, stop, or configure a service uses an SCP. Although
Windows 2000 supplies built-in SCPs that provide general start, stop, pause, and continue
functionality, some service applications include their own SCP that allows administrators to
specify configuration settings particular to the service they manage.

Service applications are simply Win32 executables (GUI or console) with additional code to
receive commands from the SCM as well as to communicate the application's status back
to the SCM. Because most services don't have a user interface, they are built as console
programs.

When you install an application that includes a service, the application's setup program
must register the service with the system. To register the service, the setup program calls
the Win32 CreateService function, a services-related function implemented in Advapi32.dll
(\Winnt\System32\Advapi32.dll). Advapi32, the "Advanced API" DLL, implements all the
client-side SCM APIs.

When a setup program registers a service by calling CreateService, a message is sent to
the SCM on the machine where the service will reside. The SCM then creates a registry key
for the service under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the
nonvolatile representation of the SCM's database. The individual keys for each service
define the path of the executable image that contains the service as well as parameters
and configuration options.

After creating a service, an installation or management application can start the service via
the StartService function. Because some service-based applications also must initialize
during the boot process to function, it's not unusual for a setup program to register a
service as an auto-start service, ask the user to reboot the system to complete an
installation, and let the SCM start the service as the system boots.

When a program calls CreateService, it must specify a number of parameters describing
the service's characteristics. The characteristics include the service's type (whether it's a
service that runs in its own process rather than a service that shares a process with other
services), the location of the service's executable image file, an optional display name, an
optional account name and password used to start the service in a particular account's
security context, a start type that indicates whether the service starts automatically when
the system boots or manually under the direction of an SCP, an error code that indicates
how the system should react if the service detects an error when starting, and, if the
service starts automatically, optional information that specifies when the service starts
relative to other services.

The SCM stores each characteristic as a value in the service's registry key. Figure 5-5
shows an example of a service registry key.



Figure 5-5 Example of a service registry key

Table 5-6 lists all the service characteristics. (Not every characteristic applies to every type
of service.) If a service needs to store configuration information that is private to the
service, the convention is to create a subkey named Parameters under its service key and
then store the configuration information in values under that subkey. The service then can
retrieve the values by using standard registry functions.

Table 5-6 Service and Driver Registry Parameters

Value Name Value Setting Value Setting Description

Start SERVICE_BOOT_START (0) Ntldr or Osloader preloads
the driver so that it is in
memory during the boot.
These drivers are initialized
just prior to
SERVICE_SYSTEM_START
drivers.

SERVICE_SYSTEM_START (1) The driver loads and
initializes after
SERVICE_BOOT_START
drivers have initialized.

SERVICE_AUTO_START (2) The SCM starts the driver or
service.

SERVICE_DEMAND_START (3) The SCM must start the
driver or service on demand.

SERVICE_DISABLED (4) The driver or service doesn't
load or initialize.

ErrorControl SERVICE_ERROR_IGNORE (0) The I/O manager ignores
errors the driver returns. No
warning is logged or
displayed.

SERVICE_ERROR_NORMAL (1) If the driver reports an error,
a warning displays.

SERVICE_ERROR_SEVERE (2) If the driver returns an error
and last known good isn't
being used, reboot into last

javascript:fullSize('F05yj05x.htm')


known good; otherwise,
continue the boot.

SERVICE_ERROR_CRITICAL (3) If the driver returns an error
and last known good isn't
being used, reboot into last
known good; otherwise, stop
the boot with a blue screen
crash.

Type SERVICE_KERNEL_DRIVER (1) Device driver.

SERVICE_FILE_SYSTEM_DRIVER
(2)

Kernel-mode file system
driver.

SERVICE_RECOGNIZER_DRIVER
(8)

File system recognizer driver.

SERVICE_WIN32_OWN_PROCESS
(16)

The service runs in a process
that hosts only one service.

SERVICE_WIN32_SHARE_PROCESS
(32)

The service runs in a process
that hosts multiple services.

SERVICE_INTERACTIVE_PROCESS
(256)

The service is allowed to
display windows on the
console and receive user
input.

Group Group name The driver or service
initializes when its group is
initialized.

Tag Tag number The specified location in a
group initialization order.
This parameter doesn't apply
to services.

ImagePath Path to service or driver executable
file

If ImagePath isn't specified,
the I/O manager looks for
drivers in
\Winnt\System32\Drivers
and the SCM looks for
services in \Winnt\
System32.

DependOnGroup Group name The driver or service won't
load unless a driver or
service from the specified
group loads.

DependOnService Service name The service won't load until
after the specified service
loads. This parameter
doesn't apply to device
drivers.

ObjectName Usually LocalSystem but can be an
account name, such as
.\Administrator

Specifies the account in
which the service will run. If
ObjectName isn'ts pecified,



LocalSystem is the account
used. This parameter doesn't
apply to device drivers.

DisplayName Name of service The service application
shows services by this name.
If no name is specified, the
name of the service's
registry key becomes its
name.

Description Description of service Up to 1024-byte description
of the service.

FailureActions Description of actions the SCM
should take when service process
exits unexpectedly

Failure actions include
restarting the service
process, rebooting the
system, and running a
specified program. This value
doesn't apply to drivers.

FailureCommand Program command line The SCM reads this value
only if FailureActions
specifies that a program
should execute upon service
failure. This value doesn't
apply to drivers.

Security Security descriptor This value contains the
security descriptor that
defines who has what access
to the service.

Notice that Type values include three that apply to device drivers: device driver, file system
driver, and file system recognizer. These are used by Windows 2000 device drivers, which
also store their parameters as registry data in the Services registry key. The SCM is
responsible for starting drivers with a Start value of SERVICE_AUTO_START, so it's natural
for the SCM database to include drivers. Services use the other types,
SERVICE_WIN32_OWN_PROCESS and SERVICE_WIN32_SHARE_PROCESS, which are
mutually exclusive. An executable that hosts more than one service specifies the
SERVICE_WIN32_SHARE_PROCESS type. An advantage to having a process run more than
one service is that the system resources that would otherwise be required to run them in
distinct processes are saved. A potential disadvantage is that if one of the services of a
collection running in the same process causes an error that terminates the process, all the
services of that process terminate.

When the SCM starts a service process, the process immediately invokes the
StartServiceCtrlDispatcher function. StartServiceCtrlDispatcher accepts a list of entry
points into services, one entry point for each service in the process. Each entry point is
identified by the name of the service the entry point corresponds to. After making a named
pipe communications connection to the SCM, StartServiceCtrlDispatcher sits in a loop
waiting for commands to come through the pipe from the SCM. The SCM sends a service-
start command each time it starts a service the process owns. For each start command it
receives, the StartServiceCtrlDispatcher function creates a thread, called a service thread,
to invoke the starting service's entry point and implement the command loop for the
service. StartServiceCtrlDispatcher waits indefinitely for commands from the SCM and



returns control to the process's main function only when all the process's service threads
have terminated, allowing the service process to clean up resources before exiting.

A service entry point's first action is to call the RegisterServiceCtrlHandler function. This
function receives and stores a table of functions that the service implements to handle
various commands it receives from the SCM. RegisterServiceCtrlHandler doesn't
communicate with the SCM, but it stores the table in local process memory for the
StartServiceCtrlDispatcher function. The service entry point continues initializing the
service, which can include allocating memory, creating communications end points, and
reading private configuration data from the registry. A convention most services follow is
to store their parameters under a subkey of their service registry key, named Parameters.
While the entry point is initializing the service, it might periodically send status messages
to the SCM indicating how the service's startup is progressing. After the entry point
finishes initialization, a service thread usually sits in a loop waiting for requests from client
applications. For example, a Web server would initialize a TCP listen socket and wait for
inbound HTTP connection requests.

A service process's main thread, which executes in the StartServiceCtrlDispatcher function,
receives SCM commands directed at services in the process and uses the service's table of
handler functions (stored by RegisterServiceCtrlHandler) to locate and invoke the service
function responsible for responding to a command. SCM commands include stop, pause,
resume, interrogate, and shutdown, or application-defined commands. Figure 5-6 shows
the internal organization of a service process. Pictured are the two threads that make up a
process hosting one service: the main thread and the service thread.

Figure 5-6 Inside a service process

SrvAny Tool

If you have a program that you want to run as a service, you need to modify the
startup code to conform to the requirements for services outlined in this section. If
you don't have the source code, you can use the SrvAny tool in the Windows 2000
resource kits. SrvAny enables you to run any application as a service. It reads the
path of the service file that it must load from the Parameters subkey of the
service's registry key. When SrvAny starts, it notifies the SCM that it is hosting a
particular service, and when it receives a start command, it launches the service
executable as a child process. The child process receives a copy of the SrvAny
process's access token and a reference to the same window station, so the
executable runs within the same security account and with the same interactivity
setting as you specified when configuring the SrvAny process. SrvAny services
don't have the share-process Type value, so each application you install as a

javascript:fullSize('F05yj06x.htm')


service with SrvAny runs in a separate process with a different instance of the
SrvAny host program.



Service Accounts

The security context of a service is an important consideration for service developers as
well as for system administrators because it dictates what resources the process can
access. Unless a service installation program or administrator specifies otherwise, services
run in the security context of the local system account (displayed sometimes as SYSTEM
and other times as LocalSystem). The following two subsections describe the special
characteristics of this account.

The Local System Account

The local system account is the same account in which all the Windows 2000 user-mode
operating system components run, including the Session Manager
(\Winnt\System32\Smss.exe), the Win32 subsystem process (Csrss.exe), the local
security authority subsystem (\Winnt\System32\Lsass.exe), and the Winlogon process
(\Winnt\System32\Winlogon.exe).

From a security perspective, the local system account is extremely powerful—more
powerful than any local or domain account when it comes to security ability on a local
system. This account has the following characteristics:

It is a member of the local administrators group.

It has the right to enable virtually every privilege (even privileges not normally granted
to the local administrator account, such as creating security tokens).

Most files and registry keys grant full access to the local system account. (Even if they
don't grant full access, a process running under the local system account can exercise
the take-ownership privilege to gain access.)

Processes running under the local system account run with the default user profile
(HKU\.DEFAULT). Therefore, they can't access configuration information stored in the
user profiles of other accounts.

When a system is a member of a Windows 2000 domain, the local system account
includes the machine security identifier (SID) for the computer on which a service
process is running. Therefore, a service running in the local system account will be
automatically authenticated on other machines in the same forest by using its
computer account. (A forest is a grouping of domains.)

Unless the machine account is specifically granted access to resources (such as
network shares, named pipes, and so on), a process can access network resources
that allow null sessions—that is, connections that require no credentials. You can
specify the shares and pipes on a particular computer that permit null sessions in the
NullSessionPipes and NullSessionShares registry values under
HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters.

Running Services in Alternate Accounts

Because of the restrictions just outlined, some services need to run with the security
credentials of a user account. You can configure a service to run in an alternate account
when the service is created or by specifying an account and password that the service
should run under with the Windows 2000 Services MMC snap-in. In the Services snap-in,



right-click on a service and select Properties, click the Log On tab, and select the This
Account option, as shown in Figure 5-7.

Figure 5-7 Service account settings

Interactive Services

Another restriction for services running under the local system account is that they can't
(without using a special flag on the MessageBox function, discussed in a moment) display
dialog boxes or windows on the interactive user's desktop. This limitation isn't the direct
result of running under the local system account but rather a consequence of the way the
service controller assigns service processes to window stations.

The Win32 subsystem associates every Win32 process with a window station. A window
station contains desktops and desktops contain windows. Only one window station can be
visible on a console and receive user mouse and keyboard input. In a Terminal Services
environment, one window station per session is visible, but services all run as part of the
console session. Win32 names the visible window station WinSta0, and all interactive
processes access WinSta0.

Unless otherwise directed, the SCM associates services with a nonvisible window station
named Service-0x0-3e7$ that all noninteractive services share. The number in the name,
3e7, represents the logon session identifier Lsass assigns to the logon session the SCM
uses for noninteractive services running in the local system account.

Services configured to run under a user account (that is, not the local system account) are
run in a different nonvisible window station named with the Lsass logon identifier assigned
for the service's logon session. Figure 5-8 shows an example display from \Sysint\Winobj
(which you'll find on this book's companion CD) viewing the object manager directory in
which Win32 places window station objects. Visible are the interactive window station
(WinSta0), the noninteractive system service window station (Service-0x0-3e7$), and a
noninteractive window station assigned to a service process logged on as a user (Service-
0x0-6368f$).

javascript:fullSize('F05yj07x.htm')


Regardless of whether services are running in a user account or in the local system
account, services that aren't running on the visible window station can't receive input from
a user or display windows on the console. In fact, if a service were to pop up a normal
dialog box on the window station, the service would appear hung because no user would
be able to see the dialog box, which of course would prevent the user from providing
keyboard or mouse input to dismiss it and allow the service to continue executing. (The
one exception is if the special MB_SERVICE_NOTIFICATION or
MB_DEFAULT_DESKTOP_ONLY flag is set on the MessageBox call—if
MB_SERVICE_NOTIFICATION is specified, the message box will always be displayed on the
interactive window station, even if the service wasn't configured with permission to
interact with the user; if MB_DEFAULT_DESKTOP_ONLY is specified, the message box is
displayed on the default desktop of the interactive window station.)

Figure 5-8 List of window stations

Although rare, some services can have a valid reason to interact with the user via dialog
boxes or windows. An example of a built-in Windows 2000 service that has this
requirement is the Windows Installer—the interactive user needs to see messages relating
to on-demand software installation. To configure a service with the right to interact with
the user, the SERVICE_INTERACTIVE_PROCESS modifier must be present in the service's
registry key's Type parameter. (Note that services configured to run under a user account
can't be marked as interactive.) When the SCM starts a service marked as interactive, it
launches the service's process in the local system account's security context but connects
the service with WinSta0 instead of the noninteractive service window station. This
connection to WinSta0 allows the service to display dialog boxes and windows on the
console and allows those windows to respond to user input.

javascript:fullSize('F05yj08x.htm')


The Service Control Manager

The SCM's executable file is \Winnt\System32\Services.exe, and like most service
processes, it runs as a Win32 console program. The Winlogon process starts the SCM early
during the system boot. (Refer to Chapter 4 for details on the boot process.) The SCM's
startup function, SvcCtrlMain, orchestrates the launching of services that are configured
for automatic startup. SvcCtrlMain executes shortly after the screen switches to a blank
desktop but generally before Winlogon has loaded the graphical identification and
authentication interface (GINA) that presents a logon dialog box.

SvcCtrlMain first creates a synchronization event named SvcCtrlEvent_A3752DX that it
initializes as nonsignaled. Only after the SCM completes steps necessary to prepare it to
receive commands from SCPs does the SCM set the event to a signaled state. The function
that an SCP uses to establish a dialog with the SCM is OpenSCManager. OpenSCManager
prevents an SCP from trying to contact the SCM before the SCM has initialized by waiting
for SvcCtrlEvent_A3752DX to become signaled.

Next, SvcCtrlMain gets down to business and calls ScCreateServiceDB, the function that
builds the SCM's internal service database. ScCreateServiceDB reads and stores the
contents of HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a
REG_MULTI_SZ value that lists the names and order of the defined service groups. A
service's registry key contains an optional Group value if that service or device driver
needs to control its startup ordering with respect to services from other groups. For
example, the Windows 2000 networking stack is built from the bottom up, so networking
services must specify Group values that place them later in the startup sequence than
networking device drivers. SCM internally creates a group list that preserves the ordering
of the groups it reads from the registry. Groups include (but are not limited to) NDIS, TDI,
Primary Disk, Keyboard Port, and Keyboard Class. Add-on and third-party applications can
even define their own groups and add them to the list. Microsoft Transaction Server, for
example, adds a group named MS Transactions.

ScCreateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet\Services,
creating an entry in the service database for each key it encounters. A database entry
includes all the service-related parameters defined for a service as well as fields that track
the service's status. The SCM adds entries for device drivers as well as for services
because the SCM starts services and drivers marked as auto-start and detects startup
failures for drivers marked boot-start and system-start. The I/O manager loads drivers
marked boot-start and system-start before any user-mode processes execute, and
therefore any drivers having these start types load before the SCM starts.

ScCreateServiceDB reads a service's Group value to determine its membership in a group
and associates this value with the group's entry in the group list created earlier. The
function also reads and records in the database the service's group and service
dependencies by querying its DependOnGroup and DependOnService registry values.
Figure 5-9 shows how the SCM organizes the service entry and group order lists. Notice
that the service list is alphabetically sorted. The reason this list is sorted alphabetically is
that the SCM creates the list from the Services registry key, and Windows 2000 stores
registry keys alphabetically.



Figure 5-9 Organization of a service database

During service startup, the SCM might need to call on Lsass (for example, to log on a
service in a user account), so the SCM waits for Lsass to signal the
LSA_RPC_SERVER_ACTIVE synchronization event, which it does when it finishes
initializing. Winlogon also starts the Lsass process, so the initialization of Lsass is
concurrent with that of the SCM, and the order in which Lsass and the SCM complete
initialization can vary. Then SvcCtrlMain calls ScGetBootAndSystemDriverState to scan the
service database looking for boot-start and system-start device driver entries.
ScGetBootAndSystemDriverState determines whether or not a driver successfully started
by looking up its name in the object manager namespace directory named \Driver. When a
device driver successfully loads, the I/O manager inserts the driver's object in the
namespace under this directory, so if its name isn't present, it hasn't loaded. Figure 5-10
shows Winobj displaying the contents of the Driver directory. If a driver isn't loaded, the
SCM looks for its name in the list of drivers returned by the PnP_DeviceList function.
PnP_DeviceList supplies the drivers included in the system's current hardware profile.
SvcCtrlMain notes the names of drivers that haven't started and that are part of the
current profile in a list named ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more steps. It creates its
remote procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then launches
a thread to listen on the pipe for incoming messages from SCPs. It then signals its
initialization-complete event, SvcCtrlEvent_A3752DX. Registering a console application
shutdown event handler and registering with the Win32 subsystem process via
RegisterServiceProcess prepares the SCM for system shutdown.

Figure 5-10 List of driver objects

Network Drive Letters

In addition to its role as an interface to services, the SCM has another totally
unrelated responsibility: it notifies GUI applications in a system whenever the

javascript:fullSize('F05yj09x.htm')
javascript:fullSize('F05yj10x.htm')


system creates or deletes a network drive-letter connection. The SCM waits for
the LAN Manager workstation service to signal a named event, ScNetDrvMsg,
which the workstation service signals whenever an application assigns a drive
letter to a remote network share or deletes a remote-share drive-letter
assignment. When the workstation service signals the event, the SCM calls the
GetDriveType Win32 function to query the list of connected network drive letters.
If the list changes across the event signal, the SCM sends a Windows broadcast
message of type WM_DEVICECHANGE. The SCM uses either
DBT_DEVICEREMOVECOMPELTE or DBT_DEVICEARRIVAL as the message's
subtype. This message is primarily intended for Windows Explorer so that it can
update any open My Computer windows to show the presence or absence of a
network drive letter.



Service Startup

SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services that have a
Start value designating auto-start. ScAutoStartServices also starts auto-start device
drivers. To avoid confusion, you should assume that the term services means services and
drivers unless indicated otherwise. The algorithm in ScAutoStartServices for starting
services in the correct order proceeds in phases, whereby a phase corresponds to a group
and phases proceed in the sequence defined by the group ordering stored in the
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List registry value. The List
value, shown in Figure 5-11, includes the names of groups in the order that the SCM
should start them. Thus, assigning a service to a group has no effect other than to fine-
tune its startup with respect to other services belonging to different groups.

Figure 5-11 ServiceGroupOrder registry key

When a phase starts, ScAutoStartServices marks all the service entries belonging to the
phase's group for startup. Then ScAutoStartServices loops through the marked services
seeing whether it can start each one. Part of the check it makes consists of determining
whether the service has a dependency on another group, as specified by the existence of
the DependOnGroup value in the service's registry key. If a dependency exists, the group
on which the service is dependent must have already initialized, and at least one service of
that group must have successfully started. If the service depends on a group that starts
later than the service's group in the group startup sequence, the SCM notes a "circular
dependency" error for the service. If ScAutoStartServices is considering a Win32 service
and not a device driver, it next checks to see whether the service depends on one or more
other services, and if so, if those services have already started. Service dependencies are
indicated with the DependOnService registry value in a service's registry key. If a service
depends on other services that belong to groups that come later in the
ServiceGroupOrder\List, the SCM also generates a "circular dependency" error and doesn't
start the service. If the service depends on any services from the same group that haven't
yet started, the service is skipped.

When the dependencies of a service have been satisfied, ScAutoStartServices makes a
final check to see whether the service is part of the current boot configuration before
starting the service. When the system is booted in safe mode, the SCM ensures that the
service is either identified by name or by group in the appropriate safe boot registry key.
There are two safe boot keys, Minimal and Network, under
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, and the one that the SCM checks
depends on what safe mode the user booted. If the user chose Safe Mode or Safe Mode
With Command Prompt at the special boot menu (which you can access by pressing F8
when prompted in the boot process), the SCM references the Minimal key; if the user
chose Safe Mode With Networking, the SCM refers to Network. The existence of a string
value named Option under the SafeBoot key indicates not only that the system booted in
safe mode but also the type of safe mode the user selected. For more information about
safe boots, see the section "Safe Mode" in Chapter 4.

javascript:fullSize('F05yj11x.htm')


Once the SCM decides to start a service, it calls ScStartService, which takes different steps
for services than for device drivers. When ScStartService starts a Win32 service, it first
determines the name of the file that runs the service's process by reading the ImagePath
value from the service's registry key. It then examines the service's Type value, and if that
value is SERVICE_WIN32_SHARE_PROCESS (0x20), the SCM ensures that the process the
service runs in, if already started, is logged on using the same account as specified for the
service being started. A service's ObjectName registry value stores the user account in
which the service should run. A service with no ObjectName or an ObjectName of
LocalSystem runs in the local system account.

The SCM verifies that the service's process hasn't already been started in a different
account by checking to see whether the service's ImagePath value has an entry in an
internal SCM database called the image database. If the image database doesn't have an
entry for the ImagePath value, the SCM creates one. When the SCM creates a new entry, it
stores the logon account name used for the service and the data from the service's
ImagePath value. The SCM requires services to have an ImagePath value. If a service
doesn't have an ImagePath value, the SCM reports an error stating that it couldn't find the
service's path and isn't able to start the service. If the SCM locates an existing image
database entry with matching ImagePath data, the SCM ensures that the user account
information for the service it's starting is the same as the information stored in the
database entry—a process can be logged on as only one account, so the SCM reports an
error when a service specifies a different account name than another service that has
already started in the same process.

The SCM calls ScLogonAndStartImage to log on a service if the service's configuration
specifies and to start the service's process. The SCM logs on services that don't run in the
system account by calling the Lsass function LsaLogonUser. LsaLogonUser normally
requires a password, but the SCM indicates to Lsass that the password is stored as a
service's Lsass "secret" under the key HKLM\SECURITY\Policy\Secrets in the registry.
(Keep in mind that the contents of the SECURITY aren't typically visible because its default
security settings permit access only from the system account.) When the SCM calls
LsaLogonUser, it specifies a service logon as the logon type, so Lsass looks up the
password in the Secrets subkey that has a name in the form _SC_<service name>. The
SCM directs Lsass to store a logon password as a secret when an SCP configures a
service's logon information. When a logon is successful, LsaLogonUser returns a handle to
an access token to the caller. Windows 2000 uses access tokens to represent a user's
security context, and the SCM later associates the access token with the process that
implements the service.

After a successful logon, the SCM loads the account's profile information, if it's not already
loaded, by calling the UserEnv DLL's (\Winnt\System32\Userenv.dll) LoadUserProfile
function. The value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\
<user profile key>\ProfileImagePath contains the location on disk of a registry hive that
LoadUserProfile loads into the registry, making the information in the hive the
HKEY_CURRENT_USER key for the service.

An interactive service must open the WinSta0 window station, but before
ScLogonAndStartImage allows an interactive service to access WinSta0 it checks to see
whether the value
HKLM\SYSTEM\CurrentControlSet\Control\Windows\NoInteractiveServices is set.
Administrators set this value to prevent services marked as interactive from displaying
windows on the console. This option is desirable in unattended server environments in
which no user is present to respond to popups from interactive services.



As its next step, ScLogonAndStartImage proceeds to launch the service's process, if the
process hasn't already been started (for another service, for example). The SCM starts the
process in a suspended state with the CreateProcessAsUser Win32 function. The SCM next
creates a named pipe through which it communicates with the service process, and it
assigns the pipe the name \Pipe\Net\NetControlPipeX, where X is a number that
increments each time the SCM creates a pipe. The SCM resumes the service process via
the ResumeThread function and waits for the service to connect to its SCM pipe. If it
exists, the registry value HKLM\SYSTEM\CurrentControlSet\Control\ServicesPipeTimeout
determines the length of time that the SCM waits for a service to call
StartServiceCtrlDispatcher and connect before it gives up, terminates the process, and
concludes that the service failed to start. If ServicesPipeTimeout doesn't exist, the SCM
uses a default timeout of 30 seconds. The SCM uses the same timeout value for all its
service communications.

When a service connects to the SCM through the pipe, the SCM sends the service a start
command. If the service fails to respond positively to the start command within the
timeout period, the SCM gives up and moves on to start the next service. When a service
doesn't respond to a start request, the SCM doesn't terminate the process, as it does when
a service doesn't call StartServiceCtrlDispatcher within the timeout; instead, it notes an
error in the system Event Log that indicates the service failed to start in a timely manner.

If the service the SCM starts with a call to ScStartService has a Type registry value of
SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is really a
device driver, and so ScStartService calls ScLoadDeviceDriver to load the driver.
ScLoadDeviceDriver enables the load driver security privilege for the SCM process and then
invokes the kernel service NtLoadDriver, passing in the data in the ImagePath value of the
driver's registry key. Unlike services, drivers don't need to specify an ImagePath value, and
if the value is absent, the SCM builds an image path by appending the driver's name to the
string \Winnt\System32\Drivers\.

ScAutoStartServices continues looping through the services belonging to a group until all
the services have either started or generated dependency errors. This looping is the SCM's
way of automatically ordering services within a group according to their DependOnService
dependencies. The SCM will start the services that other services depend on in earlier
loops, skipping the dependent services until subsequent loops. Note that the SCM ignores
Tag values for Win32 services, which you might come across in subkeys under the
HKLM\SYSTEM\CurrentControlSet\Services key; the I/O manager honors Tag values to
order device driver startup for boot and system-start drivers.

Once the SCM completes phases for all the groups listed in the ServiceGroupOrder\List
value, it performs a phase for services belonging to groups not listed in the value and a
final phase for services without a group.



Startup Errors

If a driver or a service reports an error in response to the SCM's startup command, the
ErrorControl value of the service's registry key determines how the SCM reacts. If the
ErrorControl value is SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn't
specified, the SCM simply ignores the error and continues processing service startups. If
the ErrorControl value is SERVICE_ERROR_NORMAL (1), the SCM writes an event to the
system Event Log that says, "The <service name> service failed to start due to the
following error:" The SCM includes the textual representation of the Win32 error code that
the service returned to the SCM as the reason for the startup failure in the Event Log
record. Figure 5-12 shows the Event Log entry that reports a service startup error.

Figure 5-12 Service startup failure Event Log entry

If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or
SERVICE_ERROR_CRITICAL (3) reports a startup error, the SCM logs a record to the Event
Log and then calls the internal function ScRevertToLastKnownGood. This function switches
the system's registry configuration to a version, named last known good, with which the
system last booted successfully. Then it restarts the system using the NtShutdownSystem
system service, which is implemented in the executive. If the system is already booting
with the last known good configuration, the system just reboots.



Accepting the Boot and Last Known Good

Besides starting services, the system charges the SCM with determining when the
system's registry configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the
last known good control set. The CurrentControlSet key contains the Services key as a
subkey, so CurrentControlSet includes the registry representation of the SCM database. It
also contains the Control key, which stores many kernel-mode and user-mode subsystem
configuration settings. By default, a successful boot consists of a successful startup of
auto-start services and a successful user logon. A boot fails if the system halts because a
device driver crashes the system during the boot or if an auto-start service with an
ErrorControl value of SERVICE_ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a
startup error.

The SCM obviously knows when it has completed a successful startup of the auto-start
services, but Winlogon (\Winnt\System32\Winlogon.exe) must notify it when there is a
successful logon. Winlogon invokes the NotifyBootConfigStatus function when a user logs
on, and NotifyBootConfigStatus sends a message to the SCM. Following the successful
start of the auto-start services or the receipt of the message from NotifyBootConfigStatus
(whichever comes last), the SCM calls the system function NtInitializeRegistry to save the
current registry startup configuration.

Third-party software developers can supersede Winlogon's definition of a successful logon
with their own definition. For example, a system running Microsoft SQL Server might not
consider a boot successful until after SQL Server is able to accept and process
transactions. Developers impose their successful-boot definition by writing a boot-
verification program and installing the program by pointing to its location on disk with the
value stored in the registry key
HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram. In addition, a boot-
verification program's installation must disable Winlogon's call to NotifyBootConfigStatus
by setting HKLM\SOFTWARE\Microsoft\ Windows
NT\CurrentVersion\Winlogon\ReportBootOk to 0. When a boot-verification program is
installed, the SCM launches it after finishing auto-start services and waits for the
program's call to NotifyBootConfigStatus before saving the last known good control set.

Windows 2000 maintains several copies of CurrentControlSet, and CurrentControlSet is
really a symbolic registry link that points to one of the copies. The control sets have names
in the form HKLM\SYSTEM\ControlSetnnn, where nnn is a number such as 001 or 002. The
HKLM\SYSTEM\Select key contains values that identify the role of each control set. For
example, if CurrentControlSet points to ControlSet001, the Current value under Select has
a value of 1. The LastKnownGood value under Select contains the number of the last
known good control set, which is the control set last used to boot successfully. Another
value that might be on your system under the Select key is Failed, which points to the last
control set for which the boot was deemed unsuccessful and aborted in favor of an attempt
at booting with the last known good control set. Figure 5-13 displays a system's control
sets and Select values.



Figure 5-13 Control set selection key

NtInitializeRegistry takes the contents of the last known good control set and synchronizes
it with that of the CurrentControlSet key's tree. If this was the system's first successful
boot, the last known good won't exist and the system will create a new control set for it. If
the last known good tree exists, the system simply updates it with differences between it
and CurrentControlSet.

Last known good is helpful in situations in which a change to CurrentControlSet, such as
the modification of a system performance-tuning value under HKLM\SYSTEM\Control or the
addition of a service or device driver, causes the subsequent boot to fail. Users can press
F8 early in the boot process to bring up a menu that lets them direct the boot to use the
last known good control set, rolling the system's registry configuration back to the way it
was the last time the system booted successfully.

javascript:fullSize('F05yj13x.htm')


Service Failures

A service can have optional FailureActions and FailureCommand values in its registry key
that the SCM records during the service's startup. The SCM registers with the system so
that the system signals the SCM when a service process exits. When a service process
terminates unexpectedly, the SCM determines which services ran in the process and takes
the recovery steps specified by their failure-related registry values.

Actions that a service can configure for the SCM include restarting the service, running a
program, and rebooting the computer. Furthermore, a service can specify the failure
actions that take place the first time the service process fails, the second time, and
subsequent times, and can indicate a delay period that the SCM waits before restarting the
service if the service asks to be restarted. The service failure action of the IIS Admin
Service results in the SCM running the IISReset application, which performs cleanup work
and then restarts the service. You can easily manage the recovery actions for a service
with the Recovery tab of the service's Properties dialog box in the Services MMC snap-in,
as shown in Figure 5-14.

Figure 5-14 Service recovery options

javascript:fullSize('F05yj14x.htm')


Service Shutdown

When Winlogon calls the Win32 ExitWindowsEx function, ExitWindowsEx sends a message
to Csrss, the Win32 subsystem process, to invoke Csrss's shutdown routine. Csrss loops
through the active processes and notifies them that the system is shutting down. For every
system process except the SCM, Csrss waits up to the number of seconds specified by
HKU\.DEFAULT\Control Panel\ Desktop\WaitToKillAppTimeout (which defaults to 20
seconds) for the process to exit before moving on to the next process. When Csrss
encounters the SCM process, it also notifies it that the system is shutting down but
employs a timeout specific to the SCM. Csrss recognizes the SCM using the process ID
Csrss saved when the SCM registered with Csrss using the RegisterServicesProcess
function during system initialization. The SCM's timeout differs from that of other
processes because Csrss knows that the SCM communicates with services that need to
perform cleanup when they shutdown, and so an administrator might need to tune only
the SCM's timeout. The SCM's timeout value resides in the
HKLM\SYSTEM\CurrentControlSet\Control \WaitToKillServiceTimeout registry value, and it
defaults to 20 seconds.

The SCM's shutdown handler is responsible for sending shutdown notifications to all the
services that requested shutdown notification when they initialized with the SCM. The SCM
function ScShutdownAllServices loops through the SCM services database searching for
services desiring shutdown notification and sends each one a shutdown command. For
each service to which it sends a shutdown command, the SCM records the value of the
service's wait hint, a value that a service also specifies when it registers with the SCM. The
SCM keeps track of the largest wait hint it receives. After sending the shutdown messages,
the SCM waits either until one of the services it notified of shutdown exits or until the time
specified by the largest wait hint passes.

If the wait hint expires without a service exiting, the SCM determines whether one or more
of the services it was waiting on to exit have sent a message to the SCM telling the SCM
that the service is progressing in its shutdown process. If at least one service made
progress, the SCM waits again for the duration of the wait hint. The SCM continues
executing this wait loop until either all the services have exited or none of the services
upon which it's waiting has notified it of progress within the wait hint timeout period.

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss
waits for the SCM to exit. If Csrss's wait ends without the SCM having exited (the
WaitToKillServiceTimeout time expires), Csrss simply moves on, continuing the shutdown
process. Thus, services that fail to shut down in a timely manner are simply left running,
along with the SCM, as the system shuts down. Unfortunately, there's no way for
administrators to know whether they should raise the WaitToKillServiceTimeout value on
systems where services aren't getting a chance to shut down completely before the system
shuts down.



Shared Service Processes

Running every service in its own process instead of having services share a process
whenever possible wastes system resources. However, sharing processes means that if any
of the services in the process has a bug that causes the process to exit, all the services in
that process terminate.

Of the Windows 2000 built-in services, some run in their own process and some share a
process with other services. For example, the SCM process hosts the Event Log service,
the file server service (LanmanServer), and the LAN Manager name resolution service. The
services that SCM hosts in Windows 2000 are listed in Table 5-7. (Not all these services
are active on every system.)

Table 5-7 Windows 2000 Services That Run in the SCM

Service Service Description

Alerter Notifies selected users and computers of administrative alerts.

AppMgmt Provides software installation services such as Assign, Publish,
and Remove.

Browser Maintains an up-to-date list of computers on your network and
supplies the list to programs that request it.

Dhcp Manages network configuration by registering and updating IP
addresses and Domain Name System (DNS) names.

Dmserver Logical Disk Manager Watchdog Service

Dnscache Resolves and caches DNS names.

Eventlog Logs event messages that applications and Windows issue.
Event Log reports contain information that can be useful in
diagnosing problems. Reports are viewed in Event Viewer.

LanmanServer Provides remote procedure call (RPC) support and file, print,
and named pipe sharing.

LanmanWorkstation Provides network connections and communications.

LmHosts Enables support for NetBIOS over TCP/IP (NetBT) service and
for NetBIOS name resolution.

Messenger Sends and receives messages that administrators or the Alerter
service transmit.

PlugPlay Manages device installation and configuration and notifies
programs of device changes.

ProtectedStorage Provides protected storage for sensitive data, such as private
keys, to prevent access by unauthorized services, processes, or
users.

Seclogon Enables starting processes under alternate credentials.

TrkSvr Stores information so that files moved between volumes can be
tracked for each volume in the domain.

TrkWks Sends notifications of files moving between NTFS volumes in a
network domain.



W32Time Sets the computer clock.

Wmi Provides systems management information to and from drivers.

The security-related services, such as the Security Accounts Manager (SamSs) service, the
Net Logon (Netlogon) service, and the IPSec Policy Agent (PolicyAgent) service, share the
Lsass process.

There is also a "generic" process named Service Host (SvcHost -
\Winnt\System32\Svchost.exe) to contain multiple services. Multiple instances of SvcHost
can be running in different processes. Services that run in SvcHost processes include
Telephony (TapiSrv), Remote Procedure Call (RpcSs), and Remote Access Connection
Manager (RasMan). Windows 2000 implements services that run in SvcHost as DLLs and
includes an ImagePath definition of the form "%SystemRoot%\System32\svchost.exe -k
netsvcs" in the service's registry key. The service's registry key must also have a registry
value named ServiceDll under a Parameters subkey that points to the service's DLL file.

All services that share a common SvcHost process specify the same parameter ("-k
netsvcs" in the example in the preceding paragraph) so that they have a single entry in the
SCM's image database. When the SCM encounters the first service that has a SvcHost
ImagePath with a particular parameter during service startup, it creates a new image
database entry and launches a SvcHost process with the parameter. The new SvcHost
process takes the parameter and looks for a value having the same name as the
parameter under HKLM\ SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost.
SvcHost reads the contents of the value, interpreting it as a list of service names, and
notifies the SCM that it's hosting those services when SvcHost registers with the SCM.
Figure 5-15 presents an example Svchost registry key that shows that a SvcHost process
started with the "-k netsvcs" parameter is prepared to host a number of different network-
related services.

Figure 5-15 Svchost registry key

When the SCM encounters a SvcHost service during service startup with an ImagePath
matching an entry it already has in the image database, it doesn't launch a second process
but instead just sends a start command for the service to the SvcHost it already started for
that ImagePath value. The existing SvcHost process reads the ServiceDll parameter in the
service's registry key and loads the DLL into its process to start the service.

EXPERIMENT

javascript:fullSize('F05yj15x.htm')


Viewing Services Running Inside Processes

The Tlist utility, in the Windows 2000 Support Tools, accepts the /s command-line
option. With this option specified, Tlist displays a list of the services, if any, that
are executing within processes, as shown in the following example output. A
process that has "Svcs:" instead of "Title:" following its name is a service process,
and the names listed are those of services hosted by that process.

C:\>tlist /s 
   0 System Process 
   8 System 
 144 smss.exe 
 172 csrss.exe     Title: 
 192 winlogon.exe  Title: NetDDE Agent 
 220 services.exe  Svcs:  Browser,Dhcp,dmserver,Dnscache, 
                          Eventlog,lanmanserver,lanmanworkstation
                          LmHosts,Messenger,PlugPlay,ProtectedStor
                          seclogon,TrkWks,Wmi 
 232 lsass.exe     Svcs:  PolicyAgent,SamSs 
 392 svchost.exe   Svcs:  RpcSs 
 428 spoolsv.exe   Svcs:  Spooler 
 456 ati2plab.exe  Svcs:  Ati HotKey Poller 
 472 svchost.exe   Svcs:  EventSystem,Netman,NtmsSvc,RasMan,SENS,T
 508 regsvc.exe    Svcs:  RemoteRegistry 
 544 WinMgmt.exe   Svcs:  WinMgmt 
 836 Explorer.Exe  Title: Program Manager 
 712 RealPlay.exe  Title: 
 748 Atiptaxx.exe  Title: ATI Tray Icon Application 
 724 DESKTOPS.EXE  Title: MultiDesk 
 824 Explorer.Exe  Title: Program Manager 
 900 Explorer.Exe  Title: Program Manager 
 564 cmd.exe       Title: Command Prompt - tlist /s 
 752 ntvdm.exe 
 668 calc.exe      Title: Calculator 
 848 calc.exe      Title: Calculator 
 308 calc.exe      Title: Calculator 
 660 tlist.exe 



Service Control Programs

Service control programs are standard Win32 applications that use the SCM functions
CreateService, OpenService, StartService, ControlService, QueryServiceStatus, and
DeleteService. To use the SCM functions, an SCP must first open a communications
channel to the SCM by calling the OpenSCManager function. At the time of the open call,
the SCP must specify what types of actions it wants to perform. For example, if an SCP
simply wants to enumerate and display the services present in the SCM's database, it
requests enumerate-service access in its call to OpenSCManager. During its initialization,
the SCM creates an internal object that represents the SCM database and uses the
Windows 2000 security functions to protect the object with a security descriptor that
specifies what accounts can open the object with what access permissions. For example,
the security descriptor indicates that the Everyone group (of which every account is a
member) can open the SCM object with enumerate-service access. However, only
administrators can open the object with the access required to create or delete a service.

As it does for the SCM database, the SCM implements security for services themselves.
When an SCP creates a service by using the CreateService function, it specifies a security
descriptor that the SCM associates internally with the service's entry in the service
database. The SCM stores the security descriptor in the service's registry key as the
Security value, and it reads that value when it scans the registry's Services key during
initialization so that the security settings persist across reboots. In the same way that an
SCP must specify what types of access it wants to the SCM database in its call to
OpenSCManager, an SCP must tell the SCM what access it wants to a service in a call to
OpenService. Accesses that an SCP can request include the ability to query a service's
status and to configure, stop, and start a service.

The SCP you're probably most familiar with is the Services MMC snap-in that's included in
Windows 2000, which resides in \Winnt\System32\Filemgr.dll. The Windows 2000 resource
kits include a command-line SCP named Sc.exe (Service Controller tool) and a GUI SCP
named Srvinstw.exe (Service Creation Wizard).

SCPs sometimes layer service policy on top of what the SCM implements. A good example
is the timeout that the Services MMC snap-in implements when a service is started
manually. The snap-in presents a progress bar that represents the progress of a service's
startup. Whereas the SCM waits indefinitely for a service to respond to a start command,
the Services snap-in waits only 2 minutes before the progress bar reaches 100 percent and
the snap-in announces that the service didn't start in a timely manner. Services indirectly
interact with SCPs by setting their configuration status to reflect their progress as they
respond to SCM commands such as the start command. SCPs query the status with the
QueryServiceStatus function. They can tell when a service actively updates the status
versus when a service appears to be hung, and the SCM can take appropriate actions in
notifying a user about what the service is doing.



[Previous] [Next]



Windows Management Instrumentation
Windows NT has always had integrated performance and system-event monitoring tools.
Applications and the system typically use the Event Manager to report errors and
diagnostic messages. The Event Viewer utility lets administrators view event output from
either the local computer or another computer on the network. Similarly, the performance
counter mechanism lets applications and operating system components report
performance-related statistics to performance-monitoring applications such as the
Performance Monitor.

Although the Windows NT 4 event-monitoring and performance-monitoring features met
their design goals, they had limitations. For example, the programming interfaces differ
from one another, and this variation increases the complexity of applications that use both
event and performance monitoring to collect data. The level of granularity the performance
counter mechanism provides can be poor, especially across a network, because it retrieves
all the performance counters defined on the system and not just the object you're
interested in. It's an all-or-nothing proposition: no way exists for an application to query
the performance information of only specific components. Perhaps the biggest drawback to
the monitoring facilities in Windows NT 4 is that they have little or no extensibility and that
neither event logging nor performance data collection provides the two-way interaction
necessary in a management API. Applications must provide data in predefined formats.
The Performance API provides no way for an application to receive notification of
performance-related events, and applications that request notification of Event Manager
events can't restrict notification to specific event types or sources. Finally, clients of either
collection facility can't communicate with event-data or performance-data providers
through the Event Manager or Performance API.

To address these limitations as well as to provide management capabilities for other types
of data sources, Windows 2000 has a new management mechanism, Windows
Management Instrumentation (WMI). WMI is an implementation of Web-Based Enterprise
Management (WBEM), a standard that the Distributed Management Task Force (DMTF—an
industry consortium) defines. The WBEM standard encompasses the design of an
extensible enterprise data-collection and data-management facility that has the flexibility
and extensibility required to manage local and remote systems that comprise arbitrary
components. WMI support was added to Windows NT 4 in Service Pack 4. It is also
supported in Windows 95 OSR2 and Windows 98. Although most of this section applies to
all the Windows platforms that support WMI, implementation details are specific to
Windows 2000.



WMI Architecture

WMI consists of four main components, as shown in Figure 5-16: management
applications, WMI infrastructure, providers, and managed objects. Management
applications are Windows applications that access and display or process data that the
applications obtain about managed objects. A simple example of a management
application is a Performance tool replacement that relies on WMI rather than the
Performance API to obtain performance information. A more complex example is an
enterprise-management tool that lets administrators perform automated inventories of the
software and hardware configuration of every computer in their enterprise.

Figure 5-16 WMI architecture

Developers typically must target management applications to collect data from and
manage specific objects. An object might represent one component, such as a network
adapter device, or a collection of components, such as a computer. (The computer object
might contain the network adapter object.) Providers need to define and export the
representation of the objects that management applications are interested in. For example,
the vendor of a network adapter might want to add adapter-specific properties to the
network adapter WMI support that Windows 2000 includes, querying and setting the
adapter's state and behavior as the management applications direct. In some cases (for
example, for device drivers), Microsoft supplies a provider that has its own API to help
developers leverage the provider's implementation for their own managed objects with
minimal coding effort.

The WMI infrastructure, the heart of which is the Common Information Model (CIM) Object
Manager (CIMOM), is the glue that binds management applications and providers. (CIM is
described later in this chapter.) The infrastructure also serves as the object-class store
and, in many cases, as the storage manager for persistent object properties. WMI
implements the store, or repository, as an on-disk database named the CIMOM Object
Repository. As part of its infrastructure, WMI supports several APIs through which
management applications access object data and providers supply data and class
definitions.

Win32 programs use the WMI COM API, the primary management API, to directly interact
with WMI. Other APIs layer on top of the COM API and include an Open Database
Connectivity (ODBC) adapter for the Microsoft Access database application. A database
developer uses the WMI ODBC adapter to embed references to object data in the
developer's database. Then the developer can easily generate reports with database

javascript:fullSize('F05yj16x.htm')


queries that contain WMI-based data. WMI ActiveX controls support another layered API.
Web developers use the ActiveX controls to construct Web-based interfaces to WMI data.
Another management API is the WMI scripting API, for use in script-based applications and
Microsoft Visual Basic programs. WMI scripting support exists for all Microsoft
programming language technologies.

As they are for management applications, WMI COM interfaces constitute the primary API
for providers. However, unlike management applications, which are COM clients, providers
are COM or Distributed COM (DCOM) servers (that is, the providers implement COM
objects that WMI interacts with). Possible embodiments of a WMI provider include DLLs
that load into WMI's manager process and stand-alone Win32 applications or Win32
services. Microsoft includes a number of built-in providers that present data from well-
known sources, such as the Performance API, the registry, the Event Manager, Active
Directory, SNMP, and Windows Driver Model (WDM) device drivers. The WMI SDK lets
developers develop third-party WMI providers.



Providers

At WBEM's core is the DMTF-designed CIM specification. The CIM specifies how
management systems represent, from a systems management perspective, anything from
a computer to an application or device on a computer. Provider developers use the CIM to
represent the components that make up the parts of an application for which the
developers want to enable management. Developers use the Managed Object Format
(MOF) language to implement a CIM representation.

In addition to defining classes that represent objects, a provider must interface WMI to the
objects. WMI classifies providers according to the interface features the providers supply.
Table 5-8 lists WMI provider classifications. Note that a provider can implement one or
more features; therefore, a provider can be, for example, both a class and an event
provider. To clarify the feature definitions in Table 5-8, let's look at a provider that
implements several of those features. The Event Log provider defines several objects,
including an Event Log Computer, an Event Log Record, and an Event Log File. The Event
Log provider is a Class provider because it defines these objects by using classes and must
give the class definitions to WMI. This provider is an Instance provider as well because it
can define multiple instances for several of its classes. One class for which the Event Log
provider defines multiple instances is the Event Log File class; the Event Log provider
defines an instance of this class for each of the system's event logs (that is, System Event
Log, Application Event Log, and Security Event Log).

Table 5-8 Provider Classifications

Classification Description

Class Can supply, modify, delete, and enumerate a provider-specific class.
Can also support query processing. Active Directory is a rare
example of a service that is class provider.

Instance Can supply, modify, delete, and enumerate instances of system and
provider-specific classes. An instance represents a managed object.
Can also support query processing.

Property Can supply and modify individual object property values.

Method Supplies methods for a provider-specific class.

Event Generates event notifications.

Event
consumer

Maps a physical consumer to a logical consumer to support event
notification.

The Event Log provider defines the instance data and lets management applications
enumerate the records. To let management applications use WMI to back up and restore
the Event Log files, the Event Log provider implements backup and restore methods for
Event Log File objects. Doing so makes the Event Log provider a Method provider. Finally, a
management application can register to receive notification whenever a new record writes
to one of the Event Logs. Thus, the Event Log provider serves as an Event provider when it
uses WMI event notification to tell WMI that Event Log records have arrived.



The Common Information Model and the Managed Object Format
Language

The CIM follows in the steps of object-oriented languages such as C++ and Java, in which
a modeler designs representations as classes. Working with classes lets developers use the
powerful modeling techniques of inheritance and composition. Subclasses can inherit the
attributes of a parent class, and they can add their own characteristics and override the
characteristics they inherit from the parent class. A class that inherits properties from
another class derives from that class. Classes also compose: a developer can build a class
that includes other classes.

The DMTF provides multiple classes as part of the WBEM standard. These classes are CIM's
basic language and represent objects that apply to all areas of management. The classes
are part of the CIM core model. An example of a core class is
CIM_ManagedSystemElement. This class contains a few basic properties that identify
physical components such as hardware devices, and logical components such as processes
and files. The properties include a caption, description, installation date, and status. Thus,
the CIM_LogicalElement and CIM_PhysicalElement classes inherit the attributes of the
CIM_ManagedSystemElement class. These two classes are also part of the CIM core model.
The WBEM standard calls these classes abstract classes because they exist solely as
classes that other classes inherit (that is, no object instances of an abstract class exist).
You can therefore think of abstract classes as templates that define properties for use in
other classes.

A second category of classes represents objects that are specific to management areas but
independent of a particular implementation. These classes constitute the common model
and are considered an extension of the core model. An example of a common-model class
is the CIM_FileSystem class, which inherits the attributes of CIM_LogicalElement. Because
virtually every operating system, including Windows 2000, Linux, and other varieties of
UNIX, rely on file-system-based structured storage, the CIM_FileSystem class is an
appropriate constituent of the common model.

The final class category comprises technology-specific additions to the common model.
Windows 2000 defines a large set of these classes to represent objects specific to the
Win32 environment. Because all operating systems store data in files, the CIM common
model includes the CIM_LogicalFile class. The CIM_DataFile class inherits the
CIM_LogicalFile class, and Win32 adds the Win32_PageFile and Win32_ShortcutFile file
classes for those Win32 file types.

The Event Log provider makes extensive use of inheritance. Figure 5-17 shows a view of
the WMI CIM Studio, a class browser that ships with the WMI SDK. (Microsoft supplies the
WMI SDK with MSDN software and the Platform SDK.) You can see where the Event Log
provider relies on inheritance in the provider's Win32_NTEventlogFile class, which derives
from CIM_DataFile. Event Log files are data files that have additional Event Log_specific
attributes such as a log file name (LogfileName) and a count of the number of records that
the file contains (NumberOfRecords). The tree that the class browser shows reveals that
Win32_NTEventlogFile is based on several levels of inheritance, in which CIM_DataFile
derives from CIM_LogicalFile, which derives from CIM_LogicalElement, and
CIM_LogicalElement derives from CIM_ManagedSystemElement.



Figure 5-17 WMI CIM Studio

As stated earlier, WMI provider developers write their classes in the MOF language. The
following output shows the definition of the Event Log provider's Win32_NTEventlogFile,
which is selected in Figure 5-17. Notice the correlation between the properties that the
right panel in Figure 5-17 lists and those properties' definitions in the MOF file below. CIM
Studio uses yellow arrows to tag those properties that a class inherits. Thus, you don't see
those properties specified in Win32_NTEventlogFile's definition.

[dynamic,provider("MS_NT_EVENTLOG_PROVIDER"),Locale(1033), 
UUID("{8502C57B-5FBB-11D2-AAC1-006008C78BC7}")]  
class Win32_NTEventlogFile : CIM_DataFile 
{ 
  [read] string LogfileName; 
  [read,write] uint32 MaxFileSize; 
  [read] uint32 NumberOfRecords; 
  [read,volatile,ValueMap{"0," "1..365," "4294967295"}]  
    string OverWritePolicy; 
  [read,write,Units("Days"),Range("0-365 | 4294967295")] 
    uint32 OverwriteOutDated; 
  [read] string Sources[]; 
  [implemented,Privileges{"SeSecurityPrivilege," "SeBackupPrivilege"
    uint32 ClearEventlog([in] string ArchiveFileName); 
  [implemented,Privileges{"SeSecurityPrivilege," "SeBackupPrivilege"
    uint32 BackupEventlog([in] string ArchiveFileName); 
}; 

One term worth reviewing is dynamic, which is a descriptive designator for the
Win32_NTEventlogFile class that the MOF file in the preceding output shows. Dynamic
means that the WMI infrastructure asks the WMI provider for the values of properties
associated with an object of that class whenever a management application queries the
object's properties. A static class is one in the WMI repository; the WMI infrastructure
refers to the repository to obtain the values instead of asking a provider for the values.
Because updating the repository is a relatively expensive operation, dynamic providers are
more efficient for objects that have properties that change frequently.

javascript:fullSize('F05yj17x.htm')


After constructing classes in MOF, WMI developers can supply the class definitions to WMI
in several ways. WDM provider developers compile an MOF file into a binary MOF (BMF) file
—a more compact binary representation than an MOF file—and give the BMF files to the
WDM infrastructure. Another way is for the provider to compile the MOF and use WMI COM
APIs to give the definitions to the WMI infrastructure. Finally, a provider can use the MOF
Compiler (Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled
representation directly.



The WMI Namespace

Classes define the properties of objects, and objects are class instances on a system. WMI
uses a namespace that contains several subnamespaces that WMI arranges hierarchically
to organize objects. A management application must connect to a namespace before the
application can access objects within the namespace.

WMI names the namespace root directory root. All WMI installations have four predefined
namespaces that reside beneath root: CIMV2, Default, Security, and WMI. Some of these
namespaces have other namespaces within them. For example, CIMV2 includes the
Applications and ms_409 namespaces as subnamespaces. Providers sometimes define
their own namespaces; you can see the WMI namespace (which the Windows device driver
WMI provider defines) beneath root on Windows 2000.

Unlike a file system namespace, which comprises a hierarchy of directories and files, a
WMI namespace is only one level deep. Instead of using names as a file system does, WMI
uses object properties that it defines as keys to identify the objects. Management
applications specify class names with key names to locate specific objects within a
namespace. Thus, each instance of a class must be uniquely identifiable by its key values.
For example, the Event Log provider uses the Win32_NTLogEvent class to represent
records in an Event Log. This class has two keys: Logfile, a string; and RecordNumber, an
unsigned integer. A management application that queries WMI for instances of Event Log
records obtains them from the provider key pairs that identify records. The application
refers to a record using the syntax that you see in this example object pathname:

\\PICKLES\CIMV2:Win32_NTLogEvent.Logfile="Application," 
                                         RecordNumber="1" 

The first component in the name (\\PICKLES) identifies the computer on which the object
is located, and the second component (\CIMV2) is the namespace in which the object
resides. The class name follows the colon, and key names and their associated values
follow the period. A comma separates the key values.

WMI provides interfaces that let applications enumerate all the objects in a particular class
or to make queries that return instances of a class that match a query criteria.



Class Association

Many object types are related to one another in some way. For example, a computer object
has a processor, software, an operating system, active processes, and so on. WMI lets
providers construct an association class to represent a logical connection between two
different classes. Association classes associate one class with another, so the classes have
only two properties: a class name and the Ref modifier. The following output shows an
association in which the Event Log provider's MOF file associates the Win32_NTLogEvent
class with the Win32_ComputerSystem class. Given an object, a management application
can query associated objects. In this way, a provider defines a hierarchy of objects.

[dynamic,provider("MS_NT_EVENTLOG_PROVIDER"), 
 EnumPrivileges{"SeSecurityPrivilege"},Locale(1033), 
 UUID("{8502C57F-5FBB-11D2-AAC1-006008C78BC7}"), 
 Association : ToInstance]  
class Win32_NTLogEventComputer 
{ 
  [key,read] Win32_ComputerSystem Ref Computer; 
  [key,read] Win32_NTLogEvent Ref Record; 
}; 
 
Instance of __Win32Provider as $EventProv 
{ 
  Name = "MS_NT_EVENTLOG_EVENT_PROVIDER"; 
  ClsId = "{F55C5B4C-517D-11d1-AB57-00C04FD9159E}"; 
}; 

Figure 5-18 shows the WMI Object Browser (another development tool that the WMI SDK
includes) displaying the root of the CIMV2 namespace. Win32 system components typically
place their objects within the CIMV2 namespace. The Object Browser first locates the
Win32_ComputerSystem object instance DSOLOMON, which is the object that represents
the computer. Then, the Object Browser obtains the objects associated with
Win32_ComputerSystem and displays them beneath DSOLOMON. The Object Browser user
interface displays association objects with a double-arrow folder icon. The associated class
type's objects display beneath the folder.

Figure 5-18 WMI Object Browser

javascript:fullSize('F05yj18x.htm')


You can see in the Object Browser that the Event Log provider's association class
Win32_NTLogEventComputer is beneath DSOLOMON and that numerous instances of the
Win32_NTLogEvent class exist. Refer to the preceding output to verify that the MOF file
defines the Win32_NTLogEventComputer class to associate the Win32_ComputerSystem
class with the Win32_NTLogEvent class. Selecting an instance of Win32_NTLogEvent in the
Object Browser reveals that class's properties under the Properties tab in the right-hand
pane. Microsoft intended the Object Browser to help WMI developers examine their
objects, but a management application would perform the same operations and display
properties or collected information more intelligibly.



WMI Implementation

The WMI infrastructure implements primarily in the \Winnt\System32\Wbem\
Winmgmt.exe file. This file runs as a Win32 service that the Windows 2000 SCM starts the
first time a management application or WMI provider tries to access WMI APIs. Most WMI
components reside by default in \Winnt\System32 and \Winnt\System32\Wbem, including
Win32 MOF files, built-in provider DLLs, and management application WMI DLLs. Look in
the \Winnt\System32\Wbem directory, and you'll find Ntevt.mof, the Event Log provider
MOF file. You'll also find Ntevt.dll, the Event Log provider's DLL, which Winmgmt.exe loads.

Directories beneath \Winnt\System32\Wbem store the repository, log files, and third-party
MOF files. WMI implements the repository—named the CIMOM repository—as the file
\Winnt\System32\Wbem\Repository\Cim.rep. Winmgmt honors numerous registry settings
related to the repository (including various internal performance parameters such as
CIMOM backup locations and intervals) that the repository's
HKLM\SOFTWARE\Microsoft\WBEM\CIMOM registry key stores.

Device drivers use special interfaces to provide data to and accept commands—called the
WMI System Control commands—from WMI. These interfaces are part of the WDM, which
is explained in Chapter 9. Because the interfaces are cross-platform, they fall under the
\root\WMI namespace.



WMI Security

WMI implements security at the namespace level. If a management application
successfully connects to a namespace, the application can view and access the properties
of all the objects in that namespace. An administrator can use the WMI Control application
to control which users can access a namespace. To start the WMI Control application, from
the Start menu, select Programs, Administrative Tools, Computer Management. Next, open
the Services And Applications branch. Right-click WMI Control and select Properties to
launch the WMI Control Properties dialog box, which Figure 5-19 shows. To configure
security for namespaces, click the Security tab, select the namespace, and click Security.
The other tabs in the WMI Control Properties dialog box let you modify the performance
and backup settings that the registry stores.

Figure 5-19 WMI security properties



[Previous] [Next]



Conclusion
So far, we've examined the overall structure of Windows
2000 and the core system mechanisms that get the system
going, keep it running, and eventually shut it down. With
this foundation laid, we're ready to explore the individual
executive components in more detail, starting with
processes and threads.



[Previous] [Next]

Chapter 6



Processes, Threads, and Jobs
In this chapter, we'll explain the data structures and
algorithms that deal with processes, threads, and jobs in
Microsoft Windows 2000. The first section focuses on the
internal structures that make up a process. The second
section outlines the steps involved in creating a process
(and its initial thread). The internals of threads and thread
scheduling are then described. The chapter concludes with a
description of the job object.

Where relevant performance counters or kernel variables
exist, they are mentioned. Although this book isn't a Win32
programming book, the pertinent process, thread, and job
Win32 functions are listed so that you can pursue additional
information on their use.

Because processes and threads touch so many components
in Windows 2000, a number of terms and data structures
(such as working sets, objects and handles, system memory
heaps, and so on) are referred to in this chapter but are
explained in detail elsewhere in the book. To fully
understand this chapter, you need to be familiar with the
terms and concepts explained in chapters 1 and 2, such as
the difference between a process and a thread, the
Windows 2000 virtual address space layout, and the
difference between user mode and kernel mode.



[Previous] [Next]



Process Internals
This section describes the key Windows 2000 process data structures. Also
listed are key kernel variables, performance counters, and functions and tools
that relate to processes.



Data Structures

Each Windows 2000 process is represented by an executive process
(EPROCESS) block. Besides containing many attributes relating to a process, an
EPROCESS block contains and points to a number of other related data
structures. For example, each process has one or more threads represented by
executive thread (ETHREAD) blocks. (Thread data structures are explained in
the section "Thread Internals" later in this chapter.) The EPROCESS block and
its related data structures exist in system space, with the exception of the
process environment block (PEB), which exists in the process address space
(because it contains information that is modified by user-mode code).

In addition to the EPROCESS block, the Win32 subsystem process (Csrss)
maintains a parallel structure for each Windows 2000 process that executes a
Win32 program. Also, the kernel-mode part of the Win32 subsystem
(Win32k.sys) has a per-process data structure that is created the first time a
thread calls a Win32 USER or GDI function that is implemented in kernel mode.

Figure 6-1 is a simplified diagram of the process and thread data structures.
Each data structure shown in the figure is described in detail in this chapter.

Figure 6-1 Data structures associated with processes and threads

First let's focus on the process block. (We'll get to the thread block in the
section "Thread Internals" later in the chapter.) Figure 6-2 shows the key fields
in an EPROCESS block.

javascript:fullSize('F06yj01x.htm')


Figure 6-2 Structure of an executive process block

EXPERIMENT

Displaying the Format of an EPROCESS Block

For a list of most of the fields that make up an EPROCESS block and
their offsets in hexadecimal, type !processfields in the kernel debugger.
(See Chapter 1 for more information on the kernel debugger.) The
output looks like this:

kd> !processfields 
 EPROCESS structure offsets: 
    Pcb:                               0x0 
    ExitStatus:                        0x6c 
    LockEvent:                         0x70 
    LockCount:                         0x80 
    CreateTime:                        0x88 
    ExitTime:                          0x90 
    LockOwner:                         0x98 
    UniqueProcessId:                   0x9c 
    ActiveProcessLinks:                0xa0 
    QuotaPeakPoolUsage[0]:             0xa8 
    QuotaPoolUsage[0]:                 0xb0 

javascript:fullSize('F06yj02x.htm')


    PagefileUsage:                     0xb8 
    CommitCharge:                      0xbc 
    PeakPagefileUsage:                 0xc0 
    PeakVirtualSize:                   0xc4 
    VirtualSize:                       0xc8 
    Vm:                                0xd0 
    DebugPort:                         0x120 
    ExceptionPort:                     0x124 
    ObjectTable:                       0x128 
    Token:                             0x12c 
    WorkingSetLock:                    0x130 
    WorkingSetPage:                    0x150 
    ProcessOutswapEnabled:             0x154 
    ProcessOutswapped:                 0x155 
    AddressSpaceInitialized:           0x156 
    AddressSpaceDeleted:               0x157 
    AddressCreationLock:               0x158 
    ForkInProgress:                    0x17c 
    VmOperation:                       0x180 
    VmOperationEvent:                  0x184 
    PageDirectoryPte:                  0x1f0 
    LastFaultCount:                    0x18c 
    VadRoot:                           0x194 
    VadHint:                           0x198 
    CloneRoot:                         0x19c 
    NumberOfPrivatePages:              0x1a0 
    NumberOfLockedPages:               0x1a4 
    ForkWasSuccessful:                 0x182 
    ExitProcessCalled:                 0x1aa 
    CreateProcessReported:             0x1ab 
    SectionHandle:                     0x1ac 
    Peb:                               0x1b0 
    SectionBaseAddress:                0x1b4 
    QuotaBlock:                        0x1b8 
    LastThreadExitStatus:              0x1bc 
    WorkingSetWatch:                   0x1c0 
    InheritedFromUniqueProcessId:      0x1c8 
    GrantedAccess:                     0x1cc 
    DefaultHardErrorProcessing         0x1d0 
    LdtInformation:                    0x1d4 
    VadFreeHint:                       0x1d8 
    VdmObjects:                        0x1dc 



    DeviceMap:                         0x1e0 
    ImageFileName[0]:                  0x1fc 
    VmTrimFaultValue:                  0x20c 
    Win32Process:                      0x214 
    Win32WindowStation:                0x1c4 

The !processfields command shows the format of a process block, not
its contents. (The !process command actually dumps the contents of a
process block. An annotated example of the output from this command
is included later in this section.) Although some of the field names are
self-explanatory, the output doesn't give the data type of the fields, nor
does it show the format of the structures that are included within or
pointed to by the EPROCESS block, such as the kernel process block
(Pcb), quota block (QuotaBlock), and so on. By examining the offsets,
however, you can at least tell the length of a field. (Hint: Fields that are
4 bytes long and refer to some other structure are likely pointers.)

You can also use the !strct command (in the secondary kernel
debugger extension library Kdex2x86.dll) to display the format of a
process block. This command displays every field and its data type
(whereas the !processfields command displays only some of the fields
and doesn't display data type information). A portion of the output
follows:

kd> !kdex2x86.strct eprocess 
Loaded kdex2x86 extension DLL 
struct   _EPROCESS (sizeof=648) 
+000 struct   _KPROCESS Pcb 
+000    struct   _DISPATCHER_HEADER Header 
+000       byte     Type 
+001       byte     Absolute 
+002       byte     Size 
+003       byte     Inserted 
+004       int32    SignalState 
+008       struct   _LIST_ENTRY WaitListHead 
+008          struct   _LIST_ENTRY *Flink 
+00c          struct   _LIST_ENTRY *Blink 
+010    struct   _LIST_ENTRY ProfileListHead 
+010       struct   _LIST_ENTRY *Flink 
+014       struct   _LIST_ENTRY *Blink 
+018    uint32   DirectoryTableBase[2] 
+020    struct   _KGDTENTRY LdtDescriptor 
+020       uint16   LimitLow 



+022       uint16   BaseLow 
+024       union    __unnamed9 HighWord 
+024          struct   __unnamed10 Bytes 
+024             byte     BaseMid 
+025             byte     Flags1 
+026             byte     Flags2 
+027             byte     BaseHi 
+024          struct   __unnamed11 Bits 
+024             bits0-7 BaseMid 
+024             bits8-12 Type 
+024             bits13-14 Dpl 
+024             bits15-15 Pres 
+024             bits16-19 LimitHi 
+024             bits20-20 Sys 
+024             bits21-21 Reserved_0 
+024             bits22-22 Default_Big 
+024             bits23-23 Granularity 
+024             bits24-31 BaseHi 
+028    struct   _KIDTENTRY Int21Descriptor 
+028       uint16   Offset 
+02a       uint16   Selector 
+02c       uint16   Access 
+02e       uint16   ExtendedOffset 
+030    uint16   IopmOffset 
+032    byte     Iopl 
+033    byte     VdmFlag 
+034    uint32   ActiveProcessors 
+038    uint32   KernelTime 
+03c    uint32   UserTime 
+040    struct   _LIST_ENTRY ReadyListHead 
+040       struct   _LIST_ENTRY *Flink 
+044       struct   _LIST_ENTRY *Blink 
+048    struct   _LIST_ENTRY SwapListEntry 
+048       struct   _LIST_ENTRY *Flink 
+04c       struct   _LIST_ENTRY *Blink 
+050    struct   _LIST_ENTRY ThreadListHead 
+050       struct   _LIST_ENTRY *Flink 
+054       struct   _LIST_ENTRY *Blink 
+058    uint32   ProcessLock 
+05c    uint32   Affinity 
+060    uint16   StackCount 



+062    char     BasePriority 
+063    char     ThreadQuantum 
+064    byte     AutoAlignment 
+065    byte     State 
+066    byte     ThreadSeed 
+067    byte     DisableBoost 
+068    byte     PowerState 
+069    byte     DisableQuantum 
+06a    byte     Spare[2] 
+06c int32    ExitStatus 
+070 struct   _KEVENT LockEvent 
+070    struct   _DISPATCHER_HEADER Header 
+070       byte     Type 
+071       byte     Absolute 
+072       byte     Size 
+073       byte     Inserted 
+074       int32    SignalState 
+078       struct   _LIST_ENTRY WaitListHead 
+078          struct   _LIST_ENTRY *Flink 
+07c          struct   _LIST_ENTRY *Blink 
+080 uint32   LockCount 
+088 union    _LARGE_INTEGER CreateTime 
+088    uint32   LowPart 
+08c    int32    HighPart 
+088    struct   __unnamed3 u 
+088       uint32   LowPart 
+08c       int32    HighPart 
+088    int64    QuadPart 
+090 union    _LARGE_INTEGER ExitTime 
+090    uint32   LowPart 
+094    int32    HighPart 
+090    struct   __unnamed3 u 
+090       uint32   LowPart 
+094       int32    HighPart 
+090    int64    QuadPart 
+098 struct   _KTHREAD *LockOwner 
+09c void     *UniqueProcessId 
+0a0 struct   _LIST_ENTRY ActiveProcessLinks 
+0a0    struct   _LIST_ENTRY *Flink 
+0a4    struct   _LIST_ENTRY *Blink 
+0a8 uint32   QuotaPeakPoolUsage[2] 



+0b0 uint32   QuotaPoolUsage[2] 
+0b8 uint32   PagefileUsage 
+0bc uint32   CommitCharge 
+0c0 uint32   PeakPagefileUsage 
+0c4 uint32   PeakVirtualSize 
+0c8 uint32   VirtualSize 
+0d0 struct   _MMSUPPORT Vm 
+0d0    union    _LARGE_INTEGER LastTrimTime 
+0d0       uint32   LowPart 
+0d4       int32    HighPart 
+0d0       struct   __unnamed3 u 
+0d0          uint32   LowPart 
+0d4          int32    HighPart 
+0d0       int64    QuadPart 
+0d8    uint32   LastTrimFaultCount 
+0dc    uint32   PageFaultCount 
+0e0    uint32   PeakWorkingSetSize 
+0e4    uint32   WorkingSetSize 
+0e8    uint32   MinimumWorkingSetSize 
+0ec    uint32   MaximumWorkingSetSize 
+0f0     *VmWorkingSetList 
+0f4    struct   _LIST_ENTRY WorkingSetExpansionLinks 
+0f4       struct   _LIST_ENTRY *Flink 
+0f8       struct   _LIST_ENTRY *Blink 
+0fc    byte     AllowWorkingSetAdjustment 
+0fd    byte     AddressSpaceBeingDeleted 
+0fe    byte     ForegroundSwitchCount 
+0ff    byte     MemoryPriority 
+100    union    __unnamed13 u 
+100       uint32   LongFlags 
+100       struct   _MMSUPPORT_FLAGS Flags 
+100          bits0-0 SessionSpace 
+100          bits1-1 BeingTrimmed 
+100          bits2-2 ProcessInSession 
+100          bits3-3 SessionLeader 
+100          bits4-4 TrimHard 
+100          bits5-5 WorkingSetHard 
+100          bits6-6 WriteWatch 
+100          bits7-31 Filler 
+104    uint32   Claim 
+108    uint32   NextEstimationSlot 



+10c    uint32   NextAgingSlot 
+110    uint32   EstimatedAvailable 
+114    uint32   GrowthSinceLastEstimate 
+118 struct   _LIST_ENTRY SessionProcessLinks 
+118    struct   _LIST_ENTRY *Flink 
+11c    struct   _LIST_ENTRY *Blink 
+120 void     *DebugPort 
+124 void     *ExceptionPort 
+128 struct   _HANDLE_TABLE *ObjectTable 
+12c void     *Token 
+130 struct   _FAST_MUTEX WorkingSetLock 
+130    int32    Count 
+134    struct   _KTHREAD *Owner 
+138    uint32   Contention 
+13c    struct   _KEVENT Event 
+13c       struct   _DISPATCHER_HEADER Header 
+13c          byte     Type 
+13d          byte     Absolute 
+13e          byte     Size 
+13f          byte     Inserted 
+140          int32    SignalState 
+144          struct   _LIST_ENTRY WaitListHead 
+144             struct   _LIST_ENTRY *Flink 
+148             struct   _LIST_ENTRY *Blink 
+14c    uint32   OldIrql 
+150 uint32   WorkingSetPage 
+154 byte     ProcessOutswapEnabled 
+155 byte     ProcessOutswapped 
+156 byte     AddressSpaceInitialized 
+157 byte     AddressSpaceDeleted 
+158 struct   _FAST_MUTEX AddressCreationLock 
+158    int32    Count 
+15c    struct   _KTHREAD *Owner 
+160    uint32   Contention 
+164    struct   _KEVENT Event 
+164       struct   _DISPATCHER_HEADER Header 
+164          byte     Type 
+165          byte     Absolute 
+166          byte     Size 
+167          byte     Inserted 
+168          int32    SignalState 
+16c          struct   _LIST_ENTRY WaitListHead 



+16c             struct   _LIST_ENTRY *Flink 
+170             struct   _LIST_ENTRY *Blink 
+174    uint32   OldIrql 
+178 uint32   HyperSpaceLock 
+17c struct   _ETHREAD *ForkInProgress 
+180 uint16   VmOperation 
+182 byte     ForkWasSuccessful 
+183 byte     MmAgressiveWsTrimMask 
+184 struct   _KEVENT *VmOperationEvent 
+188 void     *PaeTop 
+18c uint32   LastFaultCount 
+190 uint32   ModifiedPageCount 
+194 void     *VadRoot 
+198 void     *VadHint 
+19c void     *CloneRoot 
+1a0 uint32   NumberOfPrivatePages 
+1a4 uint32   NumberOfLockedPages 
+1a8 uint16   NextPageColor 
+1aa byte     ExitProcessCalled 
+1ab byte     CreateProcessReported 
+1ac void     *SectionHandle 
+1b0 struct   _PEB *Peb 
+1b4 void     *SectionBaseAddress 
+1b8 struct   _EPROCESS_QUOTA_BLOCK *QuotaBlock 
+1bc int32    LastThreadExitStatus 
+1c0 struct   _PAGEFAULT_HISTORY *WorkingSetWatch 
+1c4 void     *Win32WindowStation 
+1c8 void     *InheritedFromUniqueProcessId 
+1cc uint32   GrantedAccess 
+1d0 uint32   DefaultHardErrorProcessing 
+1d4 void     *LdtInformation 
+1d8 void     *VadFreeHint 
+1dc void     *VdmObjects 
+1e0 void     *DeviceMap 
+1e4 uint32   SessionId 
+1e8 struct   _LIST_ENTRY PhysicalVadList 
+1e8    struct   _LIST_ENTRY *Flink 
+1ec    struct   _LIST_ENTRY *Blink 
+1f0 struct   _HARDWARE_PTE_X86 PageDirectoryPte 
+1f0    bits0-0 Valid 
+1f0    bits1-1 Write 
+1f0    bits2-2 Owner 



+1f0    bits3-3 WriteThrough 
+1f0    bits4-4 CacheDisable 
+1f0    bits5-5 Accessed 
+1f0    bits6-6 Dirty 
+1f0    bits7-7 LargePage 
+1f0    bits8-8 Global 
+1f0    bits9-9 CopyOnWrite 
+1f0    bits10-10 Prototype 
+1f0    bits11-11 reserved 
+1f0    bits12-31 PageFrameNumber 
+1f0 uint64   Filler 
+1f8 uint32   PaePageDirectoryPage 
+1fc byte     ImageFileName[16] 
+20c uint32   VmTrimFaultValue 
+210 byte     SetTimerResolution 
+211 byte     PriorityClass 
+212 byte     SubSystemMinorVersion 
+213 byte     SubSystemMajorVersion 
+212 uint16   SubSystemVersion 
+214 void     *Win32Process 
+218 struct   _EJOB *Job 
+21c uint32   JobStatus 
+220 struct   _LIST_ENTRY JobLinks 
+220    struct   _LIST_ENTRY *Flink 
+224    struct   _LIST_ENTRY *Blink 
+228 void     *LockedPagesList 
+22c void     *SecurityPort 
+230 struct   _WOW64_PROCESS *Wow64Process 
+238 union    _LARGE_INTEGER ReadOperationCount 
+238    uint32   LowPart 
+23c    int32    HighPart 
+238    struct   __unnamed3 u 
+238       uint32   LowPart 
+23c       int32    HighPart 
+238    int64    QuadPart 
+240 union    _LARGE_INTEGER WriteOperationCount 
+240    uint32   LowPart 
+244    int32    HighPart 
+240    struct   __unnamed3 u 
+240       uint32   LowPart 
+244       int32    HighPart 



+240    int64    QuadPart 
+248 union    _LARGE_INTEGER OtherOperationCount 
+248    uint32   LowPart 
+24c    int32    HighPart 
+248    struct   __unnamed3 u 
+248       uint32   LowPart 
+24c       int32    HighPart 
+248    int64    QuadPart 
+250 union    _LARGE_INTEGER ReadTransferCount 
+250    uint32   LowPart 
+254    int32    HighPart 
+250    struct   __unnamed3 u 
+250       uint32   LowPart 
+254       int32    HighPart 
+250    int64    QuadPart 
+258 union    _LARGE_INTEGER WriteTransferCount 
+258    uint32   LowPart 
+25c    int32    HighPart 
+258    struct   __unnamed3 u 
+258       uint32   LowPart 
+25c       int32    HighPart 
+258    int64    QuadPart 
+260 union    _LARGE_INTEGER OtherTransferCount 
+260    uint32   LowPart 
+264    int32    HighPart 
+260    struct   __unnamed3 u 
+260       uint32   LowPart 
+264       int32    HighPart 
+260    int64    QuadPart 
+268 uint32   CommitChargeLimit 
+26c uint32   CommitChargePeak 
+270 struct   _LIST_ENTRY ThreadListHead 
+270    struct   _LIST_ENTRY *Flink 
+274    struct   _LIST_ENTRY *Blink 
+278 struct   _RTL_BITMAP *VadPhysicalPagesBitMap 
+27c uint32   VadPhysicalPages 
+280 uint32   AweLock 

Table 6-1 explains some of the fields in the preceding experiment in more
detail and includes references to other places in the book where you can find



more information about them. As we've said before and will no doubt say
again, processes and threads are such an integral part of Windows 2000 that
it's impossible to talk about them without referring to many other parts of the
system. To keep the length of this chapter manageable, however, we've
covered those related subjects (such as memory management, security,
objects, and handles) elsewhere.

Table 6-1 Contents of the EPROCESS Block

Element Purpose Additional
Reference

Kernel process
(KPROCESS)
block

Common dispatcher object header,
pointer to the process page directory,
list of kernel thread (KTHREAD) blocks
belonging to the process, default base
priority, quantum, affinity mask, and
total kernel and user time for the
threads in the process.

Thread
scheduling

Process
identification

Unique process ID, creating process ID,
name of image being run, window
station process is running on.

Quota block Limits on nonpaged pool, paged pool,
and page file usage plus current and
peak process nonpaged and paged pool
usage. (Note: Several processes can
share this structure: all the system
processes point to the single
systemwide default quota block; all the
processes in the interactive session
share a single quota block Winlogon sets
up.

Virtual address
descriptors
(VADs)

Series of data structures that describes
the status of the portions of the address
space that exist in the process.

Memory
management
(Chapter 7)

Working set
information

Pointer to working set list (MMWSL
structure); current, peak, minimum, and
maximum working set size; last trim
time; page fault count; memory priority;
outswap flags; page fault history.

Memory
management
(Chapter 7)

Virtual memory
information

Current and peak virtual size, page file
usage, hardware page table entry for
process page directory.

Memory
management
(Chapter 7)

Exception local Interprocess communication channel to Local



procedure call
(LPC) port

which the process manager sends a
message when one of the process's
threads causes an exception.

procedure
calls
(Chapter 3)

Debugging LPC
port

Interprocess communication channel to
which the process manager sends a
message when one of the process's
threads causes a debug event.

Local
procedure
calls
(Chapter 3)

Access token
(ACCESS_TOKEN)

Executive object describing the security
profile of this process.

Security
(Chapter 8)

Handle table Address of per-process handle table. Object
handles
(Chapter 3)

Device map Address of object directory to resolve
device name references in (supports
multiple users).

Object
manager
(Chapter 3)

Process
environment
block (PEB)

Image information (base address,
version numbers, module list), process
heap information, and thread-local
storage utilization. (Note: The pointers
to the process heaps start at the first
byte after the PEB.)

Win32 subsystem
process block
(W32PROCESS)

Process details needed by the kernel-
mode component of the Win32
subsystem.

The kernel process (KPROCESS) block, which is part of the EPROCESS block,
and the process environment block (PEB), which is pointed to by the EPROCESS
block, contain additional details about the process object. The KPROCESS block
(which is sometimes called the PCB, or process control block) is illustrated in
Figure 6-3. It contains the basic information that the Windows 2000 kernel
needs to schedule threads. (Page directories are covered in Chapter 7, and
kernel thread blocks are described in more detail later in this chapter.)



Figure 6-3 Structure of the kernel process block

The PEB, which lives in the user process address space, contains information
needed by the image loader, the heap manager, and other Win32 system DLLs
that need to be writable from user mode. (The EPROCESS and KPROCESS
blocks are accessible only from kernel mode.) The PEB is always mapped at
address 0x7FFDF000. The basic structure of the PEB is illustrated in Figure 6-4
and is explained in more detail later in this chapter.

Figure 6-4 Fields of the process environment block

EXPERIMENT

Examining the PEB

javascript:fullSize('F06yj03x.htm')
javascript:fullSize('F06yj04x.htm')


You can dump the PEB structure with the !peb command in the kernel
debugger. The following example, which uses LiveKd, shows the PEB for
the LiveKd process:

kd> !peb 
PEB at 7FFDF000 
    InheritedAddressSpace:    No 
    ReadImageFileExecOptions: No 
    BeingDebugged:            No 
    ImageBaseAddress:         00400000 
    Ldr.Initialized: Yes 
    Ldr.InInitializationOrderModuleList: 131f40 . 134b98 
    Ldr.InLoadOrderModuleList: 131ec0 . 134b88 
    Ldr.InMemoryOrderModuleList: 131ec8 . 134b90 
        00400000 C:\nt\livekd.exe 
        77F80000 C:\WINNT\System32\ntdll.dll 
        77920000 C:\WINNT\system32\IMAGEHLP.dll 
        78000000 C:\WINNT\system32\MSVCRT.DLL 
        77E80000 C:\WINNT\system32\KERNEL32.dll 
        77E10000 C:\WINNT\system32\USER32.dll 
        77F40000 C:\WINNT\system32\GDI32.DLL 
        77DB0000 C:\WINNT\system32\ADVAPI32.dll 
        77D40000 C:\WINNT\system32\RPCRT4.DLL 
        72A00000 C:\WINNT\system32\DBGHELP.dll 
    SubSystemData:     0 
    ProcessHeap:       130000 
    ProcessParameters: 20000 
        WindowTitle:  '\nt\livekd' 
        ImageFile:    'C:\nt\livekd.exe' 
        CommandLine:  '\nt\livekd' 
        DllPath:      'C:\nt;.;C:\WINNT\System32; 
                       C:\WINNT\system;C:\WINNT; 
                       C:\WINNT\system32;C:\WINNT; 
                       C:\WINNT\system32\WBEM; 
                       C:\Program Files\Support Tools\; 
                       C:\Program Files\Resource Kit\' 
        Environment:  0x10000 



Kernel Variables

A few of the key kernel global variables that relate to processes are listed in
Table 6-2. These variables are referred to later in the chapter, when the steps
in creating a process are described.

Table 6-2 Process-Related Kernel Variables

Variable Type Description

PsActiveProcessHead Queue header List head of
process blocks

PsIdleProcess EPROCESS Idle process block

PsInitialSystemProcess Pointer to
EPROCESS

Pointer to the
process block of
the initial system
process (process
ID 2) that contains
the system threads

PspCreateProcessNotifyRoutine Array of
pointers

Array of pointers to
routines to be
called on process
creation and
deletion (maximum
of eight)

PspCreateProcessNotifyRoutineCount DWORD Count of registered
process notification
routines

PspLoadImageNotifyRoutine Array of
pointers

Array of pointers to
routines to be
called on image
load

PspLoadImageNotifyRoutineCount DWORD Count of registered
image-load
notification
routines

PspCidTable Pointer to
HANDLE_TABLE

Handle table for
process and thread
client IDs



Performance Counters

Windows 2000 maintains a number of counters with which you can track the
processes running on your system; you can retrieve these counters
programmatically or view them with the Performance tool. Table 6-3 lists the
performance counters relevant to processes (except for memory management
and I/O-related counters, which are described in chapters 7 and 9,
respectively).

Table 6-3 Process-Related Performance Counters

Object:
Counter Function

Process:
%
Privileged
Time

Describes the percentage of time that the threads in the
process have run in kernel mode during a specified interval.

Process:
%
Processor
Time

Describes the percentage of CPU time that the threads in the
process have used during a specified interval. This count is the
sum of % Privileged Time and % User Time.

Process:
% User
Time

Describes the percentage of time that the threads in the
process have run in user mode during a specified interval.

Process:
Elapsed
Time

Describes the total elapsed time in seconds since this process
was created.

Process:
ID
Process

Returns the process ID. This ID applies only while the process
exists because process IDs are reused.

Process:
Creating
Process
ID

Returns the process ID of the creating process. This value isn't
updated if the creating process exits.

Process:
Thread
Count

Returns the number of threads in the process.

Process:
Handle
Count

Returns the number of handles open in the process.



Relevant Functions

For reference purposes, some of the Win32 functions that apply to processes
are described in Table 6-4. For further information, consult the Win32 API
documentation in the MSDN Library.

Table 6-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread
using the caller's security
identification

CreateProcessAsUser Creates a new process and thread
with the specified alternate security
token

CreateProcessWithLogonW Creates a new process and thread
with the specified alternate security
token, allowing the user profile to
be loaded

OpenProcess Returns a handle to the specified
process object

ExitProcess Ends a process and notifies all
attached DLLs

TerminateProcess Ends a process without notifying the
DLLs

FlushInstructionCache Empties the specified process's
instruction cache

GetProcessTimes Obtains a process's timing
information, describing how much
time the process has spent in user
and kernel mode

GetExitCodeProcess Returns the exit code for a process,
indicating how and why the process
shut down

GetCommandLine Returns a pointer to the command-
line string passed to the current
process

GetCurrentProcessId Returns the ID of the current
process

GetProcessVersion Returns the major and minor



versions of the Windows version on
which the specified process expects
to run

GetStartupInfo Returns the contents of the
STARTUPINFO structure specified
during CreateProcess

GetEnvironmentStrings Returns the address of the
environment block

GetEnvironmentVariable Returns a specific environment
variable

Get/SetProcessShutdownParameters Defines the shutdown priority and
number of retries for the current
process

GetGuiResources Returns a count of User and GDI
handles



Relevant Tools

A number of tools for viewing (and modifying) processes and process
information are available. These tools are included within Windows 2000 itself
and within the Windows 2000 Support Tools, Windows 2000 debugging tools,
Windows 2000 resource kits, the Platform SDK, and the DDK. The trouble is,
you can't get all the information you need with one single tool. However, most
information is available from more than one tool, but the data is sometimes
identified by different names (and sometimes assigned different values) in each
of the tools. To help you determine which tool to use to get the basic process
information you need, consult Table 6-5. This table isn't a comprehensive list of
all the information available about a process—for example, you'll find out what
tools you can use to gather memory management information in Chapter 7—
but if you need the basics, you'll find them here.

Table 6-5 Process-Related Tools

The following experiments illustrate the various views of process information
you can obtain with some of these tools.

EXPERIMENT

Viewing Process Information with Task Manager

The built-in Windows 2000 Task Manager provides a quick list of the
processes running on the system. You can start Task Manager in one of
three ways: (1) press Ctrl+Shift+Esc, (2) right-click on the taskbar and
select Task Manager, or (3) press Ctrl+Alt+Delete and click the Task
Manager button. Once Task Manager has started, click the Processes
tab to see the list of running processes. Notice that processes are
identified by the name of the image of which they are an instance.
Unlike some objects in Windows 2000, processes can't be given global

javascript:fullSize('G06yj01x.htm')


names. To display additional details, choose Select Columns from the
View menu and select additional columns to be added, as shown here:

Although what you see in the Task Manager Processes tab is clearly a
list of processes, what the Applications tab displays isn't as obvious.
The Applications tab lists the top-level visible windows on all the
desktops in the interactive window station. (By default, there are two
desktop objects—you can create more by using the Win32
CreateDesktop function.) The Status column indicates whether or not
the thread that owns the window is in a Windows message wait state.
"Running" means the thread is waiting for windowing input; "Not
Responding" means the thread isn't waiting for windowing input (for
example, the thread might be running or waiting for I/O or some Win32
synchronization object).



From the Applications tab, you can match a task to the process that
owns the thread that owns the task window by right-clicking on the
task name and choosing Go To Process.

EXPERIMENT

Viewing the Process Tree

One unique attribute about a process that most tools don't display is
the parent or creator process ID. You can retrieve this value with the
Performance tool (or programmatically) by querying the Creating
Process ID. The Windows 2000 Support Tools command tlist /t uses the
information in the attribute to display a process tree that shows the
relationship of a process to its parent. Here's an example of output
from tlist /t:

C:\>tlist /t 
System Process (0) 
System (2) 
  smss.exe (21) 
    csrss.exe (24) 
    winlogon.exe (35) 
      services.exe (41) 



        spoolss.exe (69) 
        llssrv.exe (94) 
        LOCATOR.EXE (96) 
        RpcSs.exe (112) 
        inetinfo.exe (128) 
      lsass.exe (44) 
   nddeagnt.exe (119) 
explorer.exe (123) Program Manager 
  OSA.EXE (121) 
  WINWORD.EXE (117) Microsoft Word - msch02(s).doc 
  cmd.exe (72) Command Prompt - tlist /t 
    tlist.EXE (100) 

Tlist indents each process to show its parent/child relationship.
Processes whose parents aren't alive are left-justified, because even if
a grandparent process exists, there's no way to find that relationship.
Windows 2000 maintains only the creator process ID, not a link back to
the creator of the creator, and so forth.

To demonstrate the fact that Windows 2000 doesn't keep track of more
than just the parent process ID, follow these steps:

1. Open a Command Prompt window.

2. Type start cmd (which runs a second Command Prompt).

3. Bring up Task Manager.

4. Switch to the second Command Prompt.

5. Type mspaint (which runs Microsoft Paint).

6. Click the intermediate (second) Command Prompt window.

7. Type exit. (Notice that Paint remains.)

8. Switch to Task Manager.

9. Click the Applications tab.

10. Right-click on the Command Prompt task, and select Go To Process.

11. Click on the Cmd.exe process highlighted in gray.

12. Right-click on this process, and select End Process Tree.

13. Click Yes in the Task Manager Warning message box.



The first Command Prompt window will disappear, but you should still
see the Paintbrush window because it was the grandchild of the
Command Prompt process you terminated; and because the
intermediate process (the parent of Paintbrush) was terminated, there
was no link between the parent and the grandchild.

EXPERIMENT

Viewing Thread Activity with QuickSlice

QuickSlice gives a quick, dynamic view of the proportions of system
and kernel time that each process currently running on your system is
using. On line, the red part of the bar shows the amount of CPU time
spent in kernel mode, and the blue part shows the user-mode time.
(Although reproduced in the window below in black and white, the bars
in the online display are always red and blue.) The total of all bars
shown in the QuickSlice window should add up to 100 percent of CPU
time. To run QuickSlice, click the Start button, choose Run, and enter
Qslice.exe (assuming the Windows 2000 resource kit is in your path).
For example, try running a graphics-intensive application such as Paint
(Mspaint.exe). Open QuickSlice and Paint side by side, and draw
squiggles in the Paint window. When you do so, you'll see Mspaint.exe
running in the QuickSlice window, as shown here:

For additional information about the threads in a process, you can also
double-click on a process (on either the process name or the colored
bar). Here you can see the threads within the process and the relative
CPU time each thread uses (not across the system):



EXPERIMENT

Viewing Process Details with Process Viewer

The Process Viewer (Pviewer.exe) that comes with the Windows 2000
Support Tools permits you to view information about the running
processes and threads as well as to kill processes and change process
priority classes. You can use this tool to view processes both on the
local computer and across the network on remote machines running
Windows 2000. This tool is also available in the Platform SDK (where
it's called Pview.exe.) The Process Viewer is well documented in the
Windows 2000 Support Tools help file, but here's a quick overview of
the options available to you. The basic display of the Process Viewer
looks like this:

Here's what the various options do:

The Computer text box displays the name of the computer whose
processes are currently displayed. Click the Connect button to
browse for another computer.

javascript:fullSize('G06yj06x.htm')


The Memory Detail button shows memory management details
about the selected process, such as the amount of memory
committed to the process, the size of the working set, and so forth.

The Kill Process button kills the selected process. Be very careful
which process you kill, since the process will have no chance to
perform any cleanup.

The Refresh button refreshes the display—the Process Viewer
doesn't update the information unless you request it.

The Processor Time columns in the Process and Thread(s) list boxes
show the total processor time the process or thread has used since
it was created.

The Priority collection of radio buttons regulates the selected
process's priority class (the Real-time priority class isn't shown),
and the Thread Priority collection displays the relative thread
priorities of the threads within a process.

At the bottom of the window, the number of context switches and
the thread's dynamic priority, start address, and current PC are
displayed.

To see the other displays of process and thread information, try running
Tlist.exe (Support Tools), Pstat.exe (Platform SDK or www.reskit.com),
Pmon.exe (Support Tools), or Pulist.exe (resource kit).

EXPERIMENT

Using the Kernel Debugger !process Command

The !process command for the kernel debugger (described in Chapter
1) displays a subset of the information in an EPROCESS block. This
output is arranged in two parts for each process. First you see the
information about the process, as shown below. (Not all the fields in
the output are labeled—only the parts germane to this experiment.)

http://www.reskit.com/


After the basic process output comes a list of the threads in the
process. That output is explained in the experiment "Using the Kernel
Debugger !thread Command.." Other commands that display process
information include !handle, which dumps the process handle table
(described in more detail in the section "Object Handles and the
Process Handle Table" in Chapter 3). Process and thread security
structures are described in Chapter 8.

Another command that dumps an EPROCESS block is the !strct
command. See the experiment "Displaying the Format of an EPROCESS
Block" for more information on this command.

javascript:fullSize('G06yj07x.htm')


[Previous] [Next]



Flow of CreateProcess
So far in this chapter, you've seen the structures that are part of a process
and the API functions with which you (and the operating system) can
manipulate processes. You've also found out how you can use tools to view
how processes interact with your system. But how did those processes
come into being, and how do they exit once they've fulfilled their purpose?
In the following sections, you'll discover how a Win32 process comes to
life.

A Win32 process is created when an application calls one of the process
creation functions, such as CreateProcess, CreateProcessAsUser, or
CreateProcessWithLogonW. Creating a Win32 process consists of several
stages carried out in three parts of the operating system: the Win32 client-
side library Kernel32.dll, the Windows 2000 executive, and the Win32
subsystem process (Csrss). Because of the multiple environment
subsystem architecture of Windows 2000, creating a Windows 2000
executive process object (which other subsystems can use) is separated
from the work involved in creating a Win32 process. So, although the
following description of the flow of the Win32 CreateProcess function is
complicated, keep in mind that part of the work is specific to the semantics
added by the Win32 subsystem as opposed to the core work needed to
create a Windows 2000 executive process object.

The following list summarizes the main stages of creating a process with
the Win32 CreateProcess function. The operations performed in each stage
are described in detail in the subsequent sections.

1. Open the image file (.exe) to be executed inside the process.

2. Create the Windows 2000 executive process object.

3. Create the initial thread (stack, context, and Windows 2000 executive
thread object).

4. Notify the Win32 subsystem of the new process so that it can set up
for the new process and thread.

5. Start execution of the initial thread (unless the CREATE_SUSPENDED
flag was specified).

6. In the context of the new process and thread, complete the
initialization of the address space (such as load required DLLs) and
begin execution of the program.



Figure 6-5 shows an overview of the stages Windows 2000 follows to
create a process.

Figure 6-5 The main stages of process creation

Before describing these stages in more detail, we should mention a few
notes that pertain to all the stages.

In CreateProcess, the priority class for the new process is specified as
independent bits in the CreationFlags parameter. Thus, you can specify
more than one priority class for a single CreateProcess call. Windows
2000 resolves the question of which priority class to assign to the
process by choosing the lowest-priority class set.

If no priority class is specified for the new process, the priority class
defaults to Normal unless the priority class of the process that created
it is Idle or Below Normal, in which case the priority class of the new
process will have the same priority as the creating class.

If a Real-time priority class is specified for the new process and the
process's caller doesn't have the Increase Scheduling Priority privilege,
the High priority class is used instead. In other words, CreateProcess
doesn't fail just because the caller has insufficient privileges to create
the process in the Real-time priority class; the new process just won't
have as high a priority as Real-time.

javascript:fullSize('F06yj05x.htm')


All windows are associated with desktops, the graphical representation
of a workspace. If no desktop is specified in CreateProcess, the process
is associated with the caller's current desktop.

Enough background. The steps of CreateProcess are described in detail in
the following sections.

NOTE

Many steps of CreateProcess are related to the setup of the process
virtual address space and hence refer to many memory
management terms and structures, which are defined in Chapter 7.



Stage 1: Opening the Image to Be Executed

As illustrated in Figure 6-6, the first stage in CreateProcess is to find the
appropriate Win32 image that will run the executable file specified by the
caller and to create a section object to later map it into the address space
of the new process. If no image name is specified, the first token of the
command line (defined to be the first part of the command-line string
ending with a space or tab that is a valid file specification) is used as the
image filename.

Figure 6-6 Choosing a Win32 image to activate

If the executable file specified is a Win32 .exe, it is used directly. If it's not
a Win32 .exe (for example, if it's an MS-DOS, a Win16, a POSIX, or an
OS/2 application), CreateProcess goes through a series of steps to find a
Win32 support image to run it. This process is necessary because non-
Win32 applications aren't run directly—Windows 2000 instead uses one of
a few special support images that in turn are responsible for actually
running the non-Win32 program. For example, if you attempt to run a
POSIX application, CreateProcess identifies it as such and changes the
image to be run on the Win32 executable file Posix.exe. If you attempt to
run an MS-DOS or a Win16 executable, the image to be run becomes the
Win32 executable Ntvdm.exe. In short, you can't directly create a process
that is not a Win32 process. If Windows 2000 can't find a way to resolve
the activated image as a Win32 process (as shown in Table 6-6),
CreateProcess fails.

Table 6-6 Decision Tree for Stage 1 of CreateProcess

If the image is a/an This
image

And this will
happen

javascript:fullSize('F06yj06x.htm')


will run

POSIX executable file Posix.exe CreateProcess
restarts Stage 1

OS/2 1.x image Os2.exe CreateProcess
restarts Stage 1

MS-DOS application with an .exe, a
.com, or a .pif extension

Ntvdm.exe CreateProcess
restarts Stage 1

Win16 application Ntvdm.exe CreateProcess
restarts Stage 1

Command procedure MS-DOS
application with a .bat or a .cmd
extension

Cmd.exe CreateProcess
restarts Stage 1

Specifically, the decision tree that CreateProcess goes through to run an
image is as follows:

If the image is an OS/2 1.x application, the image to be run changes to
Os2.exe and CreateProcess restarts at Stage 1.

If the image is an MS-DOS application with an .exe, a .com, or a .pif
extension, a message is sent to the Win32 subsystem to check
whether an MS-DOS support process (Ntvdm.exe, specified in the
registry value
HKLM\SYSTEM\CurrentControlSet\Control\WOW\cmdline) has already
been created for this session. If a support process has been created, it
is used to run the MS-DOS application (the Win32 subsystem sends the
message to the VDM [Virtual DOS Machine] process to run the new
image) and CreateProcess returns. If a support process hasn't been
created, the image to be run changes to Ntvdm.exe and CreateProcess
restarts at Stage 1.

If the file to run has a .bat or a .cmd extension, the image to be run
becomes Cmd.exe, the Windows 2000 command prompt, and
CreateProcess restarts at Stage 1. (The name of the batch file is
passed as the first parameter to Cmd.exe.)

If the image is a Win16 (Windows 3.1) executable, CreateProcess must
decide whether a new VDM process must be created to run it or
whether it should use the default systemwide shared VDM process
(which might not yet have been created). The CreateProcess flags
CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM
control this decision. If these flags aren't specified, the registry value



HKLM\SYSTEM\CurrentControlSet\Control\WOW\DefaultSeparateVDM
dictates the default behavior. If the application is to be run in a
separate VDM, the image to be run changes to the value of
HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and
CreateProcess restarts at Stage 1. Otherwise, the Win32 subsystem
sends a message to see whether the systemwide VDM process exists
and can be used. (If the VDM process is running on a different desktop
or isn't running under the same security as the caller, it can't be used
and a new VDM process must be created.) If a systemwide VDM
process can be used, the Win32 subsystem sends a message to it to
run the new image and CreateProcess returns. If the VDM process
hasn't yet been created (or if it exists but can't be used), the image to
be run changes to the VDM support image and CreateProcess restarts
at Stage 1.

At this point, CreateProcess has successfully opened a valid Windows 2000
executable file and created a section object for it. The object isn't mapped
into memory yet, but it is open. Just because a section object has been
successfully created doesn't mean that the file is a valid Win32 image,
however; it could be a DLL or a POSIX executable. If the file is a POSIX
executable, the image to be run changes to Posix.exe and CreateProcess
restarts from the beginning of Stage 1. If the file is a DLL, CreateProcess
fails.

Now that CreateProcess has found a valid Win32 executable, it looks in the
registry under HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options to see whether a subkey
with the filename and extension of the executable image (but without the
directory and path information—for example, Image.exe) exists there. If it
does, CreateProcess looks for a value named Debugger for that key. If the
value isn't null, the image to be run becomes the string in that value and
CreateProcess restarts at Stage 1.

TIP

You can take advantage of this CreateProcess behavior and debug
the startup code of Windows 2000 service processes before they
start rather than attach the debugger after starting the service,
which doesn't allow you to debug the startup code. If you're feeling
mischievous, you can also exploit this behavior to confuse people
by causing another file to be run rather than the one they
specified.





Stage 2: Creating the Windows 2000 Executive Process
Object

At this point, CreateProcess has opened a valid Win32 executable file and
created a section object to map it into the new process address space.
Next it creates a Windows 2000 executive process object to run the image
by calling the internal system function NtCreateProcess. Creating the
executive process object (which is done by the creating thread) involves
the following substages:

A. Setting up the EPROCESS block

B. Creating the initial process address space

C. Creating the kernel process block

D. Concluding the setup of the process address space

E. Setting up the PEB

F. Completing the setup of the executive process object

NOTE

The only time there won't be a parent process is during system
initialization. After that point, a parent process is always required
in order to provide a security context for the new process.

Stage 2A: Setting Up the EPROCESS Block

This substage involves five steps:

1. Allocate and initialize the Windows 2000 EPROCESS block.

2. Set the new process's quota block to the address of its parent
process's quota block, and increment the reference count for the
parent's quota block.

3. Store the parent process's process ID and session ID (if applicable) in
the InheritedFromUniqueProcessId field in the new process object.

4. Set the new process's exit status to STATUS_PENDING.



5. Create the process's primary access token (a duplicate of its parent's
primary token). New processes inherit the security profile of their
parent. If the CreateProcessAsUser function is being used to specify a
different access token for the new process, the token is then changed
appropriately.

Stage 2B: Creating the Initial Process Address Space

The initial process address space consists of three pages:

Page directory

Hyperspace page

Working set list

To create these three pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map
the three initial pages.

2. To account for these new pages, the value 3 is deducted from the
kernel variable MmTotalCommittedPages and added to
MmProcessCommit.

3. The systemwide default process minimum working set size
(PsMinimumWorkingSet) is deducted from MmResident-AvailablePages.

4. The page table pages for the nonpaged portion of system space and
the system cache are mapped into the process.

5. The process minimum and maximum working set size are set to the
values of PsMinimumWorkingSet and PsMaximumWorkingSet,
respectively.

Stage 2C: Creating the Kernel Process Block

The next stage of CreateProcess is the initialization of the KPROCESS
block, which contains a pointer to a list of kernel threads. (The kernel has
no knowledge of handles, so it bypasses the object table.) The kernel
process block also points to the process's page table directory (used to
keep track of the process's virtual address space), the total time the
process's threads have executed, the process's default base-scheduling
priority (which starts as Normal, or 8, unless the parent process was set to
Idle or Below Normal, in which case the setting is inherited), the default
processor affinity for the threads in the process, and the initial value of the



process default quantum, which is taken from the value of
PspForegroundQuantum[0], the first entry in the systemwide quantum
array.

NOTE

The default initial quantum differs between Windows 2000
Professional and Windows 2000 Server. For more information on
thread quantums, turn to their discussion in the section "Thread
Scheduling."

Stage 2D: Concluding the Setup of the Process Address
Space

Setting up the address space for a new process is somewhat complicated,
so let's look at what's involved one step at a time. To get the most out of
this section, you should have some familiarity with the internals of the
Windows 2000 memory manager, which are described in Chapter 7.

1. The virtual memory manager sets the value of the process's last trim
time to the current time. The working set manager (which runs in the
context of the balance set manager system thread) uses this value to
determine when to initiate working set trimming.

2. The page frame number (PFN) database for the page directory as well
as the page directory entry, which maps hyperspace, are initialized.

3. The memory manager initializes the process's working set list—page
faults can now be taken.

4. The major and minor version numbers are copied from the executable
file to the EPROCESS block.

5. The section (created when the image file was opened) is now mapped
into the new process's address space, and the process section base
address is set to the base address of the image.

6. Ntdll.dll is mapped into the process.

7. The systemwide national language support (NLS) tables are mapped
into the process's address space.



NOTE

POSIX processes clone the address space of their parents, so they
don't have to go through these steps to create a new address
space. In the case of POSIX applications, the new process's section
base address is set to that of its parent process and the parent's
PEB is cloned for the new process.

8. If the parent process was contained in a job, the new process is added
to the job. (Jobs are described at the end of this chapter.)

9. CreateProcess inserts the new process block at the end of the Windows
2000 list of active processes (PsActiveProcessHead).

Stage 2E: Setting Up the PEB

CreateProcess allocates a page for the PEB and initializes a number of
fields, which are described in Table 6-7.

Table 6-7 Initial Values of the Fields of the PEB

Field Initial Value

ImageBaseAddress Base address of section

NumberOfProcessors KeNumberProcessors kernel variable

NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout MmCriticalSectionTimeout kernel
variable

HeapSegmentReserve MmHeapSegmentReserve kernel
variable

HeapSegmentCommit MmHeapSegmentCommit kernel
variable

HeapDeCommitTotalFreeThreshold MmHeapDeCommitTotalFreeThreshold
kernel variable

HeapDeCommitFreeBlockThreshold MmHeapDeCommitFreeBlockThreshold
kernel variable

NumberOfHeaps 0

MaximumNumberOfHeaps (Size of a page - size of a PEB) / 4



ProcessHeaps First byte after PEB

OSMajorVersion NtMajorVersion kernel variable

OSMinorVersion NtMinorVersion kernel variable

OSBuildNumber NtBuildNumber kernel variable &
0x3FFF

OSPlatformId 2

If the image file specifies explicit Win32 version values, this information
replaces the initial values shown in Table 6-7. The mapping from image
version information fields to PEB fields is described in Table 6-8.

Table 6-8 Win32 Replacements for Initial PEB Values

Field Name Value Taken from Image Header

OSMajorVersion OptionalHeader.Win32VersionValue & 0xFF

OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & 0xFF

OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) &
0x3FFF

OSPlatformId (OptionalHeader.Win32VersionValue >> 30) ^ 0x2

Stage 2F: Completing the Setup of the Executive Process
Object

Before the handle to the new process can be returned, a few final setup
steps must be completed:

1. The process handle table is initialized; if the inherit handles flag is set
for the parent process, any inheritable handles are copied from the
parent's object handle table into the new process. (For more
information about object handle tables, see Chapter 3.)

2. If you're running Windows 2000 Professional and the image header
specifies IMAGE_FILE_AGGRESIVE_WS_TRIM, the
PS_WS_TRIM_FROM_EXE_HEADER flag is set in the process block. This
causes the working set manager to aggressively steal pages from the
process. If you're running Windows 2000 Professional on a small-
memory x86 system, the PS_WS_TRIM_BACKGROUND_ONLY_APP flag
is set in the process block, which limits the aggressive trimming to
processes that aren't associated with the foreground window. These



working set flags are not set for processes created on systems running
Windows 2000 Server.

3. If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY
flag is set (indicating that the image can run only on a uniprocessor
system), a single CPU is chosen for all the threads in this new process
to run on. This choosing process is done by simply cycling through the
available processors—each time this type of image is run, the next
processor is used. In this way, these types of images are spread out
across the processors evenly.

4. If the image specifies an explicit processor affinity mask (for example,
a field in the configuration header), this value is copied to the PEB and
later set as the default process affinity mask.

5. If the parent process had an Event Log section in its PEB, the Event
Log is copied to the new process and a handle is duplicated to the
section for the new process.

6. If systemwide auditing of processes is enabled (which is accomplished
through the Group Policy snap-in), the process's creation is written to
the Audit Log.

7. The process's creation time is set, the handle to the new process is
returned to the caller (CreateProcess in Kernel32.dll), and execution
returns to the original caller of CreateProcess.



Stage 3: Creating the Initial Thread and Its Stack and
Context

At this point, the Windows 2000 executive process object is completely set
up. It still has no thread, however, so it can't do anything yet. Before the
thread can be created, it needs a stack and a context in which to run, so
these are set up now. The stack size for the initial thread is taken from the
image—there's no way to specify another size.

Now the initial thread can be created, which is done by calling
NtCreateThread. (For a detailed description of how a thread is created, see
the section "Flow of CreateThread.") The thread parameter (which can't be
specified in CreateProcess but can be specified in CreateThread) is the
address of the PEB. This parameter will be used by the initialization code
that runs in the context of this new thread (as described in Stage 6).
However, the thread won't do anything yet—it is created in a suspended
state and isn't resumed until the process is completely initialized (as
described in Stage 5).



Stage 4: Notifying the Win32 Subsystem About the New
Process

After all the necessary executive process and thread objects have been
created, Kernel32.dll sends a message to the Win32 subsystem so that it
can set up for the new process and thread. The message includes the
following information:

Process and thread handles

Entries in the creation flags

ID of the process's creator

Flag indicating whether the process belongs to a Win32 application (so
that Csrss can determine whether or not to show the startup cursor)

The Win32 subsystem performs the following steps when it receives this
message:

1. CreateProcess duplicates a handle for the process and thread. In this
step, the usage count of the process and the thread is incremented
from 1 (set at creation time) to 2.

2. If a process priority class isn't specified, CreateProcess sets it
according to the algorithm described below.

3. The Csrss process block is allocated.

4. The new process's exception port is set to be the general function port
for the Win32 subsystem so that the Win32 subsystem will receive a
message when an exception occurs in the process. (For further
information on exception handling, see Chapter 3.)

5. If the process is being debugged (that is, if it is attached to a debugger
process), the process debug port is set to the Win32 subsystem's
general function port. This setting ensures that Windows 2000 will
send debug events that occur in the new process (such as thread
creation and deletion, exceptions, and so on) as messages to the
Win32 subsystem so that it can then dispatch the events to the
process that is acting as the new process's debugger.

6. The Csrss thread block is allocated and initialized.

7. CreateProcess inserts the thread in the list of threads for the process.



8. The count of processes in this session is incremented.

9. The process shutdown level is set to x280 (the default process
shutdown level—see SetProcessShutdownParameters in the MSDN
Library documentation for more information).

10. The new process block is inserted into the list of Win32 subsystem-
wide processes.

11. The per-process data structure used by the kernel-mode part of the
Win32 subsystem (W32PROCESS structure) is allocated and initialized.

12. The application start cursor is displayed. This cursor is the familiar
arrow with an hourglass attached—the way that Windows 2000 says to
the user, "I'm starting something, but you can use the cursor in the
meantime." If the process doesn't make a GUI call after 2 seconds, the
cursor reverts to the standard pointer. If the process does make a GUI
call in the allotted time, CreateProcess waits 5 seconds for the
application to show a window. After that time, CreateProcess will reset
the cursor again.



Stage 5: Starting Execution of the Initial Thread

At this point, the process environment has been determined, resources for
its threads to use have been allocated, the process has a thread, and the
Win32 subsystem knows about the new process. Unless the caller specified
the CREATE_SUSPENDED flag, the initial thread is now resumed so that it
can start running and perform the remainder of the process initialization
work that occurs in the context of the new process (Stage 6).



Stage 6: Performing Process Initialization in the Context of
the New Process

KiInitializeContextThread, which is called by KeInitializeThread, builds the
initial context of the thread and the thread's kernel stack. The new thread
begins life running the kernel-mode thread startup routine
KiThreadStartup. (For a more detailed description of the thread startup
steps leading to this, see the section "Flow of CreateThread.") The
KiThreadStartup routine performs the following steps:

1. Lowers the IRQL level from DPC/dispatch level to APC (asynchronous
procedure call) level.

2. Enables working set expansion.

3. Queues a user-mode APC to the new thread to execute the user-mode
thread startup routine LdrInitializeThunk inside Ntdll.dll.

4. Lowers the IRQL level to 0, causing the APC to fire and
LdrInitializeThunk to be called. The LdrInitializeThunk routine initializes
the loader, heap manager, NLS tables, thread-local storage (TLS) array,
and critical section structures. It then loads any required DLLs and
calls the DLL entry points with the DLL_PROCESS_ATTACH function
code.

5. If the process being created is a debuggee, all threads in the process
are suspended. (Threads might have been created during step 3.) A
create process message is then sent to the process's debug port (the
Win32 subsystem function port because this is a Win32 process) so
that the subsystem can deliver the process startup debug event
(CREATE_PROCESS_DEBUG_INFO) to the appropriate debugger
process. KiThreadStartup then waits for the Win32 subsystem to get
the reply from the debugger (via the ContinueDebugEvent function).
When the Win32 subsystem replies, all the threads are resumed.

6. Finally, the image begins execution in user mode. This is done by
creating a trap frame that specifies the previous mode as user and the
address to return to as the main entry point of the image. Thus, when
the trap that caused the thread to start execution in kernel mode is
dismissed, the program begins running in user mode at the right place.



[Previous] [Next]



Thread Internals
Now that we've dissected processes, let's turn our attention to the structure of a thread.
Unless explicitly stated otherwise, you can assume that anything in this section applies to
both normal user-mode threads and kernel-mode system threads (described in Chapter 3).



Data Structures

At the operating system level, a Windows 2000 thread is represented by an executive
thread (ETHREAD) block, which is illustrated in Figure 6-7. The ETHREAD block and the
structures it points to exist in the system address space, with the exception of the thread
environment block (TEB), which exists in the process address space. In addition, the
Win32 subsystem process (Csrss) maintains a parallel structure for each thread created in
a Win32 process. Also, for threads that have called a Win32 subsystem USER or GDI
function, the kernel-mode portion of the Win32 subsystem (Win32k.sys) maintains a per-
thread data structure (called the W32THREAD structure) that the ETHREAD block points to.

Figure 6-7 Structure of the executive thread block

Fibers vs. Threads

Fibers allow an application to schedule its own "threads" of execution rather than
rely on the priority-based scheduling mechanism built into Windows 2000. Fibers
are often called "lightweight" threads, and in terms of scheduling, they're invisible
to the kernel because they're implemented in user mode in Kernel32.dll. To use
fibers, a call is first made to the Win32 ConvertThreadToFiber function. This
function converts the thread to a running fiber. Afterward, the newly converted
fiber can create additional fibers with the CreateFiber function. (Each fiber can
have its own set of fibers.) Unlike a thread, however, a fiber doesn't begin
execution until it's manually selected through a call to the SwitchToFiber function.
The new fiber runs until it exits or until it calls SwitchToFiber, again selecting
another fiber to run. For more information, see the Platform SDK documentation
on fiber functions.

Most of the fields illustrated in Figure 6-7 are self-explanatory. The first field is the kernel
thread (KTHREAD) block. Following that are the thread identification information, the
process identification information (including a pointer to the owning process so that its
environment information can be accessed), security information in the form of a pointer to
the access token and impersonation information, and finally, fields relating to LPC
messages and pending I/O requests. As you can see in Table 6-9, some of these key fields
are covered in more detail elsewhere in this book.

Table 6-9 Key Contents of the Executive Thread Block

javascript:fullSize('F06yj07x.htm')


Element Description Additional
Reference

KTHREAD
block

See Table 6-10

Thread time
information

Thread create and exit time

Process
identification

Process ID and pointer to EPROCESS block of
the process that the thread belongs to

Start address Address of thread start routine

Impersonation
information

Access token and impersonation level (if the
thread is impersonating a client)

Security (Chapter
8)

LPC
information

Message ID that the thread is waiting for and
address of message

Local procedure
calls (Chapter 3)

I/O
information

List of pending I/O request packets (IRPs) I/O system
(Chapter 9)

For more details on the internal structure of an ETHREAD block, you can use the kernel
debugger !threadfields or !kdex2x86.strct ethread command to display the offsets in
hexadecimal for almost every field in the structure. Although many of the field names are
self-explanatory, the output doesn't give the data type of the fields, nor does it show the
format of the structures that are included within or pointed to by the ETHREAD block.

Let's take a closer look at two of the key thread data structures referred to above: the
KTHREAD block and the TEB. The KTHREAD block contains the information that the
Windows 2000 kernel needs to access to perform thread scheduling and synchronization
on behalf of running threads. Its layout is illustrated in Figure 6-8.

Figure 6-8 Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 6-10.

Table 6-10 Key Contents of the KTHREAD Block

Element Description Additional
Reference

javascript:fullSize('F06yj08x.htm')


Dispatcher
header

Because the thread is an object that can be waited
on, it starts with a standard kernel dispatcher object
header.

Dispatcher
objects (Chapter
3)

Execution
time

Total user and kernel CPU time.

Pointer to
kernel
stack
information

Base and upper address of the kernel stack. Memory
management
(Chapter 7)

Pointer to
system
service
table

Each thread starts out with this field pointing to the
main system service table
(KeServiceDescriptorTable). When a thread first calls
a Win32 GUI service, its system service table is
changed to one that includes the GDI and USER
services in Win32k.sys.

System service
dispatching
(Chapter 3)

Scheduling
information

Base and current priority, quantum, affinity mask,
ideal processor, scheduling state, freeze count, and
suspend count.

Thread
scheduling

Wait blocks The thread block contains four built-in wait blocks so
that wait blocks don't have to be allocated and
initialized each time the thread waits on something.
(One wait block is dedicated to timers.)

"Synchronization"
(Chapter 3)

Wait
information

List of objects the thread is waiting on, wait reason,
and time at which the thread entered the wait state.

"Synchronization"

Mutant list List of mutant objects the thread owns. "Synchronization"

APC
queues

List of pending user-mode and kernel-mode APCs,
and alertable flag.

APC queues
(Chapter 3)

Timer
block

Built-in timer block (also a corresponding wait block).

Queue list Pointer to queue object that the thread is associated
with.

"Synchronization"

Pointer to
TEB

Thread ID, TLS information, PEB pointer, and GDI
and OpenGL information.

EXPERIMENT

Displaying ETHREAD and KTHREAD Structures

Although you can use the kernel debugger command !threadfields to see
information similar to that in the output of !processfields shown in the experiment
below, you'll get more detailed output of the fields in ETHREAD and KTHREAD
blocks if you use !ethread. The !ethread command is one of the commands
provided in Kdex2x86.dll, the secondary kernel debugger extension DLL. To use
these extension commands, you must first load this DLL as shown in the following
output listing. The !ethread command takes the address of an ETHREAD block and
displays both the KTHREAD and the ETHREAD blocks that follow. In the following



example, we used !process to dump a process and find the address of the
ETHREAD blocks for the threads in the process. The output looks like this:

kd> .load kdex2x86 
kd> !process 2c8 2 
Searching for Process with Cid == 2c8 
PROCESS 810bad70  SessionId: 0  Cid: 02c8  Peb: 7ffdf000 ParentCid
    DirBase: 04e4c000  ObjectTable: 81114628  TableSize:  42. 
    Image: notepad.exe 
 
        THREAD 810a4310  Cid 2c8.5a4  Teb: 7ffde000 
               Win32Thread: e267f908 WAIT: 
 (WrUserRequest) UserMode Non-Alertable 
            842f75b0  SynchronizationEvent 
 
        THREAD 8112f710  Cid 2c8.5bc  Teb: 7ffdd000 
               Win32Thread: 00000000 WAIT: 
 (WrLpcReceive) UserMode Non-Alertable 
            8109a0a8  Semaphore Limit 0x7fffffff 
 
kd> !ethread 8112f710 
struct   _ETHREAD (sizeof=584) 
+000 struct   _KTHREAD Tcb 
+000    struct   _DISPATCHER_HEADER Header 
+000       byte     Type =                       06 
+001       byte     Absolute =                   00 
+002       byte     Size =                       6c 
+003       byte     Inserted =                   00 
+004       int32    SignalState =                00000000 
+008       struct   _LIST_ENTRY WaitListHead 
+008          struct   _LIST_ENTRY *Flink =      8112F718 
+00c          struct   _LIST_ENTRY *Blink =      8112F718 
+010    struct   _LIST_ENTRY MutantListHead 
+010       struct   _LIST_ENTRY *Flink =         8112F720 
+014       struct   _LIST_ENTRY *Blink =         8112F720 
+018    void     *InitialStack =                 BDEBD000 
+01c    void     *StackLimit =                   BDEBA000 
+020    void     *Teb =                          7FFDD000 
+024    void     *TlsArray =                     00000000 
+028    void     *KernelStack =                  BDEBCC48 
+02c    byte     DebugActive =                   00 
+02d    byte     State =                         05 
+02e    byte     Alerted[2] =                    00 00 
+030    byte     Iopl =                          00 
+031    byte     NpxState =                      0a 
+032    char     Saturation =                    00 
+033    char     Priority =                      08 
+034    struct   _KAPC_STATE ApcState 



+034       struct   _LIST_ENTRY ApcListHead[2] 
+034                  ApcListHead[0] 
+034                  struct   _LIST_ENTRY *Flink =            811
+038                  struct   _LIST_ENTRY *Blink =            811
+03c                  ApcListHead[1] 
+03c                  struct   _LIST_ENTRY *Flink =            811
+040                  struct   _LIST_ENTRY *Blink =            811
+044       struct   _KPROCESS *Process =         810BAD70 
+048       byte     KernelApcInProgress =        00 
+049       byte     KernelApcPending =           00 
+04a       byte     UserApcPending =             00 
+04c    uint32   ContextSwitches =               00000003 
+050    int32    WaitStatus =                    00000000 
+054    byte     WaitIrql =                      00 
+055    char     WaitMode =                      01 
+056    byte     WaitNext =                      00 
+057    byte     WaitReason =                    10 
+058    struct   _KWAIT_BLOCK *WaitBlockList =   8112F77C 
+05c    struct   _LIST_ENTRY WaitListEntry 
+05c       struct   _LIST_ENTRY *Flink =         84F478AC 
+060       struct   _LIST_ENTRY *Blink =         8114458C 
+064    uint32   WaitTime =                      00064800 
+068    char     BasePriority =                  08 
+069    byte     DecrementCount =                00 
+06a    char     PriorityDecrement =             00 
+06b    char     Quantum =                       05 
+06c    struct   _KWAIT_BLOCK WaitBlock[4] 
+06c              WaitBlock[0] 
+06c               struct   _LIST_ENTRY WaitListEntry 
+06c                  struct   _LIST_ENTRY *Flink =            810
+070                  struct   _LIST_ENTRY *Blink =            810
+074               struct   _KTHREAD *Thread =   8112F710 
+078               void     *Object =            8109A0A8 
+07c               struct   _KWAIT_BLOCK *NextWaitBlock =      811
+080               uint16   WaitKey =            0000 
+082               uint16   WaitType =           0001 
 
    (three more wait blocks) 
 
+0cc    void     *LegoData =                     00000000 
+0d0    uint32   KernelApcDisable =              00000000 
+0d4    uint32   UserAffinity =                  00000001 
+0d8    byte     SystemAffinityActive =          00 
+0d9    byte     PowerState =                    00 
+0da    byte     NpxIrql =                       00 
+0db    byte     Pad[1] =                        00 
+0dc    void     *ServiceTable =                 8046AB80 
+0e0    struct   _KQUEUE *Queue =                00000000 



+0e4    uint32   ApcQueueLock =                  00000000 
+0e8    struct   _KTIMER Timer 
+0e8       struct   _DISPATCHER_HEADER Header 
+0e8          byte     Type =                    08 
+0e9          byte     Absolute =                00 
+0ea          byte     Size =                    0a 
+0eb          byte     Inserted =                00 
+0ec          int32    SignalState =             00000001 
+0f0          struct   _LIST_ENTRY WaitListHead 
+0f0             struct   _LIST_ENTRY *Flink =   8112F800 
+0f4             struct   _LIST_ENTRY *Blink =   8112F800 
+0f8       union    _ULARGE_INTEGER DueTime 
+0f8          uint32   LowPart =                 9925c310 
+0fc          uint32   HighPart =                00000009 
+0f8          struct   __unnamed12 u 
+0f8             uint32   LowPart =              9925c310 
+0fc             uint32   HighPart =             00000009 
+0f8          uint64   QuadPart =                000000099925c310 
+100       struct   _LIST_ENTRY TimerListEntry 
+100          struct   _LIST_ENTRY *Flink =      81BDBEB0 
+104          struct   _LIST_ENTRY *Blink =      8046FD70 
+108       struct   _KDPC *Dpc =                 00000000 
+10c       int32    Period =                     00000000 
+110    struct   _LIST_ENTRY QueueListEntry 
+110       struct   _LIST_ENTRY *Flink =         00000000 
+114       struct   _LIST_ENTRY *Blink =         00000000 
+118    uint32   Affinity =                      00000001 
+11c    byte     Preempted =                     00 
+11d    byte     ProcessReadyQueue =             00 
+11e    byte     KernelStackResident =           00 
+11f    byte     NextProcessor =                 00 
+120    void     *CallbackStack =                00000000 
+124    void     *Win32Thread =                  00000000 
+128    struct   _KTRAP_FRAME *TrapFrame =       BDEBCD64 
+12c    struct   _KAPC_STATE *ApcStatePointer[2] =             811
                                                               811
+134    char     PreviousMode =                  01 
+135    byte     EnableStackSwap =               01 
+136    byte     LargeStack =                    00 
+137    byte     ResourceIndex =                 00 
+138    uint32   KernelTime =                    00000000 
+13c    uint32   UserTime =                      00000000 
+140    struct   _KAPC_STATE SavedApcState 
+140       struct   _LIST_ENTRY ApcListHead[2] 
+140                  ApcListHead[0] 
+140                  struct   _LIST_ENTRY *Flink =            000
+144                  struct   _LIST_ENTRY *Blink =            000



+148                  ApcListHead[1] 
+148                  struct   _LIST_ENTRY *Flink =            000
+14c                  struct   _LIST_ENTRY *Blink =            000
+150       struct   _KPROCESS *Process =         00000000 
+154       byte     KernelApcInProgress =        00 
+155       byte     KernelApcPending =           00 
+156       byte     UserApcPending =             00 
+158    byte     Alertable =                     00 
+159    byte     ApcStateIndex =                 00 
+15a    byte     ApcQueueable =                  01 
+15b    byte     AutoAlignment =                 00 
+15c    void     *StackBase =                    BDEBD000 
+160    struct   _KAPC SuspendApc 
+160       int16    Type =                       0012 
+162       int16    Size =                       0030 
+164       uint32   Spare0 =                     00000000 
+168       struct   _KTHREAD *Thread =           8112F710 
+16c       struct   _LIST_ENTRY ApcListEntry 
+16c          struct   _LIST_ENTRY *Flink =      8112F744 
+170          struct   _LIST_ENTRY *Blink =      8112F744 
+174       function *KernelRoutine =             80430B27 
+178       function *RundownRoutine =            00000000 
+17c       function *NormalRoutine =             80430E2B 
+180       void     *NormalContext =             00000000 
+184       void     *SystemArgument1 =           00000000 
+188       void     *SystemArgument2 =           00000000 
+18c       char     ApcStateIndex =              00 
+18d       char     ApcMode =                    00 
+18e       byte     Inserted =                   00 
+190    struct   _KSEMAPHORE SuspendSemaphore 
+190       struct   _DISPATCHER_HEADER Header 
+190          byte     Type =                    05 
+191          byte     Absolute =                00 
+192          byte     Size =                    05 
+193          byte     Inserted =                00 
+194          int32    SignalState =             00000000 
+198          struct   _LIST_ENTRY WaitListHead 
+198             struct   _LIST_ENTRY *Flink =   8112F8A8 
+19c             struct   _LIST_ENTRY *Blink =   8112F8A8 
+1a0       int32    Limit =                      00000002 
+1a4    struct   _LIST_ENTRY ThreadListEntry 
+1a4       struct   _LIST_ENTRY *Flink =         810BADC0 
+1a8       struct   _LIST_ENTRY *Blink =         810A44B4 
+1ac    char     FreezeCount =                   00 
+1ad    char     SuspendCount =                  00 
+1ae    byte     IdealProcessor =                00 
+1af    byte     DisableBoost =                  00 
+1b0 union    _LARGE_INTEGER CreateTime 



+1b0    uint32   LowPart =                       ade71268 
+1b4    int32    HighPart =                      0dfd0747 
+1b0    struct   __unnamed3 u 
+1b0       uint32   LowPart =                    ade71268 
+1b4       int32    HighPart =                   0dfd0747 
+1b0    int64    QuadPart =                      0dfd0747ade71268 
+1b0 bits0-1 NestedFaultCount =                  0 
+1b0 bits2-2 ApcNeeded =                         0 
+1b8 union    _LARGE_INTEGER ExitTime 
+1b8    uint32   LowPart =                       8112f8c8 
+1bc    int32    HighPart =                      8112f8c8 
+1b8    struct   __unnamed3 u 
+1b8       uint32   LowPart =                    8112f8c8 
+1bc       int32    HighPart =                   8112f8c8 
+1b8    int64    QuadPart =                      8112f8c88112f8c8 
+1b8 struct   _LIST_ENTRY LpcReplyChain 
+1b8    struct   _LIST_ENTRY *Flink =            8112F8C8 
+1bc    struct   _LIST_ENTRY *Blink =            8112F8C8 
+1c0 int32    ExitStatus =                       00000000 
+1c0 void     *OfsChain =                        00000000 
+1c4 struct   _LIST_ENTRY PostBlockList 
+1c4    struct   _LIST_ENTRY *Flink =            8112F8D4 
+1c8    struct   _LIST_ENTRY *Blink =            8112F8D4 
+1cc struct   _LIST_ENTRY TerminationPortList 
+1cc    struct   _LIST_ENTRY *Flink =            E252C508 
+1d0    struct   _LIST_ENTRY *Blink =            E252C508 
+1d4 uint32   ActiveTimerListLock =              00000000 
+1d8 struct   _LIST_ENTRY ActiveTimerListHead 
+1d8    struct   _LIST_ENTRY *Flink =            8112F8E8 
+1dc    struct   _LIST_ENTRY *Blink =            8112F8E8 
+1e0 struct   _CLIENT_ID Cid 
+1e0    void     *UniqueProcess =                000002C8 
+1e4    void     *UniqueThread =                 000005BC 
+1e8 struct   _KSEMAPHORE LpcReplySemaphore 
+1e8    struct   _DISPATCHER_HEADER Header 
+1e8       byte     Type =                       05 
+1e9       byte     Absolute =                   00 
+1ea       byte     Size =                       05 
+1eb       byte     Inserted =                   00 
+1ec       int32    SignalState =                00000000 
+1f0       struct   _LIST_ENTRY WaitListHead 
+1f0          struct   _LIST_ENTRY *Flink =      8112F900 
+1f4          struct   _LIST_ENTRY *Blink =      8112F900 
+1f8    int32    Limit =                         00000001 
+1fc void     *LpcReplyMessage =                 00000000 
+200 uint32   LpcReplyMessageId =                00000000 
+204 uint32   PerformanceCountLow =              00000000 



+208 struct _PS_IMPERSONATION_INFORMATION *ImpersonationInfo = 000
+20c struct   _LIST_ENTRY IrpList 
+20c    struct   _LIST_ENTRY *Flink =            8112F91C 
+210    struct   _LIST_ENTRY *Blink =            8112F91C 
+214 uint32   TopLevelIrp =                      00000000 
+218 struct   _DEVICE_OBJECT *DeviceToVerify =   00000000 
+21c uint32   ReadClusterSize =                  00000007 
+220 byte     ForwardClusterOnly =               00 
+221 byte     DisablePageFaultClustering =       00 
+222 byte     DeadThread =                       00 
+223 byte     HideFromDebugger =                 00 
+224 uint32   HasTerminated =                    00000000 
+228 uint32   GrantedAccess =                    001f03ff 
+22c struct   _EPROCESS *ThreadsProcess =        810BAD70 
+230 void     *StartAddress =                    77E92C50 
+234 void     *Win32StartAddress =               77D4B759 
+234 uint32   LpcReceivedMessageId =             77d4b759 
+238 byte     LpcExitThreadCalled =              00 
+239 byte     HardErrorsAreDisabled =            00 
+23a byte     LpcReceivedMsgIdValid =            00 
+23b byte     ActiveImpersonationInfo =          00 
+23c int32    PerformanceCountHigh =             00000000 
+240 struct   _LIST_ENTRY ThreadListEntry 
+240    struct   _LIST_ENTRY *Flink =            810BAFE0 
+244    struct   _LIST_ENTRY *Blink =            810A4550 

The TEB, illustrated in Figure 6-9, is the only data structure explained in this section that
exists in the process address space (as opposed to the system space).

Figure 6-9 Fields of the thread environment block

The TEB stores context information for the image loader and various Win32 DLLs. Because
these components run in user mode, they need a data structure writable from user mode.
That's why this structure exists in the process address space instead of in the system

javascript:fullSize('F06yj09x.htm')


space, where it would be writable only from kernel mode. You can find the address of the
TEB with the kernel debugger !thread command.

EXPERIMENT

Examining the TEB

You can dump the TEB structure with the !teb command in the kernel debugger.
The output looks like this:

kd> !teb 
TEB at 7FFDE000 
    ExceptionList:    12ffb0 
    Stack Base:       130000 
    Stack Limit:      12d000 
    SubSystemTib:     0 
    FiberData:        1e00 
    ArbitraryUser:    0 
    Self:             7ffde000 
    EnvironmentPtr:   0 
    ClientId:         490.458 
    Real ClientId:    490.458 
    RpcHandle:        0 
    Tls Storage:      0 
    PEB Address:      7ffdf000 
    LastErrorValue:   0 
    LastStatusValue:  0 
    Count Owned Locks:0 
    HardErrorsMode:   0 



Kernel Variables

As with processes, a number of Windows 2000 kernel variables control how threads run.
Table 6-11 shows the kernel-mode kernel variables that relate to threads.

Table 6-11 Thread-Related Kernel Variables

Variable Type Description

PspCreateThreadNotifyRoutine Array of
pointers

Array of pointers to routines to be
called on during thread creation and
deletion (maximum of eight).

PspCreateThreadNotifyRoutineCount DWORD Count of registered thread-
notification routines.

PspCreateProcessNotifyRoutine Array of
pointers

Array of pointers to routines to be
called on during process creation and
deletion (maximum of eight).

PspCreateProcessNotifyRoutineCount DWORD Count of registered process-
notification routines.

PspCidTable Handle
table

Handle table that stores process and
thread objects. Using a thread's or
process's handle value as its thread
or process ID guarantees uniqueness.



Performance Counters

Most of the key information in the thread data structures is exported as performance
counters, which are listed in Table 6-12. You can extract much information about the
internals of a thread just by using the Performance tool in Windows 2000.

Table 6-12 Thread-Related Performance Counters

Object:
Counter Function

Process:
Priority Base

Returns the current base priority of the process. This is the starting
priority for threads created within this process.

Thread: %
Privileged
Time

Describes the percentage of time that the thread has run in kernel
mode during a specified interval.

Thread: %
Processor
Time

Describes the percentage of CPU time that the thread has used during
a specified interval. This count is the sum of % Privileged Time and %
User Time.

Thread: %
User Time

Describes the percentage of time that the thread has run in user mode
during a specified interval.

Thread:
Context
Switches/Sec

Returns the number of context switches per second that the system is
executing. The higher this number, the more threads of an equal
priority are attempting to execute.

Thread:
Elapsed Time

Returns the amount of CPU time (in seconds) that the thread has
consumed.

Thread: ID
Process

Returns the process ID of the thread's process. This ID is valid only
during the process's lifetime because process IDs are reused.

Thread: ID
Thread

Returns the thread's thread ID. This ID is valid only during the
thread's lifetime because thread IDs are reused.

Thread:
Priority Base

Returns the thread's current base priority. This number might be
different from the thread's starting base priority.

Thread:
Priority
Current

Returns the thread's current dynamic priority.

Thread:
Start
Address

Returns the thread's starting virtual address (Note: This address will
be the same for most threads.)

Thread:
Thread State

Returns a value from 0 through 7 relating to the current state of the
thread.

Thread:
Thread Wait
Reason

Returns a value from 0 through 19 relating to the reason why the
thread is in a wait state.



Relevant Functions

Table 6-13 shows the Win32 functions for creating and manipulating threads. This table
doesn't include functions that have to do with thread scheduling and priorities—those are
included in the section "Thread Scheduling" later in this chapter.

Table 6-13 Win32 Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

GetExitCodeThread Gets another thread's exit code

GetThreadTimes Returns another thread's timing information

Get/SetThreadContext Returns or changes a thread's CPU registers

GetThreadSelectorEntry Returns another thread's descriptor table entry (applies
only to x86 systems)



Relevant Tools

Besides the Performance tool, several other tools expose various elements of the state of
Windows 2000 threads. (The tools that show thread-scheduling information are listed in
the section "Thread Scheduling.") These tools are itemized in Table 6-14.

NOTE

To display thread details with Tlist, you must type tlist xxx, where xxx is a process
image name or window title. (Wildcards are supported.)

Table 6-14 Thread-Related Tools and Their Functions

EXPERIMENT

Using the Kernel Debugger !thread Command

The kernel debugger !thread command dumps a subset of the information in the
thread data structures. Some key elements of the information the kernel debugger
displays can't be displayed by any Windows 2000 utility: internal structure
addresses; priority details; stack information; the pending I/O request list; and,
for threads in a wait state, the list of objects the thread is waiting on. (Refer to
Table 6-14.)

To display thread information, use either the !process command (which displays
all the thread blocks after displaying the process block) or the !thread command
to dump a specific thread. The output of the thread information, along with some
annotations of key fields, is shown here:

javascript:fullSize('G06yj08x.htm')


EXPERIMENT

Viewing Thread Information

The following output is the detailed display of a process produced by using the
Tlist utility in the Windows 2000 Support Tools. Notice that the thread list shows
the Win32 start address. (All the other utilities that show the thread start address
show the actual start address, not the Win32 start address.)

C:\> tlist winword 
 155 WINWORD.EXE       Document1 - Microsoft Word 
   CWD:     C:\book\ 
   CmdLine: "C:\Program Files\Microsoft Office\Office\WINWORD.EXE
   VirtualSize:    64448 KB   PeakVirtualSize:   106748 KB 
   WorkingSetSize:  1104 KB   PeakWorkingSetSize:  6776 KB 
   NumberOfThreads: 2 
    156 Win32StartAddr:0x5032cfdb LastErr:0x00000000 State:Waiting
    167 Win32StartAddr:0x00022982 LastErr:0x00000000 State:Waiting
                     0x50000000  WINWORD.EXE 
     5.0.2163.1 shp  0x77f60000  ntdll.dll 
     5.0.2191.1 shp  0x77f00000  KERNEL32.dll 
          
         list of DLLs loaded in process 

javascript:fullSize('g06yj09x.htm')


[Previous] [Next]



Flow of CreateThread
A thread's life cycle starts when a program creates a new
thread. The request filters down to the Windows 2000
executive, where the process manager allocates space for a
thread object and calls the kernel to initialize the kernel
thread block. The steps in the following list are taken inside
the Win32 CreateThread function in Kernel32.dll to create a
Win32 thread. The work that occurs inside the Windows
2000 executive are substeps of step 3, and the work that
occurs in the context of the new thread are substeps of step
7. Because process creation includes creating a thread,
some of the information here is repeated from the earlier
description of the flow of CreateProcess.

1. CreateThread creates a user-mode stack for the thread
in the process's address space.

2. CreateThread initializes the thread's hardware context
(CPU architecture-specific). (For further information on
the thread context block, see the Win32 API reference
documentation on the CONTEXT structure.)

3. NtCreateThread is called to create the executive thread
object in the suspended state. The following steps
execute in kernel mode inside the Windows 2000
executive and kernel:

a. The thread count in the process object is
incremented.

b. An executive thread block (ETHREAD) is created
and initialized.

c. A thread ID is generated for the new thread.



d. The thread's kernel stack is allocated from the
nonpaged pool.

e. The TEB is set up in the user-mode address space
of the process.

f. The thread start address (KiThreadStartup) is
stored on the kernel stack. (The kernel stack
address is stored in the KTHREAD.) The user's
specified Win32 start address is stored in the
ETHREAD block.

g. KeInitializeThread is called to set up the KTHREAD
block. The thread's initial and current base priorities
are set to the process's base priority, and its affinity
and quantum are set to that of the process. This
function also sets the initial thread ideal processor
based on the process thread seed (a random
number set during execution of CreateProcess). The
seed is then incremented so that each thread in the
process will have a different ideal processor,
assuming the system has more than one.
KeInitializeThread next sets the thread's state to
Initialized and initializes the machine-dependent
hardware context for the thread, including the
context, trap, and exception frames. The thread's
context is set up so that the thread will start in
kernel mode in SwapContext, the context switch
code. SwapContext loads the thread's context from
the thread's kernel stack, which results in the
thread starting its execution in the systemwide
startup routine KiThreadStartup (described in step
6a), the function that was stored in the stack by
step 3f.



h. Any registered systemwide thread creation
notification routines are called.

i. The thread's access token is set to point to the
process access token, and an access check is made
to determine whether the caller has the right to
create the thread. This check will always succeed if
you're creating a thread in the local process but
might fail if you're using CreateRemoteThread to
create a thread in another process and the process
creating the thread doesn't have the debug privilege
enabled.

4. CreateThread notifies the Win32 subsystem about the
new thread, and the subsystem does some setup work
for the new thread.

5. The thread handle and the thread ID (generated during
step 3) are returned to the caller.

6. Unless the caller created the thread with the
CREATE_SUSPENDED flag set, the thread is now
resumed so that it can be scheduled for execution.
When the thread starts running, it executes the
following additional steps (in the context of the new
thread) before calling the actual user's specified start
address. (A flowchart of this final part of thread creation
is shown in Figure 6-10.)

a. KiThreadStartup lowers the thread's IRQL level from
DPC/dispatch level to APC level and then calls the
system initial thread routine,
PspUserThreadStartup. The user-specified thread
start address is passed as a parameter to this
routine.



b. The system initial thread routine enables working
set expansion and then queues a user-mode APC to
run the image loader initialization routine
(LdrInitializeThunk in Ntdll.dll). The IRQL is lowered
to 0, thus causing the pending APC to fire.

c. The loader initialization routine then performs a
number of additional thread-specific initialization
steps, such as calling loaded DLLs to notify them of
the new thread. (The detailed steps of the
initialization of the Win32 subsystem DLLs, such as
USER32, KERNEL32, and GDI32, are beyond the
scope of this book.)

d. If the process has a debugger attached, the thread
startup routine suspends all other active threads in
the process and notifies the Win32 subsystem so
that it can deliver the thread startup debug event
(CREATE_THREAD_DEBUG_INFO) to the appropriate
debugger process. The startup routine then waits
for the Win32 subsystem to get the reply from the
debugger (via the ContinueDebugEvent function).
When the Win32 subsystem receives a reply from
the debugger, it in turn replies to the thread startup
routine and all the threads are resumed.

e. Finally, the main thread begins execution in user
mode at the entry point to the image being run.
Execution begins when the trap that started the
thread execution, using a trap frame (built earlier
when the kernel thread block was being initialized)
that specifies previous mode as user and the PC as
the start address of the thread, is dismissed.



Figure 6-10 In-context thread initialization

javascript:fullSize('F06yj10x.htm')


[Previous] [Next]



Thread Scheduling
This section describes the Windows 2000 scheduling policies and algorithms. The first
subsection provides a condensed description of how scheduling works on Windows 2000
and a definition of key terms. Then Windows 2000 priority levels are described from both
the Win32 API and the Windows 2000 kernel points of view. After a review of the relevant
Win32 functions and Windows 2000 utilities and tools that relate to scheduling, the
detailed data structures and algorithms that comprise the Windows 2000 scheduling
system are presented.



Overview of Windows 2000 Scheduling

Windows 2000 implements a priority-driven, preemptive scheduling system—the highest-
priority runnable (ready) thread always runs, with the caveat that the thread chosen to run
might be limited by the processors on which the thread is allowed to run, a phenomenon
called processor affinity. By default, threads can run on any available processor, but you
can alter processor affinity by using one of the Win32 scheduling functions.

EXPERIMENT

Viewing Ready Threads

You can view the list of ready threads with the kernel debugger !ready command.
This command displays the thread or list of threads that are ready to run at each
priority level. In the following example, two threads are ready to run at priority 10
and six at priority 8. Because this output was generated using LiveKd on a
uniprocessor system, the current thread will always be the kernel debugger (Kd or
I386kd).

kd> !ready 1 
Ready Threads at priority 10 
 THREAD 810de030  Cid 490.4a8 Teb: 7ffd9000  Win32Thread: e297e008
 THREAD 81110030  Cid 490.48c Teb: 7ffde000  Win32Thread: e29425a8
Ready Threads at priority 8 
 THREAD 811fe790  Cid 23c.274 Teb: 7ffdb000  Win32Thread: e258cda8
 THREAD 810bec70  Cid 23c.50c Teb: 7ffd9000  Win32Thread: e2ccf748
 THREAD 8003a950  Cid 23c.550 Teb: 7ffda000  Win32Thread: e29a7ae8
 THREAD 85ac2db0  Cid 23c.5e4 Teb: 7ffd8000  Win32Thread: e297a9e8
 THREAD 827318d0  Cid 514.560 Teb: 7ffd9000  Win32Thread: 00000000
 THREAD 8117adb0  Cid 2d4.338 Teb: 7ffaf000  Win32Thread: 00000000

When a thread is selected to run, it runs for an amount of time called a quantum. A
quantum is the length of time a thread is allowed to run before Windows 2000 interrupts
the thread to find out whether another thread at the same priority level or higher is
waiting to run or whether the thread's priority needs to be reduced. Quantum values can
vary from thread to thread (and differ between Windows 2000 Professional and Windows
2000 Server). (Quantums are described in more detail elsewhere in this chapter.) A thread
might not get to complete its quantum, however. Because Windows 2000 implements a
preemptive scheduler, if another thread with a higher priority becomes ready to run, the
currently running thread might be preempted before finishing its time slice. In fact, a
thread can be selected to run next and be preempted before even beginning its quantum!

The Windows 2000 scheduling code is implemented in the kernel. There's no single
"scheduler" module or routine, however—the code is spread throughout the kernel in
which scheduling-related events occur. The routines that perform these duties are
collectively called the kernel's dispatcher. Thread dispatching occurs at DPC/dispatch level
and is triggered by any of the following events:



A thread becomes ready to execute—for example, a thread has been newly created or
has just been released from the wait state.

A thread leaves the running state because its time quantum ends, it terminates, or it
enters a wait state.

A thread's priority changes, either because of a system service call or because
Windows 2000 itself changes the priority value.

The processor affinity of a running thread changes.

At each of these junctions, Windows 2000 must determine which thread should run next.
When Windows 2000 selects a new thread to run, it performs a context switch to it. A
context switch is the procedure of saving the volatile machine state associated with a
running thread, loading another thread's volatile state, and starting the new thread's
execution.

As already noted, Windows 2000 schedules at the thread granularity. This approach makes
sense when you consider that processes don't run but only provide resources and a
context in which their threads run. Because scheduling decisions are made strictly on a
thread basis, no consideration is given to what process the thread belongs to. For example,
if process A has 10 runnable threads and process B has 2 runnable threads, and all 12
threads are at the same priority, each thread would receive one-twelfth of the CPU time—
Windows 2000 wouldn't give 50 percent of the CPU to process A and 50 percent to process
B.

To understand the thread-scheduling algorithms, you must first understand the priority
levels that Windows 2000 uses.

EXPERIMENT

Thread-Scheduling State Changes

You can watch thread-scheduling state changes with the Performance tool in
Windows 2000. This utility can be useful when you're debugging a multithreaded
application if you're unsure about the state of the threads running in the process.
To watch thread-scheduling stage changes using the Performance tool, follow
these steps:

1. Run the Microsoft Notepad utility (Notepad.exe).

2. Start the Performance tool by selecting Programs from the Start menu and
then selecting Administrative Tools/Performance.

3. Select chart view if you're in some other view.

4. Right-click on the graph, and choose Properties.

5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As
you'll see from the explanation text for the performance counter, thread states
are numbers from 0 through 7.) Click OK.

6. Click the Add button on the toolbar to bring up the Add Counters dialog box.



7. Select the Thread performance object, and then select the Thread State
counter. Click the Explain button to see the definition of the values:

8. In the Instances box, scroll down until you see the Notepad process
(notepad/0); select it, and click the Add button.

9. Scroll back up in the Instances box to the Mmc process (the Microsoft
Management Console process running the System Monitor ActiveX control),
select all the threads (mmc/0, mmc/1, and so on), and add them to the chart
by clicking the Add button. Before you click Add, you should see something
like this:

10. Now close the Add Counters dialog box by clicking Close.

11. You should see the state of the Notepad thread (the very top line in the
following figure) as a 5, which, as shown in the explanation text you saw
under step 5, represents the waiting state (because the thread is waiting for
GUI input):

javascript:fullSize('G06yj12x.htm')


12. Notice that one thread in the Mmc process (running the Performance tool
snap-in) is in the running state (number 2). This is the thread that's querying
the thread states, so it's always displayed in the running state.

13. You'll never see Notepad in the running state (unless you're on a
multiprocessor system) because Mmc is always in the running state when it
gathers the state of the threads you're monitoring.



Priority Levels

As illustrated in Figure 6-11, internally, Windows 2000 uses 32 priority levels, ranging from
0 through 31. These values divide up as follows:

Sixteen real-time levels (16-31)

Fifteen variable levels (1-15)

One system level (0), reserved for the zero page thread

Figure 6-11 Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Win32 API
and those of the Windows 2000 kernel. The Win32 API first organizes processes by the
priority class to which they are assigned at creation (Real-time, High, Above Normal,
Normal, Below Normal, and Idle) and then by the relative priority of the individual threads
within those processes (Time-critical, Highest, Above-normal, Normal, Below-normal,
Lowest, and Idle).

In the Win32 API, each thread has a priority based on a combination of its process priority
class and its relative thread priority. The mapping from Win32 priority to internal Windows
2000 numeric priority is shown in Figure 6-12.

javascript:fullSize('F06yj11x.htm')


Figure 6-12 Kernel priorities in Win32 vs. Windows 2000

The priorities shown in Figure 6-12 are thread base priorities. Threads start out inheriting
the process base priority, which can be changed with Task Manager (as described in the
section "Relevant Tools") or with the Win32 SetPriorityClass function.

Normally, the process base priority (and hence the starting-thread base priority) will
default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4).
However, some Windows 2000 system processes (such as the Session Manager, service
controller, and local security authentication server) have a base process priority slightly
higher than the default for the Normal class (8). This higher default value ensures that the
threads in these processes will all start at a higher priority than the default value of 8. A
system process uses internal Windows 2000 functions to set its process base priority to a
numeric value other than its default starting Win32 base priority.

Whereas a process has only a single priority value (base priority), each thread has two
priority values: current and base. The current priority for threads in the dynamic range (1
through 15) might be, and often is, higher than the base priority. Windows 2000 never
adjusts the priority of threads in the real-time range (16 through 31), so they always have
the same base and current priority.

javascript:fullSize('F06yj12x.htm')


Win32 Scheduling APIs

The Win32 API functions that relate to thread scheduling are listed in Table 6-15. (For
more information, see the Win32 API reference documentation.)

Table 6-15 Scheduling-Related APIs and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread from execution.

Get/SetPriorityClass Returns or sets a process's priority class (base priority).

Get/SetThreadPriority Returns or sets a thread's priority (relative to its
process base priority).

Get/SetProcessAffinityMask Returns or sets a process's affinity mask.

SetThreadAffinityMask Sets a thread's affinity mask (must be a subset of the
process's affinity mask) for a particular set of
processors, restricting it to running on those
processors.

Get/SetThreadPriorityBoost Returns or sets the ability for Windows 2000 to boost
the priority of a thread temporarily (applies only to
threads in the dynamic range).

SetThreadIdealProcessor Establishes a preferred processor for a particular thread
but doesn't restrict the thread to that processor.

Get/SetProcessPriorityBoost Returns or sets the default priority boost control state
of the current process. (This function is used to set the
thread priority boost control state when a thread is
created.)

SwitchToThread Yields execution for one or more quantums.

Sleep Puts the current thread into a wait state for a specified
time interval (figured in milliseconds [msec]). A zero
value relinquishes the rest of the thread's quantum.

SleepEx Causes the current thread to go into a wait state until
either an I/O completion callback is completed, an APC
is queued to the thread, or the specified time interval
ends.



Relevant Tools

You can view (and change) the base-process priority class with Task Manager, Pview, or
Pviewer. You can view the numeric base-process priority value with the Performance tool or
Pstat. You can view thread priorities with the Performance tool, Pview, Pviewer, and Pstat.
There is no general utility to change relative thread priority levels, however. Table 6-16
lists the tools related to thread scheduling.

Table 6-16 Tools Related to Thread Scheduling

The only way to specify a starting priority class for a process is with the start command in
the Windows 2000 command prompt.

EXPERIMENT

Examining and Specifying Process and Thread Priorities

Try the following experiment:

1. From the command prompt, type start/realtime notepad. Notepad should
open.

2. Run the Process Viewer utility in the Support Tools (Pviewer.exe), and select
Notepad.exe from the list of processes, as shown here. Notice that the
dynamic priority of the thread in Notepad is 24. This matches the real-time
value shown in Figure 6-12.

3. Task Manager can show you similar information. Press Ctrl+Shift+Esc to start
Task Manager, and go to the Processes tab. Right-click on the Notepad.exe
process, and select the Set Priority option. You can see that Notepad's process
priority class is Realtime, as shown here:

javascript:fullSize('G06yj13x.htm')
javascript:fullSize('G06yj14x.htm')


javascript:fullSize('G06yj15x.htm')


Real-Time Priorities

You can raise or lower thread priorities within the dynamic range in any application;
however, you must have the increase scheduling priority privilege to enter the real-time
range. (If you attempt to move a process into the Real-time priority class and don't have
the privilege, the operation doesn't fail—the High class is used.)

Be aware that many important Windows 2000 kernel-mode system threads run in the real-
time priority range, so if your process spends excessive time running in this range, it might
be blocking critical system functions in the memory manager, cache manager, local and
network file systems, and even other device drivers. It won't block hardware interrupts
because they have a higher priority than any thread, but it might block system threads
from running.

There is one behavioral difference for threads in the real-time range (mentioned in the
section "Preemption"): their thread quantum is reset if they are preempted.

NOTE

Although Windows 2000 has a set of priorities called real-time, they are not real-
time in the common definition of the term in that Windows 2000 doesn't provide
true real-time operating system facilities, such as guaranteed interrupt latency or
a way for threads to obtain a guaranteed execution time. For more information,
see the sidebar "Windows 2000 and Real-Time Processing" in Chapter 3 as well as
the MSDN Library article "Real-Time Systems and Microsoft Windows NT."



Interrupt Levels vs. Priority Levels

As illustrated in Figure 6-13, all threads run at IRQL 0 or 1. (For a description of how
Windows 2000 uses interrupt levels, see Chapter 3.) User-mode threads run at IRQL 0;
only kernel-mode APCs execute at IRQL 1, since they interrupt the execution of a thread.
(For more information on APCs, see in Chapter 3.) Also, threads running in kernel mode
can raise IRQL. Because of this, no user-mode thread, regardless of its priority, blocks
hardware interrupts (although high-priority real-time threads can block the execution of
important system threads).

Figure 6-13 Interrupt priorities vs. thread priorities

Thread-scheduling decisions are made at DPC/dispatch level. Thus, while the kernel is
deciding which thread should run next, no thread can be running and possibly changing
scheduling-related information (such as priorities). On a multiprocessor system, access to
the thread-scheduling data structures is synchronized by acquiring the Dispatcher spinlock
(KiDispatcherLock).

javascript:fullSize('F06yj13x.htm')


Thread States

Before you can comprehend the thread-scheduling algorithms and data structures, you
need to understand the various execution states that a thread can be in. Figure 6-14
illustrates the state transitions for a Windows 2000 thread. More details on what happens
at each transition are included later in this section.

Figure 6-14 Thread states

The thread states are as follows:

Ready When looking for a thread to execute, the dispatcher considers only the pool of
threads in the ready state. These threads are simply waiting to execute.

Standby A thread in the standby state has been selected to run next on a particular
processor. When the correct conditions exist, the dispatcher performs a context switch
to this thread. Only one thread can be in the standby state for each processor on the
system.

Running Once the dispatcher performs a context switch to a thread, the thread enters
the running state and executes. The thread's execution continues until the kernel
preempts it to run a higher priority thread, its quantum ends, it terminates, or it
voluntarily enters the wait state.

Waiting A thread can enter the wait state in several ways: a thread can voluntarily
wait on an object to synchronize its execution, the operating system (the I/O system,
for example) can wait on the thread's behalf, or an environment subsystem can direct
the thread to suspend itself. When the thread's wait ends, depending on the priority,
the thread either begins running immediately or is moved back to the ready state.

Transition A thread enters the transition state if it is ready for execution but its kernel
stack is paged out of memory. For example, the thread's kernel stack might be paged
out of memory. Once its kernel stack is brought back into memory, the thread enters
the ready state.

Terminated When a thread finishes executing, it enters the terminated state. Once
terminated, a thread object might or might not be deleted. (The object manager sets
policy regarding when to delete the object.) If the executive has a pointer to the
thread object, it can reinitialize the thread object and use it again.

Initialized Used internally while a thread is being created.

javascript:fullSize('F06yj14x.htm')


Quantum

As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run
before Windows 2000 checks whether another thread at the same priority should get to
run. If a thread completes its quantum and there are no other threads at its priority,
Windows 2000 reschedules the thread to run for another quantum.

Each thread has a quantum value that represents how long the thread can run until its
quantum expires. This value isn't a time length but rather an integer value, which we'll call
quantum units.

Quantum Accounting

By default, threads start with a quantum value of 6 on Windows 2000 Professional and 36
on Windows 2000 Server. (We'll explain how you can change these values later.) The
rationale for the longer default value on Windows 2000 Server is to minimize context
switching. By having a longer quantum, server applications that wake up as the result of a
client request have a better chance of completing the request and going back into a wait
state before their quantum ends.

Each time the clock interrupts, the clock-interrupt routine deducts a fixed value (3) from
the thread quantum. If there is no remaining thread quantum, the quantum end
processing is triggered and another thread might be selected to run. On Windows 2000
Professional, because 3 is deducted each time the clock interrupt fires, by default a thread
runs for 2 clock intervals; on Windows 2000 Server, by default a thread runs for 12 clock
intervals.

Even if the system were at DPC/dispatch level or above (for example, if a DPC or an
interrupt service routine was executing) when the clock interrupt occurred, the current
thread would still have its quantum decremented, even if it hadn't been running for a full
clock interval. If this was not done and device interrupts or DPCs occurred right before the
clock interval timer interrupts, threads might not ever get their quantum reduced.

The length of the clock interval varies according to the hardware platform. The frequency
of the clock interrupts is up to the HAL, not the kernel. For example, the clock interval for
most x86 uniprocessors is 10 milliseconds, and for most x86 multiprocessors, 15
milliseconds.

EXPERIMENT

Determining the Clock Interval Frequency

The Win32 GetSystemTimeAdjustment function returns the clock interval. To
determine the clock interval, run the Clockres program from
www.sysinternals.com (\Sysint\Clockres on the companion CD). Here's the output
from a uniprocessor x86 system:

C:\>clockres 
 
ClockRes - View the system clock resolution 
By Mark Russinovich 

http://www.sysinternals.com/


SysInternals - www.sysinternals.com 
 
The system clock interval is 10 ms 

To determine the approximate clock interval, run the Performance tool on an idle
system (that is, no processes that are performing I/O operations should be
running—check the per-process I/O counters to verify that the system is idle).
Monitor the value Interrupts/sec (in the Processor object). Divide the average
value into 1 to calculate the clock interval.

For example, most uniprocessor x86 systems show an average interrupts/second
of 100, so you would calculate the clock interval as 1/100 = 10 milliseconds. On a
multiprocessor x86 system, the average is 67 interrupts per second, which is a
clock interval of 1/67 = .015, or 15 milliseconds.

The reason quantum is expressed in terms of a multiple of 3 quantum units per clock tick
rather than as single units is to allow for partial quantum decay on wait completion. When
a thread that has a base priority less than 14 executes a wait function (such as
WaitForSingleObject or WaitForMultipleObjects), its quantum is reduced by 1 quantum
unit. (Threads running at priority 14 or higher have their quantums reset after a wait.)

This partial decay addresses the case in which a thread enters a wait state before the clock
interval timer fires. If this adjustment were not made, it would be possible for threads
never to have their quantums reduced. For example, if a thread ran, entered a wait state,
ran again, and entered another wait state but was never the currently running thread
when the clock interval timer fired, it would never have its quantum charged for the time it
was running.

Controlling the Quantum

The registry value
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation allows
you to specify the relative length of thread quantums (short or long) and whether or not
threads in the foreground process should have their quantums boosted (and if so, the
amount of the boost). This value consists of 6 bits divided into the three 2-bit fields shown
in Figure 6-15.

Figure 6-15 Fields of the Win32PrioritySeparation registry value

Short vs. Long 1 specifies long, and 2 specifies short. 0 or 3 indicates that the default
will be used (short for Windows 2000 Professional, long for Windows 2000 Server).

Variable vs. Fixed 1 means to vary the quantum for the foreground process, and 2
means that quantum values don't change for foreground processes. 0 or 3 means that
the default will be used (variable for Windows 2000 Professional, fixed for Windows
2000 Server).

javascript:fullSize('F06yj15x.htm')


Foreground Quantum Boost This field, which must have a value of 0, 1, or 2 (3 is
invalid and treated as 2) is an index into a three-entry quantum table used to obtain
the quantum for the threads in the foreground process. The quantum for threads in
background processes is taken from the first entry in this quantum table. The field's
value is stored in the kernel variable PsPrioritySeparation.

The foreground process is the process that owns the thread that owns the window that's in
focus. When the foreground window changes to one owned by a thread in a process higher
than the Idle priority class, the Win32 subsystem changes the quantum values for all the
threads in that process by using the lower-order 2 bits of the Win32PrioritySeparation
registry value as an index into a three-element array named PspForegroundQuantum. This
array contains values determined by the other two bit fields in the Win32PrioritySeparation
registry value. Table 6-17 shows the possible settings for PspForegroundQuantum.

Table 6-17 Quantum Values

 Short Long

Variable 6 12 18 12 24 36

Fixed 18 18 18 36 36 36

The reason that Windows 2000 boosts the quantum of foreground threads and not the
priority is best illustrated with the following example, which shows the potential problems
resulting from an approach based on foreground priority boosting. Suppose you start a
long-running spreadsheet recalculation and then switch to a CPU-intensive application
(such as a graphics-intensive game). The spreadsheet process running in the background
will get little CPU time if the game process, which is in the foreground, has its priority
boosted. Increasing the quantum of the game process doesn't prevent the spreadsheet
calculation from running but instead favors the game process. If you do want to run an
interactive application at a higher priority than all other interactive processes, you can
always change the priority class to Above Normal or High using Task Manager (or start the
application from the command prompt with the command start /abovenormal or start
/high).

When you're setting the quantum length by modifying the Win32PrioritySeparation registry
value directly, you can select any combination. When you're using the Performance Options
dialog box, you can choose from only two combinations. To see this dialog box (shown in
Figure 6-16), open the System utility in Control Panel (or right-click on My Computer and
select Properties), click the Advanced tab, and then click the Performance Options button.

Figure 6-16 Adjusting the quantum settings



The Applications option under Optimize Performance For designates the use of short,
variable quantums—the default for Windows 2000 Professional. The Background Services
option designates the use of long, fixed quantums—the default for Windows 2000 Server.
If you install Terminal Services on Windows 2000 Advanced Server or Windows 2000
Datacenter Server and configure the server as an application server, this setting is
changed to optimize for applications.



Scheduling Data Structures

To make thread-scheduling decisions, the kernel maintains a set of data structures known
collectively as the dispatcher database, which is illustrated in Figure 6-17. The dispatcher
database keeps track of which threads are waiting to execute and which processes are
executing which threads. The most important structure in the dispatcher database is the
dispatcher ready queue (located at KiDispatcherReadyListHead). This queue is really a
series of queues, one queue for each scheduling priority. The queues contain threads that
are in the ready state, waiting to be scheduled for execution.

Figure 6-17 Dispatcher database

To speed up the selection of which thread to run or preempt, Windows 2000 maintains a
32-bit bitmask called the ready summary (KiReadySummary). Each bit set indicates one or
more threads in the ready queue for that priority level. (Bit 0 represents priority 0, and so
on.) Windows 2000 maintains another bitmask, the idle summary (KiIdleSummary), in
which each set bit represents an idle processor.

As noted earlier, thread dispatching takes place at DPC/dispatch level. In addition to
preventing other threads from running, being at DPC/dispatch level synchronizes access to
the dispatcher database. On a multiprocessor system, however, changes to the dispatcher
database require the additional step of acquiring the kernel dispatcher spinlock
(KiDispatcherLock). Table 6-18 shows the kernel-mode kernel variables that are related to
thread scheduling.

Table 6-18 Thread-Scheduling Kernel Variables

Variable Type Description

KiDispatcherLock Spinlock Dispatcher spinlock

KeNumberProcessors Byte Number of processors active in system

KeActiveProcessors Bitmask (32
bits)

Bitmask of active processors in system

KiIdleSummary Bitmask (32
bits)

Bitmask of idle processors

javascript:fullSize('F06yj17x.htm')


KiReadySummary Bitmask (32
bits)

Bitmask of priority levels that have one
or more ready threads

KiDispatcherReadyListHead Array of 32
list entries

List heads for the 32 ready queues



Scheduling Scenarios

Windows 2000 bases the question of "Who gets the CPU?" on thread priority; but how does
this approach work in practice? The following sections illustrate just how priority-driven
preemptive multitasking works on the thread level. Note that there are differences in the
way Windows 2000 handles scheduling decisions on a multiprocessor system vs. on a
uniprocessor system. These differences are explained in the section "Thread Scheduling on
Symmetric Multiprocessing Systems" later in this chapter.

Voluntary Switch

First a thread might voluntarily relinquish use of the processor by entering a wait state on
some object (such as an event, a mutex, a semaphore, an I/O completion port, a process,
a thread, a window message, and so on) by calling one of the many Win32 wait functions
(such as WaitForSingleObject or WaitForMultipleObjects). Waiting on objects is described in
more detail in Chapter 3.

Voluntary switching is roughly equivalent to a thread ordering an item that isn't ready to
go at a fast-food counter. Rather than hold up the queue of the other diners, the thread
will step aside and let the next thread place its order (execute its routine) while the first
thread's hamburger is being prepared. When the hamburger is ready, the first thread goes
to the end of the ready queue of the priority level. However, as you'll see later in the
chapter, most wait operations result in a temporary priority boost so that the thread can
pick up its hamburger right away and start eating.

Figure 6-18 illustrates a thread entering a wait state and Windows 2000 selecting a new
thread to run.

Figure 6-18 Voluntary switching

In Figure 6-18, the top block (thread) is voluntarily relinquishing the processor so that the
next thread in the ready queue can run (as represented by the halo it has when in the
Running column). Although it might appear from this figure that the relinquishing thread's
priority is being reduced, it's not—it's just being moved to the wait queue of the objects
the thread is waiting on. What about any remaining quantum for the thread? The quantum
value isn't reset when a thread enters a wait state—in fact, as explained earlier, when the
wait is satisfied, the thread's quantum value is decremented by 1 quantum unit, equivalent
to one-third of a clock interval (except for threads running at priority 14 or higher—they
have their quantum reset after a wait).

Preemption

javascript:fullSize('F06yj18x.htm')


In this scheduling scenario, a lower-priority thread is preempted when a higher-priority
thread becomes ready to run. This situation might occur for a couple of reasons.

A higher-priority thread's wait completes. (The event that the other thread was waiting
on has occurred.)

A thread priority is increased or decreased.

In either of these cases, Windows 2000 must determine whether the currently running
thread should still continue to run or whether it should be preempted to allow a higher-
priority thread to run.

NOTE

Threads running in user mode can preempt threads running in kernel mode—the
mode in which the thread is running doesn't matter. The thread priority is the
determining factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was
running at. Threads running in the real-time priority range have their quantum reset to a
full time slice while threads running in the dynamic priority range finish their quantum
when they get to run again. Figure 6-19 illustrates this situation.

Figure 6-19 Preemptive thread scheduling

In Figure 6-19, a thread with priority 18 emerges from a wait state and repossesses the
CPU, causing the thread that had been running (at priority 16) to be bumped to the head
of the ready queue. Notice that the bumped thread isn't going to the end of the queue but
to the beginning; when the preempting thread has finished running, the bumped thread
can complete its quantum. In this example, the threads are in the real-time range; as
explained in the note in the section "Priority Boosts," no dynamic priority boosts are
allowed for threads in the real-time range.

If voluntary switching is roughly equivalent to a thread letting another thread place its
lunch order while the first thread waits for its meal, preemption is roughly equivalent to a
thread being bumped from its place in line because the president of the United States has
just walked in and ordered a hamburger. The preempted thread doesn't get bumped to the
back of the line but is simply moved aside while the president gets his lunch. As soon as
the president leaves, the first thread can resume ordering its meal.

javascript:fullSize('F06yj19x.htm')


Quantum End

When the running thread exhausts its CPU quantum, Windows 2000 must determine
whether the thread's priority should be decremented and then whether another thread
should be scheduled on the processor.

If the thread priority is reduced, Windows 2000 looks for a more appropriate thread to
schedule. (For example, a more appropriate thread would be a thread in a ready queue
with a higher priority than the new priority for the currently running thread.) If the thread
priority isn't reduced and there are other threads in the ready queue at the same priority
level, Windows 2000 selects the next thread in the ready queue at that same priority level
and moves the previously running thread to the tail of that queue (giving it a new
quantum value and changing its state from running to ready). This case is illustrated in
Figure 6-20. If no other thread of the same priority is ready to run, the thread gets to run
for another quantum.

Figure 6-20 Quantum end thread scheduling

Termination

When a thread finishes running (either because it returned from its main routine, called
ExitThread, or was killed with TerminateThread), it moves from the running state to the
terminated state. If there are no handles open on the thread object, the thread is removed
from the process thread list and the associated data structures are deallocated and
released.

javascript:fullSize('F06yj20x.htm')


Context Switching

A thread's context and the procedure for context switching vary depending on the
processor's architecture. A typical context switch requires saving and reloading the
following data:

Program counter

Processor status register

Other register contents

User and kernel stack pointers

A pointer to the address space in which the thread runs (the process's page table
directory)

The kernel saves this information from the old thread by pushing it onto the current (old
thread's) kernel-mode stack, updating the stack pointer, and saving the stack pointer in
the old thread's KTHREAD block. The kernel stack pointer is then set to the new thread's
kernel stack, and the new thread's context is loaded. If the new thread is in a different
process, it loads the address of its page table directory into a special processor register so
that its address space is available. (See the description of address translation in Chapter
7.) If a kernel APC that needs to be delivered is pending, an interrupt at IRQL 1 is
requested. Otherwise, control passes to the new thread's restored program counter and
the thread resumes execution.



Idle Thread

When no runnable thread exists on a CPU, Windows 2000 dispatches the per-CPU idle
thread. Each CPU is allotted one idle thread because on a multiprocessor system one CPU
can be executing a thread while other CPUs might have no threads to execute. Windows
2000 reports the priority of the idle thread as 0. In reality, however, such threads don't
have a priority level because they run only when there are no threads to run. (Remember,
only one thread per Windows 2000 system is actually running at priority 0—the zero page
thread.) In fact, the idle loop runs at DPC/dispatch level, polling for work to do: deferred
procedure calls (DPCs) to deliver or threads to dispatch to. Although some details of the
flow vary between architectures, the basic flow of control of the idle thread is as follows:

1. Enables and disables interrupts (allowing any pending interrupts to be delivered).

2. Checks whether any DPCs (described in Chapter 3) are pending on the processor. If
DPCs are pending, clears the pending software interrupt and delivers them.

3. Checks whether a thread has been selected to run next on the processor, and if so,
dispatches that thread.

4. Calls the HAL processor idle routine (in case any power management functions need to
be performed).

Various Windows 2000 process viewer utilities report the idle process using different
names. Task Manager calls it "System Idle Process," Process Viewer reports it as "Idle,"
Pstat calls it "Idle Process," Process Explode and Tlist call it "System Process," and Qslice
calls it "SystemProcess."



Priority Boosts

In five cases, Windows 2000 can boost (increase) the current priority value of threads:

On completion of I/O operations

After waiting on executive events or semaphores

After threads in the foreground process complete a wait operation

When GUI threads wake up because of windowing activity

When a thread that's ready to run hasn't been running for some time (CPU starvation)

The intent of these adjustments is to improve overall system throughput and
responsiveness as well as resolve potentially unfair scheduling scenarios. Like any
scheduling algorithms, however, these adjustments aren't perfect, and they might not
benefit all applications.

NOTE

Windows 2000 never boosts the priority of threads in the real-time range (16
through 31). Therefore, scheduling is always predictable with respect to other
threads in the real-time range. Windows 2000 assumes that if you're using the
real-time thread priorities, you know what you're doing.

Priority Boosting After I/O Completion

Windows 2000 gives temporary priority boosts upon completion of certain I/O operations
so that threads that were waiting on an I/O will have more of a chance to run right away
and process whatever was being waited on. Recall that 1 quantum unit is deducted from
the thread's remaining quantum when it wakes up so that I/O bound threads aren't
unfairly favored. Although you'll find recommended boost values in the DDK header files
(search for "#define IO" in Wdm.h or Ntddk.h—these values are listed in Table 6-19), the
actual value for the boost is up to the device driver. It is the device driver that specifies the
boost when it completes an I/O request on its call to the kernel function
IoCompleteRequest. In Table 6-19, notice that I/O requests to devices that warrant better
responsiveness have higher boost values.

Table 6-19 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8



The boost is always applied to a thread's base priority, not its current priority. As illustrated
in Figure 6-21, after the boost is applied, the thread gets to run for one quantum at the
elevated priority level. After the thread has completed its quantum, it decays one priority
level and then runs another quantum. This cycle continues until the thread's priority level
has decayed back to its base priority. A thread with a higher priority can still preempt the
boosted thread, but the interrupted thread gets to finish its time slice at the boosted
priority level before it decays to the next lower priority.

Figure 6-21 Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority range (0
through 15). No matter how large the boost is, the thread will never be boosted beyond
level 15 into the real-time priority range. In other words, a priority 14 thread that receives
a boost of 5 will go up to priority 15. A priority 15 thread that receives a boost will remain
at priority 15.

Boosts After Waiting for Events and Semaphores

When a thread that was waiting on an executive event or a semaphore object has its wait
satisfied (because of a call to SetEvent, PulseEvent, or ReleaseSemaphore), it receives a
boost of 1. (See the value for EVENT_INCREMENT and SEMAPHORE_INCREMENT in the
DDK header files.) Threads that wait for events and semaphores warrant a boost for the
same reason that threads that wait on I/O operations do—threads that block on events are
requesting CPU cycles less frequently than CPU-bound threads. This adjustment helps
balance the scales.

This boost operates the same as the boost that occurs after I/O completion as described in
the previous section: the boost is always applied to the base priority (not the current
priority), the priority will never be boosted over 15, and the thread gets to run at the
elevated priority for its remaining quantum (as described earlier, quantums are reduced by
1 when threads exit a wait) before decaying one priority level at a time until it reaches its
original base priority.

Priority Boosts for Foreground Threads After Waits

Whenever a thread in the foreground process completes a wait operation on a kernel
object, the kernel function KiUnwaitThread boosts its current (not base) priority by the
current value of PsPrioritySeparation. (The windowing system is responsible for
determining which process is considered to be in the foreground.) As described in the
section on quantum controls, PsPrioritySeparation reflects the quantum-table index used to
select quantums for the threads of foreground applications.

The reason for this boost is to improve the responsiveness of interactive applications—by
giving the foreground application a small boost when it completes a wait, it has a better
chance of running right away, especially when other processes at the same base priority
might be running in the background.

javascript:fullSize('F06yj21x.htm')


Unlike other types of boosting, this boost applies to both Windows 2000 Professional and
Windows 2000 Server, and you can't disable this boost, even if you've disabled priority
boosting using the Win32 SetThreadPriorityBoost function.

EXPERIMENT

Watching Foreground Priority Boosts and Decays

Using the CPU Stress tool (in the resource kit and the Platform SDK), you can
watch priority boosts in action. Take the following steps:

1. Open the System utility in Control Panel (or right-click on My Computer and
select Properties), click the Advanced tab, and click the Performance Options
button. Select the Applications option. This causes PsPrioritySeparation to get
a value of 2.

2. Run Cpustres.exe.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). This older version of the Performance tool is needed for
this experiment because it can query performance counter values at a
frequency faster than the Windows 2000 Performance tool (which has a
maximum interval of once per second).

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see the cpustres process.
Select the second thread (thread 1). (The first thread is the GUI thread.) You
should see something like this:

7. Click the Add button, and then click the Done button.

8. Select Chart from the Options menu. Change the Vertical Maximum to 16 and
the Interval to 0.010 as follows, and click OK:

javascript:fullSize('G06yj16x.htm')


9. Now bring the Cpustres process to the foreground. You should see the priority
of the Cpustres thread being boosted by 2 and then decaying back to the base
priority as follows:

10. The reason Cpustres receives a boost of 2 periodically is because the thread
you're monitoring is sleeping about 75 percent of the time and then waking up
—the boost is applied when the thread wakes up. To see the thread get
boosted more frequently, increase the Activity level from Low to Medium to
Busy. If you set the Activity level to Maximum, you won't see any boosts
because Maximum in Cpustres puts the thread into an infinite loop. Therefore,
the thread doesn't invoke any wait functions and hence doesn't receive any
boosts.

11. When you've finished, exit Performance Monitor and CPU Stress.

Priority Boosts After GUI Threads Wake Up

Threads that own windows receive an additional boost of 2 when they wake up because of
windowing activity, such as the arrival of window messages. The windowing system
(Win32k.sys) applies this boost when it calls KeSetEvent to set an event used to wake up a
GUI thread. The reason for this boost is similar to the previous one—to favor interactive
applications.

EXPERIMENT

javascript:fullSize('G06yj18x.htm')


Watching Priority Boosts on GUI Threads

You can also see the windowing system apply its boost of 2 for GUI threads that
wake up to process window messages by monitoring the current priority of a GUI
application and moving the mouse across the window. Just follow these steps:

1. Open the System utility in Control Panel (or right-click on My Computer and
select Properties), click the Advanced tab, and click the Performance Options
button. Ensure that the Applications option is selected. This causes
PsPrioritySeparation to get a value of 2.

2. Run Notepad from the Start menu by selecting
Programs/Accessories/Notepad.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). This older version of the Performance tool is needed for
this experiment because it can query performance counter values at a faster
frequency. (The Windows 2000 Performance tool has a maximum interval of
once per second.)

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see Notepad thread 0. Click
it, click the Add button, and then click the Done button.

7. As in the previous experiment, select Chart from the Options menu. Change
the Vertical Maximum to 16 and the Interval to 0.010, and click OK.

8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because
Notepad entered a wait state shortly after it received the boost of 2 that
threads in the foreground process receive, it might not yet have decayed from
10 to 9 and then to 8.

9. With Performance Monitor in the foreground, move the mouse across the
Notepad window. (Make both windows visible on the desktop.) You'll see that
the priority sometimes remains at 10 and sometimes at 9, for the reasons just
explained. (The reason you won't likely catch Notepad at 8 is that it runs so
little after receiving the GUI thread boost of 2 that it never experiences more
than one priority level decay before waking up again because of additional
windowing activity and receiving the boost of 2 again.)

10. Now bring Notepad to the foreground. You should see the priority rise to 12
and remain there (or drop to 11, because it might experience the normal
priority decay that occurs for boosted threads on quantum end) because the
thread is receiving two boosts: the boost of 2 applied to GUI threads when
they wake up to process windowing input and an additional boost of 2 because
Notepad is in the foreground.

11. If you then move the mouse over Notepad (while it's still in the foreground),
you might see the priority drop to 11 (or maybe even 10) as it experiences
the priority decay that normally occurs on boosted threads as they complete



quantums. However, the boost of 2 applied because it's the foreground
process remains as long as Notepad remains in the foreground.

12. When you've finished, exit Performance Monitor and Notepad.

Priority Boosts for CPU Starvation

Imagine the following situation: you've got a priority 7 thread that's running, preventing a
priority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting on
some resource that the priority 4 thread has locked. But because the priority 7 thread in
the middle is eating up all the CPU time, the priority 4 thread will never run long enough to
finish whatever it's doing and release the resource blocking the priority 11 thread. What
does Windows 2000 do to address this situation? Once per second, the balance set
manager (a system thread that exists primarily to perform memory management functions
and is described in more detail in Chapter 7) scans the ready queues for any threads that
have been in the ready state (that is, haven't run) for longer than 300 clock ticks
(approximately 3 to 4 seconds, depending on the clock interval). If it finds such a thread,
the balance set manager boosts the thread's priority to 15 and gives it double the normal
quantum. Once the 2 quantums are up, the thread's priority decays immediately to its
original base priority. If the thread wasn't finished and a higher priority thread is ready to
run, the decayed thread will return to the ready queue, where it again becomes eligible for
another boost if it remains there for another 300 clock ticks.

The balance set manager doesn't actually scan all ready threads every time it runs. To
minimize the CPU time it uses, it scans only 16 ready threads; if there are more threads at
that priority level, it remembers where it left off and picks up again on the next pass. Also,
it will boost only 10 threads per pass—if it finds 10 threads meriting this particular boost
(which would indicate an unusually busy system), it stops the scan at that point and picks
up again on the next pass.

Will this algorithm always solve the priority inversion issue? No—it's not perfect by any
means. But over time, CPU-starved threads should get enough CPU time to finish whatever
processing they were doing and reenter a wait state.

Thread Scheduling on Symmetric Multiprocessing Systems

If scheduling access to system processors is based on thread priority, what happens if
you're using more than one processor? While Windows 2000 attempts to schedule the
highest priority runnable threads on all available CPUs, several factors influence the choice
of which CPU a thread will run on such that Windows 2000 is only guaranteed to be
running the (single) highest priority thread. Before we describe the algorithms, we need to
define a few terms.

Affinity

Each thread has an affinity mask that specifies the processors on which the thread is
allowed to run. The thread affinity mask is inherited from the process affinity mask. By
default, all processes (and therefore all threads) begin with an affinity mask that is equal
to the set of active processors on the system—in other words, all threads can run on all
processors.

Two things can alter that:



A call made by the application to the SetProcessAffinityMask or SetThreadAffinityMask
function

An imagewide affinity mask specified in the image header (For more information on
the detailed format of Windows 2000 images, see the article "Portable Executable and
Common Object File Format Specification" in the MSDN Library.)

EXPERIMENT

Watching Priority Boosts for CPU Starvation

Using the CPU Stress tool (in the resource kit and the Platform SDK), you can
watch priority boosts in action. In this experiment, we'll see CPU usage change
when a thread's priority is boosted. Take the following steps:

1. Run Cpustres.exe. Change the activity level of the active thread (by default
Thread 1) from Low to Maximum. Change the thread priority from Normal to
Below Normal. The screen should look like this:

2. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). Again, you need the older version for this experiment
because it can query performance counter values at a frequency faster than
once per second.

3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

4. Select the Thread object, and then select the % Processor Time counter.

5. In the Instance box, scroll down the list until you see the cpustres process.
Select the second thread (thread 1). (The first thread is the GUI thread.) You
should see something like this:



6. Click the Add button, and then click the Done button.

7. Raise the priority of Performance Monitor to real-time by running Task
Manager, clicking on the Processes tab, and selecting the Perfmon4.exe
process. Right-click on the process, select Set Priority, and then select
Realtime. (If you receive a Task Manager Warning message box warning you
of system instability, click the Yes button.)

8. Run another copy of CPU Stress. In this copy, change the activity level of
Thread 1 from Low to Maximum. The screen should look like this:

9. Now switch back to Performance Monitor. You should see CPU activity every 4
or so seconds because the thread is boosted to priority 15.

When you've finished, exit Performance Monitor and the two copies of CPU Stress.

Ideal and Last Processor

Each thread has two CPU numbers stored in the kernel thread block:

Ideal processor, or the preferred processor that this thread should run on

Last processor, or the processor on which the thread last ran

javascript:fullSize('G06yj20x.htm')


The ideal processor is chosen randomly when a thread is created, based on a seed in the
process block. The seed is incremented each time a thread is created so that the ideal
processor for each new thread in the process will rotate through the available processors
on the system. Windows 2000 doesn't change the ideal processor once the thread is
created; however, an application can change the ideal processor value for a thread by
using the SetThreadIdealProcessor function.

Choosing a Processor for a Ready Thread

When a thread becomes ready to run, Windows 2000 first tries to schedule the thread to
run on an idle processor. If there is a choice of idle processors, preference is given first to
the thread's ideal processor, then to the thread's last processor, and then to the currently
executing processor (that is, the CPU on which the scheduling code is running). If none of
these CPUs are idle, Windows 2000 picks the first available idle processor by scanning the
idle processor mask from highest to lowest CPU number.

If all processors are currently busy and a thread becomes ready, Windows 2000 looks to
see whether it can preempt a thread in the running or standby state on one of the CPUs.
Which CPU is examined? The first choice is the thread's ideal processor, and the second
choice is the thread's last processor. If neither of those CPUs are in the thread's affinity
mask, Windows 2000 selects the highest processor in the active processor mask that the
thread can run on.

If the processor selected already has a thread selected to run next (waiting in the standby
state to be scheduled) and that thread's priority is less than the priority of the thread
being readied for execution, the new thread preempts that first thread out of the standby
state and becomes the next thread for that CPU. If there is already a thread running on
that CPU, Windows 2000 checks whether the priority of the currently running thread is less
than the thread being readied for execution. If so, the currently running thread is marked
to be preempted and Windows 2000 queues an interprocessor interrupt to kick off the
currently running thread in favor of this new thread.

NOTE

Windows 2000 doesn't look at the priority of the current and next threads on all
the CPUs—just on the one CPU selected as described above. If no thread can be
preempted on that one CPU, the new thread is put in the ready queue for its
priority level, where it awaits its turn to get scheduled.

Selecting a Thread to Run on a Specific CPU

In several cases (such as when a thread lowers its priority, changes its affinity, or delays or
yields execution), Windows 2000 must find a new thread to run on the CPU that the
currently executing thread is running on. On a single processor system, Windows 2000
simply picks the first thread in the ready queue, starting with the highest-priority ready
queue with at least one thread and working its way down. On a multiprocessor system,
however, Windows 2000 doesn't simply pick the first thread in the ready queue. Instead, it
looks for a thread that meets one of the following conditions:

Ran last on the specified processor



Has its ideal processor set to the specified processor

Has been ready to run for longer than 2 quantums

Has a priority greater than or equal to 24

Threads that don't have the specified processor in their hard affinity mask are skipped,
obviously. If Windows 2000 doesn't find any threads that meet one of these conditions, it
picks the thread at the head of the ready queue it began searching from.

Why does it matter which processor a thread was last running on? As usual, the answer is
speed—giving preference to the last processor a thread executed on maximizes the
chances that thread data remains in the secondary cache of the processor in question.

When the Highest-Priority Ready Threads Are Not Running

As just explained, on a multiprocessor system, Windows 2000 doesn't always select the
highest-priority thread to run on a given CPU. Thus, a thread with a higher priority than
the currently running thread on a given CPU can become ready but might not immediately
preempt the current thread.

Another situation in which the highest-priority thread might not preempt the current
thread is when a thread's affinity mask is set as a subset of the available CPUs. In that
case, the processors to which the thread has affinity are currently running higher-priority
threads and the thread must wait for one of those processors—even if another processor is
free or running lower-priority threads that it could otherwise preempt. Windows 2000
won't move a running thread that could run on a different processor from one CPU to a
second processor to permit a thread with an affinity for the first processor to run on the
first processor.

For example, consider this scenario: CPU 0 is running a priority 8 thread that can run on
any processor, and CPU 1 is running a priority 4 thread that can run on any processor. A
priority 6 thread that can run on only CPU 0 becomes ready. What happens? Windows
2000 won't move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4
thread) so that the priority 6 thread can run; the priority 6 thread has to wait.



[Previous] [Next]



Job Objects
A job object is a nameable, securable, shareable kernel object that allows control of one or
more processes as a group. A job object's basic function is to allow groups of processes to
be managed and manipulated as a unit. A process can be a member of only one job object.
By default, its association with the job object can't be broken and all processes created by
the process and its descendents are associated with the same job object as well. The job
object also records basic accounting information for all processes associated with the job
and for all processes that were associated with the job but have since terminated. Table 6-
20 lists the Win32 functions to create and manipulate job objects.

Table 6-20 Win32 API Functions for Jobs

Function Description

CreateJobObject Creates a job object (with an optional name)

OpenJobObject Opens an existing job object by name

AssignProcessToJobObject Adds a process to a job

TerminateJobObject Terminates all processes in a job

SetInformationJobObject Sets limits

QueryInformationJobObject Retrieves information about the job, such as CPU time,
page fault count, number of processes, list of process
IDs, quotas or limits, and security limits

The following are some of the CPU-related and memory-related limits you can specify for a
job:

Maximum number of active processes Limits the number of concurrently executing
processes in the job.

Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU
time that the processes in the job can consume (including processes that have run and
exited). Once this limit is reached, by default all the processes in the job will be
terminated with an error code and no new processes can be created in the job (unless
the limit is reset). The job object is signaled, so any threads waiting on the job will be
released. You can change this default behavior with a call to EndOfJobTimeAction.

Per-process user-mode CPU time limit Allows each process in the job to
accumulate only a fixed maximum amount of user-mode CPU time. When the
maximum is reached, the process terminates (with no chance to clean up).

Job scheduling class Sets the length of the time slice (or quantum) for threads in
processes in the job. This setting applies only on systems running with long, fixed
quantums (the default for Windows 2000 Server). The value of the job-scheduling
class determines the quantum as shown here:

Scheduling Class Quantum Units

0 6

1 12



2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 Infinite if real-time; 60 otherwise

Job processor affinity Sets the processor affinity mask for each process in the job.
(Individual threads can alter their affinity to any subset of the job affinity, but
processes can't alter their process affinity setting.)

Job process priority class Sets the priority class for each process in the job. Threads
can't increase their priority relative to the class (as they normally can). Attempts to
increase thread priority are ignored. (No error is returned on calls to SetThreadPriority,
but the increase doesn't occur.)

Default working set minimum and maximum Defines the specified working set
minimum and maximum for each process in the job. (This setting isn't jobwide—each
process has its own working set with the same minimum and maximum values.)

Process and job committed virtual memory limit Defines the maximum amount of
storage that can be committed by either a single process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object, which other
threads might be waiting on with the Win32 GetQueuedCompletionStatus function.

You can also place security limits on processes in a job. You can set a job such that each
process runs under the same jobwide access token. You can then create a job to restrict
processes from impersonating or creating processes that have access tokens that contain
the local administrator's group. In addition, you can apply security filters such that when
threads in processes contained in a job impersonate client threads, certain privileges and
security IDs (SIDs) can be eliminated from the impersonation token.

Finally, you can also place user interface limits on processes in a job. Such limits include
being able to restrict processes from opening handles to windows owned by threads
outside the job, reading and/or writing to the clipboard, and changing the many user
interface system parameters via the Win32 SystemParametersInfo function.

Windows 2000 Datacenter Server has a tool called the Process Control Manager that allows
an administrator to define job objects, the various quotas and limits that can be specified
for a job, and which processes, if run, should be added to the job. A service component
monitors process activity and adds the specified processes to the jobs.

EXPERIMENT

Viewing the Job Object



You can view named job objects with the Performance tool. (See the Job Object
and Job Object Details performance objects.) To view unnamed job objects, you
must use the kernel debugger !job command. Follow these steps to create and
view an unnamed job object:

1. From the command prompt, use the runas command to create a process
running the command prompt (Cmd.exe). For example, type runas /user:
<domain>\< username> cmd. You'll be prompted for your password. Enter
your password, and a command prompt window will appear. The service
behind the runas command creates an unnamed job to contain all processes
(so that it can terminate these processes at logoff time).

2. From the kernel debugger (such as LiveKd), display the process list with
!process and find the recently created process running Cmd.exe. Then display
the process block by using !process <process ID>, find the address of the job
object, and finally display the job object with the !job command.

Here's some partial debugger output from the command sequence described in
step 2:

kd> !process 0 8 
**** NT ACTIVE PROCESS DUMP **** 
     
PROCESS 84eab6d0  SessionId: 0  Cid: 0478  Peb: 7ffdf000 ParentCid
    DirBase: 03834000  ObjectTable: 8097ef88  TableSize:  42. 
    Image: livekd.exe 
 
PROCESS 857e0d70  SessionId: 0  Cid: 0550  Peb: 7ffdf000 ParentCid
    DirBase: 05337000  ObjectTable: 82273ac8  TableSize:  22. 
    Image: cmd.exe 
 
PROCESS 83390710  SessionId: 0  Cid: 0100  Peb: 7ffdf000 ParentCid
    DirBase: 05b3b000  ObjectTable: 81bb7e08  TableSize:  34. 
    Image: i386kd.exe 
 
kd> !process 550 
Searching for Process with Cid == 550 
PROCESS 857e0d70  SessionId: 0  Cid: 0550  Peb: 7ffdf000 ParentCid
    DirBase: 05337000  ObjectTable: 82273ac8  TableSize:  22. 
    Image: cmd.exe 
     
    Job                               85870970 
     
kd> !job 85870970 7 
Job at 85870970 
  TotalPageFaultCount      0 
  TotalProcesses           1 
  ActiveProcesses          1 
  TotalTerminatedProcesses 0 
  LimitFlags               0 



  MinimumWorkingSetSize    0 
  MaximumWorkingSetSize    0 
  ActiveProcessLimit       0 
  PriorityClass            0 
  UIRestrictionsClass      0 
  SecurityLimitFlags       0 
  Token                    0 
  Processes assigned to this job: 
   PROCESS 857e0d70 SessionId: 0 Cid: 0550 Peb: 7ffdf000 ParentCid
        DirBase: 05337000  ObjectTable: 82273ac8  TableSize:  22. 
        Image: cmd.exe 



[Previous] [Next]



Conclusion
In this chapter, we've examined the structure of processes
and threads, seen how they are created and destroyed, and
looked at how Windows 2000 decides which threads should
run and for how long.

Many references in this chapter are to topics related to
memory management. Because threads run inside
processes and processes in large part define an address
space, the next logical topic is how Windows 2000 performs
virtual and physical memory management—the subjects of
Chapter 7.



[Previous] [Next]

Chapter 7



Memory Management
In this chapter, you'll learn how Microsoft Windows 2000
implements virtual memory and how it manages the subset
of virtual memory kept in physical memory. These jobs
involve two primary tasks:

Translating, or mapping, a process's virtual address
space into physical memory so that when a thread
running in the context of that process reads or writes to
the virtual address space, the correct physical address is
referenced. (The subset of a process's virtual address
space that is physically resident is called the working
set. Working sets are described in more detail later in
this chapter.)

Paging some of the contents of memory to disk when it
becomes overcommitted—that is, when running threads
or system code try to use more physical memory than is
currently available—and bringing the contents back into
physical memory when needed.

As you saw in Chapter 2 (Table 2-2), Windows 2000
Professional and Server systems support up to 4 GB of
physical memory, Windows 2000 Advanced Server supports
up to 8 GB, and Windows 2000 Datacenter Server up to 64
GB. (Actual supported maximum memory for Windows 2000
Datacenter Server depends on available hardware. Windows
2000 Datacenter Server wasn't released at the time we
wrote this book, so we were unable to verify whether the
hardware currently available will support the operating
system maximum of 64 GB.)

Because Windows 2000 is a 32-bit operating system, user
processes have a flat 4-GB 32-bit virtual address space. How
a 32-bit process can allocate and use large amounts of



physical memory is explained in the section "Address
Windowing Extensions" later in this chapter.

NOTE

Microsoft has publicly announced plans to provide a
true 64-bit version of Windows that will support the
Intel Itanium processor family. A new 64-bit API,
called Win64, will support true 64-bit addresses. The
reason for supporting this platform is the same
reason Microsoft moved from a 16-bit to a 32-bit
address space—ever increasing requirements for
storing and processing huge amounts of data in
memory. The 64-bit version of Windows alleviates the
address space limitations of Windows 2000 by
providing a large, flat 64-bit virtual address space for
processes. For more on 64-bit Windows, see the
section "Getting Ready for 64-bit Windows" in the
Platform SDK or the information on Microsoft's Web
site at
www.microsoft.com/windows2000/guide/platform/str
ategic/64bit.asp.

In addition to providing virtual memory management, the
memory manager provides a core set of services on which
the various Windows 2000 environment subsystems are
built. These services include memory mapped files
(internally called section objects), copy-on-write memory,
and support for applications using large, sparse address
spaces. In this chapter, we'll summarize these basic services
and review pertinent concepts such as reserved versus
committed memory and shared memory. We'll also describe
the internal structure and components that make up the

http://www.microsoft.com/windows2000/guide/platform/strategic/64bit.asp


memory manager, including key data structures and
algorithms.



[Previous] [Next]



Memory Manager Components
The memory manager is part of the Windows 2000 executive and therefore
exists in the file Ntoskrnl.exe. No parts of the memory manager exist in the
HAL. The memory manager consists of the following components:

A set of executive system services for allocating, deallocating, and
managing virtual memory, most of which are exposed through the Win32
API or kernel-mode device driver interfaces

A translation-not-valid and access fault trap handler for resolving
hardware-detected memory management exceptions and making virtual
pages resident on behalf of a process

Several key components that run in the context of six different kernel-
mode system threads:

The working set manager (priority 16), which the balance set
manager (a system thread the kernel creates) calls once per second
as well as when free memory falls below a certain threshold, drives
the overall memory management policies, such as working set
trimming, aging, and modified page writing.

The process/stack swapper (priority 23) performs both process and
kernel thread stack inswapping and outswapping. The balance set
manager and the thread-scheduling code in the kernel awaken this
thread when an inswap or outswap operation needs to take place.

The modified page writer (priority 17) writes dirty pages on the
modified list back to the appropriate paging files. This thread is
awakened when the size of the modified list needs to be reduced.
(See the section "Modified Page Writer" to find out how you can
change this default value.)

The mapped page writer (priority 17) writes dirty pages in mapped
files to disk. It is awakened when the size of the modified list needs to
be reduced or if pages for mapped files have been on the modified list
for more than 5 minutes. This second modified page writer thread is
necessary because it can generate page faults that result in requests
for free pages. If there were no free pages and there was only one
modified page writer thread, the system could deadlock waiting for
free pages.

The dereference segment thread (priority 18) is responsible for
system cache and page file growth and shrinkage. (For example, if



there is no virtual address space for paged pool growth, this thread
reduces the size of the system cache.)

The zero page thread (priority 0) zeros out pages on the free list so
that a cache of zero pages is available to satisfy future demand-zero
page faults.

Each of these components is covered in more detail later in the chapter.

Like all other components of the Windows 2000 executive, the memory
manager is fully reentrant and supports simultaneous execution on
multiprocessor systems—that is, it allows two threads to acquire resources in
such a way that they don't corrupt each other's data. To accomplish the goal
of being fully reentrant, the memory manager uses several different internal
synchronization mechanisms to control access to its own internal data
structures, such as spinlocks and executive resources. (Synchronization
objects are discussed in Chapter 3.)

Systemwide resources to which the memory manager must synchronize
access include the page frame number (PFN) database (controlled by a
spinlock), section objects and the system working set (controlled by executive
resources), and page file creation (controlled by a mutex), as well as other
internal structures. Per-process memory management data structures are
synchronized using two per-process mutexes: the working set lock (held while
changes are being made to the working set list) and the address space lock
(held whenever the address space is being changed).



Configuring the Memory Manager

Like most of Windows 2000, the memory manager attempts to automatically
provide optimal system performance for varying workloads on systems of
varying sizes and types. You can use registry values under the key
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
Management to override these default performance calculations. Some of
these values are listed in Table 7-1. For more details, see the Windows 2000
resource kit Technical Reference to the Registry help file.

Table 7-1 Registry Values That Affect the Memory Manager

Registry Value Description

ClearPageFileAtShutdown Specifies whether inactive pages in the paging
file are filled with zeros when the system is
shut down. This is a security feature.

DisablePagingExecutive Specifies whether user-mode and kernel-
mode drivers and kernel-mode system code
can be paged to disk when not in use. If the
value of this entry is 0 (the default), drivers
and the kernel must remain in physical
memory. If the value is 1, they can be paged
to disk as needed.

IoPageLockLimit Specifies the limit of the number of bytes that
can be locked in a user process for I/O
operations. When this value is 0, the system
uses the default (512 KB). The maximum
value is approximately the equivalent of
physical memory minus 7 MB. This registry
key isn't used in Windows 2000 Datacenter
Server and is no longer used in Windows 2000
starting with Windows 2000 Service Pack 1.

LargePageMinimum Indicates the minimum number of megabytes
necessary to map Ntoskrnl and HAL using
large (4-MB) pages. (This value isn't
documented and isn't present by default; you
must add it manually.)

LargeSystemCache Affects whether the file system cache or the
working sets of processes are given priority
when it comes to memory trade-offs. Also
affects the size of the file system cache. (On
Windows 2000 Server systems, you can
adjust this value indirectly by setting the



properties of the file server service—see
Chapter 11 for details.)

NonPagedPoolQuota Indicates the maximum nonpaged pool that
can be allocated by any process (in
megabytes). If the value of this entry is 0, the
system calculates the value.

NonPagedPoolSize Indicates the initial size of nonpaged pool in
bytes. When this value is 0, the system
calculates the value.

PagedPoolQuota Indicates the maximum paged pool (in
megabytes) that any process can allocate. If
the value of this entry is 0, the system
calculates the value.

PagedPoolSize Indicates the maximum size of paged pool in
bytes. When the value of this entry is 0, the
system calculates the value. A value of -1
indicates that the largest possible size is
selected, which means allowing a larger
paged pool in favor of system page table
entries (PTEs).

SystemPages Indicates the number of system page table
entries reserved for mapping I/O buffers,
device drivers, kernel thread stacks, or pages
for programmed I/O into the system address
space. If the value is 0, the system calculates
the value. If the value is -1, the maximum
number of system PTEs will be reserved. (This
value might be needed to support, for
example, a device that requires a large
number of system PTEs, such as a video card
with 512 MB of video memory that has to be
mapped all at one time.)

Most of the interesting "knobs" or controls that affect memory manager policy
are kernel variables that contain various thresholds and limits computed at
system boot time on the basis of memory size and product type (Windows
2000 Professional being optimized for desktop interactive use and Windows
2000 Server systems for running server applications). Examples of these
knobs include the sizing of system memory (paged pool, nonpaged pool,
system cache, number of system page table entries), page read cluster size,
counters that trigger working set trimming, and thresholds for the modified
page writer. To find some of these, search for global variables in Ntoskrnl.exe



that have names beginning with Mm that contain the word "maximum" or
"minimum."

WARNING

Although you'll find references to many of these knobs, you shouldn't
change them. Windows 2000 has been tested to operate properly with
the current possible permutations of these values that can be
computed. Changing the value of these kernel variables on a running
system can result in unpredictable system behavior, including system
hangs or even crashes.

The current memory sizes that determine whether Windows 2000 considers a
system to have a small, medium, or large amount of memory are listed in
Table 7-2. The memory manager uses this value in many of its boot-time
calculations.

Table 7-2 Values That Determine System Memory Size

System
Memory Size Physical Memory

Small <19 MB

Medium 20-32 MB

Large >32 MB if Windows 2000 Professional >64 MB if
Windows 2000 Server

Determining the System Memory Size

Because device drivers (as well as other Windows 2000 kernel-mode
components) might make resource allocation and run-time policy
decisions based on memory size values, the following kernel-mode
routines have been provided (and are documented in the DDK):

Function Description

MmQuery-
SystemSize

Returns whether the machine has a small,
medium, or large amount of available memory.

MmIsThisAn-
NtAsSystem

Returns TRUE for Windows 2000 Server, Windows
2000 Advanced Server, and Windows 2000
Datacenter Server, and FALSE for Windows 2000



Professional. (This routine's name was based on
the original product name of the server of the
server edition of Microsoft Windows NT, Windows
NT Advanced Server.)



Examining Memory Usage

The Memory and Process performance counter objects provide access to most
of the details about system and process memory utilization. Throughout the
chapter, we'll include references to specific performance counters that contain
information related to the component being described.

Besides the Performance tool, a number of tools in the Windows 2000 Support
Tools and Windows 2000 resource kits display different subsets of memory
usage information. We've included relevant examples and experiments
throughout the chapter. One word of caution, however—different utilities use
varying and sometimes inconsistent or confusing names when displaying
memory information. The following experiment illustrates this point. (We'll
explain the terms used in this example in subsequent sections.)

EXPERIMENT

Viewing System Memory Information

The Performance tab in the Windows 2000 Task Manager, shown in
the following screen shot, displays basic system memory information.
This information is a subset of the detailed memory information
available through the performance counters.

Both Pmon.exe (in the Windows 2000 Support Tools) and Pstat.exe (in
the Platform SDK) display system and process memory information.
The annotations in the following output from Pstat explain the
information reported. (For an explanation of the commit total and
limit, see Table 7-8.)

javascript:fullSize('G07yj01x.htm')


To see the specific usage of paged and nonpaged pool, use the
Poolmon utility, described in the experiment.

Finally, the !vm command in the kernel debugger shows the basic
memory management information available through the memory-
related performance counters. This command can be useful if you're
looking at a crash dump or hung system. Here's an example of its
output:

kd> !vm 
 
*** Virtual Memory Usage *** 
        Physical Memory:    32620   (  130480 Kb) 
        Page File: \??\C:\pagefile.sys 
           Current:    204800Kb Free Space:    101052Kb 
           Minimum:    204800Kb Maximum:       204800Kb 
        Available Pages:     3604   (   14416 Kb) 
        ResAvail Pages:     24004   (   96016 Kb) 
        Modified Pages:       768   (    3072 Kb) 
        NonPagedPool Usage:  1436   (    5744 Kb) 
        NonPagedPool Max:   12940   (   51760 Kb) 
        PagedPool 0 Usage:   6817   (   27268 Kb) 
        PagedPool 1 Usage:    982   (    3928 Kb) 
        PagedPool 2 Usage:    984   (    3936 Kb) 
        PagedPool Usage:     8783   (   35132 Kb) 
        PagedPool Maximum:  26624   (  106496 Kb) 
        Shared Commit:       1361   (    5444 Kb) 
        Special Pool:           0   (       0 Kb) 
        Free System PTEs:  189291   (  757164 Kb) 
        Shared Process:      3165   (   12660 Kb) 
        PagedPool Commit:    8783   (   35132 Kb) 

javascript:fullSize('G07yj02x.htm')


        Driver Commit:       1098   (    4392 Kb) 
        Committed pages:    45113   (  180452 Kb) 
        Commit limit:       79556   (  318224 Kb) 
 
        Total Private:      30536   (  122144 Kb) 
            IEXPLORE.EXE       3028 (   12112 Kb) 
            svchost.exe        2128 (    8512 Kb) 
            WINWORD.EXE        1971 (    7884 Kb) 
            POWERPNT.EXE       1905 (    7620 Kb) 
            Acrobat.exe        1761 (    7044 Kb) 
            winlogon.exe       1361 (    5444 Kb) 
            explorer.exe       1300 (    5200 Kb) 
            livekd.exe         1015 (    4060 Kb) 
            hh.exe              960 (    3840 Kb) 
            

EXPERIMENT

Accounting for Physical Memory Use

By combining information available from performance counters with
output from kernel debugger commands, you can come close to
accounting for physical memory usage on a machine running Windows
2000. To examine the memory usage information available through
performance counters, run the Performance tool and add the counters
to view the following information. (You'll see the results more easily if
you change the vertical scale maximum on the graph to 1000.)

Total process working set size To view this information, select
the Process performance object and the Working Set counter for
the _Total process instance. This number will be larger than the
actual total process memory utilization because shared pages are
counted in each process working set. To get a more accurate
picture of process memory utilization, subtract free memory
(available bytes), operating system memory used (nonpaged pool,
resident paged pool, and resident operating system and driver
code), and the size of the modified list from the total physical
memory on the machine. What you're left with is the memory
being used by processes. Comparing this value against the total
process working set size as reported by the Performance tool
gives you some indication of the amount of sharing occurring



between processes. Although examining process physical memory
usage is interesting, of more concern is the private committed
virtual memory usage by processes, because memory leaks show
up as an increasing private virtual size, not an increasing working
set size. (At some point, the memory manager will stop the
process from growing in physical size, though it can continue to
grow in its virtual size until the commit limit—the maximum
amount of private committed virtual memory available on the
system—is reached. For more information, see the section "Page
Files.")

Total system working set size To view this information, select
the Memory processor object and the Cache Bytes counter. As
explained in the section "System Working Set," the total system
working set size includes more than just the cache size—it
includes resident paged pool and resident operating system and
driver code.

Size of nonpaged pool View this information by adding the
Memory: Pool Nonpaged Bytes counter.

Size of the free, zero, and standby lists View the sizes of
these lists by adding the Memory: Available Bytes counter. (Use
the !memusage kernel debugger command to get the size of each
of the lists separately.)

Your graph or report now contains a representation of all of physical
memory except for two components that you can't obtain from a
performance counter:

Nonpaged operating system and driver code

The modified and modified-no-write paging lists

Although you can easily obtain the size of both the modified and
modified-no-write lists by using the kernel debugger !memusage
command, there's no easy way to get the size of the nonpaged
operating system and driver code. You can, however, get the amount
of physical memory being used by nonpaged and paged operating
system and device driver code by using the kernel debugger !drivers
1 command and the total of the Resident column. This column
represents the number of pages that physically reside in each loaded
kernel-mode module.



[Previous] [Next]



Services the Memory Manager
Provides
The memory manager provides a set of system services to
allocate and free virtual memory, share memory between
processes, map files into memory, flush virtual pages to
disk, retrieve information about a range of virtual pages,
change the protection of virtual pages, and lock the virtual
pages into memory.

Like other Windows 2000 executive services, the memory
management services allow their caller to supply a process
handle, indicating the particular process whose virtual
memory is to be manipulated. The caller can thus
manipulate either its own memory or (with the proper
permissions) the memory of another process. For example, if
a process creates a child process, by default it has the right
to manipulate the child process's virtual memory. Thereafter,
the parent process can allocate, deallocate, read, and write
memory on behalf of the child process by calling virtual
memory services and passing a handle to the child process
as an argument. This feature is used by subsystems to
manage the memory of their client processes, and it is also
key for implementing debuggers because debuggers must be
able to read and write to the memory of the process being
debugged.

Most of these services are exposed through the Win32 API.
The Win32 API has three groups of functions for managing
memory in applications: page granularity virtual memory
functions (Virtualxxx), memory-mapped file functions
(CreateFileMapping, MapViewOfFile), and heap functions
(Heapxxx and the older interfaces Localxxx and Globalxxx).
(We'll describe the heap manager later in this section.)



The memory manager also provides a number of services,
such as allocating and deallocating physical memory and
locking pages in physical memory for direct memory access
(DMA) transfers, to other kernel-mode components inside
the executive as well as to device drivers. These functions
begin with the prefix Mm. In addition, though not strictly
part of the memory manager, the executive support routines
that begin with Ex that are used to allocate and deallocate
from the system heaps (paged and nonpaged pool) as well
as to manipulate look-aside lists. We'll touch on these topics
later in this chapter, in the section "System Memory Pools."

Although we'll be referring to Win32 functions and kernel-
mode memory management and memory allocation routines
provided for device drivers, we won't cover the interface and
programming details but rather the internal operations of
these functions. Refer to the Win32 API and Device Driver
Kit (DDK) documentation on MSDN for a complete
description of the available functions and their interfaces.



Reserving and Committing Pages

Pages in a process address space are free, reserved, or
committed. Applications can first reserve address space and
then commit pages in that address space. Or they can
reserve and commit in the same function call. These services
are exposed through the Win32 VirtualAlloc and
VirtualAllocEx functions.

Reserved address space is simply a way for a thread to
reserve a range of virtual addresses for future use.
Attempting to access reserved memory results in an access
violation because the page isn't mapped to any storage that
can resolve the reference.

Committed pages are pages that, when accessed, ultimately
translate to valid pages in physical memory. Committed
pages are either private and not shareable or mapped to a
view of a section (which might or might not be mapped by
other processes). Sections are described in the next section
as well as in "Section Objects."

If the pages are private to the process and have never been
accessed before, they are created at the time of first access
as zero-initialized pages (or demand zero). Private
committed pages can later be automatically written to the
paging file by the operating system if memory demands
dictate. Committed pages that are private are inaccessible to
any other process unless they're accessed using cross-
process memory functions, such as ReadProcessMemory or
WriteProcessMemory. If committed pages are mapped to a
portion of a mapped file, they might need to be brought in
from disk when accessed unless they've already been read
earlier, either by the process accessing the page or by
another process that had the same file mapped and had
accessed the page.



Pages are written to disk through normal modified page
writing as pages are moved from the process working set to
the modified list and ultimately to disk. (Working sets and
the modified list are explained later in this chapter.) Mapped
file pages can also be written back to disk as a result of an
explicit call to FlushViewOfFile.

You can decommit pages and/or release address space with
the VirtualFree or VirtualFreeEx functions. The difference
between decommittal and release is similar to the difference
between reservation and committal—decommitted memory
is still reserved, but released memory is neither committed
nor reserved. (It's free.)

Using the two-step process of reserving and committing
memory can reduce memory usage by deferring committing
pages until needed. Reserving memory is a relatively fast
and inexpensive operation under Windows 2000 because it
doesn't consume any committed pages (a precious system
resource) or process page file quota (a limit on the number
of committed pages a process can consume—not necessarily
page file space). All that need to be updated or constructed
are the relatively small internal data structures that
represent the state of the process address space. (We'll
explain these data structures, called virtual address
descriptors, or VADs, later in the chapter.)

Reserving and then committing memory is useful for
applications that need a potentially large contiguous memory
buffer; rather than committing pages for the entire region,
the address space can be reserved and then committed later
when needed. A utilization of this technique in the operating
system is the user-mode stack for each thread. When a
thread is created, a stack is reserved. (1 MB is the default;
you can override this size with the CreateThread function call
or on an imagewide basis by using the /STACK linker flag.)



By default, the initial page in the stack is committed and the
next page is marked as a guard page, which isn't
committed, that traps references beyond the end of the
committed portion of the stack and expands it.



Locking Memory

Pages can be locked in memory in two ways:

Device drivers can call the kernel-mode functions
MmProbeAndLockPages, MmLockPagableCodeSection,
MmLockPagableDataSection, or
MmLockPagableSectionByHandle. Pages locked using this
mechanism remain in memory until explicitly unlocked.
Although no quota is imposed on the number of pages a
driver can lock in memory, a driver can't lock more
pages than the resident available page count will allow.
Also, each page does use a system page table entry
(PTE), which is a limited resource. (PTEs are described
later in the chapter.)

Win32 applications can call the VirtualLock function to
lock pages in their process working set. Note that such
pages are not immune from paging—if all the threads in
the process are in a wait state, the memory manager is
free to remove such pages from the working set (which,
for modified pages, ultimately would result in writing the
pages to disk) if memory demands dictate. In such
cases, locking pages in your working set can actually
degrade performance because when a thread wakes up
to run, the memory manager must first read in all the
locked pages before the thread can begin execution.
Therefore, in general, it's better to let the memory
manager decide which pages remain in physical memory.
The number of pages a process can lock can't exceed its
minimum working set size minus eight pages.



Allocation Granularity

Windows 2000 aligns each region of reserved process
address space to begin on an integral boundary defined by
the value of the system allocation granularity, which can be
retrieved from the Win32 GetSystemInfo function. Currently,
this value is 64 KB. This size was chosen so that if support
were added for future processors with large page sizes (for
example, up to 64 KB), the risk of requiring changes to
applications that made assumptions about allocation
alignment would be reduced. (Windows 2000 kernel-mode
code isn't subject to the same restrictions; it can reserve
memory on a single-page granularity.)

Finally, when a region of address space is reserved, Windows
2000 ensures that the size of the region is a multiple of the
system page size, whatever that might be. For example,
because x86 systems use 4-KB pages, if you tried to reserve
a region of memory 18 KB in size, the actual amount
reserved on an x86 system would be 20 KB.



Shared Memory and Mapped Files

As is true with most modern operating systems, Windows
2000 provides a mechanism to share memory among
processes and the operating system. Shared memory can be
defined as memory that is visible to more than one process
or that is present in more than one process virtual address
space. For example, if two processes use the same DLL, it
would make sense to load the referenced code pages for
that DLL into physical memory only once and share those
pages between all processes that map the DLL, as illustrated
in Figure 7-1.



Figure 7-1 Sharing memory between processes

Each process would still maintain its private memory areas
in which to store private data, but the program instructions
and unmodified data pages could be shared without harm.
As we'll explain later, this kind of sharing happens
automatically because the code pages in executable images
are mapped as execute-only and writable pages are mapped
copy-on-write. (See the section "Copy-on-Write" for more
information.)

javascript:fullSize('F07yj01x.htm')


The underlying primitives in the memory manager used to
implement shared memory are called section objects, which
are called file mapping objects in the Win32 API. The
internal structure and implementation of section objects are
described later in this chapter.

This fundamental primitive in the memory manager is used
to map virtual addresses, whether in main memory, in the
page file, or in some other file that an application wants to
access as if it were in memory. A section can be opened by
one process or by many; in other words, section objects
don't necessarily equate to shared memory.

A section object can be connected to an open file on disk
(called a mapped file) or to committed memory (to provide
shared memory). Sections mapped to committed memory
are called page file backed sections because the pages can
be written to the paging file if memory demands dictate.
(Because Windows 2000 can run with no paging file, page
file backed sections might in fact be "backed" only by
physical memory). As with private committed pages, shared
committed pages are always zero-filled when they are first
accessed.

To create a section object, call the Win32 CreateFileMapping
function, specifying the file handle to map it to (or
INVALID_HANDLE_VALUE for a page file backed section),
and optionally a name and security descriptor. If the section
has a name, other processes can open it with
OpenFileMapping. Or you can grant access to section objects
through handle inheritance (by specifying that the handle be
inheritable when opening or creating the handle) or handle
duplication (by using DuplicateHandle). Device drivers can
also manipulate section objects with the ZwOpenSection,
ZwMapViewOfSection, and ZwUnmapViewOfSection
functions.



A section object can refer to files that are much larger than
can fit in the address space of a process. (If the paging file
backs a section object, sufficient space must exist in the
paging file to contain it.) To access a very large section
object, a process can map only the portion of the section
object that it requires (called a view of the section) by
calling the MapViewOfFile function and then specifying the
range to map. Mapping views permits processes to conserve
address space because only the views of the section object
needed at the time must be mapped into memory.

Win32 applications can use mapped files to conveniently
perform I/O to files by simply making them appear in their
address space. User applications aren't the only consumers
of section objects: the image loader uses section objects to
map executable images, DLLs, and device drivers into
memory, and the cache manager uses them to access data
in cached files. (For information on how the cache manager
integrates with the memory manager, see Chapter 11.)

How shared memory sections are implemented both in terms
of address translation and the internal data structures is
explained later in this chapter.



Protecting Memory

As explained in Chapter 1, Windows 2000 provides memory
protection so that no user process can inadvertently or
deliberately corrupt the address space of another process or
the operating system itself. Windows 2000 provides this
protection in four primary ways.

First, all systemwide data structures and memory pools used
by kernel-mode system components can be accessed only
while in kernel mode—user-mode threads can't access these
pages. If they attempt to do so, the hardware generates a
fault, which in turn the memory manager reports to the
thread as an access violation.

NOTE

In contrast, Microsoft Windows 95, Microsoft Windows
98, and Microsoft Windows Millennium Edition have
some pages in system address space that are
writable from user mode, thus allowing an errant
application to corrupt key system data structures and
crash the system.

Second, each process has a separate, private address space,
protected from being accessed by any thread belonging to
another process. The only exceptions are if the process is
sharing pages with other processes or if another process has
virtual memory read or write access to the process object
and thus can use the ReadProcessMemory or
WriteProcessMemory functions. Each time a thread
references an address, the virtual memory hardware, in



concert with the memory manager, intervenes and translates
the virtual address into a physical one. By controlling how
virtual addresses are translated, Windows 2000 can ensure
that threads running in one process don't inappropriately
access a page belonging to another process.

Third, in addition to the implicit protection virtual-to-physical
address translation offers, all processors supported by
Windows 2000 provide some form of hardware-controlled
memory protection (such as read/write, read-only, and so
on); the exact details of such protection vary according to
the processor. For example, code pages in the address space
of a process are marked read-only and are thus protected
from modification by user threads. Code pages for loaded
device drivers are similarly marked read-only.

NOTE

By default, system-code write protection doesn't
apply to Ntoskrnl.exe or Hal.dll on systems with 128
MB or more of physical memory. On such systems,
Windows 2000 maps the first 512 MB of system
address space with large (4-MB) pages to increase
the efficiency of the translation look-aside buffer
(explained later in this chapter). Because image
sections are mapped at a granularity of 4 KB, the use
of 4-MB pages means that a code section of an image
might reside on the same page as a data section.
Thus, marking such a page read-only would prevent
the data on that page from being modifiable. You can
override this value by adding the DWORD registry
value
HKLM\SYSTEM\CurrentControlSet\Control\SessionMa
nager\Memory Management\LargePageMinimum as



the number of megabytes required on the system to
map Ntoskrnl and the HAL with large pages.

Table 7-3 lists the memory protection options defined in the
Win32 API. (See the VirtualProtect, VirtualProtectEx,
VirtualQuery, and VirtualQueryEx functions.)

Table 7-3 Memory Protection Options Defined in the Win32
API

Attribute Description

PAGE_NOACCESS Any attempt to read from,
write to, or execute code
in this region causes an
access violation.

PAGE_READONLY Any attempt to write to or
execute code in memory
causes an access
violation, but reads are
permitted.

PAGE_READWRITE The page is readable and
writable—no action will
cause an access violation.

PAGE_EXECUTE* Any attempt to read from
or write to code in
memory in this region
causes an access
violation, but execution is
permitted.

PAGE_EXECUTE_READ* Any attempt to write to
code in memory in this
region causes an access



violation, but executes
and reads are permitted.

PAGE_EXECUTE_READWRITE* The page is readable,
writable, and executable—
no action will cause an
access violation.

PAGE_WRITECOPY Any attempt to write to
memory in this region
causes the system to give
the process a private copy
of the page. Attempts to
execute code in memory
in this region cause an
access violation.

PAGE_EXECUTE_WRITECOPY Any attempt to write to
memory in this region
causes the system to give
the process a private copy
of the page.

PAGE_GUARD Any attempt to read from
or write to a guard page
raises an
EXCEPTION_GUARD_PAGE
exception and turns off
the guard page status.
Guard pages thus act as a
one-shot alarm. Note that
this flag can be specified
with any of the page
protections listed in this
table except
PAGE_NOACCESS.



* The x86 architecture doesn’t implement execute-only
access (that is, code can be executed in any readable page),
so Windows 2000 doesn’t support this option in any practical
sense (though IA-64 does). Windows 2000 treats
PAGE_EXECUTE_READ as PAGE_READONLY and
PAGE_EXECUTE_READWRITE as PAGE_READWRITE.

And finally, shared memory section objects have standard
Windows 2000 access-control lists (ACLs) that are checked
when processes attempt to open them, thus limiting access
of shared memory to those processes with the proper rights.
Security also comes into play when a thread creates a
section to contain a mapped file. To create the section, the
thread must have at least read access to the underlying file
object or the operation will fail.

Once a thread has successfully opened a handle to a section,
its actions are still subject to the memory manager and the
hardware-based page protections described earlier. A thread
can change the page-level protection on virtual pages in a
section if the change doesn't violate the permissions in the
ACL for that section object. For example, the memory
manager allows a thread to change the pages of a read-only
section to have copy-on-write access but not to have
read/write access. The copy-on-write access is permitted
because it has no effect on other processes sharing the data.

These four primary memory protection mechanisms are part
of the reason that Windows 2000 is a robust, reliable
operating system that is impervious to and resilient to
application errors.



Copy-on-Write

Copy-on-write page protection is an optimization the
memory manager uses to conserve physical memory. When
a process maps a copy-on-write view of a section object that
contains read/write pages, instead of making a process
private copy at the time the view is mapped (as the Compaq
OpenVMS operating system does), the memory manager
defers making a copy of the pages until the page is written
to. All modern UNIX systems use this technique as well. For
example, as shown in Figure 7-2, two processes are sharing
three pages, each marked copy-on-write, but neither of the
two processes has attempted to modify any data on the
pages.

Figure 7-2 The "before" of copy-on-write

If a thread in either process writes to a page, a memory
management fault is generated. The memory manager sees
that the write is to a copy-on-write page, so instead of
reporting the fault as an access violation, it allocates a new
read/write page in physical memory, copies the contents of
the original page to the new page, updates the
corresponding page-mapping information (explained later in
this chapter) in this process to point to the new location, and
dismisses the exception, thus causing the instruction that
generated the fault to be reexecuted. This time, the write
operation succeeds, but as shown in Figure 7-3, the newly

javascript:fullSize('F07yj02x.htm')


copied page is now private to the process that did the
writing and isn't visible to the other processes still sharing
the copy-on-write page. Each new process that writes to
that same shared page will also get its own private copy.

Figure 7-3 The "after" of copy-on-write

One application of copy-on-write is to implement breakpoint
support in debuggers. For example, by default, code pages
start out as execute-only. If a programmer sets a breakpoint
while debugging a program, however, the debugger must
add a breakpoint instruction to the code. It does this by first
changing the protection on the page to
PAGE_EXECUTE_READWRITE and then changing the
instruction stream. Because the code page is part of a
mapped section, the memory manager creates a private
copy for the process with the breakpoint set, while other
processes continue using the unmodified code page.

Copy-on-write is one example of an evaluation technique
known as lazy evaluation that the memory manager uses as
often as possible. Lazy-evaluation algorithms avoid
performing an expensive operation until absolutely required
—if the operation is never required, no time is wasted on it.

The POSIX subsystem takes advantage of copy-on-write to
implement the fork function. Typically, when a UNIX
application calls the fork function to create another process,
the first thing that the new process does is call the exec

javascript:fullSize('F07yj03x.htm')


function to reinitialize the address space with an executable
program. Instead of copying the entire address space on
fork, the new process shares the pages in the parent process
by marking them copy-on-write. If the child writes to the
data, a process private copy is made. If not, the two
processes continue sharing and no copying takes place. One
way or the other, the memory manager copies only the
pages the process tries to write to rather than the entire
address space.

To examine the rate of copy-on-write faults, see the
performance counter Memory: Write Copies/Sec.



Heap Functions

A heap is a region of one or more pages of reserved address
space that can be subdivided and allocated in smaller chunks
by the heap manager. The heap manager is a set of
functions that can be used to allocate and deallocate variable
amounts of memory (not necessarily on a page-size
granularity as is done in the VirtualAlloc function). The heap
manager functions exist in two places: Ntdll.dll and
Ntoskrnl.exe. The subsystem APIs (such as the Win32 heap
APIs) call the functions in Ntdll, and various executive
components and device drivers call the functions in Ntoskrnl.

Every process starts out with a default process heap, usually
1 MB in size (unless specified otherwise in the image file by
using the /HEAP linker flag). This size is just the initial
reserve, however—it will expand automatically as needed.
(You can also specify the initial committed size in the image
file.) Win32 applications as well as several Win32 functions
that might need to allocate temporary memory blocks use
this process default heap. Processes can also create
additional private heaps with the HeapCreate function. When
a process no longer needs a private heap, it can recover the
virtual address space by calling HeapDestroy. Only a private
heap created with HeapCreate—not the default heap—can be
destroyed during the life of a process.

To allocate memory from the default heap, a thread must
obtain a handle to it by calling GetProcessHeap. (This
function returns the address of the data structure that
describes the heap, but callers should never rely on that.) A
thread can then use the heap handle in calls to HeapAlloc
and HeapFree to allocate and free memory blocks from that
heap. The heap manager also provides an option for each
heap to serialize allocations and deallocations so that



multiple threads can call heap functions simultaneously
without corrupting heap data structures. The default process
heap is set to have this serialization by default (though you
can override this on a call-by-call basis). For additional
private heaps, a flag passed to HeapCreate is used to specify
whether serialization should be performed.

The heap manager supports a number of internal validation
checks that, although not currently documented, you can
enable on a systemwide or a per-image basis by using the
Global Flags (Gflags.exe) utility in the Windows 2000
Support Tools, Platform SDK, and DDK. Many of the flags are
self-explanatory in terms of what they cause the heap
manager to do. In general, enabling these flags will cause
invalid use or corruption of the heap—to generate error
notifications to an application either through the use of
exceptions or through returned error codes. (See Chapter 3
for information about exceptions.)

For more information on the heap functions, see the Win32
API reference documentation on MSDN.



Address Windowing Extensions

Although Windows 2000 systems can support up to 64 GB of
physical memory (as shown in Table 2-2), each 32-bit user
process has only a 2-GB or 3GB virtual address space
(depending on whether the /3GB boot switch is enabled). To
allow a 32-bit process to allocate and access more physical
memory than can be represented in its limited address
space, Windows 2000 provides a set of functions called
Address Windowing Extensions (AWE). For example, on a
Windows 2000 Advanced Server system with 8 GB of
physical memory, a database server application could use
AWE to allocate and use nearly 8 GB of memory as a
database cache.

Allocating and using memory via the AWE functions is done
in three steps:

1. Allocating the physical memory to be used

2. Creating a region of virtual address space to act as a
window to map views of the physical memory

3. Mapping views of the physical memory into the window

To allocate physical memory, an application calls the Win32
function AllocateUserPhysicalPages. (This function requires
the Lock Pages in Memory user right.) The application then
uses the Win32 VirtualAlloc function with the
MEM_PHYSICAL flag to create a window in the private
portion of the process's address space that is mapped to
some or all of the physical memory previously allocated. The
AWE-allocated memory can then be used with nearly all the
Win32 APIs. (For example, the Microsoft DirectX functions
can't use AWE memory.)



If an application creates a 256-MB window in its address
space and allocates 4 GB of physical memory (on a system
with more than 4 GB of physical memory), the application
can use the MapUserPhysicalPages or
MapUserPhysicalPagesScatter Win32 functions to access any
portion of the physical memory by mapping the memory into
the 256-MB window. The size of the application's virtual
address space window determines the amount of physical
memory that the application can access with a given
mapping. Figure 7-4 shows an AWE window in a server
application address space mapped to a portion of physical
memory previously allocated by AllocateUserPhysicalPages.

Figure 7-4 Using AWE to map physical memory

The AWE functions exist on all editions of Windows 2000 and
are usable regardless of how much physical memory a
system has. However, AWE is most useful on systems with
more than 2 GB of physical memory, because it's the only
way for a 32-bit process to directly use more than 2 GB of
memory.

javascript:fullSize('F07yj04x.htm')


Finally, there are some restrictions on memory allocated and
mapped by the AWE functions:

Pages can't be shared between processes.

The same physical page can't be mapped to more than
one virtual address in the same process.

Page protection is limited to read/write.

For a description of the page table data structures used to
map memory on systems with more than 4 GB of physical
memory, see the section "Physical Address Extension."



[Previous] [Next]



System Memory Pools
At system initialization, the memory manager creates two types of dynamically sized
memory pools that the kernel-mode components use to allocate system memory:

Nonpaged pool Consists of ranges of system virtual addresses that are guaranteed to
reside in physical memory at all times and thus can be accessed at any time (from any
IRQL level and from any process context) without incurring a page fault. One of the
reasons nonpaged pool is required is due to the rule described in Chapter 2: page
faults can't be satisfied at DPC/dispatch level or above.

Paged pool A region of virtual memory in system space that can be paged in and out
of the system. Device drivers that don't need to access the memory from DPC/dispatch
level or above can use paged pool. It is accessible from any process context.

Both memory pools are located in the system part of the address space and are mapped in
the virtual address space of every process. (In Table 7-10, you'll find out where in the
system memory they start.) The executive provides routines to allocate and deallocate
from these pools; for information on these routines, see the functions that start with
ExAllocatePool in the Windows 2000 DDK documentation.

There are two types of nonpaged pools: one for general use and a small one (four pages)
reserved for emergency use when nonpaged pool is full and the caller can't tolerate
allocation failures. (This latter pool type should no longer be used; device drivers should
be written to properly handle low memory conditions. Driver Verifier, discussed later in this
chapter, makes it easier to test such conditions.) Uniprocessor systems have three paged
pools; multiprocessor systems have five. Having more than one paged pool reduces the
frequency of system code blocking on simultaneous calls to pool routines. Both nonpaged
and paged pool start at an initial size based on the amount of physical memory on the
system and then grow, if necessary, up to a maximum size computed at system boot time.
You can override the initial size of these pools by changing the values NonPagedPoolSize
and PagedPoolSize in the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management from 0 (which causes the system to compute the size) to
the size desired in bytes. You can't, however, go beyond the maximum pool sizes listed in
Table 7-4.

Table 7-4 Maximum Pool Sizes

Pool Type Maximum Size

Nonpaged 256 MB (128 MB if booted /3GB)

Paged 491.875 MB

The computed sizes are stored in four kernel variables, three of which are exposed as
performance counters. These variables and counters, as well as the two registry keys that
can alter the sizes, are listed in Table 7-5.

Table 7-5 System Pool Size Variables and Performance Counters

Kernel Variable Performance
Counter Registry Key to Override Description

MmSizeOfNonPaged-
PoolInBytes

Memory: Pool
Nonpaged

Not applicable Current size
of nonpaged



Bytes pool

MmMaximumNon-
PagedPoolInBytes

Not available HKLM\SYSTEM\CurrentControlSet\
Control\SessionManager\
MemoryManagement\NonPagedPoolSize

Maximum
size of
nonpaged
pool

Not available Memory: Pool
Paged Bytes

Not applicable Current
virtual size
of paged
pool

MmPagedPoolPage
(number of pages)

Memory: Pool
Paged
Resident
Bytes

Not applicable Current
physical
(resident)
size of
paged pool

MmSizeOfPagedPool-
InBytes

Not available HKLM\SYSTEM\CurrentControlSet\
Control\SessionManager\
MemoryManagement\PagedPoolSize

Maximum
(virtual) size
of paged
pool

EXPERIMENT

Determining the Maximum Pool Sizes

Because paged and nonpaged pool represent a critical system resource, it is
important to know when you're nearing the maximum size computed for your
system so that you can determine whether you need to override the default
maximum with the appropriate registry values. The pool-size performance
counters report only the current size, however, not the maximum size. So you
don't know when you're reaching the limit until you've exhausted pool.

With LiveKd, you can easily view the maximum sizes by examining the values of
the kernel variables listed in Table 7-5. Here's an example:

kd> dd mmmaximumnonpagedpoolinbytes l1 
8047f620  0328c000 
kd> ? 328c000 
Evaluate expression: 53002240 = 0328c000 
kd> dd mmsizeofpagedpoolinbytes l1 
80470a98  06800000 
kd> ? 6800000 
Evaluate expression: 109051904 = 06800000 

From this example, you can see that the maximum size of nonpaged pool is
53,002,240 bytes (approximately 50 MB) and the maximum size of paged pool is
109,051,904 bytes (104 MB). On the test system we used for this example,
current nonpaged pool usage was 5.5 MB and paged pool usage was 34 MB, so
both pools were far from full. (To quickly see these numbers, run Task Manager,
click the Performance tab, and view the Kernel Memory section.)



EXPERIMENT

Monitoring Pool Usage

The Memory performance counter object has separate counters for the size of
nonpaged pool and paged pool (both virtual and physical). In addition, the
Poolmon utility (in the Windows 2000 Support Tools) allows you to monitor the
detailed usage of nonpaged and paged pool. To do so, you must have the internal
Enable Pool Tagging option enabled. (Pool tagging is always turned on in the
checked build, so you need to enable it only on a retail system.) To enable pool
tagging, run the Gflags utility in the Windows 2000 Support Tools, Platform SDK,
or DDK, and select Enable Pool Tagging, as shown here:

Then click Apply, and reboot the system. After the system reboots, run Poolmon;
you should see a display like this one:

The highlighted lines represent changes to the display. (You can disable the
highlighting feature by typing l while running Poolmon. Type l again to reenable
highlighting.) Type ? while Poolmon is running to bring up its help screen. You can
configure which pools you want to monitor (paged, nonpaged, or both) and the
sort order. Also, the command-line options are shown, which allow you to monitor
specific structures (or everything but one structure type). For example, the
command poolmon -iCM will monitor only structures of type CM (the configuration
manager, which manages the registry). The columns have the following meanings:

javascript:fullSize('G07yj03x.htm')
javascript:fullSize('g07yj04x.htm')


Column Explanation

Tag Four-byte tag given to the pool allocation

Type Pool type (paged or nonpaged pool)

Allocs Count of all allocations (The number in parentheses shows the
difference in the Allocs column since the last update.)

Frees Count of all Frees (The number in parentheses shows the
difference in the Frees column since the last update.)

Diff Allocs minus Frees

Bytes Total bytes consumed by this structure type (The number in
parentheses shows the difference in the Bytes column since the
last update.)

Per
Alloc

Size in bytes of a single instance of this structure type

In this example, CM structures are taking up the most space in paged pool, and
MmSt structures (a memory management-related structure used for mapped files)
are taking up the most space in nonpaged pool.

You can also view pool usage with the kernel debugger !poolused and !xpool
commands. (!xpool is in the secondary kernel debugger extension DLL,
Kdex2x86.dll.) The command !poolused 2 shows nonpaged pool usage sorted by
structure tag using the most amount of pool. The command !poolused 4 lists
paged pool usage, again sorted by structure tag using the most amount of pool.
The following example shows the partial output from these two commands:

kd>   .load kdex2x86 
kd>   !poolused 2 
   Sorting by NonPaged Pool Consumed 
 
  Pool Used: 
            NonPaged            Paged 
 Tag    Allocs     Used    Allocs     Used 
 File     1702   326784         0        0 
 Thre      376   240640         0        0 
 Vad      3167   202688         0        0 
 Ntf0        3   196608       967    51264 
 Even     2869   187264         0        0 
 Npfs      335   154080       221    41504 
 Devi      249   148480         0        0 
 WDMA      333   146176       319    49984 
 Pool        3   134368         0        0 
 Irp       305   134272         0        0 
 AmlH        2   131072         0        0 
  
kd> !poolused 4 
   Sorting by Paged Pool Consumed 
 



  Pool Used: 
            NonPaged            Paged 
 Tag    Allocs     Used    Allocs     Used 
 CM         11      704      5146 22311904 
 Gh 5        0        0       727  2523648 
 MmSt        0        0       968  1975872 
 Ntff       10     2240       790   682560 
 Gla1        1      128       383   600544 
 Ttfd        0        0       265   545440 
 Gla5        1      128      1099   457184 
 NtFB        0        0         2   376832 
 LXMK        0        0       948   319680 
 Gla:        1      128       444   298368 
 Obtb       52     6656        68   278528 
 NtfF        0        0       250   248000 
 Gcac        0        0        54   243424 
 Mmpp        0        0        55   225280 
 Grgb        0        0         5   163840 
 

The !xpool -map command displays a map of the status of each page in nonpaged
pool (!xpool -map 1 displays paged pool) as well as total pool usage. The following
are partial examples using this command:

kd> !xpool -map 
 
Status Map of Pool Area Pages 
============================== 
 'O': one page in use                              ('P': paged out
 '<': start page of contiguous pages in use        ('{': paged out
 '>': last page of contiguous pages in use         ('}': paged out
 '=': intermediate page of contiguous pages in use ('-': paged out
 '.': one page not used 
 
Non-Paged Pool Area Summary 
---------------------------- 
Maximum Number of Pages  = 12940 pages 
Number of Pages In Use   =  1459 pages (11.3%) 
 
       +00000  +08000   +10000  +18000   +20000  +28000   +30000  
81093000: ....OOOOOOOOOOOO OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO  
          OOOOOOOO<=>OOOOO 
810d3000: OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO  
          <=>OOOOOOOOOOOOO 
81113000: OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO  
          OOOOOOOOOOOOOOOO 
81153000: OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO  
          OOOOOOOOOOOOO<=> 



81193000: OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO  
          OOOOOOOOOOOOOOOO 
811d3000: OOOOOOOOOO<=>OOO OOOO<>OOOOOOOOOO OOOOOOOOOOOOOOOO  
          OOOOOOOOOOOOOOOO 
81213000: OOOOOOOOOOOO<=== ><============== ===============> 
          <==========><=== 
81253000: ================ ================ ================  
          =====><========= 
81293000: ================ ================ ================  
          ================ 
812d3000: ==><===========> OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO  
          OOOOOOOOOOOOO<== 
81313000: ================ ====><======>O<> OOOOOO<>OOO<=>OO  
          OO<======>O<==== 
81353000: ==>OOOOOOOOOOOOO <=============== ==><==>OOO<><===  
          ===>O<=>OOOOOOOO 
81393000: O<===>OOOOOOOO<= ========>OOOOOOO OOOOOOOOOOOOOOOO  
          OOOOOOOOO<=><=== 
813d3000: ====>OO<>OOOOO<= =====><=>OOOOOOO OOOOOOOOOOOO<===  
          ===========><=== 
81413000: ===========>OOOO OOOOO<========== ====>OOOOOOOOOOO  
          OOOOOOOOOO<===== 
81453000: =========>OOOOOO OOOO<=>OOOOOOOO< ==============>O  
          OOOO<==========> 
81493000: OOOOOOOOOOOOOOOO <======> 
fcd6c000: ................ ................ ................  
          ................ 
fcdac000: ................ ................ ................  
          ................ 
fcdec000: ................ ................ ................  
          ................ 
 
 
kd> !xpool -map 1 
 
Status Map of Pool Area Pages 
============================== 
  'O': one page in use                              ('P': paged ou
  '<': start page of contiguous pages in use        ('{': paged ou
  '>': last page of contiguous pages in use         ('}': paged ou
  '=': intermediate page of contiguous pages in use ('-': paged ou
  '.': one page not used 
 
Paged Pool Area Summary 
------------------------ 
Maximum Number of Pages  = 26624 pages 
Number of Pages In Use   =  8685 pages (32.6%) 
       +00000  +08000   +10000  +18000   +20000  +28000   +30000  



e1000000: OOOOO<>OO<><>POO OOOOOOOOPPPPPPPO PPPPPPPPPPPPPOPO  
          OPPPPPPPPPPPPOOO 
e1040000: OOPPOPPPPPPPOOOO OOOOOPOOOPPPPPPP POOOOOOOOOOOOOOO  
          PO{}POPPOPOPPPPP 
e1080000: OPPPOOPPPPPPPPOO {>PPPPPPPOPPPPPP PPPPPPPPPPPPPPOO  
          OP{}PPPPPPPPPPPP 
e10c0000: PPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPP PPPPPPPPPOOPPPPP  
          OOOOOOOOPOOOOOOO 
e1100000: POOOOOOOOOOOO{>O OOOOOOOOOOOOOOOO OOOOOOOOOOOOPOOO  
          OOOOOOOOOOOOOOOO 
e1140000: OOPPOOOOOOOOOOOO OPPOOOOOO<>OOPPO OOOOPPPPPPOPPPPP  
          PPPPPPPPPOPPOPPP 
e1180000: PPPPPPPPPPOOPPPP PPPPPPPPPPPPPPPP PPPPOPPPPPPPPPPP  
          PPPPPPPPPPPPPOP{ 
e11c0000: >OPPOPPPPPPPPPPP POPPPPPPPPPPP{}P PPPPPPPPPPPPPPPP  
          PPPPPPPPPPPPP{}P 
e1200000: PPPPPPPPPPPPPPPP PPPPPPOPPPOPPOPP PPPPPPPPPPPPPPPP  
          PPPPPPPPPPPPPPPP 
e1240000: PPPPOPPPPPPPOOPP PPPPPPPPP{}PPPPP PPPPPPPPPPOPOPPP  
          OPOOPPPPPPPPPPOP 
e1280000: PPPPPPOPPPPPOOPP POPOPPPPPPPPP<>O PPPOPO{>PPPPOPOO  
          POPP{}POPPOPPPPP 
e12c0000: PPPOOPOOOPOPPPPP PPPPOOOPPPPPPPPP PPPPPPOOPPOPPPOO  
          POOPOOOOOOPOPPOO 



Look-Aside Lists

Windows 2000 also provides a fast memory allocation mechanism called look-aside lists.
The basic difference between pools and look-aside lists is that while general pool
allocations can vary in size, a look-aside list contains only fixed-sized blocks. Although the
general pools are more flexible in terms of what they can supply, look-aside lists are faster
because they don't use any spinlocks and also because the system doesn't have to search
for free memory that fits a varying size allocation.

Executive components and device drivers can create look-aside lists that match the size of
frequently allocated data structures using the ExInitializeNPagedLookasideList and
ExInitializePagedLookasideList functions (documented in the DDK). To minimize the
overhead of multiprocessor synchronization, several executive subsystems (such as the
I/O manager, cache manager, and object manager) create separate look-aside lists for
each processor for their frequently accessed data structures. The executive also creates a
general per-processor paged and nonpaged look-aside list for small allocations (256 bytes
or less).

If a look-aside list is empty (as it is when it's first created), the system must allocate from
paged or nonpaged pool. But if it contains a freed structure, the allocation can be satisfied
very quickly. (The list grows as structures are returned to it.) The pool allocation routines
automatically tune the number of freed buffers that look-aside lists store according to how
often a device driver or executive subsystem allocates from the list—the more frequent the
allocations, the more buffers are stored on a list. Look-aside lists are automatically
reduced in size if they aren't being allocated from. (This check happens once per second
when the balance set manager system thread wakes up and calls the function
KiAdjustLookasideDepth.)

EXPERIMENT

Viewing the System Look-Aside Lists

You can display the contents and sizes of the various system look-aside lists with
the kernel debugger !lookaside command. The following excerpt is from the output
of this command:

kd> !lookaside 
 
Lookaside "nt!IopSmallIrpLookasideList" @ 804758a0 "Irps" 
    Type     =     0000 NonPagedPool 
    Current Depth  =        3   Max Depth  =        4 
    Size           =      148   Max Alloc  =      592 
    AllocateMisses =       32   FreeMisses =        9 
    TotalAllocates =       52   TotalFrees =       32 
    Hit Rate       =       38%  Hit Rate   =       71% 
Lookaside "nt!IopLargeIrpLookasideList" @ 804756a0 "Irpl" 
    Type     =     0000 NonPagedPool 
    Current Depth  =        4   Max Depth  =        4 
    Size           =      436   Max Alloc  =     1744 
    AllocateMisses =     2623   FreeMisses =     2443 



    TotalAllocates =     7039   TotalFrees =     6863 
    Hit Rate       =       62%  Hit Rate   =       64% 
 
Lookaside "nt!IopMdlLookasideList" @ 80475740 "Mdl " 
    Type     =     0000 NonPagedPool 
    Current Depth  =        3   Max Depth  =        4 
    Size           =      120   Max Alloc  =      480 
    AllocateMisses =     7017   FreeMisses =     1824 
    TotalAllocates =    10901   TotalFrees =     5711 
    Hit Rate       =       35%  Hit Rate   =       68% 
 
Total NonPaged currently allocated for above lists = 4200 
Total NonPaged potential for above lists           = 6144 
Total Paged currently allocated for above lists    = 5136 
Total Paged potential for above lists              = 12032 



Driver Verifier

Driver Verifier is a mechanism that can be used to help find and isolate commonly found
bugs in device driver or other kernel-mode system code. Microsoft uses Driver Verifier to
check all device drivers that vendors submit for Hardware Compatibility List (HCL) testing.
Doing so ensures that the drivers on the HCL are compatible with Windows 2000 and free
from common driver errors.

Driver Verifier consists of support in several system components: the memory manager,
I/O manager, HAL, and Win32k.sys all have driver verification options that can be enabled.
This section describes the memory management-related verification options Driver Verifier
provides.

Driver Verifier Configuration and Initialization

To configure Driver Verifier and view statistics about its operation, run the Driver Verifier
Manager (\Winnt\System32\Verifier.exe). As shown in Figure 7-5, when you run Driver
Verifier, it displays several tabbed pages. You use the Settings tab to specify which device
drivers you want to verify (there's an option to Verify All Drivers) and what types of
verification you want performed.

Figure 7-5 The Driver Verifier Manager

The settings are stored in the registry under
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management. The
value VerifyDriverLevel contains a bitmask that represents the verification types enabled.
The VerifyDrivers value contains the names of the drivers to validate. (These values won't
exist in the registry until you select drivers to verify in the Driver Verifier Manager.) If you
choose to verify all drivers, VerifyDrivers is set to an asterisk (*) character. After you've
entered or changed Driver Verifier settings, you might need to reboot the system for
verification to occur.

Early in the boot process, the memory manager reads the Driver Verifier registry values to
determine which drivers to verify and which Driver Verifier options you enabled.
Subsequently, if you've selected at least one driver for verification, the kernel checks the
name of every device driver it loads into memory against the list of drivers you've selected
for verification. For every device driver that appears in both places, the kernel invokes the
MiApplyDriverVerifier function, which replaces the driver's references to any of
approximately 40 kernel functions with references to Driver Verifier-equivalent versions of
those functions. For example, ExAllocatePool is replaced with a call to VerifierAllocatePool.

javascript:fullSize('F07yj05x.htm')


The windowing system driver also makes similar changes to use Driver Verifier-equivalent
functions.

Now that we've reviewed how to set up Driver Verifier, let's examine the four memory-
related verification options that can be applied to device drivers: Special Pool, Pool
Tracking, Force IRQL Checking, and Low Resources Simulation.

Special Pool The Special Pool option causes the pool allocation routines to bracket pool
allocations with an invalid page so that references before or after the allocation will result
in a kernel-mode access violation, thus crashing the system with the finger pointed at the
buggy driver. Special pool also causes some additional validation checks to be performed
when a driver allocates or frees memory.

When special pool is enabled, the pool allocation routines allocate a region of kernel
memory for Driver Verifier to use. Driver Verifier redirects memory allocation requests that
drivers under verification make to the special pool area rather than to the standard kernel-
mode memory pools. When a device driver allocates memory from special pool, Driver
Verifier rounds up the allocation to an even-page boundary. Because Driver Verifier
brackets the allocated page with invalid pages, if a device driver attempts to read or write
past the end of the buffer, the driver will access an invalid page and the memory manager
will raise a kernel-mode access violation.

Figure 7-6 shows an example of the special pool buffer that Driver Verifier allocates to a
device driver when Driver Verifier checks for overrun errors.

Figure 7-6 Layout of special pool allocations

By default, Driver Verifier performs overrun detection. It does this by placing the buffer
that the device driver uses at the end of the allocated page and fills the beginning of the
page with a random pattern. Although the Driver Verifier Manager doesn't let you specify
underrun detection, you can set this type of detection manually by adding the DWORD
registry value HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\MemoryManagement\PoolTagOverruns and setting it to 1 (or by running the
Gflags utility and selecting the Verify Start option instead of the default option Verify End).
When Windows 2000 enforces underrun detection, Driver Verifier allocates the driver's
buffer at the beginning of the page rather than at the end.

The overrun-detection configuration includes some measure of underrun detection as well.
When the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier
ensures that the pattern preceding the buffer hasn't changed. If the pattern is modified,
the device driver has underrun the buffer and written to memory outside the buffer.

Special pool allocations also check to ensure that the processor IRQL at the time of an
allocation and deallocation is legal. This check catches an error that some device drivers



make: allocating pageable memory from an IRQL at DPC/dispatch level or above.

You can also configure special pool manually by adding the DWORD registry value
HKLM\SYSTEMCurrentControlSet\Control\Session Manager\Memory Management\PoolTag,
which represents the allocation tag the system uses for special pool. Thus, even if Driver
Verifier isn't configured to verify a particular device driver, if the tag the driver associates
with the memory it allocates matches what is specified in the PoolTag registry value, the
pool allocation routines will allocate the memory from special pool. If you set the value of
PoolTag to 0x0000002a or the wildcard (*), all memory that drivers allocate is from special
pool, provided there's enough virtual and physical memory. (The drivers will revert to
allocating from regular pool if there aren't enough free pages—bounding exists, but each
allocation uses two pages).

Pool Tracking When device drivers allocate memory, they can specify an optional four-
letter tag in their allocation requests. When you disable pool tracking, Windows 2000
ignores the tag. When you enable pool tracking, however, the pool allocation routines
associate the tag with memory the driver allocates. Using Poolmon (part of the Windows
2000 Support Tools), a developer can view how much memory Windows 2000 assigned to
each tag. Monitoring driver memory usage lets a developer detect memory leaks, an error
that occurs when a driver fails to deallocate memory it no longer requires. Driver Verifier
also shows general pool statistics on the Driver Verifier Manager's Pool Tracking tab. You
can also use the !verifier kernel debugger command. This command shows more
information than Driver Verifier and is useful to driver writers.

If pool tracking is enabled, the memory manager checks at driver unload time whether the
driver freed all the memory allocations it made. If it didn't, it crashes the system,
indicating the buggy driver.

Force IRQL Checking One of the most common device driver bugs occurs when a driver
accesses pageable data or code when the processor on which the device driver is executing
is at an elevated IRQL. As explained in Chapter 3, the memory manager can't service a
page fault when the IRQL is DPC/dispatch level or above. The system often doesn't detect
instances of a device driver accessing pageable data when the processor is executing at a
high IRQL level because the pageable data being accessed happens to be physically
resident at the time. At other times, however, the data might be paged out, which results
in a system crash with the stop code IRQL_NOT_LESS_OR_EQUAL (that is, the IRQL wasn't
less than or equal to the level required for the operation attempted—in this case, accessing
pageable memory).

Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes
it easy. If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode
pageable code and data out of the system working set whenever a device driver under
verification raises the IRQL. The internal function that does this is
MmTrimAllSystemPagableMemory. With this setting enabled, whenever a device driver
under verification accesses pageable memory when the IRQL is elevated, the system
instantly detects the violation and the resulting system crash identifies the faulty driver.

Low Resources Simulation Enabling Low Resources Simulation causes Driver Verifier to
randomly fail memory allocations that verified device drivers perform. In the past,
developers wrote many device drivers under the assumption that kernel memory would
always be available and that if memory ran out, the device driver didn't have to worry
about it because the system would crash anyway. However, because low-memory
conditions can occur temporarily, it's important that device drivers properly handle
allocation failures that indicate kernel memory is exhausted.



Beginning 7 minutes after the system boots—which is enough time to get past the critical
initialization period in which a low-memory condition might prevent a device driver from
loading—Driver Verifier starts randomly failing allocation calls for device drivers it is
verifying. If a driver doesn't correctly handle allocation failures, this will likely show up as a
system crash.

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools
available to device driver writers. Many device drivers that first ran with Driver Verifier had
bugs that Driver Verifier was able to expose. Thus, Driver Verifier has resulted in an overall
improvement in the quality of all kernel-mode code running on Windows 2000.



[Previous] [Next]



Address Space Layout
By default, each user process on the 32-bit version of Windows
2000 can have up to a 2 GB private address space; the operating
system takes the remaining 2 GB. Windows 2000 Advanced
Server and Windows 2000 Datacenter Server support a boot-time
option that allows 3-GB user address spaces. These two possible
address space layouts are shown in Figure 7-7.

The 3-GB address space option (enabled by the /3GB flag in
Boot.ini) gives processes a 3-GB address space (leaving 1 GB for
system space). This feature was added as a short-term solution
to accommodate the need for applications such as database
servers to keep more data in memory than could be done with a
2-GB address space. The AWE functions described earlier in this
chapter provide a much better solution to the need for accessing
more data than can fit in the limited 2-GB (or 3-GB) process
address space.

Figure 7-7 x86 virtual address space layouts

For a process to access the full 3-GB address space, the image
file must have the IMAGE_FILE_LARGE_ADDRESS_AWARE flag

javascript:fullSize('F07yj07x.htm')


set in the image header. Otherwise, Windows 2000 reserves the
third gigabyte so that the application won't see virtual addresses
greater than 0x7FFFFFFF. You set this flag by specifying the linker
flag /LARGEADDRESSAWARE when building the executable. This
flag has no effect when running the application on a system with
a 2-GB user address space. (If you boot Windows 2000
Professional or Windows 2000 Server with the /3GB switch,
system space is reduced to 1 GB, but user processes are still
limited to 2 GB, even if the large-address-space aware flag is set
on an image that is run.)

Virtual Address Space in Consumer Windows

The virtual address space for Windows 95, Windows 98,
and Windows Millennium Edition is organized a bit
differently from that of Windows 2000. It also provides a
4-GB virtual 32-bit address space, allocating a 2-GB
private address space to each process; but it divides the
remaining 2 GB between system space (1 GB) and a
single shared user space for all shared memory sections
(1 GB), as shown here:



The 1-GB shared region is writable from user mode, so
any Win32 process can write to shared memory sections
or mapped files, even if they don't have that section
object (file mapping object in Win32 terms) open.
Windows 2000, on the other hand, places shared memory
sections inside the private process address space, thus
avoiding this security hole. Also, because all MS-DOS and
Win16 applications are in this same shared 1-GB region,
Win32 processes can corrupt the address space of Win16
and MS-DOS applications in Consumer Windows.

javascript:fullSize('G07yj05x.htm')


User Address Space Layout

Table 7-6 details the layout of the 2-GB Windows 2000 user
process address space.

Table 7-6 Windows 2000 User Process Address Space Layout

Range Size Function

0x0 through
0xFFFF

64 KB No-access region to aid programmers in
avoiding incorrect pointer references;
attempts to access an address within
this range will cause an access
violation. (Note that this range of
addresses could be used—this is just a
convention to assist in finding bugs.)

0x10000
through
0x7FFEFFFF

2 GB
minus
at
least
192
KB

The private process address space.

0x7FFDE000
through
0x7FFDEFFF

4 KB Thread environment block (TEB) for
first thread. (See Chapter 6.) Additional
TEBs are created at the page prior to
this page (starting at address
0x7FFDD000 and working backward).

0x7FFDF000
through
0x7FFDFFFF

4 KB Process environment block (PEB). (See
Chapter 6.)

0x7FFE0000
through
0x7FFE0FFF

4 KB Shared user data page. This read-only
page is mapped to a page in system
space that contains information such as
system time, clock tick count, and
version number. This page exists so that
this data is directly readable from user



mode without requiring a kernel-mode
transition.

0x7FFE1000
through
0x7FFEFFFF

60 KB No-access region (remainder of 64-KB
region following shared user data
page).

0x7FFF0000
through
0x7FFFFFFF

64 KB No-access region that prevents threads
from passing buffers that straddle the
user/system space boundary.
MmUserProbeAddress contains the start
of this page.

The system variables shown in Table 7-7 define the range of the
user address space.

Table 7-7 Windows 2000 User Address Space System Variables

System Variable Description
x86 2-GB

User
Space

x86 3-GB
User

Space

MmHighestUserAddress Highest user
address
(The highest
usable
address is
actually less
because of
TEBs and
PEBs.)

0x7FFEFFFF 0xBFFEFFFF

MmUserProbeAddress Highest user
address +1
(used in
probing
accessibility
of user
buffers)

0x7FFF0000 0xBFFF0000



The performance counters listed in Table 7-8 provide information
about total system virtual memory utilization.

Table 7-8 Windows 2000 Virtual Memory Use Performance
Counters

Performance
Counter System Variable Description

Memory:
Committed
Bytes

MmTotalCommittedPages The amount of
committed private
address space (of
which some can be
in physical
memory and some
in the paging files)

Memory:
Commit Limit

MmTotalCommitLimit The amount (in
bytes) of memory
that can be
committed without
increasing the size
of the paging file
(Page files are
extensible.)

Memory: %
Committed
Bytes In Use

MmTotalCommittedPages
/ MmTotalCommitLimit

Ratio of committed
bytes to commit
limit

You can obtain the address space utilization of a single process
via the process performance counters in Table 7-9.

Table 7-9 Windows 2000 Address Space Use for Single Process's
Performance Counters

Performance
Counter Description

Process:
Virtual Bytes

Total size of the process address space
(including shared as well as private pages)



Process:
Private Bytes

Size of the private (nonshared) committed
address space (same as Process: Page File
Bytes)

Process: Page
File Bytes

Size of the private (nonshared) committed
address space (same as Process: Private
Bytes)

Process: Page
File Bytes
Peak

Peak of Process: Page File Bytes

There is also a performance object named Process Address Space
that the Performance tool doesn't display. There are 32 counters
associated with this object that identify the address space usage
of the selected process. For each of the four types of process
address space (Image, Mapped, Reserved, and Unassigned),
eight separate counters exist (No Access, Read Only, Read/Write,
Write Copy, Executable, Exec Read Only, Exec Read/Write, and
Exec Write Copy). In addition, there are counters for the total
process address space reserved and free. For even more details
about user address space layouts, you can query the Image
performance object to report per-image (for example, DLLs)
memory utilization.

EXPERIMENT

Viewing Process Memory Utilization

Try examining the various process memory performance
counters listed in Tables 7-8 and 7-9 with the Performance
tool. You can also use several other utilities to examine
process physical and virtual memory usage.

For example, start Task Manager (press Ctrl+Shift+Esc),
and click the Processes tab. Then from the View menu,
choose Select Columns. Select Memory Usage and Virtual



Memory Size, and then click OK. You should see a display
like this:

Keep in mind that the VM Size column is not the process
virtual memory size but rather the process private virtual
size (the same as the Process: Private Bytes performance
counter described in Table 7-9).

Also, as you'll discover in the section on working sets, the
Mem Usage column counts shared pages in each process's
memory usage total.

The Process Viewer utility (Pviewer.exe in the Windows
2000 Support Tools; Pview.exe in the Platform SDK) can
display per-process address space details. (The source of
this utility is one of the Win32 sample programs on
MSDN.) From the Start menu, select Programs/Windows
2000 Support Tools/Tools/Process Viewer, select a process,
and click the Memory Detail button. You should see
something like the following screen shot. Try clicking on
the User Address Space For list box—you can select the
address space used by the image alone or by loaded DLLs.

javascript:fullSize('G07yj06x.htm')


javascript:fullSize('G07yj07x.htm')


System Address Space Layout

This section describes the detailed layout and contents of system
space. Figure 7-8 shows the overall structure on x86 systems
with a 2-GB system space. (The details of x86 systems with a 1-
GB system space are included later in this section.)

Figure 7-8 x86 system space layout (not proportional)

The x86 architecture has the following components in system
space:

javascript:fullSize('F07yj08x.htm')


System code Contains the operating system image, HAL,
and device drivers used to boot the system.

System mapped views Used to map Win32k.sys, the
loadable kernel-mode part of the Win32 subsystem, as well
as kernel-mode graphics drivers it uses. (See Chapter 2 for
more information on Win32k.sys.)

Session space Used to map information specific to a user
session. (Windows 2000 supports multiple user sessions
when Terminal Services is installed.) The session working set
list describes the parts of session space that are resident and
in use.

Process page tables and page directory Structures that
describe the mapping of virtual addresses.

Hyperspace A special region used to map the process
working set list and to temporarily map other physical pages
for such operations as zeroing a page on the free list (when
the zero list is empty and a zero page is needed), invalidating
page table entries in other page tables (such as when a page
is removed from the standby list), and on process creation to
set up a new process's address space.

System working set list The working set list data structures
that describe the system working set.*

System cache Virtual address space used to map files open
in the system cache. (See Chapter 11 for detailed information
about the cache manager.)

Paged pool Pageable system memory heap.

System page table entries (PTEs) Pool of system PTEs
used to map system pages such as I/O space, kernel stacks,
and memory descriptor lists. You can see how many system
PTEs are available by examining the value of the Memory:
Free System Page Table Entries counter in the Performance
tool.



Nonpaged pool Nonpageable system memory heap, usually
existing in two parts—one in the lower end of system space
and one in the upper end.

Crash dump information Reserved to record information
about the state of a system crash.

HAL usage System memory reserved for HAL-specific
structures.

The rest of this section consists of two tables that list the detailed
structure of system space. Table 7-10 lists the kernel variables
that contain start and end addresses of various system space
regions. Some of these regions are fixed; some are computed at
system boot time on the basis of memory size and whether the
system is running Windows 2000 Professional or Windows 2000
Server. Table 7-11 lists the structure of system space on x86
systems. Keep in mind that these tables reflect non-PAE systems.
Systems running the PAE-enabled kernel image have a slightly
different system address space layout.

Table 7-10 System Variables That Describe System Space
Regions

System Variable Description

x86 2-GB
System

Space (non-
PAE)

x86 1-GB
System
Space

(non-PAE)

MmSystemRangeStart Start
address of
system
space

0x80000000 0xC0000000

MmSystemCache-
WorkingSetList

System
working set
list

0xC0C00000 0xC0C00000

MmSystemCacheStart Start of
system
cache

0xC1000000 0xC1000000



MmSystemCacheEnd End of
system
cache

Calculated Calculated

MiSystemCacheStart-
Extra

Start of
system
cache or
system PTE
extension

0xA4000000 0

MiSystemCacheEnd-
Extra

End of
system
cache or
PTE
extension

0xC0000000 0

MmPagedPoolStart Start of
paged pool

0xE1000000 0xE1000000

MmPagedPoolEnd End of
paged pool

Calculated
(maximum
size is 482
MB)

Calculated
(maximum
size is 160
MB)

MmNonPagedSystem-
Start

Start of
system PTEs

Calculated
(lowest value
is
0xEB000000)

Calculated

MmNonPagedPoolStart Start of
nonpaged
pool

Calculated Calculated

MmNonPagedPool-
ExpansionStart

Start of
nonpaged
pool
expansion

Calculated Calculated

MmNonPagedPoolEnd End of
nonpaged
pool

0xFFBE0000 0xFFBE0000



Table 7-11 x86 System Space (non-PAE)

Range Size Function

0x80000000
through
0x9FFFFFFF

512 MB System code used to boot the
system (Ntoskrnl.exe and
Hal.dll) and the initial part of
nonpaged pool. On x86 systems
with a 2-GB system space and
128 MB or more of RAM, the first
512 MB are mapped using x86
large page PDEs.

0xA0000000
through
0xA2FFFFFF

48 MB System mapped views if
Terminal Services not installed;
otherwise, session space. (See
Table 7-12.)

0xA3000000
through
0xA3FFFFFF

16 MB System mapped views for
systems running Terminal
Services.

0xA4000000
through
0xBFFFFFFF

448 MB Additional system PTEs (used for
kernel stacks, mapping I/O
space, and so on) or additional
system cache (for systems with
large system cache enabled).

0xC0000000
through
0xC03FFFFF

4 MB Process page tables (page
directory is at 0xC03000000 and
is 4 KB in size). This is per-
process data mapped in system
space.

0xC0400000
through
0xC07FFFFF

4 MB Working set list and hyperspace.
This is per-process data mapped
in system space.

0xC08000000
through
0xC0BFFFFF

4 MB Unused.

0xC0C00000 4 MB System working set list.



through
0xC0FFFFFF

0xC1000000
through
0xE0FFFFFF

512 MB
(maximum)

System cache (size calculated at
boot time).

0xE1000000
through
0xEAFFFFFF*

160 MB
(maximum)

Paged pool (size calculated at
boot time).

0xEB000000
through
0xFFBDFFFF

331.875
MB
(339,840
KB)

System PTEs and nonpaged pool
(size calculated at boot time). If
the registry PagedPoolSize value
is set to -1, system PTEs move
from the 0xEB000000 range to
the 0xA4000000 range, which
lets paged pool grow to use this
area ofthe address space.

0xFFBE0000
through
0xFFFFFFFF

4.125 MB
(4224 KB)

Crash dump structures and
private HAL data structures.

* Because paged pool is limited by the start address of the region
containing nonpaged pool and the system PTEs, it can go beyond
address 0xEB000000 only if those addresses aren’t used.

Session Space

A session consists of the processes and other system objects
(such as the window station, desktops, and windows) that
represent a single user's workstation logon session. Each session
has a session-specific paged pool area used by the kernel-mode
portion of the Win32 subsystem (Win32k.sys) to allocate session-
private GUI data structures. In addition, each session has its own
copy of the Win32 subsystem process (Csrss.exe) and logon
process (Winlogon.exe). The session manager process
(Smss.exe) is responsible for creating new sessions, which
includes loading a session-private copy of Win32k.sys, creating



the session-private object manager namespace, and creating the
session-specific instances of the Csrss and Winlogon processes.

To virtualize sessions, all sessionwide data structures are mapped
into a region of system space called session space that begins at
address 0xA0000000 and extends through address 0xA2FFFFFF.
When a process is created, this range of addresses is mapped to
the pages appropriate to the session that the process belongs to.
Table 7-12 lists the layout of session space on systems with
Terminal Services installed.

Table 7-12 Session Space Layout

Range Size Function

0xA0000000
through
0xA07FFFFF

8
MB

Win32k.sys and rebased Windows
NT 4 print drivers

0xA0800000
through
0xA0BFFFFF

4
MB

MM_SESSION_SPACE structure
and session working set lists

0xA0C00000
through
0xA1FFFFFF

20
MB

Mapped views for this session

0xA2000000
through
0xA2FFFFFF

16
MB

Paged pool for this session



[Previous] [Next]



Address Translation
Now that you've seen how Windows 2000 structures the 32-
bit virtual address space, let's look at how it maps these
address spaces to real physical pages. We'll describe what
happens when such a translation doesn't resolve to a
physical memory address (paging) and explain how Windows
2000 manages physical memory via working sets and the
page frame database.

User applications reference 32-bit virtual addresses. Using
data structures the memory manager creates and maintains,
the CPU translates virtual addresses into physical addresses.
For example, Figure 7-9 shows three consecutive virtual
pages mapped to three physically discontiguous pages.

javascript:fullSize('F07yj09x.htm')


Figure 7-9 Mapping virtual addresses to physical memory

The dashed line connecting the virtual pages to the PTEs in
Figure 7-9 represents the indirect relationship between
virtual pages and physical memory. Virtual addresses aren't
mapped directly to physical ones. Instead, as you'll discover
in this section, each virtual address is associated with a
system-space structure called a page table entry (PTE),
which contains the physical address to which the virtual one
is mapped.

NOTE

Kernel-mode code (such as device drivers) can
reference physical memory addresses by mapping
them to virtual addresses. For more information, see
the memory descriptor list (MDL) support routines
described in the DDK documentation.

Throughout the remainder of this section, we'll explain the
details of how Windows 2000 accomplishes this mapping.



Translating a Virtual Address

By default, Windows 2000 on an x86 system uses a two-
level page table structure to translate virtual to physical
addresses. (Systems running the PAE kernel use a three-
level page table—this section assumes non-PAE systems.) A
32-bit virtual address is interpreted as three separate
components—the page directory index, the page table index,
and the byte index—that are used as indexes into the
structures that describe page mappings, as illustrated in
Figure 7-10. The page size and the PTE width dictate the
width of the page directory and page table index fields. For
example, on x86 systems, the byte index is 12 bits because
pages are 4096 bytes (212 = 4096).

Figure 7-10 Components of a 32-bit virtual address on x86
systems

The page directory index is used to locate the page table in
which the virtual address's PTE is located. The page table
index is used to locate the PTE, which, as mentioned earlier,
contains the physical address to which a virtual page maps.
The byte index finds the proper address within that physical
page. Figure 7-11 shows the relationship of these three
values and how they are used to map a virtual address into
a physical address.

javascript:fullSize('F07yj10x.htm')


Figure 7-11 Translating a valid virtual address (x86-
specific)

The following basic steps are involved in translating a virtual
address:

1. The memory management hardware locates the page
directory for the current process. On each process
context switch, the hardware is told the address of a
new process page directory, typically by the operating
system setting a special CPU register.

2. The page directory index is used as an index into the
page directory to locate the page directory entry (PDE)
that describes the location of the page table needed to
map the virtual address. The PDE contains the page
frame number (PFN) of the page table (if it is resident—
page tables can be paged out).

3. The page table index is used as an index into the page
table to locate the PTE that describes the physical
location of the virtual page in question.

4. The PTE is used to locate the page. If the page is valid, it
contains the PFN of the page in physical memory that
contains the virtual page. If the PTE indicates that the

javascript:fullSize('F07yj11x.htm')


page isn't valid, the memory management fault handler
locates the page and tries to make it valid. (See the
section on page fault handling.) If the page can't be
made valid (for example, because of a protection fault),
the fault handler generates an access violation or a bug
check.

5. When the PTE is pointed to a valid page, the byte index
is used to locate the address of the desired data within
the physical page.

Now that you have the overall picture, let's look at the
detailed structure of page directories, page tables, and PTEs.



Page Directories

Each process has a single page directory, a page the
memory manager creates to map the location of all page
tables for that process. The physical address of the process
page directory is stored in the kernel process (KPROCESS)
block but is also mapped virtually at address 0xC0300000 on
x86 systems (0xC06000000 on systems running the PAE
kernel image). All code running in kernel mode references
virtual addresses, not physical ones. (For more detailed
information about KPROCESS and other process data
structures, refer to Chapter 6.)

The CPU knows the location of the page directory page
because a special register (CR3 on x86 systems) inside the
CPU that is loaded by the operating system contains the
physical address of the page directory. Each time a context
switch occurs to a thread that is in a different process than
that of the currently executing thread, this register is loaded
from the KPROCESS block of the target process being
switched to by the context-switch routine in the kernel.
Context switches between threads in the same process don't
result in reloading the physical address of the page directory
because all threads within the same process share the same
process address space.

The page directory is composed of page directory entries
(PDEs), each of which is 4 bytes long (8 bytes on systems
running the PAE kernel image) and describes the state and
location of all the possible page tables for that process. (As
described later in the chapter, page tables are created on
demand, so the page directory for most processes points
only to a small set of page tables.) The format of a PDE isn't
repeated here because it's mostly the same as a hardware
PTE (shown in Figure 7-13).



On x86 systems, 1024 page tables (2048 on PAE systems)
are required to describe the full 4-GB virtual address space.
The process page directory that maps these page tables
contains 1024 PDEs. Therefore, the page directory index
needs to be 10 bits wide (210 = 1024).

EXPERIMENT

Examining the Page Directory and PDEs

You can see the physical address of the currently
running process's page directory by examining the
DirBase field in the !process kernel debugger output:

You can see the page directory's virtual address by
examining the kernel debugger output for the PTE of
a particular virtual address, as shown here:

javascript:fullSize('G07yj08x.htm')


The PTE part of the kernel debugger output is defined
in the section "Page Table Entries" below.

javascript:fullSize('G07yj09x.htm')


Process and System Page Tables

Before referencing a byte within a page with the byte offset,
the CPU first needs to be able to find the page that contains
the desired byte of data. To find this page, the operating
system constructs another page of memory that contains the
mapping information needed to find the desired page
containing the data. This page of mapping information is
called a page table. Because Windows 2000 provides a
private address space for each process, each process has its
own set of process page tables to map that private address
space because the mappings will be different for each
process.

The page tables that describe system space are shared
among all processes, however. When a process is created,
system space PDEs are initialized to point to the existing
system page tables. But as shown in Figure 7-12, not all
processes have the same view of system space. For
example, if paged pool expansion requires the allocation of a
new system page table, the memory manager doesn't go
back and update all the process page directories to point to
the new system page table. Instead, it updates the process
page directories when the processes reference the new
virtual address.

Thus, a process can take a page fault when referencing
paged pool that is in fact physically resident because its
process page directory doesn't yet point to the new system
page table that describes the new area of pool. Page faults
don't occur when accessing nonpaged pool, even though it
too can be expanded, because Windows 2000 builds enough
system page tables to describe the maximum size during
system initialization.



System PTEs aren't an infinite resource—Windows 2000
calculates how many system PTEs to allocate based on the
memory size. You can see how many system PTEs are
available by examining the value of the Memory: Free
System Page Table Entries counter in the Performance tool.
You can also override the calculation made at boot time by
setting the registry value
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\SystemPages to the number
of PTEs you want. However, the maximum that Windows
2000 will allocate is 128,000 on x86 systems.

Figure 7-12 System and process-private page tables

javascript:fullSize('F07yj12x.htm')


Page Table Entries

As mentioned earlier, page tables are composed of an array
of page table entries (PTEs). You can use the !pte command
in the kernel debugger to examine PTEs. (See the
experiment "Translating Addresses" below.) Valid PTEs (the
kind we'll be discussing here; we'll cover invalid PTEs in a
later section) have two main fields: the page frame number
(PFN) of the physical page containing the data or of the
physical address of a page in memory, and some flags that
describe the state and protection of the page, as shown in
Figure 7-13.

Figure 7-13 Valid x86 hardware PTEs

As you'll see later, the bits labeled Reserved in Figure 7-13
are used only when the PTE isn't valid (the bits are
interpreted by software). Table 7-13 briefly describes the
hardware-defined bits in a valid PTE.

Table 7-13 PTE Status and Protection Bits

Name
of Bit Meaning

Accessed Page has been read.

javascript:fullSize('F07yj13x.htm')


Cache
disabled

Disables caching for that page.

Dirty Page has been written to.

Global Translation applies to all processes. (For
example, a translation buffer flush won't
affect this PTE.)

Large
page

Indicates that the PDE maps a 4-MB page
(used to map Ntoskrnl and HAL, initial
nonpaged pool, etc.) on systems with 128 MB
or more of memory.

Owner Indicates whether user-mode code can access
the page or whether the page is limited to
kernel-mode access.

Valid Indicates whether the translation maps to a
page in physical memory.

Write
through

Disables caching of writes to this page so that
changes are immediately flushed to disk.

Write On uniprocessor systems, indicates whether
the page is read/write or read-only; on
multiprocessor systems, indicates whether
the page is writable. (The Write bit is stored
in a reserved bit in the PTE.)

On x86 systems, a hardware PTE contains a Dirty bit and an
Accessed bit. The Accessed bit is clear if a physical page
represented by the PTE hasn't been read or written; the
processor sets this bit when the page is first read or written.
The processor sets the Dirty bit only when a page is first
written. In addition to those two bits, the x86 architecture
has a Write bit that provides page protection—when this bit
is clear, the page is read-only; when it is set, the page is
read/write. If a thread attempts to write to a page with the



Write bit clear, a memory management exception occurs and
the memory manager's access fault handler (described in
the next section) must determine whether the thread can
write to the page (for example, if the page was really
marked copy-on-write) or whether an access violation should
be generated.

Hardware PTEs on multiprocessor x86 systems have an
additional Write bit implemented in software that is intended
to avoid stalls when flushing the PTE cache (called the
translation look-aside buffer) across processors. This bit
indicates that a page has been written to by a thread
running on some processor.

On the x86 hardware platform, PTEs are always 4 bytes (32
bits) in size (8 bytes for systems running with PAE enabled),
so each page table contains 1024 PTEs (512 on PAE
systems) (4096 bytes per page at 4 bytes per PTE) and
therefore can map 1024 pages (512 pages PAE), for a total
of 4 MB (2 MB PAE) of data pages.

The virtual address's page table index field indicates which
PTE within the page table maps the data page in question.
On x86 systems, the page table index is 10 bits wide (9 on
PAE), allowing you to reference up to 1024 PTEs (512 on
PAE). However, because Windows 2000 provides a 4-GB
private virtual address space, more than one page table is
needed to map the entire address space. To calculate the
number of page tables required to map the entire 4-GB
process virtual address space, divide 4 GB by the virtual
memory mapped by a single page table. Recall that each
page table on an x86 system maps 4 MB (2 MB on PAE) of
data pages. Therefore, 1024 page tables (4 GB/4 MB)—or
2048 page tables, 4 GB/2 MB for PAE—are required to map
the full 4-GB address space.



Byte Within Page

Once the memory manager has found the physical page in
question, it must find the requested data within that page.
This is where the byte index field comes in. The byte index
field tells the CPU which byte of data in the page you want
to reference. On x86 systems, the byte index is 12 bits wide,
allowing you to reference up to 4096 bytes of data (the size
of a page).



Translation Look-Aside Buffer

As we've learned so far, each address translation requires
two lookups: one to find the right page table in the page
directory and one to find the right entry in the page table.
Because doing two additional memory lookups for every
reference to a virtual address would result in unacceptable
system performance, most CPUs cache address translations
so that repeated accesses to the same addresses don't have
to be retranslated. The x86 processor provides such a cache
in the form of an array of associative memory called the
translation look-aside buffer, or TLB. Associative memory,
such as the TLB, is a vector whose cells can be read
simultaneously and compared to a target value. In the case
of the TLB, the vector contains the virtual-to-physical page
mappings of the most recently used pages, as shown in
Figure 7-14, and the type of page protection applied to each
page. Each entry in the TLB is like a cache entry, whose tag
holds portions of the virtual address and whose data portion
holds a physical page number, protection field, valid bit, and
usually a dirty bit indicating the condition of the page to
which the cached PTE corresponds. If a PTE's global bit is set
(used for system space pages that are globally visible to all
processes), the TLB entry isn't invalidated on process
context switches.



Figure 7-14 Accessing the translation look-aside buffer

Virtual addresses that are used frequently are likely to have
entries in the TLB, which provides extremely fast virtual-to-
physical address translation and, therefore, fast memory
access. If a virtual address isn't in the TLB, it might still be
in memory, but multiple memory accesses are needed to
find it, which makes the access time slightly slower. If a
virtual page has been paged out of memory or if the
memory manager changes the PTE, the memory manager
must explicitly invalidate the TLB entry. If a process
accesses it again, a page fault occurs and the memory
manager brings the page back into memory and re-creates
an entry for it in the TLB.

To maximize the amount of common code, the memory
manager treats all PTEs the same whenever possible,
whether they are maintained by hardware or by software.
For example, the memory manager calls a kernel routine
when a PTE changes from invalid to valid. The job of this
routine is to load this new PTE into the TLB in whatever
hardware-specific manner the architecture requires. On x86
systems, the code is a NOP because the processor loads the
TLB without any intervention from the software.

javascript:fullSize('F07yj14x.htm')


EXPERIMENT

Translating Addresses

To clarify how address translation works, let's go
through a real example of translating a virtual
address on an x86 non-PAE system, using the
available tools in the kernel debugger to examine
page directories, page tables, and PTEs. In this
example, we'll use a process that has virtual address
0x50001 currently mapped to a valid physical
address. In later examples, you'll see how to follow
address translation for invalid addresses with the
kernel debugger.

First let's convert 0x50001 to binary and break it into
the three fields that are used to translate an address.
In binary, 0x50001 is 101.0000.0000.0000.0001.
Breaking into the component fields yields the
following:

To start the translation process, the CPU needs the
physical address of the process page directory, stored
in the CR3 register while a thread in that process is
running. You can display this address either by
examining the CR3 register itself or by dumping the
KPROCESS block for the process in question using the
!process command, as shown here:

javascript:fullSize('G07yj10x.htm')


In this case, the page directory is stored at physical
address 0x12F0000. As shown in the preceding
illustration, the page directory index field in this
example is 0. Therefore, the PDE is at physical
address 0x12F0000.

The kernel debugger !pte command displays the PDE
and PTE that describe a virtual address, as shown
here:

In the first column, the kernel debugger displays the
PDE and in the second column the PTE. Notice that
the PDE address is shown as a virtual address, not a
physical address—as noted earlier, the process page
directory starts at virtual address 0xC0300000 on
x86 systems. Because we're looking at the first PDE
in the page directory, the PDE address is the same as
the page directory address.

The PTE is at virtual address 0xC0000140. You can
compute this address by multiplying the page table

javascript:fullSize('G07yj11x.htm')
javascript:fullSize('G07yj12x.htm')


index (0x50 in this example) by the size of a PTE:
0x50 multiplied by 4 equals 0x140. Because the
memory manager maps page tables starting at
0xC0000000, adding 140 yields the virtual address
shown in the kernel debugger output: 0xC0000140.
The page table page is at PFN 0x700, and the data
page is at PFN 0xe63.

The PTE flags are displayed to the right of the PFN
number. For example, the PTE that describes the
page being referenced has flags of D---UWV. D here
stands for dirty (the page has been modified), U for
user-mode page (as opposed to a kernel-mode page),
W for writable page (rather than read-only), and V for
valid. (The PTE represents a valid page in physical
memory.)



Physical Address Extension

All of the Intel x86 family processors since the Pentium Pro
include a memory-mapping mode called Physical Address
Extension (PAE). With the proper chipset, the PAE mode
allows access to up to 64 GB of physical memory. When the
x86 executes in PAE mode, the memory management unit
(MMU) divides virtual addresses into four fields, as shown in
Figure 7-15.

The MMU still implements page directories and page tables,
but a third level, the page directory pointer table, exists
above them. PAE mode can address more memory than the
standard translation mode not because of the extra level of
translation but because PDEs and PTEs are 64-bits wide
rather than 32-bits. The system represents physical
addresses internally with 24 bits, which gives the x86 the
ability to support a maximum of 224+12 bytes, or 64 GB, of
memory.

As explained in Chapter 2, there is a special version of the
core kernel image (Ntoskrnl.exe) with support for PAE called
Ntkrnlpa.exe. (The multiprocessor version is called
Ntkrpamp.exe.) To select this PAE-enabled kernel, you must
boot with the /PAE switch in Boot.ini.

This special version of the kernel image is installed on all
Windows 2000 systems, even Windows 2000 Professional
systems with small memory. The reason for this is to
facilitate testing. Because the PAE kernel presents 64-bit
addresses to device drivers and other system code, booting
/PAE even on a small memory system allows a device driver
developer to test parts of their drivers with large addresses.
The other relevant Boot.ini switch is /NOLOWMEM, which
discards memory below 4 GB and relocates device drivers



above this range, thus guaranteeing that these drivers will
be presented with physical addresses greater than 32 bits.

Figure 7-15 Page mappings with PAE

Only Windows 2000 Advanced Server and Windows 2000
Datacenter Server are required to support more than 4 GB
of physical memory. (See Table 2-2.) Using the AWE Win32
functions, 32bit user processes can allocate and control large
amounts of physical memory on these systems.

javascript:fullSize('F07yj15x.htm')


[Previous] [Next]



Page Fault Handling
Earlier, you saw how address translations are resolved when
the PTE is valid. When the PTE valid bit is clear, this indicates
that the desired page is for some reason not (currently)
accessible to the process. This section describes the types of
invalid PTEs and how references to them are resolved.

A reference to an invalid page is called a page fault. The
kernel trap handler (introduced in Chapter 3) dispatches this
kind of fault to the memory manager fault handler
(MmAccessFault) to resolve. This routine runs in the context
of the thread that incurred the fault and is responsible for
attempting to resolve the fault (if possible) or raise an
appropriate exception. These faults can be caused by a
variety of conditions, as listed in Table 7-14.

Table 7-14 Reasons for Access Faults

Reason for Fault Result

Accessing a page that isn't
resident in memory but is on
disk in a page file or a mapped
file

Allocate a physical
page and read the
desired page from
disk and into the
working set

Accessing a page that is on the
standby or modified list

Transition the page to
the process or system
working set

Accessing a page that isn't
committed (for example,
reserved address space or
address space that isn't
allocated)

Access violation



Accessing a page from user
mode that can be accessed only
in kernel mode

Access violation

Writing to a page that is read-
only

Access violation

Accessing a demand-zero page Add a zero-filled page
to the process
working set

Writing to a guard page Guard-page violation
(if a reference to a
user-mode stack,
perform automatic
stack expansion)

Writing to a copy-on-write page Make process-private
(or session-private)
copy of page and
replace original in
process, session, or
system working set

Referencing a page in system
space that is valid but not in the
process page directory (for
example, if paged pool
expanded after the process page
directory was created)

Copy page directory
entry from master
system page directory
structure and dismiss
exception

On a multiprocessor system,
writing to a page that is valid
but hasn't yet been written to

Set dirty bit in PTE

The following section describes the four basic kinds of invalid
PTEs that are processed by the access fault handler.
Following that is an explanation of a special case of invalid



PTEs, prototype PTEs, which are used to implement
shareable pages.



Invalid PTEs

The following list details the four kinds of invalid PTEs and
their structure. Some of the flags are the same as those for
a hardware PTE as described in Table 7-13.

Page file The desired page resides within a paging file.
An in-page operation is initiated, as illustrated here:

Demand zero The desired page must be satisfied with a
page of zeros. The pager looks at the zero page list. If
the list is empty, the pager takes a page from the free
list and zeros it. If that list is empty, it takes a page from
the standby list and zeros it. The PTE format is the same
as the page file PTE shown in the previous entry, but the
page file number and offset are zeros.

Transition The desired page is in memory on either the
standby, modified, or modified-no-write list. The page is
removed from the list and added to the working set, as
shown here:

javascript:fullSize('G07yj13x.htm')
javascript:fullSize('G07yj14x.htm')


Unknown The PTE is zero, or the page table doesn't yet
exist. In both cases, this flag means that you should
examine the virtual address descriptors (VADs) to
determine whether this virtual address has been
committed. If so, page tables are built to represent the
newly committed address space. (See the discussion of
VADs.)



Prototype PTEs

If a page can be shared between two processes, the memory
manager relies on a software structure called prototype page
table entries (prototype PTEs) to map these potentially
shared pages. An array of prototype PTEs is created when a
section object is first created. These prototype PTEs are part
of the segment structure, described at the end of this
chapter.

When a process first references a page mapped to a view of
a section object (recall that the VADs are created only when
the view is mapped), the memory manager uses the
information in the prototype PTE to fill in the real PTE used
for address translation in the process page table. When a
shared page is made valid, both the process PTE and the
prototype PTE point to the physical page containing the
data. To track the number of process PTEs that reference a
valid shared page, a counter in the PFN database entry is
incremented. Thus, the memory manager can determine
when a shared page is no longer referenced by any page
table and thus can be made invalid and moved to a
transition list or written out to disk.

When a shareable page is invalidated, the PTE in the process
page table is filled in with a special PTE that points to the
prototype PTE entry that describes the page, as shown in
Figure 7-16.

javascript:fullSize('F07yj16x.htm')


Figure 7-16 Structure of an invalid PTE that points to the
prototype PTE

Thus, when the page is later accessed, the memory manager
can locate the prototype PTE using the information encoded
in this PTE, which in turn describes the page being
referenced. A shared page can be in one of six different
states as described by the prototype PTE entry:

Active/valid The page is in physical memory as a result
of another process that accessed it.

Transition The desired page is in memory on the
standby or modified list.

Modified-no-write The desired page is in memory and
on the modified-no-write list. (See Table 7-22.)

Demand zero The desired page should be satisfied with
a page of zeros.

Page file The desired page resides within a page file.

Mapped file The desired page resides within a mapped
file.

Although the format of these prototype PTE entries is the
same as that of the real PTE entries described earlier, these
prototype PTEs aren't used for address translation—they are
a layer between the page table and the page frame number
database and never appear directly in page tables.

By having all the accessors of a potentially shared page
point to a prototype PTE to resolve faults, the memory
manager can manage shared pages without needing to
update the page tables of each process sharing the page.
For example, a shared code or data page might be paged



out to disk at some point. When the memory manager
retrieves the page from disk, it needs only to update the
prototype PTE to point to the page's new physical location—
the PTEs in each of the processes sharing the page remain
the same (with the valid bit clear and still pointing to the
prototype PTE). Later, as processes reference the page, the
real PTE will get updated.

Figure 7-17 illustrates two virtual pages in a mapped view.
One is valid, and the other is invalid. As shown, the first
page is valid and is pointed to by the process PTE and the
prototype PTE. The second page is in the paging file—the
prototype PTE contains its exact location. The process PTE
(and any other processes with that page mapped) points to
this prototype PTE.

Figure 7-17 Prototype page table entries

javascript:fullSize('F07yj17x.htm')


In-Paging I/O

In-paging I/O occurs when a read operation must be issued
to a file (paging or mapped) to satisfy a page fault. Also,
because page tables are pageable, the processing of a page
fault can incur additional page faults when the system is
loading the page table page that contains the PTE or the
prototype PTE that describes the original page being
referenced.

The in-page I/O operation is synchronous—that is, the
thread waits on an event until the I/O completes—and isn't
interruptible by asynchronous procedure call (APC) delivery.
The pager uses a special modifier in the I/O request function
to indicate paging I/O. Upon completion of paging I/O, the
I/O system triggers an event, which wakes up the pager and
allows it to continue in-page processing.

While the paging I/O operation is in progress, the faulting
thread doesn't own any critical memory management
synchronization objects. Other threads within the process
are allowed to issue virtual memory functions and handle
page faults while the paging I/O takes place. But a number
of interesting conditions that the pager must recognize when
the I/O completes are exposed.

Another thread in the same process or a different
process could have faulted the same page (called a
collided page fault and described in the next section).

The page could have been deleted (and remapped) from
the virtual address space.

The protection on the page could have changed.



The fault could have been for a prototype PTE, and the
page that maps the prototype PTE could be out of the
working set.

The pager handles these conditions by saving enough state
on the thread's kernel stack before the paging I/O request
such that when the request is complete, it can detect these
conditions and, if necessary, dismiss the page fault without
making the page valid. When the faulting instruction is
reissued, the pager is again invoked and the PTE is
reevaluated in its new state.



Collided Page Faults

The case when another thread or process faults a page that
is currently being in-paged is known as a collided page fault.
The pager detects and handles collided page faults optimally
because they are common occurrences in multithreaded
systems. If another thread or process faults the same page,
the pager detects the collided page fault, noticing that the
page is in transition and that a read is in progress. (This
information is in the PFN database entry.) In this case, the
pager issues a wait operation on an event specified in the
PFN database entry. This event was initialized by the thread
that first issued the I/O needed to resolve the fault.

When the I/O operation completes, all threads waiting on
the event have their wait satisfied. The first thread to
acquire the PFN database lock is responsible for performing
the in-page completion operations. These operations consist
of checking I/O status to ensure the I/O operation completed
successfully, clearing the read-in-progress bit in the PFN
database, and updating the PTE.

When subsequent threads acquire the PFN database lock to
complete the collided page fault, the pager recognizes that
the initial updating has been performed as the read-in-
progress bit is clear and checks the in-page error flag in the
PFN database element to ensure that the in-page I/O
completed successfully. If the in-page error flag is set, the
PTE isn't updated and an in-page error exception is raised in
the faulting thread.



Page Files

Page files are used to store modified pages that are still in
use by some process but have had to be written to disk
(because of modified page writing). Page file space isn't
reserved until pages are written out to disk, not when they
are committed. However, the system commit limit is charged
for private pages as they are created. Thus, the Process:
Page File Bytes performance counter is actually the total
process private committed memory, of which none, some, or
all may be in the paging file. (In fact, it's the same as the
Process: Private Bytes performance counter.)

The memory manager keeps track of private committed
memory usage on a global basis, termed commitment, and
on a per-process basis as page file quota. (Again, this
memory usage doesn't represent page file usage—it
represents private committed memory usage.) Commitment
and page file quota are charged whenever virtual addresses
that require new private physical pages are committed. Once
the global commit limit has been reached (physical memory
and the page files are full), allocating virtual memory will fail
until processes free committed memory (for example, when
a process exits).

Windows 2000 supports up to 16 paging files. When the
system boots, the session manager process (described in
Chapter 2) reads the list of page files to open by examining
the registry value
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PagingFiles. If no paging files
are specified, a default 20-MB page file is created on the
boot partition. (Embedded versions, such as Windows NT 4
Embedded, have no page file by default.) Once open, the
page files can't be deleted while the system is running



because the System process (also described in Chapter 2)
maintains an open handle to each page file.

EXPERIMENT

Viewing System Page Files

To view the list of page files, look in the registry at
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PagingFiles. Don't
attempt to add or remove page files by changing the
registry setting. To add or remove page files, use the
System utility in Control Panel. Click the Performance
Options button on the Advanced tab, and then click
the Change button.

To add a new page file, Control Panel uses the (internal only)
NtCreatePagingFile system service defined in Ntdll.dll. Page
files are always created as noncompressed files, even if the
directory they are in is compressed. To keep new page files
from being deleted, a handle is duplicated into the System
process so that when the creating process closes the handle
to the new page file, another process can still open the page
file.

The performance counters listed in Table 7-15 allow you to
examine private committed memory usage on a systemwide
or per-page-file basis. There's no way to determine how
much of a process's private committed memory is resident
verses paged out to paging files.

Table 7-15 Committed Memory and Page File Performance
Counters



Performance
Counter Description

Memory:
Committed
Bytes

Number of bytes of virtual (not
reserved) memory that has been
committed. This number doesn't
necessarily represent page file usage
because it includes private committed
pages in physical memory that have
never been paged out. Rather, it
represents the amount of page file space
that would be used if the process was
completely made nonresident.

Memory:
Commit Limit

Number of bytes of virtual memory that
can be committed without having to
extend the paging files; if the paging
files can be extended, this limit is soft.

Paging File:
% Usage

Percentage of the paging file committed.

Paging File:
% Usage
Peak

Highest percentage of the paging file
committed.

EXPERIMENT

Viewing Page File Usage with Task Manager

You can also view committed memory usage with
Task Manager by clicking its Performance tab. You'll
see the following counters related to page files:



javascript:fullSize('G07yj15x.htm')


[Previous] [Next]



Virtual Address Descriptors
The memory manager uses a demand-paging algorithm to know when to load pages into
memory, waiting until a thread references an address and incurs a page fault before
retrieving the page from disk. Like copy-on-write, demand paging is a form of lazy
evaluation—waiting to perform a task until it is required.

The memory manager uses lazy evaluation not only to bring pages into memory but also
to construct the page tables required to describe new pages. For example, when a thread
commits a large region of virtual memory with VirtualAlloc, the memory manager could
immediately construct the page tables required to access the entire range of allocated
memory. But what if some of that range is never accessed? Creating page tables for the
entire range would be a wasted effort. Instead, the memory manager waits to create a
page table until a thread incurs a page fault, and then it creates a page table for that
page. This method significantly improves performance for processes that reserve and/or
commit a lot of memory but access it sparsely.

With the lazy-evaluation algorithm, allocating even large blocks of memory is a fast
operation. This performance gain isn't without its trade-offs, however: when a thread
allocates memory, the memory manager must respond with a range of addresses for the
thread to use. Because the memory manager doesn't build page tables until the thread
actually accesses the memory, it can't look to determine which virtual addresses are free.
To solve this problem, the memory manager maintains another set of data structures to
keep track of which virtual addresses have been reserved in the process's address space
and which have not. These data structures are known as virtual address descriptors
(VADs). For each process, the memory manager maintains a set of VADs that describes the
status of the process's address space. VADs are structured as a self-balancing binary tree
to make lookups efficient. A diagram of a VAD tree is shown in Figure 7-18.

Figure 7-18 Virtual address descriptors

When a process reserves address space or maps a view of a section, the memory manager
creates a VAD to store any information supplied by the allocation request, such as the
range of addresses being reserved, whether the range will be shared or private, whether a
child process can inherit the contents of the range, and the page protection applied to
pages in the range.

When a thread first accesses an address, the memory manager must create a PTE for the
page containing the address. To do so, it finds the VAD whose address range contains the
accessed address and uses the information it finds to fill in the PTE. If the address falls
outside the range covered by the VAD or in a range of addresses that are reserved but not
committed, the memory manager knows that the thread didn't allocate the memory before
attempting to use it and therefore generates an access violation.

javascript:fullSize('F07yj18x.htm')


EXPERIMENT

Viewing Virtual Address Descriptors

You can use the kernel debugger's !vad command to view the VADs for a given
process. First find the address of the root of the VAD tree with the !process
command. Then specify that address to the !vad command, as shown in the
following example of the VAD tree for a process running Notepad.exe:

kd> !process 2a0 1 
Searching for Process with Cid == 2a0 
PROCESS 8614d030 SessionId: 0 Cid: 02a0 Peb: 7ffdf000 ParentCid: 0
    DirBase: 00d93000  ObjectTable: 81bc47c8  TableSize:  41. 
    Image: notepad.exe 
    VadRoot 8118d868 Clone 0 Private 252. Modified 0. Locked 0. 
     
 
kd> !vad 8118d868 
VAD     level      start      end    commit 
84df4148 ( 2)         10       10         1 Private      READWRITE
850cdbe8 ( 3)         20       20         1 Private      READWRITE
810b0ee8 ( 1)         30       6f         7 Private      READWRITE
8109d308 ( 3)         70      16f        32 Private      READWRITE
810e9a28 ( 2)        170      17f         0 Mapped       READWRITE
84aedfc8 ( 3)        180      195         0 Mapped       READONLY 
8118d868 ( 0)        1a0      1ce         0 Mapped       READONLY 
81190a08 ( 4)        1d0      210         0 Mapped       READONLY 
85c7b928 ( 3)        220      223         0 Mapped       READONLY 
86253a08 ( 4)        230      2f7         0 Mapped       EXECUTE_R
810aab48 ( 2)        300      342         0 Mapped       READONLY 
80db5448 ( 5)        350      64f         0 Mapped       EXECUTE_R
 
 
Total VADs:    49  average level:    6  maximum depth: 13 



[Previous] [Next]



Working Sets
In the last several sections, we've concentrated on the virtual view of a
Windows 2000 process—page tables, PTEs, and VADs. In the remainder of this
chapter, we'll explain how Windows 2000 keeps a subset of virtual addresses in
physical memory.

As you'll recall, the term used to describe a subset of virtual pages resident in
physical memory is called a working set. There are two kinds of working sets—
process working sets and the system working set.

NOTE

The kernel extensions to support Terminal Services for Windows 2000
(which supports multiple independent interactive user sessions on a
single Windows 2000 server system) add a third type of working set:
the session working set. A session consists of a set of processes as well
as a session working set for kernel-mode session-specific data
structures allocated by the kernel-mode part of the Win32 subsystem
(Win32k.sys), the session working set's code and data, session paged
pool, session mapped views, and other session-space device drivers.

Before examining the details of each type of working set, let's look at the
overall policy for deciding which pages are brought into physical memory and
how long they remain. After that, we'll explore the two types of working sets.



Paging Policies

Virtual memory systems generally define three policies that dictate how (or
when) paging is performed: a fetch policy, a placement policy, and a
replacement policy.

A fetch policy determines when the pager brings a page from disk into memory.
One type of fetch policy attempts to load the pages a process will need before
it asks for them. Other fetch policies, called demand-paging policies, load a
page into physical memory only when a page fault occurs. In a demand-paging
system, a process incurs many page faults when its threads first begin
executing because the threads reference the initial set of pages they need to
get going. Once this set of pages is loaded into memory, the paging activity of
the process decreases.

NOTE

To optimize the startup time of an image, a tool named the Working
Set Tuner has been provided in the Platform SDK. This utility reorders
the pages in an executable image, placing them in the order in which
they are referenced during image startup and thus decreasing load
time.

The Windows 2000 memory manager uses a demand-paging algorithm with
clustering to load pages into memory. When a thread receives a page fault, the
memory manager loads into memory the faulted page plus a small number of
pages following it. This strategy attempts to minimize the number of paging
I/Os a thread will incur. Because programs, especially large ones, tend to
execute in small regions of their address space at any given time, loading
clusters of virtual pages reduces the number of disk reads. The values that
determine the default page read cluster sizes depend on physical memory size
and are listed in Table 7-16. Notice that the values differ for pages in
executable images versus other pages.

Table 7-16 Page Fault Read Clustering Values

Memory
Size*

Cluster Size for
Code Pages in

Images

Cluster Size for
Data Pages in

Images

Cluster Size for
All Other Pages

< 12 MB 3 2 5

12-19
MB

3 2 5



> 19 MB 8 4 8

* Note that the minimum memory size supported by Windows 2000 is 32 MB.
However, future embedded versions might support systems with less memory.

When a thread receives a page fault, the memory manager must also
determine where in physical memory to put the virtual page. The set of rules it
uses to determine the best position is called a placement policy. Windows 2000
considers the size of CPU memory caches when choosing page frames to
minimize unnecessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is
used to determine which virtual page must be removed from memory to make
room for the new page. Common replacement policies include least recently
used (LRU) and first in, first out (FIFO). The LRU algorithm requires the virtual
memory system to track when a page in memory is used. When a new page
frame is required, the page that hasn't been used for the greatest amount of
time is paged to disk and its frame is freed to satisfy the page fault. The FIFO
algorithm is somewhat simpler; it removes the page that has been in physical
memory for the greatest amount of time, regardless of how often it's been
used.

Replacement policies can be further characterized as either global or local. A
global replacement policy allows a page fault to be satisfied by any page frame,
whether or not that frame is owned by another process. For example, a global
replacement policy using the FIFO algorithm would locate the page that has
been in memory the longest and would free it to satisfy a page fault; a local
replacement policy would limit its search for the oldest page to the set of pages
already owned by the process that incurred the page fault. Global replacement
policies make processes vulnerable to the behavior of other processes—an ill-
behaved application can undermine the entire operating system by inducing
excessive paging activity in all processes.

On multiprocessor systems, Windows 2000 implements a variation of a local
FIFO replacement policy. On uniprocessor systems, it implements something
closer to a least recently used policy (LRU) (known as the clock algorithm, as
implemented in most versions of UNIX). It allocates a number of page frames
(dynamically adjusted) to each process, called the process working set (or in
the case of pageable system code and data, to the system working set). When
a process working set reaches its limit and/or a working set needs to be
trimmed because of demands for physical memory from other processes, the
memory manager removes pages from the working set until it has determined
there are enough free pages. How working sets are managed is described in
the next section.



Working Set Management

Every process starts with the same default working set minimum and
maximum. These values, which are listed in Table 7-17, are calculated at
system initialization time and are based strictly on the size of physical memory.

Table 7-17 Default Minimum and Maximum Working Set Sizes

Memory
Size

Default Minimum Working
Set Size (in Pages)

Default Maximum Working
Set Size (in Pages)

Small 20 45

Medium 30 145

Large 50 345

You can change these default values on a per-process basis with the Win32
SetProcessWorkingSetSize function, though you must have the "increase
scheduling priority" user right to do this. The maximum working set size can't
exceed the systemwide maximum calculated at system initialization time and
stored in the kernel variable MmMaximumWorkingSetSize. This value is set to
be the number of available pages (the size of the zero, free, and standby list)
at the time the computation is made minus 512 pages. However, this computed
value has a fixed limit of 1984 MB or 3008 MB on a system running with a 3-GB
user space.

When a page fault occurs, the process's working set limits and the amount of
free memory on the system are examined. If conditions permit, the memory
manager allows a process to grow to its working set maximum (or beyond—the
maximum can be exceeded if enough free pages are available). However, if
memory is tight, Windows 2000 replaces rather than adds pages in a working
set when a fault occurs.

Although Windows 2000 attempts to keep memory available by writing
modified pages to disk, when modified pages are being generated at a very
high rate, more memory is required in order to meet memory demands.
Therefore, when physical memory runs low (MmAvailablePages is less than
MmMinimumFreePages), the working set manager, a routine that runs in the
context of the balance set manager system thread (described in the next
section), is called to initiate automatic working set trimming to increase the
amount of free memory available in the system. (With the Win32
SetProcessWorkingSetSize function mentioned earlier, you can also initiate
working set trimming of your own process, for example, after your application
is initialized.)

The working set manager examines available memory and decides which, if
any, working sets need to be trimmed. If there is ample memory, the working



set manager calculates how many pages could be removed from working sets if
needed. If trimming is needed, it looks at working sets that are above their
minimum setting. It also dynamically adjusts the rate at which it examines
working sets as well as arranges the list of processes that are candidates to be
trimmed into an optimal order. For example, larger processes that have been
idle longer are considered before smaller processes that are running more
often; the process running the foreground application is considered last; and so
on.

Some of the kernel variables that affect working set expansion and trimming
are listed in Table 7-18. The values of these variables are fixed or system set
and can't be adjusted by registry values.

Table 7-18 Working Set-Related System Control Variables

Variable Value Description

MmWorkingSetSize-
Increment

6 The number of pages to add to a
working set if there are sufficient
available pages and the working set is
below its maximum.

MmWorkingSetSize-
Expansion

20 The number of pages by which to
expand the maximum working set if it
is at its maximum and there are
sufficient available pages.

MmWsExpandThreshold 90 The number of pages that must be
available to expand the working set
above its maximum.

MmPagesAboveWs-
Minimum

Dynamic The number of pages that would be
removed from working sets if every
working set was at its minimum.

MmPagesAboveWs-
Threshold

37 If memory is getting short and
MmPagesAboveWs-Minimum is above
this value, trim working sets.

MmWsAdjustThreshold 45 The number of pages required to be
freed by working set reduction before
working set reduction is attempted

MmWsTrimReduction-
Goal

29 The total number of pages to reduce by
working set trimming.

When it finds processes using more than their minimums, the working set
manager looks for pages to remove from their working sets, making the pages
available for other uses. If the amount of free memory is still too low, the



working set manager continues removing pages from processes' working sets
until it achieves a minimum number of free pages on the system.

If a process has incurred more than a few page faults since the last time it was
trimmed, it becomes exempt from trimming, the theory being that if the
working set manager makes a mistake and trims pages that were being used,
it won't trim any more out until the next periodic trim cycle (6 seconds later).

The algorithm to determine which pages to remove from a working set is
different on a single-processor system than on a multiprocessor system. On a
single-processor system, the working set manager tries to remove pages that
haven't been accessed recently. It does this by checking the accessed bit in the
hardware PTE to see whether the page has been accessed. If the bit is clear,
the page is aged, that is, a count is incremented indicating that the page hasn't
been referenced since the last working set trim scan. Later, the age of pages is
used to locate candidate pages to remove from the working set.

If the hardware PTE accessed bit is set, the working set manager clears it and
goes on to examine the next page in the working set. In this way, if the
accessed bit is clear the next time the working set manager examines the
page, it knows that the page hasn't been accessed since the last time it was
examined. This scan for pages to remove continues through the working set list
until either the number of desired pages has been removed or the scan has
returned to the starting point. (The next time the working set is trimmed, the
scan picks up where it left off last.)

On a multiprocessor system, the working set manager doesn't check the access
bit; clearing it would require invalidating TLB entries on other processors,
which would result in unnecessary TLB cache misses by threads in the same
process that might be running on other processors. Thus, on a multiprocessor
system, pages are removed from the working set without regard to the state of
the accessed bit.

EXPERIMENT

Viewing Process Working Set Sizes

You can use the Performance tool to examine process working set sizes
by looking at the following performance counters:

Counter Description

Process: Working
Set

Current size of the selected process's working
set in bytes

Process: Working
Set Peak

Peak size of the selected process's working
set in bytes



Process: Page
Faults/Sec

Number of page faults for the process that
occur each second

Several other process viewer utilities (such as Task Manager, Pview,
and Pviewer) also display the process working set size.

You can also get the total of all the process working sets by selecting
the _Total process in the instance box in the Performance tool. This
process isn't real—it's simply a total of the process-specific counters for
all processes currently running on the system. The total you see is
misleading, however, because the size of each individual process
working set includes pages being shared by other processes. Thus, if
two or more processes share a page, the page is counted in each
process's working set.

EXPERIMENT

Viewing the Working Set List

You can view the individual entries in the working set by using the
kernel debugger !wsle command. The following example shows a
partial output of the working set list of LiveKd. (This command was run
on the LiveKd process.)

kd> !wsle 7 
 
Working Set @ c0502000 
    Quota:      9f  FirstFree:  40  FirstDynamic:      3 
    LastEntry  1fe  NextSlot:    3  LastInitialized  257 
    NonDirect   5c  HashTable:   0  HashTableSize:     0 
 
Virtual Address  Age  Locked  ReferenceCount 
c0300203          0        1        1 
c0301203          0        1        1 
c0502203          0        1        1 
c01df201          0        0        1 
c01ff201          0        0        1 
c0005201          0        0        1 
c0001201          0        0        1 
c0002201          0        0        1 
c0000201          0        0        1 



c0006201          0        0        1 
77e87119          0        0        1 
00402319          0        0        1 
77e01201          0        0        1 
7ffdf201          0        0        1 
00130201          0        0        1 
77e9e119          0        0        1 
78033201          0        0        1 
00230221          0        0        1 
00131201          0        0        1 
77d50119          0        0        1 
00132201          0        0        1 
c01e0201          0        0        1 
00411309          0        0        1 
0040d201          0        0        1 
77edf201          0        0        1 
77ee0201          0        0        1 
77fcd201          0        0        1 
0040e201          0        0        1 
7ffc1009          0        0        1 
00401319          0        0        1 

Notice that some entries in the working set list are page table pages
(the ones with addresses greater than 0xC0000000), some are from
system DLLs (the ones in the 0x7nnnnnnn range), and some are from
the code of LiveKd.exe itself (those in the 0x004nnnnn range).



Balance Set Manager and Swapper

Working set expansion and trimming take place in the context of a system
thread called the balance set manager (routine KeBalanceSetManager). The
balance set manager is created during system initialization. Although the
balance set manager is technically part of the kernel, it calls the memory
manager's working set manager to perform working set analysis and
adjustment.

The balance set manager waits on two different event objects: an event that is
signaled when a periodic timer set to fire once per second expires and an
internal working set manager event that the memory manager signals at
various points when it determines that working sets need to be adjusted. For
example, if the system is experiencing a high page fault rate or the free list is
too small, the memory manager wakes up the balance set manager so that it
will call the working set manager to begin trimming working sets. When
memory is more plentiful, the working set manager will permit faulting
processes to gradually increase the size of their working sets by faulting pages
back into memory, but the working sets will grow only as needed.

When the balance set manager wakes up as the result of its 1-second timer
expiring, it takes the following four steps:

1. Every fourth time the balance set manager wakes up because its 1-second
timer has expired, it signals an event that wakes up another system thread
called the swapper (routine KeSwapProcessOrStack).

2. The balance set manager then checks the look-aside lists and adjusts their
depths if necessary (to improve access time and to reduce pool usage and
pool fragmentation).

3. It looks for threads that might warrant having their priority boosted
because they are CPU starved. (See the section "Priority Boosts for CPU
Starvation" in Chapter 6.)

4. It calls the memory manager's working set manager. (The working set
manager has its own internal counters that regulate when to perform
working set trimming and how aggressively to trim.)

The swapper is also awakened by the scheduling code in the kernel if a thread
that needs to run has its kernel stack swapped out or if the process has been
swapped out. The swapper looks for threads that have been in a wait state for
a specified amount of time (3 seconds on small memory systems, 7 seconds on
medium or large memory systems). If it finds one, it puts the thread's kernel
stack in transition (moving the pages to the modified or standby lists) so as to
reclaim its physical memory, operating on the principle that, if a thread's been
waiting that long, it's going to be waiting even longer. When the last thread in a



process has its kernel stack removed from memory, the process is marked to
be entirely outswapped. That's why, for example, processes that have been idle
for a long time (such as Winlogon is after you log on) can have a zero working
set size.



System Working Set

Just as processes have working sets, the pageable code and data in the
operating system are managed by a single system working set. Five different
kinds of pages can reside in the system working set:

System cache pages

Paged pool

Pageable code and data in Ntoskrnl.exe

Pageable code and data in device drivers

System mapped views (sections mapped at 0xA0000000, such as
Win32k.sys)

You can examine the size of the system working set or the size of the five
components that contribute to it with the performance counters or system
variables shown in Table 7-19. Keep in mind that the performance counter
values are in bytes whereas the system variables are measured in terms of
pages.

You can also examine the paging activity in the system working set by
examining the Memory: Cache Faults/Sec performance counter, which
describes page faults that occur in the system working set (both hard and
soft).

Table 7-19 System Working Set Performance Counters

Performance
Counter (in

Bytes)
System Variable (in Pages) Description

Memory:
Cache Bytes*

MmSystemCacheWs.WorkingSetSize Total size of system
working set
(including the cache,
paged pool, pageable
Ntoskrnl and driver
code, and system
mapped views); this
is not the size of the
system cache alone,
even though the
name implies that it
is.

Memory: MmSystemCacheWs.Peak Peak system working



Cache Bytes
Peak

set size.

Memory:
System Cache
Resident
Bytes

MmSystemCachePage Physical memory
consumed by the
system cache.

Memory:
System Code
Resident
Bytes

MmSystemCodePage Physical memory
consumed by
pageable code in
Ntoskrnl.exe.

Memory:
System Driver
Resident
Bytes

MmSystemDriverPage Physical memory
consumed by
pageable device
driver code.

Memory: Pool
Paged
Resident
Bytes

MmPagedPoolPage Physical memory
consumed by paged
pool.

* Internally, this working set is called the system cache working set, even
though the system cache is just one of five different components in it. Thus,
several utilities think they are displaying the size of the file cache when they
are displaying the total size of the system working set.

The system variable that contains the value for this counter is
MmSystemCacheWs.PageFaultCount.

The minimum and maximum system working set size is computed at system
initialization time based on the amount of physical memory on the machine and
whether the system is running Windows 2000 Professional or Windows 2000
Server. The initial values, which are listed in Table 7-20, are chosen based on
system memory size.

Table 7-20 Minimum and Maximum Size of System Working Set

Memory
Size

System Working Set
Minimum (in Pages)

System Working Set
Maximum (in Pages)

Small 388 500

Medium 688 1150

Large 1188 2050

These numbers are further altered if the registry value
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory



Management\LargeSystemCache is set to 1 (the default on Windows 2000
Server systems) and the number of available pages (MmAvailablePages, as
described in Table 7-25) is greater than 350 plus 6 MB (a total of 1886 pages
on x86 systems). In this case, the system working set maximum is set to
available pages minus 4 MB. If this value is greater than the maximum working
set size supported by Windows 2000 (1984 MB for normal x86 systems or 3008
MB on a system running with a 3-GB user space), the system working set
maximum is reduced to that maximum value minus 5 pages.

Windows 2000 then checks to see whether the new system working set
maximum is greater than the virtual size of the system cache—if it is, the
working set maximum is reduced to the virtual size of the system cache. In
other words, the system working set could potentially expand to use all the
virtual memory reserved for the system cache. (See Chapter 11 for more
information about the virtual size of the system cache.)

Finally, a check is made to determine whether the difference between the
system working set minimum and maximum is less than 500 pages. If it is, the
working set minimum is reduced to the working set maximum minus 500
pages.

The final calculated working set minimum and maximum are then stored in the
system variables shown in Table 7-21. (These variables aren't available through
any performance counter.)

Table 7-21 System Variables That Store Working Set Minimums or Maximums

Variable Type Description

MmSystemCacheWsMinimum or
MmSystemCacheWs.MinimumWorkingSetSize

ULONG Minimum
working set
size

MmSystemCacheWsMaximum or
MmSystemCacheWs.MaximumWorkingSetSize

ULONG Maximum
working set
size



[Previous] [Next]



Page Frame Number Database
Whereas working sets describe the resident pages owned by a process or the system, the
page frame number (PFN) database describes the state of each page in physical memory.
Pages are in one of eight states, as shown in Table 7-22.

Table 7-22 Page States

Status Description

Active
(also
called
Valid)

The page is part of a working set (either a process working set or the
system working set) or it's not in any working set (e.g. nonpaged kernel
page), and a valid PTE points to it.

Transition A temporary state for a page that isn't owned by a working set and isn't
on any paging list. A page is in this state when an I/O to the page is in
progress. The PTE is encoded so that collided page faults can be
recognized and handled properly.

Standby The page previously belonged to a working set but was removed. The
page wasn't modified since it was last written to disk. The PTE still refers
to the physical page but is marked invalid and in transition.

Modified The page previously belonged to a working set but was removed.
However, the page was modified while it was in use and its current
contents haven't yet been written to disk. The PTE still refers to the
physical page but is marked invalid and in transition. It must be written to
disk before the physical page can be reused.

Modified
no-write

Same as a modified page, except that it has been marked so that the
memory manager's modified page writer won't write it to disk. The cache
manager marks pages as modified no-write at the request of file system
drivers. For example, NTFS uses this state for pages containing file
system metadata so that it can first ensure that transaction log entries
are flushed to disk before the pages they are protecting are written to
disk. (NTFS transaction logging is explained in Chapter 12.)

Free The page is free but has unspecified dirty data in it. (Thesepages can't be
given as a user page to a user process without being initialized with
zeros, for security reasons.)

Zeroed The page is free and has been initialized with zeros by the zero page
thread.

Bad The page has generated parity or other hardware errors and can't be
used.

The PFN database consists of an array of structures that represent each physical page of
memory on the system. The PFN database and its relationship to page tables are shown in
Figure 7-19. As this figure shows, valid PTEs point to entries in the PFN database, and the
PFN database entries (for nonprototype PFNs) point back to the page table that is using
them. For prototype PFNs, they point back to the prototype PTE.



Figure 7-19 Page tables and the page frame number database

Of the page states listed in Table 7-22, six are organized into linked lists so that the
memory manager can quickly locate pages of a specific type. (Active/valid pages and
transition pages aren't in any systemwide page list.) Figure 7-20 shows an example of how
these entries are linked together.

javascript:fullSize('F07yj19x.htm')


Figure 7-20 Page lists in the PFN database

In the next section, you'll find out how these linked lists are used to satisfy page faults and
how pages move to and from the various lists.

EXPERIMENT

Viewing the PFN Database

Using the kernel debugger !memusage command, you can dump the size of the
various paging lists. The following is the output from this command:

kd> !memusage 
 loading PFN database 
loading (99% complete) 
             Zeroed:      8 (    32 kb) 
               Free:      0 (     0 kb) 
            Standby:   2809 ( 11236 kb) 
           Modified:    756 (  3024 kb) 
    ModifiedNoWrite:      1 (     4 kb) 
       Active/Valid:  29150 (116600 kb) 
         Transition:     10 (    40 kb) 
            Unknown:      0 (     0 kb) 
              TOTAL:  32734 (130936 kb) 

javascript:fullSize('F07yj20x.htm')


  Building kernel map 
  



Page List Dynamics

Figure 7-21 shows a state diagram for page frame transitions. For simplicity, the modified-
no-write list isn't shown. Page frames move between the paging lists in the following ways:

When the memory manager needs a zero-initialized page to service a demand-zero
page fault (a reference to a page that is defined to be all zeros or to a user-mode
committed private page that has never been accessed), it first attempts to get one
from the zero page list; if the list is empty, it gets one from the free page list and
zeros the page. If the free list is empty, it goes to the standby list and zeros that page.

One reason zero-initialized pages are required is to meet C2 security requirements. C2
specifies that user-mode processes must be given initialized page frames to prevent
them from reading a previous process's memory contents. Therefore, the memory
manager gives user-mode processes zeroed page frames unless the page is being read
in from a mapped file. If that's the case, the memory manager prefers to use
nonzeroed page frames, initializing them with the data off the disk.

Figure 7-21 State diagram for page frames

The zero page list is populated from the free list by a system thread called the zero
page thread (thread 0 in the System process). The zero page thread waits on an event
object to signal it to go to work. When the free list has eight or more pages, this event
is signaled. However, the zero page thread will run only if no other threads are
running, because the zero page thread runs at priority 0 and the lowest priority that a
user thread can be set to is 1.

When the memory manager doesn't require a zero-initialized page, it goes first to the
free list; if that's empty, it goes to the zeroed list. If the zeroed list is empty, it goes to
the standby list. Before the memory manager can use a page frame from the standby
list, it must first backtrack and remove the reference from the invalid PTE (or
prototype PTE) that still points to the page frame. Because entries in the PFN database
contain pointers back to the previous user's page table (or to a prototype PTE for
shared pages), the memory manager can quickly find the PTE and make the
appropriate change.

When a process has to give up a page out of its working set (either because it
referenced a new page and its working set was full or the memory manager trimmed
its working set), the page goes to the standby list if the page was clean (not modified)
or to the modified list if the page was modified while it was resident. When a process

javascript:fullSize('F07yj21x.htm')


exits, all the private pages go to the free list. Also, when the last reference to a page
file backed section is closed, these pages also go to the free list.

EXPERIMENT

Viewing Page Fault Behavior

With the Pfmon tool in the Windows 2000 resource kit, you can watch page fault
behavior as it occurs. A soft fault refers to a page fault satisfied from one of the
transition lists. Hard faults refer to a disk-read. The following example is a portion
of output you'll see if you start Notepad with Pfmon and then exit. Be sure to
notice the summary of page fault activity at the end.

C:\> pfmon notepad 
SOFT: KiUserApcDispatcher : KiUserApcDispatcher 
SOFT: LdrInitializeThunk : LdrInitializeThunk 
SOFT: 0x77f61016 :  : 0x77f61016 
SOFT: 0x77f6105b :  : fltused+0xe00 
HARD: 0x77f6105b :  : fltused+0xe00 
SOFT: LdrQueryImageFileExecutionOptions :  
                        LdrQueryImageFileExecutionOptions 
SOFT: RtlAppendUnicodeToString : RtlAppendUnicodeToString 
SOFT: RtlInitUnicodeString : RtlInitUnicodeString 
 
  notepad Caused   8 faults had   9 Soft  5 Hard faulted VA's 
    ntdll Caused  94 faults had  42 Soft  8 Hard faulted VA's 
 comdlg32 Caused   3 faults had   0 Soft  3 Hard faulted VA's 
  shlwapi Caused   2 faults had   2 Soft  2 Hard faulted VA's 
    gdi32 Caused  18 faults had  10 Soft  2 Hard faulted VA's 
 kernel32 Caused  48 faults had  36 Soft  3 Hard faulted VA's 
   user32 Caused  38 faults had  26 Soft  6 Hard faulted VA's 
 advapi32 Caused   7 faults had   6 Soft  3 Hard faulted VA's 
   rpcrt4 Caused   6 faults had   4 Soft  2 Hard faulted VA's 
 comctl32 Caused   6 faults had   5 Soft  2 Hard faulted VA's 
  shell32 Caused   6 faults had   5 Soft  2 Hard faulted VA's 
          Caused  10 faults had   9 Soft  5 Hard faulted VA's 
 winspool Caused   4 faults had   2 Soft  2 Hard faulted VA's 
 
 PFMON: Total Faults 250   
       (KM 74 UM 250 Soft 204, Hard 46, Code 121, Data 129) 

When the modified list gets too big, or if the size of the zeroed and standby lists falls below
a minimum threshold (as indicated by the kernel variable MmMinimumFreePages, which is
computed at system boot time), a system thread called the modified page writer is
awakened to write pages back to disk and move the pages to the standby list.



Modified Page Writer

The modified page writer is responsible for limiting the size of the modified page list by
writing pages back to disk when the list becomes too big. It consists of two system
threads: one to write out modified pages (MiModifiedPageWriter) to the paging file and a
second one to write modified pages to mapped files (MiMappedPageWriter). Two threads
are required to avoid creating a deadlock, which would occur if the writing of mapped file
pages caused a page fault that in turn required a free page when no free pages were
available (thus requiring the modified page writer to create more free pages). By having
the modified page writer perform mapped file paging I/Os from a second system thread,
that thread can wait without blocking regular page file I/O.

Both threads run at priority 17 and, after initialization, wait on separate event objects to
trigger their operation. The modified page writer event is triggered for one of two reasons:

When the number of modified pages exceeds the maximum value computed at system
initialization (MmModifiedPageMaximum)

When the number of available pages (MmAvailablePages) goes below
MmMinimumFreePages

Table 7-23 shows the number of pages that trigger the waking of the modified page writer
to reduce the size of the modified list and how many pages it leaves on the list. As with
other memory management variables, this value is computed at system boot time and
depends on the amount of physical memory.

Table 7-23 Modified Page Writer Values

Memory Size Modified Page Threshold Retain Modified Pages

< 12 MB 100 40

12-19 MB 150 80

19-33 MB 300 150

>33 MB (special case) 400 800

The modified page writer waits on an additional event (MiMappedPagesTooOldEvent) that
is set after a predetermined number of seconds (MmModifiedPageLifeInSeconds) to
indicate that mapped pages (not modified pages) should be written to disk. By default, this
value is 300 seconds (5 minutes). (You can override this value by adding the DWORD
registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
Management\ModifiedPageLife). The reason for this additional event is to reduce data loss
in the case of a system crash or power failure by eventually writing out modified mapped
pages even if the modified list hasn't reached the thresholds listed in Table 7-23.

When invoked, the mapped page writer attempts to write as many pages as possible to
disk with a single I/O request. It accomplishes this by examining the original PTE field of
the PFN database elements for pages on the modified page list to locate pages in
contiguous locations on the disk. Once a list is created, the pages are removed from the
modified list, an I/O request is issued, and at successful completion of the I/O request, the
pages are placed at the tail of the standby list.

Pages that are in the process of being written can be referenced by another thread. When
this happens, the reference count and the share count in the PFN entry that represents the



physical page are incremented to indicate that another process is using the page. When
the I/O operation completes, the modified page writer notices that the share count is no
longer 0 and doesn't place the page on the standby list.



PFN Data Structures

Although PFN database entries are of fixed length, they can be in several different states,
depending on the state of the page. Thus, individual fields have different meanings
depending on the state. The states of a PFN entry are shown in Figure 7-22.

Figure 7-22 States of PFN database entries

Several fields are the same for several of the PFN types, but others are specific to a given
type of PFN. The following fields appear in more than one PFN type:

PTE address Virtual address of the PTE that points to this page.

Reference count The number of references to this page. The reference count is
incremented when a page is first added to a working set and/or when the page is
locked in memory for I/O (for example, by a device driver). The reference count is
decremented when the share count becomes 0 or when pages are unlocked from
memory. When the share count becomes 0, the page is no longer owned by a working
set. Then, depending on the reference count, the PFN database entry that describes
the page is updated to add the page to the free, standby, or modified list.

Type The type of page represented by this PFN (active/valid, transition, standby,
modified, modified no-write, free, zeroed, bad, and transition).

Flags The information contained in the flags field is shown in Table 7-24.

Original PTE contents All PFN database entries contain the original contents of the
PTE that pointed to the page (which could be a prototype PTE). Saving the contents of
the PTE allows it to be restored when the physical page is no longer resident.

PFN of PTE Physical page number of the page table page containing the PTE that
points to this page.

Table 7-24 Flags Within PFN Database Entries

Flag Meaning

Modified Indicates whether the page was modified. (If the page is modified, its

javascript:fullSize('F07yj22x.htm')


state contents must be saved to disk before removing it from memory.)

Prototype
PTE

Indicates that the PTE referenced by the PFN entry is a prototype PTE.
(For example, this page is sharable.)

Parity
error

Indicates that the physical page contains parity or error correction control
errors.

Read in
progress

Indicates that an in-page operation is in progress for the page. The first
DWORD contains the address of the event object that will be signaled
when the I/O is complete; also used to indicate the first PFN for nonpaged
pool allocations.

Write in
progress

Indicates that a page write operation is in progress. The first DWORD
contains the address of the event object that will be signaled when the
I/O is complete; also used to indicate the last PFN for nonpaged pool
allocations.

Start of
nonpaged
pool

For nonpaged pool pages, indicates that this is the first PFN for a given
nonpaged pool allocation.

End of
nonpaged
pool

For nonpaged pool pages, indicates that this is the last PFN for a given
nonpaged pool allocation.

In-page
error

Indicates that an I/O error occurred during the in-page operation on this
page. (In this case, the first field in the PFN contains the error code.)

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 7-
22 represents a page that is active and part of a working set. The share count field
represents the number of PTEs that refer to this page. (Pages marked read-only, copy-on-
write, or shared read/write can be shared by multiple processes.) For page table pages,
this field is the number of valid PTEs in the page table. As long as the share count is
greater than 0, the page isn't eligible for removal from memory.

The working set index field is an index into the process working set list (or the system or
session working set list, or zero if not in any working set) where the virtual address that
maps this physical page resides. If the page is a private page, the working set index field
refers directly to the entry in the working set list because the page is mapped only at a
single virtual address. In the case of a shared page, the working set index is a hint that is
guaranteed to be correct only for the first process that made the page valid. (Other
processes will try to use the same index where possible.) The process that initially sets this
field is guaranteed to refer to the proper index and doesn't need to add a working set list
hash entry referenced by the virtual address into its working set hash tree. This guarantee
reduces the size of the working set hash tree and makes searches faster for these
particular direct entries.

The second PFN in Figure 7-22 is for a page on either the standby or the modified list. In
this case, the forward and backward link fields link the elements of the list together within
the list. This linking allows pages to be easily manipulated to satisfy page faults. When a
page is on one of the lists, the share count is by definition 0 (because no working set is
using the page) and therefore can be overlaid with the backward link. However, the
reference count might not be 0 because an I/O could be in progress for this page (for
example, when the page is being written to disk).



The third PFN in Figure 7-22 is for a page on the free or zeroed list. Besides being linked
together within the two lists, these PFN database entries use an additional field to link
physical pages by "color," their location in the processor CPU memory cache. Windows
2000 attempts to minimize unnecessary thrashing of CPU memory caches by using
different physical pages in the CPU cache. It achieves this optimization by avoiding using
the same cache entry for two different pages wherever possible. For systems with direct
mapped caches, optimally using the hardware's capabilities can result in a significant
performance advantage.

The fourth PFN in Figure 7-22 is for a page that has an I/O in progress (for example, a
page read). While the I/O is in progress, the first field points to an event object that will be
signaled when the I/O completes. If an in-page error occurs, this field contains the
Windows 2000 error status code representing the I/O error. This PFN type is used to
resolve collided page faults.

EXPERIMENT

Viewing PFN Entries

You can examine individual PFN entries with the kernel debugger !pfn command.
You first need to supply the PFN as an argument. (For example, !pfn 0 shows the
first entry, !pfn 1 shows the second, and so on.) In the following example, the PTE
for virtual address 0x50000 is displayed, followed by the PFN that contains the
page directory and then the actual page:

kd> !pte 50000 
00050000  - PDE at C0300000        PTE at C0000140 
          contains 00700067      contains 00DAA047 
        pfn 00700 --DA--UWV    pfn 00DAA --D---UWV 
 
kd> !pfn 700 
  PFN 00000700 at address 827CD800 
  flink  00000004 blink / share count 00000010 pteaddress C0300000
  reference count 0001                                 color 0 
  restore pte 00000080  containing page        00030  Active     M
  Modified 
 
kd> !pfn daa 
  PFN 00000DAA at address 827D77F0 
  flink  00000077 blink / share count 00000001 pteaddress C0000140
  reference count 0001                                 color 0 
  restore pte 00000080  containing page        00700  Active     M
  Modified 

In addition to the PFN database, the system variables in Table 7-25 describe the overall
state of physical memory.

Table 7-25 System Variables That Describe Physical Memory



Variable Description

MmNumberOfPhysicalPages Total number of physical pages available on the system

MmAvailablePages Total number of available pages on the system—the
sum of the pages on the zeroed, free, and standby lists

MmResidentAvailablePages Total number of physical pages that would be available
if every process were at its minimum working set size



[Previous] [Next]



Section Objects
As you'll remember from the section on shared memory earlier in the chapter, the section
object, which the Win32 subsystem calls a file mapping object, represents a block of
memory that two or more processes can share. A section object can be mapped to the
paging file or to another file on disk.

The executive uses sections to load executable images into memory, and the cache
manager uses them to access data in a cached file. (See Chapter 11 for more information
on how the cache manager uses section objects.) You can also use section objects to map
a file into a process address space. The file can then be accessed as a large array by
mapping different views of the section object and reading or writing to memory rather than
to the file (an activity called mapped file I/O). When the program accesses an invalid page
(one not in physical memory), a page fault occurs and the memory manager automatically
brings the page into memory from the mapped file. If the application modifies the page,
the memory manager writes the changes back to the file during its normal paging
operations (or the application can flush a view by using the Win32 FlushViewOfFile
function).

Section objects, like other objects, are allocated and deallocated by the object manager.
The object manager creates and initializes an object header, which it uses to manage the
objects; the memory manager defines the body of the section object. The memory
manager also implements services that user-mode threads can call to retrieve and change
the attributes stored in the body of section objects. The structure of a section object is
shown in Figure 7-23.

Figure 7-23 A section object

Table 7-26 summarizes the unique attributes stored in section objects.

Table 7-26 Section Object Body Attributes

Attribute Purpose

Maximum
size

The largest size to which the section can grow in bytes; if mapping a
file, the maximum size is the size of the file.

Page
protection

Page-based memory protection assigned to all pages in the section
when it is created.

Paging
file/Mapped

Indicates whether the section is created empty (backed by the paging
file—as explained earlier, page file backed sections use page-file



file resources only when the pages need to be written out to disk) or loaded
with a file (backed by the mapped file).

Based/Not
based

Indicates whether a section is a based section, which must appear at
the same virtual address for all processes sharing it, or a nonbased
section, which can appear at different virtual addresses for different
processes.

EXPERIMENT

Viewing Section Objects

With the Object Viewer (\Sysint\Winobj from the book's companion CD or
Winobj.exe in the Platform SDK), you can see the list of sections that have global
names. As explained in Chapter 3, these names are stored in the object manager
directory \BaseNamedObjects.

With the Windows 2000 resource kit OH (Open Handles) tool, you can list the
open handles to section objects. The following command displays all open handles
to objects of type section, whether or not they have names. (A section must have
a name only if other processes need to open it by name.)

c:\> oh -t section -a 
00000008 System        Section  0070 
0000008C smss.exe      Section  0004 
000000A4 csrss.exe     Section  0004 
000000A4 csrss.exe     Section  0024 
000000A4 csrss.exe     Section  0038 
000000A4 csrss.exe     Section  0040 \NLS\NlsSectionUnicode 
000000A4 csrss.exe     Section  0044 \NLS\NlsSectionLocale 
000000A4 csrss.exe     Section  0048 \NLS\NlsSectionCType 
000000A4 csrss.exe     Section  004c \NLS\NlsSectionSortkey 
000000A4 csrss.exe     Section  0050 \NLS\NlsSectionSortTbls 
000000A0 winlogon.exe  Section  0004 
000000A0 winlogon.exe  Section  0034 
000000A0 winlogon.exe  Section  0168 \BaseNamedObjects\mmGlobalPnp

You can also use HandleEx (\Sysint\Handleex on the companion CD) to view
mapped files. Select View DLLs from the View menu. Files marked with an asterisk
in the MM column are mapped files (rather than DLLs and other files the image
loader loads as modules). Here's an example:



The data structures maintained by the memory manager that describe mapped sections
are shown in Figure 7-24. These structures ensure that data read from mapped files is
consistent, regardless of the type of access (open file, mapped file, and so on).

Figure 7-24 Internal section structures

For each open file (represented by a file object), there is a single section object pointers
structure. (This structure is also discussed in Chapter 11.) This structure is the key to
maintaining data consistency for all types of file access as well as to providing caching for
files. The section object pointers structure points to one or two control areas. One control
area is used to map the file when it is accessed as a data file, and one is used to map the
file when it is run as an executable image.

A control area in turn points to subsection structures that describe the mapping
information for each section of the file (read-only, read-write, copy-on-write, and so on).
The control area also points to a segment structure allocated in paged pool, which in turn
points to the prototype PTEs used to map to the actual pages mapped by the section
object. As described earlier in the chapter, process page tables point to these prototype
PTEs, which in turn map the pages being referenced.

Although Windows 2000 ensures that any process that accesses (reads or writes) a file will
always see the same, consistent data, there is one case in which two copies of pages of a
file can reside in physical memory (but even in this case, all accessors get the latest copy
and data consistency is maintained). This duplication can happen when an image file has
been accessed as a data file (having been read or written) and then run as an executable
image (for example, when an image is linked and then run—the linker had the file open for

javascript:fullSize('G07yj16x.htm')
javascript:fullSize('F07yj24x.htm')


data access, and then when the image was run, the image loader mapped it as an
executable). Internally, the following actions occur:

1. When the image file is created, a data control area is created to represent the data
pages in the image file being read or written.

2. When the image is run and the section object is created to map the image as an
executable, the memory manager finds that the section object pointers for the image
file point to a data control area and flushes the section. This step is necessary to
ensure that any modified pages have been written to disk before accessing the image
through the image control area.

3. The memory manager then creates a control area for the image file.

4. As the image begins execution, its (read-only) pages are faulted in from the image file.

Because the pages mapped by the data control area might still be resident (on the standby
list), this is the one case in which two copies of the same data are in two different pages in
memory. However, this duplication doesn't result in a data consistency issue because, as
mentioned, the data control area has already been flushed to disk, so the pages read from
the image are up to date.

EXPERIMENT

Viewing Control Areas

To find the address of the control area structures for a file, you must first get the
address of the file object in question. You can obtain this address through the
kernel debugger by dumping the process handle table with the !handle command
and noting the object address of a file object. Although the kernel debugger !file
command displays the basic information in a file object, it doesn't display the
pointer to the section object pointers structure. However, because file objects are
defined in the public DDK header file Ntddk.h, you can look up the offset (0x14 in
Windows 2000). So, simply examine the pointer at offset 0x14 into the file object,
and you'll have the section object pointers structure. That structure is also defined
in Ntddk.h. It consists of three 32-bit pointers: a pointer to the data control area,
a pointer to the shared cache map (explained in Chapter 11), and a pointer to the
image control area. From the section object pointers structure, you can obtain the
address of a control area for the file (if one exists) and feed that address into the
!ca command.

Another technique is to display the list of all control areas with the !memusage
command. The following excerpt is from the output of this command:

kd> !memusage 
 loading PFN database 
loading (99% complete) 
             Zeroed:      9 (    36 kb) 
               Free:      0 (     0 kb) 
            Standby:   2103 (  8412 kb) 
           Modified:    300 (  1200 kb) 
    ModifiedNoWrite:      1 (     4 kb) 



       Active/Valid:  30318 (121272 kb) 
         Transition:      3 (    12 kb) 
            Unknown:      0 (     0 kb) 
              TOTAL:  32734 (130936 kb) 
  Building kernel map 
  Finished building kernel map 
  Usage Summary (in Kb): 
Control Valid Standby Dirty Shared Locked PageTables  name 
8119b608  3000  528     0     0     0     0  mapped_file( WINWORD
849e7c68    96    0     0     0     0     0    No Name for File 
8109c388    24    0     0     0     0     0  mapped_file( DEVDTG.P
81402488   236    0     0     0     0     0    No Name for File 
80fba0a8   268    0     0     0     0     0  mapped_file( kernel32
810ab168  1504  380     0     0     0     0  mapped_file( OUTLLIB
81126a08     0  276     0     0     0     0  mapped_file( H ) 
81112d28   656    0     0     0     0     0    No Name for File 

The Control column points to the control area structure that describes the mapped
file. You can display control areas, segments, and subsections with the kernel
debugger !ca command. For example, to dump the control area for the mapped
file Winword.exe in this example, type the !ca command followed by the Control
number, as shown here:

kd> !ca 8119b608 
 
ControlArea @8119b608 
  Segment:    e2c28000  Flink             0  Blink:            0 
  Section Ref        1  Pfn Ref         372  Mapped Views:     1 
  User Ref           2  Subsections       6  Flush Count:      0 
  File Object 8213fb98  ModWriteCount     0  System Views:     0 
  WaitForDel         0  Paged Usage    3000  NonPaged Usage  100 
  Flags (90000a0) Image File HadUserReference Accessed 
 
   File: \Program Files\Microsoft Office\Office\WINWORD.EXE 
 
Segment @ e2c28000: 
   Base address        0  Total Ptes       86a  NonExtendPtes:    
   Image commit       d7  ControlArea 8119b608  SizeOfSegment: 86a
   Image Base          0  Committed          0  PTE Template:  91
   Based Addr   30000000  ProtoPtes   e2c28038  Image Info:    e2c
 
Subsection 1. @ 8119b640 
   ControlArea: 8119b608  Starting Sector 0 Number Of Sectors 8 
   Base Pte     e2c28038  Ptes In subsect        1 Unused Ptes    
   Flags              15  Sector Offset          0 Protection     
    ReadOnly CopyOnWrite 
 



Subsection 2. @ 8119b660 
   ControlArea: 8119b608  Starting Sector 10 Number Of Sectors 3c0
   Base Pte     e2c2803c  Ptes In subsect      780 Unused Ptes    
   Flags              35  Sector Offset          0 Protection     
    ReadOnly CopyOnWrite 
 
Subsection 3. @ 8119b680 
   ControlArea: 8119b608  Starting Sector 3C10 Number Of Sectors 5
   Base Pte     e2c29e3c  Ptes In subsect       c1 Unused Ptes    
   Flags              55  Sector Offset          0 Protection     
    ReadOnly CopyOnWrite 
 
Subsection 4. @ 8119b6a0 
   ControlArea: 8119b608  Starting Sector 41E8 Number Of Sectors a
   Base Pte     e2c2a140  Ptes In subsect       15 Unused Ptes    
   Flags              55  Sector Offset          0 Protection     
    ReadOnly CopyOnWrite 
 
Subsection 5. @ 8119b6c0 
   ControlArea: 8119b608  Starting Sector 0 Number Of Sectors 0 
   Base Pte     e2c2a194  Ptes In subsect        1 Unused Ptes    
   Flags              55  Sector Offset          0 Protection     
    ReadOnly CopyOnWrite 
 
Subsection 6. @ 8119b6e0 
   ControlArea: 8119b608  Starting Sector 4290 Number Of Sectors 
   Base Pte     e2c2a198  Ptes In subsect       12 Unused Ptes    
   Flags              15  Sector Offset          0 Protection     
    ReadOnly CopyOnWrite 



[Previous] [Next]



Conclusion
In this chapter, we've examined how the Windows 2000
memory manager implements virtual memory
management. As with most 32-bit operating systems, each
process is given access to a private 32-bit address space,
protecting one process's memory from another's but
allowing processes to share memory efficiently and
securely. Advanced capabilities, such as the inclusion of
mapped files and the ability to sparsely allocate memory,
are also available. The Win32 environment subsystem
makes most of the memory manager's capabilities available
to applications through the Win32 API.

The memory manager's implementation relies on lazy-
evaluation techniques whenever possible to avoid
performing time-consuming and unnecessary operations
unless they are required. It is also self-tuning, adapting to
both large multiprocessor servers as well as uniprocessor
desktop workstations.

One aspect of the memory manager that we didn't describe
in this chapter is its tight integration with the cache
manager, which we'll cover in Chapter 11. But before we get
to that, let's take a closer look at the Windows 2000
security mechanisms.



[Previous] [Next]

Chapter 8



Security
Preventing unauthorized access to sensitive data is essential
in any environment in which multiple users have access to
the same physical or network resources. An operating
system, as well as individual users, must be able to protect
files, memory, and configuration settings from unwanted
viewing and modification. Operating system security
includes obvious mechanisms such as accounts, passwords,
and file protection. It also includes less obvious mechanisms
such as protecting the operating system from corruption,
preventing less privileged users from performing actions
(rebooting the computer, for example), and not allowing
user programs to adversely affect the programs of other
users or the operating system.

In this chapter, we explain how every aspect of the design
and implementation of Microsoft Windows 2000 was
influenced in some way by the stringent requirements of
providing robust security.



[Previous] [Next]



Security Ratings
The National Computer Security Center (NCSC, at
www.radium.ncsc.mil) was established in 1981 as part of the
U.S. Department of Defense's (DoD) National Security
Agency (NSA) to help the government, corporations, and
home users protect proprietary and personal data stored in
computer systems. As part of this goal, the NCSC created a
range of security ratings, listed in Table 8-1, that are used to
indicate the degree of protection commercial operating
systems, network components, and trusted applications
offer. These security ratings, which are assigned based on
the DoD's Trusted Computer System Evaluation Criteria
(TCSEC), were defined in 1983 and are commonly referred
to as "the Orange Book."

Table 8-1 TCSEC Rating Levels

Rating Description

A1 Verified Design

B3 Security Domains

B2 Structured Protection

B1 Labeled Security Protection

C2 Controlled Access Protection

C1 Discretionary Access Protection (obsolete)

D Minimal Protection

The TCSEC standard consists of "levels of trust" ratings,
where higher levels build on lower levels by adding more
rigorous protection and validation requirements. No
operating system meets the A1, or "Verified Design," rating.

http://www.radium.ncsc.mil/


Although a few operating systems have earned one of the B-
level ratings, C2 is considered sufficient and the highest
rating practical for a general-purpose operating system.

In July 1995, Microsoft Windows NT 3.5 (Workstation and
Server) with Service Pack 3 was the first version of Windows
NT to earn the C2 rating. In March 1999, Windows NT 4 with
Service Pack 3 achieved an E3 rating from the U.K.
government's Information Technology Security (ITSEC)
organization, a rating equivalent to a U.S. C2 rating. In
November 1999, Windows NT 4 with Service Pack 6a earned
a C2 rating in both stand-alone and networked
configurations.

The rating process takes several years, so although Windows
2000 has been submitted to international security
certification organizations, it will probably be some time
before its evaluations are complete. However, the
fundamental security architecture of Windows 2000 is, if
anything, a more robust evolution of that in Windows NT 4,
just as Windows NT 4 evolved the Windows NT 3.5
implementation. Windows 2000 will almost certainly achieve
the same ratings that Windows NT 4 has.

What's involved in earning a C2 security rating? The
following are the key requirements:

A secure logon facility, which requires that users can be
uniquely identified and that they must be granted access
to the computer only after they have been authenticated
in some way.

Discretionary access control, which allows the owner of a
resource to determine who can access the resource and
what they can do with it. The owner grants rights that
permit various kinds of access to a user or to a group of
users.



Security auditing, which affords the ability to detect and
record security-related events or any attempts to create,
access, or delete system resources. Logon identifiers
record the identities of all users, making it easy to trace
anyone who performs an unauthorized action.

Object reuse protection, which prevents users from
seeing data that another user has deleted or from
accessing memory that another user previously used
and then released. For example, in some operating
systems, it's possible to create a new file of a certain
length and then examine the contents of the file to see
data that happens to have occupied the location on the
disk where the file is allocated. This data might be
sensitive information that was stored in another user's
file but that has been deleted. Object reuse protection
prevents this potential security hole by initializing all
objects, including files and memory, before they are
allocated to a user.

Windows NT also meets two requirements of B-level
security:

Trusted path functionality, which prevents Trojan horse
programs from being able to intercept users' names and
passwords as they try to log on. The trusted path
functionality in Windows NT comes in the form of its
Ctrl+Alt+Delete logon-attention sequence. This
sequence of keystrokes, which is also known as the
secure attention sequence (SAS), always pops up a
logon dialog box, so would-be Trojan horses can easily
be recognized: a Trojan horse presenting a fake logon
dialog box will be bypassed when the SAS is entered.

Trusted facility management, which requires support for
separate account roles for administrative functions. For
example, separate accounts are provided for



administration (Administrators), user accounts charged
with backing up the computer, and standard users.

Windows 2000 meets all of these requirements through its
security subsystem and related components.

The Common Criteria

In January 1996, the United States, United Kingdom,
Germany, France, Canada, and the Netherlands
released the jointly developed Common Criteria for
Information Technology Security Evaluation (CCITSE)
specification. CCITSE, usually referred to as the
Common Criteria (CC), is becoming the recognized
multinational standard for product security
evaluation.

The CC is more flexible than the TCSEC trust ratings
and has a structure closer to the ITSEC than to the
TCSEC. The CC includes the concept of a Protection
Profile (PP) to collect security requirements into easily
specified and compared sets, and the concept of a
Security Target (ST) that contains a set of security
requirements that can be made by reference to a PP.

Windows 2000 will be rated using the CC rather than
the TCSEC because the U.S. government no longer
evaluates products against the TCSEC. You can find
out more about the CC at
www.radium.ncsc.mil/tpep/library/ccitse.

http://www.radium.ncsc.mil/tpep/library/ccitse


[Previous] [Next]



Security System Components
Here are some of the components and databases that
implement Windows 2000 security:

Security reference monitor (SRM) A component in
the Windows 2000 executive
(\Winnt\System32\Ntoskrnl.exe) that is responsible for
performing security access checks on objects,
manipulating privileges (user rights), and generating
any resulting security audit messages.

Local security authority subsystem (Lsass) A user-
mode process running the image
\Winnt\System32\Lsass.exe that is responsible for the
local system security policy (such as which users are
allowed to log on to the machine, password policies,
privileges granted to users and groups, and the system
security auditing settings), user authentication, and
sending security audit messages to the Event Log. The
local security authority service (Lsasrv—
\Winnt\System32\Lsasrv.dll), a library that Lsass loads,
implements most of this functionality.

Lsass policy database A database that contains the
local system security policy settings. This database is
stored in the registry under HKLM\SECURITY. It includes
such information as what domains are entrusted to
authenticate logon attempts, who has permission to
access the system and how (interactive, network, and
service logons), who is assigned which privileges, and
what kind of security auditing is to be performed. The
Lsass policy database also stores "secrets" that include
logon information used for cached domain logons and



Win32 service user-account logons. (See Chapter 5 for
more information on Win32 services.)

Security Accounts Manager (SAM) service A set of
subroutines responsible for managing the database that
contains the usernames and groups defined on the local
machine. The SAM service, which is implemented as
\Winnt\System32\Samsrv.dll, runs in the Lsass process.

SAM database A database that contains the defined
local users and groups, along with their passwords and
other attributes. This database is stored in the registry
under HKLM\SAM.

Active Directory A directory service that contains a
database that stores information about objects in a
domain. A domain is a collection of computers and their
associated security groups that are managed as a single
entity. Active Directory stores information about the
objects in the domain, including users, groups, and
computers. Password information and privileges for
domain users and groups are stored in Active Directory,
which is replicated across the computers that are
designated as domain controllers of the domain. The
Active Directory server, implemented as
\Winnt\System32\Ntdsa.dll, runs in the Lsass process.

Authentication packages DLLs that run in the context
of the Lsass process and that implement Windows 2000
authentication policy. An authentication DLL is
responsible for checking whether a given username and
password match, and if so, returning to the Lsass
information detailing the user's security identity.

Logon process (Winlogon) A user-mode process
running \Winnt\System32\Winlogon.exe that is



responsible for responding to the SAS and for managing
interactive logon sessions. Winlogon creates a user's
shell (user-interface) process when the user logs on, for
example.

Graphical Identification and Authentication
(GINA) A user-mode DLL that runs in the Winlogon
process and that Winlogon uses to obtain a user's name
and password or smart card PIN. The standard GINA is
\Winnt\System32\Msgina.dll.

Net Logon service (Netlogon) A Win32 service
(\Winnt\System32\Netlogon.dll) that runs inside Lsass
and responds to Microsoft LAN Manager 2 Windows NT
(pre-Windows 2000) network logon requests.
Authentication is handled as local logons are, by
sending them to Lsass for verification. Netlogon also
has a locator service built into it for locating domain
controllers.

Kernel Security Device Driver (KSecDD) A kernel-
mode library of functions that implement the local
procedure call (LPC) interfaces that other kernel-mode
security components, including the Encrypting File
System (EFS), use to communicate with Lsass in user
mode. KSecDD is located in
\Winnt\System32\Drivers\Ksecdd.sys.

Figure 8-1 shows the relationships among some of these
components and the databases they manage.



Figure 8-1 Windows 2000 security components

The SRM, which runs in kernel mode, and Lsass, which runs
in user mode, communicate using the LPC facility described
in Chapter 3. During system initialization, the SRM creates a
port, named SeRmCommandPort, to which Lsass connects.
When the Lsass process starts, it creates an LPC port
named SeLsaCommandPort. The SRM connects to this port,
resulting in the creation of private communication ports.
The SRM creates a shared memory section for messages
longer than 256 bytes, passing a handle in the connect call.
Once the SRM and Lsass connect to each other during
system initialization, they no longer listen on their
respective connect ports. Therefore, a later user process
has no way to connect successfully to either of these ports
for malicious purposes—the connect request will never
complete.

Figure 8-2 shows the communication paths as they exist
after system initialization.

javascript:fullSize('F08yj01x.htm')


Figure 8-2 Communication between the SRM and Lsass

javascript:fullSize('F08yj02x.htm')


[Previous] [Next]



Protecting Objects
Object protection and access accounting is the essence of discretionary access control and
auditing. The objects that can be protected on Windows 2000 include files, devices,
mailslots, pipes (named and anonymous), jobs, processes, threads, events, mutexes,
semaphores, shared memory sections, I/O completion ports, LPC ports, waitable timers,
access tokens, window stations, desktops, network shares, services, registry keys, and
printers.

Because system resources that are exported to user mode (and hence require security
validation) are implemented as objects in kernel mode, the Windows 2000 object manager
plays a key role in enforcing object security. (For more information on the object manager,
see Chapter 3.) To control who can manipulate an object, the security system must first be
sure of each user's identity. This need to guarantee the user's identity is the reason that
Windows 2000 requires authenticated logon before accessing any system resources. When
a process requests a handle to an object, the object manager and the security system use
the caller's security identification to determine whether the caller should be assigned a
handle that grants the process access to the object it desires.

As we'll discuss later in this chapter, a thread can assume a different security context than
that of its process. This mechanism is called impersonation, and when a thread is
impersonating, security validation mechanisms use the thread's security context instead of
that of the thread's process. When a thread isn't impersonating, security validation falls
back on using the security context of the thread's owning process. It's important to keep in
mind that all the threads in a process share the same handle table, so when a thread
opens an object—even if it's impersonating—all the threads of the process have access to
the object.



Access Checks

The Windows 2000 security model requires that a thread specify up front, at the time that
it opens an object, what types of actions it wants to perform on the object. The system
performs access checks based on a thread's desired access, and if the access is granted, a
handle is assigned to the thread's process with which the thread (or other threads in the
process) can perform further operations on the object. As explained in Chapter 3, the
object manager records the access permissions granted for a handle in the process's
handle table.

One event that causes the object manager to perform security access validation is when a
process opens an existing object using a name. When an object is opened by name, the
object manager performs a lookup of the specified object in the object manager
namespace. If the object isn't located in a secondary namespace, such as the configuration
manager's registry namespace or a file system driver's file system namespace, the object
manager calls the internal function ObpCreateHandle once it locates the object. As its
name implies, ObpCreateHandle creates an entry in the process's handle table that
becomes associated with the object. However, ObpCreateHandle calls the executive
function ExCreateHandle to create the handle only if another object manager function,
ObpIncrementHandleCount, indicates that the thread has permission to access the object.
Another object manager function, ObCheckObjectAccess, actually carries out the security
access check and returns the results to ObpIncrementHandleCount.

ObpIncrementHandleCount passes ObCheckObjectAccess the security credentials of the
thread opening the object, the types of access to the object that the thread is requesting
(read, write, delete, and so forth), and a pointer to the object. ObCheckObjectAccess first
locks the object's security and the security context of the thread. The object security lock
prevents another thread in the system from changing the object's security while the access
check is in progress. The lock on the thread's security context prevents another thread of
that process or a different process from altering the security identity of the thread while
security validation is in progress. ObCheckObjectAccess then calls the object's security
method to obtain the security settings of the object. (See Chapter 3 for a description of
object methods.) The call to the security method might invoke a function in a different
executive component. However, many executive objects rely on the system's default
security management support.

When an executive component defining an object doesn't want to override the SRM's
default security policy, it marks the object type as having default security. Whenever the
SRM calls an object's security method, it first checks to see whether the object has default
security. An object with default security stores its security information in its header, and its
security method is SeDefaultObjectMethod. An object that doesn't rely on default security
must manage its own security information and supply a specific security method. Objects
that rely on default security include mutexes, events, and semaphores. A file object is an
example of an object that overrides default security. The I/O manager, which defines the
file object type, has the file system driver on which a file resides manage (or choose not to
implement) the security for its files. Thus, when the system queries the security on a file
object that represents a file on an NTFS volume, the I/O manager file object security
method retrieves the file's security using the NTFS file system driver. Note, however, that
ObCheckObjectAccess isn't executed when files are opened because they reside in
secondary namespaces; the system invokes a file object's security method only when a
thread explicitly queries or sets the security on a file (with the Win32 SetFileSecurity or
GetFileSecurity functions, for example).



After obtaining an object's security information, ObCheckObjectAccess invokes the SRM
function SeAccessCheck. SeAccessCheck is one of the functions at the heart of the
Windows 2000 security model. Among the input parameters SeAccessCheck accepts are
the object's security information, the security identity of the thread as captured by
ObCheckObjectAccess, and the access that the thread is requesting. SeAccessCheck
returns True or False, depending on whether the thread is granted the access it requested
to the object.

Another event that causes the object manager to execute access validation is when a
process references an object using an existing handle. Such references often occur
indirectly, as when a process calls on a Win32 API to manipulate an object and passes an
object handle. For example, a thread opening a file can request access to the object that
permits it to read from the file. If the thread has permission to access the object in this
way, as dictated by its security context and the security settings of the file, the object
manager creates a handle—representing the file—in the handle table of the thread's
process. The accesses the process is granted through the handle are stored with the
handle by the object manager.

Subsequently, the thread can attempt to write to the file using the WriteFile Win32
function, passing the file's handle as a parameter. The system service NtWriteFile, which
WriteFile calls via Ntdll.dll, uses the object manager function ObReferenceObjectByHandle
to obtain a pointer to the file object from the handle. ObReferenceObjectByHandle accepts
the access that the caller wants from the object as a parameter. After finding the handle
entry in the process's handle table, ObReferenceObjectByHandle compares the access
being requested with the access granted at the time the file was opened. In this case,
ObReferenceObjectByHandle will indicate that the write operation should fail because the
caller didn't obtain write access when the file was opened.

The Windows 2000 security functions also enable Win32 applications to define their own
private objects and to call on the services of the SRM to enforce the Windows 2000
security model on those objects. Many kernel-mode functions that the object manager and
other executive components use to protect their own objects are exported as Win32 user-
mode APIs. The user-mode equivalent of SeAccessCheck is AccessCheck, for example.
Win32 applications can therefore leverage the flexibility of the security model and
transparently integrate with the authentication and administrative interfaces that are
present in Windows 2000.

The essence of the SRM's security model is an equation that takes three inputs: the
security identity of a thread, the access that the thread wants to an object, and the
security settings of the object. The output is either "yes" or "no" and indicates whether or
not the security model grants the thread the access it desires. The following sections
describe the inputs in more detail and then document the model's access validation
algorithm.



Security Identifiers

Instead of using names (which might or might not be unique) to identify entities that
perform actions in a system, Windows 2000 uses security identifiers (SIDs). Users have
SIDs, and so do local and domain groups, local computers, domains, and domain
members. A SID is a variable-length numeric value that consists of a SID structure
revision number, a 48-bit identifier authority value, and a variable number of 32-bit
subauthority or relative identifier (RID) values. The authority value identifies the agent
that issued the SID, and this agent is typically a Windows 2000 local system or a domain.
Subauthority values identify trustees relative to the issuing authority, and RIDs are simply
a way for Windows 2000 to create unique SIDs based on a common-base SID. Because
SIDS are long and Windows 2000 takes care to generate truly random values within each
SID, it is virtually impossible for Windows 2000 to issue the same SID twice on machines
or domains anywhere in the world.

When displayed textually, each SID carries an S prefix, and its various components are
separated with hyphens:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows 2000
security authority), and four subauthority values plus one RID (1128) make up the
remainder of the SID. This SID is a domain SID, but a local computer on the domain would
have a SID with the same revision number, identifier authority value, and number of
subauthority values.

EXPERIMENT

Using GetSID to View Account SIDs

You can easily see the SID representation for any account you're using by running
the GetSID utility, located in the Windows 2000 resource kits. It has the following
interface:

C:\>getsid 
Usage: getsid \\server1 account \\server2 account 

GetSID's intended use is as a tool for detecting inconsistencies in the account
databases of two domain controllers. It accepts the names of two users, each
relative to a server, and retrieves the SIDs of each user from the server specified
for them. It then compares the SIDs and indicates whether or not they match, at
the same time displaying their textual representations. Despite the fact that
GetSID requires you to specify two account names, you can still use it to obtain
the SID of a single account simply by specifying the same account and server for
both names. Here's an example of obtaining a single SID:

C:\>getsid \\w2kpro administrator \\w2kpro administrator 
The SID for account W2KPRO\administrator matches account  
  W2KPRO\administrator 
The SID for account W2KPRO\administrator is  



S-1-5-21-1123561945-484763869-1957994488-500 
The SID for account W2KPRO\administrator is  
S-1-5-21-1123561945-484763869-1957994488-500 

When you install Windows 2000, the Windows 2000 Setup program issues the computer a
SID. Windows 2000 assigns SIDs to local accounts on the computer. Each local-account
SID is based on the source computer's SID and has a RID at the end. RIDs for user
accounts and groups start at 1000 and increase in increments of 1 for each new user or
group. Similarly, Windows 2000 issues a SID to each newly created Windows 2000 domain.
Windows 2000 issues to new domain accounts SIDS that are based on the domain SID and
have an appended RID (again starting at 1000 and increasing in increments of 1 for each
new user or group). A RID of 1028 indicates that the SID is the 29th SID the domain
issued.

Windows 2000 issues SIDS that consist of a computer or domain SID with a predefined
RID to many predefined accounts and groups. For example, the RID for the administrator
account is 500, and the RID for the guest account is 501. A computer's local administrator
account, for example, has the computer SID as its base with the RID of 500 appended to
it:

S-1-5-21-13124455-12541255-61235125-500

Windows 2000 also defines a number of built-in local and domain SIDs to represent
groups. For example, a SID that identifies any and every account is the Everyone, or
World, SID: S-1-1-0. Another example of a group that a SID can represent is the network
group, which is the group that represents users who can log on to a machine from the
network. The network-group SID is S-1-5-2. Table 8-2, reproduced here from the Platform
SDK documentation, shows some of the basic well-known SIDs, their numeric values, and
their use.

Table 8-2 Well-Known SIDs

SID Group Use

S-1-1-0 Everyone A group that includes all users.

S-1-2-0 Local Users who log on to terminals locally (physically) connected to
the system.

S-1-3-0 Creator
Owner
ID

A security identifier to be replaced by the security identifier of
the user who created a new object. This SID is used in
inheritable access-control entries (ACEs).

S-1-3-1 Creator
Group ID

Identifies a security identifier to be replaced by the primary-
group SID of the user who created a new object. Use this SID in
inheritable ACEs.



Tokens

The SRM uses an object called a token (or access token) to identify the security context of
a process or thread. A security context consists of information that describes the
privileges, accounts, and groups associated with the process or thread. During the logon
process (described at the end of this chapter), Winlogon creates an initial token to
represent the user logging on and attaches the token to the user's logon shell process. All
programs the user executes inherit a copy of the initial token. You can also generate a
token by using the Win32 LogonUser function. You can then use this token to create a
process that runs within the security context of the user logged on by the LogonUser
function by passing the token to the Win32 CreateProcessAsUser function. Tokens vary in
size because different user accounts have different sets of privileges and associated group
accounts. However, all tokens contain the same information, shown in Figure 8-3.

Figure 8-3 Access tokens

The security mechanisms in Windows 2000 use two token components to determine what
a token's thread or process can do. One component comprises the token's user account
SID and group SID fields. The SRM uses SIDs to determine whether a process or thread
can obtain requested access to a securable object, such as an NTFS file.

The group SIDs in a token signify which groups a user's account is a member of. A server
application can disable specific groups to restrict a token's credentials when the server
application is performing actions a client requests. Disabling a group produces nearly the
same effect as if the group wasn't present in the token. (Disabled SIDs are used as part of
security access checks, described later in the chapter.)

The second component in a token that determines what the token's thread or process can
do is the privilege array. A token's privilege array is a list of rights associated with the



token. An example privilege is the right for the process or thread associated with the token
to shut down the computer. There are about two-dozen token privileges, and a few of the
most commonly used are shown in Table 8-3.

Table 8-3 Some Common Privileges

Privilege Name Privilege Usage

SeBackup Bypasses security checks during backups

SeDebug Required to debug a process

SeShutdown Required to shut down a local system

SeTakeOwnership Required to take ownership of an object without being granted
discretionary access

A token's default primary group field and default discretionary access-control list (DACL)
field are security attributes that Windows 2000 applies to objects that a process or thread
creates when it uses the token. By including security information in tokens, Windows 2000
makes it convenient for a process or thread to create objects with standard security
attributes because the process or thread doesn't need to request discrete security
information for every object it creates.

Each token's type distinguishes a primary token (a token that identifies the security
context of a process) from an impersonation token (a token threads use to temporarily
adopt a different security context, usually of another user). Impersonation tokens carry an
impersonation level that signifies what type of impersonation is active in the token. We'll
describe impersonation in more detail shortly.

The remainder of the fields in a token serve informational purposes. The token source field
contains a short textual description of the entity that created the token. Programs that
want to know where a token originated use the token source to distinguish among sources
such as the Windows 2000 Session Manager, a network file server, or the remote
procedure call (RPC) server. The token identifier is a locally unique identifier (LUID) that
the SRM assigns to the token when it creates the token. The Windows 2000 executive
maintains the executive LUID, a counter it uses to assign a unique numeric identifier to
each token.

The token authentication ID is another kind of LUID. A token's creator assigns the token's
authentication ID. Lsass is typically the only token creator on a system, and Lsass obtains
the LUID from the executive LUID. Lsass then copies the authentication ID for all tokens
descended from an initial logon token. A program can obtain a token's authentication ID to
see whether the token belongs to the same logon session as other tokens the program has
examined.

The executive LUID refreshes the modified ID every time a token's characteristics are
modified. An application can test the modified ID to discover changes in a security context
since the context's last use.

Tokens contain an expiration time field that has been present but unused in Windows NT
technology since Windows NT 3.1. A future version of Windows 2000 might allow for
tokens that are valid for a period of time before expiring. Consider a user for which the
systems administrator sets an account expiration time. Currently, if the user logs on and
remains logged on past the account expiration, the system will let the user continue to
access resources. The only way to prevent the user from accessing resources is to forcibly



log the user off the machine. If Windows 2000 supported token expiration, the system
could prevent the user from opening resources past the token expiration time.

EXPERIMENT

Viewing Access Tokens with the Kernel Debugger

The kernel debugger !tokenfields command displays the format of an internal
token object. Although this structure differs from the user-mode token structure
returned by Win32 API security functions, the fields are similar. For further
information on tokens, see the description in the Platform SDK documentation.

The following output is from the kernel debugger's !tokenfields command:

kd> !tokenfields 
!tokenfields 
 TOKEN structure offsets: 
    TokenSource:           0x0 
    AuthenticationId:      0x18 
    ExpirationTime:        0x28 
    ModifiedId:            0x30 
    UserAndGroupCount:     0x3c 
    PrivilegeCount:        0x44 
    VariableLength:        0x48 
    DynamicCharged:        0x4c 
    DynamicAvailable:      0x50 
    DefaultOwnerIndex:     0x54 
    DefaultDacl:           0x6c 
    TokenType:             0x70 
    ImpersonationLevel:    0x74 
    TokenFlags:            0x78 
    TokenInUse:            0x79 
    ProxyData:             0x7c 
    AuditData:             0x80 
    VariablePart:          0x84 

You can examine the token for a process with the !token command. You'll find the
address of the token in the output of the !process command, as shown here:

kd> !process 380 1 
!process 380 1 
Searching for Process with Cid == 380 
PROCESS ff8027a0 SessionId: 0  Cid: 0380  Peb: 7ffdf000  ParentCid
  DirBase: 06433000  ObjectTable: ff7e0b68  TableSize:  23. 
  Image: cmd.exe 
  VadRoot 84c30568 Clone 0 Private 77. Modified 0. Locked 0. 
  DeviceMap 818a3368 
  Token                             e22bc730 



  ElapsedTime                       14:22:56.0536 
  UserTime                          0:00:00.0040 
  KernelTime                        0:00:00.0100 
  QuotaPoolUsage[PagedPool]         13628 
  QuotaPoolUsage[NonPagedPool]      1616 
  Working Set Sizes (now,min,max)  (261, 50, 345)(1044KB, 200KB, 1
  PeakWorkingSetSize                262 
  VirtualSize                       11 Mb 
  PeakVirtualSize                   11 Mb 
  PageFaultCount                    313 
  MemoryPriority                    FOREGROUND 
  BasePriority                      8 
  CommitCharge                      86 
 
kd> !token e22bc730 
!token e22bc730 
TOKEN e22bc730  Flags: 9  Source User32  b"  AuthentId (0, ae6d) 
    Type:                    Primary (IN USE) 
    Token ID:                1803a 
    ParentToken ID:          0 
    Modified ID:             (0, 12bf5) 
    TokenFlags:              0x9 
    SidCount:                9 
    Sids:                    e22bc880 
    RestrictedSidCount:      0 
    RestrictedSids:          0 
    PrivilegeCount:          17 
    Privileges:              e22bc7b4 



Impersonation

Impersonation is a powerful feature Windows 2000 uses frequently in its security model.
Windows 2000 also uses impersonation in its client/server programming model. For
example, a server application can export resources such as files, printers, or databases.
Clients wanting to access a resource send a request to the server. When the server
receives the request, it must ensure that the client has permission to perform the desired
operations on the resource. For example, if a user on a remote machine tries to delete a
file on an NTFS share, the server exporting the share must determine whether the user is
allowed to delete the file. The obvious process to determine whether a user has permission
is for the server to query the user's account and group SIDs, and scan the security
attributes on the file. This process is tedious to program, prone to errors, and wouldn't
permit new security features to be supported transparently. Thus, Windows 2000 provides
impersonation services to simplify the server's job.

Impersonation lets a server notify the SRM that the server is temporarily adopting the
security profile of a client making a resource request. The server can then access
resources on behalf of the client, and the SRM carries out the access validations. Usually, a
server has access to more resources than a client does and loses some of its security
credentials during impersonation. However, the reverse can be true: the server can gain
security credentials during impersonation.

A server impersonates a client only within the thread that makes the impersonation
request. Thread-control data structures contain an optional entry for an impersonation
token. However, a thread's primary token, which represents the thread's real security
credentials, is always accessible in the process's control structure.

Windows 2000 makes impersonation available through several mechanisms. If a server
communicates with a client through a named pipe, the server can use the
ImpersonateNamedPipeClient Win32 API function to tell the SRM that it wants to
impersonate the user on the other end of the pipe. If the server is communicating with the
client through Dynamic Data Exchange (DDE) or an RPC, it can make similar
impersonation requests using DdeImpersonateClient and RpcImpersonateClient. A thread
can create an impersonation token that's simply a copy of its process token with the
ImpersonateSelf function. The thread can then alter its impersonation token, to disable
SIDs or privileges, for example. Finally, a Security Support Provider Interface (SSPI)
package can impersonate its clients with ImpersonateSecurityContext. SSPIs implement a
network security model such as LAN Manager 2 or Kerberos.

After the server thread finishes its task, it reverts to its primary security profile. These
forms of impersonation are convenient for carrying out specific actions at the request of a
client. The disadvantage to these forms of impersonation is that they can't execute an
entire program in the context of a client. In addition, an impersonation token can't access
files or printers on network shares unless the file or printer share supports null sessions.
(A null session is one that results from an anonymous logon.)

If an entire application must execute in a client's security context or must access network
resources, the client must be logged on to the system. The LogonUser Win32 API function
enables this action. LogonUser takes an account name, a password, a domain or computer
name, a logon type (such as interactive, batch, or service), and a logon provider as input,
and it returns a primary token. A server thread can adopt the token as an impersonation
token, or the server can start a program that has the client's credentials as its primary
token. From a security standpoint, the process that LogonUser creates to run the program



in an interactive logon session looks like a program a user starts by logging on to the
machine interactively.

A second way Windows 2000 provides for impersonation of a client's security context that
is similar to the use of LogonUser is by taking a client's access token, duplicating it, and
using it as the primary token that is passed to the CreateProcessAsUser command. The
disadvantage to using the LogonUser and CreateProcessAsUser approaches is that a server
must obtain the user's account name and password. If the server transmits this
information across the network, the server must encrypt it securely so that a malicious
user snooping network traffic can't capture it.

To prevent the misuse of impersonation, Windows 2000 doesn't let servers perform
impersonation without a client's consent. A client process can limit the level of
impersonation that a server process can perform by specifying a security quality of service
(SQOS) when connecting to the server. A process can specify SECURITY_ANONYMOUS,
SECURITY_IDENTIFICATION, SECURITY_IMPERSONATION, and SECURITY_DELEGATION as
flags for the Win32 CreateFile function. Each level lets a server perform different types of
operations with respect to the client's security context:

SecurityAnonymous is the most restrictive level of impersonation—the server can't
impersonate or identify the client.

SecurityIdentification level lets the server obtain the identity (the SIDs) of the client
and the client's privileges, but the server can't impersonate the client.

SecurityImpersonation level lets the server identify and impersonate the client on the
local system.

SecurityDelegation is the most permissive level of impersonation. It lets the server
impersonate the client on local and remote systems. Windows NT 4 and earlier don't
fully support SecurityDelegation level impersonation.

If the client doesn't set an impersonation level, Windows 2000 chooses the
SecurityImpersonation level by default. The CreateFile function also accepts
SECURITY_EFFECTIVE_ONLY and SECURITY_CONTEXT_TRACKING as modifiers for the
impersonation setting:

SECURITY_EFFECTIVE_ONLY prevents a server from accessing a client's privileges or
groups while the server is impersonating.

SECURITY_CONTEXT_TRACKING specifies that any change a client makes to its
security context is reflected in a server that is impersonating it. If this option isn't
specified, the server adopts the context of the client at the time of the impersonation
and doesn't receive any changes. This option is honored only when the client and
server processes are on the same system.



Restricted Tokens

Windows 2000 introduces a new type of token called a restricted token. A restricted token
is created from a primary or impersonation token using the CreateRestrictedToken
function. The restricted token is a copy of the token it's derived from, with the following
possible modifications:

Privileges can be removed from the token's privilege array.

SIDs in the token can be marked as deny-only.

SIDS in the token can be marked as restricted.

The behavior of deny-only and restricted SIDs is covered shortly. Restricted tokens are
useful when an application wants to impersonate a client at a reduced security level,
primarily for safety reasons when running untrusted code. For example, the restricted
token can have the reboot-system privilege removed from it to prevent code executed in
the restricted token's security context from rebooting the system.



Security Descriptors and Access Control

Tokens, which identify a user's credentials, are only part of the object security equation.
Another part of the equation is the security information associated with an object, which
specifies who can perform what actions on the object. The data structure for this
information is called a security descriptor. A security descriptor consists of the following
attributes:

Revision number The version of the SRM security model used to create the
descriptor.

Flags Optional modifiers that define the behavior or characteristics of the descriptor.
An example is the SE_DACL_PROTECTED flag, which prevents the descriptor from
inheriting a security setting from another object.

Owner SID The owner's security ID.

Group SID The security ID of the primary group for the object (used only by POSIX).

Discretionary access-control list (DACL) Specifies who has what access to the
object.

System access-control list (SACL) Specifies which operations by which users should
be logged in the security audit log.

An access-control list (ACL) is made up of a header and zero or more access-control entry
(ACE) structures. There are two types of ACLs: DACLs and SACLs. In a DACL, each ACE
contains a SID and an access mask (and a set of flags, explained shortly). Four types of
ACEs can appear in a DACL: access allowed, access denied, allowed-object, and denied-
object. As you would expect, the access-allowed ACE grants access to a user, and the
access-denied ACE denies the access rights specified in the access mask.

The difference between allowed-object and access allowed, and between denied-object and
access denied, is that the object types are used only within Active Directory. ACEs of these
types have a GUID (globally unique identifier) field that indicates that the ACE applies only
to particular objects or subobjects (those that have GUID identifiers). In addition, another
optional GUID indicates what type of child object will inherit the ACE when a child is
created within an Active Directory container that has the ACE applied to it. (A GUID is a
128bit identifier guaranteed to be universally unique.)

The accumulation of access rights granted by individual ACEs forms the set of access rights
granted by an ACL. If no DACL is present (a null DACL) in a security descriptor, everyone
has full access to the object. If the DACL is empty (has 0 ACEs), no user has access to the
object.

The ACEs used in DACLs also have a set of flags that control and specify characteristics of
the ACE related to inheritance. Some object namespaces have container objects and leaf
objects (or just objects). A container can hold other container objects and leaf objects,
which are its child objects. Examples of containers are directories in the file system
namespace and keys in the registry namespace. Certain flags in an ACE control how the
ACE propagates to child objects of the container associated with the ACE. Table 8-4,
reproduced in part from the Platform SDK, lists the inheritance rules for ACE flags.

Table 8-4 Inheritance Rules for ACE Flags



Flag Inheritance Rule

CONTAINER_INHERIT_ACE Child objects that are containers, such as
directories, inherit the ACE as an effective ACE. The
inherited ACE is inheritable unless the
NO_PROPAGATE_INHERIT_ACE bit flag is also set.

INHERIT_ONLY_ACE Indicates an inherit-only ACE that doesn't control
access to the object it's attached to.

INHERITED_ACE Indicates that the ACE was inherited. The system
sets this bit when it propagates an inheritable ACE
to a child object.

NO_PROPAGATE_INHERIT_ACE If the ACE is inherited by a child object, the system
clears the OBJECT_INHERIT_ACE and
CONTAINER_INHERIT_ACE flags in the inherited
ACE. This action prevents the ACE from being
inherited by subsequent generations of objects.

OBJECT_INHERIT_ACE Noncontainer child objects inherit the ACE as an
effective ACE. For child objects that are containers,
the ACE is inherited as an inherit-only ACE unless
the NO_PROPAGATE_INHERIT_ACE bit flag is also
set.

A SACL contains two types of ACEs, system audit ACEs and system audit-object ACEs.
These ACEs specify which operations performed on the object by specific users or groups
should be audited. Audit information is stored in the system Audit Log. Both successful and
unsuccessful attempts can be audited. Like their DACL object-specific ACE cousins, system
audit-object ACEs specify a GUID indicating the types of objects or subobjects that the ACE
applies to and an optional GUID that controls propagation of the ACE to particular child
object types. If a SACL is null, no auditing takes place on the object. (Security auditing is
described later in this chapter.) The inheritance flags that apply to DACL ACEs also apply to
system audit and system audit-object ACEs.

Figure 8-4 is a simplified picture of a file object and its DACL.

Figure 8-4 Discretionary access-control list (DACL)

As shown in Figure 8-4, the first ACE allows USER1 to read the file. The second ACE allows
members of the group TEAM1 to have read and write access to the file, and the third ACE
grants all other users (Everyone) execute access.

ACL Assignment

To determine which DACL to assign to a new object, the security system uses the first
applicable rule of the following four assignment rules:

1. If a caller explicitly provides a security descriptor when creating the object, the
security system applies it to the object. If the object has a name and resides in a

javascript:fullSize('F08yj04x.htm')


container object (for example, a named event object in the \BaseNamedSecurity object
manager namespace directory), the system merges any inheritable ACEs (ACEs that
might propagate from the object's container) into the DACL unless the security
descriptor has the SE_DACL_PROTECTED flag set, which prevents inheritance.

2. If a caller doesn't supply a security descriptor and the object has a name, the security
system looks at the security descriptor in the container in which the new object name
is stored. Some of the object directory's ACEs might be marked as inheritable,
meaning that they should be applied to new objects created in the object directory. If
any of these inheritable ACEs are present, the security system forms them into an
ACL, which it attaches to the new object. (Separate flags indicate ACEs that should be
inherited only by container objects rather than by objects that aren't containers.)

3. If no security descriptor is specified and the object doesn't inherit any ACEs, the
security system retrieves the default DACL from the caller's access token and applies it
to the new object. Several subsystems on Windows 2000 have hard-coded DACLs that
they assign on object creation (for example, services, LSA, and SAM objects).

4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the system
creates the object with no DACL, which allows everyone (all users and groups) full
access to the object. This rule is the same as the third rule when a token contains a
null default DACL.

The rules the system uses when assigning a SACL to a new object are similar to those
used for DACL assignment, with a couple exceptions. The first is that inherited system
audit ACEs don't propagate to objects with security descriptors marked with the
SE_SACL_PROTECTED flag (similar to the SE_DACL_PROTECTED flag, which protects
DACLs). Second, if there are no specified security audit ACEs and there is no inherited
SACL, no SACL is applied to the object. This behavior is different than that used to apply
default DACLs because tokens don't have a default SACL.

When a new security descriptor containing inheritable ACEs is applied to a container, the
system automatically propagates the inheritable ACEs to the security descriptors of child
objects. (Note that a security descriptor's DACL doesn't accept inherited DACL ACES if its
SE_DACL_PROTECTED flag is enabled, and its SACL doesn't inherit SACL ACES if the
descriptor has the SE_SACL_PROTECTED flag set.) The order with which inheritable ACEs
are merged with an existing child object's security descriptor is such that any ACEs that
were explicitly applied to the ACL are kept ahead of ACEs that the object inherits. The
system uses the following rules for propagating inheritable ACEs:

If a child object with no DACL inherits an ACE, the result is a child object with a DACL
containing only the inherited ACE.

If a child object with an empty DACL inherits an ACE, the result is a child object with a
DACL containing only the inherited ACE.

For objects in Active Directory only, if an inheritable ACE is removed from a parent
object, automatic inheritance removes any copies of the ACE inherited by child objects.

For objects in Active Directory only, if automatic inheritance results in the removal of
all ACEs from a child object's DACL, the child object has an empty DACL rather than no
DACL.

As you'll soon discover, the order of ACEs in an ACL is an important aspect of the Windows
2000 security model.



NOTE

Because inheritance isn't supported for file system directories and registry keys,
Windows Explorer and Regedt32 manually propagate security settings that you
specify to apply to a directory and its contents or to an entire registry subkey.

Determining Access

Two algorithms are used for determining access to an object:

One to determine the maximum access allowed to the object, a form of which is
exported to user mode with the Win32 GetEffectiveRightsFromAcl function.

One to determine whether a specific desired access is allowed, which can be done with
the Win32 AccessCheck function or the AccessCheckByType function.

The first algorithm examines the entries in the DACL as follows:

1. If the object has no DACL (a null DACL), the object has no protection and the security
system grants all access.

2. If the caller has the take-ownership privilege, the security system grants write-owner
access before examining the DACL. (Take-ownership privilege and write-owner access
are explained in a moment.)

3. If the caller is the owner of the object, the read-control and write-DACL access rights
are granted.

4. For each access-denied ACE that contains a SID that matches one in the caller's access
token, the ACE's access mask is removed from the granted-access mask.

5. For each access-allowed ACE that contains a SID that matches one in the caller's
access token, the ACE's access mask is added to the granted-access mask being
computed, unless that access has already been denied.

When all the entries in the DACL have been examined, the computed granted-access mask
is returned to the caller as the maximum allowed access to the object. This mask
represents the total set of access types that the caller will be able to successfully request
when opening the object.

The preceding description applies only to the kernel-mode form of the algorithm. The
Win32 version implemented by GetEffectiveRightsFromAcl differs in that it doesn't perform
step 2, and it considers a single user or group SID rather than an access token.

The second algorithm is used to determine whether a specific access request can be
granted, based on the caller's access token. Each open function in the Win32 API that
deals with securable objects has a parameter that specifies the desired access mask, which
is the last component of the security equation. To determine whether the caller has access,
the following steps are performed:

1. If the object has no DACL (a null DACL), the object has no protection and the security
system grants the desired access.



2. If the caller has the take-ownership privilege, the security system grants write-owner
access and then examines the DACL. However, if write-owner access was the only
access requested by a caller with take-ownership privilege, the security system grants
that access and never examines the DACL.

3. If the caller is the owner of the object, the read-control and write-DACL access rights
are granted. If these rights were the only access rights that caller requested, access is
granted without examining the DACL.

4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the
following conditions is satisfied:

a. The SID in the ACE matches an enabled SID (SIDs can be enabled or disabled) in
the caller's access token (whether that be the primary SID or a group SID).

b. The ACE is an access-allowed ACE and the SID in the ACE matches a SID in the
caller's token that isn't of type deny-only.

c. It is the second pass through the descriptor for restricted-SID checks, and the SID
in the ACE matches a restricted SID in the caller's access token.

If it is an access-allowed ACE, the rights in the access mask in the ACE that were
requested are granted; if all the requested access rights have been granted, the
access check succeeds. If it is an access-denied ACE and any of the requested
access rights are in the denied-access rights, access is denied to the object.

5. If the end of the DACL is reached and some of the requested access rights still haven't
been granted, access is denied.

6. If all accesses are granted but the caller's access token has at least one restricted SID,
the system rescans the DACL's ACEs looking for ACEs with access-mask matches for
the accesses the user is requesting and a match of the ACE's SID with any of the
caller's restricted SIDs. Only if both scans of the DACL grant the requested access
rights is the user granted access to the object.

The behavior of both access-validation algorithms depends on the relative ordering of allow
and deny ACEs. Consider an object with only two ACEs where one ACE specifies that a
certain user is allowed full access to an object and the other ACE denies the user access. If
the allow ACE precedes the deny ACE, the user can obtain full access to the object, but if
the order is reversed, the user can not gain any access to the object.

Older Win32 functions, such as AddAccessAllowedAce, add ACEs to the end of a DACL,
which usually isn't the desired behavior, so most Win32 applications prior to Windows 2000
were forced to construct DACLs manually, with deny ACEs placed at the front of the list.
New Windows 2000 functions such as SetSecurityInfo and SetNamedSecurityInfo apply
ACEs in the preferred order of deny ACEs preceding allow ACEs. Note that the security
editor dialog boxes with which you edit permissions on NTFS files and registry keys, for
example, construct security descriptors by placing all the deny ACEs at the front of the list.
SetSecurityInfo and SetNamedSecurityInfo also apply ACE inheritance rules to the security
descriptor on which they are applied.

Figure 8-5 shows an example access validation demonstrating the importance of ACE
ordering. In the example, access is denied a user wanting to open a file even though an
ACE in the object's DACL grants the access (by virtue of the user's membership in the



Writers group) because the ACE denying the user access precedes the ACE granting
access.

Figure 8-5 Access validation example

As we stated earlier, because it wouldn't be efficient for the security system to process the
DACL every time a process uses a handle, the SRM makes this access check only when a
handle is opened, not each time the handle is used. Thus, once a process successfully
opens a handle, the security system can't revoke the access rights that have been granted,
even if the object's DACL changes. Also keep in mind that because kernel-mode code uses
pointers rather than handles to access objects, the access check isn't performed when the
operating system uses objects. In other words, the Windows 2000 executive "trusts" itself
in a security sense.

The fact that an object's owner is always granted write-DACL access to an object means
that users can never be prevented from accessing the objects they own. If, for some
reason, an object had an empty DACL (no access), the owner would still be able to open
the object with write-DACL access and then apply a new DACL with the desired access
permissions.

The take-ownership privilege is a similarly powerful tool for accounts, such as the
Administrator account, to which it is assigned. Any object on the system is accessible using
this privilege. Consider an object that is owned by another user and that explicitly denies
the Administrator account all access to the object. With the take-ownership privilege, an
administrator can open the object with write-owner permission and change the owner to
Administrator. Then the administrator can close and reopen the object with write-DACL
access and change the DACL to give the Administrator account full access to the object.

javascript:fullSize('F08yj05x.htm')


[Previous] [Next]



Security Auditing
The object manager can generate audit events as a result of
an access check, and Win32 functions available to user
applications can generate them directly. Kernel-mode code is
always allowed to generate an audit event. Two privileges,
SeSecurityPrivilege and SeAuditPrivilege, relate to auditing.
A process must have the SeSecurityPrivilege privilege to
manage the security Event Log and to view or set an object's
SACL. Processes that call audit system services, however,
must have the SeAuditPrivilege privilege to successfully
generate an audit record.

The audit policy of the local system controls the decision to
audit a particular type of security event. The audit policy,
also called the local security policy, is one part of the
security policy Lsass maintains on the local system. Lsass
sends messages to the SRM to inform it of the auditing
policy at system initialization time and when the policy
changes. Lsass is responsible for receiving audit records
generated based on the audit events from the SRM, editing
the records, and sending them to the Event Logger. Lsass
(instead of the SRM) sends these records because it adds
pertinent details, such as the information needed to more
completely identify the process that is being audited.

The SRM sends audit records via its LPC connection to Lsass.
The Event Logger then writes the audit record to the security
Event Log. In addition to audit records the SRM passes, both
Lsass and the SAM generate audit records that Lsass sends
directly to the Event Logger. Figure 8-6 depicts this overall
flow.



Figure 8-6 Flow of security audit records

Audit records are put on a queue to be sent to the LSA as
they are received—they are not submitted in batches. The
audit records are moved from the SRM to the security
subsystem in one of two ways. If the audit record is small
(less than the maximum LPC message size), it is sent as an
LPC message. The audit records are copied from the address
space of the SRM to the address space of the Lsass process.
If the audit record is large, the SRM uses shared memory to
make the message available to Lsass and simply passes a
pointer in an LPC message.

Figure 8-7 brings together the concepts covered so far in
this chapter by illustrating the basic process and thread
security structures. In the figure, notice that the process
object and the thread objects have ACLs, as do the access-
token objects themselves. Also in this figure, thread 2 and
thread 3 each has an impersonation token, whereas thread 1
defaults to the process access token.

javascript:fullSize('F08yj06x.htm')


Figure 8-7 Process and thread security structures

EXPERIMENT

Viewing Process and Thread Security
Information

You can view process and thread security descriptors
and access tokens with the Process Explode utility
(Pview.exe). (This tool is part of the Windows NT 4
resource kits, but it isn't included with the Windows
2000 resource kit tools. You can, however, download
it from www.reskit.com.) The numbering of the six
buttons in the Security and Token sections of the
Process Explode utility matches up with the process
and thread security structures shown in Figure 8-7.

javascript:fullSize('F08yj07x.htm')
http://www.reskit.com/


In this example, buttons 4 (ACL for thread token) and
6 (thread access token) are grayed out (disabled)
because the currently selected thread (number 1700)
has no thread-specific access token.

Try looking at the process ACL for a process in your
interactive session—you should see your user ID and
SYSTEM in the ACL with full control permissions.

To see process security in action, try the following:

1. Create a local username named "test." To add a
user, start Computer Management. (In Control
Panel, open Administrative Tools and then click on
Computer Management; or select Run from the
Start menu and enter compmgmt.msc.) Expand
Local Users And Groups (under System Tools),
right-click on Users, and select New User. Enter
the username test (no password), clear the User
Must Change Password At Next Logon flag, and

javascript:fullSize('G08yj01x.htm')


press Create. (Note: Your domain or local group
policies might require that you enter a password.)

2. Open a Windows 2000 Command Prompt window.
(From the Start menu, select
Programs/Accessories/Command Prompt.)

3. Type runas /user:test cmd to create a command
prompt running under the test username you just
added. (Note: You might need to prefix test with
the machine name or domain name, as in runas
/user:machine\test cmd.)

4. From this command prompt, run Pulist from the
Windows 2000 resource kit. Notice that you can't
see the security ID of the processes on the
system other than the one running Cmd.exe and
Pulist.exe under the security context of the test
username. The reason you can't see this security
ID is that the test username isn't in the ACL on
the process access token on any of the other
processes—therefore, you have no permission to
see who these processes are.

5. Now switch back to the command prompt started
in step 2 (running under whatever account you
were logged on to for this experiment), and run
Pulist again. You should see the security IDs of all
the processes in your interactive session (and the
system processes if your account is a member of
the local Administrators group). However, you
shouldn't be able to see the security ID of the
process running Cmd.exe under the test
username (created in step 3) for the same reason
that from the test username you can't see the
processes not running under test.



6. Now run Process Explode again, select a process
in your interactive session (such as Explorer.exe),
and change the ACL on the process and the
process access token to allow the user test to
have read access. Modify the process by pressing
the Process button to bring up the Process
Permissions dialog box. Press Add to add an entry
to the process ACL. When the list of groups is
displayed, press the Show Users button, scroll
down the Names list, select the test username,
press Add, and then press OK. You should now
see the test username in the ACL. Press OK to
make the change on the Explorer process. Follow
the same steps again for the process access
token, this time pressing the P.Token button
instead of the Process button.

7. Now go back to the process running Cmd as user
test, and run Pulist again. This time, you should
be able to see the security ID of the process
Explorer.exe because you've granted read access
to that process's access token.

The following steps don't work on Windows 2000
server systems that have Terminal Services installed.
The reason they don't work in this context is
explained after step 10.

8. As a final test, start Task Manager, click on the
Applications tab, right-click on "cmd (running as
test)," and select Go To Process. This takes you to
the Processes tab with the cmd.exe process
highlighted. Click on this process, and then press
the End Process button. (Press Yes in the warning
message box that appears.) You should get an



access denied error because you're not in the
process ACL for that process.

9. As an added exercise, rerun Pview.exe from the
command prompt running under test and alter
the process access for the Cmd.exe process
running under test to grant full access to the
username you're currently running under. (Press
the Process button in PView, press Add, and then
add your username to the ACL, remembering to
select full control access.)

10. Retry step 8—this time, you should be able to
terminate the command prompt running under
the test username because you granted yourself
full access to that process.

The reason that steps 8 through 10 don't work on a
system with Terminal Services installed is because
the steps rely on the fact that, on systems without
Terminal Services, Task Manager uses the
TerminateProcess function to end processes.
However, when you direct Task Manager to end a
process on a system running in a Terminal Services
environment, Task Manager calls on Termsrv.exe, the
terminal services service, to perform the process
termination. Because Termsrv.exe is a service process
running in the System account, it has the debug
privilege, which it uses to open a process it's
terminating without regard to the process's token or
process security settings.



[Previous] [Next]



Logon
Interactive logon (as opposed to network logon) occurs
through the interaction of the logon process (Winlogon),
Lsass, one or more authentication packages, and the SAM or
Active Directory. Authentication packages are DLLs that
perform authentication checks. Kerberos is the Windows
2000 authentication package for interactive logon to a
domain, and MSV1_0 is the Windows 2000 authentication
package for interactive logon to a local computer, for domain
logons to trusted pre-Windows 2000 domains, and for when
no domain controller is accessible.

Winlogon is a trusted process responsible for managing
security-related user interactions. It coordinates logon,
starts the user's shell at logon, handles logoff, and manages
various other operations relevant to security, including
entering passwords at logon, changing passwords, and
locking and unlocking the workstation. The Winlogon process
must ensure that operations relevant to security aren't
visible to any other active processes. For example, Winlogon
guarantees that an untrusted process can't get control of the
desktop during one of these operations and thus gain access
to the password.

Winlogon relies on a Graphical Identification and
Authentication (GINA) DLL to obtain a user's account name
and password. The default GINA is Msgina
(\Winnt\System32\Msgina.dll). Msgina presents the standard
Windows 2000 logon dialog box. Allowing for other GINAs to
replace Msgina enables Windows 2000 to use different user
identification mechanisms. For example, a third party might
supply a GINA that uses a thumbprint recognition device to
identify users and extract their passwords from an encrypted
database.



Winlogon is the only process that intercepts logon requests
from the keyboard. After obtaining a username and
password from the GINA, Winlogon calls Lsass to
authenticate the user attempting to log on. If the user is
authenticated, the logon process activates a logon shell on
behalf of that user. The interaction between the components
involved in logon is illustrated in Figure 8-8.

In addition to supporting alternate GINAs, Winlogon can load
additional network provider DLLs that need to perform
secondary authentication. This capability allows multiple
network providers to gather identification and authentication
information all at one time during normal logon. A user
logging on to a Windows 2000 system might simultaneously
be authenticated on a UNIX server. That user would then be
able to access resources of the UNIX server from the
Windows 2000 machine without requiring additional
authentication. Such a capability is known as one form of
single sign-on.

Figure 8-8 Components involved in logon

javascript:fullSize('F08yj08x.htm')


Winlogon Initialization

During system initialization, before any user applications are
active, Winlogon performs the following steps to ensure that
it controls the workstation once the system is ready for user
interaction:

1. Creates and opens the interactive window station,
\Windows\WinSta0, to represent the keyboard, mouse,
and monitor. Winlogon creates a security descriptor for
the station that has one and only one ACE containing
only the Winlogon SID. This unique security descriptor
ensures that no other process can access the
workstation unless explicitly allowed by Winlogon.

2. Creates and opens three desktops: an application
desktop (\Windows\WinSta0\Default), a Winlogon
desktop (\Windows\WinSta0\Winlogon), and a screen
saver desktop (\Windows\WinSta0\Screen-Saver). The
security on the Winlogon desktop is created so that only
Winlogon can access that desktop. The other two
desktops allow both Winlogon and users to access them.
This arrangement means that any time the Winlogon
desktop is active, no other process has access to any
active code or data associated with the desktop.
Windows 2000 uses this feature to protect the secure
operations that involve passwords and locking and
unlocking the desktop.

Before anyone logs on to a computer, the visible desktop
is Winlogon's. After a logon, typing Ctrl+Alt+Delete
switches the desktop from Default to Winlogon. (This
explains why all the windows on your interactive desktop
seem to disappear when you press Ctrl+Alt+Delete and
then return when you dismiss the Windows Security



dialog box.) Thus, the SAS always brings up a secure
desktop controlled by Winlogon.

3. Establishes an LPC connection with Lsass's
LsaAuthenticationPort. This connection will be used for
exchanging information during logon, logoff, and
password operations and is made by calling
LsaRegisterLogonProcess.

Winlogon then performs the following Windows operations to
set up the window environment:

4. Initializes and registers a window class data structure
that associates a Winlogon procedure with the window it
subsequently creates.

5. Registers the SAS associating it with the window just
created, guaranteeing that Winlogon's window procedure
is called whenever the user enters the SAS. This
measure prevents Trojan horse programs from gaining
control of the screen when the SAS is entered.

6. Registers the window so that the procedure associated
with this window gets called if a user logs off or if the
screen saver times out. The Win32 subsystem checks to
verify that the process requesting notification is the
Winlogon process.

Once the Winlogon desktop is created during initialization, it
becomes the active desktop. When the Winlogon desktop is
active, it is always locked. Winlogon unlocks its desktop only
to switch to the application desktop or the screen saver
desktop. (Only the Winlogon process can lock or unlock a
desktop.)



User Logon Steps

Logon begins when a user presses the SAS
(Ctrl+Alt+Delete). After the SAS is pressed, Winlogon calls
the GINA to obtain a username and password. Winlogon also
creates a unique local group for this user that it assigns to
this instance of the desktop (keyboard, screen, and mouse).
Winlogon passes this group to Lsass as part of the
LsaLogonUser call. If the user is successfully logged on, this
group will be included in the logon process token—a step
that protects access to the desktop. For example, another
user logging on to the same account but on a different
system will be unable to write to the first user's desktop
because this second user won't be in the first user's group.

When the username and password have been entered,
Winlogon calls each of the registered authentication
packages in turn. Authentication packages are listed in the
registry under
HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon
retrieves a handle to a package by calling the Lsass function
LsaLookupAuthenticationPackage. Winlogon passes package
logon information via LsaLogonUser. Once a package
authenticates a user, Winlogon continues the logon process
for that user. If none of the authentication packages
indicates a successful logon, the logon process is aborted.

Windows 2000 uses two standard authentication packages:
Kerberos and MSV1_0. The default authentication package
on a stand-alone Windows 2000 system is MSV1_0
(\Winnt\System32\Msv1_0.dll), an authentication package
that implements LAN Manager 2 protocol. Lsass also uses
MSV1_0 on domain-member computers to authenticate pre-
Windows 2000 domains and computers that can't locate a
domain controller for authentication. (Laptop computers that



are disconnected from the network fall into this latter
category.) The Kerberos authentication package,
\Winnt\System32\Kerberos.dll, is used on computers that
are members of Windows 2000 domains. The Windows 2000
Kerberos package, with the cooperation of Kerberos services
running on a domain controller, supports version 5, revision
6, of the Kerberos protocol. This protocol is based on
Internet RFC 1510. (Visit the Internet Engineering Task
Force [IETF] Web site, www.ietf.org, for detailed information
on the Kerberos standard.)

The MSV1_0 authentication package takes the username
and a hashed version of the password and sends a request
to the local SAM to retrieve the account information, which
includes the password, the groups to which the user
belongs, and any account restrictions. MSV1_0 first checks
the account restrictions, such as hours or type of accesses
allowed. If the user can't log on because of the restrictions
in the SAM database, the logon call fails and MSV1_0 returns
a failure status to the LSA.

MSV1_0 then compares the hashed password and username
to that stored by the SAM. In the case of a cached domain
logon, MSV1_0 accesses the cached information by using
Lsass functions that store and retrieve "secrets" from the
LSA database (the SECURITY hive of the registry). If the
information matches, MSV1_0 generates an LUID for the
logon session and creates the logon session by calling Lsass,
associating this unique identifier with the session and
passing the information needed to ultimately create an
access token for the user. (Recall that an access token
includes the user's SID; group SIDs; and user profile
information, such as home directory.)

If MSV1_0 needs to authenticate using a remote system, as
when a user logs on to a trusted pre-Windows 2000 domain,

http://www.ietf.org/


MSV1_0 uses the Net Logon service to communicate with an
instance of Netlogon on the remote system. Netlogon on the
remote system interacts with the MSV1_0 authentication
package on that system, passing back authentication results
to the system on which the logon is being performed.

The basic control flow for Kerberos authentication is the
same as the flow for MSV1_0. However, in most cases,
domain logons are performed from member workstations or
servers (rather than on a domain controller), so the
authentication package must communicate across the
network as part of the authentication process. The package
does so by communicating via the Kerberos TCP/IP port
(port 88) with the Kerberos service on a domain controller.
The Kerberos service (\Winnt\System32\Kdcsvc.dll), which
implements the Kerberos authentication protocol, runs in the
Lsass process on domain controllers.

After validating hashed username and password information
with Active Directory's user account objects (using the Active
Directory server - \Winnt\ System32\Ntdsa.dll), Kdcsvc
returns domain credentials to Lsass, which returns the result
of the authentication and the user's domain logon
credentials (if the logon was successful) across the network
to the system where the logon is taking place.

NOTE

This description of Kerberos authentication is highly
simplified, but it highlights the roles of the various
components involved. Although the Kerberos
authentication protocol plays a key role in distributed
domain security in Windows 2000, its details are
outside the scope of this book.



After a logon has been authenticated, Lsass looks in the
local policy database for the user's allowed access—
interactive, network, or service process. If the requested
logon doesn't match the allowed access, the logon attempt
will be terminated. Lsass deletes the newly created logon
session by cleaning up any of its data structures and then
returns failure to Winlogon, which in turn displays an
appropriate message to the user. If the requested access is
allowed, Lsass adds any additional security IDs (such as
Everyone, Interactive, and the like). It then checks its policy
database for any granted privileges for all the IDs for this
user and adds these privileges to the user's access token.

When Lsass has accumulated all the necessary information,
it calls the executive to create the access token. The
executive creates a primary access token for an interactive
or a service logon and an impersonation token for a network
logon. After the access token is successfully created, Lsass
duplicates the token, creating a handle that can be passed to
Winlogon, and closes its own handle. If necessary, the logon
operation is audited. At this point, Lsass returns success to
Winlogon along with a handle to the access token, the LUID
for the logon session, and the profile information, if any, that
the authentication package returned.

Winlogon then looks in the registry at the value
HKLM\SOFTWARE\Microsoft\Windows NT\Current
Version\Winlogon\Userinit and creates a process to run
whatever the value of that string is. (This value can be
several .exes separated by commas.) The default value is
Userinit.exe, which loads the user profile and then creates a
process to run whatever the value is of
HKLM\SOFTWARE\Microsoft\Windows NT\Current
Version\Winlogon\Shell, which defaults to Explorer.exe.
Userinit then exits (which is why Explorer.exe shows up as



having no parent when examined with commands such as
tlist /t).



[Previous] [Next]



Conclusion
Windows 2000 provides an extensive array of security
functions that meet the key requirements of both
government agencies and commercial installations. In this
chapter, we've taken a brief tour of the internal components
that are the basis of these security features.

In the next chapter, we'll look at the last major executive
component considered in this book: the I/O system.



[Previous] [Next]

Chapter 9



I/O System
The Microsoft Windows 2000 I/O system consists of several
executive components that together manage hardware
devices and provide interfaces to hardware devices for
applications and the system. In this chapter, we'll first list
the design goals of the I/O system, which have influenced
its implementation. We'll then cover the components that
make up the I/O system, including the I/O manager, Plug
and Play (PnP) manager, and power manager. Then we'll
examine the structure and components of the I/O system
and the various types of device drivers. We'll look at the key
data structures that describe devices, device drivers, and
I/O requests, after which we'll describe the way device
detection and driver installation works. Finally, we'll go over
the steps necessary to complete I/O requests as they move
through the system.



[Previous] [Next]



Design Goals
The design goals for the Windows 2000 I/O system include
the following:

Make I/O processing fast on both single and
multiprocessor systems.

Protect shareable resources by using the standard
Windows 2000 security mechanisms (described in
Chapter 8).

Meet the requirements for I/O services dictated by the
Microsoft Win32, OS/2, and POSIX subsystems.

Provide services to make device driver development as
easy as possible and allow drivers to be written in a
high-level language.

Allow device drivers to be added or removed from the
system dynamically, based on user direction or
automatic configuration as the result of the addition or
removal of a hardware device from the system.

Allow for the addition of drivers that transparently
modify the behavior of other drivers or devices, without
requiring any changes to the driver whose behavior or
device is modified.

Provide support for multiple installable file systems,
including FAT, the CD-ROM file system (CDFS), the
Universal Disk Format (UDF) file system, and the
Windows 2000 file system (NTFS). (See Chapter 12 for
more specific information on file system types and
architecture.)



Allow the system and individual hardware devices to
enter and leave low-power states to prolong battery life
and conserve energy.

In subsequent sections, we'll look at how the I/O system
components are implemented to meet these goals.



[Previous] [Next]



I/O System Components
The Windows 2000 I/O system consists of several executive components as well as device
drivers, which are shown in Figure 9-1.

The I/O manager connects applications and system components to virtual, logical, and
physical devices, and defines the infrastructure that supports device drivers.

A device driver typically provides an I/O interface for a particular type of device.
Device drivers receive commands routed to them by the I/O manager that are directed
at devices they manage, and they inform the I/O manager when those commands
complete. Device drivers often use the I/O manager to forward I/O commands to other
device drivers that share in the implementation of a device's interface or control.

The PnP manager works closely with the I/O manager and a type of device driver
called a bus driver to guide the allocation of hardware resources as well as to detect
and respond to the arrival and removal of hardware devices. The PnP manager and bus
drivers are responsible for loading a device's driver when the device is detected. When
a device is added to a system that doesn't have an appropriate device driver, the
executive Plug and Play component calls on the device installation services of a user-
mode PnP manager.

Figure 9-1 I/O system components

The power manager also works closely with the I/O manager to guide the system, as
well as individual device drivers, through power-state transitions.

Windows Management Instrumentation (WMI) support routines, called the Windows
Driver Model (WDM) WMI provider, allow device drivers to indirectly act as providers,
using the WDM WMI provider as an intermediary to communicate with the WMI service
in user mode. (For more information on WMI, see the section "Windows Management
Instrumentation" in Chapter 5.)

The registry serves as a database that stores a description of basic hardware devices
attached to the system as well as driver initialization and configuration settings.

INF files, which are designated by the .inf extension, are driver installation files. INF
files are the link between a particular hardware device and the driver that assumes

javascript:fullSize('F09yj01x.htm')


primary control of the device. They are made up of scriptlike instructions describing
the device they correspond to, the source and target locations of driver files, required
driver-installation registry modifications, and driver dependency information. Digital
signatures that Windows 2000 uses to verify that a driver file has passed testing by
the Microsoft Windows Hardware Quality Lab (WHQL) are stored in .cat files.

The hardware abstraction layer (HAL) insulates drivers from the specifics of the
processor and interrupt controller by providing APIs that hide differences between
platforms. In essence, the HAL is the bus driver for all the devices on the computer's
motherboard that aren't controlled by other drivers.

Most I/O operations don't involve all the components just described. A typical I/O request
starts with an application executing an I/O-related function (for example, reading data
from a device) that is processed by the I/O manager, one or more device drivers, and the
HAL.

In Windows 2000, threads perform I/O on virtual files. The operating system abstracts all
I/O requests as operations on a virtual file, hiding the fact that the target of an I/O
operation might not be a file-structured device. This abstraction generalizes an
application's interface to devices. A virtual file refers to any source or destination for I/O
that is treated as if it were a file (such as files, directories, pipes, and mailslots). All data
that is read or written is regarded as a simple stream of bytes directed to these virtual
files. User-mode applications (whether Win32, POSIX, or OS/2) call documented functions,
which in turn call internal I/O system functions to read from a file, write to a file, and
perform other operations. The I/O manager dynamically directs these virtual file requests
to the appropriate device driver. Figure 9-2 illustrates the basic structure of a typical I/O
request flow.

Figure 9-2 The flow of a typical I/O request

In the following sections, we'll be looking at these components more closely, examining the
I/O manager in more detail, covering the various types of device drivers and the key I/O



system data structures. Then we'll cover the operation and roles of the PnP manager and
the power manager.



The I/O Manager

The I/O manager defines the orderly framework, or model, within which I/O requests are
delivered to device drivers. The I/O system is packet driven. Most I/O requests are
represented by an I/O request packet (IRP), which travels from one I/O system component
to another. (As you'll discover in the section "Fast I/O," fast I/O is the exception; it doesn't
use IRPs.) The design allows an individual application thread to manage multiple I/O
requests concurrently. An IRP is a data structure that contains information completely
describing an I/O request. (You'll find more information about IRPs in the section "I/O
Request Packets" later in this chapter.)

The I/O manager creates an IRP that represents an I/O operation, passing a pointer to the
IRP to the correct driver and disposing of the packet when the I/O operation is complete.
In contrast, a driver receives an IRP, performs the operation the IRP specifies, and passes
the IRP back to the I/O manager, either for completion or to be passed on to another
driver for further processing.

In addition to creating and disposing of IRPs, the I/O manager supplies code that is
common to different drivers and that the drivers call to carry out their I/O processing. By
consolidating common tasks in the I/O manager, individual drivers become simpler and
more compact. For example, the I/O manager provides a function that allows one driver to
call other drivers. It also manages buffers for I/O requests, provides timeout support for
drivers, and records which installable file systems are loaded into the operating system.
There are close to a hundred different routines in the I/O manager that can be called by
device drivers.

The I/O manager also provides flexible I/O services that allow environment subsystems,
such as Win32 and POSIX, to implement their respective I/O functions. These services
include sophisticated services for asynchronous I/O that allow developers to build scalable
high-performance server applications.

The uniform, modular interface that drivers present allows the I/O manager to call any
driver without requiring any special knowledge of its structure or internal details. As we
stated earlier, the operating system treats all I/O requests as if they were directed at a
file; the driver converts the requests from requests made to a virtual file to hardware-
specific requests. Drivers can also call each other (using the I/O manager) to achieve
layered, independent processing of an I/O request.

Besides the normal open, close, read, and write functions, the Windows 2000 I/O system
provides several advanced features, such as asynchronous, direct, buffered, and
scatter/gather I/O, which are described in the "Types of I/O" section later in this chapter.



Device Drivers

To integrate with the I/O manager and other I/O system components, a device driver must
conform to implementation guidelines specific to the type of device it manages and the
role it plays in managing the device. In this section, we'll look at the types of device
drivers Windows 2000 supports as well as the internal structure of a device driver.

Types of Device Drivers

Windows 2000 supports a wide range of different device driver types and programming
environments. Even within a type of device driver, programming environments can differ,
depending on the specific type of device for which a driver is intended. In this chapter, the
focus is on kernel-mode device drivers. There are many different types of kernel-mode
drivers, which can be divided into the following broad categories:

File system drivers accept I/O requests to files and satisfy the requests by issuing their
own, more explicit requests to mass storage or network device drivers.

Windows 2000 drivers are device drivers that integrate with the Windows 2000 power
manager and PnP manager, when required. They include drivers for mass storage
devices, protocol stacks, and network adapters.

Legacy drivers are device drivers written for Microsoft Windows NT but that run
unchanged on Windows 2000. They are differentiated from other Windows 2000
drivers in that they don't support power management or work with the Windows 2000
PnP manager. If the driver controls a hardware device, that driver might limit the
power management and Plug and Play capabilities of the system.

Win32 subsystem display drivers translate device-independent graphics requests into
device-specific requests. The device-specific requests are then paired with a kernel-
mode video miniport driver to complete video display support. A display driver is
responsible for implementing drawing operations, either by writing directly to the
frame buffer or by communicating with the graphics accelerator chip on the controller.
The miniport driver is responsible for global changes to the state of the display
controller, such as mode setting (screen resolution, refresh rate, pixel depth, and so
on) as well as cursor (pointer) positioning and loading the color lookup table.

WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM
includes support for Windows 2000 power management, Plug and Play, and WMI. WDM
is implemented on Windows 2000, Windows 98, and Windows Millennium Edition, so
WDM drivers are source-compatible between these operating systems and in many
cases are also binary compatible. There are three types of WDM drivers:

Bus drivers manage a logical or physical bus. Example buses include PCMCIA, PCI,
USB, IEEE 1394, and ISA. A bus driver is responsible for detecting and informing
the PnP manager of devices attached to the bus it controls as well as managing the
power setting of the bus.

Function drivers manage a particular type of device. Bus drivers present devices to
function drivers via the PnP manager. The function driver is the driver that exports
the operational interface of the device to the operating system. In general, it's the
driver with the most knowledge about the operation of the device.



Filter drivers logically layer above or below function drivers, augmenting or
changing the behavior of a device or another driver. For example, a keyboard
capture utility could be implemented with a keyboard filter driver that layers above
the keyboard function driver.

In WDM, no one driver is responsible for controlling all aspects of a particular device.
The bus driver is responsible for detecting bus membership changes (device addition
or removal), assisting the PnP manager in enumerating the devices on the bus,
accessing bus-specific configuration registers, and in some cases, controlling power to
devices on the bus. The function driver is generally the only driver that accesses the
device's hardware.

NOTE

The role of the HAL in Windows 2000 differs from the role it had in Windows NT.
Prior to Windows 2000, third-party hardware vendors that wanted to add support
for hardware buses not natively supported had to implement a custom HAL.
Windows 2000 allows third parties to implement a bus driver to provide support
for hardware buses not natively supported.

In addition to the above device driver types, Windows 2000 also supports several types of
user-mode drivers:

Virtual device drivers (VDDs) are used to emulate 16-bit MS-DOS applications. They
trap what an MS-DOS application thinks are references to I/O ports and translates
them into native Win32 I/O functions, which are then passed to the actual device
driver. Because Windows 2000 is a fully protected operating system, user-mode MS-
DOS applications can't access hardware directly and thus must go through a real
kernel-mode device driver.

Win32 subsystem printer drivers translate device-independent graphics requests to
printer-specific commands. These commands are then typically forwarded to a kernel-
mode port driver such as the parallel port driver (Parport.sys) or the universal serial
bus (USB) printer port driver (Usbprint.sys).

Support for an individual piece of hardware is often divided among several drivers, each
providing a part of the functionality required to make the device work properly. In addition
to WDM bus drivers, function drivers, and filter drivers, hardware support might be split
between the following components:

Class drivers implement the I/O processing for a particular class of devices, such as
disk, tape, or CD-ROM.

Port drivers implement the processing of an I/O request specific to a type of I/O port,
such as SCSI, and are also implemented as kernel-mode libraries of functions rather
than actual device drivers.

Miniport drivers map a generic I/O request to a type of port into an adapter type, such
as a specific SCSI adapter. Miniport drivers are actual device drivers that import the
functions supplied by a port driver.



An example will help demonstrate how these device drivers work. A file system driver
accepts a request to write data to a certain location within a particular file. It translates the
request into a request to write a certain number of bytes to the disk at a particular
"logical" location. It then passes this request (via the I/O manager) to a simple disk driver.
The disk driver, in turn, translates the request into a physical location
(cylinder/track/sector) on the disk and manipulates the disk heads to write the data. This
layering is illustrated in Figure 9-3.

This figure illustrates the division of labor between two layered drivers. The I/O manager
receives a write request that is relative to the beginning of a particular file. The I/O
manager passes the request to the file system driver, which translates the write operation
from a file-relative operation to a starting location (a sector boundary on the disk) and a
number of bytes to read. The file system driver calls the I/O manager to pass the request
to the disk driver, which translates the request to a physical disk location and transfers the
data.

Figure 9-3 Layering of a file system driver and a disk driver

Because all drivers—both device drivers and file system drivers—present the same
framework to the operating system, another driver can easily be inserted into the
hierarchy without altering the existing drivers or the I/O system. For example, several
disks can be made to seem like a very large single disk by adding a driver. Such a driver
exists in Windows 2000 to provide fault tolerant disk support. (Whereas the driver is
present on all versions of Windows 2000, fault tolerant disk support is available only on
Windows 2000 Server versions.) This logical, volume manager driver is located between
the file system and the disk drivers, as shown in Figure 9-4.

javascript:fullSize('F09yj03x.htm')


Figure 9-4 Adding a layered driver

EXPERIMENT

Viewing the Loaded Driver List

You can see a list of registered drivers by going to the Drivers section of the
Computer Management Microsoft Management Console (MMC) snap-in or by right-
clicking the My Computer icon on the desktop and selecting Manage from the
context menu. (The Computer Management snap-in is in the
Programs/Administrative Tools folder of the Start menu.) You can view the Drivers
section within Computer Management by expanding System Tools, System
Information, Software Environment and selecting Drivers, as shown here:

javascript:fullSize('F09yj04x.htm')
javascript:fullSize('G09yj01x.htm')


You can also obtain a list of loaded kernel-mode drivers with the Drivers utility in
the Windows 2000 resource kits or the Pstat utility (ships in the Platform SDK and
is available for download from the Windows 2000 Resource Kits Web site at
www.microsoft.com/windows2000/library/resources/reskit.) Pstat lists the drivers
at the end of its display. (It first lists all the processes and threads in the system.)
The only difference in the output of the two utilities is that Pstat shows the load
address of the driver in system address space. The following output is a partial
display of the driver information from Pstat:

C:\>pstat 
   
  ModuleName Load Addr   Code    Data   Paged        LinkDate 
------------------------------------------------------------------
ntoskrnl.exe 80400000  429184   96896  775360 Tue Dec 07 18:41:11 
     hal.dll 80062000   25856    6016   16160 Tue Nov 02 20:14:22 
 BOOTVID.DLL EE010000    5664    2464       0 Wed Nov 03 20:24:33 
    ACPI.sys BFFD8000   92096    8960   43488 Wed Nov 10 20:06:04 
  WMILIB.SYS EE1C8000     512       0    1152 Sat Sep 25 14:36:47 
     pci.sys EDC00000   12704    1536   31264 Wed Oct 27 19:11:08 
  isapnp.sys EDC10000   14368     832   22944 Sat Oct 02 16:00:35 
compbatt.sys EE014000    2496       0    2880 Fri Oct 22 18:32:49 
   BATTC.SYS EE100000     800       0    2976 Sun Oct 10 19:45:37 
intelide.sys EE1C9000    1760      32       0 Thu Oct 28 19:20:03 
 PCIIDEX.SYS EDE80000    4544     480   10944 Wed Oct 27 19:02:19 
  pcmcia.sys BFFBD000   32800    8864   23680 Fri Oct 29 19:20:08 
  ftdisk.sys BFFA0000    4640      32   95072 Mon Nov 22 14:36:23 
Diskperf.sys EE102000    1728      32    2016 Thu Sep 30 20:30:40 
    dmio.sys BFF7E000  104672   15168       0 Tue Nov 30 14:47:49 

If you're looking at a crash dump (or live system) with the kernel debugger, you
can get a similar display with the kernel debugger !drivers command.

Structure of a Driver

The I/O system drives the execution of device drivers. Device drivers consist of a set of
routines that are called to process the various stages of an I/O request. Figure 9-5
illustrates the key driver-function routines, which are described below.

http://www.microsoft.com/windows2000/library/resources/reskit


Figure 9-5 Primary device driver routines

An initialization routine The I/O manager executes a driver's initialization routine,
which is typically named DriverEntry, when it loads the driver into the operating
system. The routine fills in system data structures to register the rest of the driver's
routines with the I/O manager and performs any global driver initialization that's
necessary.

An add-device routine A driver that supports Plug and Play implements an add-
device routine. The PnP manager sends a driver notification via this routine whenever
a device for which the driver is responsible is detected. In this routine, a driver
typically allocates a device object (described later in this chapter) to represent the
device.

A set of dispatch routines Dispatch routines are the main functions that a device
driver provides. Some examples are open, close, read, and write and any other
capabilities the device, file system, or network supports. When called on to perform an
I/O operation, the I/O manager generates an IRP and calls a driver through one of the
driver's dispatch routines.

A start I/O routine The driver can use a start I/O routine to initiate a data transfer
to or from a device. This routine is defined only in drivers that rely on the I/O manager
for IRP serialization. The I/O manager serializes IRPs for a driver by ensuring that the
driver processes only one IRP at a time. Most drivers process multiple IRPs
concurrently, but serialization makes sense for some drivers, such as a keyboard
driver.

An interrupt service routine (ISR) When a device interrupts, the kernel's interrupt
dispatcher transfers control to this routine. In the Windows 2000 I/O model, ISRs run
at device interrupt request level (DIRQL), so they perform as little work as possible to
avoid blocking lower-level interrupts unnecessarily. (See Chapter 3 for more
information on IRQLs.) An ISR queues a deferred procedure call (DPC), which runs at a
lower IRQL (DPC/dispatch level), to execute the remainder of interrupt processing.
(Only drivers for interrupt-driven devices have ISRs; a file system driver, for example,
doesn't have one.)

An interrupt-servicing DPC routine A DPC routine performs most of the work
involved in handling a device interrupt after the ISR executes. The DPC routine
executes at a lower IRQL DPC/dispatch level than that of the ISR, which runs at device

javascript:fullSize('F09yj05x.htm')


level, to avoid blocking other interrupts unnecessarily. A DPC routine initiates I/O
completion and starts the next queued I/O operation on a device.

Although the following routines aren't shown in Figure 9-5, they're found in many types of
device drivers:

One or more I/O completion routines A layered driver might have I/O completion
routines that will notify it when a lower-level driver finishes processing an IRP. For
example, the I/O manager calls a file system driver's I/O completion routine after a
device driver finishes transferring data to or from a file. The completion routine notifies
the file system driver about the operation's success, failure, or cancellation, and it
allows the file system driver to perform cleanup operations.

A cancel I/O routine If an I/O operation can be canceled, a driver can define one or
more cancel I/O routines. When the driver receives an IRP for an I/O request that can
be canceled, it assigns a cancel routine to the IRP. If a thread that issues an I/O
request exits before the request is completed or cancels the operation (with the
CancelIo Win32 function, for example), the I/O manager executes the IRP's cancel
routine if one is assigned to it. A cancel routine is responsible for performing whatever
steps are necessary to release any resources acquired during the processing that has
already taken place for the IRP as well as completing the IRP with a canceled status.

An unload routine An unload routine releases any system resources a driver is using
so that the I/O manager can remove them from memory. Any resources acquired in
the initialization routine are usually released in the unload routine. A driver can be
loaded and unloaded while the system is running.

A system shutdown notification routine This routine allows driver cleanup on
system shutdown.

Error-logging routines When unexpected errors occur (for example, when a disk
block goes bad), a driver's error-logging routines note the occurrence and notify the
I/O manager. The I/O manager writes this information to an error log file.



The Plug and Play (PnP) Manager

The PnP manager is the primary component involved in supporting the ability of Windows
2000 to recognize and adapt to changing hardware configurations. A user doesn't need to
understand the intricacies of hardware or manual configuration in order to install and
remove devices. For example, it's the PnP manager that enables a running Windows 2000
laptop that is placed on a docking station to automatically detect additional devices located
in the docking station and make them available to the user.

Plug and Play support requires cooperation at the hardware, device driver, and operating
system levels. Industry standards for the enumeration and identification of devices
attached to buses are the foundation of Windows 2000 Plug and Play support. For
example, the USB standard defines the way that devices on a USB bus identify
themselves. With this foundation in place, Windows 2000 Plug and Play support provides
the following capabilities:

The PnP manager automatically recognizes installed devices, a process that includes
enumerating devices attached to the system during a boot and detecting the addition
and removal of devices as the system executes.

Hardware resource allocation is a role the PnP manager fills by gathering the hardware
resource requirements (interrupts, I/O memory, I/O registers, or bus-specific
resources) of the devices attached to a system and, in a process called resource
arbitration, optimally assigning resources so that each device meets the requirements
necessary for its operation. Because hardware devices can be added to the system
after boot-time resource assignment, the PnP manager must also be able to reassign
resources to accommodate the needs of dynamically added devices.

Loading appropriate drivers is another responsibility of the PnP manager. The PnP
manager determines, based on the identification of a device, whether a driver capable
of managing the device is installed on the system, and if one is, instructs the I/O
manager to load it. If a suitable driver isn't installed, the kernel-mode PnP manager
communicates with the user-mode PnP manager to install the device, possibly
requesting the user's assistance in locating a suitable set of drivers.

The PnP manager also implements application and driver mechanisms for the detection
of hardware configuration changes. Applications or drivers sometimes require a specific
hardware device to function, so Windows 2000 includes a means for them to request
notification of the presence, addition, or removal of devices.

Level of Plug and Play Support

Windows 2000 aims to provide full support for Plug and Play, but the level of support
possible depends on the attached devices and installed drivers. If a single device or driver
doesn't support Plug and Play, the extent of Plug and Play support for the system can be
compromised. In addition, a driver that doesn't support Plug and Play might prevent other
devices from being usable by the system. Table 9-1 shows the outcome of various
combinations of devices and drivers that can and can't support Plug and Play.

Table 9-1 Device and Driver Plug and Play Capability

 Type of Driver

Type of Device Plug and Play Non-Plug and Play



Plug and Play Full Plug and Play No Plug and Play

Non-Plug and Play Possible partial Plug and Play No Plug and Play

A device that isn't Plug and Play compatible is one that doesn't support automatic
detection, such as a legacy ISA sound card. Because the operating system doesn't know
where the hardware physically lies, certain operations, such as laptop undocking, sleep,
and hibernation, are disallowed. However, if a Plug and Play driver is manually installed for
the device, the driver can at least implement PnP manager-directed resource assignment
for the device.

Drivers that aren't Plug and Play compatible include legacy drivers, such as those that ran
on Windows NT 4. Although these drivers continue to function on Windows 2000, the PnP
manager can't reconfigure the resources assigned to such devices in the event that
resource reallocation is necessary to accommodate the needs of a dynamically added
device. For example, a device might be able to use I/O memory ranges A and B, and
during the boot the PnP manager assigns it range A. If a device that can use only A is
attached to the system later, the PnP manager can't direct the first device's driver to
reconfigure itself to use range B. This prevents the second device from obtaining required
resources, which results in the device being unavailable for use by the system. Legacy
drivers also impair a machine's ability to sleep or hibernate. (See the section "The Power
Manager" for more details.)

Driver Support for Plug and Play

To support Plug and Play, a driver must implement a Plug and Play dispatch routine as well
as an add-device routine. Bus drivers must support different types of Plug and Play
requests than function or filter drivers do, however. For example, when the PnP manager is
guiding device enumeration during the system boot (described in detail later in this
chapter), it asks bus drivers for a description of the devices that they find on their
respective buses. The description includes data that uniquely identifies each device as well
as the resource requirements of the devices. The PnP manager takes this information and
loads any function or filter drivers that have been installed for the detected devices. It then
calls the add-device routine of each driver for every installed device the drivers are
responsible for.

Function and filter drivers prepare to begin managing their devices in their add-device
routines, but they don't actually communicate with the device hardware. Instead, they
wait for the PnP manager to send a start-device command for the device to their Plug and
Play dispatch routine. The start-device command includes the resource assignment that
the PnP manager determined during resource arbitration. When a driver receives a start-
device command, it can configure its device to use the specified resources.

After a device has started, the PnP manager can send the driver additional Plug and Play
commands, including ones related to a device's removal from the system or to resource
reassignment. For example, when the user invokes the remove/eject device utility, shown
in Figure 9-6 (accessible by right-clicking on the PC card icon in the taskbar and selecting
Unplug Or Eject Hardware), to tell Windows 2000 to eject a PCMCIA card, the PnP
manager sends a query-remove notification to any applications that have registered for
Plug and Play notifications for the device. Applications typically register for notification on
their handles, which they close during a query-remove notification. If no applications veto
the query-remove request, the PnP manager sends a query-remove command to the driver
that owns the device being ejected. At that point, the driver has a chance to deny the
removal or to ensure that any pending I/O operations involving the device have completed



and to begin rejecting further I/O requests aimed at the device. If the driver agrees to the
remove request and no open handles to the device remain, the PnP manager next sends a
remove command to the driver to request that the driver discontinue accessing the device
and release any resources the driver has allocated on behalf of the device.

Figure 9-6 PC card remove/eject utility

When the PnP manager needs to reassign a device's resources, it first asks the driver
whether it can temporarily suspend further activity on the device by sending the driver a
query-stop command. The driver either agrees to the request, if doing so wouldn't cause
data loss or corruption, or denies the request. As with a query-remove command, if the
driver agrees to the request, the driver completes pending I/O operations and won't
initiate further I/O requests for the device that can't be aborted and subsequently
restarted. The driver typically queues new I/O requests so that the resource reshuffling is
transparent to applications currently accessing the device. The PnP manager then sends
the driver a stop command. At that point, the PnP manager can direct the driver to assign
different resources to the device and once again send the driver a start-device command
for the device.

The various Plug and Play commands essentially guide a device through an assortment of
operational states, forming a well-defined state-transition table, which is shown in
simplified form in Figure 9-7. (Several possible transitions and Plug and Play commands
have been omitted for clarity. Also, the state diagram depicted is that implemented by
function drivers. Bus drivers implement a more complex state diagram.) A state shown in
the figure that we haven't discussed is the one that results from the PnP manager's
surprise-remove command. This command results when either a user removes a device
without warning, as when the user ejects a PCMCIA card without using the remove/eject
utility, or the device fails. The surprise-remove command tells the driver to immediately
cease all interaction with the device because the device is no longer attached to the
system and to cancel any pending I/O requests.

javascript:fullSize('F09yj06x.htm')


Figure 9-7 Device Plug and Play state transitions

javascript:fullSize('F09yj07x.htm')


The Power Manager

Just as Windows 2000 Plug and Play features require support from a system's hardware,
its power-management capabilities require hardware that complies with the Advanced
Configuration and Power Interface (ACPI) specification (available at
www.teleport.com/~acpi/spec.htm). As a result of this requirement, the computer's BIOS
(Basic Input Output System), the code that runs when the computer turns on, must also
conform to the ACPI standard. Most x86 computers manufactured since the end of 1998
are ACPI compliant.

NOTE

Some computers, especially ones more than few years old, don't comply with the
ACPI standard. Instead, they often conform to the older Advanced Power
Management (APM) standard, which mandates fewer power-management
capabilities than ACPI. Windows 2000 provides limited power management for
APM systems, but we won't go into the details of that topic here. In this book, we
focus on the behavior of Windows 2000 on ACPI computers.

The ACPI standard defines various power levels for a system and for devices. The six
system power states are described in Table 9-2. They are referred to as S0 (fully on or
working) through S5 (fully off). Each state has the following characteristics:

Power consumption The amount of power the computer consumes

Software resumption The software state from which the computer resumes when
moving to a "more on" state

Hardware latency The length of time it takes to return the computer to the fully on
state

Table 9-2 System Power-State Definitions

State Power
Consumption Software Resumption Hardware

Latency

S0 (fully on) Maximum Not applicable None

S1
(sleeping)

Less than S0,
more than S2

System resumes where it left off
(returns to S0)

Less than
2 seconds

S2
(sleeping)

Less than S1,
more than S3

System resumes where it left off
(returns to S0)

2 or more
seconds

S3
(sleeping)

Less than S2;
processor is off

System resumes where it left off
(returns to S0)

Same as
S2

S4
(hibernating)

Trickle current to
power button and
wake circuitry

System restarts from saved hibernate
file and resumes where it left off prior
to hibernation (returns to S0)

Long and
undefined

S5 (fully off) Trickle current to
power button

System boot Long and
undefined

http://www.teleport.com/~acpi/spec.htm


States S1 through S4 are sleeping states, in which the computer appears to be off because
of reduced power consumption. However, the computer retains enough information, either
in memory or on disk, to move to S0. For states S1 through S3, enough power is required
to preserve the contents of the computer's memory so that when the transition is made to
S0 (when the user or a device wakes up the computer), the power manager continues
executing where it left off before the suspend. When the system moves to S4, the power
manager saves the compressed contents of memory to a hibernation file named
Hiberfile.sys, which is large enough to hold the uncompressed contents of memory, in the
root directory of the boot volume. (Compression is used to minimize disk I/O and to
improve hibernation and resume-from-hibernation performance.) After it finishes saving
memory, the power manager shuts off the computer. When a user subsequently turns on
the computer, a normal boot process occurs except that Ntldr checks for and detects a
valid memory image stored in the hibernation file. If the hibernation file contains saved
system state, Ntldr reads the contents of the file into memory, and then resumes
execution at the point in memory that is recorded in the hibernation file.

The computer never directly transitions between states S1 and S4; instead, it must move
to state S0 first. As illustrated in Figure 9-8, when the system is moving from any of states
S1 through S5 to state S0, it's said to be waking, and when it's transitioning from state S0
to any of states S1 through S5, it's said to be sleeping.

Figure 9-8 System power-state transitions

Although the system can be in one of six power states, ACPI defines devices as being in
one of four power states, D0 through D3. State D0 is fully on, and state D3 is fully off. The
ACPI standard leaves it to individual drivers and devices to define the meanings of states
D1 and D2, except that state D1 must consume an amount of power less than or equal to
that consumed in state D0, and when the device is in state D2, it must consume power
less than or equal to that consumed in D1. Microsoft, in conjunction with the major
hardware OEMs, has defined a series of power management reference specifications
(available on Microsoft's Web site at www.microsoft.com/hwdev/specs/pmref) that specify
the device power states that are required for all devices in a particular class (for the major
device classes: display, network, SCSI, and so on). For some devices, there's no
intermediate power state between fully on and fully off, which results in these states being
undefined.

Power Manager Operation

Power management policy in Windows 2000 is split between the power manager and the
individual device drivers. The power manager is the owner of the system power policy. This
ownership means that the power manager decides which system power state is
appropriate at any given point, and when a sleep, hibernation, or shutdown is required,
the power manager instructs the power-capable devices in the system to perform

javascript:fullSize('F09yj08x.htm')
http://www.microsoft.com/hwdev/specs/pmref


appropriate system power-state transitions. The power manager decides when a system
power-state transition is necessary by considering a number of factors:

System activity level

System battery level

Shutdown, hibernate, or sleep requests from applications

User actions, such as pressing the power button

Control Panel power settings

When the PnP manager performs device enumeration, part of the information it receives
about a device is its power-management capabilities. A driver reports whether or not its
devices support device states D1 and D2 and, optionally, the latencies, or times required,
to move from states D1 through D3 to D0. To help the power manager determine when to
make system power-state transitions, bus drivers also return a table that implements a
mapping between each of the system power states (S0 through S5) and the device power
states that a device supports. The table lists the lowest possible device power state for
each system state and directly reflects the state of various power planes when the
machine sleeps or hibernates. For example, a bus that supports all four device power
states might return the mapping table shown in Table 9-3. Most device drivers turn their
devices completely off (D3) when leaving S0 to minimize power consumption when the
machine isn't in use. Some devices, however, such as network adapter cards, support the
ability to wake up the system from a sleeping state. This ability, along with the lowest
device power state in which the capability is present, is also reported during device
enumeration.

Table 9-3 Example System-to-Device Power Mappings

System Power State Device Power State

S0 (fully on) D0 (fully on)

S1 (sleeping) D2

S2 (sleeping) D2

S3 (sleeping) D2

S4 (hibernating) D3 (fully off)

S5 (fully off) D3 (fully off)

Driver Power Operation

When the power manager decides to make a transition between system power states, it
sends power commands to a driver's power dispatch routine. More than one driver can be
responsible for managing a device, but only one of the drivers is designated as the device
power-policy owner. This driver determines, based on the system state, a device's power
state. For example, if the system transitions between state S0 and S1, a driver might
decide to move a device's power state from D0 to D1. Instead of directly informing the
other drivers that share the management of the device of its decision, the device power-
policy owner asks the power manager, via the PoRequestPowerIrp function, to tell the
other drivers by issuing a device power command to their power dispatch routines. This
behavior allows the power manager to control the number of power commands that are



active on a system at any given time. For example, some devices in the system might
require a significant amount of current to power up. The power manager ensures that such
devices aren't powered up simultaneously.

Many power commands have corresponding query commands. For example, when the
system is moving to a sleep state, the power manager will first ask the devices on the
system if the transition is acceptable. A device that is busy performing time-critical
operations or interacting with device hardware might reject the command, which results in
the system maintaining its current system power-state setting.

EXPERIMENT

Viewing the System Power Capabilities and Policy

You can view a computer's system power capabilities by using the !pocaps kernel
debugger command. Here's the output of the command when run on an ACPI-
compliant laptop running Windows 2000 Professional:

kd> !pocaps 
PopCapabilities @ 0x8046adc0 
  Misc Supported Features:  PwrButton SlpButton Lid S1 S3 S4 S5 
                            HiberFile FullWake 
  Processor Features:       Thermal Throttle (MinThrottle = 03, Sc
  Disk Features:            SpinDown 
  Battery Features:         BatteriesPresent 
    Battery 0 - Capacity: 00000000  Granularity: 00000000 
    Battery 1 - Capacity: 00000000  Granularity: 00000000 
    Battery 2 - Capacity: 00000000  Granularity: 00000000 
  Wake Caps 
    Ac OnLine Wake:         Sx 
    Soft Lid Wake:          Sx 
    RTC Wake:               S3 
    Min Device Wake:        Sx 
    Default Wake:           Sx 

The Misc Supported Features line reports that, in addition to S0 (fully on), the
system supports system power states S1, S3, S4, and S5 (it doesn't implement
S2) and has a valid hibernation file to which it can save system memory when it
hibernates (state S4).

The Power Options Properties dialog box, shown below (available by selecting
Power Options in Control Panel), lets you configure various aspects of the system's
power policy. The exact properties you can configure depends on the system's
power capabilities, which we just examined.

Windows 2000 Professional on an ACPI-compliant laptop (such as the system on
which we captured the following screen shot) generally provides the most power-
management features. On such systems, you can set the idle detection timeouts
that control when the system turns off the monitor, spins down hard disks, goes to
standby mode (moves to system power state S1), and hibernates (moves the



system to power state S4). In addition, the Advanced tab in Power Options lets
you specify the power-related behavior of the system when you press the power
or sleep buttons or close a laptop's lid.

The settings you configure in Power Options directly affect values in the system's
power policy, which you can display with the !popolicy debugger command. Here's
the output of the command on the same system:

kd> !popolicy 
SYSTEM_POWER_POLICY (R.1) @ 0x80469180 
  PowerButton:         Off  Flags: 00000003   Event: 00000000   Qu
  SleepButton:       Sleep  Flags: 00000003   Event: 00000000   Qu
  LidClose:      Hibernate  Flags: 00000001   Event: 00000000   Qu
  Idle:               None  Flags: 00000001   Event: 00000000   Qu
  OverThrottled:     Sleep  Flags: c0000004   Event: 00000000   Ov
                     NoWakes Critical 
  IdleTimeout:     00000000  IdleSensitivity:        32 
  MinSleep:             S1  MaxSleep:               S3 
  LidOpenWake:          S0  FastSleep:              S1 
  WinLogonFlags:  00000000  S4Timeout:        00000000 
  VideoTimeout:   00000000  VideoDim:               6e 
  SpinTimeout:    00000708  OptForPower:            01 
  FanTolerance:         64  ForcedThrottle:         64 
  MinThrottle:          19 

The first lines of the display correspond to the button behaviors specified on the
Advanced tab of Power Options, and on this system the power button is
interpreted as an off switch, the sleep button moves the system to a sleep state,
and the closing of the laptop lid causes the system to hibernate.

The timeout values shown at the end of the output are expressed in seconds and
displayed in hexadecimal notation. The values reported here directly correspond to



the settings you can see configured in the Power Options screen shot. (The laptop
is plugged in.) For example, the video timeout is 0, meaning the monitor never
turns off, and the hard disk spin-down timeout is 0x708, which corresponds to
1800 seconds, or 30 minutes.

Driver Control of Device Power

Besides responding to power manager commands related to system power-state
transitions, a driver can unilaterally control the device power state of its devices. In some
cases, a driver might want to reduce the power consumption of a device it controls when
the device is left inactive for a period of time. A driver can either detect an idle device
itself or use facilities provided by the power manager. If the device uses the power
manager, it registers the device with the power manager by calling the
PoRegisterDeviceForIdleDetection function. This function informs the power manager of
the timeout values to use to detect a device as idle and of the device power state that the
power manager should apply when it detects the device as being idle. The driver specifies
two timeouts: one to use when the user has configured the computer to conserve energy
and the other to use when the user has configured the computer for optimum
performance. After calling PoRegisterDeviceForIdleDetection, the driver must inform the
power manager, by calling the PoSetDeviceBusy function, whenever the device is active.



[Previous] [Next]



I/O Data Structures
Four primary data structures are associated with I/O requests: file objects, driver objects,
device objects, and I/O request packets (IRPs). Each of these structures is defined in the
DDK header file Ntddk.h as well as in the DDK documentation. You can display each of
them with the kernel debugger by using the !file, !drvobj, !devobj, and !irp commands.



File Objects

File objects are the kernel-mode constructs for handles to files or devices. File objects
clearly fit the criteria for objects in Windows 2000: they are system resources that two or
more user-mode processes can share, they can have names, they are protected by object-
based security, and they support synchronization. Although most shared resources in
Windows 2000 are memory-based resources, most of those that the I/O system manages
are located on physical devices or represent actual physical devices. Despite this
difference, shared resources in the I/O system, like those in other components of the
Windows 2000 executive, are manipulated as objects. (See Chapter 3 for a description of
the object manager and Chapter 8 for information on object security.)

File objects provide a memory-based representation of resources that conform to an I/O-
centric interface, in which they can be read from or written to. Table 9-4 lists some of the
file object's attributes. For specific field declarations and sizes, see the structure definition
for FILE_OBJECT in Ntddk.h.

Table 9-4 File Object Attributes

Attribute Purpose

Filename Identifies the physical file that the file object refers to

Current byte offset Identifies the current location in the file (valid only for
synchronous I/O)

Share modes Indicate whether other callers can open the file for read,
write, or delete operations while the current caller is using it

Open mode flags Indicate whether I/O will be synchronous or asynchronous,
cached or noncached, sequential or random, and so on

Pointer to device
object

Indicates the type of device the file resides on

Pointer to the volume
parameter block (VPB)

Indicates the volume, or partition, that the file resides on

Pointer to section
object pointers

Indicates a root structure that describes a mapped file

Pointer to private
cache map

Identifies which parts of the file are cached by the cache
manager and where they reside in the cache

When a caller opens a file or a simple device, the I/O manager returns a handle to a file
object. Figure 9-9 illustrates what occurs when a file is opened.



Figure 9-9 Opening a file object

In this example, (1) a C program calls the run-time library function fopen, which in turn
(2) calls the Win32 CreateFile function. The Win32 subsystem DLL (in this case,
Kernel32.dll) then (3) calls the native NtCreateFile function in Ntdll.dll. The routine in
Ntdll.dll contains the appropriate instruction to cause a transition into kernel mode to the
system service dispatcher, which then (4) calls the real NtCreateFile routine in
Ntoskrnl.exe. (See Chapter 3 for more information about system service dispatching.)

Like other executive objects, file objects are protected by a security descriptor that
contains an access-control list (ACL). The I/O manager consults the security subsystem to
determine whether the file's ACL allows the process to access the file in the way its thread
is requesting. If it does, (5,6) the object manager grants the access and associates the
granted access rights with the file handle that it returns. If this thread or another thread in
the process needs to perform additional operations not specified in the original request,
the thread must open another handle, which prompts another security check. (See Chapter
8 for more information about object protection.)

Because a file object is a memory-based representation of a shareable resource and not
the resource itself, it's different from other executive objects. A file object contains only
data that is unique to an object handle, whereas the file itself contains the data or text to
be shared. Each time a thread opens a file handle, a new file object is created with a new
set of handle-specific attributes. For example, the current byte offset attribute refers to the
location in the file at which the next read or write operation using that handle will occur.
Each handle to a file has a private byte offset even though the underlying file is shared. A
file object is also unique to a process, except when a process duplicates a file handle to
another process (by using the Win32 DuplicateHandle function) or when a child process
inherits a file handle from a parent process. In these situations, the two processes have
separate handles that refer to the same file object.

Although a file handle might be unique to a process, the underlying physical resource is
not. Therefore, as with any shared resource, threads must synchronize their access to
shareable files, file directories, and devices. If a thread is writing to a file, for example, it
should specify exclusive write access when opening the file handle to prevent other
threads from writing to the file at the same time. Alternatively, by using the Win32
LockFile function, the thread could lock a portion of the file while writing to it.

javascript:fullSize('F09yj09x.htm')


Driver Objects and Device Objects

When a thread opens a handle to a file object, the I/O manager must determine from the
file object's name which driver (or drivers) it should call to process the request.
Furthermore, the I/O manager must be able to locate this information the next time a
thread uses the same file handle. The following system objects fill this need:

A driver object represents an individual driver in the system. The I/O manager obtains
the address of each of the driver's dispatch routines (entry points) from the driver
object.

A device object represents a physical or logical device on the system and describes its
characteristics, such as the alignment it requires for buffers and the location of its
device queue to hold incoming IRPs.

The I/O manager creates a driver object when a driver is loaded into the system, and it
then calls the driver's initialization routine (for example, DriverEntry), which fills in the
object attributes with the driver's entry points.

After loading, a driver can create device objects to represent devices, or even an interface
to the driver, at any time by calling IoCreateDevice. However, most Windows 2000 and
WDM drivers create devices with their add-device routine when the PnP manager informs
them of the presence of a device for them to manage. Legacy drivers, on the other hand,
usually create device objects when the I/O manager invokes their initialization routine. The
I/O manager unloads a driver when its last device object has been deleted and no
references to the device remain.

When a driver creates a device object, the driver can optionally assign the device a name.
A name places the device object in the object manager namespace, and a driver can either
explicitly define a name or let the I/O manager autogenerate one. (The object manager
namespace is described in Chapter 3.) By convention, device objects are placed in the
\Device directory in the namespace, which is inaccessible by applications using the Win32
API.

NOTE

Some drivers place device objects in directories other than \Device. For example,
the Windows 2000 Logical Disk Manager volume manager creates device objects
that represent disk partitions in the \Device\HarddiskDmVolumes directory. See
Chapter 10 for a description of storage architecture, including the way storage
drivers use device objects.

If a driver needs to make it possible for applications to open the device object, it must
create a symbolic link in the \?? directory to the device object's name in the \Device
directory. Legacy drivers and non-hardware-oriented drivers (such as file system drivers)
typically create a symbolic link with a well-known name (for example, \Device\Hardware2).
Because well-known names don't work well in an environment in which hardware appears
and disappears dynamically, Plug and Play drivers expose one or more interfaces by calling
the IoRegisterDeviceInterface function, specifying a GUID (globally unique identifier) that
represents the type of functionality exposed. GUIDs are 128-bit values that you can



generate by using a tool included with the DDK and the Platform SDK, called Guidgen.
Given the range of values that 128 bits represents, it's statistically almost certain that
each GUID Guidgen creates will be forever and globally unique.

IoRegisterDeviceInterface determines the symbolic link that is associated with a device
instance; however, a driver must call IoSetDeviceInterfaceState to enable the interface to
the device before the I/O manager actually creates the link. Drivers usually do this when
the PnP manager starts the device by sending the driver a start-device command.

An application wanting to open a device object represented with a GUID can call Plug and
Play setup functions in user space, such as SetupDiEnumDeviceInterfaces, to enumerate
the interfaces present for a particular GUID and to obtain the names of the symbolic links
it can use to open the device objects. For each device reported by
SetupDiEnumDeviceInterfaces, an application executes SetupDiGetDeviceInterfaceDetail to
obtain additional information about the device, such as its autogenerated name. After
obtaining a device's name from SetupDiGetDeviceInterfaceDetail, the application can
execute the Win32 function CreateFile to open the device and obtain a handle.

EXPERIMENT

Looking at the \Device Directory

You can use the Winobj tool, included as \Sysint\Winobj.exe on the companion
CD, or the !object kernel debugger command to view the device names under
\Device in the object manager namespace. The following screen shot shows an
I/O manager-assigned symbolic link that points to a device object in \Device with
an autogenerated name:

When you run the !object kernel debugger command and specify the \Device
directory, you should see output similar to the following:

kd> !object \device 
Object: 81a8e170  Type: (81ab6120) Directory 
    ObjectHeader: 81a8e158 
    HandleCount: 0  PointerCount: 198 
    Directory Object: 81a914d0  Name: Device 
    9 symbolic links snapped through this directory 
    HashBucket[ 00 ]: 81a6de10 Device 'KsecDD' 

javascript:fullSize('G09yj03x.htm')


                      819c43f0 Device 'Beep' 
                      81a6d6d0 Device 'Ndis' 
                      81a61030 Device '00000019' 
                      81aa7830 Device '003018' 
                      81aa7a30 Device '002918' 
    HashBucket[ 01 ]: 817c3c70 Device '00000026' 
                      819c3d90 Device 'Netbios' 
    HashBucket[ 02 ]: 818d1850 Device 'KSENUM#00000001' 
                      81966890 Device 'Ip' 
    HashBucket[ 03 ]: 818c5b70 Device 'KSENUM#00000002' 
                      81a31038 Device 'Video0' 
                      81a4fc70 Device 'KeyboardClass0' 
    HashBucket[ 04 ]: 819d4410 Device 'NDProxy' 
                      819c0040 Device 'Video1' 
    HashBucket[ 05 ]: 817e7650 Device 'PcCard0-0' 
                      819c70d0 Device 'Eawdmfd' 
                      81a2aa50 Device  
                      '{13199AF4-86FA-48C2-8074-468CA06AFB6C}' 
                      819c0ce0 Device 'Video2' 
                      81a52040 Device 'Serial0' 
                      81a6cbb0 Device 'PointerClass0' 
                      81a215f0 Device '0000000a' 
    HashBucket[ 06 ]: 817cb8c0 Device 'Serial1' 
                      81900570 Device 'DebugMessageDevice' 
                      81a277d0 Device 'USBPDO-0' 
                      81a5e030 Device 'CompositeBattery' 
    

When you execute !object and specify an object manager directory object, the
kernel debugger dumps the contents of the directory according to the way the
object manager organizes it internally. For fast lookups, a directory stores objects
in a hash table based on a hash of the object names, so the output shows the
objects stored in each bucket of the directory's hash table.

When a file is opened, the filename includes the name of the device object on which the
file resides. For example, the name \Device\Floppy0\Myfile.dat refers to the file Myfile.dat
on floppy disk drive A. The substring \Device\Floppy0 is the name of the internal Windows
2000 device object representing that floppy disk drive. When opening Myfile.dat, the I/O
manager creates a file object and stores a pointer to the Floppy0 device object in the file
object and then returns a file handle to the caller. Thereafter, when the caller uses the file
handle, the I/O manager can find the Floppy0 device object directly. Keep in mind that
internal Windows 2000 device names can't be used in Win32 applications—instead, the
device name must appear in a special directory in the object manager's namespace, \??
(named \DosDevices prior to Windows NT 4). This directory contains symbolic links to the
real, internal Windows 2000 device names. Device drivers are responsible for creating links
in this directory so that their devices will be accessible to Win32 applications. You can
examine or even change these links programmatically with the Win32 QueryDosDevice and
DefineDosDevice functions.



EXPERIMENT

Viewing Win32 Device Name to Windows 2000 Device Name Mappings

You can examine the symbolic links that define the Win32 device namespace with
the Winobj utility included on the companion CD (\Sysint\Winobj.exe). Run
Winobj, and click on the \?? directory, as shown here:

Notice the symbolic links on the right. Try double-clicking on the device C:. You
should see something like this:

C: is a symbolic link to the internal device named \Device\HarddiskVolume1, or
the first volume on the first hard drive in the system. The COM1 entry in Winobj is
a symbolic link to \Device\Serial0, and so forth. Try creating your own links with
the subst command at a command prompt.

As Figure 9-10 illustrates, a device object points back to its driver object, which is how the
I/O manager knows which driver routine to call when it receives an I/O request. It uses
the device object to find the driver object representing the driver that services the device.
It then indexes into the driver object by using the function code supplied in the original
request; each function code corresponds to a driver entry point. (The function codes
shown in Figure 9-10 are described in the section "IRP Stack Locations" later in this
chapter.)

javascript:fullSize('G09yj04x.htm')
javascript:fullSize('G09yj05x.htm')


A driver object often has multiple device objects associated with it. The list of device
objects represents the physical and logical devices that the driver controls. For example,
each partition of a hard disk has a separate device object that contains partition-specific
information. However, the same hard disk driver is used to access all partitions. When a
driver is unloaded from the system, the I/O manager uses the queue of device objects to
determine which devices will be affected by the removal of the driver.

Figure 9-10 The driver object

Using objects to record information about drivers means that the I/O manager doesn't
need to know details about individual drivers. The I/O manager merely follows a pointer to
locate a driver, thereby providing a layer of portability and allowing new drivers to be
loaded easily. Representing devices and drivers with different objects also makes it easy
for the I/O system to assign drivers to control additional or different devices if the system
configuration changes.

javascript:fullSize('F09yj10x.htm')


I/O Request Packets

The I/O request packet (IRP) is where the I/O system stores information it needs to
process an I/O request. When a thread calls an I/O service, the I/O manager constructs an
IRP to represent the operation as it progresses through the I/O system. If possible, the I/O
manager allocates IRPs from one of two per-processor IRP nonpaged look-aside lists: the
small-IRP look-aside list stores IRPs with one stack location (IRP stack locations are
described shortly), and the large-IRP look-aside list contains IRPs with eight stack
locations. If an IRP requires more than eight stack locations, the I/O manager allocates
IRPs from nonpaged pool. After allocating and initializing an IRP, the I/O manager stores a
pointer to the caller's file object in the IRP.

EXPERIMENT

Displaying Driver and Device Objects

You can display driver and device objects with the kernel debugger !drvobj and
!devobj commands, respectively. In the following example, the driver object for
the keyboard class driver is examined, and its lone device object viewed.

kd> !drvobj kbdclass 
Driver object (81869cb0) is for: 
 \Driver\Kbdclass 
Driver Extension List: (id , addr) 
 
Device Object list: 
81869310    
 
kd> !devobj 81869310 
Device object (81869310) is for: 
 KeyboardClass0 \Driver\Kbdclass DriverObject 81869cb0 
Current Irp a57a0e90 RefCount 0 Type 0000000b Flags 00002044 
DevExt 818693c8 DevObjExt 818694b8  
ExtensionFlags (0000000000)   
AttachedDevice (Upper) 818691e0 \Driver\Ctrl2cap 
AttachedTo (Lower) 81869500 \Driver\i8042prt 
Device queue is busy -- Queue empty. 

Notice that the !devobj command also shows you the addresses and names of any
device objects that the object you're viewing is layered over (the AttachedTo line)
as well as the device objects layered on top of the object specified (the
AttachedDevice line).

Figure 9-11 shows an example I/O request that demonstrates the relationship between an
IRP and the file, device, and driver objects described in the preceding sections. Although
this example shows an I/O request to a single-layered device driver, most I/O operations



aren't this direct; they involve one or more layered drivers. (This case will be shown later
in this section.)

Figure 9-11 Data structures involved in a single-layered driver I/O request

IRP Stack Locations

An IRP consists of two parts: a fixed header (often referred to as the IRP's body) and one
or more stack locations. The fixed portion contains information such as the type and size of
the request, whether the request is synchronous or asynchronous, a pointer to a buffer for
buffered I/O, and state information that changes as the request progresses. An IRP stack
location contains a function code (consisting of a major code and a minor code), function-
specific parameters, and a pointer to the caller's file object. The major function code
identifies which of a driver's dispatch routines the I/O manager invokes when passing an
IRP to a driver. An optional minor function code sometimes serves as a modifier of the
major function code. Power and Plug and Play commands always have minor function
codes.

Most drivers specify dispatch routines to handle only a subset of possible major function
codes, including create (open), read, write, device I/O control, power, Plug and Play,
System (for WMI commands), and close. (See the following experiment for a complete
listing of major function codes.) File system drivers are an example of a driver type that
often fills in most or all of its dispatch entry points with functions. The I/O manager sets
any dispatch entry points that a driver doesn't fill to point to its own
IopInvalidDeviceRequest, which returns an error code to the caller indicating that the
function specified for the device is invalid.

EXPERIMENT

Looking at Driver Dispatch Routines

You can obtain a listing of the functions a driver has defined for its dispatch
routines by entering a 2 after the driver object's name (or address) in the !drvobj
kernel debugger command:

kd> !drvobj kbdclass 2 

javascript:fullSize('F09yj11x.htm')


Driver object (81869cb0) is for: 
 \Driver\Kbdclass 
Dispatch routines: 
[00] IRP_MJ_CREATE                      edf0866e  
     kbdclass!KeyboardClassCreate 
[01] IRP_MJ_CREATE_NAMED_PIPE           80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[02] IRP_MJ_CLOSE                       edf088ec  
     kbdclass!KeyboardClassClose 
[03] IRP_MJ_READ                        edf08b1c  
      kbdclass!KeyboardClassRead 
[04] IRP_MJ_WRITE                       80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[05] IRP_MJ_QUERY_INFORMATION           80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[06] IRP_MJ_SET_INFORMATION             80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[07] IRP_MJ_QUERY_EA                    80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[08] IRP_MJ_SET_EA                      80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[09] IRP_MJ_FLUSH_BUFFERS               edf085d4  
     kbdclass!KeyboardClassFlush 
[0a] IRP_MJ_QUERY_VOLUME_INFORMATION    80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[0b] IRP_MJ_SET_VOLUME_INFORMATION      80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[0c] IRP_MJ_DIRECTORY_CONTROL           80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[0d] IRP_MJ_FILE_SYSTEM_CONTROL         80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[0e] IRP_MJ_DEVICE_CONTROL              edf0a8ec  
     kbdclass!KeyboardClassDeviceControl 
[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL     edf0a380  
     kbdclass!KeyboardClassPassThrough 
[10] IRP_MJ_SHUTDOWN                    80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[11] IRP_MJ_LOCK_CONTROL                80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[12] IRP_MJ_CLEANUP                     edf084b6  
     kbdclass!KeyboardClassCleanup 
[13] IRP_MJ_CREATE_MAILSLOT             80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[14] IRP_MJ_QUERY_SECURITY              80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[15] IRP_MJ_SET_SECURITY                80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[16] IRP_MJ_POWER                       edf0b5e2  



     kbdclass!KeyboardClassPower 
[17] IRP_MJ_SYSTEM_CONTROL              edf0bbfe  
     kbdclass!KeyboardClassSystemControl 
[18] IRP_MJ_DEVICE_CHANGE               80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[19] IRP_MJ_QUERY_QUOTA                 80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[1a] IRP_MJ_SET_QUOTA                   80425354  
     ntoskrnl!IopInvalidDeviceRequest 
[1b] IRP_MJ_PNP                         edf09168  
     kbdclass!KeyboardPnP 

While active, each IRP is usually stored in an IRP list associated with the thread that
requested the I/O. This arrangement allows the I/O system to find and cancel any
outstanding IRPs if a thread terminates or is terminated with outstanding I/O requests.

IRP Buffer Management

When an application or a device driver indirectly creates an IRP by using the NtReadFile,
NtWriteFile, or NtDeviceIoControlFile system services (the Win32 API functions
corresponding to these services are ReadFile, WriteFile, and DeviceIoControl), the I/O
manager determines whether it needs to participate in the management of the caller's
input or output buffers. The I/O manager performs three types of buffer management:

Buffered I/O The I/O manager allocates a buffer in nonpaged pool of equal size to
the caller's buffer. For write operations, the I/O manager copies the caller's buffer data
into the allocated buffer when creating the IRP. For read operations, the I/O manager
copies data from the allocated buffer to the user's buffer when the IRP completes and
then frees the allocated buffer.

Direct I/O When the I/O manager creates the IRP, it locks the user's buffer into
memory (makes it nonpaged). When the I/O manager has finished using the IRP, it
unlocks the buffer. The I/O manager stores a description of the memory in the form of
a memory descriptor list (MDL). An MDL specifies the physical memory occupied by a
buffer. (See the Windows 2000 DDK for more information on MDLs.) Devices that
perform directory memory access (DMA) require only physical descriptions of buffers,
so an MDL is sufficient for the operation of such devices. (Devices that support DMA
transfer data directly between the device and the computer's memory, without using
the CPU.) If a driver must access the contents of a buffer, however, it can map the
buffer into the system's address space.

Neither I/O The I/O manager doesn't perform any buffer management. Instead,
buffer management is left to the discretion of the device driver, which can choose to
manually perform the steps the I/O manager performs with the other buffer
management types.

For each type of buffer management, the I/O manager places applicable references in the
IRP to the locations of the input and output buffers. The type of buffer management the
I/O manager performs depends on the type of buffer management a driver requests for
each type of operation. A driver registers the type of buffer management it desires for read
and write operations in the device object that represents the device. Device I/O control



operations (those performed by NtDeviceIoControlFile) are specified with driver-defined
I/O control codes, and a control code includes a description of the buffer management the
I/O manager should use when issuing IRPs that contain that code.

Drivers commonly use buffered I/O when callers transfer requests smaller than one page
(4 KB) and use direct I/O for larger requests. A page is approximately the buffer size at
which the trade-off between the copy operation of buffered I/O matches the overhead of
the memory lock performed by direct I/O. File system drivers commonly use neither I/O
because no buffer management overhead is incurred when data can be copied from the file
system cache into the caller's original buffer. The reason that most drivers don't use
neither I/O is that a pointer to a caller's buffer is valid only while a thread of the caller's
process is executing. If a driver must transfer data from or to a device in an ISR or a DPC
routine, it must ensure that the caller's data is accessible from any process context, which
means that the buffer must have a system virtual address.

EXPERIMENT

Examining IRPs and the Thread IRP Queue

You can examine the pending IRPs for a thread with the !thread kernel debugger
command. One thread that almost always has a pending IRP is the Win32
environment subsystem's keyboard-input thread. To find this thread, execute the
!stacks kernel debugger command and locate the thread in Csrss that is listed as
having started in the Win32k RawInputThread function:

kd> !stacks 
Proc.Thread  Thread   ThreadState  Blocker 
                                     [System] 
   8.000004  fe504a60  BLOCKED      ntoskrnl!MmZeroPageThread+0x5f
   8.00000c  fe503ce0  BLOCKED      ntoskrnl!ExpWorkerThread+0x73 
   8.000010  fe503a60  BLOCKED      ntoskrnl!ExpWorkerThread+0x73 
   8.000014  fe5037e0  BLOCKED      ntoskrnl!ExpWorkerThread+0x73 
   8.000018  fe503560  BLOCKED      ntoskrnl!ExpWorkerThread+0x73 
   8.00001c  fe5032e0  BLOCKED      ntoskrnl!ExpWorkerThread+0x73 
   8.000020  fe502020  BLOCKED      ntoskrnl!ExpWorkerThread+0x73 
   8.000024  fe502da0  BLOCKED      ntoskrnl!ExpWorkerThread+0x73 
 
                                     [csrss.exe] 
  c0.0000c4  ff2d5020  BLOCKED      ?? Kernel stack not resident 
  c0.0000c8  ff2d5d80  BLOCKED      ?? Kernel stack not resident 
  c0.0000cc  ff2d4820  BLOCKED      ntdll+0xaaa7 
  c0.0000d0  ff2d4460  BLOCKED      ?? Kernel stack not resident 
  c0.0000d4  ff2d4120  BLOCKED      ?? Kernel stack not resident 
  c0.0000dc  ff2cfda0  BLOCKED      ntdll+0xaaa7 
  c0.00007c  ff2cbc40  BLOCKED      win32k!RawInputThread+0x3c2 
  c0.0000e0  ff2cb480  BLOCKED      win32k!xxxMsgWaitForMultipleOb

Then perform the !thread command on the thread's address (the second column):



kd> !thread ff2cbc40 
THREAD ff2cbc40  Cid c0.7c  Teb: 00000000  Win32Thread: a20836e8 
WAIT: (WrUserRequest) KernelMode Alertable 
    ff2cc1a0  SynchronizationEvent 
    ff2cbb28  SynchronizationEvent 
    ff2cbae8  NotificationTimer 
    ff2cbb68  SynchronizationEvent 
IRP List: 
    fee25388: (0006,0100) Flags: 00000970  Mdl: 00000000 
Not impersonating 
Owning Process ff2d9020 
WaitTime (seconds)      15420441 
Context Switch Count    328592                
UserTime                  0:00:00.0000 
KernelTime                0:00:00.0721 
Start Address win32k!RawInputThread (0xa000c0b0) 
Stack Init f20d0000 Current f20cfaf0 Base f20d0000 Limit f20cd000 
Priority 19 BasePriority 13 PriorityDecrement 0 DecrementCount 0 
 
ChildEBP RetAddr  Args to Child 
f20cfb08 8042d33d 80400b46 00000001 00000000 ntoskrnl!KiSwapThread
f20cfb3c a000c3f3 00000004 ff2cbc08 00000001 
 ntoskrnl!KeWaitForMultipleObjects+0x266 
f20cfda8 804524f6 00000002 00000000 00000000 win32k!RawInputThread
f20cfddc 80465b62 a000c0b0 f1caf7d0 00000000 
 ntoskrnl!PspSystemThreadStartup+0x69 
00000000 00000000 00000000 00000000 00000000 ntoskrnl!KiThreadStar

The sample output shows that the thread's IRP list contains one pending IRP. If
you use the !irp command on this IRP, you're likely to see something like this:

kd> !irp fee25388 
Irp is active with 4 stacks 4 is current (= 0xfee25440) 
 No Mdl System buffer = ff0acc48 Thread ff2cbc40:  Irp stack trace
     cmd  flg cl Device   File     Completion-Context 
 [  0, 0]   0  0 00000000 00000000 00000000-00000000     
 
            Args: 00000000 00000000 00000000 00000000 
 [  0, 0]   0  0 00000000 00000000 00000000-00000000     
 
            Args: 00000000 00000000 00000000 00000000 
 [  0, 0]   0  0 00000000 00000000 00000000-00000000     
 
            Args: 00000000 00000000 00000000 00000000 
>[  4, 0]   0 e1 ff43b390 ff2cb928 00000000-00000000 
           \Driver\Kbdclass 
            Args: 00000078 00000000 00000000 00000000 



This output shows that the IRP has four stack locations and that the keyboard
class driver, which is waiting for keyboard input before it completes the IRP,
currently owns it.

Another IRP-related debugger command, !irpfind, lets you see all the pending
IRPs on the system:

kd> !irpfind 
Scanning large pool allocation table for Tag: Irp? 
 
Searching NonPaged pool (fe314000 : fe52c000) for Tag: Irp? 
 
  Irp    [ Thread ] irpStack: (Mj,Mn)   DevObj  [Driver] 
fe4f0568 [00000000] irpStack: ( 0, 0)  ff453790 [ \Driver\Cdrom] 
fe4f22e8 [fe5028a0] irpStack: ( e, 0)  fe4f13b0 [ \Driver\Ftdisk] 
fe4f3b28 [fe5028a0] irpStack: ( e, 0)  fe4f33f0 [ \Driver\Ftdisk] 
fe4fdf68 [ff2ae8c0] irpStack: ( e, 0)  ff3f45f0 [ \Driver\NetBT]  
  0xff2c9780 
fe50b6a8 [00000000] Irp is complete (CurrentLocation 3 > StackCoun
fe50d648 [00000000] irpStack: ( f, 0)  ff4526f0 [ \Driver\openhci
fe513e68 [fe5028a0] irpStack: ( e, 0)  fe4f3690 [ \Driver\Ftdisk] 
fe515e68 [fe5028a0] irpStack: ( e, 0)  fe4f2570 [ \Driver\Ftdisk] 
 
Searching NonPaged pool (fe52c000 : ffb7f000) for Tag: Irp? 
 
fefa4848 [ff1124e0] irpStack: ( e, 9)  ff2b3490 [ \Driver\AFD] 
fefcc2e8 [ff0ecda0] irpStack: ( 3, 0)  ff3f3e70 [ \FileSystem\Npfs



I/O Completion Ports

Writing a high-performance server application requires implementing an efficient threading
model. Having either too few or too many server threads to process client requests can
lead to performance problems. For example, if a server creates a single thread to handle
all requests, clients can become starved because the server will be tied up processing one
request at a time. A single thread could simultaneously process multiple requests,
switching from one to another as I/O operations are started, but this architecture
introduces significant complexity and can't take advantage of multiprocessor systems. At
the other extreme, a server could create a big pool of threads so that virtually every client
request is processed by a dedicated thread. This scenario usually leads to thread-
thrashing, in which lots of threads wake up, perform some CPU processing, block while
waiting for I/O, and then, after request processing is completed, block again waiting for a
new request. If nothing else, having too many threads results in excessive context
switching, caused by the scheduler having to divide processor time among multiple active
threads.

The goal of a server is to incur as few context switches as possible by having its threads
avoid unnecessary blocking, while at the same time maximizing parallelism by using
multiple threads. The ideal is for there to be a thread actively servicing a client request on
every processor and for those threads not to block when they complete a request if
additional requests are waiting. For this optimal process to work correctly, however, the
application must have a way to activate another thread when a thread processing a client
request blocks on I/O (such as when it reads from a file as part of the processing).

The IoCompletion Object

Applications use the IoCompletion executive object, which is exported to Win32 as a
completion port, as the focal point for the completion of I/O associated with multiple file
handles. Once a file is associated with a completion port, any asynchronous I/O operations
that complete on the file result in a completion packet being queued to the completion
port. A thread can wait for any outstanding I/Os to complete on multiple files simply by
waiting for a completion packet to be queued to the completion port. The Win32 API
provides similar functionality with the WaitForMultipleObjects API function, but the
advantage that completion ports have is that concurrency, or the number of threads that
an application has actively servicing client requests, is controlled with the aid of the
system.

When an application creates a completion port, it specifies a concurrency value. This value
indicates the maximum number of threads associated with the port that should be running
at any given time. As stated earlier, the ideal is to have one thread active at any given
time for every processor in the system. Windows 2000 uses the concurrency value
associated with a port to control how many threads an application has active. If the
number of active threads associated with a port equals the concurrency value, a thread
that is waiting on the completion port won't be allowed to run. Instead, it is expected that
one of the active threads will finish processing its current request and check to see
whether another packet is waiting at the port. If one is, the thread simply grabs the packet
and goes off to process it. When this happens, there is no context switch, and the CPUs
are utilized nearly to their full capacity.

Using Completion Ports



Figure 9-12 shows a high-level illustration of completion port operation. A completion port
is created with a call to the Win32 API function CreateIoCompletionPort. Threads that block
on a completion port become associated with the port and are awakened in last in, first out
(LIFO) order so that the thread that blocked most recently is the one that is given the next
packet. Threads that block for long periods of time can have their stacks swapped out to
disk, so if there are more threads associated with a port than there is work to process, the
in-memory footprints of threads blocked the longest are minimized.

Figure 9-12 I/O completion port operation

A server application will usually receive client requests via network endpoints that are
represented as file handles. Examples include Windows Sockets 2 (Winsock2) sockets or
named pipes. As the server creates its communications endpoints, it associates them with
a completion port and its threads wait for incoming requests by calling
GetQueuedCompletionStatus on the port. When a thread is given a packet from the
completion port, it will go off and start processing the request, becoming an active thread.
A thread will block many times during its processing, such as when it needs to read or
write data to a file on disk or when it synchronizes with other threads. Windows 2000
detects this activity and recognizes that the completion port has one less active thread.
Therefore, when a thread becomes inactive because it blocks, a thread waiting on the
completion port will be awakened if there is a packet in the queue.

Microsoft's guidelines are to set the concurrency value roughly equal to the number of
processors in a system. Keep in mind that it's possible for the number of active threads for
a completion port to exceed the concurrency limit. Consider a case in which the limit is
specified as 1. A client request comes in, and a thread is dispatched to process the
request, becoming active. A second request arrives, but a second thread waiting on the
port isn't allowed to proceed because the concurrency limit has been reached. Then the
first thread blocks waiting for a file I/O, so it becomes inactive. The second thread is then
released, and while it's still active, the first thread's file I/O is completed, making it active
again. At that point—and until one of the threads blocks—the concurrency value is 2, which
is higher than the limit of 1. Most of the time, the active count will remain at or just above
the concurrency limit.

The completion port API also makes it possible for a server application to queue privately
defined completion packets to a completion port by using the PostQueuedCompletionStatus
function. A server typically uses this function to inform its threads of external events, such
as the need to shut down gracefully.

javascript:fullSize('F09yj12x.htm')


[Previous] [Next]



Driver Loading, Initialization, and Installation
Driver loading and initialization on Windows 2000 consists of two types of loading: explicit
loading and enumeration-based loading. Explicit loading is guided by the
HKLM\SYSTEM\CurrentControlSet\Services branch of the registry, as described in the
section "Service Applications" in Chapter 5. Enumeration-based loading results when the
PnP manager dynamically loads drivers for the devices that a bus driver reports during bus
enumeration.



The Start Value

In Chapter 5, we explained that every driver and Win32 service has a registry key under
the Services branch of the current control set. The key includes values that specify the
type of the image (for example, Win32 service, driver, and file system), the path to the
driver or service's image file, and values that control the driver or service's load ordering.
There are two main differences between explicit device driver loading and Win32 service
loading:

Only device drivers can specify Start values of boot-start (0) or system-start (1).

Device drivers can use the Group and Tag values to control the order of loading within
a phase of the boot, but unlike services, they can't specify DependOnGroup or
DependOnService values.

Chapter 4 describes the phases of the boot process and explains that a driver Start value
of 0 means that the operating system loader loads the driver. A Start value of 1 means
that the I/O manager loads the driver after the executive subsystems have finished
initializing. The I/O manager calls driver initialization routines in the order that the drivers
load within a boot phase. Like Win32 services, drivers use the Group value in their registry
key to specify which group they belong to; the registry value
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List determines the order
that groups are loaded within a boot phase.

A driver can further refine its load order by including a Tag value to control its order within
a group. The I/O manager sorts the drivers within each group according to the Tag values
defined in the drivers' registry keys. Drivers without a tag go to the end of the list in their
group. You might assume that the I/O manager initializes drivers with lower-number tags
before it initializes drivers with higher-number tags, but such isn't necessarily the case.
The registry key HKLM\SYSTEM\CurrentControlSet\Control\GroupOrderList defines tag
precedence within a group; with this key, Microsoft and device driver developers can take
liberties with redefining the integer number system.

Here are the guidelines by which drivers set their Start value:

Legacy drivers set their Start value to reflect the boot phase they want to load in.

Drivers, including legacy and Windows 2000 drivers, that must be loaded by the boot
loader during the system boot specify a Start value of boot-start (0). Examples include
system bus drivers and the boot file system driver.

A driver that isn't required for booting the system and that detects a device that a
system bus driver can't enumerate specifies a Start value of system-start (1). An
example is the serial port driver, which informs the PnP manager of the presence of
standard PC serial ports that were detected by Setup and recorded in the registry.

A Windows 2000 driver that doesn't have to support Plug and Play or a legacy driver
that doesn't have to be present when the system boots specifies a Start value of auto-
start (2). An example is the Multiple Universal Naming Convention (UNC) Provider
(MUP) driver, which provides support for UNC-based path names to remote resources
(for example, (\\REMOTECOMPUTERNAME\SHARE).

Plug and Play drivers that aren't required to boot the system specify a Start value of
demand-start (3). Examples include network adapter drivers.



The only purpose that the Start values for Plug and Play drivers and drivers for enumerable
devices have is to ensure that the operating system loader loads the driver—if the driver is
required for the system to boot successfully. Beyond that, the PnP manager's device
enumeration process, described next, determines the load order for Plug and Play drivers.



Device Enumeration

The PnP manager begins device enumeration with a virtual bus driver called Root, which
represents the entire computer system and that acts as the bus driver for legacy drivers
and for the HAL. The HAL acts as a bus driver that enumerates devices directly attached to
the motherboard as well as system components such as batteries. Instead of actually
enumerating, the HAL relies on the hardware description the Setup process recorded in the
registry to detect the primary bus (a PCI bus in most cases) and devices such as batteries
and fans.

The primary bus driver enumerates the devices on its bus, possibly finding other buses, for
which the PnP manager initializes drivers. Those drivers in turn can detect other devices,
including other subsidiary buses. This recursive process of enumeration, driver loading (if
the driver isn't already loaded), and further enumeration proceeds until all the devices on
the system have been detected and configured.

As the bus drivers report detected devices to the PnP manager, the PnP manager creates
an internal tree called the device tree that represents the relationships between devices.
Nodes in the tree are called devnodes, and a devnode contains information about the
device objects that represent the device as well as other Plug and Play-related information
stored in the devnode by the PnP manager. Figure 9-13 shows an example of a simplified
device tree. This system is ACPI-compliant, so an ACPI-compliant HAL serves as the
primary bus enumerator. A PCI bus serves as the system's primary bus, which USB, ISA,
and SCSI buses are connected to.

Figure 9-13 Example device tree

The Device Manager utility, which is accessible from the Computer Management snap-in in
the Programs/Administrative Tools folder of the Start menu (and also from the Hardware
tab of the System utility in Control Panel), shows a simple list of devices present on a
system in its default configuration. You can also select the Devices By Connection option
from the Device Manager's View menu to see the devices as they relate to the device tree.
Figure 9-14 shows an example of the Device Manager's Devices By Connection view.

javascript:fullSize('F09yj13x.htm')


Figure 9-14 Device Manager showing the device tree

Taking device enumeration into account, the load and initialization order of drivers is as
follows:

1. The I/O manager invokes the driver entry routine of each boot-start driver. If a boot
driver has child devices, the I/O manager enumerates those devices, reporting their
presence to the PnP manager. The child devices are configured and started if their
drivers are boot-start drivers. If a device has a driver that isn't a boot-start driver, the
PnP manager creates a devnode for the device but doesn't start it or load its driver.

2. After the boot-start drivers are initialized, the PnP manager walks the device tree,
loading the drivers for devnodes that weren't loaded in step 1 and starting their
devices. As each device starts, the PnP manager enumerates its child devices, if it has
any, starting those devices' drivers and performing enumeration of their children as
required. The PnP manager loads the drivers for detected devices in this step
regardless of the driver's Start value. (The one exception is if the Start value is set to
disabled.) At the end of this step, all Plug and Play devices have their drivers loaded
and are started, except devices that aren't enumerable and the children of those
devices.

3. The PnP manager loads any drivers with a Start value of system-start that aren't yet
loaded. Those drivers detect and report their nonenumerable devices. The PnP
manager loads drivers for those devices until all enumerated devices are configured
and started.

4. The Service Control Manager loads drivers marked as auto-start.

The device tree serves to guide both the PnP manager and the power manager as they
issue Plug and Play and power IRPs to devices. In general, IRPs flow from the top of a
devnode to the bottom, and in some cases a driver in one devnode creates new IRPs to
send to other devnodes, always moving toward the root. The flow of Plug and Play and
power IRPs is further described later in this chapter.

EXPERIMENT

javascript:fullSize('F09yj14x.htm')


Dumping the Device Tree

A more detailed way to view the device tree than using Device Manager is to use
the !devnode kernel debugger command. Specifying 0 1 as command options
dumps the internal device tree devnode structures, indenting entries to show their
hierarchical relationships, as shown here:

kd> !devnode 0 1 
Dumping IopRootDeviceNode (= 0x818a78e8) 
DevNode 0x818a78e8 for PDO 0x818a79e0 
  Parent 0000000000   Sibling 0000000000   Child 0x818a74c8 
  InstancePath is "HTREE\ROOT\0" 
  Flags (0x00040459)  DNF_MADEUP, DNF_PROCESSED, 
                      DNF_ENUMERATED, DNF_ADDED, 
                      DNF_NO_RESOURCE_REQUIRED, DNF_STARTED 
  DisableableDepends = 10 (from children) 
  DevNode 0x818a74c8 for PDO 0x818a75d0 
    Parent 0x818a78e8   Sibling 0x818a7248   Child 0x81883228 
    InstancePath is "Root\ACPI_HAL\0000" 
    Flags (0x000405dd)  DNF_MADEUP, DNF_HAL_NODE, 
                        DNF_PROCESSED, DNF_ENUMERATED, 
                        DNF_ADDED, DNF_HAS_BOOT_CONFIG, 
                        DNF_BOOT_CONFIG_RESERVED, DNF_NO_RESOURCE_
                        DNF_STARTED 
    DisableableDepends = 1 (from children) 
    DevNode 0x81883228 for PDO 0x818838d0 
      Parent 0x818a74c8   Sibling 0000000000   Child 0x81819408 
      InstancePath is "ACPI_HAL\PNP0C08\0" 
      ServiceName is "ACPI" 
      Flags (0x000421d8)  DNF_PROCESSED, DNF_ENUMERATED, 
                          DNF_ADDED, DNF_HAS_BOOT_CONFIG, 
                          DNF_BOOT_CONFIG_RESERVED, DNF_RESOURCE_A
                          DNF_STARTED 
      CapabilityFlags (0x000000c0)  UniqueID, SilentInstall 
      DisableableDepends = 10 (from children) 
      DevNode 0x81819408 for PDO 0x81891530 
        Parent 0x81883228   Sibling 0x818910c8   Child 0000000000 
        InstancePath is "ACPI\PNP0C0B\1" 
        Flags (0x00040458)  DNF_PROCESSED, DNF_ENUMERATED, 
                            DNF_ADDED, DNF_NO_RESOURCE_REQUIRED, 
                            DNF_STARTED 
        UserFlags (0x00000008)  DNUF_NOT_DISABLEABLE 
        CapabilityFlags (0x000001c0)  UniqueID, SilentInstall, 
                                      RawDeviceOK 
        DisableableDepends = 1 (including self) 



Information shown for each devnode includes the InstancePath, which is the name
of the device's enumeration registry key stored under
HKLM\SYSTEM\CurrentControlSet\Enum, and the ServiceName, which corresponds
to the device's driver registry key under
HKLM\SYSTEM\CurrentControlSet\Services. To see the resources, such as
interrupts, ports, and memory assigned to each devnode, specify 0 3 as the
command options for the !devnode command.

A record of all the devices detected since the system was installed is recorded under the
HKLM\SYSTEM\CurrentControlSet\Enum registry key. Subkeys are in the form
<Enumerator>\<Device ID>\<Instance ID>, where the enumerator is a bus driver, the
device ID is a unique identifier for a type of device, and the instance ID uniquely identifies
different instances of the same hardware.



Devnodes

Figure 9-15 shows that a devnode is made up of at least two, and sometimes more, device
objects:

A physical device object (PDO) that the PnP manager instructs a bus driver to create
when the bus driver reports the presence of a device on its bus during enumeration.
The PDO represents the physical interface to the device.

One or more optional filter device objects (FiDOs) that layer between the PDO and the
FDO (described next), and that are created by bus filter drivers.

One or more optional FiDOs that layer between the PDO and the FDO (and that layer
above any FiDOs created by bus filter drivers) that are created by lower-level filter
drivers.

A functional device object (FDO) that is created by the driver, which is called a function
driver, that the PnP manager loads to manage a detected device. An FDO represents
the logical interface to a device. A function driver can also act as a bus driver if devices
are attached to the device represented by the FDO. The function driver often creates
an interface (described earlier) to the FDO's corresponding PDO so that applications
and other drivers can open the device and interact with it. Sometimes function drivers
are divided into a separate class/port driver and miniport driver that work together to
manage I/O for the FDO.

One or more optional FiDOs that layer above the FDO and that are created by upper-
level filter drivers.

Figure 9-15 Devnode internals

Devnodes are built from the bottom up and rely on the I/O manager's layering
functionality, so IRPs flow from the top of a devnode toward the bottom. However, any
level in the devnode can choose to complete an IRP. For example, the function driver can
handle a read request without passing the IRP to the bus driver. Only when the function
driver requires the help of a bus driver to perform bus-specific processing does the IRP
flow all the way to the bottom and then into the devnode containing the bus driver.

javascript:fullSize('F09yj15x.htm')


Devnode Driver Loading

So far, we've avoided answering two important questions: How does the PnP manager
determine what function driver to load for a particular device? and How do filter drivers
register their presence so that they are loaded at appropriate times in the creation of a
devnode?

The answer to both these questions lies in the registry. When a bus driver performs device
enumeration, it reports device identifiers for the devices it detects back to the PnP
manager. The identifiers are bus-specific; for a USB bus, an identifier consists of a vendor
ID (VID) for the hardware vendor that made the device and a product ID (PID) that the
vendor assigned to the device. (See the DDK for more information on device ID formats.)
Together these IDs form what Plug and Play calls a device ID. The PnP manager also
queries the bus driver for an instance ID to help it distinguish different instances of the
same hardware. The instance ID can describe either a bus relative location (for example,
the USB port) or a globally unique descriptor (for example, a serial number). The device ID
and instance ID are combined to form a device instance ID (DIID), which the PnP manager
uses to locate the device's key in the enumeration branch of the registry
(HKLM\SYSTEM\CurrentControlSet\Enum). Figure 9-16 presents an example of a
keyboard's enumeration subkey. The device's key contains descriptive data and includes
values named Service and ClassGUID (which is obtained from a driver's INF file) that help
the PnP manager locate the device's drivers.

Figure 9-16 Keyboard enumeration key

Using the ClassGUID value, the PnP manager locates the device's class key under
HKLM\SYSTEM\CurrentControlSet\Control\Class. The keyboard class key is shown in Figure
9-17. The enumeration key and class key supply the PnP manager the information it needs
to load the drivers necessary for the device's devnode. Drivers are loaded in the following
order:

1. Any lower-level filter drivers specified in the LowerFilters value of the device's
enumeration key.

2. Any lower-level filter drivers specified in the LowerFilters value of the device's class
key.

3. The function driver specified by the Service value in the device's enumeration key. This
value is interpreted as the driver's key under
HKLM\SYSTEM\CurrentControlSet\Services.

javascript:fullSize('F09yj16x.htm')


4. Any upper-level filter drivers specified in the UpperFilters value of the device's
enumeration key.

5. Any upper-level filter drivers specified in the UpperFilters value of the device's class
key.

In all cases, drivers are referenced by the name of their key under
HKLM\SYSTEM\CurrentControlSet\Services.

Figure 9-17 Keyboard class key

NOTE

The DDK refers to a device's enumeration key as its hardware key and to the class
key as the software key.

The keyboard device shown in Figure 9-16 and Figure 9-17 has no lower filter drivers. The
function driver is the i8042prt driver, and there are two upper filter drivers specified in the
keyboard's class key: kbdclass and ctrl2cap.

javascript:fullSize('F09yj17x.htm')


Driver Installation

If the PnP manager encounters a device for which no driver is installed, it relies on the
user-mode PnP manager to guide the installation process. If the device is detected during
the system boot, a devnode is defined for the device but the loading process is postponed
until the user-mode PnP manager starts. (The user-mode PnP manager is implemented in
\Winnt\System32\Umpnpmgr.dll and runs as a service in the Services.exe process.)

The components involved in a driver's installation are shown in Figure 9-18. Shaded
objects in the figure correspond to components generally supplied by the system, whereas
objects that aren't shaded are included in a driver's installation files. First, a bus driver
informs the PnP manager of a device it enumerates using a DIID (1). The PnP manager
checks the registry for the presence of a corresponding function driver, and when it doesn't
find one, it informs the user-mode PnP manager (2) of the new device by its DIID. The
user-mode PnP manager first tries to perform an automatic install without user
intervention. If the installation process involves the posting of dialog boxes that require
user interaction and the currently logged-on user has administrator privileges, (3) the
user-mode PnP manager launches the Rundll32.exe application (the same application that
hosts Control Panel utilities) to execute the Hardware Installation Wizard
(\Winnt\System32\Newdev.dll). If the currently logged-on user doesn't have administrator
privileges (or if no user is logged on) and the installation of the device requires user
interaction, the user-mode PnP manager defers the installation until a privileged user logs
on. The Hardware Installation Wizard uses Setup and CfgMgr (Configuration Manager) API
functions to locate INF files that correspond to drivers that are compatible with the
detected device. This process might involve having the user insert installation media
containing a vendor's INF files, or the wizard might locate a suitable INF file in the .cab
(Cabinet) file under \Winnt\Driver Cache\i386\Driver.cab that contains drivers that ship
with Windows 2000.

Figure 9-18 Driver installation components

To find drivers for the new device, the installation process gets a list of hardware IDs and
compatible IDs from the bus driver. These IDs describe all the various ways the hardware
might be identified in a driver installation file (.inf). The lists are ordered so that the most
specific description of the hardware is listed first. If matches are found in multiple INFs,
more precise matches are preferred over less precise matches, digitally signed INFs are
preferred over unsigned ones, and newer signed INFs are preferred over older signed
ones. If a match is found based on a compatible ID, the Hardware Installation Wizard can
choose to prompt for media in case a more up-to-date driver came with the hardware.

javascript:fullSize('F09yj18x.htm')


The INF file locates the function driver's files and contains commands that fill in the
driver's enumeration and class keys, and the INF file might direct the Hardware Installation
Wizard to (4) launch class or device coinstaller DLLs that perform class or device-specific
installation steps, such as displaying configuration dialog boxes that let the user specify
settings for a device.

Before actually installing a driver, the user-mode PnP manager checks the system's driver-
signing policy. The policy is stored in the registry key HKLM\SOFTWARE\Microsoft\Driver
Signing\Policy if the administrator has designated a systemwide policy and in the key
HKCU\Software\Microsoft\Driver Signing\Policy if there are only per-user policies. The
policy is configurable using the Driver Signing Options dialog box, accessed from the
Hardware tab in the System Control Panel utility, which is shown in Figure 9-19. If the
settings specify that the system should block or warn of the installation of unsigned
drivers, the user-mode PnP manager checks the driver's INF file for an entry that locates a
catalog (a file that ends with the .cat extension) containing the driver's digital signature.

Figure 9-19 Driver-signing policy options

Microsoft's WHQL tests the drivers included with Windows 2000 and those submitted by
hardware vendors. When a driver passes the WHQL tests, it is "signed" by Microsoft. This
means that WHQL obtains a hash, or unique value representing the driver image file, and
then cryptographically signs it with Microsoft's private driver-signing key. The signed hash
is stored in a catalog file and included on the Windows 2000 installation media or returned
to the vendor that submitted the driver for inclusion with its driver.

As it's installing a driver, the user-mode PnP manager extracts the driver's signature from
its catalog file, decrypts the signature using the public half of Microsoft's driver-signing
private/public key pair, and compares the resulting hash with a hash of the driver file it's
about to install. If the hashes match, the driver is verified as having passed WHQL testing.
If a driver fails the signature verification, the user-mode PnP manager acts according to
the settings of the system driver-signing policy, either failing the installation attempt,
warning the user that the driver is unsigned, or silently installing the driver.

NOTE

Drivers installed using setup programs that manually configure the registry and
copy driver files to a system and driver files that are dynamically loaded by

javascript:fullSize('F09yj19x.htm')


applications aren't checked for signatures. Only drivers installed using INF files are
validated against the system's driver-signing policy.

After a driver is installed, the kernel-mode PnP manager (step 5 in Figure 9-18) starts the
driver and calls its add-device routine to inform the driver of the presence of the device it
was loaded for. The construction of the devnode then continues as described earlier.



[Previous] [Next]



I/O Processing
Now that we've covered the structure and types of drivers and the
data structures that support them, let's look at how I/O requests
flow through the system. I/O requests pass through several
predictable stages of processing. The stages vary depending on
whether the request is destined for a device operated by a single-
layered driver or for a device reached through a multilayered driver.
Processing varies further depending on whether the caller specified
synchronous or asynchronous I/O, so we'll begin our discussion of
I/O types with these two then move on to others.



Types of I/O

Applications have several options for the I/O requests they issue. For
example, they can specify synchronous or asynchronous I/O, I/O
that maps a device's data into the application's address space for
access via application virtual memory rather than I/O APIs, and I/O
that transfers data between a device and noncontiguous application
buffers in a single request. Furthermore, the I/O manager gives the
drivers the choice of implementing a shortcut I/O interface that can
often mitigate IRP allocation for I/O processing. In this section, we'll
explain each of these I/O variations.

Synchronous I/O and Asynchronous I/O

Most I/O operations that applications issue are synchronous; that is,
the application waits while the device performs the data transfer and
returns a status code when the I/O is complete. The program can
then continue and access the transferred data immediately. When
used in their simplest form, the Win32 ReadFile and WriteFile
functions are executed synchronously. They complete an I/O
operation before returning control to the caller.

Asynchronous I/O allows an application to issue an I/O request and
then continue executing while the device transfers the data. This
type of I/O can improve an application's throughput because it
allows the application to continue with other work while an I/O
operation is in progress. To use asynchronous I/O, you must specify
the FILE_FLAG_OVERLAPPED flag when you call the Win32
CreateFile function. Of course, after issuing an asynchronous I/O
operation, the thread must be careful not to access any data from
the I/O operation until the device driver has finished the data
transfer. The thread must synchronize its execution with the
completion of the I/O request by monitoring a handle of a
synchronization object (whether that's an event object, an I/O
completion port, or the file object itself) that will be signaled when
the I/O is complete.

Regardless of the type of I/O request, internally, I/O operations
represented by IRPs are performed asynchronously; that is, once an
I/O request has been initiated, the device driver returns to the I/O



system. Whether or not the I/O system returns immediately to the
caller depends on whether the file was opened for synchronous or
asynchronous I/O. Figure 9-20 illustrates the flow of control when a
read operation is initiated. Notice that if a wait is done, which
depends on the overlapped flag in the file object, it is done in kernel
mode by the NtReadFile function.

Figure 9-20 Control flow for an I/O operation

You can test the status of a pending asynchronous I/O with the
Win32 HasOverlappedIoCompleted function. If you're using I/O
completion ports, you can use the GetQueuedCompletionStatus
function.

Fast I/O

Fast I/O is a special mechanism that allows the I/O system to bypass
generating an IRP and instead go directly to the file system driver or
cache manager to complete an I/O request. (Fast I/O is described in
detail in Chapters 11 and 12.) A driver registers its fast I/O entry
points by entering them in a structure pointed to by the
PFAST_IO_DISPATCH pointer in its driver object.

EXPERIMENT

javascript:fullSize('F09yj20x.htm')


Looking at a Driver's Registered Fast I/O Routines

The !drvobj kernel debugger command can list the fast I/O
routines that a driver registers in its driver object. However,
typically only file system drivers have any use for fast I/O
routines. The following output shows the fast I/O table for
the NTFS file system driver object:

kd> !drvobj \filesystem\ntfs 2 
Driver object (ff432670) is for: 
 \FileSystem\Ntfs 
Dispatch routines: 
[00] IRP_MJ_CREATE    
 
 
Fast I/O routines: 
FastIoCheckIfPossible                   be3263ef 
Ntfs!NtfsPostUsnChange+0xd8c 
FastIoRead                              be31869e 
Ntfs!NtfsCreateInternalStreamCommon+0x1b43 
FastIoWrite                             be318df9 
Ntfs!NtfsCreateInternalStreamCommon+0x229e 
FastIoQueryBasicInfo                    be3020fa 
Ntfs!NtfsRaiseStatus+0x105a8 
FastIoQueryStandardInfo                 be317d1e 
Ntfs!NtfsCreateInternalStreamCommon+0x11c3 
FastIoLock                              be32622d 
Ntfs!NtfsPostUsnChange+0xbca 
FastIoUnlockSingle                      be326139 
Ntfs!NtfsPostUsnChange+0xad6 

The output shows that NTFS has registered its
NtfsPostUsnChange routine as the fast I/O table's
FastIoCheckIfPossible entry. As the name of this fast I/O
entry implies, the I/O manager sometimes calls this function
before issuing a fast I/O request, giving a driver an



opportunity to indicate when fast I/O operations on a file are
not feasible.

Mapped File I/O and File Caching

Mapped file I/O is an important feature of the I/O system, one that
the I/O system and the memory manager produce jointly. (See
Chapter 7 for details on how mapped files are implemented.)
Mapped file I/O refers to the ability to view a file residing on disk as
part of a process's virtual memory. A program can access the file as
a large array without buffering data or performing disk I/O. The
program accesses memory, and the memory manager uses its
paging mechanism to load the correct page from the disk file. If the
application writes to its virtual address space, the memory manager
writes the changes back to the file as part of normal paging.

Mapped file I/O is available in user mode through the Win32
CreateFileMapping and MapViewOfFile functions. Within the
operating system, mapped file I/O is used for important operations
such as file caching and image activation (loading and running
executable programs). The other major consumer of mapped file I/O
is the cache manager. File systems use the cache manager to map
file data in virtual memory to provide better response time for I/O-
bound programs. As the caller uses the file, the memory manager
brings accessed pages into memory. Whereas most caching systems
allocate a fixed number of bytes for caching files in memory, the
Windows 2000 cache grows or shrinks depending on how much
memory is available. This size variability is possible because the
cache manager relies on the memory manager to automatically
expand (or shrink) the size of the cache, using the normal working
set mechanisms explained in Chapter 7. By taking advantage of the
memory manager's paging system, the cache manager avoids
duplicating the work that the memory manager already performs.
(The workings of the cache manager are explained in detail in
Chapter 11.)

Scatter/Gather I/O



Windows 2000 also supports a special kind of high-performance I/O
that is called scatter/gather, available via the Win32 ReadFileScatter
and WriteFileGather functions. These functions allow an application
to issue a single read or write from more than one buffer in virtual
memory to a contiguous area of a file on disk. To use scatter/gather
I/O, the file must be opened for noncached I/O, the user buffers
being used have to be page-aligned, and the I/Os must be
asynchronous (overlapped). Furthermore, if the I/O is directed at a
mass storage device, the I/O must be aligned on a device sector
boundary and have a length that is a multiple of the sector size.



I/O Request to a Single-Layered Driver

This section traces a synchronous I/O request to a single-layered
kernel-mode device driver. Handling a synchronous I/O to a single-
layered driver consists of seven steps:

1. The I/O request passes through a subsystem DLL.

2. The subsystem DLL calls the I/O manager's NtWriteFile service.

3. The I/O manager allocates an IRP describing the request and
sends it to the driver (a device driver in this case) by calling its
own IoCallDriver function.

4. The driver transfers the data in the IRP to the device and starts
the I/O operation.

5. The driver signals I/O completion by interrupting the CPU.

6. When the device completes the operation and interrupts the
CPU, the device driver services the interrupt.

7. The driver calls the I/O manager's IoCompleteRequest function
to inform it that it has finished processing the IRP's request, and
the I/O manager completes the I/O request.

These seven steps are illustrated in Figure 9-21.



Figure 9-21 Queuing and completing a synchronous request

Now that we've seen how an I/O is initiated, let's take a closer look
at interrupt processing and I/O completion.

Servicing an Interrupt

After an I/O device completes a data transfer, it interrupts for
service and the Windows 2000 kernel, I/O manager, and device
driver are called into action. Figure 9-22 illustrates the first phase of
the process. (Chapter 3 describes the interrupt dispatching
mechanism, including DPCs. We've included a brief recap here
because DPCs are key to I/O processing.)

javascript:fullSize('F09yj21x.htm')


Figure 9-22 Servicing a device interrupt (phase 1)

When a device interrupt occurs, the processor transfers control to
the kernel trap handler, which indexes into its interrupt dispatch
table to locate the ISR for the device. ISRs in Windows 2000
typically handle device interrupts in two steps. When an ISR is first
invoked, it usually remains at device IRQL only long enough to
capture the device status and then stop the device's interrupt. It
then queues a DPC and exits, dismissing the interrupt. Later, when
the DPC routine is called, the device finishes processing the
interrupt. When that's done, the device calls the I/O manager to
complete the I/O and dispose of the IRP. It might also start the next
I/O request that is waiting in the device queue.

The advantage of using a DPC to perform most of the device
servicing is that any blocked interrupt whose priority lies between
the device IRQL and the DPC/dispatch IRQL is allowed to occur
before the lower-priority DPC processing occurs. Intermediate-level
interrupts are thus serviced more promptly than they otherwise

javascript:fullSize('F09yj22x.htm')


would be. This second phase of an I/O (the DPC processing) is
illustrated in Figure 9-23.

Completing an I/O Request

After a device driver's DPC routine has executed, some work still
remains before the I/O request can be considered finished. This third
stage of I/O processing is called I/O completion and is initiated when
a driver calls IoCompleteRequest to inform the I/O manager that it is
through processing the request specified in the IRP (and the stack
location that it owns). The steps I/O completion entails vary with
different I/O operations. For example, all the I/O services record the
outcome of the operation in an I/O status block, a data structure the
caller supplies. Similarly, some services that perform buffered I/O
require the I/O system to return data to the calling thread.

In both cases, the I/O system must copy some data that is stored in
system memory into the caller's virtual address space. If the IRP
completed synchronously, the caller's address space is current and
directly accessible, but if the IRP completed asynchronously, the I/O
manager must delay IRP completion until it can access the caller's
address space. To gain access to the caller's virtual address space,
the I/O manager must transfer the data "in the context of the
caller's thread,"—that is, while the caller's thread is executing (which
means that caller's process is the current process and has its
address space active on the processor). It does so by queuing a
kernel-mode asynchronous procedure call (APC) to the thread. This
process is illustrated in Figure 9-24.

As explained in Chapter 3, APCs execute in the context of a
particular thread, whereas a DPC executes in arbitrary thread
context, meaning that the DPC routine can't touch the user-mode
process address space. Remember too that DPCs have a higher
software interrupt priority than APCs.



Figure 9-23 Servicing a device interrupt (phase 2)

Figure 9-24 Completing an I/O request (phase 1)

javascript:fullSize('F09yj23x.htm')
javascript:fullSize('F09yj24x.htm')


The next time that thread begins to execute at low IRQL, the
pending APC is delivered. The kernel transfers control to the I/O
manager's APC routine, which copies the data (if any) and the return
status into the original caller's address space, frees the IRP
representing the I/O operation, and sets the caller's file handle (and
any caller-supplied event or I/O completion port) to the signaled
state. The I/O is now considered complete. The original caller or any
other threads that are waiting on the file (or other object) handle
are released from their waiting state and readied for execution.

Figure 9-25 illustrates the second stage of I/O completion.

Figure 9-25 Completing an I/O request (phase 2)

A final note about I/O completion: the asynchronous I/O functions
ReadFileEx and WriteFileEx allow a caller to supply a user-mode APC
as a parameter. If the caller does so, the I/O manager queues this
APC to the caller's thread APC queue as the last step of I/O
completion. This feature allows a caller to specify a subroutine to be
called when an I/O request is completed or canceled. User-mode
APC completion routines execute in the context of the requesting
thread and are delivered only when the thread enters an alertable
wait state (such as calling the Win32 SleepEx,
WaitForSingleObjectEx, or WaitForMultipleObjectsEx function).

javascript:fullSize('F09yj25x.htm')


I/O Requests to Layered Drivers

The preceding section showed how an I/O request to a simple device
controlled by a single device driver is handled. I/O processing for
file-based devices or for requests to other layered drivers happens in
much the same way. The major difference is, obviously, that one or
more additional layers of processing are added to the model.

Figure 9-26 shows how an asynchronous I/O request travels through
layered drivers. It uses as an example a disk controlled by a file
system.

Once again, the I/O manager receives the request and creates an
I/O request packet to represent it. This time, however, it delivers the
packet to a file system driver. The file system driver exercises great
control over the I/O operation at that point. Depending on the type
of request the caller made, the file system can send the same IRP to
the disk driver or it can generate additional IRPs and send them
separately to the disk driver.

The file system is most likely to reuse an IRP if the request it
receives translates into a single straightforward request to a device.
For example, if an application issues a read request for the first 512
bytes in a file stored on a floppy disk, the FAT file system would
simply call the disk driver, asking it to read one sector from the
floppy disk, beginning at the file's starting location.

To accommodate its reuse by multiple drivers in a request to layered
drivers, an IRP contains a series of IRP stack locations (not to be
confused with the stack used by threads to store function
parameters and return addresses). These data areas, one for every
driver that will be called, contain the information that each driver
needs in order to execute its part of the request—for example,
function code, parameters, and driver context information. As Figure
9-26 illustrates, additional stack locations are filled in as the IRP
passes from one driver to the next. You can think of an IRP as being
similar to a stack in the way data is added to it and removed from it
during its lifetime. However, an IRP isn't associated with any
particular process, and its allocated size doesn't grow and shrink.



The I/O manager allocates an IRP from one if its IRP look-aside lists
or nonpaged system memory at the beginning of the I/O operation.

After the disk driver finishes a data transfer, the disk interrupts and
the I/O completes, as shown in Figure 9-27.

Figure 9-26 Queuing an asynchronous request to layered drivers

javascript:fullSize('F09yj26x.htm')


Figure 9-27 Completing a layered I/O request

As an alternative to reusing a single IRP, a file system can establish
a group of associated IRPs that work in parallel on a single I/O
request. For example, if the data to be read from a file is dispersed
across the disk, the file system driver might create several IRPs,
each of which reads some portion of the request from a different
sector. This queuing is illustrated in Figure 9-28.

javascript:fullSize('F09yj27x.htm')


Figure 9-28 Queuing associated IRPs

The file system driver delivers the associated IRPs to the device
driver, which queues them to the device. They are processed one at
a time, and the file system driver keeps track of the returned data.
When all the associated IRPs complete, the I/O system completes
the original IRP and returns to the caller, as shown in Figure 9-29.

javascript:fullSize('F09yj28x.htm')


Figure 9-29 Completing associated IRPs

NOTE

All Windows 2000 file system drivers that manage disk-based
file systems are part of a stack of drivers that is at least
three layers deep: the file system driver sits at the top, a
volume manager in the middle, and a disk driver at the
bottom. In addition, any number of filter drivers can be
interspersed above and below these drivers. For clarity, the
preceding example of layered I/O requests includes only a
file system driver and a disk device driver. See Chapter 10,
on storage management, for more information.

javascript:fullSize('F09yj29x.htm')


I/O Completion Port Operation

Win32 applications create completion ports by calling the Win32 API
CreateIoCompletionPort and specifying a NULL completion port
handle. This results in the execution of the NtCreateIoCompletion
system service. The executive's IoCompletion object is based on the
kernel synchronization object called a queue. Thus, the system
service creates a completion port object and initializes a queue
object in the port's allocated memory. (A pointer to the port also
points to the queue object because the queue is at the start of the
port memory.) A queue object has a concurrency value that is
specified when a thread initializes one, and in this case the value
that is used is the one that was passed to CreateIoCompletionPort.
KeInitializeQueue is the function that NtCreateIoCompletion calls to
initialize a port's queue object.

When an application calls CreateIoCompletionPort to associate a file
handle with a port, the NtSetInformationFile system service is
executed with the file handle as the primary parameter. The
information class that is set is FileCompletionInformation, and the
completion port's handle and the CompletionKey parameter from
CreateIoCompletionPort are the data values. NtSetInformationFile
dereferences the file handle to obtain the file object and allocates a
completion context data structure.

Finally, NtSetInformationFile sets the CompletionContext field in the
file object to point at the context structure. When an asynchronous
I/O operation completes on a file object, the I/O manager checks to
see whether the CompletionContext field in the file object is non-
NULL. If it is, the I/O manager allocates a completion packet and
queues it to the completion port by calling KeInsertQueue with the
port as the queue on which to insert the packet. (Remember that the
completion port object and queue object are synonymous.)

When a server thread invokes GetQueuedCompletionStatus, the
system service NtRemoveIoCompletion is executed. After validating
parameters and translating the completion port handle to a pointer
to the port, NtRemoveIoCompletion calls KeRemoveQueue.



As you can see, KeRemoveQueue and KeInsertQueue are the
engines behind completion ports. They are the functions that
determine whether a thread waiting for an I/O completion packet
should be activated. Internally, a queue object maintains a count of
the current number of active threads and the maximum number of
active threads. If the current number equals or exceeds the
maximum when a thread calls KeRemoveQueue, the thread will be
put (in LIFO order) onto a list of threads waiting for a turn to
process a completion packet. The list of threads hangs off the queue
object. A thread's control block data structure has a pointer in it that
references the queue object of a queue that it's associated with; if
the pointer is NULL, the thread isn't associated with a queue.

Windows 2000 keeps track of threads that become inactive because
they block on something other than the completion port by relying
on the queue pointer in a thread's control block. The scheduler
routines that possibly result in a thread blocking (such as
KeWaitForSingleObject, KeDelayExecutionThread, and so on) check
the thread's queue pointer. If the pointer isn't NULL, the functions
call KiActivateWaiterQueue, a queue-related function that
decrements the count of active threads associated with the queue. If
the resultant number is less than the maximum and at least one
completion packet is in the queue, the thread at the front of the
queue's thread list is awakened and given the oldest packet.
Conversely, whenever a thread that is associated with a queue
wakes up after blocking, the scheduler executes the function
KiUnwaitThread, which increments the queue's active count.

Finally, the PostQueuedCompletionStatus Win32 API function results
in the execution of the NtSetIoCompletion system service. This
function simply inserts the specified packet onto the completion
port's queue by using KeInsertQueue.

Figure 9-30 shows an example of a completion port object in
operation. Even though two threads are ready to process completion
packets, the concurrency value of 1 allows only one thread
associated with the completion port to be active, and so the two
threads are blocked on the completion port.



Figure 9-30 I/O completion port operation

javascript:fullSize('F09yj30x.htm')


Synchronization

Drivers must synchronize their access to global driver data and
hardware registers for two reasons:

The execution of a driver can be preempted by higher-priority
threads and time-slice (or quantum) expiration or can be
interrupted by interrupts.

On multiprocessor systems, Windows 2000 can run driver code
simultaneously on more than one processor.

Without synchronization, corruption could occur—for example,
because device driver code running at a passive IRQL when a caller
initiates an I/O operation can be interrupted by a device interrupt,
causing the device driver's ISR to execute while its own device driver
is already running. If the device driver was modifying data that its
ISR also modifies, such as device registers, heap storage, or static
data, the data can become corrupted when the ISR executes. Figure
9-31 illustrates this problem.

Figure 9-31 Queuing an asynchronous request to layered drivers

To avoid this situation, a device driver written for Windows 2000
must synchronize its access to any data that the device driver shares
with its ISR. Before attempting to update shared data, the device
driver must lock out all other threads (or CPUs, in the case of a
multiprocessor system) to prevent them from updating the same
data structure.

javascript:fullSize('F09yj31x.htm')


The Windows 2000 kernel provides special synchronization routines
that device drivers must call when they access data that their ISRs
also access. These kernel-synchronization routines keep the ISR
from executing while the shared data is being accessed. On a single
CPU system, these routines raise the IRQL to a specified level before
updating a structure. On a multiprocessor system, however, because
a driver can execute on two or more processors at once, this
technique isn't enough to block other accessors. Therefore, another
mechanism, a spinlock, is used to lock a structure for exclusive
access from a particular CPU. (Spinlocks are explained in the section
"Kernel Synchronization" in Chapter 3.)

By now, you should realize that although ISRs require special
attention, any data that a device driver uses is subject to being
accessed by the same device driver running on another processor.
Therefore, it's critical for device driver code to synchronize its use of
any global or shared data (or any accesses to the physical device
itself). If the ISR uses that data, the device driver must use kernel-
synchronization routines; otherwise, the device driver can use a
kernel spinlock.



[Previous] [Next]



Conclusion
The I/O system defines the model of I/O processing on
Windows 2000 and performs functions that are common to
or required by more than one driver. Its chief responsibility
is to create IRPs representing I/O requests and to shepherd
the packets through various drivers, returning results to the
caller when an I/O is complete. The I/O manager locates
various drivers and devices by using I/O system objects,
including driver and device objects. Internally, the Windows
2000 I/O system operates asynchronously to achieve high
performance and provides both synchronous and
asynchronous I/O capabilities to user-mode applications.

Device drivers include not only traditional hardware device
drivers but also file system, network, and layered filter
drivers. All drivers have a common structure and
communicate with one another and the I/O manager by
using common mechanisms. The I/O system interfaces
allow drivers to be written in a high-level language to lessen
development time and to enhance their portability. Because
drivers present a common structure to the operating
system, they can be layered one on top of another to
achieve modularity and reduce duplication between drivers.
Also, all Windows 2000 device drivers should be designed to
work correctly on multiprocessor systems.

Finally, the role of the PnP manager is to work with device
drivers to dynamically detect hardware devices and to build
an internal device tree that guides hardware device
enumeration and driver installation. The power manager
works with device drivers to move devices into low-power
states when applicable to conserve energy and prolong
battery life.



The final four chapters cover additional topics related to the
I/O system: storage management, file systems (including
details on the NTFS file system), the cache manager, and
networking.



[Previous] [Next]

Chapter 10



Storage Management
Storage management defines the way that an operating
system interfaces with nonvolatile storage devices and
media. The term storage encompasses many different
devices, including tape drives, optical media, CD jukeboxes,
floppy diskettes, and hard disks. Microsoft Windows 2000
provides specialized support for each of these classes of
storage media. Because our focus in this book is on the
kernel components of Windows 2000, in this chapter we'll
concentrate on just the fundamentals of the hard disk
storage subsystem in Windows 2000. Significant portions of
the Windows 2000 support for removable media and remote
storage (offline archiving) are implemented in user mode.

In this chapter, we'll define basic and dynamic disks and
explain how they are partitioned. We'll then examine how
kernel-mode device drivers interface file system drivers to
disk media. We'll also go over the implementation of
multipartition disk-management features in Windows 2000,
including replicating and dividing file system data across
physical disks for reliability and for performance
enhancement. We conclude the chapter with a look at the
process that Windows 2000 uses to assign drive letters and
a discussion of how file system drivers mount volumes they
are responsible for managing.



[Previous] [Next]



The Evolution of Windows 2000
Storage
The evolution of storage management in Windows 2000
begins with MS-DOS, Microsoft's first operating system. As
hard disks became larger, MS-DOS needed to accommodate
them. To do so, one of the first steps Microsoft took was to
let MS-DOS create multiple partitions, or logical disks, on a
physical disk. MSDOS could format each partition with a
different file system type (FAT12 or FAT16) and assign each
partition a different drive letter. MS-DOS versions 3 and 4
were severely limited in the size and number of partitions
they could create, but in MS-DOS 5 the partitioning scheme
fully matured. MS-DOS 5 was able to divide a disk into any
number of partitions of any size.

Windows NT borrowed the partitioning scheme that evolved
in MS-DOS both to provide disk compatibility with MS-DOS
and Windows 3.x and to let the Windows NT development
team rely on proven tools for disk management. Microsoft
extended the basic concepts of MS-DOS disk partitioning in
Windows NT to support storage-management features that
an enterprise-class operating system requires: disk
spanning and fault tolerance. Starting with the first version
of Windows NT, version 3.1, systems administrators have
been able to create volumes that comprise multiple
partitions, which allows large volumes to consist of
partitions from multiple physical disks and to implement
fault tolerance through software-based data redundancy.

Although this MS-DOS-style partitioning support in versions
of Windows NT prior to Windows 2000 is flexible enough to
support most storage-management tasks, it suffers from
several drawbacks. One drawback is that most disk-



configuration changes require a reboot before taking effect.
In today's world of servers that must remain online for
months or even years at a time, any reboot—even a
planned reboot—is a major inconvenience. Another
drawback is that the Windows NT 4 registry stores
multipartition disk-configuration information for MS-DOS-
style partitions. This arrangement means that moving
configuration information is onerous when you move disks
between systems, and you can easily lose configuration
information when you need to reinstall the operating
system. Finally, a requirement that each volume have a
unique drive letter in the A through Z range plagues users
of all Microsoft operating systems prior to Windows 2000
with an upper limit on the number of possible local and
remote volumes they can create.

To fully understand the rest of this chapter, you need to be
familiar with some basic terminology:

Disks are a physical storage device such as a hard disk,
a 3.5-inch floppy disk, or a CD-ROM.

A disk is divided into sectors, addressable blocks of
fixed size. Sector sizes are determined by hardware. All
current x86-processor hard disk sectors are 512 bytes,
and CD-ROM sectors are typically 2048 bytes. (Future
x86 systems might support larger hard disk sector
sizes.)

Partitions are collections of contiguous sectors on a
disk. A partition table or other disk-management
database stores a partition's starting sector, size, and
other characteristics.

Simple volumes are objects that represent sectors from
a single partition that file system drivers manage as a



single unit.

Multipartition volumes are objects that represent
sectors from multiple partitions and that file system
drivers manage as a single unit. Multipartition volumes
offer performance, reliability, and sizing features that
simple volumes do not.



[Previous] [Next]



Partitioning
Windows 2000 introduces the concept of basic and dynamic disks. Windows 2000 calls
disks that rely on the MS-DOS-style partitioning scheme basic disks. In a sense, basic
disks are Windows 2000 legacy disks. Dynamic disks are new to Windows 2000 and
implement a more flexible partitioning scheme than that of basic disks. The fundamental
difference between basic and dynamic disks is that dynamic disks support multipartition
volumes. Recall from the list of terms in the preceding section that multipartition volumes
provide performance, sizing, and reliability features not supported by simple volumes.
Multipartition-volume configuration information for basic disks is stored in the registry;
storage of multipartition-volume configuration information for dynamic disks is on-disk.
Storing multipartition-volume configuration information on-disk rather than in the registry
ties the dynamic disk to the storage it describes, so losing configuration data is less likely
and moving disks between systems is easier.

Windows 2000 manages all disks as basic disks unless you manually create dynamic disks
or convert existing basic disks (with enough free space) to dynamic disks. To encourage
administrators to use dynamic disks, Microsoft has imposed some usage limitations on
basic disks. For example, you can create new multipartition volumes only on dynamic
disks. (If you upgrade a Windows NT 4 system, Windows 2000 will support existing
multipartition volumes.) Another limitation is that Windows 2000 lets you dynamically
grow NTFS volumes only on dynamic disks. A disadvantage to dynamic disks is that the
partitioning format they use is proprietary and incompatible with other operating systems,
including all other versions of Windows. Thus, you can't access dynamic disks in a dual-
boot environment.

NOTE

For a number of reasons, including the fact that laptops usually have only one
disk, and laptop disks typically don't move easily between computers, Windows
2000 uses only basic disks on laptops. In addition, only fixed disks can be
dynamic, and disks located on IEEE 1394 or USB buses as well as on shared
cluster server disks are always basic disks.



Basic Partitioning

When you install Windows 2000 on a computer, one of the first things it requires you to
do is to create a partition on the system's primary physical disk. Windows 2000 defines
the system volume on this partition to store the files that it invokes early in the boot
process. In addition, Windows 2000 Setup requires you to create a partition that serves
as the home for the boot volume, onto which the setup program installs the Windows
2000 system files and creates the system directory (\Winnt). The system and boot
volumes can be the same volume, in which case you don't have to create a new partition
for the boot volume. The nomenclature that Microsoft defines for system and boot
volumes is somewhat confusing. The system volume is where Windows 2000 places boot
files, including the boot loader (Ntldr) and Ntdetect, and the boot volume is where
Windows 2000 stores operating system files such as Ntoskrnl.exe, the core kernel file.

The standard BIOS implementations that x86 hardware uses dictate one requirement of
the partitioning format in Windows 2000—that the first sector of the primary disk contains
the master boot record (MBR). When an x86 processor boots, the computer's BIOS reads
the MBR and treats part of the MBR's contents as executable code. The BIOS invokes the
MBR code to initiate an operating system boot process after the BIOS performs
preliminary configuration of the computer's hardware. In Microsoft operating systems,
including Windows 2000, the MBR also contains a partition table. A partition table consists
of four entries that define the locations of as many as four primary partitions on a disk.
The partition table also records a partition's type. Numerous predefined partition types
exist, and a partition's type specifies which file system the partition includes. For
example, partition types exist for FAT32 and NTFS. A special partition type, an extended
partition, contains another MBR with its own partition table. By using extended partitions,
Microsoft's operating systems overcome the apparent limit of four partitions per disk. In
general, the recursion that extended partitions permit can continue indefinitely, which
means that no upper limit exists to the number of possible partitions on a disk. Figure 4-1
shows an example disk-partitioning scenario. The boot process is the first instance in
which Windows 2000 makes evident the distinction between primary and extended
partitions. The system must mark one primary partition of the primary disk as active. The
Windows 2000 code in the MBR loads the code stored in the first sector of the active
partition (the system volume) into memory and then transfers control to that code.
Because of the role in the boot process played by this first sector in the primary partition,
Windows 2000 designates the first sector of any partition as the boot sector. Recall from
Chapter 4 that every partition formatted with a file system has a boot sector that stores
information about the structure of the file system on that partition.



Dynamic Partitioning

As we've stated, dynamic disks are the favored disk format in Windows 2000 and are
necessary for creating new multipartition volumes. The Logical Disk Manager (LDM)
subsystem in Windows 2000, which consists of user-mode and device driver components,
oversees dynamic disks. Microsoft licenses LDM from VERITAS Software, which originally
developed LDM technology for UNIX systems. Working closely with Microsoft, VERITAS
ported its LDM to Windows 2000 to provide the operating system with more robust
partitioning and multipartition volume capabilities. A major difference between LDM's
partitioning and MS-DOS-style partitioning is that LDM maintains one unified database
that stores partitioning information for all the dynamic disks on a system—including
multipartition-volume configuration. LDM's UNIX version incorporates disk groups, in
which all the dynamic disks that the system assigns to a disk group share a common
database. VERITAS's commercial volume-management software for Windows 2000 also
includes disk groups, but the Windows 2000 LDM implementation includes only one disk
group.

The LDM database resides in a 1-MB reserved space at the end of each dynamic disk. The
need for this space is the reason Windows 2000 requires free space at the end of a basic
disk before you can convert it to a dynamic disk. Although the partitioning data of a
dynamic disk resides in the LDM database, LDM implements an MS-DOS-style partition
table so that legacy disk-management utilities, including those that run under Windows
2000 and under other operating systems in dual-boot environments, don't mistakenly
believe a dynamic disk is unpartitioned. Because LDM partitions aren't described in the
MS-DOS-style partition table of a disk, they are called soft partitions; MS-DOS-style
partitions are called hard partitions.

Another reason LDM creates an MS-DOS-style partition table is so that the Windows 2000
boot code can find the system and boot volumes, even if the volumes are on dynamic
disks. (Ntldr, for example, knows nothing about LDM partitioning.) If a disk contains the
system or boot volumes, hard partitions in the MS-DOS partition table describe the
location of those volumes. Otherwise, one hard partition begins at the first cylinder of the
disk (typically 63 sectors into the disk) and extends to the beginning of the LDM
database. LDM marks this partition as type "LDM," an MS-DOS-style partition type new to
Windows 2000. The region encompassed by this place-holding MS-DOS-style partition is
where LDM creates soft partitions that the LDM database organizes. Figure 10-1
illustrates this dynamic disk layout.

Figure 10-1 Internal dynamic disk organization

The LDM database consists of four regions, which Figure 10-2 shows: a header sector that
LDM calls the Private Header, a table of contents area, a database records area, and a
transactional log area. (The fifth region shown in Figure 10-2 is simply a copy of the
Private Header.) The Private Header sector resides 1 MB before the end of a dynamic disk
and anchors the database. As you spend time with Windows 2000, you'll quickly notice
that it uses GUIDs to identify just about everything, and disks are no exception. A GUID

javascript:fullSize('F10yj01x.htm')


(globally unique identifier) is a 128-bit value that various components in Windows 2000
use to uniquely identify objects. LDM assigns each dynamic disk a GUID, and the Private
Header sector notes the GUID of the dynamic disk on which it resides—hence the Private
Header's designation as information that is private to the disk. The Private Header also
stores the name of the disk group, which is the name of the computer concatenated with
Dg0 (for example, SusanDg0 if the computer's name is Susan), and a pointer to the
beginning of the database table of contents. (As mentioned earlier, the Windows 2000
implementation of LDM includes only one disk group, so the disk group name will always
end with Dg0.) For reliability, LDM keeps a copy of the Private Header in the disk's last
sector.

Figure 10-2 LDM database layout

The database table of contents is 16 sectors in size and contains information regarding
the database's layout. LDM begins the database record area immediately following the
table of contents with a sector that serves as the database record header. This sector
stores information about the database record area, including the number of records it
contains, the name and GUID of the disk group the database relates to, and a sequence
number identifier that LDM uses for the next entry it creates in the database. Sectors
following the database record header contain 128-byte fixed-size records that store
entries that describe the disk group's partitions and volumes.

A database entry can be one of four types: partition, disk, component, and volume. LDM
uses the database entry types to identify three levels that describe volumes. LDM
connects entries with internal object identifiers. At the lowest level, partition entries
describe soft partitions, which are contiguous regions on a disk; identifiers stored in a
partition entry link the entry to a component and disk entry. A disk entry represents a
dynamic disk that is part of the disk group and includes the disk's GUID. A component
entry serves as a connector between one or more partition entries and the volume entry
each partition is associated with. A volume entry stores the GUID of the volume, the
volume's total size and state, and a drive-letter hint. Disk entries that are larger than a
database record span multiple records; partition, component, and volume entries rarely
span multiple records.

LDM requires three entries to describe a simple volume: a partition, component, and
volume entry. The following listing shows the contents of a simple LDM database that
defines one 200-MB volume that consists of one partition.

Disk Entry      Volume Entry    Component Entry    Partition Entry 
Name: Disk1     Name: Volume1   Name: Volume1-01   Name: Disk1-01 
GUID: XXX-XX... ID: 0x408       ID: 0x409          ID: 0x407 
Disk ID: 0x404  State: ACTIVE   Parent ID: 0x408   Parent ID: 0x409 
                Size: 200MB                        Disk ID: 0x404 
                GUID: XXX-XX...                    Start: 300MB 
                Drive Hint: H:                     Size: 200MB 

javascript:fullSize('F10yj02x.htm')


The partition entry describes the area on a disk that the system assigned to the volume,
the component entry connects the partition entry with the volume entry, and the volume
entry contains the GUID that Windows 2000 uses internally to identify the volume.
Multipartition volumes require more than three entries. For example, a striped volume
(striped volumes are described later in the chapter) consists of at least two partition
entries, a component entry, and a volume entry. The only volume type that has more
than one component entry is a mirror; mirrors have two component entries, each of
which represents one-half of the mirror. LDM uses two component entries for mirrors so
that when you break a mirror, LDM can split it at the component level, creating two
volumes with one component entry each. Because a simple volume requires three entries
and the 1-MB database contains space for approximately 8000 entries, the effective upper
limit on the number of volumes you can create on a Windows 2000 system is
approximately 2500.

The final area of the LDM database is the transactional log area, which consists of a few
sectors for storing backup database information as the information is modified. This setup
safeguards the database in case of a crash or power failure because LDM can use the log
to return the database to a consistent state.

EXPERIMENT

Using DmDiag to View the LDM Database

The Windows 2000 resource kits include a tool named DmDiag that you can use
to view detailed information about a system's physical disks, the contents of the
LDM database, and the partitioning layout of MS-DOS-style partition tables. In
addition to this disk-related data, DmDiag also dumps the mount points defined
for a system (mount points are described later in this chapter) and the device
objects and symbolic links present in the object manager namespace.

DmDiag takes no command-line options, and its output is usually more than a
few screens in size, so you should pipe its output to a file for viewing in a text
editor, for example, like this: dmdiag > disk.txt. The following figure shows
excerpts of DmDiag output. A description of the types of disks present on the
system is followed by the listing of the LDM database records that describe a 1-
GB simple volume. The volume's database entry is listed as Volume1.



GUID Partition Table Partitioning

As part of an initiative to provide a standardized and extensible firmware
platform for operating systems to use during their boot process, Intel has
designed the Extensible Firmware Interface (EFI) specification. EFI includes a
mini-operating system environment implemented in firmware (typically ROM)
that operating systems use early in the system boot process to load system
diagnostics and their boot code. One of the first targets of EFI is IA-64, so the
64-bit version of Windows 2000 will use EFI. You can find a complete description
of EFI at developer.intel.com/technology/efi.

EFI defines a new partitioning scheme, called the GUID Partition Table (GPT), that
addresses some of the shortcomings of MS-DOS-style partitioning. For example,
the sector addresses that the GPT partition structures use are 64 bits wide
instead of 32 bits. A 32-bit sector address is sufficient to access only 2 terabytes
(TB) of storage. You don't see storage devices with that capacity today, but the
GPT standard is designed with the future in mind. Other advantages of the GPT
scheme include the fact that it uses cyclic redundancy checksums (CRC) to
ensure the integrity of the partition table, and it maintains a backup copy of the
partition table. GPT takes its name from the fact that in addition to storing a 36-
byte Unicode partition name for each partition, it assigns each partition a GUID.

The following figure shows an example GPT partition layout. Like basic and
dynamic disks in Windows 2000, the first sector of a GPT disk is an MBR.

javascript:fullSize('G10yj01x.htm')
http://developer.intel.com/technology/efi


However, the second and last sectors of the disk store the GPT partition tables.
With its extensible list of partitions, GPT partitioning doesn't require nested
partitions, as MS-DOS-style partitions do.

Although the GPT partitioning scheme is an improvement over MS-DOS-style
partitions, it isn't a replacement for Windows 2000 LDM partitioning. Just as
Windows 2000 integrates MS-DOS-style partitions with LDM partitioning areas on
dynamic boot and system disks so that the operating system loader can locate
Windows 2000 boot and system files, LDM will integrate with the GPT partitioning
scheme in 64-bit Windows 2000.

javascript:fullSize('G10yj02x.htm')


[Previous] [Next]



Storage Drivers
As you saw in Chapter 4, Ntldr is the Windows 2000
operating system file that conducts the first portion of the
Windows boot process. Ntldr resides on the system volume;
the boot-sector code on the system volume executes Ntldr.
Ntldr reads the Boot.ini file from the system volume and
presents the computer's boot choices to the user. The
partition names that Boot.ini designates are in the form
multi(0)disk(0)rdisk(0)partition(1). These names are
Advanced RISC Computing (ARC) names because they're
part of a standard partition-naming scheme that Alpha
firmware and other RISC processors use. Ntldr translates
the name of the Boot.ini boot entry that a user selects to
the appropriate boot partition and then loads the Windows
2000 system files (starting with the registry, Ntoskrnl.exe,
and the boot drivers) into memory to continue the boot
process.



Disk Drivers

During initialization, the Windows 2000 I/O manager starts
the hard disk storage drivers. Storage drivers in Windows
2000 follow a class/port/miniport architecture, in which
Microsoft supplies a storage class driver that implements
functionality common to all storage devices and a storage
port driver that implements functionality common to a
particular bus, such as a Small Computer System Interface
(SCSI) bus or an Integrated Devise Electronics (IDE)
system, and OEMs supply miniport drivers that plug into the
port driver to interface Windows 2000 to a particular
implementation.

In the disk storage driver architecture, only class drivers
conform to the standard Windows 2000 device driver
interfaces. Miniport drivers use a port driver interface
instead of the device driver interface, and the port driver
simply implements a collection of device driver support
routines that interface miniport drivers to Windows 2000.
This approach simplifies the role of miniport driver
developers and, because Microsoft supplies operating
system-specific port drivers, gives miniport drivers binary
portability between Windows 98, Windows Millennium
Edition, and Windows 2000.

Windows 2000 includes Disk
(\Winnt\System32\Drivers\Disk.sys), a class driver that
implements functionality common to disks. Windows 2000
also provides a handful of disk port drivers. For example,
Scsiport.sys is the port driver for disks on SCSI buses, and
Pciidex.sys is a port driver for IDE-based systems. Windows
2000 ships with several miniport drivers, including one—
Aha154x.sys—for Adaptec's 1540 family of SCSI controllers.
On systems that have at least one ATAPI-based IDE device,



one driver—Atapi.sys—combines port and miniport
functionality. Most Windows 2000 installations include one
or more of the drivers mentioned.



Device Naming

The Windows 2000 disk class driver creates device objects
that represent disks and partitions. Device objects that
represent disks have names of the form
\Device\HarddiskX\DRX; the number that identifies the disk
replaces both Xs. The disk class driver uses the I/O
manager's IoReadPartitionTable function to identify device
objects that represent partitions. As miniport drivers
present the disks that they identify early in the boot process
to the disk class driver, the disk class driver invokes the
IoReadPartitionTable function for each disk.
IoReadPartitionTable invokes sector-level disk I/O that the
class, port, and miniport drivers provide to read a disk's
MS-DOS-style partition table and construct an internal
representation of the disk's hard partitioning. The disk class
driver creates device objects to represent each primary
partition (including primary partitions within extended
partitions) that the driver obtains from
IoReadPartitionTable. The following is an example partition
object name:

\Device\Harddisk0\DP(1)0x7e000-0x7ff50c00+2

This name identifies the first partition on a system's first
disk. The first two hexadecimal numbers (0x7e000 and
0x7ff50c00) designate the start and length of the partition,
and the last number is an internal identifier that the class
driver assigns.

To maintain compatibility with applications that use the
Windows NT 4 naming conventions, the disk class driver
creates symbolic links with Windows NT 4-formatted names
that refer to the device objects the driver created. For
example, the Disk class driver creates the link



\Device\Harddisk0\Partition0 to refer to
\Device\Harddisk0\DR0, and \Device\Harddisk0\Partition1
to refer to the first partition device object of the first disk.
The class driver also creates the same Win32 symbolic links
in Windows 2000 that represent physical drives that it
created in Windows NT 4 systems. Thus, for example, the
link \??\PhysicalDrive0 references \Device\Harddisk0\DR0.
Figure 10-3 shows the Winobj utility (available on the
companion CD in \Sysint\Winobj.exe) displaying the
contents of a Harddisk directory for a basic disk. You can
see the physical disk and partition device objects in the
right-hand pane.

Figure 10-3 Winobj showing a Harddisk directory of a basic
disk

As you saw in Chapter 3, the Win32 API is unaware of the
Windows 2000 object manager namespace. Windows 2000
reserves two different namespace subdirectories for Win32
to use, one of which is the \?? subdirectory. (The other is
the \BaseNamedObjects subdirectory, which is covered in
Chapter 3.) In this subdirectory, Windows 2000 makes

javascript:fullSize('F10yj03x.htm')


available device objects that Win32 applications interact
with—including COM and parallel ports—as well as disks.
Because disk objects actually reside in other subdirectories,
Windows 2000 uses symbolic links to connect names under
\?? with objects located elsewhere in the namespace. For
each physical disk on a system, the I/O manager creates a
\??\PhysicalDriveX link that points to
\Device\HarddiskX\Partition0. (Numbers, starting from 0,
replace X.) Win32 applications that directly interact with the
sectors on a disk open the disk by calling the Win32
CreateFile function and specifying the name
\\.\PhysicalDriveX (in which X is the disk number) as a
parameter. The Win32 application layer converts the name
to \??\PhysicalDriveX before handing the name to the
Windows 2000 object manager.



Basic Disk Management

The FtDisk driver (\Winnt\System32\Drivers\Ftdisk.sys)
creates disk device objects that represent volumes on basic
disks. FtDisk is present in Windows NT 4 only when at least
one multipartition volume is present; in Windows 2000,
FtDisk plays an integral role in managing all basic disk
volumes, including simple volumes. For each volume, FtDisk
creates a device object of the form
\Device\HarddiskVolumeX, in which X is a number (starting
from 1) that identifies the volume. FtDisk uses the basic
disk configuration information that the registry key
HKLM\SYSTEM\Disk stores to determine what basic
volumes, multipartition and otherwise, a system includes.
Note that the Disk key is only on Windows 2000 systems
that were upgraded from Windows NT 4 (or Windows 98)
and that already had a Disk key from previous disk-
management activity (such as assigning drive letters to
volumes or creating multipartition volumes). To avoid
reliance on the registry, FtDisk migrates configuration
information from the Disk key to hidden sectors on disk.

FtDisk is actually a bus driver because it's responsible for
enumerating basic disks to detect the presence of basic
volumes and report them to the Windows 2000 Plug and
Play manager. To implement this enumeration, FtDisk
leverages the Plug and Play manager, with the aid of the
partition manager (Partmgr.sys) driver, to determine what
basic disk partitions exist. The partition manager registers
with the Plug and Play manager so that Windows 2000 can
inform the partition manager whenever the disk class driver
creates a partition device object. The partition manager
informs FtDisk about new partition objects through a private
interface and creates filter device objects that the partition
manager then attaches to the partition objects. The



existence of the filter objects prompts Windows 2000 to
inform the partition manager whenever a partition device
object is deleted so that the partition manager can update
FtDisk. The disk class driver deletes a partition device
object when a partition in the Disk Management Microsoft
Management Console (MMC) snap-in is deleted. As FtDisk
becomes aware of partitions, it uses the basic disk
configuration information to determine the correspondence
of partitions to volumes and creates a volume device object
when it has been informed of the presence of all the
partitions in a volume's description.

Windows 2000 volume drive-letter assignment, a process
described shortly, creates drive-letter symbolic links under
the \?? object manager directory that point to the volume
device objects that FtDisk creates. When the system or an
application accesses a volume for the first time, Windows
2000 performs a mount operation that gives file system
drivers the opportunity to recognize and claim ownership for
volumes formatted with a file system type they manage.
(Mount operations are described in the section "Volume
Mounting" later in this chapter.)



Dynamic Disk Management

The Disk Management MMC snap-in DLL (DMDiskManager,
located in Winnt\System32\Dmdskmgr.dll), shown in Figure
10-4, uses the DMAdmin, the LDM Disk Administrator
service (Winnt\System32\Dmadmin.exe) to create and
change the contents of the LDM database. When you launch
the Disk Management MMC snap-in, DMDiskManager loads
into memory and starts DMAdmin, if it's not already
running. DMAdmin reads the LDM database from each disk
and returns the information it obtains to DMDiskManager. If
DMAdmin detects a database from another computer's disk
group, it notes that the volumes on the disk are foreign and
lets you import them into the current computer's database
if you want to use them. As you change the configuration of
dynamic disks, DMDiskManager informs DMAdmin of the
changes and DMAdmin updates its in-memory copy of the
database. When DMAdmin commits changes, it passes the
updated database to DMIO, the Dmio.sys device driver.
DMIO is the dynamic disk equivalent of FtDisk, so it controls
access to the on-disk database and creates device objects
that represent the volumes on dynamic disks. When you
exit Disk Management, DMDiskManager stops and unloads
the DMAdmin service.



Figure 10-4 Disk Management MMC snap-in

DMIO doesn't know how to interpret the database it
oversees. DMConfig (Winnt\System32\Dmconfig.dll), a DLL
that DMAdmin loads, and another device driver, DMBoot
(Dmboot.sys), are responsible for interpreting the database.
DMConfig knows how to both read and update the
database; DMBoot knows only how to read the database.
DMBoot loads during the boot process if another LDM driver,
DMLoad (Dmload.sys), determines that at least one
dynamic disk is present on the system. DMLoad makes this
determination by asking DMIO, and if at least one dynamic
disk is present, DMLoad starts DMBoot, which scans the
LDM database. DMBoot informs DMIO of the composition of
each volume it encounters so that DMIO can create device
objects to represent the volumes. DMBoot unloads from
memory immediately after it finishes its scan. Because
DMIO has no database interpretation logic, it is relatively
small. Its small size is beneficial because DMIO is always
loaded.

Like FtDisk, DMIO is a bus driver and creates a device
object for each dynamic disk volume with a name in the

javascript:fullSize('F10yj04x.htm')


form
\Device\HarddiskDmVolumes\PhysicalDmVolumes\BlockVolu
meX, in which X is an identifier that DMIO assigns to the
volume. In addition, DMIO creates another device object
that represents raw (unstructured) I/O in a volume named
\Device\HarddiskDmVolumes\PhysicalDmVolumes\RawVolu
meX. Figure 10-5 shows the device objects that DMIO
created on a system that consists of two dynamic disk
volumes. DMIO also creates numerous symbolic links in the
object manager namespace for each volume, starting with
one link in the form
\Device\HarddiskDmVolumes\ComputerNameDg0\VolumeY
for each volume. DMIO replaces ComputerName with the
name of the computer, and replaces Y with a volume
identifier (different from the internal identifier that DMIO
assigns to the device objects). These links refer to the
block-device objects under the PhysicalDmVolumes
directory.

Figure 10-5 DMIO driver device objects

javascript:fullSize('F10yj05x.htm')


Disk Performance Monitoring

Windows 2000 I/O architecture permits the dynamic
layering of device objects, which Chapter 9 describes in
detail. A device driver can create a device object and attach
it to a target device object. The I/O manager routes
requests directed at a target device object to that object's
attached device object, if one exists. Device drivers use this
mechanism to monitor, augment, or change the behavior of
device objects that belong to other device drivers. A driver
that relies on layering is a filter driver, and when a filter
driver receives an I/O request packet (IRP) aimed at a
target device, the filter driver has full control over the
request. The filter driver can fail the request, create new
subrequests, or pass the unmodified request to the target
device. (IRPs are covered in more detail in Chapter 9.)

Windows 2000 storage drivers commonly use layering in
two places. The first place involves file system filter drivers.
At the highest level, file system filter drivers attach to the
target device objects that represent mounted partitions that
file system drivers create. A file system filter driver
therefore intercepts requests aimed at mounted volumes so
that the driver can implement functionality such as
monitoring, encryption, or on-access virus scanning. File
Monitor, a utility included on the companion CD under
\Sysint\Filemon.exe, is an example of a file system filter
driver.

The second place storage drivers commonly use layering is
to implement monitoring. Windows 2000 includes a layered
storage driver named DiskPerf (Disk Performance driver -
\Winnt\System32\Drivers\Diskperf.sys) to do this. DiskPerf
attaches to the device objects that represent physical disks
(for example, \Device\Harddisk0\Partition0) so that it can



generate performance-related statistics for the Performance
tool to present. Statistics include bytes read and written per
second, transfers per second, and the amount of time spent
performing disk I/O.



[Previous] [Next]



Multipartition Volume Management
FtDisk and DMIO are responsible for presenting volumes that
file system drivers manage and for mapping I/O directed at
volumes to the underlying partitions that they're made of.
For simple volumes, this process is straightforward: the
volume manager ensures that volume-relative offsets are
translated to disk-relative offsets by adding the volume-
relative offset to the volume's starting disk offset.

Multipartition volumes are more complex because the
partitions that make up a volume can be located on
discontiguous partitions or even on different disks. Some
types of multipartition volumes use data redundancy, so
they require more involved volume-to-disk-offset translation.
Thus, FtDisk and DMIO must process all I/O requests aimed
at the multipartition volumes they manage by determining
which partitions the I/O ultimately affects.

The following types of multipartition volumes are available in
Windows 2000:

Spanned volumes

Mirrored volumes

Striped volumes

RAID-5 volume

After describing multipartition-volume partition configuration
and logical operation for each of the multipartition-volume
types, we'll cover the way that the FtDisk and DMIO drivers
handle IRPs that a file system driver sends to multipartition
volumes. The term volume manager is used to represent
both FtDisk and DMIO throughout the explanation of



multipartition volumes, because both FtDisk and DMIO
support the same multipartition-volume types.



Spanned Volumes

A spanned volume is a single logical volume composed of a
maximum of 32 free partitions on one or more disks. The
Windows 2000 Disk Management MMC snap-in combines the
partitions into a spanned volume, which can then be
formatted for any of the Windows 2000-supported file
systems. Figure 10-6 shows a 100-MB spanned volume
identified by drive letter D: that has been created from the
last third of the first disk and the first third of the second.
Spanned volumes were called "volume sets" in Windows NT
4.

Figure 10-6 Spanned volume

A spanned volume is useful for consolidating small areas of
free disk space into one larger volume or for creating a
single, large volume out of two or more small disks. If the
spanned volume has been formatted for NTFS, it can be
extended to include additional free areas or additional disks
without affecting the data already stored on the volume.
This extensibility is one of the biggest benefits of describing
all data on an NTFS volume as a file. NTFS can dynamically
increase the size of a logical volume because the bitmap that
records the allocation status of the volume is just another
file—the bitmap file. The bitmap file can be extended to
include any space added to the volume. Dynamically
extending a FAT volume, on the other hand, would require

javascript:fullSize('F10yj06x.htm')


the FAT itself to be extended, which would dislocate
everything else on the disk.

A volume manager hides the physical configuration of disks
from the file systems installed on Windows 2000. NTFS, for
example, views volume D: in Figure 10-6 as an ordinary
100-MB volume. NTFS consults its bitmap to determine what
space in the volume is free for allocation. It then calls the
volume manager to read or write data beginning at a
particular byte offset on the volume. The volume manager
views the physical sectors in the spanned volume as
numbered sequentially from the first free area on the first
disk to the last free area on the last disk. It determines
which physical sector on which disk corresponds to the
supplied byte offset.



Striped Volumes

A striped volume is a series of up to 32 partitions, one
partition per disk, that combines into a single logical volume.
Striped volumes are also known as RAID level 0 (RAID-0)
volumes. Figure 10-7 shows a striped volume consisting of
three partitions, one on each of three disks. (A partition in a
striped volume need not span an entire disk; the only
restriction is that the partitions on each disk be the same
size.)

Figure 10-7 Striped volume

To a file system, this striped volume appears to be a single
450-MB volume, but a volume manager optimizes data
storage and retrieval times on the striped volume by
distributing the volume's data among the physical disks. The
volume manager accesses the physical sectors of the disks
as if they were numbered sequentially in stripes across the
disks, as illustrated in Figure 10-8.

javascript:fullSize('F10yj07x.htm')


Figure 10-8 Logical numbering of physical sectors on a
striped volume

Because each stripe is a relatively narrow 64 KB (a value
chosen to prevent individual reads and writes from accessing
two disks), the data tends to be distributed evenly among
the disks. Stripes thus increase the probability that multiple
pending read and write operations will be bound for different
disks. And because data on all three disks can be accessed
simultaneously, latency time for disk I/O is often reduced,
particularly on heavily loaded systems.

Spanned volumes make managing disk volumes more
convenient, and striped volumes spread the I/O load over
multiple disks. These two volume-management features
don't provide the ability to recover data if a disk fails,
however. For data recovery, a volume manager implements
three redundant storage schemes: mirrored volumes, RAID-
5 volumes, and sector sparing. (Sector sparing and NTFS
support for sector sparing are described in Chapter 12.)
These features are created with the Windows 2000 Disk
Management administrative tool.

javascript:fullSize('F10yj08x.htm')


Mirrored Volumes

In a mirrored volume, the contents of a partition on one disk
are duplicated in an equal-sized partition on another disk.
Mirrored volumes are sometimes referred to as RAID level 1
(RAID-1). A mirrored volume is shown in Figure 10-9.

Figure 10-9 Mirrored volume

When a program writes to drive C:, the volume manager
writes the same data to the same location on the mirror
partition. If the first disk or any of the data on its C:
partition becomes unreadable because of a hardware or
software failure, the volume manager automatically accesses
the data from the mirror partition. A mirror volume can be
formatted for any of the Windows 2000-supported file
systems. The file system drivers remain independent and
are not affected by the volume manager's mirroring activity.

Mirrored volumes can aid in I/O throughput on heavily
loaded systems. When I/O activity is high, the volume
manager balances its read operations between the primary
partition and the mirror partition (accounting for the number
of unfinished I/O requests pending from each disk). Two
read operations can proceed simultaneously and thus
theoretically finish in half the time. When a file is modified,
both partitions of the mirror set must be written, but disk
writes are done asynchronously, so the performance of user-



mode programs is generally not affected by the extra disk
update.

Mirrored volumes are the only multipartition volume type
supported for system and boot volumes. The reason for this
is that the Windows 2000 boot code, including the MBR code
and Ntldr, don't have the sophistication required to
understand multipartition volumes—mirrored volumes are
the exception because the boot code treats them as simple
volumes, reading from the half of the mirror marked as the
boot or system drive in the MS-DOS-style partition table.
Because the boot code doesn't modify the disk, it can safely
ignore the other half of the mirror.

EXPERIMENT

Watching Mirrored Volume I/O Operations

Using the Windows 2000 Performance tool, you can
verify that write operations directed at mirrored
volumes copy to both disks that make up the mirror
and that read operations, if relatively infrequent,
occur primarily from one half of the volume. This
experiment requires three hard disks and Windows
2000 Server, Windows 2000 Advanced Server, or
Windows 2000 Datacenter Server. If you don't have
three disks or a server system, you can skip the
experiment setup instructions and view the
Performance tool screen shot in this experiment that
demonstrates the experiment's results.

Use the Disk Management MMC snap-in to create a
mirrored volume. To do this, perform the following
steps:



1. Run Disk Management by starting Computer
Management, expanding the Storage tree, and
selecting Disk Management (or by inserting Disk
Management as a snap-in in an MMC console).

2. Right-click on an unallocated space of a drive,
and select Create Volume.

3. Follow the instructions in the Create Volume
wizard to create a simple volume. (Make sure
there's enough room on another disk for a
volume of the same size as the one you're
creating.)

4. Right-click on the new volume and select Add
Mirror from the context menu.

Once you have a mirrored volume, run the
Performance tool and add counters for the
PhysicalDisk performance object for both disk
instances that contain a partition belonging to the
mirror. Select the Disk Reads/Sec and Disk
Writes/Sec counters for each instance. Select a large
directory from the third disk (the one that isn't part
of the mirrored volume) and copy it to the mirrored
volume. The Performance tool output window should
look something like this as the copy operation
progresses:



The top two lines, which overlap throughout the
timeline, are the Disk Writes/Sec counters for each
disk. The bottom two lines are the Disk Reads/Sec
lines. The screen shot reveals that the volume
manager (in this case DMIO) is writing the copied file
data to both halves of the volume but primarily
reading from only one. This read behavior occurs
because the number of outstanding I/O operations
during the copy didn't warrant that the volume
manager perform more aggressive read-operation
load balancing.

javascript:fullSize('G10yj03x.htm')


RAID-5 Volumes

A RAID-5 volume is a fault tolerant variant of a regular
striped volume. RAID5 volumes implement RAID level 5.
They are also known as striped volume with parity because
they are based on the striping approach taken by striped
volumes. Fault tolerance is achieved by reserving the
equivalent of one disk for storing parity for each stripe.
Figure 10-10 is a visual representation of a RAID5 volume.

Figure 10-10 RAID-5 volume

In Figure 10-10, the parity for stripe 1 is stored on disk 1. It
contains a byte-for-byte logical sum (XOR) of the first stripe
on disks 2 and 3. The parity for stripe 2 is stored on disk 2,
and the parity for stripe 3 is stored on disk 3. Rotating the
parity across the disks in this way is an I/O optimization
technique. Each time data is written to a disk, the parity
bytes corresponding to the modified bytes must be
recalculated and rewritten. If the parity were always written
to the same disk, that disk would be busy continually and
could become an I/O bottleneck.

Recovering a failed disk in a RAID-5 volume relies on a
simple arithmetic principle: in an equation with n variables,
if you know the value of n - 1 of the variables, you can

javascript:fullSize('F10yj10x.htm')


determine the value of the missing variable by subtraction.
For example, in the equation x + y = z, where z represents
the parity stripe, the volume manager computes z - y to
determine the contents of x; to find y, it computes z - x. The
volume manager uses similar logic to recover lost data. If a
disk in a RAID-5 volume fails or if data on one disk becomes
unreadable, the volume manager reconstructs the missing
data by using the XOR operation (bitwise logical addition).

If disk 1 in Figure 10-10 fails, the contents of its stripes 2
and 5 are calculated by XORing the corresponding stripes of
disk 3 with the parity stripes on disk 2. The contents of
stripes 3 and 6 on disk 1 are similarly determined by XORing
the corresponding stripes of disk 2 with the parity stripes on
disk 3. At least three disks (or rather, three same-sized
partitions on three disks) are required to create a RAID-5
volume.



Volume I/O Operations

File system drivers manage data stored on volumes but rely
on volume managers to interact with storage drivers to
transfer data to and from the disk or disks on which a
volume resides. File system drivers obtain references to a
volume manager's volume objects through the mount
process (described later in this chapter) and then send the
volume manager requests via the volume objects.
Applications can also send the volume manager requests,
bypassing file system drivers, when they want to directly
manipulate a volume's data. File-undelete programs are an
example of applications that do this, and so is the DiskProbe
utility that's part of the Windows 2000 resource kits.

Whenever a file system driver or application sends an I/O
request to a device object that represents a volume, the
Windows 2000 I/O manager routes the request (which
comes in an IRP—a self-contained package) to the volume
manager that created the target device object. Thus, if an
application wants to read the boot sector of the second
volume on the system, it opens the device object
\Device\HarddiskVolume2 and then sends the object a
request to read 512 bytes starting at offset zero on the
device. The I/O manager sends the application's request in
the form of an IRP to the volume manager that owns the
device object, notifying it that the IRP is directed at the
HarddiskVolume2 device.

Because partitions are logical conveniences that Windows
2000 uses to represent contiguous areas on a physical disk,
the volume manager must translate offsets that are relative
to a partition to offsets that are relative to the beginning of a
disk. If partition 2 begins 3449 sectors into the disk, the
volume manager would adjust the IRP's parameters to



designate an offset with that value before passing the
request to the disk class driver. The disk class driver uses a
miniport driver to carry out physical disk I/O and read
requested data into an application buffer designated in the
IRP.

Some examples of a volume manager's operations will help
clarify its role when it handles requests aimed at
multipartition volumes. If a striped volume consists of two
partitions, partition 1 and partition 2, that are represented
by the device object
\Device\HarddiskDmVolumes\PhysicalDmVolumes\BlockVolu
me3 , as Figure 10-11 shows, and an administrator has
assigned drive letter D to the stripe, the I/O manager
defines the link \??\D: to reference
\Device\HarddiskDmVolumes\ComputerNameDg0\Volume3,
where ComputerName is the name of the computer. Recall
from earlier that this link is also a symbolic link, and it
points to the corresponding volume device object in the
PhysicalDmVolumes directory (in this case, BlockVolume3).
The DMIO device object intercepts file system disk I/O
aimed at
\Device\HarddiskDmVolumes\PhysicalDmVolumes\BlockVolu
me3, and the DMIO driver adjusts the request before
passing it to the Disk class driver. The adjustment DMIO
makes configures the request to refer to the correct offset of
the request's target stripe on either partition 1 or partition 2.
If the I/O spans both partitions of the volume, DMIO must
issue two subsidiary I/O requests, one aimed at each disk.



Figure 10-11 DMIO I/O operations

In the case of writes to a mirrored volume, DMIO splits each
request so that each half of the mirror receives the write
operation. For mirrored reads, DMIO performs a read from
half of a mirror, relying on the other half when a read
operation fails.

javascript:fullSize('F10yj11x.htm')


[Previous] [Next]



The Volume Namespace
Drive-letter assignment is an aspect of storage management that changed significantly
from Windows NT 4 to Windows 2000. Even so, Windows 2000 includes support for
migrating drive-letter assignments made in a Windows NT 4 installation that upgrades
to Windows 2000. Windows NT 4 drive-letter assignments are stored in
HKLM\SYSTEM\Disk. After the upgrade procedure reads and stores the information in
Windows 2000-specific locations, the system no longer references the Disk key.

As part of drive-letter assignment for volumes on basic disks, the I/O manager
executes the IoAssignDriveLetters function during the boot. IoAssignDriveLetters
initiates an assignment process that creates drive-letter symbolic links in the \?? object
manager directory and honors any assignments made in Windows NT 4.
IoAssignDriveLetters assigns drive letters only for volumes on basic disks identified in
the Disk key because only those volumes rely on the MS-DOS-style partitioning that
Windows NT 4 uses.



The Mount Manager

A new driver in Windows 2000, the Mount Manager (Mountmgr.sys), assigns drive
letters for dynamic disk volumes and for basic disk volumes created after Windows
2000 is installed. Windows 2000 stores all drive-letter assignments under
HKLM\SYSTEM\MountedDevices. If you look in the registry under that key, you'll see
values with names such as \??\Volume{X} (where X is a GUID) and values such as ??
\C:. Every volume has a volume name entry, but a volume doesn't necessarily have an
assigned drive letter. Figure 10-12 shows the contents of an example Mount Manager
registry key. Note that the MountedDevices key, like the Disk key in Windows NT 4,
isn't included in a control set and so isn't protected by the last known good boot option.
(See the section "Accepting the Boot and Last Known Good" in Chapter 5 for more
information on control sets and the last known good boot option.)

Figure 10-12 Mounted devices listed in the Mount Manager's registry key

The data that the registry stores in values for basic disk volume drive letters and
volume names is the Windows NT 4-style disk signature and the starting offset of the
first partition associated with the volume. The data that the registry stores in values for
dynamic disk volumes includes the volume's DMIO internal GUID. When the Mount
Manager initializes during the boot process, it registers with the Windows 2000 Plug
and Play subsystem so that it receives notification whenever either FtDisk or DMIO
creates a volume. When the Mount Manager receives such a notification, it determines
the new volume's GUID or disk signature and then asks either FtDisk or DMIO
(whichever created the volume) for a suggested drive-letter assignment. FtDisk doesn't
return suggestions (as it does during an upgrade from Windows NT 4 when it queries
the Windows NT 4 HKLM\SYSTEM\Disk key), and DMIO looks at the drive-letter hint in
the volume's database entry.

If no suggested drive-letter assignment exists for the volume, the Mount Manager uses
the volume GUID or signature as a guide and looks in its internal database, which
reflects the contents of the registry key. The Mount Manager then determines whether
its internal database contains the drive-letter assignment. If it doesn't, the Mount
Manager uses the first unassigned drive letter (if one exists), defines a new
assignment, creates a symbolic link for the assignment (for example, \??\D:), and
updates the MountedDevices registry key. If there are no available drive letters, no
drive letter assignment is made. At the same time, the Mount Manager creates a
volume symbolic link (that is, \??\Volume{X}) that defines a new volume GUID, if the
volume doesn't already have one. This GUID is different from the volume GUIDs that
DMIO uses internally.

javascript:fullSize('F10yj12x.htm')


The Mount Manager also maintains the Mount Manager remote database on every NTFS
volume, in which the Mount Manager records any mount points defined for that
volume. The database file, $MountMgrRemoteDatabase, resides in the NTFS root
directory. Mount points move when a disk moves from one system to another and in
dual-boot environments (that is, when booting between multiple Windows 2000
installations) because of the Mount Manager remote database's existence. NTFS also
keeps track of mount points in the NTFS metadata file \$Extend\$Reparse. (NTFS
doesn't make any of its metadata files available for viewing by applications.) NTFS
stores mount-point information in the metadata file so that Windows 2000 can easily
enumerate the mount points defined for a volume when a Win32 application, such as
Disk Management, requests mount-point definitions.



Mount Points

Mount points, a mechanism new to Windows 2000, let you link volumes through
directories on NTFS volumes, which makes volumes with no drive-letter assignment
accessible. For example, an NTFS directory that you've named C:\Projects could mount
another volume (NTFS or FAT) that contains your project directories and files. If your
project volume had a file you named CurrentProject\Description.txt, you could access
the file through the path C:\Projects\CurrentProject\Description.txt. What makes
mount points possible is reparse point technology. (Reparse points are discussed in
more detail in Chapter 12.)

A reparse point is a block of arbitrary data with some fixed header data that Windows
2000 associates with an NTFS file or directory. An application or the system defines the
format and behavior of a reparse point, including the value of the unique reparse point
tag that identifies reparse points belonging to the application or system and specifies
the size and meaning of the data portion of a reparse point. (The data portion can be
as large as 16 KB.) Reparse points store their unique tag in a fixed segment. Any
application that implements a reparse point must supply a file system filter driver to
watch for reparse-related return codes for file operations that execute on NTFS
volumes, and the driver must take appropriate action when it detects the codes. NTFS
returns a reparse status code whenever it processes a file operation and encounters a
file or directory with an associated reparse point.

The Windows 2000 NTFS file system driver, the I/O manager, and the object manager
all partly implement reparse point functionality. The object manager initiates
pathname-parsing operations by using the I/O manager to interface with file system
drivers. Therefore, the object manager must retry operations for which the I/O
manager returns a reparse status code. The I/O manager implements pathname
modification that mount points and other reparse points might require, and the NTFS
file system driver must associate and identify reparse point data with files and
directories. You can therefore think of the I/O manager as the reparse point file system
filter driver for many Microsoft-defined reparse points.

An example of a reparse point application is a Hierarchical Storage Management (HSM)
system that uses reparse points to designate files that an administrator moves to
offline tape storage. When a user tries to access an offline file, the HSM filter driver
detects the reparse status code that NTFS returns, communicates with a user-mode
service to retrieve the file from offline storage, deletes the reparse point from the file,
and lets the file operation retry after the service retrieves the file. This is exactly how
the Windows 2000 Remote Storage Services (RSS) filter driver, Rsfilter.sys, uses
reparse points.

If the I/O manager receives a reparse status code from NTFS, and the file or directory
for which NTFS returned the code isn't associated with one of a handful of built-in
Windows 2000 reparse points, no filter driver claimed the reparse point. The I/O
manager then returns an error to the object manager that propagates as a "file cannot
be accessed by the system" error to the application making the file or directory access.

Mount points are reparse points that store a volume name ( \??\Volume{X}) as the
reparse data. When you use the Disk Management MMC snap-in to assign or remove
path assignments for volumes, you're creating mount points. You can also use the



built-in command-line tool Mountvol.exe (\Winnt\System32\Mountvol.exe) to create
and display mount points.

EXPERIMENT

Recursive Mount Points

This experiment uses Filemon (available on the companion CD as
\Sysint\Filemon.exe) to show the interesting behavior caused by a recursive
mount point. A recursive mount point is a mount point that links to the same
volume it's on. Performing a recursive directory listing on a recursive mount
point produces file access traces that clearly demonstrate how NTFS treats
mount points.

To create and view a mount point, perform the following steps:

1. Open a Command Prompt or Windows Explorer window and create a
directory on an NTFS drive named \Recurse.

2. In the Disk Management MMC snap-in, right-click on the volume and select
Change Drive Letter And Path.

3. When the Add/Remove dialog box appears, enter the path to the directory
you created (for example, I:\Recurse).

4. Start Filemon, and in the Drives menu, uncheck all the volumes except the
one on which you created the mount point.

Now you're ready to generate a recursive mount-point trace. Open a Command
Prompt and execute the command dir /s I:\Recurse. If you look at all the file
accesses that reference Recurse in the Filemon's trace of the subsequent file
operations, you'll notice that the Command Prompt first accesses I:\Recurse,
then I:\Recurse\Recurse, and so on, recursing deeper and deeper.

The application attempts to perform a directory listing at each level of the
recursion, but whenever it encounters the mount point it digs into it to try
another directory listing. NTFS returns a reparse status code, which tells the
object manager to back up one level and try again. Finally, when it gets back
to the root directory, the application examines the file or directory that it had
found deep in the mount-point recursion. The application never receives a
reparse code because of the object manager-directed retry activity. The object
manager processes the reparse codes as it receives them from NTFS when it
performs directory lookups.

Filemon presents request types as their native IRP type, so a directory or file
open appears as an IRP_MJ_CREATE request. A file or directory close is
IRP_MJ_CLOSE, and a directory query is an IRP_MJ_DIRECTORY_CONTROL
request with FileBothDirectoryInfo in Filemon's Other column.



To prevent buffer overflows and infinite loops, both Command Prompt and
Windows Explorer halt their recursion when the directory depth reaches 32 or
the pathname exceeds 256 characters, whichever comes first.

javascript:fullSize('G10yj04x.htm')


Volume Mounting

Because Windows 2000 assigns a drive letter to a partition doesn't mean that the
partition contains data that has been organized in a file system format that Windows
2000 recognizes. The volume-recognition process consists of a file system claiming
ownership for a partition; the process takes place the first time the kernel, a device
driver, or an application accesses a file or directory on a partition. After a file system
driver signals its responsibility for a partition, the I/O manager directs all IRPs aimed at
the partition to the owning driver. Mount operations in Windows 2000 consist of three
components: file system driver registration, volume parameter blocks (VPBs), and
mount requests.

The I/O manager oversees the mount process and is aware of available file system
drivers because all file system drivers register with the I/O manager when they
initialize. The I/O manager provides the IoRegisterFileSystem function to local disk
(rather than network) file system drivers for this registration. When a file system driver
registers, the I/O manager stores a reference to the driver in a list that the I/O
manager uses during mount operations.

Every device object contains a VPB data structure, but the I/O manager treats VPBs as
meaningful only for partition device objects. A VPB serves as the link between a
partition device object and the device object that a file system driver creates to
represent a mounted file system instance for that partition. If a VPB's file system
reference is empty, no file system has mounted the partition. The I/O manager checks
a partition device object's VPB whenever an open API that specifies a filename or
directory name on a partition device object executes.

For example, if the mount manager assigns drive letter D to the second partition on a
system, it creates a \??\D: symbolic link that resolves to the device object
\Device\HarddiskVolume2. A Win32 application that attempts to open the
\Temp\Test.txt file on the D drive specifies the name D:\Temp\Test.txt, which the
Win32 subsystem converts to \??\D:\Temp\Test.txt before invoking NtCreateFile, the
kernel's file-open routine. NtCreateFile uses the object manager to parse the name,
and the object manager encounters the \Device\HarddiskVolume2 device object with
the path \Temp\Test.txt still unresolved. At that point, the I/O manager checks to see
whether \Device\HarddiskVolume2's VPB references a file system. If it doesn't, the I/O
manager asks each registered file system driver via a mount request whether the
driver recognizes the format of the partition in question as the driver's own.

EXPERIMENT

Looking at VPBs

You can look at the contents of a VPB by using the !vpb kernel debugger
command. Because the VPB is pointed to by the device object for a volume,
you must first locate a volume device object. To do this, you must dump a
volume manager's driver object, locate a device object that represents a
volume, and display the device object, which reveals its VPB field.



If your system has a dynamic disk, you can use the !drvobj driver object
viewing command on the DMIO driver; otherwise, you need to specify the
FtDisk driver. Here's an example:

kd> !drvobj ftdisk 
Driver object (818aec50) is for: 
 \Driver\Ftdisk 
Driver Extension List: (id , addr) 
 
Device Object list: 
818a5290  817e96f0  817e98b0  817e9030 
818a73b0  818a7810  8182d030 

The !drvobj command lists the addresses of the device objects a driver owns.
In this example, there are seven device objects. One of them represents the
programmatic interface to the device driver, and the rest are volume device
objects. Because the objects are listed in reverse order of the way that they
were created, and the driver creates the device driver interface object first,
you know the first device object listed is that of a volume. Now execute the
!devobj kernel debugger command on the volume device object address:

kd> !devobj 818a5290 
Device object (818a5290) is for: 
 HarddiskVolume6 \Driver\Ftdisk DriverObject 818aec50 
Current Irp 00000000 RefCount 3 Type 00000007 Flags 00001050 
Vpb 818a5da8 DevExt 818a5348 DevObjExt 818a53f8 Dope 818a50a8  
  DevNode 818a5ae8 
ExtensionFlags (0xa0000000) 
                             Unknown flags 0xa0000000 

The !devobj command shows the VPB field for the volume device object. (The
device object shown is named HarddiskVolume6.) Now you're ready to execute
the !vpb command:

kd> !vpb 818a5da8 
Vpb at 0x818a5da8 
Flags: 0x1 mounted 
DeviceObject: 0x850dcac0 
RealDevice:   0x818a5290 
RefCount: 3 
Volume Label:      GAMES 

The command reveals that the volume device object is mounted by a file
system driver that has assigned the volume the name GAMES. The RealDevice
field in the VPB points back to the volume device object, and the DeviceObject
field points to the mounted file system device object.



The convention followed by file system drivers for recognizing volumes mounted with
their format is to examine the volume's boot record, which is stored in the first sector
of the volume. Boot records for Microsoft file systems contain a field that stores a file
system format type. File system drivers usually examine this field, and if it indicates a
format they manage, they look at other information stored in the boot record. This
information usually includes a file system name field and enough data for the file
system driver to locate critical metadata files on the volume. NTFS, for example, will
recognize a volume only if the type field is NTFS, the name field is "NTFS," and the
critical metadata files described by the boot record are consistent.

If a file system driver signals affirmatively, the I/O manager fills in the VPB and passes
the open request with the remaining path (that is, \Test) to the file system driver. The
file system driver completes the request by using its file system format to interpret the
data that the partition stores. After a mount fills in a partition device object's VPB, the
I/O manager hands subsequent open requests aimed at the partition to the mounted
file system driver. If no file system driver claims a partition, Raw—a file system driver
built into Windows 2000—claims the partition and fails all requests to open files on that
partition. Figure 10-13 shows a simplified example (that is, the figure omits the file
system driver's interactions with the Windows 2000 cache manager) of the path that
I/O directed at a mounted partition follows.

Figure 10-13 Mount operation

Instead of having every file system driver loaded, regardless of whether or not they
have any volumes to manage, Windows 2000 tries to minimize memory usage by using
a surrogate driver named File System Recognizer (Winnt\System32\Drivers\Fs_rec.sys)
to perform preliminary file system recognition. File System Recognizer knows enough
about each file system format that Windows 2000 supports to be able to examine a
boot record and determine whether it's associated with a Windows 2000 file system
driver. When the system boots, File System Recognizer registers as a file system driver,
and when the I/O manager calls it during a file system mount operation for a new
volume, File System Recognizer loads the appropriate file system driver if the boot
record corresponds to one that isn't loaded. After loading a file system driver, File
System Recognizer forwards the mount IRP to the driver and lets the file system driver
claim ownership of the volume.

javascript:fullSize('F10yj13x.htm')


Aside from the boot volume, which a driver mounts while the kernel is initializing, file
system drivers mount most volumes when the Chkdsk file system consistency-checking
application runs during a boot sequence. The boot-time version of Chkdsk is a native
application (as opposed to a Win32 application) named Autochk.exe
(\Winnt\System32\Autochk.exe), and the Session Manager
(\Winnt\System32\Smss.exe) runs it because it is specified as a boot-run program in
the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\BootExecute value.

Chkdsk accesses each drive letter to see whether the volume associated with the letter
requires a consistency check. One place in which mounting can occur more than once
for the same disk is with removable media. Windows 2000 file system drivers respond
to media changes by querying the disk's volume identifier. If they see the volume
identifier change, the driver dismounts the disk and attempts to remount it.



[Previous] [Next]



Conclusion
In this chapter, we've reviewed the on-disk organization,
components, and operation of Windows 2000 disk storage
management. In the next chapter, we delve into the cache
manager, an executive component integral to the operation
of file system drivers that mount the volume types
presented in this chapter.



[Previous] [Next]

Chapter 11



Cache Manager
The Microsoft Windows 2000 cache manager is a set of
kernel-mode functions and system threads that cooperate
with the memory manager to provide data caching for all
Windows 2000 file system drivers (both local and network).
In this chapter, we'll explain how the Windows 2000 cache
manager, including its key internal data structures and
functions, works; how it is sized at system initialization time;
how it interacts with other elements of the operating
system; and how you can observe its activity through
performance counters. We'll also describe the five flags on
the Win32 CreateFile function that affect file caching.

NOTE

None of the cache manager's internal functions are
outlined in this chapter beyond the depth required to
explain how the cache manager works. The
programming interfaces to the cache manager are
documented in the Windows 2000 Installable File
System (IFS) kit. For more information about the IFS
kit, see microsoft.com/ddk/ifskit/.

http://microsoft.com/ddk/ifskit/


[Previous] [Next]



Key Features of the Windows 2000
Cache Manager
The Windows 2000 cache manager has several key features:

Supports all file system types (both local and network),
thus removing the need for each file system to
implement its own cache management code

Uses the memory manager to control what parts of what
files are in physical memory (trading off demands for
physical memory between user processes and the
operating system)

Caches data on a virtual block basis (offsets within a file)
—in contrast to most caching systems, which cache on a
logical block basis (offsets within a disk partition)—
allowing for intelligent read-ahead and high-speed
access to the cache without involving file system drivers
(This method of caching, called fast I/O, is described
later in this chapter.)

Supports "hints" passed by applications at file open time
(such as random versus sequential access, temporary
file creation, and so on)

Supports recoverable file systems (for example, those
that use transaction logging) to recover data after a
system failure

Although we'll talk more throughout this chapter about how
these features are used in the cache manager, in this section
we'll introduce you to the concepts behind these features.



Single, Centralized System Cache

Some operating systems rely on each individual file system
to cache data, a practice that results either in duplicated
caching and memory management code in the operating
system or in limitations on the kinds of data that can be
cached. In contrast, Windows 2000 offers a centralized
caching facility that caches all externally stored data,
whether on local hard disks, floppy disks, network file
servers, or CD-ROMs. Any data can be cached, whether it's
user data streams (the contents of a file and the ongoing
read and write activity to that file) or file system metadata
(such as directory and file headers). As you'll discover in this
chapter, the method Windows 2000 uses to access the cache
depends on the type of data being cached.



The Memory Manager

One unusual aspect of the Windows 2000 cache manager is
that it never knows how much cached data is actually in
physical memory. This statement might sound strange, since
the purpose of a cache is to keep a subset of frequently
accessed data in physical memory as a way to improve I/O
performance. The reason the Windows 2000 cache manager
doesn't know how much data is in physical memory is that it
accesses data by mapping views of files into system virtual
address spaces, using standard section objects (file mapping
objects in Win32 terminology). (Section objects are the basic
primitive of the memory manager and are explained in detail
in Chapter 7.) As addresses in these mapped views are
accessed, the memory manager pages in blocks that aren't
in physical memory. And when memory demands dictate,
the memory manager pages data out of the cache and back
to the files that are open in (mapped into) the cache.

By caching on the basis of a virtual address space using
mapped files, the cache manager avoids generating read or
write I/O request packets (IRPs) to access the data for files
it's caching. Instead, it simply copies data to or from the
virtual addresses where the portion of the cached file is
mapped and relies on the memory manager to fault in (or
out) the data into (or out of) memory as needed. This
process allows the memory manager to make global trade-
offs on how much memory to give to the system cache
versus to the user processes. (The cache manager also
initiates I/O, such as lazy writing, which is described later in
this chapter; however, it calls the memory manager to write
the pages.) Also, as you'll learn in the next section, this
design makes it possible for processes that open cached files
to see the same data as do those processes mapping the
same files into their user address spaces.



Cache Coherency

One important function of a cache manager is to ensure that
any process accessing cached data will get the most recent
version of that data. A problem can arise when one process
opens a file (and hence the file is cached) while another
process maps the file into its address space directly (using
the Win32 MapViewOfFile function). This potential problem
doesn't occur under Windows 2000 because both the cache
manager and the user applications that map files into their
address spaces use the same memory management file
mapping services. Because the memory manager guarantees
that it has only one representation of each unique mapped
file (regardless of the number of section objects or mapped
views), it maps all views of a file (even if they overlap) to a
single set of pages in physical memory, as shown in Figure
11-1. (For more information on how the memory manager
works with mapped files, see Chapter 7.)



Figure 11-1 Coherent caching scheme

So, for example, if Process 1 has a view (View 1) of the file
mapped into its user address space and Process 2 is
accessing the same view via the system cache, Process 2
will see any changes that Process 1 makes as they're made,
not as they're flushed. The memory manager won't flush all
user-mapped pages—only those that it knows have been
written to (because they have the modified bit set).
Therefore, any process accessing a file under Windows 2000
always sees the most up-to-date version of that file, even if
some processes have the file open through the I/O system

javascript:fullSize('F11yj01x.htm')


and others have the file mapped into their address space
using the Win32 file mapping functions.

NOTE

Cache coherency is a little more difficult for network
redirectors than for local file systems because
network redirectors must implement additional
flushing and purge operations to ensure cache
coherency when accessing network data.



Virtual Block Caching

Most operating system cache managers (including Novell
NetWare, OpenVMS, OS/2, and older UNIX systems) cache
data on the basis of logical blocks. With this method, the
cache manager keeps track of which blocks of a disk
partition are in the cache. The Windows 2000 cache
manager, in contrast, uses a method known as virtual block
caching, in which the cache manager keeps track of which
parts of which files are in the cache. The cache manager is
able to monitor these file portions by mapping 256-KB views
of files into system virtual address spaces, using special
system cache routines located in the memory manager. This
approach has the following key benefits:

It opens up the possibility of doing intelligent read-
ahead; because the cache tracks which parts of which
files are in the cache, it can predict where the caller
might be going next.

It allows the I/O system to bypass going to the file
system for requests for data that is already in the cache
(fast I/O). Because the cache manager knows which
parts of which files are in the cache, it can return the
address of cached data to satisfy an I/O request without
having to call the file system.

Details of how intelligent read-ahead and fast I/O work are
provided later in this chapter.



Stream-Based Caching

The Windows 2000 cache manager is also designed to do
stream caching, as opposed to file caching. A stream is a
sequence of bytes within a file. Some file systems, such as
NTFS, allow a file to contain more than one stream; the
cache manager accommodates such file systems by caching
each stream independently. NTFS can exploit this feature by
organizing its master file table (described in Chapter 12) into
streams and by caching these streams as well. In fact,
although the Windows 2000 cache manager might be said to
cache files, it actually caches streams (all files have at least
one stream of data) identified by both a filename and, if
more than one stream exists in the file, a stream name.



Recoverable File System Support

Recoverable file systems such as NTFS are designed to
reconstruct the disk volume structure after a system failure.
This capability means that I/O operations in progress at the
time of a system failure must be either entirely completed or
entirely backed out from the disk when the system is
restarted. Half-completed I/O operations can corrupt a disk
volume and even render an entire volume inaccessible. To
avoid this problem, a recoverable file system maintains a log
file in which it records every update it intends to make to the
file system structure (the file system's metadata) before it
writes the change to the volume. If the system fails,
interrupting volume modifications in progress, the
recoverable file system uses information stored in the log to
reissue the volume updates.

NOTE

The term metadata applies only to changes in the file
system structure: file and directory creation,
renaming, and deletion.

To guarantee a successful volume recovery, every log file
record documenting a volume update must be completely
written to disk before the update itself is applied to the
volume. Because disk writes are cached, the cache manager
and the file system must work together to ensure that the
following actions occur, in sequence:

1. The file system writes a log file record documenting the
volume update it intends to make.



2. The file system calls the cache manager to flush the log
file record to disk.

3. The file system writes the volume update to the cache;
that is, it modifies its cached metadata.

4. The cache manager flushes the altered metadata to disk,
updating the volume structure. (Actually, log file records
are batched before being flushed to disk, as are volume
modifications.)

When a file system writes data to the cache, it can supply a
logical sequence number (LSN) that identifies the record in
its log file, which corresponds to the cache update. The
cache manager keeps track of these numbers, recording the
lowest and highest LSNs (representing the oldest and
newest log file records) associated with each page in the
cache. In addition, data streams that are protected by
transaction log records are marked as "no write" by NTFS so
that the modified page writer won't inadvertently write out
these pages before the corresponding log records are
written. (When the modified page writer sees a page marked
this way, it moves the page to a special list that the cache
manager then flushes at the appropriate time, such as when
lazy writer activity takes place.)

When it prepares to flush a group of dirty pages to disk, the
cache manager determines the highest LSN associated with
the pages to be flushed and reports that number to the file
system. The file system can then call the cache manager
back, directing it to flush log file data up to the point
represented by the reported LSN. After the cache manager
flushes the log file up to that LSN, it flushes the
corresponding volume structure updates to disk, thus
ensuring that it records what it's going to do before actually
doing it. These interactions between the file system and the



cache manager guarantee the recoverability of the disk
volume after a system failure.



[Previous] [Next]



Cache Structure
Because the Windows 2000 system cache manager caches
data on a virtual basis, it is given a region of system virtual
address spaces to manage (instead of a region of physical
memory). The cache manager then divides each address
space region into 256-KB slots called views, as shown in
Figure 11-2. (For a detailed description of the layout of
system space, see Chapter 7.)

Figure 11-2 System cache address space

At a file's first I/O (read or write) operation, the cache
manager maps a 256-KB view of the 256-KB-aligned region
of the file that contains the requested data into a free slot in
the system cache address space. For example, if 10 bytes

javascript:fullSize('F11yj02x.htm')


starting at an offset of 300,000 bytes were read into a file,
the view that would be mapped would begin at offset
262144 (the second 256-KB-aligned region of the file) and
extend for 256 KB.

The cache manager maps views of files into slots in the
cache's address space on a round-robin basis, mapping the
first requested view into the first 256-KB slot, the second
view into the second 256-KB slot, and so forth, as shown in
Figure 11-3. In this example, File B was mapped first, File A
second, and File C third, so File B's mapped chunk occupies
the first slot in the cache. Notice that only the first 256-KB
portion of File B has been mapped, which is due to the fact
that only part of the file has been accessed and that
although File C is only 100 KB (and thus smaller than one of
the views in the system cache), it requires its own 256-KB
slot in the cache.



Figure 11-3 Files of varying sizes mapped into the system
cache

The cache manager guarantees that a view is mapped only
as long as it's active. A view is marked active, however, only
during a read or write operation to or from the file. Unless a
process opens a file by specifying the
FILE_FLAG_RANDOM_ACCESS flag in the call to CreateFile,
the cache manager unmaps inactive views of a file as it
maps new views for the file. Pages for unmapped views are
sent to the standby or modified lists (depending on whether
they have been changed), and because the memory
manager exports a special interface for the cache manager,
the cache manager can direct the pages to be placed at the
end or front of these lists. Pages that correspond to views of
files opened with the FILE_FLAG_SEQUENTIAL_SCAN flag
are moved to the front of the lists, whereas all others are
moved to the end. This scheme encourages the reuse of
pages belonging to sequentially accessed files and
specifically prevents a large file copy operation from
affecting more than a small part of physical memory.

If the cache manager needs to map a view of a file and
there are no more free slots in the cache, it will unmap the
least recently mapped inactive view and use that slot. If no
views are available, an I/O error is returned, indicating that
insufficient system resources are available to perform the
operation. Given that views are marked active only during a
read or write operation, however, this scenario is extremely
unlikely because thousands of files would have to be
accessed simultaneously for this situation to occur.



[Previous] [Next]



Cache Size
In the following sections, we'll explain how Windows 2000 computes the size of the system
cache (both virtually and physically). As with most calculations related to memory
management, the size of the system cache depends on a number of factors, including
memory size and which version of Windows 2000 is running.



Cache Virtual Size

The virtual size of the system cache is a function of the amount of physical memory
installed. The default size is 64 MB. If the system has more than 4032 pages (16 MB) of
physical memory, the cache size is set to 128 MB plus 64 MB for each additional 4 MB of
physical memory. Using this algorithm, the virtual size of the system cache for a computer
with 64 MB of physical memory will be:

128 MB + (64 MB - 16 MB) / 4 MB * 64 MB = 896 MB

Table 11-1 shows the minimum and maximum virtual size of the system cache, along with
the start and end addresses. If the system calculates a cache virtual size that is greater
than 512 MB, the cache is assigned virtual memory from an additional address range
known as cache extra memory.

Table 11-1 Size and Location of System Data Cache

Platform Address Range Minimum/MaximumVirtual
Size

x86 2-GB system space 0xC1000000-E0FFFFFF,
0xA4000000-BFFFFFFF

64-960 MB

x86 1-GB system space 0xC1000000-DBFFFFFF 64-432 MB

x86 1-GB system space
with Terminal Services

0xC1000000-DCFFFFFF 64-448 MB

Table 11-2 lists the system variables that contain the virtual size and address of the
system cache.

Table 11-2 System Variables for the Virtual Size and Address of the System Cache

System Variable Description

MmSystemCacheStart Starting virtual address of cache

MmSystemCacheEnd Ending virtual address of cache

MiSystemCacheStartExtra Starting virtual address of cache extra memory if
cache size > 512 MB

MiSystemCacheEndExtra Ending virtual address of cache extra memory if
cache size > 512 MB

MmSizeOfSystemCacheInPages Maximum size of cache in pages



Cache Physical Size

As mentioned earlier, one of the key differences in the design of the Windows 2000 cache
manager from that of other operating systems is the delegation of physical memory
management to the global memory manager. Because of this, the existing code that
handles working set expansion and trimming as well as manages the modified and standby
list is also used to control the size of the system cache, dynamically balancing demands for
physical memory between processes and the operating system.

The system cache doesn't have its own working set but rather shares a single system set
that includes cache data, paged pool, pageable Ntoskrnl code, and pageable driver code.
As explained in the section "System Working Set" in Chapter 7, this single working set is
called internally the system cache working set even though the system cache is just one of
the components that contribute to it. For the purposes of this book, we'll refer to this
working set simply as the system working set.

You can examine the physical size of the system cache compared to that of the total
system working set as well as page fault information on the system working set by
examining the performance counters or system variables listed in Table 11-3.

Table 11-3 System Variables for the Physical Size of the System Cache and Page Fault
Information

Performance
Counter (in

bytes)
System Variable (in pages) Description

Memory:
System Cache
Resident
Bytes

MmSystemCachePage Physical memory consumed by
the system cache.

Memory:
Cache Bytes

MmSystemCacheWs.WorkingSetSize Total size of the system working
set (including the cache, paged
pool, pageable code, and
system mapped views). This is
not the size of the cache (as the
name implies)!

Memory:
Cache Bytes
Peak

MmSystemCacheWs.Peak Peak system working set size.

Memory:
Cache
Faults/Sec

MmSystemCacheWs.PageFaultCount Page faults in the system
working set (not just the
cache).

Most utilities that claim to display the size of the system cache (such as Task Manager,
Pview, Pstat, Pmon, Perfmtr, and so on) in fact display the total system working set size,
not just the cache size. The reason for this inaccuracy is that the performance counter
Memory: Cache Bytes (see Table 11-3) returns the total system working set size, which
includes the system cache, paged pool, pageable system code, and system mapped views,
even though the name and explanatory text imply that it represents just the cache size.
For example, if you start Task Manager (by pressing Ctrl+Shift+Esc) and click the



Performance tab, the field named System Cache is actually the system working set size, as
you can see in Figure 11-4.

Figure 11-4 The Windows 2000 Task Manager doesn't report the size of the system cache

A number of internal system variables control working set expansion and trimming, such
as MmWorkingSetReductionMaxCacheWs, MmWorkingSetReductionMinCacheWs,
MmWorkingSetVolReductionMaxCacheWs, and MmPeriodicAgressiveCacheWsMin. Although
we don't cover these variables in detail in this book, in Chapter 7, we do describe the
memory manager's general policies for working set management.

EXPERIMENT

Looking At the Cache's Working Set

The !filecache debugger command dumps information about the physical memory
the cache is using, including the names of files mapped into virtual address
control blocks (VACBs), where applicable, as you can see in the following output.
(File system drivers cache metadata by using unnamed file streams.)

kd> !filecache 3 
***** Dump file cache****** 
File Cache Information 
  Current size 6344 kb 
  Peak size    14440 kb 
  Loading file cache database (131072 PTEs)... 
  File cache PTEs loaded, loading PFNs... 
  File cache has 278 valid pages 
  File cache PFN data extracted 
  Building kernel map 
  Finished building kernel map 
 
  Usage Summary (in Kb): 
Control Valid Standby Dirty Shared Locked PageTables  name 
ff3f5908    20      0     0     0     0     0    No Name for File 
ff3a0328     8      0     0     0     0     0    No Name for File 
fe50ba68    72      0     0     0     0     0    No Name for File 

javascript:fullSize('F11yj04x.htm')


fe4edd68     4      0     0     0     0     0    No Name for File 
fe4edcc8    88      0     0     0     0     0    No Name for File 
fe4ed7e8    16      0     0     0     0     0    No Name for File 
ff457968     4      0     0     0     0     0    No Name for File 
ff422de8     4      0     0     0     0     0    No Name for File 
ff142208     4      0     0     0     0     0  mapped_file( ias.md
ff163708     4      0     0     0     0     0    No Name for File 
ff1314c8     4      0     0     0     0     0    No Name for File 
ff0ec448     4      0     0     0     0     0  mapped_file( dnary
ff0f23a8     4      0     0     0     0     0    No Name for File 
fe50bda8     4      0     0     0     0     0    No Name for File 
ff0691a8     4      0     0     0     0     0    No Name for File 
ff071b08     4      0     0     0     0     0    No Name for File 
ff068b28     4      0     0     0     0     0    No Name for File 
ff0564c8     4      0     0     0     0     0    No Name for File 
ff070c48     4      0     0     0     0     0    No Name for File 
ff018d08     4      0     0     0     0     0    No Name for File 
ff013d48     4      0     0     0     0     0    No Name for File 
ff0e5f08     4      0     0     0     0     0    No Name for File 
ff02a628     4      0     0     0     0     0    No Name for File 
ff0f0ba8     4      0     0     0     0     0    No Name for File 
ff0e8b28     4      0     0     0     0     0    No Name for File 
ff05a628     4      0     0     0     0     0    No Name for File 
ff104e08     8      0     0     0     0     0    No Name for File 
ff016328     4      0     0     0     0     0    No Name for File 
ff06da88     4      0     0     0     0     0    No Name for File 
ff2d2e28   692      0     0     0     0     0  mapped_file( ntoskr
ff0afce8     4      0     0     0     0     0    No Name for File 
ff001ae8    12      0     0     0     0     0    No Name for File 
feffe308     4      0     0     0     0     0    No Name for File 
ff175508    12      0     0     0     0     0    No Name for File 
feffd328    12      0     0     0     0     0    No Name for File 
feffc408     4      0     0     0     0     0  mapped_file( mshtml
fefed788    12      0     0     0     0     0    No Name for File 
feff9d28     4      0     0     0     0     0  mapped_file 
( relationship[1].gif ) 
ff03dd08     4      0     0     0     0     0  mapped_file 
( emotional[1].gif ) 
ff059828     4      0     0     0     0     0  mapped_file 
( ADSAdClient31[1].htm ) 
fefe72e8     4      0     0     0     0     0  mapped_file 
( comp_medicine[1].gif ) 
fefe9868    12      0     0     0     0     0  mapped_file 
( ADSAdClient31[1].htm ) 
unable to get subsection fefe4d08 
feffd8a8     8      0     0     0     0     0  mapped_file 
( ADSAdClient31[1].htm ) 
fefef008     4      0     0     0     0     0  mapped_file 



( 002924Z0001_LG[1].gif ) 
ff2f64e8     4      0     0     0     0     0  mapped_file( SOFTWA



[Previous] [Next]



Cache Data Structures
The cache manager uses the following data structures to
keep track of cached files:

Each 256-KB slot in the system cache is described by a
virtual address control block.

Each separately opened cached file has a private cache
map, which contains information used to control read-
ahead (discussed later in the chapter).

Each cached file has a single shared cache map
structure, which points to slots in the system cache that
contain mapped views of the file.

These structures and their relationships are described in the
next sections.



Systemwide Cache Data Structures

The cache manager keeps track of the state of the views in
the system cache by using an array of data structures called
virtual address control blocks (VACBs). During system
initialization, the cache manager allocates a single chunk of
nonpaged pool to contain all the VACBs required to describe
the system cache. It stores the address of the VACB array
in the variable CcVacbs. Each VACB represents one 256-KB
view in the system cache, as shown in Figure 11-5. The
structure of a VACB is shown in Figure 11-6.

Figure 11-5 System VACB array



Figure 11-6 VACB structure

As you can see in Figure 11-6, the first field in a VACB is the
virtual address of the data in the system cache. The second
field is a pointer to the shared cache map structure, which
identifies which file is cached. The third field identifies the
offset within the file at which the view begins (always based
on a 256-KB granularity). Finally, the VACB contains the
number of references to the view, that is, how many active
reads or writes are accessing the view. During an I/O
operation on a file the file's VACB reference count is
incremented, and then it's decremented when the I/O
operation is over. For access to file system metadata, the
active count represents how many file system drivers have
the pages in that view locked into memory.



Per-File Cache Data Structures

Each open handle to a file has a corresponding file object.
(File objects are explained in detail in Chapter 9.) If the file
is cached, the file object points to a private cache map
structure that contains the location of the last two reads so
that the cache manager can perform intelligent read-ahead
(described in the section "Intelligent Read-Ahead"). In
addition, all the private cache maps for a file object are
linked together.

Each cached file (as opposed to file object) has a shared
cache map structure that describes the state of the cached
file, including its size and (for security reasons) its valid
data length. (The function of the valid data length field is
explained in the section "Write-Back Caching and Lazy
Writing.") The shared cache map also points to the section
object (maintained by the memory manager, and which
describes the file's mapping into virtual memory), the list of
private cache maps associated with that file, and any VACBs
that describe currently mapped views of the file in the
system cache. (See Chapter 7 for more about section object
pointers.) The relationships among these per-file cache data
structures are illustrated in Figure 11-7.



Figure 11-7 Per-file cache data structures

When asked to read from a particular file, the cache
manager must determine the answers to two questions:

1. Is the file in the cache?

2. If so, which VACB, if any, refers to the requested
location?

In other words, the cache manager must find out whether a
view of the file at the desired address is mapped into the
system cache. If no VACB contains the desired file offset,
the requested data isn't currently mapped into the system
cache.

To keep track of which views for a given file are mapped
into the system cache, the cache manager maintains an
array of pointers to VACBs, the VACB index array. The first
entry in the VACB index array refers to the first 256 KB of
the file, the second entry to the second 256 KB, and so on.

javascript:fullSize('F11yj07x.htm')


The diagram in Figure 11-8 shows four different sections
from three different files that are currently mapped into the
system cache.

Figure 11-8 VACB index arrays

When a process accesses a particular file in a given
location, the cache manager looks in the appropriate entry
in the file's VACB index array to see whether the requested
data has been mapped into the cache. If the array entry is
nonzero (and hence contains a pointer to a VACB), the area
of the file being referenced is in the cache. The VACB, in
turn, points to the location in the system cache where the
view of the file is mapped. If the entry is zero, the cache
manager must find a free slot in the system cache (and
therefore a free VACB) to map the required view.

As a size optimization, the shared cache map contains a
VACB index array that is 4 entries in size. Because each
VACB describes 256 KB, the entries in this small fixed-size
index array can point to VACB array entries that together
describe a file of up to 1 MB. If a file is larger than 1 MB, a

javascript:fullSize('F11yj08x.htm')


separate VACB index array is allocated from nonpaged pool,
based on the size of the file divided by 256 KB and rounded
up in the case of a remainder. The shared cache map then
points to this separate structure.

As a further optimization, the VACB index array allocated
from nonpaged pool becomes a sparse multilevel index
array if the file is larger than 32 GB, where each index array
consists of 128 entries. You can calculate the number of
levels required for a file with the following formula:

(Number of bits required to represent file size - 18) / 7

Round the result of the equation up to the next whole
number. The value 18 in the equation comes from the fact
that a VACB represents 256 KB, and 256 KB is 218. The
value 7 comes from the fact that each level in the array has
128 entries and 27 is 128. Thus, a file that has a size that is
the maximum that can be described with 63 bits (the
largest size the cache manager supports) would require
only seven levels. The array is sparse because the only
branches that the cache manager allocates are ones for
which there are active views at the lowest-level index array.
Figure 11-9 shows an example of a multilevel VACB array
for a sparse file that is large enough to require three levels.



Figure 11-9 Multilevel VACB arrays

This scheme is required to efficiently handle sparse files
that might have extremely large file sizes with only a small
fraction of valid data, because only enough of the array is
allocated to handle the currently mapped views of a file. For
example, a 32 GB sparse file for which only 256 KB is
mapped into the cache's virtual address space would
require a VACB array with three allocated index arrays
because only one branch of the array has a mapping and a
32 GB (235 bytes) file requires a three-level array. If the
cache manager didn't use the multilevel VACB array
optimization for this file, it would have to allocate a VACB
array with 128,000 entries, or the equivalent of 1000 index
arrays.

javascript:fullSize('F11yj09x.htm')


[Previous] [Next]



Cache Operation
In this section, you'll see how the cache manager
implements reading and writing file data on behalf of file
system drivers. Keep in mind that the cache manager is
involved in file I/O only when a file is opened (for example,
using the Win32 CreateFile function). Mapped files don't go
through the cache manager, nor do files opened with the
FILE_FLAG_NO_BUFFERING flag set.



Write-Back Caching and Lazy Writing

The Windows 2000 cache manager implements a write-back
cache with lazy write. This means that data written to files is
first stored in memory in cache pages and then written to
disk later. Thus, write operations are allowed to accumulate
for a short time and are then flushed to disk all at once,
reducing the overall number of disk I/O operations.

The cache manager must explicitly call the memory manager
to flush cache pages because otherwise the memory
manager writes memory contents to disk only when demand
for physical memory exceeds supply, as is appropriate for
volatile data. Cached file data, however, represents
nonvolatile disk data. If a process modifies cached data, the
user expects the contents to be reflected on disk in a timely
manner.

The decision about how often to flush the cache is an
important one. If the cache is flushed too frequently, system
performance will be slowed by unnecessary I/O. If the cache
is flushed too rarely, you risk losing modified file data in the
cases of a system failure (a loss especially irritating to users
who know that they asked the application to save the
changes) and running out of physical memory (because it's
being used by an excess of modified pages).

To balance these concerns, once per second a system thread
created by the cache manager—the lazy writer—queues one-
eighth of the dirty pages in the system cache to be written
to disk. If the rate at which dirty pages are being produced
is greater than the amount the lazy writer had determined it
should write, the lazy writer writes an additional number of
dirty pages that it calculates are necessary to match that
rate. System worker threads from the systemwide critical
worker thread pool actually perform the I/O operations.



NOTE

For C2-secure file systems (such as NTFS), the cache
manager provides a means for the file system to
track when and how much data has been written to a
file. After the lazy writer flushes dirty pages to the
disk, the cache manager notifies the file system,
instructing it to update its view of the valid data
length for the file.

You can examine the activity of the lazy writer by examining
the cache performance counters or system variables listed in
Table 11-4.

Table 11-4 System Variables for Examining the Activity of
the Lazy Writer

Performance
Counter

(frequency)

System Variable
(count) Description

Cache: Lazy Write
Flushes/Sec

CcLazyWriteIos Number of lazy
writer flushes

Cache: Lazy Write
Pages/Sec

CcLazyWritePages Number of pages
written by the
lazy writer

Calculating the Dirty Page Threshold

The dirty page threshold is the number of pages that the
system cache keeps in memory before waking up the lazy
writer system thread to write out pages back to the disk.



This value is computed at system initialization time and
depends on physical memory size and the value of the
registry value
HKLM\SYSTEM\CurrentControlSet\Control\SessionManager\
Memory Management\LargeSystemCache. This value is 0 by
default on Windows 2000 Professional and 1 on Windows
2000 Server systems. You can adjust this value through the
GUI on Windows 2000 Server systems by modifying the
properties of the file server service. (Bring up the properties
for a network connection, and double-click on File And
Printer Sharing For Microsoft Networks.) Even though this
service exists on Windows 2000 Professional, its parameters
can't be adjusted. Figure 11-10 shows the dialog box you
use when modifying the amount of memory allocated for
local and network applications in the Server network service.



Figure 11-10 File And Printer Sharing For Microsoft
Networks Properties dialog box, which is used to modify the
properties of the Windows 2000 Server network service

The setting shown in Figure 11-10, Maximize Data
Throughput For File Sharing, is the default for Server
systems running with Terminal Services installed—the
LargeSystemCache value is 1. Choosing any of the other
settings will set the LargeSystemCache value to 0. Although
each of the four settings in the Optimization section of the
File And Printer Sharing For Microsoft Networks Properties
dialog box affect the behavior of the system cache, they also
modify the behavior of the file server service.

Table 11-5 contains the algorithm used to calculate the dirty
page threshold. The calculations in Table 11-5 are
overridden if the system maximum working set size is
greater than 4 MB—and it often is. (See Chapter 7 to find
out how the memory manager chooses system working set
sizes, that is, how it determines whether the size is small,
medium, or large.) When the maximum working set size
exceeds 4 MB, the dirty page threshold is set to the value of
the system maximum working set size minus 2 MB.

Table 11-5 Algorithm for Calculating the Dirty Page
Threshold

System Memory Size Dirty Page Threshold

Small Physical pages / 8

Medium Physical pages / 4

Large Sum of the above two values

Disabling Lazy Writing for a File



If you create a temporary file, by specifying the
FILE_ATTRIBUTE_TEMPORARY flag in a call to the Win32
CreateFile function, the lazy writer won't write dirty pages to
the disk unless there is a severe shortage of physical
memory or the file is closed. This characteristic of the lazy
writer improves system performance—the lazy writer doesn't
immediately write data to a disk that might ultimately be
discarded. Applications usually delete temporary files soon
after closing them.

Forcing the Cache to Write Through to Disk

Because some applications can't tolerate even momentary
delays between writing a file and seeing the updates on disk,
the cache manager also supports write-through caching on a
per-file basis; changes are written to disk as soon as they're
made. To turn on write-through caching, set the
FILE_FLAG_WRITE_THROUGH flag in the call to the
CreateFile function. Alternatively, a thread can explicitly
flush an open file, by using the Win32 FlushFileBuffers
function, when it reaches a point at which the data needs to
be written to disk. You can observe cache flush operations
that are the result of write-through I/O requests or explicit
calls to FlushFileBuffers via the performance counters or
system variables shown in Table 11-6.

Table 11-6 System Variables for Viewing Cache Flush
Operations

Performance
Counter

(frequency)

System
Variable
(count)

Description

Cache: Data
Flushes/Sec

CcDataFlushes Number of times cache
pages were flushed



explicitly or because of
write through

Cache: Data
Flush
Pages/Sec

CcDataPages Number of pages flushed
explicitly or because of
write through

Flushing Mapped Files

If the lazy writer must write data to disk from a view that's
also mapped into another process's address space, the
situation becomes a little more complicated because the
cache manager will only know about the pages it has
modified. (Pages modified by another process are known
only to that process because the modified bit in the page
table entries for modified pages are kept in the process
private page tables.) To address this situation, the memory
manager informs the cache manager when a user maps a
file. When such a file is flushed in the cache (for example, as
a result of a call to the Win32 FlushFileBuffers function), the
cache manager writes the dirty pages in the cache and then
checks to see whether the file is also mapped by another
process. When it sees that it is, it then flushes the entire
view of the section in order to write out pages that the
second process might have modified. If a user maps a view
of a file that is also open in the cache, when the view is
unmapped, the modified pages are marked as dirty so that
when the lazy writer thread later flushes the view, those
dirty pages will be written to disk. This procedure works as
long as the sequence occurs in the following order:

1. A user unmaps the view.

2. A process flushes file buffers.

If this sequence isn't followed, you can't predict which pages
will be written to disk.



Intelligent Read-Ahead

The Windows 2000 cache manager uses the principle of
spatial locality to perform intelligent read-ahead by
predicting what data the calling process is likely to read next
based on the data that it is reading currently. Because the
system cache is based on virtual addresses, which are
contiguous for a particular file, it doesn't matter whether
they're juxtaposed in physical memory. File read-ahead for
logical block caching is more complex and requires tight
cooperation between file system drivers and the block cache,
because that cache system is based on the relative positions
of the accessed data on the disk, and of course, files aren't
necessarily stored contiguously on disk.

The two types of read-ahead—virtual address read-ahead
and asynchronous read-ahead with history—are explained in
the next two sections. You can examine read-ahead activity
by using the Cache: Read Aheads/Sec performance counter
or the CcReadAheadIos system variable.

Virtual Address Read-Ahead

Recall from Chapter 7 that when the memory manager
resolves a page fault, it reads into memory several pages
near the one explicitly accessed, a method called clustering.
For applications that read sequentially, this virtual address
read-ahead operation reduces the number of disk reads
necessary to retrieve data. The only disadvantage to the
memory manager's method is that because this read-ahead
is done in the context of resolving a page fault it must be
performed synchronously, while the thread waiting on the
data being paged back into memory is waiting.

Asynchronous Read-Ahead with History



The virtual address read-ahead performed by the memory
manager improves I/O performance, but its benefits are
limited to sequentially accessed data. To extend read-ahead
benefits to certain cases of randomly accessed data, the
cache manager maintains a history of the last two read
requests in the private cache map for the file handle being
accessed, a method known as asynchronous read-ahead
with history. If a pattern can be determined from the caller's
apparently random reads, the cache manager extrapolates
it. For example, if the caller reads page 4000 and then page
3000, the cache manager assumes that the next page the
caller will require is page 2000 and prereads it.

NOTE

Although a caller must issue a minimum of three read
operations to establish a predictable sequence, only
two are stored in the private cache map.

To make read-ahead even more efficient, the Win32
CreateFile function provides a flag indicating sequential file
access: FILE_FLAG_SEQUENTIAL_SCAN. If this flag is set,
the cache manager doesn't keep a read history for the caller
for prediction but instead performs sequential read-ahead.
However, as the file is read into the cache's working set the
cache manager unmaps views of the file that are no longer
active and directs the memory manager to place the pages
belonging to the unmapped views at the front of the standby
list or modified list (if the pages are modified) so that they
will be quickly reused. It also reads ahead three times as
much data (192 KB instead of 64 KB, for example) by using
a separate I/O operation for each read. As the caller
continues reading, the cache manager prereads additional



blocks of data, always staying about one read (of the size of
the current read) ahead of the caller.

The cache manager's read-ahead is asynchronous because it
is performed in a thread separate from the caller's thread
and proceeds concurrently with the caller's execution. When
called to retrieve cached data, the cache manager first
accesses the requested virtual page to satisfy the request
and then queues an additional I/O request to retrieve
additional data to a system worker thread. The worker
thread then executes in the background, reading additional
data in anticipation of the caller's next read request. The
preread pages are faulted into memory while the program
continues executing so that when the caller requests the
data it's already in memory.

Although the asynchronous read-ahead with history
technique uses more memory than the standard read-ahead,
it minimizes disk I/O and further improves the performance
of applications reading large amounts of cached sequential
data. The Cache: Read Aheads/Sec performance counter
indicates sequential access read-ahead operations.

For applications that have no predictable read pattern, the
FILE_FLAG_RANDOM_ACCESS flag can be specified when
the CreateFile function is called. This flag instructs the cache
manager not to attempt to predict where the application is
reading next and thus disables read-ahead. The flag also
stops the cache manager from aggressively unmapping
views of the file as the file is accessed so as to minimize the
mapping/unmapping activity for the file when the application
revisits portions of the file.



System Threads

As mentioned earlier, the cache manager performs lazy write
and read-ahead I/O operations by submitting requests to the
common critical system worker thread pool. However, it does
limit the use of these threads to one less than the total
number of critical worker system threads for small and
medium memory systems (two less than the total for large
memory systems).

Internally, the cache manager organizes its work requests
into two lists (though these are serviced by the same set of
executive worker threads):

The express queue is used for read-ahead operations.

The regular queue is used for lazy write scans (for dirty
data to flush), write behinds, and lazy closes.

To keep track of the work items the worker threads need to
perform, the cache manager creates its own internal per-
processor look-aside list, a fixed-length list—one for each
processor—of worker queue item structures. (Look-aside
lists are discussed in Chapter 7.) The number of worker
queue items depends on system size: 32 for small-memory
systems, 64 for medium-memory systems, 128 for large-
memory Windows 2000 Professional systems, and 256 for
large-memory Windows 2000 Server systems.



Fast I/O

Whenever possible, reads and writes to cached files are
handled by a high-speed mechanism named fast I/O. Fast
I/O is a means of reading or writing a cached file without
going through the work of generating an IRP, as described in
Chapter 9. With fast I/O, the I/O manager calls the file
system driver's fast I/O routine to see whether I/O can be
satisfied directly from the cache manager without generating
an IRP.

Because the Windows 2000 cache manager keeps track of
which blocks of which files are in the cache, file system
drivers can use the cache manager to access file data simply
by copying to or from pages mapped to the actual file being
referenced without going through the overhead of
generating an IRP.

Fast I/O doesn't always occur. For example, the first read or
write to a file requires setting up the file for caching
(mapping the file into the cache and setting up the cache
data structures, as explained earlier in the section "Cache
Data Structures"). Also, if the caller specified an
asynchronous read or write, fast I/O isn't used because the
caller might be stalled during paging I/O operations required
to satisfy the buffer copy to or from the system cache and
thus not really providing the requested asynchronous I/O
operation. But even on a synchronous I/O, the file system
driver might decide that it can't process the I/O operation by
using the fast I/O mechanism, say, for example, if the file in
question has a locked range of bytes (as a result of calls to
the Win32 LockFile and UnlockFile functions). Because the
cache manager doesn't know what parts of which files are
locked, the file system driver must check the validity of the



read or write, which requires generating an IRP. The decision
tree for fast I/O is shown in Figure 11-11.

Figure 11-11 Fast I/O decision tree

These steps are involved in servicing a read or a write with
fast I/O:

1. A thread performs a read or write operation.

2. If the file is cached and the I/O is synchronous, the
request passes to the fast I/O entry point of the file
system driver. If the file isn't cached, the file system
driver sets up the file for caching so that the next time,
fast I/O can be used to satisfy a read or write request.

3. If the file system driver's fast I/O routine determines
that fast I/O is possible, it calls the cache manager read
or write routine to access the file data directly in the
cache. (If fast I/O isn't possible, the file system driver
returns to the I/O system, which then generates an IRP

javascript:fullSize('F11yj11x.htm')


for the I/O and eventually calls the file system's regular
read routine.)

4. The cache manager translates the supplied file offset
into a virtual address in the cache.

5. For reads, the cache manager copies the data from the
cache into the buffer of the process requesting it; for
writes, it copies the data from the buffer to the cache.

6. One of the following actions occurs:

a. For reads, the read-ahead information in the caller's
private cache map is updated.

b. For writes, the dirty bit of any modified page in the
cache is set so that the lazy writer will know to flush
it to disk.

c. For write-through files, any modifications are flushed
to disk.

NOTE

The fast I/O path isn't limited to occasions when the
requested data already resides in physical memory.
As noted in steps 5 and 6 of the preceding list, the
cache manager simply accesses the virtual addresses
of the already opened file where it expects the data
to be. If a cache miss occurs, the memory manager
dynamically pages the data into physical memory.

The performance counters or system variables listed in Table
11-7 can be used to determine the fast I/O activity on the



system.

Table 11-7 System Variables for Determining Fast I/O
Activity

Performance
Counter

(frequency)

System Variable
(count) Description

Cache: Sync
Fast
Reads/Sec

CcFastReadWait Synchronous
reads that
were handled
as fast I/O
requests

Cache: Async
Fast
Reads/Sec

CcFastReadNoWait Asynchronous
reads that
were handled
as fast I/O
requests
(These are
always zero
because
asynchronous
fast reads
aren't done in
Windows
2000.)

Cache: Fast
Read
Resource
Misses/Sec

CcFastReadResourceMiss Fast I/O
operations
that couldn't
be satisfied
because of
resource
conflicts (This
situation can



occur with FAT
but not with
NTFS.)

Cache: Fast
Read Not
Possibles/Sec

CcFastReadNotPossible Fast I/O
operations
that couldn't
be satisfied
(The file
system driver
decides; for
example, files
with byte
range locks
can't use fast
I/O.)



[Previous] [Next]



Cache Support Routines
The first time a file's data is accessed for a read or write operation, the file system driver is
responsible for determining whether some part of the file is mapped in the system cache.
If it's not, the file system driver must call the CcInitializeCacheMap function to set up the
per-file data structures described in the preceding section.

Once a file is set up for cached access, the file system driver calls one of several functions
to access the data in the file. There are three primary methods for accessing cached data,
each intended for a specific situation:

The copy read method copies user data between cache buffers in system space and a
process buffer in user space.

The mapping and pinning method uses virtual addresses to read and write data
directly to cache buffers.

The physical memory access method uses physical addresses to read and write data
directly to cache buffers.

File system drivers must provide two versions of the file read operation—cached and
noncached—to prevent an infinite loop when the memory manager processes a page fault.
When the memory manager resolves a page fault by calling the file system to retrieve data
from the file (via the device driver, of course), it must specify this noncached read
operation by setting the "no cache" flag in the IRP.

The next three sections explain these cache access mechanisms, their purpose, and how
they're used.



Copying to and from the Cache

Because the system cache is in system space, it is mapped into the address space of every
process. As with all system space pages, however, cache pages aren't accessible from user
mode, because that would be a potential security hole. (For example, a process might not
have the rights to read a file whose data is currently contained in some part of the system
cache.) Thus, user application file reads and writes to cached files must be serviced by
kernel-mode routines that copy data between the cache's buffers in system space and the
application's buffers residing in the process address space. The functions that file system
drivers can use to perform this operation are listed in Table 11-8.

Table 11-8 Kernel-Mode Functions for Copying to and from the Cache

Function Description

CcCopyRead Copies a specified byte range from the system cache to a user
buffer

CcFastCopyRead Faster variation of CcCopyRead but limited to 32-bit file offsets and
synchronous reads (used by NTFS, not FAT)

CcCopyWrite Copies a specified byte range from a user buffer to the system
cache

CcFastCopyWrite Faster variation of CcCopyWrite but limited to 32-bit file offsets
and synchronous, non-write-through writes (used by NTFS, not
FAT)

You can examine read activity from the cache via the performance counters or system
variables listed in Table 11-9.

Table 11-9 System Variables for Examining Read Activity from the Cache

Performance
Counter

(frequency)

System Variable
(count) Description

Cache: Copy
Read Hits %

(CcCopyReadWait +
CcCopyReadNoWait) / 
(CcCopyReadWait + 
(CcCopyReadWaitMiss +
CcCopyReadNoWait) + 
CcCopyReadNoWaitMiss)

Percentage of copy reads to parts of files
that were in the cache (A copy read can
still generate paging I/O—the Memory:
Cache Faults/Sec counter reports page fault
activity for the system working set but
includes both hard and soft page faults, so
the counter still doesn't indicate actual
paging I/O caused by cache faults.)

Cache: Copy
Reads/Sec

CcCopyReadWait + 
CcCopyReadNoWait

Total copy reads from the cache

Cache: Sync
Copy
Reads/Sec

CcCopyReadWait Synchronous copy reads from the cache

Cache: Async
Copy
Reads/Sec

CcCopyReadNoWait Asynchronous copy reads from the cache



Caching with the Mapping and Pinning Interfaces

Just as user applications read and write data in files on a disk, file system drivers need to
read and write the data that describes the files themselves (the metadata, or volume
structure data). Because the file system drivers run in kernel mode, however, they could, if
the cache manager were properly informed, modify data directly in the system cache. To
permit this optimization, the cache manager provides the functions shown in Table 11-10.
These functions permit the file system drivers to find where in virtual memory the file
system metadata resides, thus allowing direct modification without the use of intermediary
buffers.

Table 11-10 Functions for Finding Metadata Locations

Function Description

CcMapData Maps the byte range for read access

CcPinRead Maps the byte range for read/write access and pins it

CcPreparePinWrite Maps and pins the byte range for write access

CcPinMappedData Pins a previously mapped buffer

CcSetDirtyPinnedData Notifies the cache manager that the data has been modified

CcUnpinData Releases the pages so that they can be removed from
memory

If a file system driver needs to read file system metadata in the cache, it calls the cache
manager's mapping interface to obtain the virtual address of the desired data. The cache
manager touches all the requested pages to bring them into memory and then returns
control to the file system driver. The file system driver can then access the data directly.

If the file system driver needs to modify cache pages, it calls the cache manager's pinning
services, which keep the pages being modified in memory. The pages aren't actually locked
into memory (such as when a device driver locks pages for direct memory access
transfers). Instead, the memory manager's mapped page writer (explained in Chapter 7)
sees that these pages are pinned and doesn't write the pages to disk until the file system
driver unpins (releases) them. When the pages are released, the cache manager flushes
any changes to disk and releases the cache view that the metadata occupied.

The mapping and pinning interfaces solve one thorny problem of implementing a file
system: buffer management. Without directly manipulating cached metadata, a file system
must predict the maximum number of buffers it will need when updating a volume's
structure. By allowing the file system to access and update its metadata directly in the
cache, the cache manager eliminates the need for buffers, simply updating the volume
structure in the virtual memory the memory manager provides. The only limitation the file
system encounters is the amount of available memory.

You can examine pinning and mapping activity in the cache via the performance counters
or system variables listed in Table 11-11.

Table 11-11 System Variables for Examining Pinning and Mapping Activity

Performance
Counter

System Variable
(count)

Description



(frequency)

Cache: Data Map
Hits %

(CcMapDataWait +
CcMapDataNoWait)/
(CcMapDataWait +
CcMapDataNoWait)+
(CcMapDataWaitMiss +
CcMapDataNoWaitMiss)

Percentage of data maps to parts of files
that were in the cache (A copy read can
still generate paging I/O.)

Cache: Data
Maps/Sec

CcMapDataWait +
CcMapDataNoWait

Total data maps from the cache

Cache: Sync
Data Maps/Sec

CcMapDataWait Synchronous data maps from the cache

Cache: Async
Data Maps/Sec

CcMapDataNoWait Asynchronous data maps from the cache

Cache: Data Map
Pins/Sec

CcPinMappedDataCount Number of requests to pin mapped data

Cache: Pin Read
Hits %

(CcPinReadWait +
CcPinReadNoWait) /
(CcPinReadWait +
CcPinReadNoWait)+
(CcPinReadWaitMiss +
CcPinReadNoWaitMiss)

Percentage of pinned reads to parts of
files that were in the cache (A copy read
can still generate paging I/O.)

Cache: Pin
Reads/Sec

CcPinReadWait +
CcPinReadNoWait

Total pinned reads from the cache

Cache: Sync Pin
Reads/Sec

CcPinReadWait Synchronous pinned reads from the
cache

Cache: Async Pin
Reads/Sec

CcPinReadNoWait Asynchronous pinned reads from the
cache



Caching with the Direct Memory Access Interfaces

In addition to the mapping and pinning interfaces used to access metadata directly in the
cache, the cache manager provides a third interface to cached data: direct memory access
(DMA). The DMA functions are used to read from or write to cache pages without
intervening buffers, such as when a network file system is doing a transfer over the
network.

The DMA interface returns to the file system the physical addresses of cached user data
(rather than the virtual addresses, which the mapping and pinning interfaces return),
which can then be used to transfer data directly from physical memory to a network
device. Although small amounts of data (1 KB to 2 KB) can use the usual buffer-based
copying interfaces, for larger transfers, the DMA interface can result in significant
performance improvements for a network server processing file requests from remote
systems.

To describe these references to physical memory, a memory descriptor list (MDL) is used.
(MDLs were introduced in Chapter 7.) The four separate functions described in Table 11-12
create the cache manager's DMA interface.

Table 11-12 Functions That Create the DMA Interface

Function Description

CcMdlRead Returns an MDL describing the specified byte range

CcMdlReadComplete Frees the MDL

CcMdlWrite Returns an MDL describing a specified byte range (possibly
containing zeros)

CcMdlWriteComplete Frees the MDL and marks the range for writing

You can examine MDL activity from the cache via the performance counters or system
variables listed in Table 11-13.

Table 11-13 System Variables for Examining MDL Activity from the Cache

Performance
Counter

(frequency)

System Variable
(count) Description

Cache: MDL
Read Hits %

(CcMdlReadWait + 
CcMdlReadNoWait) / 
(CcMdlReadWait + 
CcMdlReadNoWait) + 
(CcMdlReadWaitMiss +
(CcMdlReadWaitMiss +
CcMdlReadNoWaitMiss)

Percentage of MDL reads to parts of files
that were in the cache (References to pages
satisfied by an MDL read can still generate
paging I/O.)

Cache: MDL
Reads/Sec

CcMdlReadWait +
CcMdlReadNoWait

Total MDL reads from the cache

Cache: Sync
MDL
Reads/Sec

CcMdlReadWait Synchronous MDL reads from the cache



Cache: Async
MDL
Reads/Sec

CcMdlReadNoWait Asynchronous MDL reads from the cache



Write Throttling

Windows 2000 must determine whether the scheduled writes will affect system
performance and then schedule any delayed writes. First it asks whether a certain number
of bytes can be written right now without hurting performance and blocks that write if
necessary. Then it sets up callback for automatically writing the bytes when writes are
again permitted. Once it's notified of an impending write operation, the cache manager
determines how many dirty pages are in the cache and how much physical memory is
available. If few physical pages are free, the cache manager momentarily blocks the file
system thread that's requesting to write data to the cache. The cache manager's lazy
writer flushes some of the dirty pages to disk and then allows the blocked file system
thread to continue. This write throttling prevents system performance from degrading
because of a lack of memory when a file system or network server issues a large write
operation.

Write throttling is also useful for network redirectors transmitting data over slow
communication lines. For example, suppose a local process writes a large amount of data
to a remote file system over a 9600-baud line. The data isn't written to the remote disk
until the cache manager's lazy writer flushes the cache. If the redirector has accumulated
lots of dirty pages that are flushed to disk at once, the recipient could receive a network
timeout before the data transfer completes. By using the CcSetDirtyPageThreshold
function, the cache manager allows network redirectors to set a limit on the number of
dirty cache pages they can tolerate, thus preventing this scenario. By limiting the number
of dirty pages, the redirector ensures that a cache flush operation won't cause a network
timeout.

EXPERIMENT

Viewing the Write-Throttle Parameters

The !defwrites kernel debugger command dumps the values of the kernel
variables the cache manager uses, including the number of dirty pages in the file
cache (CcTotalDirtyPages) when determining whether it should throttle write
operations:

kd> !defwrites 
*** Cache Write Throttle Analysis *** 
 
        CcTotalDirtyPages:                 758 (    3032 Kb) 
        CcDirtyPageThreshold:              770 (    3080 Kb) 
        MmAvailablePages:                42255 (  169020 Kb) 
        MmThrottleTop:                     250 (    1000 Kb) 
        MmThrottleBottom:                   30 (     120 Kb) 
        MmModifiedPageListHead.Total:      689 (    2756 Kb) 
 
CcTotalDirtyPages within 64 (max charge) pages of the threshold, w
  may be throttled 
 



Check these thread(s): CcWriteBehind(LazyWriter) 
Check critical workqueue for the lazy writer, !exqueue 16 

This output shows that the number of dirty pages is close to the number that
triggers write throttling (CcDirtyPageThreshold), so if a process tried to write more
than 12 pages (48 KB) at the time of the experiment, it would be delayed until the
lazy writer lowered the number of dirty pages.



[Previous] [Next]



Conclusion
The Windows 2000 cache manager provides a high-speed,
intelligent mechanism for reducing disk I/O and increasing
overall system throughput. By caching on the basis of
virtual blocks, the Windows 2000 cache manager can
perform intelligent read-ahead. By relying on the global
memory manager's mapped file primitive to access file data,
the cache manager can provide the special fast I/O
mechanism to reduce the CPU time required for read and
write operations and also leave all matters related to
physical memory management to the single Windows 2000
global memory manager, thus reducing code duplication and
increasing efficiency.



[Previous] [Next]

Chapter 12



File Systems
In this chapter, we present an overview of the file system
formats supported by Microsoft Windows 2000. We then
describe the types of file system drivers and their basic
operation, including how they interact with other system
components such as the memory manager and the cache
manager. Windows 2000 includes a native file system
format, called the NTFS file system. In the balance of the
chapter, we focus on the on-disk layout of NTFS volumes
and the advanced features of NTFS, such as compression,
recoverability, quotas, and encryption.

To fully understand this chapter, you should be familiar with
the terminology introduced in Chapter 10, including the
terms volume and partition. You'll also need to be
acquainted with these additional terms:

Sectors are hardware-addressable blocks on a storage
medium. Hard disks for x86 systems almost always
define a 512-byte sector size. Thus, if the operating
system wants to modify the 632nd byte on a disk, it
must write a 512-byte block of data to the second
sector on the disk.

File system formats define the way that file data is
stored on storage media and impact a file system's
features. For example, a format that doesn't allow user
permissions to be associated with files and directories
can't support security. A file system format can also
impose limits on the sizes of files and storage devices
that the file system supports. Finally, some file system
formats efficiently implement support for either large or
small files or for large or small disks.



Clusters are the addressable blocks that many file
system formats use. Cluster size is always a multiple of
the sector size, as shown in Figure 12-1. File system
formats use clusters to manage disk space more
efficiently; a cluster size that is larger than the sector
size divides a disk into more manageable blocks. The
potential trade-off of a larger cluster size is wasted disk
space, or internal fragmentation, that results because
file sizes typically aren't perfect multiples of cluster
sizes.

Figure 12-1 Sectors and a cluster on a disk

Metadata is data stored on a volume in support of file
system format management. It isn't typically made
accessible to applications. Metadata includes the data
that defines the placement of files and directories on a
volume, for example.



[Previous] [Next]



Windows 2000 File System Formats
Windows 2000 includes support for the following file system
formats:

CDFS

UDF

FAT12, FAT16, and FAT32

NTFS

Each of these formats is best suited for certain
environments, as you'll see in the following sections.



CDFS

CDFS, or CD-ROM File System, is a relatively simple format
that was defined in 1988 as the read-only formatting
standard for CD-ROM media. Windows 2000 implements
ISO 9660-compliant CDFS in
\Winnt\System32\Drivers\Cdfs.sys, with long filename
support defined by Level 2 of the ISO 9660 standard.
Because of its simplicity, the CDFS format has a number of
restrictions:

Directory and file names must be fewer than 32
characters long.

Directory trees can be no more than eight levels deep.

CDFS is considered a legacy format because the industry
has adopted the Universal Disk Format (UDF) as the
standard for read-only media.



UDF

The Windows 2000 UDF file system implementation is ISO
13346-compliant and supports UDF versions 1.02 and 1.5.
OSTA (Optical Storage Technology Association) defined UDF
in 1995 as a format to replace CDFS for magneto-optical
storage media, mainly DVD-ROM. UDF is included in the
DVD specification and is more flexible than CDFS. UDF file
systems have the following traits:

Filenames can be 255 characters long.

The maximum path length is 1023 characters.

Filenames can be upper and lower case.

Although the UDF format was designed with rewritable
media in mind, the Windows 2000 UDF driver
(\Winnt\System32\Drivers\Udfs.sys) provides read-only
support.



FAT12, FAT16, and FAT32

Windows 2000 supports the FAT file system primarily to
enable upgrades from other versions of Windows, for
compatibility with other operating systems in multiboot
systems, and as a floppy disk format. The Windows 2000
FAT file system driver is implemented in
\Winnt\System32\Drivers\Fastfat.sys.

Each FAT format includes a number that indicates the
number of bits the format uses to identify clusters on a
disk. FAT12's 12-bit cluster identifier limits a partition to
storing a maximum of 212 (4096) clusters. Windows 2000
uses cluster sizes from 512 bytes to 8 KB in size, which
limits a FAT12 volume size to 32 MB. Therefore, Windows
2000 uses FAT12 as the format for all 5¼-inch floppy disks
and 3.5-inch floppy disks, which store up to 1.44 MB of
data.

FAT16, with a 16-bit cluster identifier, can address 216

(65,536) clusters. On Windows 2000, FAT16 cluster sizes
range from 512 bytes (the sector size) to 64 KB, which
limits FAT16 volume sizes to 4 GB. The cluster size Windows
2000 uses depends on the size of a volume. The various
sizes are listed in Table 12-1. If you format a volume that is
less than 16 MB as FAT by using the format command or
the Disk Management snap-in, Windows 2000 uses the
FAT12 format instead of FAT16.

Table 12-1 Default FAT16 Cluster Sizes in Windows 2000

Volume Size Cluster Size

0-32 MB 512 bytes

33 MB-64 MB 1 KB



65 MB-128 MB 2 KB

129 MB-256 MB 4 KB

257 MB-511 MB 8 KB

512 MB-1023 MB 16 KB

1024 MB-2047 MB 32 KB

2048 MB-4095 MB 64 KB

A FAT volume is divided into several regions, which are
shown in Figure 12-2. The file allocation table, which gives
the FAT file system format its name, has one entry for each
cluster on a volume. Because the file allocation table is
critical to the successful interpretation of a volume's
contents, the FAT format maintains two copies of the table
so that if a file system driver or consistency-checking
program (such as Chkdsk) can't access one (because of a
bad disk sector, for example) it can read from the other.

Figure 12-2 FAT format organization

Entries in the file allocation table define file-allocation
chains (shown in Figure 12-3) for files and directories,
where the links in the chain are indexes to the next cluster
of a file's data. A file's directory entry stores the starting
cluster of the file. The last entry of the file's allocation chain
is the reserved value of 0xFFFF for FAT16 and 0xFFF for
FAT12. The FAT entries for unused clusters have a value of
0. You can see in Figure 12-3 that FILE1 is assigned clusters
2, 3, and 4; FILE2 is fragmented and uses clusters 5, 6, and
8; and FILE3 uses only cluster 7.

javascript:fullSize('F12yj02x.htm')


Figure 12-3 Example FAT file-allocation chains

The root directory of FAT12 and FAT16 volumes are
preassigned enough space at the start of a volume to store
256 directory entries, which places an upper limit on the
number of files and directories that can be stored in the
root directory. (There's no preassigned space or size limit
on FAT32 root directories.) A FAT directory entry is 32 bytes
and stores a file's name, size, starting cluster, and time
stamp (last-accessed, created, and so on) information. If a
file has a name that is Unicode or that doesn't follow the
MS-DOS 8.3 naming convention, additional directory entries
are allocated to store the long filename. The supplementary
entries precede the file's main entry. Figure 12-4 shows an
example directory entry for a file named "The quick brown
fox." The system has created a THEQUI~1.FOX 8.3
representation of the name (you don't see a ."" in the
directory entry because it is assumed to come after the
eighth character) and used two more directory entries to
store the Unicode long filename. Each row in the figure is
made up of 16 bytes.

javascript:fullSize('F12yj03x.htm')


Figure 12-4 FAT directory entry

FAT32 is the most recently defined FAT-based file system
format, and it's included with Windows 95 OSR2, Windows
98, and Windows Millennium Edition. FAT32 uses 32-bit
cluster identifiers but reserves the high 4 bits, so in effect it
has 28-bit cluster identifiers. Because FAT32 cluster sizes
can be as large as 32 KB, FAT32 has a theoretical ability to
address 8-terabyte (TB) volumes. Although Windows 2000
works with existing FAT32 volumes of larger sizes (created
in other operating systems), it limits new FAT32 volumes to
a maximum of 32 GB. FAT32's higher potential cluster
numbers let it more efficiently manage disks than FAT16; it
can handle up to 128-MB volumes with 512-byte clusters.
Table 12-2 shows default cluster sizes for FAT32 volumes.

Table 12-2 Default Cluster Sizes for FAT32 Volumes

Partition Size Cluster Size

32 MB to 8 GB 4 KB

8 GB to 16 GB 8 KB

16 GB to 32 GB 16 KB

32 GB 32 KB

javascript:fullSize('F12yj04x.htm')


Besides the higher limit on cluster numbers, other
advantages FAT32 has over FAT12 and FAT16 include the
fact that the FAT32 root directory isn't stored at a
predefined location on the volume, the root directory
doesn't have an upper limit on its size, and FAT32 stores a
second copy of the boot sector for reliability. A limitation
FAT32 shares with FAT16 is that the maximum file size is 4
GB, because directories store file sizes as 32-bit values.



NTFS

As we said at the beginning of the chapter, the NTFS file
system is the native file system format of Windows 2000.
NTFS uses 64-bit cluster indexes. This capacity gives NTFS
the ability to address volumes of up to 16 exabytes (16
billion GB); however, Windows 2000 limits the size of an
NTFS volume to that addressable with 32-bit clusters, which
is 128 TB (using 64-KB clusters). Table 12-3 shows the
default cluster sizes for NTFS volumes. (You can override
the default when you format an NTFS volume.)

Table 12-3 Default Cluster Sizes for NTFS Volumes

Volume Size Default Cluster Size

512 MB or less 512 bytes

513 MB-1024 MB (1 GB) 1 KB

1025 MB-2048 MB (2 GB) 2 KB

Greater than 2048 MB 4 KB

NTFS includes a number of advanced features, such as file
and directory security, disk quotas, file compression,
directory-based symbolic links, and encryption. One of its
most significant features is recoverability. If a system is
halted unexpectedly, the metadata of a FAT volume can be
left in an inconsistent state, leading to the corruption of
large amounts of file and directory data. NTFS logs changes
to metadata in a transactional manner so that file system
structures can be repaired to a consistent state with no loss
of file or directory structure information. (File data can be
lost, however.)



We'll describe NTFS data structures and advanced features
in detail later in this chapter.



[Previous] [Next]



File System Driver Architecture
File system drivers (FSDs) manage file system formats.
Although FSDs run in kernel mode, they differ in a number
of ways from standard kernel-mode drivers. Perhaps most
significant, they must register as an FSD with the I/O
manager and they interact more extensively with the
memory manager and the cache manager. Thus, they use a
superset of the exported Ntoskrnl functions that standard
drivers use. Whereas you need the Windows 2000 DDK in
order to build standard kernel-mode drivers, you must have
the Windows 2000 Installable File System (IFS) Kit to build
file system drivers. (See Chapter 1 for more information on
the DDK, and see www.microsoft.com/ddk/ifskit for more
information on the IFS Kit.)

Windows 2000 has two different types of file system drivers:

Local FSDs manage volumes directly connected to the
computer.

Network FSDs allow users to access data volumes
connected to remote computers.

http://www.microsoft.com/ddk/ifskit


Local FSDs

Local FSDs include Ntfs.sys, Fastfat.sys, Udfs.sys, Cdfs.sys,
and the Raw FSD (integrated in Ntoskrnl.exe). Figure 12-5
shows a simplified view of how local FSDs interact with the
I/O manager and storage device drivers. As we described in
the section "Volume Mounting" in Chapter 10, a local FSD is
responsible for registering with the I/O manager. Once the
FSD is registered, the I/O manager can call on it to perform
volume recognition when applications or the system initially
access the volumes. Volume recognition involves an
examination of a volume's boot sector and often, as a
consistency check, the file system metadata.

Figure 12-5 Local FSD

The first sector of every Windows 2000-supported file
system format is reserved as the volume's boot sector. A
boot sector contains enough information so that a local FSD
can both identify the volume on which the sector resides as
containing a format that the FSD manages and locate any

javascript:fullSize('F12yj05x.htm')


other metadata necessary to identify where metadata is
stored on the volume.

When a local FSD recognizes a volume, it creates a device
object that represents the mounted file system format. The
I/O manager makes a connection through the volume
parameter block (VPB) between the volume's device object
(which is created by a storage device) and the device object
that the FSD created. The VPB's connection results in the
I/O manager redirecting I/O requests targeted at the volume
device object to the FSD device object. (See Chapter 10 for
more information on VPBs.)

To improve performance, local FSDs usually use the cache
manager to cache file system data, including metadata. They
also integrate with the memory manager so that mapped
files are implemented correctly. For example, they must
query the memory manager whenever an application
attempts to truncate a file in order to verify that no
processes have mapped the part of the file beyond the
truncation point. Windows 2000 doesn't permit file data that
is mapped by an application to be deleted either through
truncation or file deletion.

Local FSDs also support file system dismount operations,
which permit the system to disconnect the FSD from the
volume object. A dismount occurs whenever an application
requires raw access to the on-disk contents of a volume or
the media associated with a volume is changed. The first
time an application accesses the media after a dismount, the
I/O manager reinitiates a volume mount operation for the
media.



Remote FSDs

Remote FSDs consist of two components: a client and a
server. A client-side remote FSD allows applications to
access remote files and directories. The client FSD accepts
I/O requests from applications and translates them into
network file system protocol commands that the FSD sends
across the network to a server-side remote FSD. A server-
side FSD listens for commands coming from a network
connection and fulfills them by issuing I/O requests to the
local FSD that manages the volume on which the file or
directory that the command is intended for resides. Figure
12-6 shows the relationship between the client and server
sides of a remote FSD interaction.

Figure 12-6 Remote FSD operation

Windows 2000 includes a client-side remote FSD named
LANMan Redirector (redirector) and a server-side remote
FSD server named LANMan Server (server). The redirector is
implemented as a port/miniport driver combination, where

javascript:fullSize('F12yj06x.htm')


the port driver (\Winnt\System32\Drivers\Rdbss.sys) is
implemented as a driver subroutine library and the miniport
(\Winnt\System32\Drivers\Mrxsmb.sys) uses services
implemented by the port driver. The port/miniport model
simplifies redirector development because the port driver,
which all remote FSD miniport drivers share, handles many
of the mundane details involved with interfacing a client-side
remote FSD to the Windows 2000 I/O manager. In addition
to the FSD components, both LANMan Redirector and
LANMan Server include Win32 services named Workstation
and Server, respectively.

Windows 2000 relies on the Common Internet File System
(CIFS) protocol to format messages exchanged between the
redirector and the server. CIFS is an enhanced version of
Microsoft's Server Message Block (SMB) protocol. (For more
information on CIFS, go to www.cifs.com.)

Like local FSDs, client-side remote FSDs usually use cache
manager services to locally cache file data belonging to
remote files and directories. However, client-side remote
FSDs must implement a distributed cache coherency
protocol, called oplocks (opportunistic locking), so that the
data an application sees when it accesses a remote file is the
same as the data applications running on other computers
that are accessing the same file see. Although server-side
remote FSDs participate in maintaining cache coherency
across their clients, they don't cache data from the local
FSDs, because local FSDs cache their own data. (Oplocks are
described further in the section "Distributed File Caching" in
Chapter 13.)

NOTE

http://www.cifs.com/


A filter driver that layers over a file system driver is
called file-system filter driver. The ability to see all
file system requests and optionally modify or
complete them enables a range of applications,
including on-access virus scanners and remote file
replication services. Filemon, on the companion CD as
\Sysint\Filemon, is an example of a file-system filter
driver that is a pass-through filter. Filemon displays
file system activity in real time without modifying the
requests it sees.

EXPERIMENT

Viewing the List of Registered File Systems

When the I/O manager loads a device driver into
memory, it typically names the driver object it
creates to represent the driver so that it's placed in
the \Drivers object manager directory. The driver
objects for any driver the I/O manager loads that
have a Type attribute value of
SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the
\FileSystem directory by the I/O manager. Thus,
using a tool like Winobj (on the companion CD in
\Sysint\Winobj.exe), you can see the file systems
that have registered on a system, as shown in the
following screen shot. (Note that some file system
drivers also place device objects in the \FileSystem
directory.)



javascript:fullSize('G12yj01x.htm')


File System Operation

Applications and the system access files in two ways:
directly, via file I/O functions (such as ReadFile and
WriteFile), and indirectly, by reading or writing a portion of
their address space that represents a mapped file section.
(See Chapter 7 for more information on mapped files.)
Figure 12-7 is a simplified diagram that shows the
components involved in these file system operations and the
ways in which they interact. As you can see, an FSD can be
invoked through several paths:

From a user or system thread performing explicit file I/O

From the memory manager's modified page writer

Indirectly from the cache manager's lazy writer

Indirectly from the cache manager's read-ahead thread

From the memory manager's page fault handler

Figure 12-7 Components involved in file system I/O

javascript:fullSize('F12yj07x.htm')


The following sections describe the circumstances
surrounding each of these scenarios and the steps FSDs
typically take in response to each one. You'll see how much
FSDs rely on the memory manager and the cache manager.

Explicit File I/O

The most obvious way an application accesses files is by
calling Win32 I/O functions such as CreateFile, ReadFile, and
WriteFile. An application opens a file with CreateFile and
then reads, writes, or deletes the file by passing the handle
returned from CreateFile to other Win32 functions. The
CreateFile function, which is implemented in the Kernel32.dll
Win32 client-side DLL, invokes the native function
NtCreateFile, forming a complete root-relative pathname for
the path that the application passed to it (processing ."" and
."." symbols in the pathname) and prepending the path with
"\??" (for example, \??\C:\Susan\Todo.txt).

The NtCreateFile system service uses ObOpenObjectByName
to open the file, which parses the name starting with the
object manager root directory and the first component of the
path name ("??"). \?? is a subdirectory that contains
symbolic links representing volumes that are assigned drive
letters (and symbolic links to serial ports and other device
objects that Win32 applications access directly), so the "C:"
component of the name resolves to the \??\C: symbolic link.
The symbolic link points to a volume device object under
\Device, so when the object manager encounters the volume
object, the object manager hands the rest of the pathname
to the parse function that the I/O manager has registered
for device objects, IopParseDevice. (In volumes on dynamic
disks, a symbolic link points to an intermediary symbolic
link, which points to a volume device object.) Figure 12-8
shows how volume objects are accessed through the object
manager namespace. The figure shows how the \??\C:



symbolic link points to the \Device\HarddiskVolume1 volume
device object.

Figure 12-8 Drive-letter name resolution

After locking the caller's security context and obtaining
security information from the caller's token, IopParseDevice
creates an I/O request packet (IRP) of type IRP_MJ_CREATE,
creates a file object that stores the name of the file being
opened, follows the VPB of the volume device object to find
the volume's mounted file system device object, and uses
IoCallDriver to pass the IRP to the file system driver that
owns the file system device object.

When an FSD receives an IRP_MJ_CREATE IRP, it looks up
the specified file, performs security validation, and if the file
exists and the user has permission to access the file in the
way requested, returns a success code. The object manager

javascript:fullSize('F12yj08x.htm')


creates a handle for the file object in the process's handle
table and the handle propagates back through the calling
chain, finally reaching the application as a return parameter
from CreateFile. If the file system fails the create, the I/O
manager deletes the file object it created for it.

We've skipped over the details of how the FSD locates the
file being opened on the volume, but a ReadFile function call
operation shares many of the FSD's interactions with the
cache manager and storage driver. The path into the kernel
taken as the result of a call to ReadFile is the same as for a
call to CreateFile, but the NtReadFile system service doesn't
need to perform a name lookup—it calls on the object
manager to translate the handle passed from ReadFile into a
file object pointer. If the handle indicates that the caller
obtained permission to read the file when the file was
opened, NtReadFile proceeds to create an IRP of type
IRP_MJ_READ and sends it to the FSD on which the file
resides. NtReadFile obtains the FSD's device object, which is
stored in the file object, and calls IoCallDriver, and the I/O
manager locates the FSD from the device object and gives
the IRP to the FSD.

If the file being read can be cached (the
FILE_FLAG_NO_BUFFERING flag wasn't passed to CreateFile
when the file was opened), the FSD checks to see whether
caching has already been initiated for the file object. The
PrivateCacheMap field in a file object points to a private
cache map data structure (which we described in Chapter
11), if caching is initiated for a file object. If the FSD hasn't
initialized caching for the file object (which it does the first
time a file object is read from or written to), the
PrivateCacheMap field will be null. The FSD calls the cache
manager CcInitializeCacheMap function to initialize caching,
which involves the cache manager creating a private cache
map and, if another file object referring to the same file



hasn't initiated caching, a shared cache map and a section
object.

After it has verified that caching is enabled for the file, the
FSD copies the requested file data from the cache manager's
virtual memory to the buffer that the thread passed to
ReadFile. The file system performs the copy within a
try/except block so that it catches any faults that are the
result of an invalid application buffer. The function the file
system uses to perform the copy is the cache manager's
CcCopyRead function. CcCopyRead takes as parameters a
file object, file offset, and length.

When the cache manager executes CcCopyRead, it retrieves
a pointer to a shared cache map, which is stored in the file
object. Recall from Chapter 11 that a shared cache map
stores pointers to virtual address control blocks (VACBs),
with one VACB entry per 256-KB block of the file. If the
VACB pointer for a portion of a file being read is null,
CcCopyRead allocates a VACB, reserving a 256-KB view in
the cache manager's virtual address space, and maps (using
MmCreateSection and MmMapViewOfSection) the specified
portion of the file into the view. Then CcCopyRead simply
copies the file data from the mapped view to the buffer it
was passed (the buffer originally passed to ReadFile). If the
file data isn't in physical memory, the copy operation
generates page faults, which are serviced by
MmAccessFault.

When a page fault occurs, MmAccessFault examines the
virtual address that caused the fault and locates the virtual
address descriptor (VAD) in the VAD tree of the process that
caused the fault. (See Chapter 7 for more information on
VAD trees.) In this scenario, the VAD describes the cache
manager's mapped view of the file being read, so
MmAccessFault calls MiDispatchFault to handle a page fault



on a valid virtual memory address. MiDispatchFault locates
the control area (which the VAD points to) and through the
control area finds a file object representing the open file. (If
the file has been opened more than once, there might be a
list of file objects linked through pointers in their private
cache maps.)

With the file object in hand, MiDispatchFault calls the I/O
manager function IoPageRead to build an IRP (of type
IRP_MJ_READ) and sends the IRP to the FSD that owns the
device object the file object points to. Thus, the file system
is reentered to read the data that it requested via
CcCopyRead, but this time the IRP is marked as noncached
and paging I/O. These flags signal the FSD that it should
retrieve file data directly from disk, and it does so by
determining which clusters on disk contain the requested
data and sending IRPs to the volume manager that owns the
volume device object on which the file resides. The volume
parameter block (VPB) field in the FSD's device object points
to the volume device object.

The virtual memory manager waits for the FSD to complete
the IRP read and then returns control to the cache manager,
which continues the copy operation that was interrupted by
a page fault. When the CcCopyRead completes, the FSD
returns control to the thread that called NtReadFile, having
copied the requested file data—with the aid of the cache
manager and the virtual memory manager—to the thread's
buffer.

The path for WriteFile is similar except that the NtWriteFile
system service generates an IRP of type IRP_MJ_WRITE and
the FSD calls CcCopyWrite instead of CcCopyRead.
CcCopyWrite, like CcCopyRead, ensures that the portions of
the file being written are mapped into the cache and then
copies to the cache the buffer passed to WriteFile.



If a file's data is already stored in the system's working set,
there are several variants on the scenario we've just
described. If a file's data is already stored in the cache,
CcCopyRead doesn't incur page faults. Also, under certain
conditions, NtReadFile and NtWriteFile call an FSD's fast I/O
entry point instead of immediately building and sending an
IRP to the FSD. Some of these conditions follow: the portion
of the file being read must reside in the first 4 GB of the file,
the file can have no locks, and the portion of the file being
read or written must fall within the file's currently allocated
size.

The fast I/O read and write entry points for most FSDs call
the cache manager's CcFastCopyRead and CcFastCopyWrite
functions. These variants on the standard copy routines
ensure that the file's data is mapped in the file system cache
before performing a copy operation. If this condition isn't
met, CcFastCopyRead and CcFastCopyWrite indicate that
fast I/O isn't possible. When fast I/O isn't possible,
NtReadFile and NtWriteFile fall back on creating an IRP.

Memory Manager's Modified and Mapped Page
Writer

The memory manager's modified and mapped page writer
threads wake up periodically to flush modified pages. The
threads call IoAsynchronousPageWrite to create IRPs of type
IRP_MJ_WRITE and write pages to either a paging file or a
file that was modified after being mapped. Like the IRPs that
MiDispatchFault creates, these IRPs are flagged as
noncached and paging I/O. Thus, an FSD bypasses the file
system cache and issues IRPs directly to a storage driver to
write the memory to disk.

Cache Manager's Lazy Writer



The cache manager's lazy writer thread also plays a role in
writing modified pages because it periodically flushes views
of file sections mapped in the cache that it knows are dirty.
The flush operation, which the cache manager performs by
calling MmFlushSection, triggers the memory manager to
write any modified pages in the portion of the section being
flushed to disk. Like the modified and mapped page writers,
MmFlushSection uses IoAsynchronousPageWrite to send the
data to the FSD.

Cache Manager's Read-Ahead Thread

The cache manager includes a thread that is responsible for
attempting to read data from files before an application, a
driver, or a system thread explicitly requests it. The read-
ahead thread uses the history of read operations that were
performed on a file, which are stored in a file object's private
cache map, to determine how much data to read. When the
thread performs a read-ahead, it simply maps the portion of
the file it wants to read into the cache (allocating VACBs as
necessary) and touches the mapped data. The page faults
caused by the memory accesses invoke the page fault
handler, which reads the pages into the system's working
set.

Memory Manager's Page Fault Handler

We described how the page fault handler is used in the
context of explicit file I/O and cache manager read-ahead,
but it is also invoked whenever any application accesses
virtual memory that is a view of a mapped file and
encounters pages that represent portions of a file that aren't
part of the application's working set. The memory manager's
MmAccessFault handler follows the same steps it does when
the cache manager generates a page fault from CcCopyRead



or CcCopyWrite, sending IRPs via IoPageRead to the file
system on which the file is stored.



[Previous] [Next]



NTFS Design Goals and Features
In the following section, we'll look at the requirements that drove the
design of NTFS. Then in the subsequent section, we'll examine the
advanced features of NTFS.



High-End File System Requirements

From the start, NTFS was designed to include features required of an
enterprise-class file system. To minimize data loss in the face of an
unexpected system outage or crash, a file system must ensure that the
integrity of the file system's metadata be guaranteed at all times, and
to protect sensitive data from unauthorized access, a file system must
have an integrated security model. Finally, a file system must allow for
software-based data redundancy as a low-cost alternative to hardware-
redundant solutions for protecting user data. In this section, you'll find
out how NTFS implements each of these capabilities.

Recoverability

To address the requirement for reliable data storage and data access,
NTFS provides file system recovery based on the concept of an atomic
transaction. Atomic transactions are a technique for handling
modifications to a database so that system failures don't affect the
correctness or integrity of the database. The basic tenet of atomic
transactions is that some database operations, called transactions, are
all-or-nothing propositions. (A transaction is defined as an I/O
operation that alters file system data or changes the volume's directory
structure.) The separate disk updates that make up the transaction
must be executed atomically; that is, once the transaction begins to
execute, all its disk updates must be completed. If a system failure
interrupts the transaction, the part that has been completed must be
undone, or rolled back. The rollback operation returns the database to
a previously known and consistent state, as if the transaction had
never occurred.

NTFS uses atomic transactions to implement its file system recovery
feature. If a program initiates an I/O operation that alters the structure
of an NTFS drive—that is, changes the directory structure, extends a
file, allocates space for a new file, and so on—NTFS treats that
operation as an atomic transaction. It guarantees that the transaction
is either completed or, if the system fails while executing the
transaction, rolled back. The details of how NTFS does this are
explained in the section "NTFS Recovery Support."

In addition, NTFS uses redundant storage for vital file system
information so that if a sector on the disk goes bad, NTFS can still
access the volume's critical file system data. This redundancy of file



system data contrasts with the on-disk structures of both the FAT file
system and the HPFS file system (OS/2's native file system format),
which have single sectors containing critical file system data. On these
file systems, if a read error occurs in one of those sectors an entire
volume is lost.

Security

Security in NTFS is derived directly from the Windows 2000 object
model. Files and directories are protected from being accessed by
unauthorized users. (For more information on Windows 2000 security,
see Chapter 8.) An open file is implemented as a file object with a
security descriptor stored on disk as a part of the file. Before a process
can open a handle to any object, including a file object, the Windows
2000 security system verifies that the process has appropriate
authorization to do so. The security descriptor, combined with the
requirement that a user log on to the system and provide an identifying
password, ensures that no process can access a file unless given
specific permission to do so by a system administrator or by the file's
owner. (For more information about security descriptors, see the
section "Security Descriptors and Access Control" in Chapter 8, and for
more details about file objects, see the section "File Objects" in Chapter
9.)

Data Redundancy and Fault Tolerance

In addition to recoverability of file system data, some customers
require that their own data not be endangered by a power outage or
catastrophic disk failure. The NTFS recovery capabilities do ensure that
the file system on a volume remains accessible, but they make no
guarantees for complete recovery of user files. Protection for
applications that can't risk losing file data is provided through data
redundancy.

Data redundancy for user files is implemented via the Windows 2000
layered driver model (explained in Chapter 9), which provides fault
tolerant disk support. NTFS communicates with a volume manager,
which in turn communicates with a hard disk driver to write data to
disk. A volume manager can mirror, or duplicate, data from one disk
onto another disk so that a redundant copy can always be retrieved.
This support is commonly called RAID level 1. Volume managers also
allow data to be written in stripes across three or more disks, using the



equivalent of one disk to maintain parity information. If the data on
one disk is lost or becomes inaccessible, the driver can reconstruct the
disk's contents by means of exclusive-OR operations. This support is
called RAID level 5. (See Chapter 10 for more information on striped
volumes, mirrored volumes, and RAID-5 volumes.)



Advanced Features of NTFS

In addition to NTFS being recoverable, secure, reliable, and efficient for
mission-critical systems, it includes the following advanced features
that allow it to support a broad range of applications. Some of these
features are exposed as APIs for applications to leverage, and others
are internal features:

Multiple data streams

Unicode-based names

General indexing facility

Dynamic bad-cluster remapping

Hard links and junctions

Compression and sparse files

Change logging

Per-user volume quotas

Link tracking

Encryption

POSIX support

Defragmentation

The following sections provide an overview of these features.

Multiple Data Streams

In NTFS, each unit of information associated with a file, including its
name, its owner, its time stamps, its contents, and so on, is
implemented as a file attribute (NTFS object attribute). Each attribute
consists of a single stream, that is, a simple sequence of bytes. This
generic implementation makes it easy to add more attributes (and
therefore more streams) to a file. Because a file's data is "just another
attribute" of the file and because new attributes can be added, NTFS
files (and file directories) can contain multiple data streams.



An NTFS file has one default data stream, which has no name. An
application can create additional, named data streams and access them
by referring to their names. To avoid altering the Microsoft Win32 I/O
APIs, which take a string as a filename argument, the name of the data
stream is specified by appending a colon (:) to the filename. Because
the colon is a reserved character, it can serve as a separator between
the filename and the data stream name, as illustrated in this example:

myfile.dat:stream2 

Each stream has a separate allocation size (how much disk space has
been reserved for it), actual size (how many bytes the caller has used),
and valid data length (how much of the stream has been initialized). In
addition, each stream is given a separate file lock that is used to lock
byte ranges and to allow concurrent access.

One component in Windows 2000 that uses multiple data streams is
the Apple Macintosh file server support that comes with Windows 2000
Server. Macintosh systems use two streams per file—one to store data
and the other to store resource information, such as the file type and
the icon used to represent the file. Because NTFS allows multiple data
streams, a Macintosh user can copy an entire Macintosh folder to a
Windows 2000 Server, and another Macintosh user can copy the folder
from the server without losing resource information.

Windows Explorer is another application that uses streams. When you
right-click on an NTFS file and select Properties, the Summary tab of
the resulting dialog box lets you associate information with the file,
such as a title, subject, author, and keywords. Windows Explorer stores
the information in an alternate stream it adds to the file, named
"Summary Information."

Other applications can use the multiple data stream feature as well. A
backup utility, for example, might use an extra data stream to store
backup-specific time stamps on files. Or an archival utility might
implement hierarchical storage in which files that are older than a
certain date or that haven't been accessed for a specified period of
time are moved to tape. The utility could copy the file to tape, set the
file's default data stream to 0, and add a data stream that specifies the
name and location of the tape on which the file is stored.



EXPERIMENT

Looking at Streams

Most Windows 2000 applications aren't designed to work with
alternate named streams, but both the echo and the more
commands are. Thus, a simple way to view streams in action is
to create a named stream using echo and then display it using
more. The following command sequence creates a file named
test with a stream named stream:

C:\>echo hello > test:stream 
C:\>more < test:stream 
hello 
C:\> 

If you perform a directory listing, test's file size doesn't reflect
the data stored in the alternate stream because NTFS returns
the size of only the unnamed data stream for file query
operations, including directory listings.

C:\>dir test  
 Volume in drive C is WINDOWS 
 Volume Serial Number is 3991-3040 
 
 Directory of C:\ 
 
08/01/00  02:37p                    0 test 
               1 File(s)             0 bytes 
                            112,558,080 bytes free 
C:\> 

Unicode-Based Names

Like Windows 2000 as a whole, NTFS is fully Unicode enabled, using
Unicode characters to store names of files, directories, and volumes.
Unicode, a 16-bit character-coding scheme, allows each character in
each of the world's major languages to be uniquely represented, which



aids in moving data easily from one country to another. Unicode is an
improvement over the traditional representation of international
characters—using a double-byte coding scheme that stores some
characters in 8 bits and others in 16 bits, a technique that requires
loading various code pages to establish the available characters.
Because Unicode has a unique representation for each character, it
doesn't depend on which code page is loaded. Each directory and
filename in a path can be as many as 255 characters long and can
contain Unicode characters, embedded spaces, and multiple periods.

General Indexing Facility

The NTFS architecture is structured to allow indexing of file attributes
on a disk volume. This structure enables the file system to efficiently
locate files that match certain criteria—for example, all the files in a
particular directory. The FAT file system indexes filenames but doesn't
sort them, making lookups in large directories slow.

Several NTFS features take advantage of general indexing, including
consolidated security descriptors, in which the security descriptors of a
volume's files and directories are stored in a single internal stream,
have duplicates removed, and are indexed using an internal security
identifier that NTFS defines.

Dynamic Bad-Cluster Remapping

Ordinarily, if a program tries to read data from a bad disk sector, the
read operation fails and the data in the allocated cluster becomes
inaccessible. If the disk is formatted as a fault tolerant NTFS volume,
however, the Windows 2000 fault tolerant driver dynamically retrieves
a good copy of the data that was stored on the bad sector and then
sends NTFS a warning that the sector is bad. NTFS allocates a new
cluster, replacing the cluster in which the bad sector resides, and copies
the data to the new cluster. It flags the bad cluster and no longer uses
it. This data recovery and dynamic bad-cluster remapping is an
especially useful feature for file servers and fault tolerant systems or
for any application that can't afford to lose data. If the volume
manager isn't loaded when a sector goes bad, NTFS still replaces the
cluster and doesn't reuse it, but it can't recover the data that was on
the bad sector.

Hard Links and Junctions



A hard link allows multiple paths to refer to the same file or directory.
If you create a hard link named C:\Users\Documents\Spec.doc that
refers to the existing file C:\My Documents\Spec.doc, the two paths
link to the same on-disk file and you can make changes to the file
using either path. Processes can create hard links with the Win32
CreateHardLink function or the ln POSIX function.

EXPERIMENT

Creating a Hard Link

Although applications can use the Win32 function
CreateHardLink to create a hard link, no tools use this function.
However, you can create a hard link by using the POSIX ln
utility in the Windows 2000 resource kits. The POSIX tools can't
be installed through the resource kit setup program, so you'll
need to copy them manually from the \Apps\Posix directory in
the resource kit CDs.

In addition to hard links, NTFS supports another type of
redirectioncalled junctions. Junctions, also called symbolic links, allow a
directory to redirect file or directory pathname translation to an
alternate directory. For example, if the path C:\Drivers is a junction
that redirects to C:\Winnt\System32\Drivers, an application reading
C:\Drivers\Ntfs.sys actually reads C:\Winnt\System\Drivers\Ntfs.sys.
Junctions are a useful way to lift directories that are deep in a directory
tree to a more convenient depth without disturbing the original tree's
structure or contents. The example just cited lifts the drivers directory
to the volume's root directory, reducing the directory depth of Ntfs.sys
from three levels to one when Ntfs.sys is accessed through the
junction. You can't use junctions to link to remote directories—only to
directories on local volumes.

Junctions are based on an NTFS mechanism called reparse points.
(Reparse points are discussed further in the section "Reparse Points"
later in this chapter.) A reparse point is a file or directory that has a
block of data called reparse data associated with it. Reparse data is
user-defined data about the file or directory, such as its state or
location, that can be read from the reparse point by the application



that created the data, a file system filter driver, or the I/O manager.
When NTFS encounters a reparse point during a file or directory
lookup, it returns a reparse status code, which signals file system filter
drivers that are attached to the volume, and the I/O manager, to
examine the reparse data. Each reparse point type has a unique
reparse tag. The reparse tag allows the component responsible for
interpreting the reparse point's reparse data to recognize the reparse
point without having to check the reparse data. A reparse tag owner,
either a file system filter driver or the I/O manager, can choose one of
the following options when it recognizes reparse data:

The reparse tag owner can manipulate the pathname specified in
the file I/O operation that crosses the reparse point and let the I/O
operation reissue with the altered pathname. Junctions take this
approach to redirect a directory lookup, for example.

The reparse tag owner can remove the reparse point from the file,
alter the file in some way, and then reissue the file I/O operation.
The Windows 2000 Hierarchical Storage Management (HSM)
system uses reparse points in this way. HSM archives files by
moving their contents to tape, leaving reparse points in their place.
When a process accesses a file that has been archived, the HSM
filter driver (\Winnt\System32\Drivers\Rsfilter.sys) removes the
reparse point from the file, reads the file's data from the archival
media, and reissues the access. Thus, the retrieval of the offline
data is transparent to a process accessing an archived file.

There are no Win32 functions for creating reparse points. Instead,
processes must use the FSCTL_SET_REPARSE_POINT file system
control code with the Win32 DeviceIoControl function. A process can
query a reparse point's contents with the FSCTL_GET_REPARSE_POINT
file system control code. The FILE_ATTRIBUTE_REPARSE_POINT flag is
set in a reparse point's file attributes, so applications can check for
reparse points by using the Win32 GetFileAttributes function.

EXPERIMENT

Creating a Junction

Windows 2000 doesn't include any tools for creating junctions,
but you can create a junction with either the Junction tool on



the companion CD (\Sysint\Junction.exe) or the Windows 2000
resource kits tool Linkd. The Linkd tool also lets you view the
definition of existing junctions, and Junction lets you view
information about junctions and other reparse point tags.

Compression and Sparse Files

NTFS supports compression of file data. Because NTFS performs
compression and decompression procedures transparently, applications
don't have to be modified to take advantage of this feature. Directories
can also be compressed, which means that any files subsequently
created in the directory are compressed.

Applications compress and decompress files by passing DeviceIoControl
the FSCTL_SET_COMPRESSION file system control code. They query
the compression state of a file or directory with the
FSCTL_GET_COMPRESSION file system control code. A file or directory
that is compressed has the FILE_ATTRIBUTE_COMPRESSED flag set in
its attributes, so applications can also determine a file or directory's
compression state with GetFileAttributes.

A second type of compression is known as sparse files. If a file is
marked as sparse, NTFS doesn't allocate space on a volume for
portions of the file that an application designates as empty. NTFS
returns 0-filled buffers when an application reads from empty areas of
a sparse file. This type of compression can be useful for client/server
applications that implement circular-buffer logging, in which the server
records information to a file and clients asynchronously read the
information. Because the information that the server writes isn't
needed after a client has read it, there's no need to store the
information in the file. By making such a file sparse, the client can
specify the portions of the file it reads as empty, freeing up space on
the volume. The server can continue to append new information to the
file, without fear that the file will grow to consume all available space
on the volume.

As for compressed files, NTFS manages sparse files transparently.
Applications specify a file's sparseness state by passing the
FSCTL_SET_SPARSE file system control code to DeviceIoControl. To set
a range of a file to empty, they use the FSCTL_SET_ZERO_DATA code,
and they can ask NTFS for a description of what parts of a file are



sparse by using FSCTL_QUERY_ALLOCATED_RANGES. One application
of sparse files is the NTFS change journal, described next.

Change Logging

Many types of applications need to monitor volumes for file and
directory changes. For example, an automatic backup program might
perform an initial full backup and then incremental backups based on
file changes. An obvious way for an application to monitor a volume for
changes is for it to scan the volume, recording the state of files and
directories, and on a subsequent scan detect differences. This process
can adversely affect system performance, however, especially on
computers with thousands or tens of thousands of files.

An alternate approach is for an application to register a directory
notification by using the FindFirstChangeNotification or
ReadDirectoryChangesW Win32 functions. As an input parameter, the
application specifies the name of a directory it wants to monitor, and
the function returns whenever the contents of the directory changes.
Although this approach is more efficient than volume scanning, it
requires the application to be running at all times. Using these
functions can also require an application to scan directories, because
FindFirstChangeNotification doesn't indicate what changed—just that
something in the directory has changed. An application can pass a
buffer to ReadDirectoryChangesW that the FSD fills in with change
records. If the buffer overflows, however, the application must be
prepared to fall back on scanning the directory.

NTFS provides a third approach that overcomes the drawbacks of the
first two: an application can configure the NTFS change journal facility
by using the DeviceIoControl function's FSCTL_CREATE_USN_JOURNAL
file system control code to have NTFS record information about file and
directory changes to an internal file called the change journal. A
change journal is usually large enough to virtually guarantee that
applications get a chance to process changes without missing any.
Applications use the FSCTL_QUERY_USN_JOURNAL file system control
to read records from a change journal, and they can specify that the
DeviceIoControl function not complete until new records are available.

Per-User Volume Quotas



Systems administrators often need to track or limit user disk space
usage on shared storage volumes, so NTFS includes quota-
management support. NTFS quota-management support allows for per-
user specification of quota enforcement, which is useful for usage
tracking and tracking when a user reaches warning and limit
thresholds. NTFS can be configured to log an event indicating the
occurrence to the system Event Log if a user surpasses his warning
limit. Similarly, if a user attempts to use more volume storage then her
quota limit permits, NTFS can log an event to the system Event Log
and fail the application file I/O that would have caused the quota
violation with a "disk full" error code.

NTFS tracks a user's volume usage by relying on the fact that it tags
files and directories with the security ID (SID) of the user who created
them. (See Chapter 8 for a definition of SIDs.) The logical sizes of files
and directories a user owns count against the user's administrator-
defined quota limit. Thus, a user can't circumvent his or her quota limit
by creating an empty sparse file that is larger than the quota would
allow and then filling the file with nonzero data. Similarly, whereas a
50-KB file might compress to 10 KB, the full 50 KB is used for quota
accounting.

By default, volumes don't have quota tracking enabled. You need to
use the Quota tab of a volume's Properties dialog box, shown in Figure
12-9, to enable quotas, to specify default warning and limit thresholds,
and to configure the NTFS behavior that occurs when a user hits the
warning or limit threshold. The Quota Entries tool, which you can
launch from this dialog box, enables an administrator to specify
different limits and behavior for each user. Applications that want to
interact with NTFS quota management use COM quota interfaces,
including IDiskQuotaControl, IDiskQuotaUser and IDiskQuotaEvents.



Figure 12-9 Volume Properties dialog box

Link Tracking

Shell shortcuts allow users to place files in their shell namespace (on
their desktop, for example) that link to files located in the file system
namespace. The Windows 2000 Start menu uses shell shortcuts
extensively. Similarly, object linking and embedding (OLE) links allow
documents from one application to be transparently embedded in the
documents of other applications. The products of the Microsoft Office
2000 suite, including PowerPoint, Excel, and Word, use OLE linking.

Although shell and OLE links provide an easy way to connect files with
one another and with the shell namespace, they have in the past been
difficult to manage. If a user moves the source of a shell or OLE link (a
link source is the file or directory to which a link points) in Windows NT
4, Windows 95, or Windows 98, the link will be broken and the system
has to rely on heuristics to attempt to locate the link's source. NTFS in
Windows 2000 includes support for a service application called
distributed link-tracking, which maintains the integrity of shell and OLE
links when link targets move. Using the NTFS link-tracking support, if a
link source located on an NTFS volume moves to any other NTFS
volume within the originating volume's domain, the link-tracking



service can transparently follow the movement and update the link to
reflect the change.

NTFS link-tracking support is based on an optional file attribute known
as an object ID. An application can assign an object ID to a file by
using the FSCTL_CREATE_OR_GET_OBJECT_ID (which assigns an ID if
one isn't already assigned) and FSCTL_SET_OBJECT_ID file system
control codes. Object IDs are queried with the
FSCTL_CREATE_OR_GET_OBJECT_ID and FSCTL_GET_OBJECT_ID file
system control codes. The FSCTL_DELETE_OBJECT_ID file system
control code lets applications delete object IDs from files.

Encryption

Corporate users often store sensitive information on their computers.
Although data stored on company servers is usually safely protected
with proper network security settings and physical access control, data
stored on laptops can be exposed when a laptop is lost or stolen. NTFS
file permissions don't offer protection because NTFS volumes can be
fully accessed without regard to security by using NTFS file-reading
software that doesn't require Windows 2000 to be running.
Furthermore, NTFS file permissions are rendered useless when an
alternate Windows 2000 installation is used to access files from an
administrator account. Recall from Chapter 8 that the administrator
account has the take-ownership and backup privileges, both of which
allow it to access any secured object by overriding the object's security
settings.

NTFS includes a facility called the Encrypting File System (EFS), which
users can use to encrypt sensitive data. The operation of the EFS, as
that of file compression, is completely transparent to applications,
which means that file data is automatically decrypted when an
application running in the account of a user authorized to view the data
reads it and is automatically encrypted when an authorized application
changes the data.

NOTE

NTFS doesn't permit the encryption of files located in the
system volume's root directory or under the \Winnt directory
because many of the files in these locations are required during



the boot process and the EFS isn't active during the boot
process.

The EFS relies on cryptographic services supplied by Windows 2000 in
user mode, and so it consists of both a kernel-mode device driver that
tightly integrates with NTFS as well as user-mode DLLs that
communicate with the Local Security Authority Subsystem (Lsass) and
cryptographic DLLs.

Files that are encrypted can be accessed only by using the private key
of an account's EFS private/public key pair, and private keys are locked
using an account's password. Thus, EFS-encrypted files on lost or
stolen laptops can't be accessed using any means (other than a brute-
force cryptographic attack) without the password of an account that is
authorized to view the data.

Applications can use the EncryptFile and DecryptFile Win32 API
functions to encrypt and decrypt files, and FileEncryptionStatus to
retrieve as file or directory's EFS-related attributes, like whether the
file or directory is encrypted.

POSIX Support

As explained in Chapter 2, one of the mandates for Windows 2000 was
to fully support the POSIX 1003.1 standard. In the file system area, the
POSIX standard requires support for case-sensitive file and directory
names, traversal permissions (where security for each directory of a
path is used when determining whether a user has access to a file or
directory), a "file-change-time" time stamp (which is different than the
MS-DOS "time-last-modified" stamp), and hard links (multiple directory
entries that point to the same file). NTFS implements each of these
features.

Defragmentation

A common myth that many people have held since the introduction of
NTFS is that it automatically optimizes file placement on disk so as not
to fragment the files. A file is fragmented if its data occupies
discontiguous clusters. For example, Figure 12-10 shows a fragmented
file consisting of three fragments. However, like most file systems
(including versions of FAT on Windows 2000), NTFS makes no special



efforts to keep files contiguous, other than to reserve a region of disk
space known as the master file table (MFT) zone for the MFT. (NTFS
lets other files allocate from the MFT zone when volume free space
runs low.) Keeping an area free for the MFT can help it stay contiguous,
but it, too, can become fragmented. (See the section "Master File Table
(MFT)" later in this chapter for more information on MFTs.)

Figure 12-10 Fragmented and contiguous files

To facilitate the development of third-party disk defragmentation tools,
Windows 2000 includes a defragmentation API that such tools can use
to move file data so that files occupy contiguous clusters. The API
consists of file system controls that let applications obtain a map of a
volume's free and in-use clusters (FSCTL_GET_VOLUME_BITMAP),
obtain a map of a file's cluster usage
(FSCTL_GET_RETRIEVAL_POINTERS), and move a file
(FSCTL_MOVE_FILE).

Windows 2000 includes a built-in defragmentation tool that is
accessible by using the Disk Defragmenter utility
(\Winnt\System32\Dfrg.msc). The built-in defragmentation tool has a
number of limitations, such as an inability to be run from the command
prompt or to be automatically scheduled. Third-party disk
defragmentation products typically offer a richer feature set.



[Previous] [Next]



NTFS File System Driver
As described in Chapter 9, in the framework of the Windows
2000 I/O system, NTFS and other file systems are loadable
device drivers that run in kernel mode. They are invoked
indirectly by applications that use Win32 or other I/O APIs
(such as POSIX). As Figure 12-11 shows, the Windows 2000
environment subsystems call Windows 2000 system
services, which in turn locate the appropriate loaded drivers
and call them. (For a description of system service
dispatching, see the section "System Service Dispatching"
in Chapter 3.)

Figure 12-11 Components of the Windows 2000 I/O
system

The layered drivers pass I/O requests to one another by
calling the Windows 2000 executive's I/O manager. Relying
on the I/O manager as an intermediary allows each driver
to maintain independence so that it can be loaded or
unloaded without affecting other drivers. In addition, the
NTFS driver interacts with the three other Windows 2000

javascript:fullSize('F12yj11x.htm')


executive components, shown in the left side of Figure 12-
12, that are closely related to file systems.

The log file service (LFS) is the part of NTFS that provides
services for maintaining a log of disk writes. The log file LFS
writes is used to recover an NTFS-formatted volume in the
case of a system failure. (See the section "Log File Service
(LFS)" for more information on LFS.)

The cache manager is the component of the Windows 2000
executive that provides systemwide caching services for
NTFS and other file system drivers, including network file
system drivers (servers and redirectors). All file systems
implemented for Windows 2000 access cached files by
mapping them into system address space and then
accessing the virtual memory. The cache manager provides
a specialized file system interface to the Windows 2000
memory manager for this purpose. When a program tries to
access a part of a file that isn't loaded into the cache (a
cache miss), the memory manager calls NTFS to access the
disk driver and obtain the file contents from disk. The cache
manager optimizes disk I/O by using its lazy writer threads
to call the memory manager to flush cache contents to disk
as a background activity (asynchronous disk writing). (For a
complete description of the cache manager, see Chapter
11.)



Figure 12-12 NTFS and related components

NTFS participates in the Windows 2000 object model by
implementing files as objects. This implementation allows
files to be shared and protected by the object manager, the
component of Windows 2000 that manages all executive-
level objects. (The object manager is described in the
section "Object Manager" in Chapter 3.)

An application creates and accesses files just as it does
other Windows 2000 objects: by means of object handles.
By the time an I/O request reaches NTFS, the Windows
2000 object manager and security system have already
verified that the calling process has the authority to access
the file object in the way it is attempting to. The security
system has compared the caller's access token to the
entries in the access-control list for the file object. (See
Chapter 8 for more information about access-control lists.)
The I/O manager has also transformed the file handle into a
pointer to a file object. NTFS uses the information in the file
object to access the file on disk.

Figure 12-13 shows the data structures that link a file
handle to the file system's on-disk structure.

javascript:fullSize('F12yj12x.htm')


Figure 12-13 NTFS data structures

NTFS follows several pointers to get from the file object to
the location of the file on disk. As Figure 12-13 shows, a file
object, which represents a single call to the open-file
system service, points to a stream control block (SCB) for
the file attribute that the caller is trying to read or write. In
Figure 12-13, a process has opened both the unnamed data
attribute and a named stream (alternate data attribute) for
the file. The SCBs represent individual file attributes and
contain information about how to find specific attributes
within a file. All the SCBs for a file point to a common data
structure called a file control block (FCB). The FCB contains
a pointer (actually, a file reference, explained in the section
"File Reference Numbers" later in this chapter) to the file's
record in the disk-based master file table (MFT), which is
described in detail in the following section.

javascript:fullSize('F12yj13x.htm')


[Previous] [Next]



NTFS On-Disk Structure
This section describes the on-disk structure of an NTFS volume, including how disk
space is divided and organized into clusters, how files are organized into directories,
how the actual file data and attribute information is stored on disk, and finally, how
NTFS data compression works.



Volumes

The structure of NTFS begins with a volume. A volume corresponds to a logical partition
on a disk, and it is created when you format a disk or part of a disk for NTFS. You can
also create a RAID volume that spans multiple disks by using the Windows 2000 Disk
Management MMC snap-in.

A disk can have one volume or several. NTFS handles each volume independently of
the others. Three sample disk configurations for a 150-MB hard disk are illustrated in
Figure 12-14.

Figure 12-14 Sample disk configurations

A volume consists of a series of files plus any additional unallocated space remaining
on the disk partition. In the FAT file system, a volume also contains areas specially
formatted for use by the file system. An NTFS volume, however, stores all file system
data, such as bitmaps and directories, and even the system bootstrap, as ordinary files.

javascript:fullSize('F12yj14x.htm')


Clusters

The cluster size on an NTFS volume, or the cluster factor, is established when a user
formats the volume with either the format command or the Disk Management MMC
snap-in. The default cluster factor varies with the size of the volume, but it is an
integral number of physical sectors, always a power of 2 (1 sector, 2 sectors, 4 sectors,
8 sectors, and so on). The cluster factor is expressed as the number of bytes in the
cluster, such as 512 bytes, 1 KB, or 2 KB.

Internally, NTFS refers only to clusters. (However, NTFS forms low-level volume I/O
operations such that it is sector-aligned and its length is a multiple of the sector size.)
NTFS uses the cluster as its unit of allocation to maintain its independence from
physical sector sizes. This independence allows NTFS to efficiently support very large
disks by using a larger cluster factor or to support nonstandard disks that have a sector
size other than 512 bytes. On a larger volume, use of a larger cluster factor can reduce
fragmentation and speed allocation, at a small cost in terms of wasted disk space. Both
the format command available from the Windows 2000 Command Prompt and the
Format menu option under the All Tasks option on the Action menu in the Disk
Management MMC snap-in choose a default cluster factor based on the volume size,
but you can override this size.

NTFS refers to physical locations on a disk by means of logical cluster numbers (LCNs).
LCNs are simply the numbering of all clusters from the beginning of the volume to the
end. To convert an LCN to a physical disk address, NTFS multiplies the LCN by the
cluster factor to get the physical byte offset on the volume, as the disk driver interface
requires. NTFS refers to the data within a file by means of virtual cluster numbers
(VCNs). VCNs number the clusters belonging to a particular file from 0 through m.
VCNs aren't necessarily physically contiguous, however; they can be mapped to any
number of LCNs on the volume.



Master File Table (MFT)

In NTFS, all data stored on a volume is contained in files, including the data structures
used to locate and retrieve files, the bootstrap data, and the bitmap that records the
allocation state of the entire volume (the NTFS metadata). Storing everything in files
allows the file system to easily locate and maintain the data, and each separate file can
be protected by a security descriptor. In addition, if a particular part of the disk goes
bad, NTFS can relocate the metadata files to prevent the disk from becoming
inaccessible.

The master file table (MFT) is the heart of the NTFS volume structure. The MFT is
implemented as an array of file records. The size of each file record is fixed at 1 KB,
regardless of cluster size. (The structure of a file record is described in the "File
Records" section.) Logically, the MFT contains one record for each file on the volume,
including a record for the MFT itself. In addition to the MFT, each NTFS volume includes
a set of metadata files containing the information that's used to implement the file
system structure. Each of these NTFS metadata files has a name that begins with a
dollar sign ($), although the signs are hidden. For example, the filename of the MFT is
$Mft. The rest of the files on an NTFS volume are normal user files and directories, as
shown in Figure 12-15.

Figure 12-15 File records for NTFS metadata files in the MFT

Usually, each MFT record corresponds to a different file. If a file has a large number of
attributes or becomes highly fragmented, however, more than one record might be
needed for a single file. In such cases, the MFT first record, which stores the locations
of the others, is called the base file record.

EXPERIMENT

Viewing the MFT

The Nfi utility included in the OEM Support Tools (part of the Windows 2000
debugging tools and available for download at
support.microsoft.com/support/kb/articles/Q253/0/66.asp) allows you to dump

javascript:fullSize('F12yj15x.htm')
http://support.microsoft.com/support/kb/articles/Q253/0/66.asp


the contents of an NTFS volume's MFT as well as to translate a volume cluster
number or physical-disk sector number (on non-RAID volumes only) to the file
that contains it, if it's part of a file. The first 16 entries of the MFT are reserved
for metadata files, but optional metadata files (which are present only if a
volume uses an associated feature) fall outside this area: \$Extend\$Quota,
\$Extend\$ObjId, \$Extend\$UsnJrnl, and \$Extend\$Reparse. The following
dump was performed on a volume that uses reparse points ($Reparse), quotas
($Quota), and object IDs ($ObjId):

C:\>nfi G:\ 
NTFS File Sector Information Utility. 
Copyright (C) Microsoft Corporation 1999. All rights reserved. 
 
File 0 
Master File Table ($Mft) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $DATA (nonresident) 
        logical sectors 32-52447 (0x20-0xccdf) 
    $BITMAP (nonresident) 
        logical sectors 16-23 (0x10-0x17) 
 
File 1 
Master File Table Mirror ($MftMirr) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $DATA (nonresident) 
        logical sectors 2048728-2048735 (0x1f42d8-0x1f42df) 
 
File 2 
Log File ($LogFile) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $DATA (nonresident) 
        logical sectors 2048736-2073343 (0x1f42e0-0x1fa2ff) 
 
File 3 
DASD ($Volume) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $OBJECT_ID (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $VOLUME_NAME (resident) 
    $VOLUME_INFORMATION (resident) 
    $DATA (resident) 
 



File 4 
Attribute Definition Table ($AttrDef) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $DATA (nonresident) 
        logical sectors 512256-512263 (0x7d100-0x7d107) 
 
File 5 
Root Directory 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $INDEX_ROOT $I30 (resident) 
    $INDEX_ALLOCATION $I30 (nonresident) 
        logical sectors 2073416-2073423 (0x1fa348-0x1fa34f) 
    $BITMAP $I30 (resident) 
 
File 6 
Volume Bitmap ($BitMap) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $DATA (nonresident) 
        logical sectors 2073424-2073675 (0x1fa350-0x1fa44b) 
 
File 7 
Boot Sectors ($Boot) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $DATA (nonresident) 
        logical sectors 0-15 (0x0-0xf) 
 
File 8 
Bad Cluster List ($BadClus) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $DATA (resident) 
    $DATA $Bad (nonresident) 
 
File 9 
Security ($Secure) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $DATA $SDS (nonresident) 
        logical sectors 2073932-2074447 (0x1fa54c-0x1fa74f) 



        logical sectors 523160-523163 (0x7fb98-0x7fb9b) 
    $INDEX_ROOT $SDH (resident) 
    $INDEX_ROOT $SII (resident) 
    $INDEX_ALLOCATION $SDH (nonresident) 
        logical sectors 1876152-1876159 (0x1ca0b8-0x1ca0bf) 
    $INDEX_ALLOCATION $SII (nonresident) 
        logical sectors 24-31 (0x18-0x1f) 
    $BITMAP $SDH (resident) 
    $BITMAP $SII (resident) 
 
File 10 
Upcase Table ($UpCase) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $DATA (nonresident) 
        logical sectors 2073676-2073931 (0x1fa44c-0x1fa54b) 
 
File 11 
Extend Table ($Extend) 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $INDEX_ROOT $I30 (resident) 
 
File 12 
(unknown/unnamed) 
    $STANDARD_INFORMATION (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $DATA (resident) 
 
File 13 
(unknown/unnamed) 
    $STANDARD_INFORMATION (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $DATA (resident) 
 
File 14 
(unknown/unnamed) 
    $STANDARD_INFORMATION (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $DATA (resident) 
 
File 15 
(unknown/unnamed) 
    $STANDARD_INFORMATION (resident) 
    $SECURITY_DESCRIPTOR (resident) 
    $DATA (resident) 



 
File 24 
\$Extend\$Quota 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $INDEX_ROOT $O (resident) 
    $INDEX_ROOT $Q (resident) 
 
File 25 
\$Extend\$ObjId 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $INDEX_ROOT $O (resident) 
 
File 26 
\$Extend\$Reparse 
    $STANDARD_INFORMATION (resident) 
    $FILE_NAME (resident) 
    $INDEX_ROOT $R (resident) 

When it first accesses a volume, NTFS must mount it—that is, read metadata from the
disk and construct internal data structures so that it can process application file system
accesses. To mount the volume, NTFS looks in the boot sector to find the physical disk
address of the MFT. The MFT's own file record is the first entry in the table; the second
file record points to a file located in the middle of the disk called the MFT mirror
(filename $MftMirr) that contains a copy of the first few rows of the MFT. This partial
copy of the MFT is used to locate metadata files if part of the MFT file can't be read for
some reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN mapping
information in the file record's data attribute and stores it in memory. Each run has a
VCN-to-LCN mapping and a run length because that's all the information necessary to
locate an LCN for any VCN. This mapping information tells NTFS where the runs
composing the MFT are located on the disk. (Runs are explained later in this chapter in
the section "Resident and Nonresident Attributes.") NTFS then processes the MFT
records for several more metadata files and opens the files. Next, NTFS performs its file
system recovery operation (described in the section "Recovery"), and finally, it opens
its remaining metadata files. The volume is now ready for user access.

As the system runs, NTFS writes to another important metadata file, the log file
(filename $LogFile). NTFS uses the log file to record all operations that affect the NTFS
volume structure, including file creation or any commands, such as Copy, that alter the
directory structure. The log file is used to recover an NTFS volume after a system
failure.

Another entry in the MFT is reserved for the root directory (also known as "\"). Its file
record contains an index of the files and directories stored in the root of the NTFS
directory structure. When NTFS is first asked to open a file, it begins its search for the



file in the root directory's file record. After opening a file, NTFS stores the file's MFT file
reference so that it can directly access the file's MFT record when it reads and writes
the file later.

NTFS records the allocation state of the volume in the bitmap file (filename $Bitmap).
The data attribute for the bitmap file contains a bitmap, each of whose bits represents
a cluster on the volume, identifying whether the cluster is free or has been allocated to
a file.

The security file (filename $Secure) stores the volumewide security descriptor
database. NTFS files and directories have individually settable security descriptors, but
to conserve space, NTFS stores the settings in a common file, which allows files and
directories that have the same security settings to reference the same security
descriptor. In most environments, entire directory trees have the same security
settings, so this optimization provides a significant savings.

Another system file, the boot file (filename $Boot), stores the Windows 2000 bootstrap
code. For the system to boot, the bootstrap code must be located at a specific disk
address. During formatting, however, the format command defines this area as a file by
creating a file record for it. Creating the boot file allows NTFS to adhere to its rule of
making everything on the disk a file. The boot file as well as NTFS metadata files can
be individually protected by means of the security descriptors that are applied to all
Windows 2000 objects. Using this "everything on the disk is a file" model also means
that the bootstrap can be modified by normal file I/O, although the boot file is
protected from editing.

NTFS also maintains a bad-cluster file (filename $BadClus) for recording any bad spots
on the disk volume and a file known as the volume file (filename $Volume), which
contains the volume name, the version of NTFS for which the volume is formatted, and
a bit that when set signifies that a disk corruption has occurred and must be repaired
by the Chkdsk utility. (The Chkdsk utility is covered in more detail later in the chapter.)
The uppercase file (filename $UpCase) includes a translation table between lowercase
and uppercase characters. NTFS maintains a file containing an attribute definition table
(filename $AttrDef) that defines the attribute types supported on the volume and
indicates whether they can be indexed, recovered during a system recovery operation,
and so on.

NTFS stores several metadata files in the extensions (directory name $Extend)
metadata directory, including the object identifier file (filename $ObjId), the quota file
(filename $Quota), the change journal file (filename $UsnJrnl), and the reparse point
file (filename $Reparse). These files store information related to optional features of
NTFS. The object identifier file stores file object IDs, the quota file stores quota limit
and behavior information on volumes that have quotas enabled, the change journal file
records file and directory changes, and the reparse point file stores information about
which files and directories on the volume include reparse point data.



File Reference Numbers

A file on an NTFS volume is identified by a 64-bit value called a file reference. The file
reference consists of a file number and a sequence number. The file number
corresponds to the position of the file's file record in the MFT minus 1 (or to the
position of the base file record minus 1 if the file has more than one file record). The
file reference sequence number, which is incremented each time an MFT file record
position is reused, enables NTFS to perform internal consistency checks. A file
reference is illustrated in Figure 12-16.

Figure 12-16 File reference

javascript:fullSize('F12yj16x.htm')


File Records

Instead of viewing a file as just a repository for textual or binary data, NTFS stores files
as a collection of attribute/value pairs, one of which is the data it contains (called the
unnamed data attribute). Other attributes that comprise a file include the filename,
time stamp information, and possibly additional named data attributes. Figure 12-17
illustrates an MFT record for a small file.

Figure 12-17 MFT record for a small file

Each file attribute is stored as a separate stream of bytes within a file. Strictly
speaking, NTFS doesn't read and write files—it reads and writes attribute streams.
NTFS supplies these attribute operations: create, delete, read (byte range), and write
(byte range). The read and write services normally operate on the file's unnamed data
attribute. However, a caller can specify a different data attribute by using the named
data stream syntax.

Table 12-4 lists the attributes for files on an NTFS volume. (Not all attributes are
present for every file.)

Table 12-4 Attributes for NTFS Files

Attribute Attribute Name Description

Volume
information

$VOLUME_INFORMATION,
$VOLUME_NAME

These attributes are present only in the
$Volume metadata file. They store
volume version sand label information.

Standard
information

$STANDARD_INFORMATION File attributes such as read-only,
archive, and so on; time stamps,
including when the file was created or
last modified; and how many
directories point to the file (its hard link
count).

Filename $FILE_NAME The file's name in Unicode characters.
A file can have multiple filename
attributes, as it does when a hard link
to a file exists or when a file with a
long name has an automatically
generated "short name" for access by

javascript:fullSize('F12yj17x.htm')


MS-DOS and 16-bit Microsoft Windows
applications.

Security
descriptor

$SECURITY_DESCRIPTOR This attribute is present for backward
compatibility with previous versions of
NTFS. The Windows 2000 version of
NTFS stores all security descriptors in
the $Secure metadata file, sharing
descriptors among files and directories
that have the same settings. Previous
versions of NTFS stored private
security descriptor information with
each file and directory.

Data $DATA The contents of the file. In NTFS, a file
has one default unnamed data attribute
and can have additional named data
attributes; that is, a file can have
multiple data streams. A directory has
no default data attribute but can have
optional named data attributes.

Index root,
index
allocation,
and index
bitmap

$INDEX_ROOT,
$INDEX_ALLOCATION,
$BITMAP

Three attributes used to implement
filename allocation and bitmap indexes
for large directories (directories only).

Attribute
list

$ATTRIBUTE_LIST A list of the attributes that make up the
file and the file reference of the MFT
file record in which each attribute is
located. This seldom-used attribute is
present when a file requires more than
one MFT file record.

Object ID $OBJECT_ID A 64-byte identifier for a file or
directory, with the lowest 16 bytes
(128 bits) unique to the volume. The
link-tracking service assigns object IDs
to shell shortcut and OLE link source
files. NTFS provides APIs so that files
and directories can be opened with
their object ID rather than their
filename.

Reparse
information

$REPARSE_POINT This attribute stores a file's reparse
point data. NTFS junctions and mount
points include this attribute.

Extended
attributes

$EA, $EA_INFORMATION Extended attributes aren't actively used
but are provided for backward
compatibility with OS/2 applications.

EFS
information

$LOGGED_UTILITY_STREAM EFS stores data in this attribute that's
used to manage a file's encryption,



such as the encrypted version of the
key needed to decrypt the file and a list
of users that are authorized to access
the file. The word logged is in the
attribute's name because changes to
this attribute are recorded in the
volume log file (described later in this
chapter) for recoverability.

Table 12-4 shows attribute names; however, attributes actually correspond to numeric
type codes, which NTFS uses to order the attributes within a file record. The file
attributes in an MFT record are ordered by these type codes (numerically in ascending
order), with some attribute types appearing more than once—if a file has multiple data
attributes, for example, or multiple filenames.

Each attribute in a file record is identified with its attribute type code and has a value
and an optional name. An attribute's value is the byte stream composing the attribute.
For example, the value of the $FILE_NAME attribute is the file's name; the value of the
$DATA attribute is whatever bytes the user stored in the file.

Most attributes never have names, though the index-related attributes and the $DATA
attribute often do. Names distinguish among multiple attributes of the same type that a
file can include. For example, a file that has a named data stream has two $DATA
attributes: an unnamed $DATA attribute storing the default unnamed data stream and
a named $DATA attribute having the name of the alternate stream and storing the
named stream's data.



Filenames

Both NTFS and FAT allow each filename in a path to be as many as 255 characters
long. Filenames can contain Unicode characters as well as multiple periods and
embedded spaces. However, the FAT file system supplied with MS-DOS is limited to 8
(non-Unicode) characters for its filenames, followed by a period and a 3-character
extension. Figure 12-18 provides a visual representation of the different file
namespaces Windows 2000 supports and shows how they intersect.

Figure 12-18 Windows 2000 file namespaces

The POSIX subsystem requires the biggest namespace of all the application execution
environments that Windows 2000 supports, and therefore the NTFS namespace is
equivalent to the POSIX namespace. The POSIX subsystem can create names that
aren't visible to Win32 and MS-DOS applications, including names with trailing periods
and trailing spaces. Ordinarily, creating a file using the large POSIX namespace isn't a
problem because you would do that only if you intended the POSIX subsystem or
POSIX client systems to use that file.

The relationship between 32-bit Windows (Win32) applications and MS-DOS Windows
applications is a much closer one, however. The Win32 area in Figure 12-18 represents
filenames that the Win32 subsystem can create on an NTFS volume but that MS-DOS
and 16-bit Windows applications can't see. This group includes filenames longer than
the 8.3 format of MS-DOS names, those containing Unicode (international) characters,
those with multiple period characters or a beginning period, and those with embedded
spaces. When a file is created with such a name, NTFS automatically generates an
alternate, MSDOS-style filename for the file. Windows 2000 displays these short names
when you use the /x option with the dir command.

The MS-DOS filenames are fully functional aliases for the NTFS files and are stored in
the same directory as the long filenames. The MFT record for a file with an
autogenerated MS-DOS filename is shown in Figure 12-19.

Figure 12-19 MFT file record with an MS-DOS filename attribute

The NTFS name and the generated MS-DOS name are stored in the same file record
and therefore refer to the same file. The MS-DOS name can be used to open, read
from, write to, or copy the file. If a user renames the file using either the long filename

javascript:fullSize('F12yj18x.htm')
javascript:fullSize('F12yj19x.htm')


or the short filename, the new name replaces both the existing names. If the new
name isn't a valid MS-DOS name, NTFS generates another MS-DOS name for the file.

NOTE

POSIX hard links are implemented in a similar way. When a hard link to a
POSIX file is created, NTFS adds another filename attribute to the file's MFT file
record. The two situations differ in one regard, however. When a user deletes a
POSIX file that has multiple names (hard links), the file record and the file
remain in place. The file and its record are deleted only when the last filename
(hard link) is deleted. If a file has both an NTFS name and an autogenerated
MSDOS name, however, a user can delete the file using either name.

Here's the algorithm NTFS uses to generate an MS-DOS name from a long filename:

1. Remove from the long name any characters that are illegal in MSDOS names,
including spaces and Unicode characters. Remove preceding and trailing periods.
Remove all other embedded periods, except the last one.

2. Truncate the string before the period (if present) to six characters, and append the
string "~ n " (where n is a number, starting with 1, that is used to distinguish
different files that truncate to the same name). Truncate the string after the period
(if present) to three characters.

3. Put the result in uppercase letters. MS-DOS is case-insensitive, and this step
guarantees that NTFS won't generate a new name that differs from the old only in
case.

4. If the generated name duplicates an existing name in the directory, increment the
~n string.

Table 12-5 shows the long Win32 filenames from Figure 12-18 and their NTFS-
generated MS-DOS versions. The current algorithm and the examples in Figure 12-18
should give you an idea of what NTFS-generated MS-DOSstyle filenames look like.
Application developers shouldn't depend on this algorithm, though, because it might
change in the future.

Table 12-5 NTFS-Generated Filenames

Win32 Long Name NTFS-Generated Short Name

LongFileName LONGFI~1

UnicodeName.FDPL UNICOD~1

File.Name.With.Dots FILENA~1.DOT

File.Name2.With.Dots FILENA~2.DOT

Name With Embedded Spaces NAMEWI~1

.BeginningDot BEGINN~1



Resident and Nonresident Attributes

If a file is small, all its attributes and their values (its data, for example) fit in the file
record. When the value of an attribute is stored directly in the MFT, the attribute is
called a resident attribute. (In Figure 12-17, for example, all attributes are resident.)
Several attributes are defined as always being resident so that NTFS can locate
nonresident attributes. The standard information and index root attributes are always
resident, for example.

Each attribute begins with a standard header containing information about the
attribute, information that NTFS uses to manage the attributes in a generic way. The
header, which is always resident, records whether the attribute's value is resident or
nonresident. For resident attributes, the header also contains the offset from the
header to the attribute's value and the length of the attribute's value, as Figure 12-20
illustrates for the filename attribute.

Figure 12-20 Resident attribute header and value

When an attribute's value is stored directly in the MFT, the time it takes NTFS to access
the value is greatly reduced. Instead of looking up a file in a table and then reading a
succession of allocation units to find the file's data (as the FAT file system does, for
example), NTFS accesses the disk once and retrieves the data immediately.

The attributes for a small directory, as well as for a small file, can be resident in the
MFT, as Figure 12-21 shows. For a small directory, the index root attribute contains an
index of file references for the files and the subdirectories in the directory.

Figure 12-21 MFT file record for a small directory

Of course, many files and directories can't be squeezed into a 1-KB fixed-size MFT
record. If a particular attribute, such as a file's data attribute, is too large to be
contained in an MFT file record, NTFS allocates clusters for the attribute's data separate
from the MFT. This area is called a run (or an extent). If the attribute's value later
grows (if a user appends data to the file, for example), NTFS allocates another run for
the additional data. Attributes whose values are stored in runs rather than in the MFT
are called nonresident attributes. The file system decides whether a particular attribute

javascript:fullSize('F12yj20x.htm')
javascript:fullSize('F12yj21x.htm')


is resident or nonresident; the location of the data is transparent to the process
accessing it.

When an attribute is nonresident, as the data attribute for a large file might be, its
header contains the information NTFS needs to locate the attribute's value on the disk.
Figure 12-22 shows a nonresident data attribute stored in two runs.

Figure 12-22 MFT file record for a large file with two data runs

Among the standard attributes, only those that can grow can be nonresident. For files,
the attributes that can grow are the data and the attribute list (not shown in Figure 12-
22). The standard information and filename attributes are always resident.

A large directory can also have nonresident attributes (or parts of attributes), as Figure
12-23 shows. In this example, the MFT file record doesn't have enough room to store
the index of files that make up this large directory. A part of the index is stored in the
index root attribute, and the rest of the index is stored in nonresident runs called index
buffers. The index root, index allocation, and bitmap attributes are shown here in a
simplified form. They are described in more detail in the next section. The standard
information and filename attributes are always resident. The header and at least part of
the value of the index root attribute are also resident for directories.

Figure 12-23 MFT file record for a large directory with a nonresident filename index

When a file's (or a directory's) attributes can't fit in an MFT file record and separate
allocations are needed, NTFS keeps track of the runs by means of VCN-to-LCN mapping
pairs. LCNs represent the sequence of clusters on an entire volume from 0 through n.
VCNs number the clusters belonging to a particular file from 0 through m. For example,
the clusters in the runs of a nonresident data attribute are numbered as shown in
Figure 12-24.

Figure 12-24 VCNs for a nonresident data attribute

javascript:fullSize('F12yj22x.htm')
javascript:fullSize('F12yj23x.htm')
javascript:fullSize('F12yj24x.htm')


If this file had more than two runs, the numbering of the third run would start with VCN
8. As Figure 12-25 shows, the data attribute header contains VCN-to-LCN mappings for
the two runs here, which allows NTFS to easily find the allocations on the disk.

Figure 12-25 VCN-to-LCN mappings for a nonresident data attribute

Although Figure 12-25 shows just data runs, other attributes can be stored in runs if
there isn't enough room in the MFT file record to contain them. And if a particular file
has too many attributes to fit in the MFT record, a second MFT record is used to contain
the additional attributes (or attribute headers for nonresident attributes). In this case,
an attribute called the attribute list is added. The attribute list attribute contains the
name and type code of each of the file's attributes and the file reference of the MFT
record where the attribute is located. The attribute list attribute is provided for those
cases in which a file grows so large or so fragmented that a single MFT record can't
contain the multitude of VCN-to-LCN mappings needed to find all its runs. Files with
more than 200 runs typically require an attribute list.

javascript:fullSize('F12yj25x.htm')


Indexing

In NTFS, a file directory is simply an index of filenames—that is, a collection of
filenames (along with their file references) organized in a particular way for quick
access. To create a directory, NTFS indexes the filename attributes of the files in the
directory. The MFT record for the root directory of a volume is shown in Figure 12-26.

Figure 12-26 Filename index for a volume's root directory

Conceptually, an MFT entry for a directory contains in its index root attribute a sorted
list of the files in the directory. For large directories, however, the filenames are
actually stored in 4-KB fixed-size index buffers that contain and organize the filenames.
Index buffers implement a b+ tree data structure, which minimizes the number of disk
accesses needed to find a particular file, especially for large directories. The index root
attribute contains the first level of the b+ tree (root subdirectories) and points to index
buffers containing the next level (more subdirectories, perhaps, or files).

Figure 12-26 shows only filenames in the index root attribute and the index buffers
(file6, for example), but each entry in an index also contains the file reference in the
MFT where the file is described and time stamp and file size information for the file.
NTFS duplicates the time stamp and file size information from the file's MFT record.
This technique, which is used by FAT and NTFS, requires updated information to be
written in two places. Even so, it's a significant speed optimization for directory
browsing because it enables the file system to display each file's time stamps and size
without opening every file in the directory.

The index allocation attribute maps the VCNs of the index buffer runs to the LCNs that
indicate where the index buffers reside on the disk, and the bitmap attribute keeps
track of which VCNs in the index buffers are in use and which are free. Figure 12-26
shows one file entry per VCN (that is, per cluster), but filename entries are actually
packed into each cluster. Each 4-KB index buffer can contain about 20 to 30 filename
entries.

The b+ tree data structure is a type of balanced tree that is ideal for organizing sorted
data stored on a disk because it minimizes the number of disk accesses needed to find
an entry. In the MFT, a directory's index root attribute contains several filenames that
act as indexes into the second level of the b+ tree. Each filename in the index root
attribute has an optional pointer associated with it that points to an index buffer. The
index buffer it points to contains filenames with lexicographic values less than its own.
In Figure 12-26, for example, file4 is a first-level entry in the b+ tree. It points to an
index buffer containing filenames that are (lexicographically) less than itself—the

javascript:fullSize('F12yj26x.htm')


filenames file0, file1, and file3. Note that the names file1, file2, and so on that are used
in this example are not literal filenames but names intended to show the relative
placement of files that are lexicographically ordered according to the displayed
sequence.

Storing the filenames in b+ trees provides several benefits. Directory lookups are fast
because the filenames are stored in a sorted order. And when higher-level software
enumerates the files in a directory, NTFS returns already-sorted names. Finally,
because b+ trees tend to grow wide rather than deep, NTFS's fast lookup times don't
degrade as directories grow.

NTFS also provides general support for indexing data besides filenames. As we stated
earlier, a file can have an object ID assigned to it, which is stored in the file's $OBJECT
_ID attribute. NTFS provides an API that allows applications to open a file by using the
file's object ID instead of its name. NTFS therefore must make the process of
translating an object ID to a file's file number an efficient one. To do so, it stores a
mapping of all a volume's object IDs to their file reference numbers in the
\$Extend\$ObjId metadata file. NTFS sorts the object IDs in the $ObjId's $O index. As
are filenames in filename indexes, the object ID index is stored as a b+ tree.



Data Compression and Sparse Files

NTFS supports compression on a per-file, per-directory, or per-volume basis. (NTFS
compression is performed only on user data, not file system metadata.) You can tell
whether a volume is compressed by using the Win32 GetVolumeInformation function.
To retrieve the actual compressed size of a file, use the Win32 GetCompressedFileSize
function. Finally, to examine or change the compression setting for a file or directory,
use the Win32 DeviceIoControl function. (See the FSCTL_GET_COMPRESSION and
FSCTL_SET_COMPRESSION file system control codes.) Keep in mind that although
setting a file's compression state compresses (or decompresses) the file right away,
setting a directory's or volume's compression state doesn't cause any immediate
compression or decompression. Instead, setting a directory's or volume's compression
state sets a default compression state that will be given to all newly created files and
subdirectories within that directory or volume.

The following section introduces NTFS compression by examining the simple case of
compressing sparse data. The subsequent sections extend the discussion to the
compression of ordinary files and sparse files.

Compressing Sparse Data

Sparse data is often large but contains only a small amount of nonzero data relative to
its size. A sparse matrix is one example of sparse data.As described earlier, NTFS uses
VCNs, from 0 through m, to enumerate the clusters of a file. Each VCN maps to a
corresponding LCN, which identifies the disk location of the cluster. Figure 12-27
illustrates the runs (disk allocations) of a normal, noncompressed file, including its
VCNs and the LCNs they map to.

Figure 12-27 Runs of a noncompressed file

This file is stored in 3 runs, each of which is 4 clusters long, for a total of 12 clusters.
Figure 12-28 shows the MFT record for this file. As described earlier, to save space, the
MFT record's data attribute, which contains VCN-to-LCN mappings, records only one
mapping for each run, rather than one for each cluster. Notice, however, that each VCN
from 0 through 11 has a corresponding LCN associated with it. The first entry starts at
VCN 0 and covers 4 clusters, the second entry starts at VCN 4 and covers 4 clusters,
and so on. This entry format is typical for a noncompressed file.

Figure 12-28 MFT record for a noncompressed file

When a user selects a file on an NTFS volume for compression, one NTFS compression
technique is to remove long strings of zeros from the file. If the file's data is sparse, it

javascript:fullSize('F12yj27x.htm')
javascript:fullSize('F12yj28x.htm')


typically shrinks to occupy a fraction of the disk space it would otherwise require. On
subsequent writes to the file, NTFS allocates space only for runs that contain nonzero
data.

Figure 12-29 depicts the runs of a compressed file containing sparse data. Notice that
certain ranges of the file's VCNs (16-31 and 64-127) have no disk allocations.

Figure 12-29 Runs of a compressed file containing sparse data

The MFT record for this compressed file omits blocks of VCNs that contain zeros and
therefore have no physical storage allocated to them. The first data entry in Figure 12-
30, for example, starts at VCN 0 and covers 16 clusters. The second entry jumps to
VCN 32 and covers 16 clusters.

Figure 12-30 MFT record for a compressed file containing sparse data

When a program reads data from a compressed file, NTFS checks the MFT record to
determine whether a VCN-to-LCN mapping covers the location being read. If the
program is reading from an unallocated "hole" in the file, it means that the data in that
part of the file consists of zeros, so NTFS returns zeros without accessing the disk. If a
program writes nonzero data to a "hole," NTFS quietly allocates disk space and then
writes the data. This technique is very efficient for sparse file data that contains a lot of
zero data.

Compressing Nonsparse Data

The preceding example of compressing a sparse file is somewhat contrived. It describes
"compression" for a case in which whole sections of a file were filled with zeros but the
remaining data in the file wasn't affected by the compression. The data in most files
isn't sparse, but it can still be compressed by the application of a compression
algorithm.

javascript:fullSize('F12yj29x.htm')
javascript:fullSize('F12yj30x.htm')


In NTFS, users can specify compression for individual files or for all the files in a
directory. (New files created in a directory marked compressed are automatically
compressed—existing files must be compressed individually.) When it compresses a
file, NTFS divides the file's unprocessed data into compression units 16 clusters long
(equal to 8 KB for a 512-byte cluster, for example). Certain sequences of data in a file
might not compress much, if at all; so for each compression unit in the file, NTFS
determines whether compressing the unit will save at least 1 cluster of storage. If
compressing the unit won't free up at least 1 cluster, NTFS allocates a 16-cluster run
and writes the data in that unit to disk without compressing it. If the data in a 16-
cluster unit will compress to 15 or fewer clusters, NTFS allocates only the number of
clusters needed to contain the compressed data and then writes it to disk. Figure 12-31
illustrates the compression of a file with four runs. The unshaded areas in this figure
represent the actual storage locations that the file occupies after compression. The
first, second, and fourth runs were compressed; the third run wasn't. Even with one
noncompressed run, compressing this file saved 26 clusters of disk space, or 41
percent.

Figure 12-31 Data runs of a compressed file

NOTE

Although the diagrams in this chapter show contiguous LCNs, a compression
unit need not be stored in physically contiguous clusters. Runs that occupy
noncontiguous clusters produce slightly more complicated MFT records than
the one shown in Figure 12-32.

When it writes data to a compressed file, NTFS ensures that each run begins on a
virtual 16-cluster boundary. Thus the starting VCN of each run is a multiple of 16, and
the runs are no longer than 16 clusters. NTFS reads and writes at least one
compression unit at a time when it accesses compressed files. When it writes
compressed data, however, NTFS tries to store compression units in physically
contiguous locations so that it can read them all in a single I/O operation. The 16-
cluster size of the NTFS compression unit was chosen to reduce internal fragmentation:
the larger the compression unit, the less the overall disk space needed to store the
data. This 16-cluster compression unit size represents a trade-off between producing
smaller compressed files and slowing read operations for programs that randomly
access files. The equivalent of 16 clusters must be decompressed for each cache miss.

javascript:fullSize('F12yj31x.htm')


(A cache miss is more likely to occur during random file access.) Figure 12-32 shows
the MFT record for the compressed file shown in Figure 12-31.

Figure 12-32 MFT record for a compressed file

One difference between this compressed file and the earlier example of a compressed
file containing sparse data is that three of the compressed runs in this file are less than
16 clusters long. Reading this information from a file's MFT file record enables NTFS to
know whether data in the file is compressed. Any run shorter than 16 clusters contains
compressed data that NTFS must decompress when it first reads the data into the
cache. A run that is exactly 16 clusters long doesn't contain compressed data and
therefore requires no decompression.

If the data in a run has been compressed, NTFS decompresses the data into a scratch
buffer and then copies it to the caller's buffer. NTFS also loads the decompressed data
into the cache, which makes subsequent reads from the same run as fast as any other
cached read. NTFS writes any updates to the file to the cache, leaving the lazy writer to
compress and write the modified data to disk asynchronously. This strategy ensures
that writing to a compressed file produces no more significant delay than writing to a
noncompressed file would.

NTFS keeps disk allocations for a compressed file contiguous whenever possible. As the
LCNs indicate, the first two runs of the compressed file shown in Figure 12-31 are
physically contiguous, as are the last two. When two or more runs are contiguous,
NTFS performs disk read-ahead, as it does with the data in other files. Because the
reading and decompression of contiguous file data take place asynchronously before
the program requests the data, subsequent read operations obtain the data directly
from the cache, which greatly enhances read performance.

Sparse Files

Sparse files (the NTFS file type, as opposed to files that consist of sparse data,
described earlier) are essentially compressed files for which NTFS doesn't apply
compression to the file's nonsparse data. However, NTFS manages the run data of a
sparse file's MFT record the same way it does for compressed files that consist of
sparse and nonsparse data.

javascript:fullSize('F12yj32x.htm')


Reparse Points

A reparse point is a block of up to 16 KB of application-defined reparse data and a 32-
bit reparse tag that are stored in the $REPARSE_POINT attribute of a file or directory.
Whenever an application creates or deletes a reparse point, NTFS updates the
\$Extend\$Reparse metadata file, in which NTFS stores entries that identify the file
record numbers of files and directories that contain reparse points. Storing the records
in a central location enables NTFS to provide interfaces for applications to enumerate
all a volume's reparse points or just specific types of reparse points, such as mount
points. (See Chapter 10 for more information on mount points.) The
\$Extend\$Reparse file uses the general indexing facility of NTFS by collating the file's
entries (in an index named $R) by reparse point tags.



The Change Journal File

The change journal file, \$Extend\$UsnJrnl, is a sparse file that NTFS creates only when
an application enables change logging. The journal stores change entries in the $J data
stream. Entries include the following information about a file or directory change:

The time of the change

The change type (delete, rename, size extend, and so on)

The file or directory's attributes

The file or directory's name

The file or directory's file reference number

The file reference number of the file's parent directory

The journal is sparse so that it never overflows; when the journal's on-disk size
exceeds the maximum defined for the file, NTFS simply begins zeroing the file data that
precedes the window of change information having a size equal to the maximum
journal size, as shown in Figure 12-33. To prevent constant resizing when an
application is continuously exceeding the journal's size, NTFS shrinks the journal only
when its size is twice an application-defined value over the maximum configured size.

Figure 12-33 Change journal ($UsnJrnl) space allocation

javascript:fullSize('F12yj33x.htm')


Object IDs

In addition to storing the object ID assigned to a file or directory in the $OBJECT_ID
attribute of its MFT record, NTFS also keeps the correspondence between object IDs
and their file reference numbers in the $O index of the \$Extend\$ObjId metadata file.
The index collates entries by object ID, making it easy for NTFS to quickly locate a file
based on its ID. This feature allows applications, using undocumented native API
functionality, to open a file or directory using its object ID.



Quota Tracking

The NTFS quota-tracking facility associates an owner ID with each user who creates
files and stores the user's owner ID with each file or directory the user creates. To
determine whether a user has been assigned an ID, NTFS uses the user's SID as a key
to index the $O index of the \$Extend\$Quota metadata file. If an ID isn't located,
NTFS allocates a unique ID for the user and records the association in the $O index.

\$Extend\$Quota also contains an index named $Q that NTFS uses to store per-user
quota information entries, collating the entries by owner ID. When a user attempts to
allocate space on a volume, NTFS uses the owner ID to look up the user's quota entry
and determine whether there is sufficient disk space left in the user's quota to allow the
allocation.



Consolidated Security

Another example of general indexing is seen in the \$Secure metadata file, which
stores security descriptors for all the files and directories on a volume. NTFS assigns
each unique security descriptor an NTFS security ID. (These are different than the SIDs
described in Chapter 8.)

When a process applies a security descriptor to a file or directory, NTFS obtains a 32-bit
hash of the descriptor and looks up the corresponding security ID in an index named
$SDH that is stored in the \$Secure file. Multiple security descriptors can hash to the
same value, so NTFS compares the security descriptor being applied with any that have
the same hash to verify an exact match. If it locates the applied security descriptor in
the $SDH index, NTFS assigns the file the associated security ID. Otherwise, it allocates
a new security ID, updates the $SDH index, and adds the security descriptor to the
$SII index. The $SII index is collated by security ID so that when a user attempts to
open a file or directory, NTFS can quickly locate the file or directory's security
descriptor by using the file or directory's security ID.



[Previous] [Next]



NTFS Recovery Support
NTFS recovery support ensures that if a power failure or a
system failure occurs, no file system operations
(transactions) will be left incomplete and the structure of the
disk volume will remain intact without the need to run a disk
repair utility. The NTFS Chkdsk utility is used to repair
catastrophic disk corruption caused by I/O errors (bad disk
sectors, electrical anomalies, or disk failures, for example)
or software bugs. But with the NTFS recovery capabilities in
place, Chkdsk is rarely needed.

As mentioned earlier (in the section "Recoverability"), NTFS
uses a transaction-processing scheme to implement
recoverability. This strategy ensures a full disk recovery that
is also extremely fast (on the order of seconds) for even the
largest disks. NTFS limits its recovery procedures to file
system data to ensure that at the very least the user will
never lose a volume because of a corrupted file system;
however, unless an application takes specific action (such as
flushing cached files to disk), NTFS doesn't guarantee user
data to be fully updated if a crash occurs. Transaction-based
protection of user data is available in most of the database
products available for Windows 2000, such as Microsoft SQL
Server. The decision not to implement user data recovery in
the file system represents a trade-off between a fully fault
tolerant file system and one that provides optimum
performance for all file operations.

The following sections describe the evolution of file system
reliability as a context for an introduction to recoverable file
systems, detail the transaction-logging scheme NTFS uses to
record modifications to file system data structures, and
explain how NTFS recovers a volume if the system fails.



Evolution of File System Design

The development of a recoverable file system was a step
forward in the evolution of file system design. In the past,
two techniques were common for constructing a file system's
I/O and caching support: careful write and lazy write. The
file systems developed for Digital Equipment Corporation's
(now Compaq's) VAX/VMS and for some other proprietary
operating systems employed a careful write algorithm, while
OS/2 HPFS and most older UNIX file systems used a lazy
write file system scheme.

The next two subsections briefly review these two types of
file systems and their intrinsic trade-offs between safety and
performance. The third subsection describes NTFS's
recoverable approach and explains how it differs from the
other two strategies.

Careful Write File Systems

When an operating system crashes or loses power, I/O
operations in progress are immediately, and often
prematurely, interrupted. Depending on what I/O operation
or operations were in progress and how far along they were,
such an abrupt halt can produce inconsistencies in a file
system. An inconsistency in this context is a file system
corruption—a filename appears in a directory listing, for
example, but the file system doesn't know the file is there or
can't access the file. The worst file system corruptions can
leave an entire volume inaccessible.

A careful write file system doesn't try to prevent file system
inconsistencies. Rather, it orders its write operations so that,
at worst, a system crash will produce predictable, noncritical
inconsistencies, which the file system can fix at its leisure.



When any kind of file system receives a request to update
the disk, it must perform several suboperations before the
update will be complete. In a file system that uses the
careful write strategy, the suboperations are always written
to disk serially. When allocating disk space for a file, for
example, the file system first sets some bits in its bitmap
and then allocates the space to the file. If the power fails
immediately after the bits are set, the careful write file
system loses access to some disk space—to the space
represented by the set bits—but existing data isn't
corrupted.

Serializing write operations also means that I/O requests are
filled in the order in which they are received. If one process
allocates disk space and shortly thereafter another process
creates a file, a careful write file system completes the disk
allocation before it starts to create the file because
interleaving the suboperations of the two I/O requests could
result in an inconsistent state.

NOTE

The FAT file system uses a write-through algorithm
that causes disk modifications to be immediately
written to the disk. Unlike the careful write approach,
the write-through technique doesn't require the file
system to order its writes to prevent inconsistencies.

The main advantage of a careful write file system is that in
the event of a failure the volume stays consistent and usable
without the need to immediately run a slow volume repair
utility. Such a utility is needed to correct the predictable,
nondestructive disk inconsistencies that occur as the result



of a system failure, but the utility can be run at a convenient
time, typically when the system is rebooted.

Lazy Write File Systems

A careful write file system sacrifices speed for the safety it
provides. A lazy write file system improves performance by
using a write-back caching strategy; that is, it writes file
modifications to the cache and flushes the contents of the
cache to disk in an optimized way, usually as a background
activity.

The performance improvements associated with the lazy
write caching technique take several forms. First, the overall
number of disk writes is reduced. Because serialized,
immediate disk writes aren't required, the contents of a
buffer can be modified several times before they are written
to disk. Second, the speed of servicing application requests
is greatly increased because the file system can return
control to the caller without waiting for disk writes to be
completed. Finally, the lazy write strategy ignores the
inconsistent intermediate states on a file volume that can
result when the suboperations of two or more I/O requests
are interleaved. It is thus easier to make the file system
multithreaded, allowing more than one I/O operation to be
in progress at a time.

The disadvantage of the lazy write technique is that it
creates intervals during which a volume is in too inconsistent
a state to be corrected by the file system. Consequently,
lazy write file systems must keep track of the volume's state
at all times. In general, lazy write file systems gain a
performance advantage over careful write systems—at the
expense of greater risk and user inconvenience if the system
fails.



Recoverable File Systems

A recoverable file system such as NTFS tries to exceed the
safety of a careful write file system while achieving the
performance of a lazy write file system. A recoverable file
system ensures volume consistency by using logging
techniques (sometimes called journaling) originally
developed for transaction processing. If the operating
system crashes, the recoverable file system restores
consistency by executing a recovery procedure that accesses
information that has been stored in a log file. Because the
file system has logged its disk writes, the recovery
procedure takes only seconds, regardless of the size of the
volume.

The recovery procedure for a recoverable file system is
exact, guaranteeing that the volume will be restored to a
consistent state. In NTFS, none of the inadequate
restorations associated with lazy write file systems can
happen.

A recoverable file system incurs some costs for the safety it
provides. Every transaction that alters the volume structure
requires that one record be written to the log file for each of
the transaction's suboperations. This logging overhead is
ameliorated by the file system's "batching" of log records—
writing many records to the log file in a single I/O operation.
In addition, the recoverable file system can employ the
optimization techniques of a lazy write file system. It can
even increase the length of the intervals between cache
flushes because the file system can be recovered if the
system crashes before the cache changes have been flushed
to disk. This gain over the caching performance of lazy write
file systems makes up for, and often exceeds, the overhead
of the recoverable file system's logging activity.



Neither careful write nor lazy write file systems guarantee
protection of user file data. If the system crashes while an
application is writing a file, the file can be lost or corrupted.
Worse, the crash can corrupt a lazy write file system,
destroying existing files or even rendering an entire volume
inaccessible.

The NTFS recoverable file system implements several
strategies that improve its reliability over that of the
traditional file systems. First, NTFS recoverability guarantees
that the volume structure won't be corrupted, so all files will
remain accessible after a system failure.

Second, although NTFS doesn't guarantee protection of user
data in the event of a system crash—some changes can be
lost from the cache—applications can take advantage of the
NTFS write-through and cache-flushing capabilities to ensure
that file modifications are recorded on disk at appropriate
intervals. Both cache write-through—forcing write operations
to be immediately recorded on disk—and cache flushing—
forcing cache contents to be written to disk—are efficient
operations. NTFS doesn't have to do extra disk I/O to flush
modifications to several different file system data structures
because changes to the data structures are recorded—in a
single write operation—in the log file; if a failure occurs and
cache contents are lost, the file system modifications can be
recovered from the log. Furthermore, unlike the FAT file
system, NTFS guarantees that user data will be consistent
and available immediately after a write-through operation or
a cache flush, even if the system subsequently fails.



Logging

NTFS provides file system recoverability by means of a
transaction-processing technique called logging. In NTFS
logging, the suboperations of any transaction that alters
important file system data structures are recorded in a log
file before they are carried through on the disk. That way, if
the system crashes, partially completed transactions can be
redone or undone when the system comes back online. In
transaction processing, this technique is known as write-
ahead logging. In NTFS, transactions include writing to the
disk or deleting a file and can be made up of several
suboperations.

Log File Service (LFS)

The log file service (LFS) is a series of kernel-mode routines
inside the NTFS driver that NTFS uses to access the log file.
Although originally designed to provide logging and recovery
services for more than one client, the LFS is used only by
NTFS. The caller—NTFS in this case—passes the LFS a
pointer to an open file object, which specifies a log file to be
accessed. The LFS either initializes a new log file or calls the
Windows 2000 cache manager to access the existing log file
through the cache, as shown in Figure 12-34.



Figure 12-34 Log file service (LFS)

The LFS divides the log file into two regions: a restart area
and an "infinite" logging area, as shown in Figure 12-35.

Figure 12-35 Log file regions

NTFS calls the LFS to read and write the restart area. NTFS
uses the restart area to store context information such as
the location in the logging area at which NTFS will begin to
read during recovery after a system failure. The LFS
maintains a second copy of the restart data in case the first
becomes corrupted or otherwise inaccessible. The remainder
of the log file is the logging area, which contains transaction
records NTFS writes in order to recover a volume in the
event of a system failure. The LFS makes the log file appear
infinite by reusing it circularly (while guaranteeing that it
doesn't overwrite information it needs). The LFS uses logical
sequence numbers (LSNs) to identify records written to the

javascript:fullSize('F12yj34x.htm')
javascript:fullSize('F12yj35x.htm')


log file. As the LFS cycles through the file, it increases the
values of the LSNs. NTFS uses 64 bits to represent LSNs, so
the number of possible LSNs is so large as to be virtually
infinite.

NTFS never reads transactions from or writes transactions to
the log file directly. The LFS provides services NTFS calls to
open the log file, write log records, read log records in
forward or backward order, flush log records up to a
particular LSN, or set the beginning of the log file to a higher
LSN. During recovery, NTFS calls the LFS to perform the
following actions: read forward through the log records to
redo any transactions that were recorded in the log file but
weren't flushed to disk at the time of the system failure;
read backward through the log records to undo, or roll back,
any transactions that weren't completely logged before the
crash; and set the beginning of the log file to a record with a
higher LSN when NTFS no longer needs the older transaction
records in the log file.

Here's how the system guarantees that the volume can be
recovered:

1. NTFS first calls the LFS to record in the (cached) log file
any transactions that will modify the volume structure.

2. NTFS modifies the volume (also in the cache).

3. The cache manager prompts the LFS to flush the log file
to disk. (The LFS implements the flush by calling the
cache manager back, telling it which pages of memory
to flush. Refer back to the calling sequence shown in
Figure 12-34.)

4. After the cache manager flushes the log file to disk, it
flushes the volume changes (the metadata operations
themselves) to disk.



These steps ensure that if the file system modifications are
ultimately unsuccessful, the corresponding transactions can
be retrieved from the log file and can be either redone or
undone as part of the file system recovery procedure.

File system recovery begins automatically the first time the
volume is used after the system is rebooted. NTFS checks
whether the transactions that were recorded in the log file
before the crash were applied to the volume, and if they
weren't, it redoes them. NTFS also guarantees that
transactions not completely logged before the crash are
undone so that they don't appear on the volume.

Log Record Types

The LFS allows its clients to write any kind of record to their
log files. NTFS writes several types of records. Two types,
update records and checkpoint records, are described here.

Update records Update records are the most common type
of record NTFS writes to the log file. Each update record
contains two kinds of information:

Redo information How to reapply one suboperation of
a fully logged ("committed") transaction to the volume if
a system failure occurs before the transaction is flushed
from the cache

Undo information How to reverse one suboperation of
a transaction that was only partially logged ("not
committed") at the time of a system failure

Figure 12-36 shows three update records in the log file. Each
record represents one suboperation of a transaction,
creating a new file. The redo entry in each update record
tells NTFS how to reapply the suboperation to the volume,



and the undo entry tells NTFS how to roll back (undo) the
suboperation.

Figure 12-36 Update records in the log file

After logging a transaction (in this example, by calling the
LFS to write the three update records to the log file), NTFS
performs the suboperations on the volume itself, in the
cache. When it has finished updating the cache, NTFS writes
another record to the log file, recording the entire
transaction as complete—a suboperation known as
committing a transaction. Once a transaction is committed,
NTFS guarantees that the entire transaction will appear on
the volume, even if the operating system subsequently fails.

When recovering after a system failure, NTFS reads through
the log file and redoes each committed transaction. Although
NTFS completed the committed transactions before the
system failure, it doesn't know whether the cache manager
flushed the volume modifications to disk in time. The
updates might have been lost from the cache when the
system failed. Therefore, NTFS executes the committed
transactions again just to be sure that the disk is up to date.

After redoing the committed transactions during a file
system recovery, NTFS locates all the transactions in the log
file that weren't committed at failure and rolls back (undoes)
each suboperation that had been logged. In Figure 12-36,
NTFS would first undo the T1c suboperation and then follow
the backward pointer to T1b and undo that suboperation. It

javascript:fullSize('F12yj36x.htm')


would continue to follow the backward pointers, undoing
suboperations, until it reached the first suboperation in the
transaction. By following the pointers, NTFS knows how
many and which update records it must undo to roll back a
transaction.

Redo and undo information can be expressed either
physically or logically. Physical descriptions specify volume
updates in terms of particular byte ranges on the disk that
are to be changed, moved, and so on. Logical descriptions
express updates in terms of operations such as "delete file
A.dat." As the lowest layer of software maintaining the file
system structure, NTFS writes update records with physical
descriptions. Transaction-processing or other application-
level software might benefit from writing update records in
logical terms, however, because logically expressed updates
are more compact than physically expressed ones. Logical
descriptions necessarily depend on NTFS to understand what
operations, such as deleting a file, involve.

NTFS writes update records (usually several) for each of the
following transactions:

Creating a file

Deleting a file

Extending a file

Truncating a file

Setting file information

Renaming a file

Changing the security applied to a file



The redo and undo information in an update record must be
carefully designed because although NTFS undoes a
transaction, recovers from a system failure, or even
operates normally, it might try to redo a transaction that has
already been done or, conversely, to undo a transaction that
never occurred or that has already been undone. Similarly,
NTFS might try to redo or undo a transaction consisting of
several update records, only some of which are complete on
disk. The format of the update records must ensure that
executing redundant redo or undo operations is idempotent,
that is, has a neutral effect. For example, setting a bit that is
already set has no effect, but toggling a bit that has already
been toggled does. The file system must also handle
intermediate volume states correctly.

Checkpoint records In addition to update records, NTFS
periodically writes a checkpoint record to the log file, as
illustrated in Figure 12-37.

Figure 12-37 Checkpoint record in the log file

A checkpoint record helps NTFS determine what processing
would be needed to recover a volume if a crash were to
occur immediately. Using information stored in the
checkpoint record, NTFS knows, for example, how far back
in the log file it must go to begin its recovery. After writing a
checkpoint record, NTFS stores the LSN of the record in the
restart area so that it can quickly find its most recently
written checkpoint record when it begins file system
recovery after a crash occurs.

javascript:fullSize('F12yj37x.htm')


Although the LFS presents the log file to NTFS as if it were
infinitely large, it isn't. The generous size of the log file and
the frequent writing of checkpoint records (an operation that
usually frees up space in the log file) make the possibility of
the log file's filling up a remote one. Nevertheless, the LFS
accounts for this possibility by tracking several numbers:

The available log space

The amount of space needed to write an incoming log
record and to undo the write, should that be necessary

The amount of space needed to roll back all active
(noncommitted) transactions, should that be necessary

If the log file doesn't contain enough available space to
accommodate the total of the last two items, the LFS returns
a "log file full" error and NTFS raises an exception. The NTFS
exception handler rolls back the current transaction and
places it in a queue to be restarted later.

To free up space in the log file, NTFS must momentarily
prevent further transactions on files. To do so, NTFS blocks
file creation and deletion and then requests exclusive access
to all system files and shared access to all user files.
Gradually, active transactions either are completed
successfully or receive the "log file full" exception. NTFS rolls
back and queues the transactions that receive the exception.

Once it has blocked transaction activity on files as just
described, NTFS calls the cache manager to flush unwritten
data to disk, including unwritten log file data. After
everything is safely flushed to disk, NTFS no longer needs
the data in the log file. It resets the beginning of the log file
to the current position, making the log file "empty." Then it
restarts the queued transactions. Beyond the short pause in



I/O processing, the "log file full" error has no effect on
executing programs.

This scenario is one example of how NTFS uses the log file
not only for file system recovery but also for error recovery
during normal operation. You'll find out more about error
recovery in the following section.



Recovery

NTFS automatically performs a disk recovery the first time a
program accesses an NTFS volume after the system has
been booted. (If no recovery is needed, the process is
trivial.) Recovery depends on two tables NTFS maintains in
memory:

The transaction table keeps track of transactions that
have been started but aren't yet committed. The
suboperations of these active transactions must be
removed from the disk during recovery.

The dirty page table records which pages in the cache
contain modifications to the file system structure that
haven't yet been written to disk. This data must be
flushed to disk during recovery.

NTFS writes a checkpoint record to the log file once every 5
seconds. Just before it does, it calls the LFS to store a
current copy of the transaction table and of the dirty page
table in the log file. NTFS then records in the checkpoint
record the LSNs of the log records containing the copied
tables. When recovery begins after a system failure, NTFS
calls the LFS to locate the log records containing the most
recent checkpoint record and the most recent copies of the
transaction and dirty page tables. It then copies the tables
to memory.

The log file usually contains more update records following
the last checkpoint record. These update records represent
volume modifications that occurred after the last checkpoint
record was written. NTFS must update the transaction and
dirty page tables to include these operations. After updating
the tables, NTFS uses the tables and the contents of the log
file to update the volume itself.



To effect its volume recovery, NTFS scans the log file three
times, loading the file into memory during the first pass to
minimize disk I/O. Each pass has a particular purpose:

1. Analysis

2. Redoing transactions

3. Undoing transactions

Analysis Pass

During the analysis pass, as shown in Figure 12-38, NTFS
scans forward in the log file from the beginning of the last
checkpoint operation to find update records and use them to
update the transaction and dirty page tables it copied to
memory. Notice in the figure that the checkpoint operation
stores three records in the log file and that update records
might be interspersed among these records. NTFS therefore
must start its scan at the beginning of the checkpoint
operation.

Figure 12-38 Analysis pass

Most update records that appear in the log file after the
checkpoint operation begins represent a modification to
either the transaction table or the dirty page table. If an
update record is a "transaction committed" record, for
example, the transaction the record represents must be
removed from the transaction table. Similarly, if the update
record is a "page update" record that modifies a file system

javascript:fullSize('F12yj38x.htm')


data structure, the dirty page table must be updated to
reflect that change.

Once the tables are up to date in memory, NTFS scans the
tables to determine the LSN of the oldest update record that
logs an operation that hasn't been carried out on disk. The
transaction table contains the LSNs of the noncommitted
(incomplete) transactions, and the dirty page table contains
the LSNs of records in the cache that haven't been flushed to
disk. The LSN of the oldest update record that NTFS finds in
these two tables determines where the redo pass will begin.
If the last checkpoint record is older, however, NTFS will
start the redo pass there instead.

Redo Pass

During the redo pass, as shown in Figure 12-39, NTFS scans
forward in the log file from the LSN of the oldest update
record, which it found during the analysis pass. It looks for
"page update" records, which contain volume modifications
that were written before the system failure but that might
not have been flushed to disk. NTFS redoes these updates in
the cache.

Figure 12-39 Redo pass

When NTFS reaches the end of the log file, it has updated
the cache with the necessary volume modifications and the
cache manager's lazy writer can begin writing cache
contents to disk in the background.

javascript:fullSize('F12yj39x.htm')


Undo Pass

After it completes the redo pass, NTFS begins its undo pass,
in which it rolls back any transactions that weren't
committed when the system failed. Figure 12-40 shows two
transactions in the log file; transaction 1 was committed
before the power failure, but transaction 2 wasn't. NTFS
must undo transaction 2.

Figure 12-40 Undo pass

Suppose that transaction 2 created a file, an operation that
comprises three suboperations, each with its own update
record. The update records of a transaction are linked by
backward pointers in the log file because they are usually
not contiguous.

The NTFS transaction table lists the LSN of the last-logged
update record for each noncommitted transaction. In this
example, the transaction table identifies LSN 4049 as the
last update record logged for transaction 2. As shown from
right to left in Figure 12-41, NTFS rolls back transaction 2.

javascript:fullSize('F12yj40x.htm')
javascript:fullSize('F12yj41x.htm')


Figure 12-41 Undoing a transaction

After locating LSN 4049, NTFS finds the undo information
and executes it, clearing bits 3 through 9 in its allocation
bitmap. NTFS then follows the backward pointer to LSN
4048, which directs it to remove the new filename from the
appropriate filename index. Finally, it follows the last
backward pointer and deallocates the MFT file record
reserved for the file, as the update record with LSN 4046
specifies. Transaction 2 is now rolled back. If there are other
noncommitted transactions to undo, NTFS follows the same
procedure to roll them back. Because undoing transactions
affects the volume's file system structure, NTFS must log the
undo operations in the log file. After all, the power might fail
again during the recovery, and NTFS would have to redo its
undo operations!

When the undo pass of the recovery is finished, the volume
has been restored to a consistent state. At this point, NTFS
flushes the cache changes to disk to ensure that the volume
is up to date. NTFS then writes an "empty" LFS restart area
to indicate that the volume is consistent and that no
recovery need be done if the system should fail again
immediately. Recovery is complete.

NTFS guarantees that recovery will return the volume to
some preexisting consistent state, but not necessarily to the
state that existed just before the system crash. NTFS can't
make that guarantee because, for performance, it uses a
"lazy commit" algorithm, which means that the log file isn't
immediately flushed to disk each time a "transaction
committed" record is written. Instead, numerous
"transaction committed" records are batched and written
together, either when the cache manager calls the LFS to
flush the log file to disk or when the LFS writes a checkpoint
record (once every 5 seconds) to the log file. Another reason



the recovered volume might not be completely up to date is
that several parallel transactions might be active when the
system crashes and some of their "transaction committed"
records might make it to disk whereas others might not. The
consistent volume that recovery produces includes all the
volume updates whose "transaction committed" records
made it to disk and none of the updates whose "transaction
committed" records didn't make it to disk.

NTFS uses the log file to recover a volume after the system
fails, but it also takes advantage of an important "freebie" it
gets from logging transactions. File systems necessarily
contain a lot of code devoted to recovering from file system
errors that occur during the course of normal file I/O.
Because NTFS logs each transaction that modifies the
volume structure, it can use the log file to recover when a
file system error occurs and thus can greatly simplify its
error handling code. The "log file full" error described earlier
is one example of using the log file for error recovery.

Most I/O errors a program receives aren't file system errors
and therefore can't be resolved entirely by NTFS. When
called to create a file, for example, NTFS might begin by
creating a file record in the MFT and then enter the new file's
name in a directory index. When it tries to allocate space for
the file in its bitmap, however, it could discover that the disk
is full and the create request can't be completed. In such a
case, NTFS uses the information in the log file to undo the
part of the operation it has already completed and to
deallocate the data structures it reserved for the file. Then it
returns a "disk full" error to the caller, which in turn must
respond appropriately to the error.



[Previous] [Next]



NTFS Bad-Cluster Recovery
The volume managers included with Windows 2000, FtDisk
(for basic disks) and Logical Disk Manager (LDM, for
dynamic disks), can recover data from a bad sector on a
fault tolerant volume, but if the hard disk doesn't use the
SCSI protocol or runs out of spare sectors, a volume
manager can't perform sector sparing to replace the bad
sector. (See Chapter 10 for more information on the volume
managers.) When the file system reads from the sector, the
volume manager instead recovers the data and returns the
warning to the file system that there is only one copy of the
data.

The FAT file system doesn't respond to this volume manager
warning. Moreover, neither these file systems nor the
volume managers keep track of the bad sectors, so a user
must run the Chkdsk or Format utility to prevent a volume
manager from repeatedly recovering data for the file
system. Both Chkdsk and Format are less than ideal for
removing bad sectors from use. Chkdsk can take a long
time to find and remove bad sectors, and Format wipes all
the data off the partition it's formatting.

In the file system equivalent of a volume manager's sector
sparing, NTFS dynamically replaces the cluster containing a
bad sector and keeps track of the bad cluster so that it
won't be reused. (Recall that NTFS maintains portability by
addressing logical clusters rather than physical sectors.)
NTFS performs these functions when the volume manager
can't perform sector sparing. When a volume manager
returns a bad-sector warning or when the hard disk driver
returns a bad-sector error, NTFS allocates a new cluster to
replace the one containing the bad sector. NTFS copies the



data that the volume manager has recovered into the new
cluster to reestablish data redundancy.

Figure 12-42 shows an MFT record for a user file with a bad
cluster in one of its data runs as it exited before the cluster
went bad. When it receives a bad-sector error, NTFS
reassigns the cluster containing the sector to its bad-cluster
file. This prevents the bad cluster from being allocated to
another file. NTFS then allocates a new cluster for the file
and changes the file's VCN-to-LCN mappings to point to the
new cluster. This bad-cluster remapping (introduced earlier
in this chapter) is illustrated in Figure 12-43. Cluster
number 1357, which contains the bad sector, is replaced by
a new cluster, number 1049.

Figure 12-42 MFT record for a user file with a bad cluster

Bad-sector errors are undesirable, but when they do occur,
the combination of NTFS and volume managers provides the
best possible solution. If the bad sector is on a redundant
volume, the volume manager recovers the data and
replaces the sector if it can. If it can't replace the sector, it
returns a warning to NTFS and NTFS replaces the cluster
containing the bad sector.

If the volume isn't configured as a redundant volume, the
data in the bad sector can't be recovered. When the volume

javascript:fullSize('F12yj42x.htm')


is formatted as a FAT volume and the volume manager can't
recover the data, reading from the bad sector yields
indeterminate results. If some of the file system's control
structures reside in the bad sector, an entire file or group of
files (or potentially, the whole disk) can be lost. At best,
some data in the affected file (often, all the data in the file
beyond the bad sector) is lost. Moreover, the FAT file system
is likely to reallocate the bad sector to the same or another
file on the volume, causing the problem to resurface.

Like the other file systems, NTFS can't recover data from a
bad sector without help from a volume manager. However,
NTFS greatly contains the damage a bad sector can cause.
If NTFS discovers the bad sector during a read operation, it
remaps the cluster the sector is in, as shown in Figure 12-
43. If the volume isn't configured as a redundant volume,
NTFS returns a "data read" error to the calling program.
Although the data that was in that cluster is lost, the rest of
the file—and the file system—remains intact; the calling
program can respond appropriately to the data loss; and
the bad cluster won't be reused in future allocations. If
NTFS discovers the bad cluster on a write operation rather
than a read, NTFS remaps the cluster before writing and
thus loses no data and generates no error.



Figure 12-43 Bad-cluster remapping

The same recovery procedures are followed if file system
data is stored in a sector that goes bad. If the bad sector is
on a redundant volume, NTFS replaces the cluster
dynamically, using the data recovered by the volume
manager. If the volume isn't redundant, the data can't be
recovered and NTFS sets a bit in the volume file that
indicates corruption on the volume. The NTFS Chkdsk utility
checks this bit when the system is next rebooted, and if the
bit is set, Chkdsk executes, fixing the file system corruption
by reconstructing the NTFS metadata.

In rare instances, file system corruption can occur even on
a fault tolerant disk configuration. A double error can
destroy both file system data and the means to reconstruct
it. If the system crashes while NTFS is writing the mirror
copy of an MFT file record, of a filename index, or of the log

javascript:fullSize('F12yj43x.htm')


file, for example, the mirror copy of such file system data
might not be fully updated. If the system were rebooted
and a bad-sector error occurred on the primary disk at
exactly the same location as the incomplete write on the
disk mirror, NTFS would be unable to recover the correct
data from the disk mirror. NTFS implements a special
scheme for detecting such corruptions in file system data. If
it ever finds an inconsistency, it sets the corruption bit in
the volume file, which causes Chkdsk to reconstruct the
NTFS metadata when the system is next rebooted. Because
file system corruption is rare on a fault tolerant disk
configuration, Chkdsk is seldom needed. It is supplied as a
safety precaution rather than as a first-line data recovery
strategy.

The use of Chkdsk on NTFS is vastly different from its use
on the FAT file system. Before writing anything to disk, FAT
sets the volume's dirty bit and then resets the bit after the
modification is complete. If any I/O operation is in progress
when the system crashes, the dirty bit is left set and
Chkdsk runs when the system is rebooted. On NTFS,
Chkdsk runs only when unexpected or unreadable file
system data is found and NTFS can't recover the data from
a redundant volume or from redundant file system
structures on a single volume. (The system boot sector is
duplicated, as are the parts of the MFT required for booting
the system and running the NTFS recovery procedure. This
redundancy ensures that NTFS will always be able to boot
and recover itself.)

Table 12-6 summarizes what happens when a sector goes
bad on a disk volume formatted for one of the Windows
2000-supported file systems according to various conditions
that we've described in this section.

Table 12-6 Summary of NTFS Data Recovery Scenarios



Scenario
With a SCSI disk
that has spare

sectors

With a non-SCSI
disk or a disk with
no spare sectors*

Fault
tolerant
volume**

1. Volume manager
recovers the
data.

2. Volume manager
performs sector
sparing
(replaces the
bad sector).

3. File system
remains
unaware of the
error.

1. Volume manager
recovers the data.

2. Volume manager
sends the data
and a bad-sector
error to the file
system.

3. NTFS performs
cluster remapping.

Non-
fault-
tolerant
volume

1. Volume manager
can't recover the
data.

2. Volume manager
sends a bad-
sector error to
the file system.

3. NTFS performs
cluster
remapping. Data
is lost†.

1. Volume manager
can't recover the
data.

2. Volume manager
sends a bad-sector
error to the file
system.

3. NTFS performs
cluster remapping.
Data is lost†.

* In neither of these cases can a volume manager perform
sector sparing: (1) hard disks that don't use the SCSI
protocol have no standard interface for providing sector
sparing; (2) some hard disks don't provide hardware



support for sector sparing, and SCSI hard disks that do
provide sector sparing can eventually run out of spare
sectors if a lot of sectors go bad.

** A fault tolerant volume is one of the following: a mirror
set or a RAID-5 set.

† In a write operation, no data is lost: NTFS remaps the
cluster before the write.

If the volume on which the bad sector appears is a fault
tolerant volume (a mirrored or RAID-5 volume), and if the
hard disk is one that supports sector sparing (and that
hasn't run out of spare sectors), which file system you're
using—FAT or NTFS—doesn't matter. The volume manager
replaces the bad sector without the need for user or file
system intervention.

If a bad sector is located on a hard disk that doesn't
support sector sparing, the file system is responsible for
replacing (remapping) the bad sector or—in the case of
NTFS—the cluster in which the bad sector resides. The FAT
file system doesn't provide sector or cluster remapping. The
benefits of NTFS cluster remapping are that bad spots in a
file can be fixed without harm to the file (or harm to the file
system, as the case may be) and that the bad cluster won't
be reallocated to the same or another file.



[Previous] [Next]



Encrypting File System Security
EFS security relies on Windows 2000 cryptography support, which Microsoft introduced in
Windows NT 4. The first time a file is encrypted, EFS assigns the account of the user
performing the encryption a private/public key pair for use in file encryption. Users can
encrypt files via Windows Explorer by opening a file's Properties dialog box, pressing
Advanced, and selecting the Encrypt Contents To Secure Data option, as shown in Figure
12-44. Users can also encrypt files via a command-line utility named cipher. Windows
2000 automatically encrypts files that reside in directories that are designated as
encrypted directories. When a file is encrypted, EFS generates a random number for the
file that EFS calls the file's file encryption key (FEK). EFS uses the FEK to encrypt the file's
contents with a stronger variant of the Data Encryption Standard (DES) algorithm—DESX.
EFS stores the file's FEK with the file but encrypts the file with the user's EFS public key by
using the RSA public key-based encryption algorithm. After EFS completes these steps, the
file is secure: other users can't decrypt the data without the file's decrypted FEK, and they
can't decrypt the FEK without the private key.

Figure 12-44 Encrypt files by using the Advanced Attributes dialog box

EFS uses a private/public key algorithm to encrypt FEKs. To encrypt file data, EFS uses
DESX because DESX is a symmetric encryption algorithm, which means it uses the same
key to encrypt and decrypt data. Symmetric encryption algorithms are typically very fast,
which makes them suitable for encrypting large amounts of data, such as file data.
However, symmetric encryption algorithms have a weakness: you can bypass their security
if you obtain the key. If multiple users want to share one encrypted file protected only by
DESX, each user would require access to the file's FEK. Leaving the FEK unencrypted
would obviously be a security problem, but encrypting the FEK once would require all the
users to share the same FEK decryption key—another potential security problem.

Keeping the FEK secure is a difficult problem, which EFS addresses with the public key-
based half of its encryption architecture. Encrypting a file's FEK for individual users who
access the file lets multiple users share an encrypted file. EFS can encrypt a file's FEK with
each user's public key and can store each user's encrypted FEK with the file. Anyone can
access a user's public key, but no one can use a public key to decrypt the data that the
public key encrypted. The only way users can decrypt a file is with their private key, which
the operating system must access and typically stores in a secure location. A user's private
key decrypts the user's encrypted copy of a file's FEK. Windows 2000 stores private keys
on a computer's hard disk (which isn't terribly secure), but subsequent releases of the
operating system will let users store their private key on portable media such as smart
cards. Public key-based algorithms are usually slow, but EFS uses these algorithms only to



encrypt FEKs. Splitting key management between a publicly available key and a private
key makes key management a little easier than symmetric encryption algorithms do and
solves the dilemma of keeping the FEK secure.

Several components work together to make EFS work, as the diagram of EFS architecture
in Figure 12-45 shows. As you can see, EFS is implemented as a device driver that runs in
kernel mode and is tightly connected with the NTFS file system driver. Whenever NTFS
encounters an encrypted file, NTFS executes functions in the EFS driver that the EFS driver
registered with NTFS when EFS initialized. The EFS functions encrypt and decrypt file data
as applications access encrypted files. Although EFS stores an FEK with a file's data, users'
public keys encrypt the FEK. To encrypt or decrypt file data, EFS must decrypt the file's
FEK with the aid of cryptography services that reside in user mode.

Figure 12-45 EFS architecture

The Local Security Authority Subsystem (Lsass - \Winnt\System32\Lsass.exe) manages
logon sessions but also handles EFS key management chores. For example, when the EFS
driver needs to decrypt an FEK in order to decrypt file data a user wants to access, the EFS
driver sends a request to Lsass. EFS sends the request via a local procedure call (LPC).
The KSecDD (\Winnt\System32\Drivers\Ksecdd.sys) device driver exports functions for
other drivers that need to send LPC messages to Lsass. The Local Security Authority
Server (Lsasrv - \Winnt\System32\Lsasrv.dll) component of Lsass that listens for remote
procedure call (RPC) requests passes requests to decrypt an FEK to the appropriate EFS-
related decryption function, which also resides in Lsasrv. Lsasrv uses functions in
Microsoft's CryptoAPI (also referred to as CAPI) to decrypt the FEK, which the EFS driver
sent to Lsass in encrypted form.

CryptoAPI comprises cryptographic service provider (CSP) DLLs that make various
cryptography services (such as encryption/decryption and hashing) available to
applications. The CSP DLLs manage retrieval of user private and public keys, for example,
so that Lsasrv doesn't need to concern itself with the details of how keys are protected or
even with the details of the encryption algorithms. After Lsasrv decrypts an FEK, Lsasrv
returns the FEK to the EFS driver via an LPC reply message. After EFS receives the
decrypted FEK, EFS can use DESX to decrypt the file data for NTFS. Let's look at the
details of how EFS integrates with NTFS and how Lsasrv uses CryptoAPI to manage keys.

javascript:fullSize('F12yj45x.htm')


Registering Callbacks

NTFS doesn't require the EFS driver's (Winnt\System32\Drivers\Efs.sys) presence to
execute, but encrypted files won't be accessible if the EFS driver isn't present. NTFS has a
plug-in interface for the EFS driver, so when the EFS driver initializes, it can attach itself to
NTFS. The NTFS driver exports several functions for the EFS driver to use, including one
that EFS calls to notify NTFS both of the presence of EFS and of the EFS-related APIs EFS
is making available.



Encrypting a File for the First Time

The NTFS driver calls only the EFS functions that register when NTFS encounters an
encrypted file. A file's attributes record that the file is encrypted in the same way that a
file records that it is compressed (discussed earlier in this chapter). NTFS and EFS have
specific interfaces for converting a file from nonencrypted to encrypted form, but user-
mode components primarily drive the process. Windows 2000 lets you encrypt a file in two
ways: by using the cipher command-line utility or by checking the Encrypt Contents To
Secure Data box in the Advanced Attibutes dialog box for a file in Windows Explorer. Both
Windows Explorer and the cipher command rely on the EncryptFile Win32 API that the
Advapi32.dll (Advanced Win32 APIs DLL) exports. Advapi32 loads another DLL, Feclient.dll
(File Encryption Client DLL), to obtain APIs that Advapi32 can use to invoke EFS interfaces
in Lsasrv via LPCs.

When Lsasrv receives an LPC message from Feclient to encrypt a file, Lsasrv uses the
Windows 2000 impersonation facility to impersonate the user that ran the application
(either cipher or Windows Explorer) that is encrypting the file. This procedure lets Windows
2000 treat the file operations that Lsasrv performs as if the user who wants to encrypt the
file is performing them. Lsasrv usually runs in the System account. (The System account is
described in Chapter 8.) In fact, if it doesn't impersonate the user, Lsasrv usually won't
have permission to access the file in question.

Lsasrv next creates a log file in the volume's System Volume Information directory into
which Lsasrv records the progress of the encryption process. The log file usually has the
name efs0.log, but if other files are undergoing encryption, increasing numbers replace the
0 until a unique log file name for the current encryption is created.

CryptoAPI relies on information that a user's registry profile stores, so Lsasrv next uses
the LoadUserProfile API function of Userenv.dll (User Environment DLL) to load the profile
into the registry of the user it is impersonating. Typically, the user profile is already loaded,
because Winlogon loads a user's profile when a user logs on. However, if a user uses the
Windows 2000 RunAs command to log on to a different account, when you try to access
encrypted files from that account, the account's profile might not load.

Lsasrv then generates an FEK for the file by using the RSA encryption facilities of the
Microsoft Base Cryptographic Provider 1.0 CSP.

Constructing Key Rings

At this point, Lsasrv has an FEK and can construct EFS information to store with the file,
including an encrypted version of the FEK. Lsasrv reads the
HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\EFS\CurrentKeys\CertificateHash value of the user performing the
encryption to obtain the user's public key signature. (Note that this key doesn't appear in
the registry until a file or folder is encrypted.) Lsasrv uses the signature to access the
user's public key and encrypt FEKs.

Lsasrv can now construct the information that EFS stores with the file. EFS stores only one
block of information in an encrypted file, and that block contains an entry for each user
sharing the file. These entries are called key entries, and EFS stores them in the Data
Decryption Field (DDF) portion of the file's EFS data. A collection of multiple key entries is
called a key ring, because, as mentioned earlier, EFS lets multiple users share encrypted
files.



Figure 12-46 shows a file's EFS information format and key entry format. EFS stores
enough information in the first part of a key entry to precisely describe a user's public key.
This data includes the user's security ID (SID), the container name in which the key is
stored, the cryptographic provider name, and the private/public keypair certificate hash.
The second part of the key entry contains an encrypted version of the FEK. Lsasrv uses the
CryptoAPI to encrypt the FEK with the RSA algorithm and the user's public key.

Figure 12-46 Format of EFS information and key entries

Next, Lsasrv creates another key ring that contains recovery key entries. EFS stores
information about recovery key entries in a file's Data Recovery Field (DRF). The format of
DRF entries is identical to the format of DDF entries. The DRF's purpose is to let
designated accounts, or Recovery Agents, decrypt a user's file when administrative
authority must have access to the user's data. For example, suppose a company employee
used a CryptoAPI that let him store his private key on a smart card, and then he lost the
card. Without Recovery Agents, no one could recover his encrypted data.

Recovery Agents are defined with the Encrypted Data Recovery Agents security policy of
the local computer or domain. This policy is available from the Group Policy MMC snap-in,
as shown in Figure 12-47. When you use the Recovery Agent Wizard (by right-clicking on
Encrypted Data Recovery Agents and selecting Encrypted Recovery Agent from the New
option), you can add Recovery Agents and specify which private/public key pairs
(designated by their certificates) the Recovery Agents use for EFS recovery. Lsasrv
interprets the recovery policy when it initializes and when it receives notification that the
recovery policy has changed. EFS creates a DRF key entry for each Recovery Agent by
using the cryptographic provider registered for EFS recovery. The default Recovery Agent
provider is the RSA encryption facility of Base Cryptographic Provider 1.0—the same
provider Lsasrv uses for user keys.

Figure 12-47 Encrypted Data Recovery Agents group policy

In the final step in creating EFS information for a file, Lsasrv calculates a checksum for the
DDF and DRF by using the MD5 hash facility of Base Cryptographic Provider 1.0. Lsasrv
stores the checksum's result in the EFS information header. EFS references this checksum

javascript:fullSize('F12yj46x.htm')
javascript:fullSize('F12yj47x.htm')


during decryption to ensure that the contents of a file's EFS information haven't become
corrupted or been tampered with.

Encrypting File Data

Figure 12-48 illustrates the flow of the encryption process. After Lsasrv constructs the
necessary information for a file a user wants to encrypt, it can begin encrypting the file.
Lsasrv creates a backup file, Efs0.tmp, for the file undergoing encryption. (Lsasrv uses
higher numbers in the backup filename if other backup files exist.) Lsasrv creates the
backup file in the directory that contains the file undergoing encryption. Lsasrv applies a
restrictive security descriptor to the backup file so that only the System account can
access the file's contents. Lsasrv next initializes the log file that it created in the first phase
of the encryption process. Finally, Lsasrv records in the log file that the backup file has
been created. Lsasrv encrypts the original file only after the file is completely backed up.

Lsasrv next sends the EFS device driver, through NTFS, a command to add to the original
file the EFS information that it just created. NTFS receives this command, but because
NTFS doesn't understand EFS commands, NTFS calls the EFS driver. The EFS driver takes
the EFS information that Lsasrv sent and uses exported NTFS functions to apply the
information to the file. The exported NTFS functions let EFS add the
$LOGGED_UTILITY_STREAM attribute to NTFS file. Execution returns to Lsasrv, which
copies the contents of the file undergoing encryption to the backup file. When the backup
copy is complete, including backups of all alternate data streams, Lsasrv records in the log
file that the backup file is up to date. Lsasrv then sends another command to NTFS to tell
NTFS to encrypt the contents of the original file.

Figure 12-48 Flow of EFS

When NTFS receives the EFS command to encrypt the file, NTFS deletes the contents of
the original file and copies the backup data to the file. After NTFS copies each section of
the file, NTFS flushes the section's data from the file system cache, which prompts the
cache manager to tell NTFS to write the file's data to disk. Because the file is marked as
encrypted, at this point in the file-writing process, NTFS calls EFS to encrypt the data
before NTFS writes the data to disk. EFS uses the unencrypted FEK that NTFS passes it to
perform DESX encryption of the file, one sector (512 bytes) at a time.

On Windows 2000 versions approved for export outside the United States, the EFS driver
implements a 56-bit key DESX encryption. For the U.S.-only version of Windows 2000, the
key is 128 bits long.

javascript:fullSize('F12yj48x.htm')


After EFS encrypts the file, Lsasrv records in the log file that the encryption was successful
and deletes the file's backup copy. Finally, Lsasrv deletes the log file and returns control to
the application that requested the file's encryption.

Encryption Process Summary

The following list summarizes the steps EFS performs to encrypt a file:

1. The user profile is loaded if necessary.

2. A log file is created in the System Volume Information directory with the name
Efsx.log, where x is a unique number (for example, Efs0.log). As subsequent steps are
performed, records are written to the log so that the file can be recovered in case the
system fails during the encryption process.

3. Base Cryptographic Provider 1.0 generates a random 128-bit FEK for the file.

4. A user EFS private/public key pair is generated or obtained.
HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\EFS\CurrentKeys\CertificateHash identifies the user's key pair.

5. A DDF key ring is created for the file that has an entry for the user. The entry contains
a copy of the FEK that has been encrypted with the user's EFS public key.

6. A DRF key ring is created for the file. It has an entry for each Recovery Agent on the
system, with each entry containing a copy of the FEK encrypted with the agent's EFS
public key.

7. A backup file with a name in the form Efs0.tmp is created in the same directory as the
file to be encrypted.

8. The DDF and DRF key rings are added to a header and augment the file as its EFS
attribute.

9. The backup file is marked encrypted, and the original file is copied to the backup.

10. The original file's contents are destroyed, and the backup is copied to the original. This
copy operation results in the data in the original file being encrypted because the file is
now marked as encrypted.

11. The backup file is deleted.

12. The log file is deleted.

13. The user profile is unloaded (if it was loaded in step 1).

If the system crashes during the encryption process, either the original file remains intact
or the backup file contains a consistent copy. When Lsasrv initializes after a system crash,
it looks for log files under the System Volume Information subdirectory on each NTFS
volume on the system. If Lsasrv finds one or more log files, it examines their contents and
determines how recovery should take place. Lsasrv deletes the log file and the
corresponding backup file if the original file wasn't modified at the time of the crash;
otherwise, Lsasrv copies the backup file over the original, partially encrypted file and then
deletes the log and backup. After Lsasrv processes log files, the file system will be in a
consistent state with respect to encryption, with no loss of user data.



The Decryption Process

The decryption process begins when a user opens an encrypted file. NTFS examines the
file's attributes when opening the file and then executes a callback function in the EFS
driver. The EFS driver reads the $LOGGED_UTILITY_STREAM attribute associated with the
encrypted file. To read the attribute, the driver calls EFS support functions that NTFS
exports for EFS's use. NTFS completes the necessary steps to open the file. The EFS driver
ensures that the user opening the file has access privileges to the file's encrypted data
(that is, that an encrypted FEK in either the DDF or DRF key rings corresponds to a
private/public key pair associated with the user). As EFS performs this validation, EFS
obtains the file's decrypted FEK to use in subsequent data operations the user might
perform on the file.

EFS can't decrypt an FEK and relies on Lsasrv (which can use CryptoAPI) to perform FEK
decryption. EFS sends an LPC message by way of the Ksecdd.sys driver to Lsasrv that asks
Lsasrv to obtain the decrypted form of the encrypted FEK in the
$LOGGED_UTILITY_STREAM attribute data (the EFS data) that corresponds to the user
who is opening the file.

When Lsasrv receives the LPC message, Lsasrv executes the Userenv.dll (User
Environment DLL) LoadUserProfile API function to bring the user's profile into the registry,
if the profile isn't already loaded. Lsasrv proceeds through each key field in the EFS data,
using the user's private key to try to decrypt each FEK. For each key, Lsasrv attempts to
decrypt a DDF or DRF key entry's FEK. If the certificate hash in a key field doesn't refer to
a key the user owns, Lsasrv moves on to the next key field. If Lsasrv can't decrypt any
DDF or DRF key field's FEK, the user can't obtain the file's FEK. Consequently, EFS denies
access to the application opening the file. However, if Lsasrv identifies a hash as
corresponding to a key the user owns, it decrypts the FEK with the user's private key using
CryptoAPI.

Because Lsasrv processes both DDF and DRF key rings when decrypting an FEK, it
automatically performs file recovery operations. If a Recovery Agent that isn't registered to
access an encrypted file (that is, it doesn't have a corresponding field in the DDF key ring)
tries to access a file, EFS will let the Recovery Agent gain access because the agent has
access to a key pair for a key field in the DRF key ring.

Decrypted FEK Caching

Traveling the path from the EFS driver to Lsasrv and back can take a relatively long time—
in the process of decrypting an FEK, CryptoAPI uses results in more than 2000 registry API
calls and 400 file system accesses on a typical system. The EFS driver, with the aid of
NTFS, uses a cache to try to avoid this expense.

Decrypting File Data

After an application opens an encrypted file, the application can read from and write to the
file. NTFS calls the EFS driver to decrypt file data as NTFS reads the data from the disk,
and before NTFS places the data in the file system cache. Similarly, when an application
writes data to a file, the data remains in unencrypted form in the file system cache until
the application or the cache manager uses NTFS to flush the data back to disk. When an
encrypted file's data writes back from the cache to the disk, NTFS calls the EFS driver to
encrypt the data.



As stated earlier, the EFS driver performs encryption and decryption in 512-byte units. The
512-byte size is the most convenient for the driver because disk reads and writes occur in
multiples of the 512-byte sector.



Backing Up Encrypted Files

An important aspect of any file encryption facility's design is that file data is never
available in unencrypted form except to applications that access the file via the encryption
facility. This restriction particularly affects backup utilities, in which archival media store
files. EFS addresses this problem by providing a facility for backup utilities so that the
utilities can back up and restore files in their encrypted states. Thus, backup utilities don't
have to be able to decrypt file data, nor do they need to decrypt file data in their backup
procedures.

Backup utilities use the new EFS API functions OpenEncryptedFileRaw,
ReadEncryptedFileRaw, WriteEncryptedFileRaw, and CloseEncryptedFileRaw in Windows
2000 to access a file's encrypted contents. The Advapi32.dll library provides these API
functions, which all use LPCs to invoke corresponding functions in Lsasrv. For example,
after a backup utility opens a file for raw access during a backup operation, the utility calls
ReadEncryptedFileRaw to obtain the file data. The Lsasrv function EfsReadFileRaw issues
control commands (which the EFS session key encrypts with DESX) to the NTFS driver to
read the file's EFS attribute first and then the encrypted contents.

EfsReadFileRaw might have to perform multiple read operations to read a large file. As
EfsReadFileRaw reads each portion of such a file, Lsasrv sends an RPC message to
Advapi32.dll that executes a callback function that the backup program specified when it
issued the ReadEncryptedFileRaw API function. EfsReadFileRaw hands the encrypted data
it just read to the callback function, which can write the data to the backup media. Backup
utilities restore encrypted files in a similar manner. The utilities call the
WriteEncryptedFileRaw API function, which invokes a callback function in the backup
program to obtain the unencrypted data from the backup media while Lsasrv's
EfsWriteFileRaw function is restoring the file's contents.

EXPERIMENT

Viewing EFS Information

EFS has a handful of other API functions that applications can use to manipulate
encrypted files. For example, applications use the AddUsersToEncryptedFile API
function to give additional users access to an encrypted file and
RemoveUsersFromEncryptedFile to revoke users' access to an encrypted file.
Applications use the QueryUsersOnEncryptedFile function to obtain information
about a file's associated DDF and DRF key fields. QueryUsersOnEncryptedFile
returns the SID, certificate hash value, and display information that each DDF and
DRF key field contains. The following output is from the EFSDump utility, included
on the companion CD under \Sysint\Efsdump.exe, when an encrypted file is
specified as a command-line argument:

C:\>efsdump test.txt 
EFS Information Dumper v1.02 
Copyright (C) 1999 Mark Russinovich 
Systems Internals - http://www.sysinternals.com  
 
test.txt: 
DDF Entry: 



    SUSANCOMP\Joe: 
         CN=Joe,L=EFS,OU=EFS File Encryption Certificate 
DRF Entry: 
    SUSANCOMP\Administrator 
         OU=EFS File Encryption Certificate, L=EFS, CN=Administrat

You can see that the file test.txt has one DDF entry for user Joe and one DRF
entry for Administrator, which is the only Recovery Agent currently registered on
the system.



[Previous] [Next]



Conclusion
As you saw in the introduction to this chapter, the
overriding goal for NTFS was to provide a file system that
wasn't only reliable but also fast. The performance of
Windows 2000 disk I/O isn't due solely to the
implementation of NTFS, however. It comes in large
measure from synergy between NTFS and the Windows
2000 cache manager. Together, NTFS and the cache
manager achieve respectable I/O performance while
providing an unprecedented level of reliability and high-end
data storage features for both workstation and server
systems.



[Previous] [Next]

Chapter 13



Networking
Microsoft Windows 2000 was designed with networking in
mind, and it includes broad networking support that is
integrated with the I/O system and the Win32 API. The four
basic types of networking software are services, APIs,
protocols, and network adapter device drivers, and each is
layered on the next to form a network stack. Windows 2000
has well-defined interfaces for each layer, so in addition to
using the wide variety of different APIs, protocols, and
adapter device drivers that ship with Windows 2000, third
parties can extend the operating system's networking
capabilities by developing their own.

In this chapter, we take you from the top of the Windows
2000 networking stack to the bottom. First, we present the
mapping between the Windows 2000 networking software
components and the Open Systems Interconnection (OSI)
reference model. Then we briefly describe the networking
APIs available on Windows 2000 and explain how they are
implemented. You'll learn how network-resource name
resolution works and how protocol drivers are implemented.
After looking at the implementation of network adapter
device drivers, we examine binding, which is the glue that
connects protocols to network adapters. Finally, we briefly
describe layered networking services included with Windows
2000, such as Active Directory directory service and File
Replication service (FRS).



[Previous] [Next]



The OSI Reference Model
The goal of network software is to take a request (usually
an I/O request) from an application on one machine, pass it
to another machine, execute the request on the remote
machine, and return the results to the first machine. In the
course of this process, the request must be transformed
several times along the way. A high-level request, such as
"read x number of bytes from file y on machine z," requires
software that can determine how to get to machine z and
what communication software that machine understands.
Then the request must be altered for transmission across a
network—for example, divided into short packets of
information. When the request reaches the other side, it
must be checked for completeness, decoded, and sent to
the correct operating system component for execution.
Finally, the reply must be encoded for sending back across
the network.

To help different computer manufacturers standardize and
integrate their networking software, in 1974 the
International Organization for Standardization (ISO) defined
a software model for sending messages between machines.
The result is the Open Systems Interconnection (OSI)
reference model. The model defines seven layers of
software, as shown in Figure 13-1.

Figure 13-1 OSI reference model

javascript:fullSize('F13yj01x.htm')


The OSI reference model is an idealized scheme that few
systems implement precisely, but it's often used to frame
discussions of networking principles. Each layer on one
machine assumes that it is "talking to" the same layer on
the other machine. Both machines "speak" the same
language, or protocol, at the same level. In reality, however,
a network transmission must pass down each layer on the
client machine, be transmitted across the network, and then
pass up the layers on the destination machine until it
reaches a layer that can understand and implement the
request.



OSI Layers

The purpose of each layer in the OSI model is to provide
services to higher layers and to abstract how the services
are implemented at lower layers. Detailing the purpose of
each layer is beyond the scope of this book, but here are
some brief descriptions of the various layers:

Application layer Handles information transfer
between two network applications, including functions
such as security checks, identification of the
participating machines, and initiation of the data
exchange.

Presentation layer Handles data formatting, including
issues such as whether lines end in carriage return/line
feed (CR/LF) or just carriage return (CR), whether data
is to be compressed or encoded, and so forth.

Session layer Manages the connection between
cooperating applications, including high-level
synchronization and monitoring of which application is
"talking" and which is "listening."

Transport layer On the client, this layer divides
messages into packets and assigns them sequence
numbers to ensure that they are all received in the
proper order. On the destination, it assembles packets
that have been received. It also shields the session
layer from the effects of changes in hardware.

Network layer Creates packet headers and handles
routing, congestion control, and internetworking. It is
the highest layer that understands the network's
topology, that is, the physical configuration of the



machines in the network, any limitations in bandwidth,
and so on.

Data-link layer Transmits low-level data frames, waits
for acknowledgment that they were received, and
retransmits frames that were lost over unreliable lines.

Physical layer Passes bits to the network cable or
other physical transmission medium.

The dashed lines in Figure 13-1 represent protocols used in
transmitting a request to a remote machine. As stated
earlier, each layer of the hierarchy assumes that it is
speaking to the same layer on another machine and uses a
common protocol. The collection of protocols through which
a request passes on its way down and back up the layers of
the network is called a protocol stack.



Windows 2000 Networking Components

Figure 13-2 provides an overview of the components of
Windows 2000 networking, showing how each component
fits into the OSI reference model and which protocols are
used between layers. The mapping between OSI layers and
networking components isn't precise, which is the reason
that some components cross layers. The various
components include the following:

Networking APIs provide a protocol-independent way for
applications to communicate across a network.
Networking APIs can be implemented in user mode or in
both user mode and kernel mode, and in some cases
are wrappers around another networking API that
implements a specific programming model or provides
additional services. (Note that the term networking API
also describes any programming interfaces provided by
networking-related software.)

Transport Driver Interface (TDI) clients are kernel-mode
device drivers that usually implement the kernel-mode
portion of a networking API's implementation. TDI
clients get their name from the fact that the I/O request
packets (IRPs) they send to protocol drivers are
formatted according to the Windows 2000 Transport
Driver Interface standard (documented in the DDK).
This standard specifies a common programming
interface for kernel-mode device drivers. (See Chapter
9 for more information about IRPs.)

TDI transports, also known as transports, Network
Driver Interface Specification (NDIS) protocol drivers,
and protocol drivers, are kernel-mode protocol drivers.
They accept IRPs from TDI clients and process the



requests these IRPs represent. This processing might
require network communications with a peer, prompting
the TDI transport to add protocol-specific headers (such
as TCP, UDP, IPX) to data passed in the IRP and to
communicate with adapter drivers using NDIS functions
(also documented in the DDK). TDI transports generally
facilitate application network communications by
transparently performing message operations such as
segmentation and reassembly, sequencing,
acknowledgment, and retransmission.

The NDIS library (Ndis.sys) provides encapsulation for
adapter drivers, hiding from them specifics of the
Windows 2000 kernel-mode environment. The NDIS
library exports functions for use by TDI transports as
well as support functions for adapter drivers.

NDIS miniport drivers are kernel-mode drivers that are
responsible for interfacing TDI transports to particular
network adapters. NDIS miniport drivers are written so
that they are wrapped by the Windows 2000 NDIS
library. The encapsulation provides cross-platform
compatibility with Consumer Windows. NDIS miniport
drivers don't process IRPs; rather, they register a call-
table interface to the NDIS library that contains pointers
to functions corresponding to ones that the NDIS library
exports to TDI transports. NDIS miniport drivers
communicate with network adapters by using NDIS
library functions that resolve to hardware abstraction
layer (HAL) functions.

As the figure shows, the OSI layers don't correspond to
actual software. TDI transports, for example, frequently
cross several boundaries. In fact, the bottom four layers of
software are often referred to collectively as "the transport."



Software components residing in the upper three layers are
referred to as "users of the transport."

Figure 13-2 OSI model and Windows 2000 networking
components

In the remainder of this chapter, we'll examine the
networking components shown in Figure 13-2 (as well as



others not shown in the figure), looking at how they fit
together and how they relate to Windows 2000 as a whole.



[Previous] [Next]



Networking APIs
Windows 2000 implements multiple networking APIs to provide support for legacy
applications and compatibility with industry standards. In this section, we'll briefly look at
the networking APIs and describe how applications use them. It's important to keep in
mind that the decision about which API an application uses depends on characteristics of
the API, such as which protocols the API can layer over, whether the API supports reliable
or bidirectional communication, and the API's portability to other Windows platforms the
application might run on. We'll discuss the following networking APIs:

Named pipes and mailslots

Windows Sockets (Winsock)

Remote procedure call (RPC)

Common Internet File System (CIFS)

NetBIOS

In addition, we'll briefly describe several APIs that build on the APIs listed here and that
are widely used on a typical Windows 2000 system.



Named Pipes and Mailslots

Named pipes and mailslots are programming APIs that Microsoft originally developed for
OS/2 LAN Manager and then ported to Windows NT. Named pipes provide for reliable
bidirectional communications, whereas mailslots provide unreliable unidirectional data
transmission. An advantage of mailslots is that they support broadcast capability. In
Windows 2000, both APIs take advantage of Windows 2000 security, which allows a
server to control precisely which clients can connect to it.

The names servers assign to named pipes and clients conform to the Windows 2000
Universal Naming Convention (UNC), which is a protocol-independent way to identify
resources on a Windows network. The implementation of UNC names is described later in
the chapter.

Named Pipe Operation

Named pipe communication consists of a named pipe server and a named pipe client. A
named pipe server is an application that creates a named pipe to which clients can
connect. A named pipe's name has the format \\Server\Pipe\PipeName. The Server
component of the name specifies the computer on which the named pipe server is
executing (a named pipe server can't create a named pipe on a remote system), and the
name can be a DNS name (for example, mspress.microsoft.com), a NetBIOS name
(mspress), or an IP address (255.0.0.0). The Pipe component of the name must be the
string "Pipe," and PipeName is the unique name assigned to a named pipe. The unique
portion of the named pipe's name can include subdirectories; an example of a named pipe
name with a subdirectory is \\MyComputer\Pipe\MyServerApp\ConnectionPipe.

A named pipe server uses the CreateNamedPipe Win32 function to create a named pipe.
One of the function's input parameters is a pointer to the named pipe name, in the
form\\.\Pipe\PipeName. The "\\.\" is a Win32-defined alias for "this computer." Other
parameters the function accepts include an optional security descriptor that protects
access to the named pipe, a flag that specifies whether the pipe should be bidirectional or
unidirectional, a value indicating the maximum number of simultaneous connections the
pipe supports, and a flag specifying whether the pipe should operate in byte mode or
message mode.

Most networking APIs operate only in byte mode, which means that a message sent with
one send function might require the receiver to perform multiple receives, building up the
complete message from fragments. Named pipes operated in message mode simplify the
implementation of a receiver because there is a one-to-one correspondence between
sends and receives. A receiver therefore obtains an entire message each time it completes
a receive and doesn't have to concern itself with keeping track of message fragments.

The first call to CreateNamedPipe for a particular name creates the first instance of that
name and establishes the behavior of all named pipe instances having that name. A
server creates additional instances, up to the maximum specified in the first call, with
additional calls to CreateNamedPipe. After creating at least one named pipe instance, a
server executes the ConnectNamedPipe Win32 function, which enables the named pipe
the server created to establish connections with clients. ConnectNamedPipe can be
executed synchronously or asynchronously, and it doesn't complete until a client
establishes a connection with the instance (or an error occurs).



A named pipe client uses the Win32 CreateFile or CallNamedPipe function, specifying the
name of the pipe a server has created, to connect to a server. If the server has performed
a ConnectNamedPipe call, the client's security profile and the access it requests to the
pipe (read, write) are validated against the named pipe's security descriptor. (See Chapter
8 for more information on the security-check algorithms Windows 2000 uses.) If the client
is granted access to a named pipe, it receives a handle representing the client side of a
named pipe connection and the server's call to ConnectNamedPipe completes.

After a named pipe connection is established, the client and server can use the ReadFile
and WriteFile Win32 functions to read from and write to the pipe. Named pipes support
both synchronous and asynchronous operation for message transmittal. Figure 13-3
shows a server and client communicating through a named pipe instance.

Figure 13-3 Named pipe communications

A unique characteristic of the named pipe networking API is that it allows a server to
impersonate a client by using the ImpersonateNamedPipeClient function. See the section
"Impersonation" in Chapter 8 for a discussion of how impersonation is used in
client/server applications.

Mailslot Operation

Mailslots provide an unreliable unidirectional broadcast mechanism. One example of an
application that can use this type of communication is a time synchronization service,
which might broadcast a source time across the domain every few seconds. Receiving the
source-time message isn't crucial for every computer on the network and is therefore a
good candidate for the use of mailslots.

Like named pipes, mailslots are integrated with the Win32 API. A mailslot server creates a
mailslot by using the CreateMailslot function. CreateMailslot accepts a name of the form
"\\.\Mailslot\MailslotName" as an input parameter. Again like named pipes, a mailslot
server can create mailslots only on the machine it's executing on, and the name it assigns
to a mailslot can include subdirectories. CreateMailslot also takes a security descriptor
that controls client access to the mailslot. The handles returned by CreateMailslot are
overlapped, which means that operations performed on the handles, such as sending and
receiving messages, are asynchronous.

Because mailslots are unidirectional and unreliable, CreateMailslot doesn't take many of
the parameters that CreateNamedPipe does. After it creates a mailslot, a server simply
listens for incoming client messages by executing the ReadFile function on the handle
representing the mailslot.

Mailslot clients use a naming format similar to that used by named pipe clients, but with
variations that make it possible to broadcast messages to all the mailslots of a given
name within the client's domain or a specified domain. To send a message to a particular
instance of a mailslot, the client calls CreateFile, specifying the computer-specific name.
An example of such a name is "\\Server\Mailslot\MailslotName." (The client can specify
"\\.\" to represent the local computer.) If the client wants to obtain a handle representing
all the mailslots of a given name on the domain it's a member of, it specifies the name in
the format "\\*\Mailslot\MailslotName," and if the client wants to broadcast to all the

javascript:fullSize('F13yj03x.htm')


mailslots of a given name within a different domain, the format it uses is
"\\DomainName\Mailslot\MailslotName."

After obtaining a handle representing the client side of a mailslot, the client sends
messages by calling WriteFile. Because of the way mailslots are implemented, only
messages smaller than 425 bytes can be broadcast. If a message is larger than 425
bytes, the mailslot implementation uses a reliable communications mechanism that
requires a one-to-one client/server connection, which precludes broadcast capability. Also,
a quirk of the mailslot implementation causes messages of 425 or 426 bytes to be
truncated to 424 bytes. These limitations make mailslots generally unsuitable for
messages larger than 424 bytes. Figure 13-4 shows an example of a client broadcasting
to multiple mailslot servers within a domain.

Figure 13-4 Mailslot broadcast

Named Pipe and Mailslot Implementation

As evidence of their tight integration with Win32, named pipe and mailslot functions are
all implemented in the Kernel32.dll Win32 client-side DLL. ReadFile and WriteFile, which
are the functions applications use to send and receive messages using named pipes and
mailslots, are the primary Win32 I/O routines. The CreateFile function, which a client uses
to open either a named pipe or a mailslot, is also a standard Win32 I/O routine. However,
the names specified by named pipe and mailslot applications specify file system
namespaces managed by the named pipe file system driver
(\Winnt\System32\Drivers\Npfs.sys) and the mailslot file system driver
(\Winnt\System32\Drivers\Msfs.sys), as shown in Figure 13-5. The named pipe file
system driver creates a device object named \Device\NamedPipe and a symbolic link to
that object named \??\Pipe, and the mailslot file system driver creates a device object
named \Device\Mailslot and a symbolic link named \??\Mailslot that points to that object.
(See Chapter 3 for an explanation of the \?? object manager directory.) Names passed to
CreateFile of the form \\.\Pipe\… and \\.\Mailslot\… have their prefix of \\.\ translated to
\??\ so that the names resolve through a symbolic link to a device object. The special
functions CreateNamedPipe and CreateMailslot use the corresponding native functions
NtCreateNamedPipeFile and NtCreateMailslotFile.

Figure 13-5 Named pipe and mailslot implementation

Later in the chapter, we'll discuss how the redirector file system driver is involved when a
name that specifies a remote named pipe or mailslot resolves to a remote system.

javascript:fullSize('F13yj04x.htm')
javascript:fullSize('F13yj05x.htm')


However, when a named pipe or mailslot is created by a server or opened by a client, the
appropriate file system driver (FSD) on the machine where the named pipe or mailslot is
located is eventually invoked. There are several reasons why FSDs in kernel mode
implement named pipes and mailslots, the main one being that they integrate with the
object manager namespace and can use file objects to represent opened named pipes and
mailslots. This integration results in several benefits:

The FSDs use kernel-mode security functions to implement standard Windows 2000
security for named pipes and mailslots.

Applications can use CreateFile to open a named pipe or mailslot because FSDs
integrate with the object manager namespace.

Applications can use Win32 functions such as ReadFile and WriteFile to interact with
named pipes and mailslots.

The FSDs rely on the object manager to track handle and reference counts for file
objects representing named pipes and mailslots.

The FSDs can implement their own named pipe and mailslot namespaces, complete
with subdirectories.

Because named pipes and mailslot name resolution uses the redirector FSD to
communicate across the network, they indirectly rely on the CIFS protocol (described
later). CIFS works by using the IPX, TCP/IP, and NetBEUI protocols, so applications
running on systems that have at least one of these in common can use named pipes and
mailslots.

EXPERIMENT

Listing the Named Pipe Namespace and Watching Named Pipe Activity

It's not possible to use the Win32 API to open the root of the named pipe FSD
and perform a directory listing, but you can do this by using native API services.
The PipeList tool (on the companion CD as \Sysint\Pipelist.exe) shows you the
names of the named pipes defined on a computer as well as the number of
instances that have been created for a name and the maximum number of
instances as defined by a server's call to CreateNamedPipe. Here's an example of
PipeList output:

C:\>pipelist 
PipeList v1.01 
by Mark Russinovich 
http://www.sysinternals.com 
 
Pipe Name                          Instances       Max Instances 
------------------ 
InitShutdown                            2               -1 
lsass                                   3               -1 
ntsvcs                                 32               -1 
scerpc                                  2               -1 



net\NtControlPipe1                      1                1 
DhcpClient                              1               -1 
net\NtControlPipe2                      1                1 
Winsock2\CatalogChangeListener-184-0    1                1 
net\NtControlPipe3                      1                1 
spoolss                                 2               -1 
net\NtControlPipe4                      1                1 
net\NtControlPipe5                      1                1 
net\NtControlPipe0                      1                1 
net\NtControlPipe6                      1                1 
net\NtControlPipe7                      1                1 
winreg                                  2               -1 
Winsock2\CatalogChangeListener-208-0    1                1 
atsvc                                   2               -1 
net\NtControlPipe8                      1                1 
SecondaryLogon                          1               10 
SfcApi                                  2               -1 
ProfMapApi                              2               -1 
winlogonrpc                             2               -1 
Winsock2\CatalogChangeListener-d8-0     1                1 
epmapper                                2               -1 
POLICYAGENT                             2               -1 
WMIEP_e4                                2               -1 
WMIEP_1d4                               2               -1 
tapsrv                                  2               -1 
ROUTER                                  9               -1 
WMIEP_3c4                               2               -1 
WMIEP_3d0                               2               -1 
WMIEP_3ec                               2               -1 

It's clear from this output that several system components use named pipes as
their communications mechanism. For example, the InitShutdown pipe is created
by Winlogon to accept remote shutdown commands, and the SecondaryLogon
pipe is created by the Runas service to perform logon operations on behalf of the
Runas utility. You can determine what process has each of these pipes open by
using the object search facility in HandleEx (on the companion CD as
\Sysint\Handleex.exe). Note that a Max Instances value of -1 means that there is
no upper limit on the number of instances for the given name.

The Filemon file system filter driver (on the companion CD as
\Sysint\Filemon.exe) is able to attach to either the Npfs.sys or Msfs.sys file
system drivers and to therefore see all named pipe or mailslot activity occurring
on a system. Select the Named Pipes or Mail Slots menu entries from Filemon's
Drives menu to have Filemon attach to the corresponding driver. The following
screen shot shows Filemon capturing the named pipe activity generated when the
My Network Places icon on the desktop was opened. Notice the messages
transmitted through the Lsass and workstation service named pipes.



javascript:fullSize('G13yj01x.htm')


Windows Sockets

Windows Sockets (Winsock) is Microsoft's implementation of BSD (Berkeley Software
Distribution) Sockets, a programming API that became the standard by which UNIX
systems have communicated over the Internet since the 1980s. Support for sockets on
Windows 2000 makes the task of porting UNIX networking applications to Windows 2000
relatively straightforward. Winsock includes most of the functionality of BSD Sockets but
also includes Microsoft-specific enhancements, which continue to evolve. Winsock
supports reliable-connection-oriented communication as well as unreliable-connectionless
communication. Windows 2000 provides Winsock 2.2, which is also either included with or
available as an add-on for all versions of Consumer Windows.

Winsock includes the following features:

Support for scatter-gather and asynchronous application I/O.

Quality of service (QoS) conventions so that applications can negotiate latency and
bandwidth requirements when the underlying network supports QoS.

Extensibility so that Winsock can be used with protocols other than those Windows
2000 requires it to support.

Support for integrated namespaces other than those defined by a protocol an
application is using with Winsock. A server can publish its name in Active Directory,
for example, and using namespace extensions, a client can look up the server's
address in Active Directory.

Support for multipoint messages where messages transmit to multiple receivers
simultaneously.

We'll examine typical Winsock operation and then describe ways that Winsock can be
extended.

Winsock Operation

After initializing the Winsock API with a call to an initialization function, the first step a
Winsock application takes is to create a socket that will represent a communications
endpoint. A socket must be bound to an address on the local computer, so binding is the
second step the application performs. Winsock is a protocol-independent API, so an
address can be specified for any protocol installed on the system over which Winsock
operates (NetBEUI, TCP/IP, IPX). After binding is complete, the steps taken by a server
and client diverge, as do steps for connection-oriented and connectionless socket
operation.

A connection-oriented Winsock server performs a listen operation on the socket, indicating
the number of connections that it can support for the socket. Then it performs an accept
operation to allow a client to connect to the socket. If there is a pending connection
request, the accept call completes immediately; otherwise, it completes when a
connection request arrives. When a connection is made, the accept function returns a new
socket that represents the server's end of the connection. The server can perform receive
and send operations by using functions such as recv and send.

Connection-oriented clients connect to a server by using the Winsock connect function
that specifies a remote address. When a connection is established, the client can send and



receive messages over its socket. Figure 13-6 shows connection-oriented communication
between a Winsock client and server.

Figure 13-6 Connection-oriented Winsock operation

After binding an address, a connectionless server is no different from a connectionless
client: it can send and receive messages over the socket simply by specifying the remote
address with each message. When using connectionless messages, which are also called
datagrams, a sender learns that a message wasn't received when the sender obtains an
error code the next time a receive operation is performed.

Winsock Extensions

A powerful feature from a Windows programming point of view is that the Winsock API is
integrated with Windows messages. A Winsock application can take advantage of this
feature to perform asynchronous socket operations and receive notification of an
operation's completion via a standard Windows message or through the execution of a
callback function. This capability simplifies the design of a Windows application because
the application doesn't need to be multithreaded or manage synchronization objects to
both perform network I/O and respond to user input or requests from the window
manager to update the application windows. The names of message-based versions of
BSD-style Winsock functions usually begin with the prefix WSA—for example, WSAAccept.

In addition to supporting functions that correspond directly to those implemented in BSD
Sockets, Microsoft has added a handful of functions that aren't part of the Winsock
standard. Two of these functions, AcceptEx and TransmitFile, are worth describing
because many Web servers on Windows 2000 use them to achieve high performance.
AcceptEx is a version of the accept function that, in the process of establishing a
connection with a client, returns the client's address and the client's first message. With
this function, a Web server avoids executing multiple Winsock functions that would
otherwise be required.

After establishing a connection with a client, a Web server usually sends a file, such as a
Web page, to the client. The TransmitFile function's implementation is integrated with the
Windows 2000 cache manager so that a client can send a file directly from the file system
cache. Sending data in this way is called zero-copy because the server doesn't have to
touch the file data to send it: it simply specifies a handle to a file and the range(s) of the
file to send. In addition, TransmitFile allows a server to prepend or append data to the
file's data so that the server can send header information, which might include the name
of the Web server and a field that indicates to the client the size of the message the
server is sending. Internet Information Services (IIS) 5.0, which is bundled with Windows
2000, uses both AcceptEx and TransmitFile.

Extending Winsock

Winsock is an extensible API on Windows 2000 because third parties can add a transport
service provider that interfaces Winsock with other protocols as well as a namespace
service provider to augment Winsock's name-resolution facilities. Service providers plug in
to Winsock using the Winsock service provider interface (SPI). When a transport service

javascript:fullSize('F13yj06x.htm')


provider is registered with Winsock, Winsock uses the transport service provider to
implement socket functions, such as connect and accept, for the address types that the
provider indicates it implements. There are no restrictions on how the transport service
provider implements the functions, but the implementation usually involves
communicating with a transport driver in kernel mode.

A requirement of any Winsock client/server application is for the server to make its
address available to clients so that the clients can connect to the server. Standard services
that execute on the TCP/IP protocol use "well-known addresses" to make their addresses
available. As long as a browser knows the name of the computer a Web server is running
on, it can connect to the Web server by specifying the well-known Web server address
(the IP address of the server concatenated with :80, the port number used for HTTP).
Namespace service providers make it possible for servers to register their presence in
other ways. For example, one namespace service provider might on the server side
register the server's address in Active Directory, and on the client side look up the
server's address in Active Directory. Namespace service providers supply this functionality
to Winsock by implementing standard Winsock name-resolution functions such as
gethostbyaddr, getservbyname, and getservbyport.

EXPERIMENT

Looking at Winsock Service Providers

The Windows Sockets Configuration utility (Sporder.exe) included with the
Platform SDK shows the registered Winsock transport and namespace providers
and allows you to change the order in which transport service providers are
enumerated. For example, if there are two TCP/IP transport service providers, the
first one listed is the default provider for Winsock applications using the TCP/IP
protocol. Here's a screen shot from Sporder showing the registered transport
service providers:

Winsock Implementation

Winsock's implementation is shown in Figure 13-7. Its application interface consists of an
API DLL, Ws2_32.dll (\Winnt\System32\Ws2_32.dll), which provides applications access

javascript:fullSize('G13yj02x.htm')


to Winsock functions. Ws2_32.dll calls on the services of namespace and transport service
providers to carry out name and message operations. The Msafd.dll library acts as a
transport service provider for the protocols Microsoft provides support for in Winsock, and
Msafd.dll uses Winsock Helper libraries that are protocol specific to communicate with
kernel-mode protocol drivers. For example, Wshtcpip.dll is the TCP/IP helper, and
Wshnetbs.dll is the NetBEUI helper. Mswsock.dll (\Winnt\System32\Mswsock.dll)
implements the Microsoft Winsock extension functions, such as TransmitFile, AcceptEx,
and WSARecvEx. Windows 2000 ships with helper DLLs for TCP/IP, NetBEUI, AppleTalk,
IPX/SPX, ATM, and IrDA (Infrared Data Association) and namespace service providers for
DNS (TCP/IP), Active Directory, and IPX/SPX.

Figure 13-7 Winsock implementation

Like the named pipe and mailslot APIs, Winsock integrates with the Win32 I/O model and
uses file handles to represent sockets. This support requires the aid of a kernel-mode file
system driver, so Msafd.dll uses the services of the Ancillary Function Driver (AFD -
\Winnt\System32\Drivers\Afd.sys) to implement socket-based functions. AFD is a TDI
client and executes network socket operations, such as sending and receiving messages,
by sending TDI IRPs to protocol drivers. AFD isn't coded to use particular protocol drivers;
instead, Msafd.dll informs AFD of the name of the protocol used for each socket so that
AFD can open the device object representing the protocol.

javascript:fullSize('F13yj07x.htm')


Remote Procedure Call

Remote procedure call (RPC) is a network programming standard originally developed in
the early 1980s. The Open Software Foundation (now The Open Group) made RPC part of
the distributed computing environment (DCE) distributed computing standard. Although
there is a second RPC standard, SunRPC, the Microsoft RPC implementation is compatible
with the OSF/DCE standard. RPC builds on other networking APIs, such as named pipes or
Winsock, to provide an alternate programming model that in some sense hides the details
of networking programming from an application developer.

RPC Operation

An RPC facility is one that allows a programmer to create an application consisting of any
number of procedures, some that execute locally and others that execute on remote
computers via a network. It provides a procedural view of networked operations rather
than a transport-centered view, thus simplifying the development of distributed
applications.

Networking software is traditionally structured around an I/O model of processing. In
Windows 2000, for example, a network operation is initiated when an application issues a
remote I/O request. The operating system processes it accordingly by forwarding it to a
redirector, which acts as a remote file system by making the client interaction with the
remote file system invisible to the client. The redirector passes the operation to the
remote file system, and after the remote system fills the request and returns the results,
the local network card interrupts. The kernel handles the interrupt, and the original I/O
operation completes, returning results to the caller.

RPC takes a different approach altogether. RPC applications are like other structured
applications, with a main program that calls procedures or procedure libraries to perform
specific tasks. The difference between RPC applications and regular applications, however,
is that some of the procedure libraries in an RPC application execute on remote
computers, as shown in Figure 13-8, whereas others execute locally.

Figure 13-8 RPC operation

To the RPC application, all the procedures appear to execute locally. In other words,
instead of making a programmer actively write code to transmit computational or I/O-
related requests across a network, handle network protocols, deal with network errors,
wait for results, and so forth, RPC software handles these tasks automatically. And the
Windows 2000 RPC facility can operate over any available transports loaded into the
system.

javascript:fullSize('F13yj08x.htm')


To write an RPC application, the programmer decides which procedures will execute locally
and which will execute remotely. For example, suppose an ordinary workstation has a
network connection to a Cray supercomputer or to a machine designed specifically for
high-speed vector operations. If the programmer were writing an application that
manipulated large matrices, it would make sense from a performance point of view to
offload the mathematical calculations to the remote computer by writing the program as
an RPC application.

RPC applications work like this: As an application runs, it calls local procedures as well as
procedures that aren't present on the local machine. To handle the latter case, the
application is linked to a local static-link library or DLL that contains stub procedures, one
for each remote procedure. For simple applications, the stub procedures are statically
linked with the application, but for bigger components the stubs are included in separate
DLLs. In DCOM, covered later in the chapter, the latter method is typically used. The stub
procedures have the same name and use the same interface as the remote procedures,
but instead of performing the required operations, the stub takes the parameters passed
to it and marshals them for transmission across the network. Marshaling parameters
means ordering and packaging them in a particular way to suit a network link, such as
resolving references and picking up a copy of any data structures that a pointer refers to.

The stub then calls RPC run-time procedures that locate the computer where the remote
procedure resides, determine which transport mechanisms that computer uses, and send
the request to it using local transport software. When the remote server receives the RPC
request, it unmarshals the parameters (the reverse of marshaling them), reconstructs the
original procedure call, and calls the procedure. When the server finishes, it performs the
reverse sequence to return results to the caller.

In addition to the synchronous function-call-based interface described here, Windows
2000 RPC also supports asynchronous RPC. Asynchronous RPC lets an RPC application
execute a function but not wait until the function completes to continue processing.
Instead, the application can execute other code and later, when a response has arrived
from the server, the RPC run time signals an event object the client associates with the
asynchronous call. The client can use standard Win32 functions, such as
WaitForSingleObject, to learn of the function's completion.

Besides the RPC run time, Microsoft's RPC facility includes a compiler, called the Microsoft
Interface Definition Language (MIDL) compiler. The MIDL compiler simplifies the creation
of an RPC application. The programmer writes a series of ordinary function prototypes
(assuming a C or C++ application) that describe the remote routines and then places the
routines in a file. The programmer then adds some additional information to these
prototypes, such as a network-unique identifier for the package of routines and a version
number, plus attributes that specify whether the parameters are input, output, or both.
The embellished prototypes form the developer's Interface Definition Language (IDL) file.

Once the IDL file is created, the programmer compiles it with the MIDL compiler, which
produces both client-side and server-side stub routines, mentioned previously, as well as
header files to be included in the application. When the client-side application is linked to
the stub routines file, all remote procedure references are resolved. The remote
procedures are then installed, using a similar process, on the server machine. A
programmer who wants to call an existing RPC application need only write the client side
of the software and link the application to the local RPC run-time facility.

The RPC run time uses a generic RPC transport provider interface to talk to a transport
protocol. The provider interface acts as a thin layer between the RPC facility and the



transport, mapping RPC operations onto the functions provided by the transport. The
Windows 2000 RPC facility implements transport provider DLLs for named pipes, NetBIOS,
and TCP/IP. You can write new provider DLLs to support additional transports. In a similar
fashion, the RPC facility is designed to work with different network security facilities.

Most of the Windows 2000 networking services are RPC applications, which means that
both local processes and processes on remote computers can call them. Thus, a remote
client computer can call the server service to list shares, open files, write to print queues,
or activate users on your server, or it can call the messenger service to direct messages to
you (all subject to security constraints, of course).

Server name publishing, which is the ability of a server to register its name in a location
accessible for client lookup, is in RPC and is integrated with Active Directory. If Active
Directory isn't installed, the RPC name locator services fall back on NetBIOS broadcast.
This behavior ensures interoperability with Windows NT 4 systems and allows RPC to
function on stand-alone servers and workstations.

RPC Security

Windows 2000 RPC includes integration with security support providers (SSPs) so that
RPC clients and servers can use authenticated or encrypted communications. When an
RPC server wants secure communication, it must register its SSP-specific principal name
with an SSP. A client registers its security credentials when it binds to a server, specifying
the server's principal name. At the time of the binding, the client also specifies the
authentication level it wants. Various authentication levels exist to ensure that only
authorized clients connect to a server, verify that each message a server receives
originates at an authorized client, check the integrity of RPC messages to detect
manipulation, and even encrypt RPC message data. Obviously, higher authentication
levels require more processing.

An SSP handles the details of performing network communication authentication and
encryption, not only for RPC but also for Winsock. Windows 2000 includes a number of
built-in SSPs, including a Kerberos SSP to implement Kerberos version 5 authentication,
and Secure Channel (SChannel), which implements Secure Sockets Layer (SSL), Transport
Layer Security (TLS) protocol, and private communication technology (PCT). In the
absence of a specified SSP, RPC software uses the built-in security of named pipes.

Another feature of RPC security is the ability of a server to impersonate the security
identity of a client with the RpcImpersonateClient function. After a server has finished
performing impersonated operations on behalf a client, it returns to its own security
identity by calling RpcRevertToSelf or RpcRevertToSelfEx. (See Chapter 8 for more
information on impersonation.)

RPC Implementation

RPC implementation is depicted in Figure 13-9, which shows that an RPC-based
application links with the RPC run-time DLL (\Winnt\System32\Rpcrt4.dll). The RPC run-
time DLL provides marshaling and unmarshaling functions for use by an application's RPC
function stubs as well as functions for sending and receiving marshaled data. The RPC
run-time DLL includes support routines to handle RPC over a network as well as a form of
RPC called local RPC. Local RPC can be used for communication between two processes
located on the same system, and the RPC run-time DLL uses the local procedure call
(LPC) facilities in kernel mode as the local networking API. (See Chapter 3 for more
information on LPCs.) When RPC is based on nonlocal communication mechanisms, the



RPC run-time DLL uses the Winsock, named pipe, or Message Queuing (described shortly)
APIs.

Figure 13-9 RPC implementation

For name registry and lookup, RPC applications link with the RPC name services DLL
(\Winnt\System32\Rpcns4.dll). The DLL communicates with the RPC Subsystem (RPCSS -
\Winnt\System32\Rpcss.dll), which is implemented as a Win32 service. RPCSS is itself an
RPC application that communicates with instances of itself on other systems to perform
name lookup and registration. (For clarity, Figure 13-9 doesn't show RPCSS link with the
RPC run-time DLL.)

javascript:fullSize('F13yj09x.htm')


Common Internet File System (CIFS)

Common Internet File System (CIFS) is an enhanced form of the Server Message Block
(SMB) protocol, which is the protocol Windows 2000 uses to implement file sharing.
Because applications access remote files using standard Win32 file I/O functions,
applications don't directly use the CIFS protocol, but the protocol is used to process the
I/O request. CIFS defines printer-sharing conventions, so Windows 2000 uses CIFS for
that as well. Although CIFS isn't itself an API, we cover it in this section because file and
printer sharing is built on CIFS and is exposed to applications via the Win32 API.

CIFS is a published Microsoft standard (documented in the Platform SDK) that allows third
parties to interoperate with Windows 2000 file servers and with Windows 2000 file sharing
clients. For example, the Samba shareware suite allows UNIX systems to serve files to
Windows 2000 clients and for UNIX applications to access files served by Windows 2000
systems. Other platforms that support CIFS include DEC VMS and Apple Macintosh.

File sharing on Windows 2000 is based on a redirector FSD (redirector, for short)
executing on a client machine that communicates with a server FSD executing on the
server. The redirector FSD intercepts Win32 file I/O directed at files residing on the server
and transmits CIFS messages to the server file system to execute client requests. The
server receives CIFS messages and translates them back to I/O operations that it issues
to local FSDs, such as NTFS, running on the server. Figure 13-10 shows a redirector and
server communicating with one another.

Figure 13-10 CIFS file sharing

Because they are integrated with the Windows 2000 I/O system, redirector and server
FSDs have several advantages over alternate user-space implementations of file servers:

They can interact directly with TDI transports and local FSDs.

They can integrate with the cache manager to seamlessly cache server file data on
client systems. (The caching protocol Windows 2000 uses is described shortly.)

Applications can use standard Win32 file I/O functions, such as CreateFile, ReadFile,
and WriteFile to access remote files.

Windows 2000 redirector and server FSDs rely on standard network-resource naming
conventions that all kernel-mode file servers and client software use. If a remote file

javascript:fullSize('F13yj10x.htm')


share is connected using a drive letter, network file names are specified in the same way
as local names. However, redirector also supports UNC names. Network-resource name
resolution is described in the section "Network-Resource Name Resolution" later in this
chapter.

CIFS Implementation

The redirector FSD on Windows 2000 is implemented in a port/miniport model common to
many other device driver types. (See Chapter 9 for information on device drivers.)
Microsoft provides a redirector library named \Winnt\System32\Drivers\Rdbss.sys to
which developers can write a redirector miniport. The redirector library hides many details
of implementing a redirector, such as integrating with the cache manager, the memory
manager, and TDI transports. The CIFS miniport driver is named
\Winnt\System32\Drivers\Mrxsmb.sys.

Rdbss uses the cache manager services described in Chapter 11 and Chapter 12 to cache
file data and to take advantage of intelligent read-ahead. The CIFS miniport driver sends
CIFS commands to a remote server by way of the TDI API. It can use any transport that
supports the TDI interface, such as NetBEUI, NetBT (NetBIOS over TCP/IP), and TCP/IP.

On a system acting as a file server, the server (\Winnt\System32\Drivers\Srv.sys) FSD
listens for CIFS commands originating on client machines and acts as a surrogate
interface to the local FSD on which accessed files reside. The server FSD uses file system
interfaces implemented by native Windows 2000 FSDs to implement zero-copy send
capability. The interfaces allow for the server FSD to obtain a memory descriptor list
(MDL) description of a file's data residing in the file system cache of the server and to
pass the MDL to a TDI transport for transmission across the network using a network
adapter driver. (See Chapter 7 for more information on MDLs.) Without the support of
local FSDs and the cache manager, the server FSD would have to copy file data into its
own buffers that it would subsequently pass to TDI transports.

Both the server FSD and the redirector have corresponding Win32 services, Server and
Workstation, that execute in the service control manager (SCM) process to provide
administrative management interfaces to the drivers.

Distributed File Caching

If a single client accesses a file on a server, it's obvious that the client can safely cache
the file's data on the client system. When two clients access the same file, however, steps
must be taken to provide a consistent view of the file between the two clients and the
server. The Windows 2000 solution to this problem, which is known as distributed cache
coherency, is implemented through a mechanism called an opportunistic lock (oplock).
When a client wants to access a server file, it must first request an oplock. The type of
oplock that the server grants the client dictates the kind of caching that the client can
perform.

There are three main types of oplock:

A Level I oplock is granted when a client has exclusive access to a file. A client holding
this type of oplock for a file can cache both reads and writes on the client system.

A Level II oplock represents a shared file lock. Clients that hold a Level II oplock can
cache reads, but writing to the file invalidates the Level II oplock.



A Batch oplock is the most permissive kind of oplock. A client with this oplock can
cache both reads and writes to the file as well as open and close the file without
requesting additional oplocks. Batch oplocks are typically used only to support the
execution of batch files, which can open and close a file repeatedly as they execute.

If a client has no oplock, it can cache neither read or write data locally and instead must
retrieve data from the server and send all modifications directly to the server.

An example, shown in Figure 13-11, will help illustrate oplock operation. The server
automatically grants a Level I oplock to the first client to open a server file for access. The
redirector on the client caches the file data for both reads and writes in the file cache of
the client machine. If a second client opens the file, it too requests a Level I oplock.
However, because there are now two clients accessing the same file, the server must take
steps to present a consistent view of the file's data to both clients. If the first client has
written to the file, as is the case in Figure 13-11, the server revokes its oplock and grants
neither client an oplock. When the first client's oplock is revoked, or broken, the client
flushes any data it has cached for the file back to the server.

If the first client hadn't written to the file, the first client's oplock would have been broken
to a Level II oplock, which is the same type of oplock the server grants to the second
client. Now both clients can cache reads, but if either writes to the file, the server revokes
their oplocks so that noncached operation commences. Once oplocks are broken, they
aren't granted again for the same open instance of a file. However, if a client closes a file
and then reopens it, the server reassesses what level of oplock to grant the client based
on what other clients have the file open and whether or not at least one of them has
written to the file.

Figure 13-11 Oplock example

javascript:fullSize('F13yj11x.htm')


NetBIOS

Until the 1990s, the Network Basic Input/Output System (NetBIOS) programming API had
been the most widely used programming API on PCs. NetBIOS allows for both reliable-
connection-oriented and unreliable-connectionless communication. Windows 2000
supports NetBIOS for its legacy applications. Microsoft discourages application developers
from using NetBIOS because other APIs, such as named pipes and Winsock, are much
more flexible and portable. NetBIOS is supported by the TCP/IP, NetBEUI, and IPX/SPX
protocols on Windows 2000.

NetBIOS Names

NetBIOS relies on a naming convention whereby computers and network services are
assigned a 16-byte name called a NetBIOS name. The 16th byte of a NetBIOS name is
treated as a modifier that can specify a name as unique or as part of a group. Only one
instance of a unique NetBIOS name can be assigned to a network, but multiple
applications can assign the same group name. A client can broadcast messages by
sending them to a group name.

To support interoperability with Windows NT 4 systems as well as Consumer Windows,
Windows 2000 automatically defines a NetBIOS name for a domain that is the first 15
bytes of the Domain Name System (DNS) name that an administrator assigns to the
domain. For example, if a domain were named mspress.microsoft.com, the NetBIOS name
of the domain would be mspress. Similarly, Windows 2000 requires an administrator to
assign each computer a NetBIOS name at the time of installation.

Another concept used by NetBIOS is that of LAN adapter (LANA) numbers. A LANA
number is assigned to every NetBIOS-compatible protocol that layers above a network
adapter. For example, if a computer has two network adapters and TCP/IP and NetBEUI
can use either adapter, there would be four LANA numbers. LANA numbers are important
because a NetBIOS application must explicitly assign its service name to each LANA
through which it's willing to accept client connections. If the application listens for client
connections on a particular name, clients can access the name only via protocols on the
network adapters for which the name is registered.

A networking service called Windows Internet Name Service (WINS) maintains the
mapping between NetBIOS names and TCP/IP protocol addresses. If WINS isn't installed,
NetBIOS uses name broadcasting to propagate names within a Windows network. Note
that NetBIOS names are secondary to DNS names: computer names are registered and
resolved first through DNS, with Windows 2000 falling back on NetBIOS names only if
DNS name resolution fails. (DNS name resolution is described in the section "Network-
Resource Name Resolution" later in this chapter.)

NetBIOS Operation

A NetBIOS server application uses the NetBIOS API to enumerate the LANAs present on a
system and assign a NetBIOS name representing the application's service to each LANA.
If the server is connection oriented, it performs a NetBIOS listen command to wait for
client connection attempts. After a client is connected, the server executes NetBIOS
functions to send and receive data. Connectionless communication is similar, but the
server simply reads messages without establishing connections.



A connection-oriented client uses NetBIOS functions to establish a connection with a
NetBIOS server and then executes further NetBIOS functions to send and receive data. An
established NetBIOS connection is also known as a session. If the client wants to send
connectionless messages, it simply specifies the NetBIOS name of the server with the
send function.

NetBIOS consists of a number of functions, but they all route through the same interface:
Netbios. This routing scheme is the result of a legacy left over from the time when
NetBIOS was implemented on MS-DOS as an MS-DOS interrupt service. A NetBIOS
application would execute an MS-DOS interrupt and pass a data structure to the NetBIOS
implementation that specified every aspect of the command being executed. As a result,
the Netbios function in Windows 2000 takes a single parameter, which is a data structure
that contains the parameters specific to the service the application requests.

EXPERIMENT

Using Nbtstat to See NetBIOS Names

You can use the Nbtstat command, which is included with Windows 2000, to list
the active sessions on a system, the NetBIOS-to-TCP/IP name mappings cached
on a computer, and the NetBIOS names defined on a computer. Here's an
example of the Nbtstat command with the -n option, which lists the NetBIOS
names defined on the computer:

C:\>nbtstat -n 
Local Area Connection: 
Node IpAddress: [10.0.0.5] Scope Id: [] 
 
                NetBIOS Local Name Table 
 
       Name               Type         Status 
--------------------------------------------- 
    MARKLAP        <00>  UNIQUE      Registered 
    MARKLAP        <20>  UNIQUE      Registered 
    MARK           <00>  GROUP       Registered 
    MARK           <1E>  GROUP       Registered 
 
\Device\NetBT_Tcpip_{0A546AD9-3AD1-4A89-858B-1ADBF9AC5620}: 
Node IpAddress: [32.100.225.5] Scope Id: [] 
 
                NetBIOS Local Name Table 
 
       Name               Type         Status 
    --------------------------------------------- 
    MARKLAP        <00>  UNIQUE      Registered 
    MARK           <00>  GROUP       Registered 
    MARK           <1E>  GROUP       Registered 



NetBIOS API Implementation

The components that implement the NetBIOS API are shown in Figure 13-12. The Netbios
function is exported to applications by \Winnt\System32\Netapi32.dll. Netapi32.dll opens
a handle to the kernel-mode driver named the NetBIOS emulator
(\Winnt\System32\Drivers\Netbios.sys) and issues Win32 DeviceIoControl file commands
on behalf of an application. The NetBIOS emulator translates NetBIOS commands issued
by an application into TDI commands that it sends to protocol drivers.

Figure 13-12 NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP protocol, the NetBIOS emulator
requires the presence of the NetBT driver (\Winnt\System32\Drivers\Netbt.sys). NetBT is
known as the NetBIOS over TCP/IP driver and is responsible for supporting NetBIOS
semantics that are inherent to the NetBEUI protocol (described later in this chapter), but
not the TCP/IP protocol. For example, NetBIOS relies on NetBEUI's message-mode
transmission and NetBIOS name resolution facilities, so the NetBT driver implements
them on top of the TCP/IP protocol. Similarly, the NwLinkNB driver implements NetBIOS
semantics over the IPX/SPX protocol.

javascript:fullSize('F13yj12x.htm')


Other Networking APIs

Windows 2000 includes other networking APIs that are used less frequently or are layered
on the APIs already described (and outside the scope of this book). Three of these,
however, Telephony API (TAPI), Distributed Component Object Model (DCOM), and
Message Queuing, are important enough to the operation of a Windows 2000 system and
many applications to merit brief descriptions.

Telephony API (TAPI)

Telephony integrates computers with communications devices such as telephones and
modems. In Windows 2000, telephony also encompasses applications such as Voice over
Internet Protocol (VoIP), multicast multimedia conferencing, and real-time collaboration
(RTC). Windows 2000 includes the Telephony API (TAPI) for applications that want to
communicate over telephony-supported devices. TAPI abstracts the details of device
management so that TAPI applications can work over different devices without change.
Windows 2000 ships with two versions of TAPI, TAPI 2.2 for C applications and TAPI 3.0
for COM applications.

TAPI can be broken down into subset APIs for device, session, and media control. Device
control interfaces allow TAPI to communicate device characteristics and changes to those
characteristics to a TAPI application and for a TAPI application to query the device's
characteristics. Characteristics include lines, address identifiers, device events, and media
types. Session control interfaces let an application establish a connection between two or
more addresses. Session control operations are similar to the ones supported by
sophisticated telephones and include session initiation, answer, accept, forward, park,
transfer, and drop. Finally, media control interfaces allow a TAPI application to perform
operations such as tone-detection and dialing.

The Microsoft Telephony architecture, shown in Figure 13-13, is centered on the TAPI
service (\Winnt\System32\Tapisrv.dll), which runs as a Win32 service in a Service Host
process. (See Chapter 5 for more information on Win32 services.) TAPI applications use
the TAPI client-side DLL (\Winnt\System32\Tapi32.dll) to communicate via RPCs with the
TAPI service.

javascript:fullSize('F13yj13x.htm')


Figure 13-13 TAPI architecture

To support device abstraction, the TAPI service loads TAPI service providers (TSPs) that
provide interfaces to a particular device or class of devices. For example, the Unimodem
TSP interfaces the TAPI service with most types of modems. TAPI also includes Media
Service Providers (MSPs) that allow a TAPI application enhanced media-specific control
over a medium. An MSP DLL loaded by the application has a corresponding TSP in the
TAPI server. Other TSPs that come with Windows 2000 include the following:

Remote TSP provides access to remote communications resources such as modem
pools.

H.323 TSP allows TAPI applications to make and receive video and audio calls
according to the H.323 telephony protocol.

NDIS Proxy TSP (NDPTSP) presents NDIS 5 miniports (described later in the chapter)
as TAPI lines.

Kernel-Mode Device Driver (KMDD) TSP presents legacy NDIS 4 miniports for WAN
devices as TAPI lines.

IP Conference TSP supports conferencing over TCP/IP connections.

The TAPI architecture and documentation also make it possible for third parties to develop
their own TAPI TSPs.

DCOM

Microsoft's COM API lets applications consist of different components, each component
being a replaceable self-contained module. A COM object exports an object-oriented
interface to methods for manipulating the data within the object. Because COM objects
present well-defined interfaces, developers can implement new objects to extend existing
interfaces and dynamically update applications with the new support.

DCOM extends COM by letting an application's components reside on different computers,
which means that applications don't need to be concerned that one COM object might be
on the local computer and another might be across the LAN. DCOM thus provides location
transparency, which simplifies developing distributed applications. DCOM isn't a self-
contained API but relies on RPC to carry out its work.

Message Queuing

Microsoft's newest networking service, Message Queuing, was introduced in Windows NT 4
Enterprise Edition. Message Queuing is a general-purpose platform for developing
distributed applications that take advantage of loosely coupled messaging. Message
Queuing is therefore an API and a messaging infrastructure. Its flexibility comes from the
fact that its queues serve as message repositories in which senders can queue messages
for receivers, and receivers can dequeue the messages at their discretion. Senders and
receivers do not need to establish connections to use Message Queuing, nor do they even
need to be executing at the same time, which allows for disconnected asynchronous
message exchange.

A notable feature of Message Queuing is that it is integrated with Microsoft Transaction
Server (MTS) and SQL Server, so it can participate in Microsoft Distributed Transaction



Coordinator (MS DTC) coordinated transactions. Using MS DTC with Message Queuing
allows you to develop reliable transaction functionality to three-tier applications.



[Previous] [Next]



Network-Resource Name Resolution
Applications can examine or access resources on remote
systems in two ways. One way is by using the UNC standard
with Win32 functions to directly address a remote resource;
a second way is by using the Windows Networking (WNet)
API to enumerate computers and resources that those
computers export for sharing. Both these approaches use
the capabilities of a redirector to find their way to the
network. As we stated earlier, to access CIFS servers from a
client, Microsoft supplies a CIFS redirector, which has a
kernel-mode component called the redirector FSD and a
user-mode component called the Workstation service.
Microsoft also makes available a redirector that can access
resources shared by Novell NetWare servers, and third
parties can add their own redirectors to Windows 2000. In
this section, we'll examine the software that decides which
redirector to invoke when remote I/O requests are issued.
Here are the responsible components:

Multiple provider router (MPR) is a DLL that determines
which network to access when an application uses the
Win32 WNet API for browsing remote file systems.

Multiple UNC Provider (MUP) is a driver that determines
which network to access when an application uses the
Win32 I/O API to open remote files.

We'll conclude this section by describing Domain Name
System (DNS), the heart of computer name resolution in
Windows 2000.



Multiple Provider Router

The Win32 WNet functions allow applications (including the
Windows Explorer My Network Places) to connect to
network resources, such as file servers and printers, and to
browse the contents of any type of remote file system.
Because the WNet API can be called to work across different
networks using different transport protocols, software must
be present to send the request correctly over the network
and to understand the results that the remote server
returns. Figure 13-14 shows the redirector software
responsible for these tasks.

Figure 13-14 MPR components

A provider is software that establishes Windows 2000 as a
client of a remote network server. Some of the operations a
WNet provider performs include making and breaking
network connections, printing remotely, and transferring
data. The built-in WNet provider includes a DLL, the
Workstation service, and the redirector. Other network
vendors need to supply only a DLL and a redirector.

javascript:fullSize('F13yj14x.htm')


When an application calls a WNet routine, the call passes
directly to the MPR DLL. MPR takes the call and determines
which WNet provider recognizes the resource being
accessed. Each provider DLL beneath MPR supplies a set of
standard functions collectively called the provider interface.
This interface allows MPR to determine which network the
application is trying to access and to direct the request to
the appropriate WNet provider software. The redirector's
provider is \Winnt\System32\Ntlanman.dll, as directed by
the ProviderPath value under the
HKLM\SYSTEM\CurrentControlSet\Services\lanmanworkstati
on\NetworkProvider registry key.

When called by the WNetAddConnection API function to
connect to a remote network resource, MPR checks the
HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\
Order\ProviderOrder registry value to determine which
network providers are loaded. It polls them one at a time in
the order in which they're listed in the registry until a
redirector recognizes the resource or until all available
providers have been polled. You can change the
ProviderOrder by using the Advanced Settings dialog box,
shown in Figure 13-15. (Only one provider is installed on
the system from which the screen shot was taken.) This
dialog box is accessible from the Advanced menu of the
Network And Dial-Up Connections application. You can
access the Network And Dial-Up Connections application by
right-clicking the My Network Places icon on the desktop
and selecting Properties from the pop-up menu or by
selecting it from the Settings option from the Start menu.



Figure 13-15 The provider order editor

The WNetAddConnection function can also assign a drive
letter or device name to a remote resource. When called to
do so, WNetAddConnection routes the call to the
appropriate network provider. The provider, in turn, creates
a symbolic-link object in the object manager namespace
that maps the drive letter being defined to the redirector
(that is, the remote FSD) for that network.

Figure 13-16 shows the \?? directory, where you can see
several driver letters representing connections to remote
file shares. The figure shows that the redirector creates a
device object named \Device\LanmanRedirector and that
the additional text included in the symbolic link's value
indicates to the redirector which remote resource the drive



letter corresponds to. When a user opens
X:\Book\Chap13.doc, the redirector is passed the unparsed
portion of the path that resolves through the symbolic link,
which is ";X:0\dual\e\Book\Chap13.doc." The redirector
notes that the resource being accessed is located on the E
share of server dual.

Figure 13-16 Resolving a network resource name

Like the built-in redirector, other redirectors create a device
object in the object manager namespace when they are
loaded into the system and initialized. Then, when the WNet
or other API calls the object manager to open a resource on
a different network, the object manager uses the device
object as a jumping-off point into the remote file system. It
calls an I/O manager parse method associated with the
device object to locate the redirector FSD that can handle
the request. (See Chapter 12 for more information on file
system drivers.)

javascript:fullSize('F13yj16x.htm')


Multiple UNC Provider

The Multiple UNC Provider (MUP) is a networking
component similar to MPR. It fields I/O requests destined
for a file or a device that has a UNC name (names
beginning with the characters \\, indicating that the
resource exists on the network). MUP takes such requests
and, like MPR, determines which local redirector recognizes
the remote resource. Unlike MPR, MUP is a device driver
(loaded at system boot time) that issues I/O requests to
lower-layer drivers, in this case to redirectors, as shown in
Figure 13-17.

Figure 13-17 Multiple UNC Provider (MUP)

The MUP driver is activated when an application first
attempts to open a remote file or device by specifying a
UNC name (instead of a redirected drive letter, as described
earlier). When the Win32 client-side DLL Kernel32.dll (which
is the DLL that exports file-I/O-related APIs) receives such a
request, the subsystem appends the UNC name to the
string \??\UNC and then calls the NtCreateFile system
service to open the file. This object name is the name of a

javascript:fullSize('F13yj17x.htm')


symbolic link that resolves to \Device\Mup, a device object
that represents the MUP driver.

The MUP driver receives the request and sends an IRP
asynchronously to each registered redirector, waiting for
one of them to recognize the resource name and reply.
When a redirector recognizes the name, it indicates how
much of the name is unique to it. For example, if the name
is \\WIN2KSERVER\PUBLIC\insidew2k\chap13.doc, the
redirector recognizes it and claims the string
\\WIN2KSERVER\PUBLIC as its own. The MUP driver caches
this information and thereafter sends requests beginning
with that string directly to the redirector, skipping the
polling operation. The MUP driver's cache has a timeout
feature, so after a period of inactivity, a string's association
with a particular redirector expires. If more than one
redirector claims a particular resource, the MUP driver uses
the registry's ProviderOrder value's list of loaded redirectors
to determine which redirector takes precedence.



Domain Name System

Domain Name System (DNS) is a standard by which
Internet names (such as www.microsoft.com) are translated
to their corresponding IP addresses. A network application
that wants to resolve a DNS name to an IP address sends a
DNS lookup request using the TCP/IP protocol to a DNS
server. DNS servers implement a distributed database of
name/IP address pairs that are used to perform
translations, and each server maintains the translations for
a particular zone. Describing the details of DNS are outside
the scope of this book, but DNS is the foundation of naming
in Windows 2000 and so it is the primary Windows 2000
name resolution protocol.

The Windows 2000 DNS server is implemented as a Win32
service (\Winnt\System32\Dns.exe) that is included in
server versions of Windows 2000. Standard DNS server
implementation relies on a text file as the translation
database, but the Windows 2000 DNS server can be
configured to store zone information in Active Directory.



[Previous] [Next]



Protocol Drivers
Networking API drivers must take API requests and translate
them into low-level network protocol requests for
transmission across the network. The API drivers rely on
transport protocol drivers in kernel mode to do the actual
translation. Separating APIs from underlying protocols gives
the networking architecture the flexibility of letting each API
use a number of different protocols. The protocol drivers
that Windows 2000 includes are Data Link Control (DLC),
NetBEUI, TCP/IP, and NWLink, although other protocols
might be present as options, such as the AppleTalk protocol
installed with Services For Macintosh on Windows 2000
servers. Here's a brief description of each protocol:

DLC is a relatively primitive protocol that some IBM
mainframes as well as some Hewlett-Packard network
printers use. It is a "raw" protocol in the sense that no
networking APIs can use it; applications that want to use
DLC must interface directly to the DLC transport protocol
device driver.

IBM and Microsoft introduced NetBEUI in 1985, and
Microsoft adopted NetBEUI as the default protocol for
LAN Manager and the NetBIOS API. Microsoft has since
enhanced NetBEUI, but the protocol is limited because
it's not routable and performs poorly on WANs. NetBEUI
(NetBIOS Extended User Interface) was so named
because it is tightly integrated with the NetBIOS API, but
the protocol Microsoft's NetBEUI protocol driver
implements is NetBIOS Frame (NBF) format. Windows
2000 includes NetBEUI solely for interoperability with
legacy Windows systems (Windows NT 4 and Consumer
Windows).



The Internet's explosive growth and reliance on the
TCP/IP protocol has made TCP/IP the preeminent
protocol in Windows 2000. The Defense Advanced
Research Projects Agency (DARPA) developed TCP/IP in
1969 specifically as the foundation for the Internet;
therefore, TCP/IP has WAN-friendly characteristics such
as routability and good WAN performance. TCP/IP is the
preferred Windows 2000 protocol and is the only one
installed by default.

NWLink consists of Novell's IPX and SPX protocols.
Windows 2000 includes NWLink for interoperability with
Novell NetWare servers.

TDI transports in Windows 2000 generally implement all the
protocols associated with their primary protocol. For
example, the TCP/IP driver
(\Winnt\System32\Drivers\Tcpip.sys) implements TCP, UDP,
IP, ARP, ICMP, and IGMP. A TDI transport generally creates
device objects that represent particular protocols so that
clients can obtain a file object representing a protocol and
issue network I/O to the protocol by using IRPs. The TCP/IP
driver creates three device objects that represent various
TDI-client accessible protocols: \Device\Tcp, \Device\Udp,
and \Device\Ip.

So that networking API drivers don't need to employ various
interfaces for each transport protocol they might want to
use, Microsoft established the Transport Driver Interface
(TDI) standard. As mentioned earlier in this chapter, a TDI
interface is essentially a convention for the way network
requests format into IRPs and for the way network
addresses and communications are allocated. Transport
protocols that adhere to the TDI standard export the TDI
interface to their clients, which include networking API
drivers such as AFD and the redirector. A transport protocol



implemented as a Windows 2000 device driver is known as a
TDI transport. Because TDI transports are device drivers,
they format requests they receive from clients as IRPs.

Support functions in the \Winnt\System32\Drivers\Tdi.sys
library, along with definitions developers include in their
drivers, make up the TDI interface. The TDI programming
model is very similar to that of Winsock. A TDI client
executes the following steps to establish a connection with a
remote server:

1. The client allocates and formats an address open TDI
IRP to allocate an address. The TDI transport returns a
file object, which is known as an address object, that
represents the address. This step is the equivalent of
using the bind Winsock function.

2. The client then allocates and formats a connection open
TDI IRP and the TDI transport returns a file object,
which is known as a connection object, that represents
the connection. This step is the equivalent of the use of
the Winsock socket function.

3. The client associates the connection object to the
address object with an associate address TDI IRP.
(There's no equivalent to this step in Winsock.)

4. A TDI client that accepts remote connections issues a
listen TDI IRP specifying the number of connections
supported for a connection object and then issues an
accept TDI IRP, which completes when a remote system
establishes a connection (or an error occurs). These
operations are equivalent to the use of the Winsock
listen and accept functions.

5. A TDI client that wants to establish a connection with a
remote server issues a connect TDI IRP, specifying the



connection object, that the TDI transport completes
when a connection is established (or an error occurs).
Issuing a connect TDI IRP is the equivalent of using the
connect Winsock function.

TDI also supports connectionless communications for
connectionless protocols such as UDP. In addition, TDI
provides a means whereby a TDI client can register event
callbacks (that is, functions that are directly invoked) with
TDI transports. When it receives data from across the
network, a TDI transport can invoke a registered client
receive callback, for example. This event-based callback
feature of TDI allows the TDI transport to notify its clients of
network events, and clients that rely on event callbacks
don't need to preallocate resources such as buffers when
receiving network data because they can view the contents
of the buffers supplied by a TDI protocol driver.

EXPERIMENT

Watching TDI Activity

TDImon, a utility included on the companion CD as
\Sysint\Tdimon.exe, is a form of filter driver that
attaches to the \Device\Tcp and \Device\Udp device
objects that the TCP/IP driver creates. After
attaching, TDImon sees every IRP that TDI clients
issue to these protocols. By intercepting TDI client
event callback registration, it also monitors event
callbacks. The TDImon driver sends information about
the TDI activity for display in its GUI, where you can
see the time of an operation, the type of TDI activity
that took place, the local and remote addresses of a
TCP connection or the local address of a UDP
endpoint, the resulting status code of the IRP or



event callback, and additional information such as the
number of bytes sent or received. Here's a screen
shot of TDImon watching the TDI activity that is
generated when Microsoft Internet Explorer browses
a Web page:

As evidence that TDI operations are inherently
asynchronous, the PENDING codes in the Result
column indicate that an operation initiated but that
the IRP defining the operation hasn't yet completed.
To accurately show the order of completions with
respect to the start of other operations, the issuing of
each IRP or event callback is tagged with a sequence
number. If other IRPs are issued or completed before
an IRP completes, the IRP's completion is also tagged
with a sequence number that is shown in the Result
column. For example, the IRP that was tagged with
sequence number 1278 in the screen shot completed
after the one tagged with 1279 was issued, so you
see 1280 in the Result column for IRP 1278.

javascript:fullSize('G13yj03x.htm')


[Previous] [Next]



NDIS Drivers
When a protocol driver wants to read or write messages formatted in its protocol's format
from or to the network, the driver must do so using a network adapter. Because expecting
protocol drivers to understand the nuances of every network adapter on the market
(proprietary network adapters number in the thousands) isn't feasible, network adapter
vendors provide device drivers that can take network messages and transmit them via the
vendors' proprietary hardware. In 1989, Microsoft and 3Com jointly developed the Network
Driver Interface Specification (NDIS), which lets protocol drivers communicate with
network adapter drivers in a device-independent manner. Network adapter drivers that
conform to NDIS are called NDIS drivers or NDIS miniport drivers. The version of NDIS
that ships with Windows 2000 is NDIS 5.

On Windows 2000, the NDIS library (\Winnt\System32\Drivers\Ndis.sys) implements the
NDIS boundary that exists between TDI transports (typically) and NDIS drivers. As is
Tdi.sys, the NDIS library is a helper library that NDIS driver clients use to format
commands they send to NDIS drivers. NDIS drivers interface with the library to receive
requests and send back responses. Figure 13-18 shows the relationship between various
NDIS-related components.

Figure 13-18 NDIS components

One of Microsoft's goals for its network architecture was to let network adapter vendors
easily develop NDIS drivers and take driver code and move it between Consumer Windows
and Windows 2000. Thus, instead of merely providing the NDIS boundary helper routines,
the NDIS library provides NDIS drivers an entire execution environment. NDIS drivers
aren't genuine Windows 2000 drivers because they can't function without the
encapsulation the NDIS library gives them. This insulation layer wraps NDIS drivers so
thoroughly that NDIS drivers don't accept and process IRPs. Rather, the NDIS library
receives IRPs from TDI servers and translates the IRPs into calls into the NDIS driver.
NDIS drivers also don't have to worry about reentrancy, in which the NDIS library invokes
an NDIS driver with a new request before the driver has finished servicing a previous
request. Exemption from reentrancy means that NDIS driver writers don't need to worry
about complex synchronization, which is made even more tricky because of the parallel
execution possible on a multiprocessor.

javascript:fullSize('F13yj18x.htm')


NOTE

The NDIS library hides from both TDI transports and NDIS miniport drivers the
fact that it uses IRPs to represent network requests. It does so by requiring TDI
transports to allocate an NDIS packet by calling NdisAllocatePacket and then
passing the packet to an NDIS miniport by calling an NDIS library function
(NdisSend, for example). On Windows 2000, the NDIS library uses IRPs to
implement NDIS packets, but on Consumer Windows, it doesn't.

Although the NDIS library's serialization of NDIS drivers simplifies development,
serialization can hamper multiprocessor scalability. Standard NDIS 4 drivers (the Windows
NT 4 version of the NDIS library) don't scale well for certain operations on multiprocessors.
Microsoft gave developers a deserialized operation option in NDIS 5. NDIS 5 drivers can
indicate to the NDIS library that they don't want to be serialized; the NDIS library will then
forward requests to the driver as fast as it receives the IRPs that describe the requests.
Responsibility for queuing and managing multiple simultaneous requests falls on the NDIS
driver, but deserialization confers the benefit of higher multiprocessor performance.

NDIS 5 also includes the following features:

NDIS drivers can report whether or not their network medium is active, which allows
Windows 2000 to display a network connected/disconnected icon on the taskbar. This
feature also allows protocols and other applications to be aware of this state and react
accordingly. The TCP/IP transport, for example, will use this information to determine
when it should reevaluate addressing information it receives from DHCP.

TCP/IP task offloading allows a miniport to use advanced features of a network adapter
to perform operations such as packet checksums and Internet Protocol security
(IPSec). This task offloading can improve system performance by relieving the CPU
from these operations.

Fast packet forwarding allows the network adapter hardware to route packets not
destined for a computer to remote systems without ever delivering them to the CPU.

Wake-on-LAN allows a wake-on-LAN-capable network adapter to bring Windows 2000
out of a suspend power state. Events that can trigger the network adapter to signal
the system include media connections (such as plugging a network cable into the
adapter), the receipt of protocol-specific patterns registered by a protocol (the TCP/IP
transport asks to be woken for Address Resolution Protocol [ARP] requests), and, for
Ethernet adapters, the receipt of a magic packet (a network packet that contains 16
contiguous copies of the adapter's Ethernet address).

Connection-oriented NDIS allows NDIS drivers to manage connection-oriented media
such as Asynchronous Transfer Mode (ATM) devices. (Connection-oriented NDIS is
described in more detail shortly.)

The interfaces that the NDIS library provides for NDIS drivers to interface with network
adapter hardware are available via functions that translate directly to corresponding
functions in the HAL.

EXPERIMENT



Listing the Loaded NDIS Miniports

The Ndiskd kernel debugger extension library includes the !miniports and
!miniport commands, which let you list the loaded miniports using a kernel
debugger and, given the address of a miniport block (a data structure Windows
2000 uses to track miniports), see detailed information about the miniport driver.
The following example shows the !miniports and !miniport commands being used
to list all the miniports and then specifics about the miniport responsible for
interfacing the system to a PCI Ethernet adapter. (Note that WAN miniport drivers
work with dial-up connections.)

kd> .load ndiskd 
Loaded ndiskd extension DLL 
 
kd> !miniports 
Driver verifier level: 0 
Failed allocations: 0 
Miniport Driver Block: 817aa610 
  Miniport: 817b1130 RAS Async Adapter 
Miniport Driver Block: 81a1ef30 
  Miniport: 81a1ea70 Direct Parallel 
Miniport Driver Block: 81a21cd0 
  Miniport: 81a217f0 WAN Miniport (PPTP) 
Miniport Driver Block: 81a22650 
  Miniport: 816545f0 WAN Miniport (NetBEUI, Dial Out) 
  Miniport: 81a21130 WAN Miniport (IP) 
Miniport Driver Block: 81a23290 
  Miniport: 81a22130 WAN Miniport (L2TP) 
Miniport Driver Block: 81a275f0 
  Miniport: 81a25130 Intel 8255x-based PCI Ethernet Adapter (10/10
 
kd> !miniport 81a25130 
 Miniport 81a25130 : Intel 8255x-based PCI Ethernet Adapter (10/10
    Flags          : 20413208 
                     BUS_MASTER, INDICATES_PACKETS, IGNORE_REQUEST
                     IGNORE_TOKEN_RING_ERRORS, NDIS_5_0, 
                     RESOURCES_AVAILABLE, DESERIALIZED, MEDIA_CONN
                     NOT_SUPPORTS_MEDIA_SENSE,  
    PnPFlags       : 00010021 
                     PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_
    CheckforHang interval: 2 seconds 
        CurrentTick   : 0001 
        IntervalTicks : 0001 
    InternalResetCount : 0000 
    MiniportResetCount : 0000 
 
    References: 3 
    UserModeOpenReferences: 0 



 
    PnPDeviceState : PNP_DEVICE_STARTED 
    CurrentDevicePowerState : PowerDeviceD0 
    Bus PM capabilities 
     DeviceD1:            1 
     DeviceD2:            1 
     WakeFromD0:          0 
     WakeFromD1:          1 
     WakeFromD2:          0 
     WakeFromD3:          0 
 
     SystemState          DeviceState 
     PowerSystemUnspecified     PowerDeviceUnspecified 
     S0               D0 
     S1               D1 
     S2               PowerDeviceUnspecified 
     S3               PowerDeviceUnspecified 
     S4               D3 
     S5               D3 
     SystemWake: S1 
     DeviceWake: D1 
 
WakeupMethodes Enabled 6: 
     WAKE_UP_PATTERN_MATCH  WAKE_UP_LINK_CHANGE 
WakeUpCapabilities of the miniport 
     MinMagicPacketWakeUp: 4 
     MinPatternWakeUp: 4 
     MinLinkChangeWakeUp: 4 
 
    Current PnP and PM Settings:          : 00000030 
                     DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT, 
 
    Allocated Resources: 
        Memory: f4100000, Length: 1000 
        IO Port: 1440, Length: 40 
        Memory: f4000000, Length: 100000 
        Interrupt Level: 9, Vector: 9 
    Translated Allocated Resources: 
        Memory: f4100000, Length: 1000 
        IO Port: 1440, Length: 40 
        Memory: f4000000, Length: 100000 
        Interrupt Level: 12, Vector: 39 
    MediaType      : 802.3 
    DeviceObject   : 81a25030, PhysDO : 81a93cd0  Next DO: 81a6303
    MapRegisters   : 819fc000 
    FirstPendingPkt: 0 
    SingleWorkItems: 
      [0]: 81a254e8 [1]: 81a254f4 [2]: 81a25500 [3]: 81a2550c 



      [4]: 81a25518 [5]: 81a25524  
    DriverVerifyFlags       : 00000000 
    Miniport Open Block Queue: 
      8164b888: Protocol 816524a8 = NBF, ProtocolContext 81649030 
      8191f628: Protocol 81928d88 = TCPIP, ProtocolContext 8191f72
     Miniport Interrupt 81a00970 

The Flags field for the miniport that was examined indicates that the miniport
supports deserialized operation (DESERIALIZED), that the media is currently
active (MEDIA_CONNECTED), and that it is an NDIS 5 miniport driver
(NDIS_5_0). Also listed are the adapter's system-to-device power-state mappings
and the bus resources that the Plug and Play manager assigned to the adapter.
(See the section "The Power Manager" in Chapter 9 for more information on
power-state mappings.)



Variations on the NDIS Miniport

The NDIS model also supports hybrid TDI transport-NDIS drivers, called NDIS intermediate
drivers. These drivers lie between TDI transports and NDIS drivers. To an NDIS driver, an
NDIS intermediate driver looks like a TDI transport; to a TDI transport, an NDIS
intermediate driver looks like an NDIS driver. NDIS intermediate drivers can see all
network traffic taking place on a system because the drivers lie between protocol drivers
and network drivers. Software that provides fault tolerant and load balancing options for
network adapters, such as Microsoft's Network Load Balancing Provider, are based on NDIS
intermediate drivers. The packet scheduler that is part of Microsoft's Quality of Service
(QoS) implementation is another example of an NDIS intermediate driver.



Connection-Oriented NDIS

NDIS 5 introduces a new type of NDIS driver—a connection-oriented NDIS miniport driver.
Support for connection-oriented network hardware (for example, ATM) is therefore native
in Windows 2000, which makes connection management and establishment standard in
the Windows 2000 network architecture. Connection-oriented NDIS drivers use many of
the same APIs that standard NDIS drivers use; however, connection-oriented NDIS drivers
send packets through established network connections rather than placing them on the
network medium.

In addition to miniport support for connection-oriented media, NDIS 5 includes definitions
for drivers that work to support a connection-oriented miniport driver:

Call managers are NDIS drivers that provide call setup and teardown services for
connection-oriented clients (described shortly). A call manager uses a connection-
oriented miniport to exchange signaling messages with other network entities such as
network switches or other call managers. A call manager supports one or more
signaling protocols, such as ATM User-Network Interface (UNI) 3.1.

An integrated miniport call manager (MCM) is a connection-oriented miniport driver
that also provides call manager services to connection-oriented clients. An MCM is
essentially an NDIS miniport driver with a built-in call manager.

A connection-oriented client uses the call setup and teardown services of a call
manager or MCM and the send and receive services of a connection-oriented NDIS
miniport driver. A connection-oriented client can provide its own protocol services to
higher levels in the network stack or it can implement an emulation layer that
interfaces connectionless legacy protocols and connection-oriented media. An example
of an emulation layer fulfilled by a connection-oriented client is a LAN emulation
(LANE), which hides the connected-oriented characteristics of ATM and presents a
connectionless media (such as Ethernet) to protocols above it.

Figure 13-19 shows the relationships between these components.

Figure 13-19 Connection-oriented NDIS drivers

EXPERIMENT

Using Network Monitor to Capture Network Packets

javascript:fullSize('F13yj19x.htm')


Windows 2000 Server comes with a tool named Network Monitor that lets you
capture packets that flow through one or more NDIS miniport drivers on your
system by installing an NDIS intermediate driver. Before you can use Network
Monitor you need to have the Windows 2000 Network Monitor Tools installed on
your system. To install these tools, open Add/Remove Programs in Control Panel,
and select Add/Remove Windows Components. Select Management And
Monitoring Tools, click Details, select Network Monitor Tools, and click OK.

After you've installed Network Monitor Tools, you install Network Monitor by
following these steps:

1. Bring up the Network And Dial-Up Connections application by right-clicking on
the My Network Places icon on the desktop and selecting Properties or by
selecting Network And Dial-Up Connections from the Settings option on the
Start menu.

2. Right-click on a local adapter, select Properties, and click the Install button in
the Local Area Connection Properties dialog box.

3. Select Protocol, and click the Add button.

4. Choose Network Monitor Driver, and click OK

After the Network Monitor driver has installed, you can launch Network Monitor by
selecting it from the Programs, Administrative Tools folder in the Start menu.

Network Monitor might ask you which network connection you want to monitor.
After selecting one, begin monitoring by pressing the Start Capture button in the
toolbar. Perform operations that generate network activity on the connection
you're monitoring, and after you see that Network Monitor has captured packets,
stop monitoring by clicking the Stop And View Capture button (the stop button
that has glasses next to it). Network Monitor will present a view of the capture
data like the following:

The screen shot shows the SMB (CIFS) packets that Network Monitor captured as
remote files were accessed from the system. If you double-click on a line, Network
Monitor will switch to a view of the packet that breaks it apart to show various
layered application and protocol headers as shown in the following screen shot:

javascript:fullSize('G13yj04x.htm')


Network Monitor also includes a number of other features, such as capture
triggers and filters, that make it a powerful tool for troubleshooting network
problems.

javascript:fullSize('G13yj05x.htm')


[Previous] [Next]



Binding
The final piece in the Windows 2000 networking
architecture puzzle is the way in which the components at
the various layers—networking API layer, TDI transport
driver layer, NDIS driver layer—locate one another. The
name of the process that connects the layers is binding.
You've witnessed binding taking place if you've changed
your network configuration by adding or removing a
component using Network Properties.

When you install a networking component, you must supply
an INF file for the component. (INF files are described in
Chapter 9.) This file includes directions that setup API
routines must follow to install and configure the component,
including binding dependencies or binding relationships. A
developer can specify binding dependencies for a
proprietary component so that the SCM will not only load
the component in the correct order but will also load the
component only if other components the proprietary
component depends on are present on the system. Binding
relationships, which the bind engine determines with the aid
of additional information in a component's INF file, establish
connections between components at the various layers. The
connections specify which components a network
component on one layer can use on the layer beneath it.

For example, the Workstation service (redirector) will
automatically bind to the NBF (NetBEUI) and TCP/IP
protocols if they are both present on a system. The order of
the binding, which you can examine on the Adapters And
Bindings tab in the Advanced Settings dialog box, shown in
Figure 13-20, determines the priority of the binding. (See
the section "Network-Resource Name Resolution" for
instructions on how to launch the Advanced Settings dialog



box.) When the redirector receives a request to access a
remote file, it submits the request to both protocol drivers
simultaneously. When the response comes, the redirector
waits until it has also received responses from any higher-
priority protocol drivers. Only then will the redirector return
the result to the caller. Thus, it can be advantageous to
reorder bindings so that bindings of high priority are also
the most performance efficient or applicable to most of the
computers in your network. You can also manually remove
bindings with the Advanced Settings dialog box.

Figure 13-20 Editing bindings with the Advanced Settings
dialog box

The Bind value, in the Linkage subkey of a network
component's registry configuration key, stores binding



information for that component. For example, if you
examine
HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorksta
tion\Linkage\Bind, you'll see the binding information for the
Workstation service.



[Previous] [Next]



Layered Network Services
Windows 2000 includes network services that build on the
APIs and components we've presented in this chapter.
Describing the capabilities and detailed internal
implementation of these services is outside the scope of this
book, but this section provides a brief overview of remote
access, Active Directory, Network Load Balancing, File
Replication service (FRS), and Distributed File System
(DFS). In addition, Windows 2000 supports several services
that are based on extensions to the TCP/IP protocol. These
include network address translation (NAT), Internet Protocol
security (IPSec), and Quality of Service (QoS), and we
conclude with a look at each.



Remote Access

Remote access, which is available with Windows 2000
Server, allows remote access clients to connect to remote
access servers and access network resources such as files,
printers, and network services as if the client were
physically connected to the remote access server's network.
Windows 2000 provides two types of remote access:

Dial-up remote access is used by clients that connect to
a remote access server via a telephone or other
telecommunications infrastructure. The
telecommunications medium is used to create a
temporary physical or virtual connection between the
client and the server.

Virtual private network (VPN) remote access lets a VPN
client establish a virtual point-to-point connection to the
server over an IP network such as the Internet.

Remote access differs from remote control solutions
because remote access acts as a proxy connection to a
Windows 2000 network, whereas remote control software
executes applications on a server, presenting a user
interface to the client.



Active Directory

Active Directory is the Windows 2000 implementation of
Lightweight Directory Access Protocol (LDAP) directory
services. Active Directory is based on a database that stores
objects representing resources defined by applications in a
Windows 2000 network. For example, the structure and
membership of a Windows 2000 domain, including the user
account and password information, are stored in Active
Directory.

Object classes and the attributes that define properties of
objects are specified by a schema. The objects in the Active
Directory schema are hierarchically arranged, much like the
registry's logical organization, where container objects can
store other objects, including other container objects. (See
Chapter 8 for more information on container objects.)

Active Directory supports a number of APIs that clients can
use to access objects within an Active Directory database:

The LDAP C API is a C language API that uses the LDAP
networking protocol. Applications written in C or C++
can use this API directly, and applications written in
other languages can access the APIs through translation
layers.

Active Directory Service Interfaces (ADSI) is a COM
interface to Active Directory that abstracts the details of
LDAP programming. ADSI supports multiple languages,
including Microsoft Visual Basic, C, and Microsoft Visual
C++. ADSI can also be used by Microsoft Windows
Script Host (WSH) applications.

Messaging API (MAPI) is supported for compatibility
with Microsoft Exchange client and Outlook Address



Book client applications.

Security Account Manager (SAM) APIs are built on top
of Active Directory to provide an interface to logon
authentication packages such as MSV1_0
(\Winnt\System32\Msv1_0.dll, which is used for legacy
NT LAN Manager authentication) and Kerberos
(\Winnt\System32\Kdcsvc.dll).

Windows NT 4 networking APIs (Net APIs) are used by
Windows NT 4 clients to gain access to Active Directory
through SAM.

Active Directory is implemented as a database file that is
named \Winnt\Ntds\Ntds.dit, and that is replicated across
the domain controllers in a domain. The Active Directory
directory service, which is a Win32 service that executes in
the Local Security Authority Subsystem (Lsass) process,
manages the database, using DLLs that implement the on-
disk structure of the database as well as provide
transaction-based updates to protect the integrity of the
database. The Active Directory database store is based on a
version of the Extensible Storage Engine (ESE) database
that is used by Microsoft Exchange Server version 5.5
client/server messaging and groupware. Figure 13-21
shows the Active Directory architecture.



Figure 13-21 Active Directory architecture

javascript:fullSize('F13yj21x.htm')


Network Load Balancing

As we stated earlier in the chapter, Network Load Balancing,
which is included with Windows 2000 Advanced Server, is
based on NDIS intermediate-driver technology. Network
Load Balancing allows for the creation of a cluster
containing up to 32 computers, which are called cluster
hosts in Network Load Balancing. The cluster maintains a
single virtual IP address that is published for access by
clients, and client requests go to all the computers in the
cluster. However, only one cluster host responds to the
request. The Network Load Balancing NDIS drivers
effectively partition the client space among available cluster
hosts in a distributed manner. This way, each host handles
its portion of incoming client requests and every client
request always gets handled by one and only one host. The
cluster host that determines it should handle a client
request allows the request to propagate up to the TCP/IP
protocol driver and eventually a server application; the
other cluster hosts don't. If a cluster host fails, the rest of
the cluster realizes that the cluster host is no longer a
candidate for processing requests and redistributes the
incoming client requests to the remaining cluster hosts. No
new client requests are sent to the downed cluster host.
Another cluster host can be added to the cluster as a
replacement, and it will then seamlessly start handling
client requests.

Network Load Balancing isn't a general-purpose clustering
solution because the server application that clients
communicate with must have certain characteristics: the
first is that it must be TCP/IP-based, and the second is that
it must be able to handle client requests on any system in a
Network Load Balancing cluster. This second requirement
typically means that an application that must have access to



shared state in order to service client requests must
manage the shared state itself—Network Load Balancing
doesn't include services for automatically distributing
shared state across cluster hosts. Applications that are
ideally suited for Network Load Balancing include a Web
server that serves static content, Windows Media Server,
and Terminal Services. Figure 13-22 shows an example of a
Network Load Balancing operation.

Figure 13-22 Network Load Balancing operation

javascript:fullSize('F13yj22x.htm')


File Replication Service

File Replication service (FRS) is included with Windows 200
Server. Its primary purpose is to replicate the contents of a
domain controller's \SYSVOL directory, which is where
Windows 2000 domain controllers store logon scripts and
group policies. (Group policies permit administrators to
define usage and security policies for the computers that
belong to a domain.) In addition, FRS can be used to
replicate Distributed File System (DFS) shares between
systems. FRS allows for distributed multimaster replication,
which enables any server to perform replication activity.
When a replicated directory or file is changed, the changes
are propagated to the other domain controllers.

The fundamental concept in FRS is a replica set, which
consists of two or more systems that replicate between
themselves the contents of a directory tree according to an
administratively defined schedule and topology. Only
directories on NTFS volumes can be replicated because FRS
relies on the NTFS change journal to detect changes to files
in directories in a replica set. Because FRS is based on
multimaster replication, it can theoretically support
hundreds or even thousands of systems as part of a replica
set, and the computers of a replica set can be connected
with arbitrary network topologies (such as ring, star, or
mesh). Computers can also be members of multiple replica
sets.

FRS is implemented as a Win32 service
(\Winnt\System32\Ntfrs.exe) that uses authenticated RPC
with encryption to communicate between instances of itself
running on different computers. In addition, because Active
Directory contains its own replication capabilities, FRS uses



Active Directory APIs to retrieve FRS configuration
information from a domain's Active Directory.



Distributed File System (DFS)

Distributed File System (DFS) is a service that layers on top
of the Workstation service to connect together file shares
into a single namespace. The file shares can reside on the
same or on different computers, and DFS provides client
access to the resources in a location-transparent manner.
The root of a DFS namespace must be a file share defined
on a Windows 2000 server.

In addition to delivering a unified network-resource
namespace, DFS provides other benefits through DFS
replica sets, which are based on FRS replica sets. An
administrator can create DFS replica sets from two or more
shares so that FRS copies data between the shares of a
replica set to keep their contents synchronized. DFS
provides a limited form of load balancing by randomly
selecting a member of a replica set to fulfill a client request
for data on the replica set. In addition, DFS achieves high
availability by routing requests to the working member or
members of a replica set when a member becomes
unavailable.

The components that make up the DFS architecture are
shown in Figure 13-23. The server-side implementation of
DFS consists of a Win32 service
(\Winnt\System32\Dfssvc.exe) and a device driver
(\Winnt\System32\Drivers\Dfs.sys). The DFS service is
responsible for exporting DFS topology management
interfaces and maintaining the DFS topology in either the
registry (on non-Active Directory systems) or Active
Directory. The DFS driver performs topology lookups when
it receives a client request so that it can direct the client to
the system where the file it is requesting resides.



Figure 13-23 DFS components

On the client side, the implementation of DFS relies on
support from the MUP driver and the NetWare and CIFS
redirector. When a client issues a file I/O request that
specifies a file in the DFS namespace, the MUP driver on the
client communicates with a DFS server by using the
appropriate redirector.

javascript:fullSize('F13yj23x.htm')


TCP/IP Extensions

Other Windows 2000 networking services extend basic
networking features of the TCP/IP protocol driver by relying
on add-on drivers that integrate with the TCP/IP protocol
driver using private interfaces. These include network
address translation (NAT), Internet Protocol security
(IPSec), and Quality of Service (QoS).

Network Address Translation

Network address translation (NAT) is a routing service that
allows multiple local IP addresses to map to a single IP
address. Without NAT, each computer of a LAN must be
assigned a public IP address to communicate across the
Internet. NAT allows one computer of the LAN to be
assigned an IP address and the other computers to be
connected to the Internet through that computer. NAT
translates between LAN addresses and the public IP address
as necessary, routing packets from the Internet to the
appropriate LAN computer.

NAT components on Windows 2000 consist of a NAT device
driver that interfaces with the TCP/IP stack as well as
editors that an administrator uses to define address
translations. NAT can be installed as a protocol with the
Routing And Remote Access MMC snap-in or by configuring
Internet connection sharing using the Network And Dial-Up
Connections tool (though NAT is much more configurable
when installed using the Routing And Remote Access MMC
snap-in).

Internet Protocol Security



Internet Protocol security (IPSec), which is integrated with
the Windows 2000 TCP/IP stack, provides protection for IP
data against snooping and manipulation and defends
against IP-based attacks. Both goals are met through
cryptography-based protection services, security protocols,
and dynamic key management. IPSec-based communication
includes these properties:

Authentication verifies the origin and integrity of an IP
message.

Integrity protects IP data from being modified in transit
without being detected.

Confidentiality uses encryption to ensure that only valid
recipients of a message can decipher the contents of
the message.

Antireplay ensures that each packet is unique and can't
be reused. This property prevents a snooper from
replying to captured messages to establish a session or
gain unauthorized access to data.

IPSec on Windows 2000 relies on group policies that are
stored in Active Directory for configuration, and it uses
Active Directory's Kerberos version 5 authentication to
authenticate computers that participate in IPSec message
exchange. IPSec uses private/public keys pairs based on the
Windows 2000 CryptoAPI certificate services for encrypting
and decrypting IPSec message data and passwords as part
of its authentication process. (See the section "Encrypting
File System Security" in Chapter 12 for more information on
CryptoAPI.)

IPSec's implementation consists of an IPSec device driver
(\Winnt\System32\Drivers\Ipsec.sys) that integrates with
the TCP/IP protocol driver. In user space, a policy agent



obtains IPSec configuration information from Active
Directory and passes IPSec filtering information (IP address
filters for which IPSec communications should be used) to
the IPSec driver and security settings to an Internet Key
Exchange (IKE) module. The IKE module waits for security
association requests from the IPSec driver and negotiates
the requests, passing the results back to the IPSec driver
for use during authentication and encryption.

Quality of Service

If no special measures are taken, IP traffic is delivered over
a network on a first-come-first-serve basis. Applications
have no control over the priority of their messages and can
experience bursty network behavior, where they
occasionally obtain high throughput and low latencies but
otherwise receive poor network performance. Although this
level of service is acceptable in most situations, an
increasing number of network applications demand more
consistent service levels, or Quality of Service (QoS)
guarantees. Video conferencing, media streaming, and
enterprise resource planning (ERP) are examples of
applications that require good network performance. QoS
allows an application to specify minimum bandwidth and
maximum latencies, which can be satisfied only if every
networking software and hardware component between a
sender and receiver supports QoS standards such as IEEE
802.1p, an industry standard that specifies the format of
QoS packets and how OSI layer 2 devices (switches and
network adapters) respond to them.

Windows 2000 QoS support is based on a handful of
Microsoft-defined Winsock APIs that allow an application to
request QoS for traffic over their Winsock sockets. For
example, an application uses WSCInstallQOSTemplate to
install a QoS template that specifies desired bandwidth and



latency. (Only applications with administrative privileges can
use QoS.) A second API, the traffic control (TC) API, lets an
administrative application more precisely control the traffic
flow over networks attached to the computer.

The heart of the Windows 2000 QoS implementation is the
Resource Reservation Setup Protocol (RSVP) Win32 service
(\Winnt\System32\Rsvp.exe), as shown in Figure 13-24.
The RSVP Winsock service provider
(\Winnt\System32\Rsvp.dll) communicates application QoS
requests via RPC to the RSVP service. The RSVP service in
turn uses the TC API to control traffic flow. The TC API,
which is implemented in \Winnt\System32\Traffic.dll, sends
I/O control commands to the Generic Packet Classifier
(GPC) driver (\Winnt\System32\Drivers\Msgpc.sys). The
GPC driver communicates closely with the QoS packet
scheduler NDIS intermediate driver
(\Winnt\System32\Drivers\Psched.sys) to control the flow
of packets to the network from the computer so that the
QoS levels promised to particular applications can be met
and to ensure that appropriate QoS headers can be placed
on packets for which QoS is desired.



Figure 13-24 QoS architecture

javascript:fullSize('F13yj24x.htm')


[Previous] [Next]



Conclusion
The Windows 2000 network architecture provides a flexible
infrastructure for networking APIs, network protocol drivers,
and network adapter drivers. The Windows 2000 networking
architecture takes advantage of I/O layering to give
networking support the extensibility to evolve as computer
networking evolves. When new protocols appear, developers
can write a TDI transport to implement the protocol on
Windows 2000. Similarly, new APIs can interface to existing
Windows 2000 protocol drivers. Finally, the range of
networking APIs implemented on Windows 2000 affords
network application developers a range of possible
implementations, each with different programming models
and protocol support.



[Previous] [Next]



Footnotes



Chapter 1

* Even though Windows 2000 doesn't run on the INtel 80386
processor (early versions of Windows NT did), for historical
reasons, the x86 directories on the windows 2000 distribution
media are still called i386. Thus, the x86 kernel debugger is
called I386kd.exe.



Chapter 2

* If you look in the \I386\UNIPROC folder on a Windows 2000
CD, you'll see a file named Winsrv.dll&8212;although this file
exists in a folder named UNIPROC, implying that there is a
uniprocessor version, in fact there is only one version of this
image for both multiprocessor and uniprocessor systems.

* As a historical note, the reason the Win32 subsystem
process is called Csrss.exe is that in the original design of
Windows NT, all the subsystems were going to execute as
threads inside a single systemwide environment subsystem
process; when the POSIX and OS/2 subsystems were removed
and put in their own processes, the filename for the Win32
subsystem process wasn’t changed.



Chapter 3

* Some threads might be waiting for more than one object, so
they continue waiting.



Chapter 7

* Internally, the system working set is called the system cache
working set. This term is misleading, however, because it
includes not only the system cache but also the paged pool,
pageable system code and data, and pageable driver code and
data.



[Previous] [Next]



David Solomon
David Solomon, president of David Solomon Expert
Seminars (www.solsem.com), has been teaching seminars
on Microsoft Windows NT and Microsoft Windows 2000
internals and systems programming since 1992. His clients
include all the major software and hardware companies,
including Microsoft.

Formerly a consulting software engineer at Digital
Equipment Corporation, David worked for over nine years as
a project leader and developer in the VMS operating system
development group. He left DEC to focus on evangelizing
Windows NT to the VMS customer base. His first book,
Windows NT for OpenVMS Professionals (Digital
Press/Butterworth Heinemann, 1996), was based on his
initial classes that explained Windows NT to VMS-
knowledgeable programmers and system managers.

In addition to organizing and teaching seminars, David is a
regular speaker at industry events such as Microsoft
TechEd, Microsoft PDCs, WinDev, and Software
Development. He has also served as technical chair for
several Windows NT conferences. When he's not
researching Windows 2000, David enjoys sailing, reading,
and Star Trek.

http://www.solsem.com/


[Previous] [Next]



Mark Russinovich
Mark Russinovich is chief software architect and cofounder
of Winternals Software (www.winternals.com), a company
that specializes in advanced systems software for Microsoft
Windows NT, Microsoft Windows 2000, and Microsoft
Consumer Windows. He is a contributing editor for Dr.
Dobb's Journal (www.ddj.com) and Windows 2000
Magazine, and he writes the monthly "Internals" column for
Windows 2000 Magazine (www.win2000mag.com). He is
also a frequent speaker at major industry conferences such
as WinDev, Software Development, and WinSummit, where
he speaks on Windows 2000 internals and device driver and
file system driver development.

Mark has a B.S. from Carnegie Mellon University and a M.S.
from Rennselear Polytechnic Institute, both in computer
engineering. In 1994, he earned a Ph.D. from Carnegie
Mellon University, also in computer engineering. After
working briefly at NuMega Technologies (now Compuware
NuMega Laboratories), Mark worked for two and a half
years at IBM's Thomas J. Watson Research Center in New
York, where he participated in the research and
development of kernel-mode Web server-accelerator
technologies.

Founder of the highly trafficked SysInternals Web site
(www.sysinternals.com), Mark has authored or coauthored
dozens of popular freeware tools for Windows 2000 and
Consumer Windows, including Filemon, Regmon, NTFSDOS
(an NTFS file system driver for MS-DOS), and HandleEx.
When Mark isn't writing tools or researching Windows 2000
internals, he enjoys hiking, biking, watching movies with his
wife, Susan, and driving fast cars.

http://www.winternals.com/
http://www.ddj.com/
http://www.win2000mag.com/
http://www.sysinternals.com/


[Previous] [Next]



About This Electronic Book
This electronic book was originally created—and still may be
purchased—as a print book. For simplicity, the electronic
version of this book has been modified as little as possible
from its original form. For instance, there may be occasional
references to sample files that come with the book. These
files are available with the print version, but are not
provided in this electronic edition.



“Expanding” Graphics

Many of the graphics shown in this book are quite large. To
improve the readability of the book, reduced versions of
these graphics are shown in the text. To see a full-size
version, click on the reduced graphic.



[Previous]



About Microsoft Press
Microsoft Press is a division of Microsoft Corporation and the
leading source of comprehensive self-paced learning,
training, evaluation, and support resources to help everyone
from developers to IT professionals to end users get the
most from Microsoft® technology. Choose from more than
250 current titles in print, multimedia, and network-ready
formats—learning solutions made by Microsoft, with the
most timely and accurate information available. For more
information, visit http://mspress.microsoft.com/.

http://mspress.microsoft.com/

	Cover
	LOC Page

	Dedication
	Historical Perspective
	Foreword
	Acknowledgments
	Acknowledgments from David Solomon
	Acknowledgments from Mark Russinovich

	Introduction
	Structure of the Book
	Differences in the Third Edition
	Hands-on Experiments
	Topics Not Covered
	A Warning and Caveat
	Using the Companion CD
	Support

	Chapter 1 -- Concepts and Tools
	Foundation Concepts and Terms
	Digging into Windows 2000 Internals
	Conclusion

	Chapter 2 -- System Architecture
	Requirements and Design Goals
	Operating System Model
	Architecture Overview
	Windows 2000 Product Packaging
	Key System Components
	Conclusion

	Chapter 3 -- System Mechanisms
	Trap Dispatching
	Object Manager
	Synchronization
	System Worker Threads
	Windows 2000 Global Flags
	Local Procedure Calls (LPCs)
	Conclusion

	Chapter 4 -- Startup and Shutdown
	Boot Process
	Safe Mode
	Recovery Console
	Shutdown
	System Crashes
	Conclusion

	Chapter 5 -- Management Mechanisms
	The Registry
	Services
	Windows Management Instrumentation
	Conclusion

	Chapter 6 -- Processes, Threads, and Jobs
	Process Internals
	Flow of CreateProcess
	Thread Internals
	Flow of CreateThread
	Thread Scheduling
	Job Objects
	Conclusion

	Chapter 7 -- Memory Management
	Memory Manager Components
	Services the Memory Manager Provides
	System Memory Pools
	Address Space Layout
	Address Translation
	Page Fault Handling
	Virtual Address Descriptors
	Working Sets
	Page Frame Number Database
	Section Objects
	Conclusion

	Chapter 8 -- Security
	Security Ratings
	Security System Components
	Protecting Objects
	Security Auditing
	Logon
	Conclusion

	Chapter 9 -- I/O System
	Design Goals
	I/O System Components
	I/O Data Structures
	Driver Loading, Initialization, and Installation
	I/O Processing
	Conclusion

	Chapter 10 -- Storage Management
	The Evolution of Windows 2000 Storage
	Partitioning
	Storage Drivers
	Multipartition Volume Management
	The Volume Namespace
	Conclusion

	Chapter 11 -- Cache Manager
	Key Features of the Windows 2000 Cache Manager
	Cache Structure
	Cache Size
	Cache Data Structures
	Cache Operation
	Cache Support Routines
	Conclusion

	Chapter 12 -- File Systems
	Windows 2000 File System Formats
	File System Driver Architecture
	NTFS Design Goals and Features
	NTFS File System Driver
	NTFS On-Disk Structure
	NTFS Recovery Support
	NTFS Bad-Cluster Recovery
	Encrypting File System Security
	Conclusion

	Chapter 13 -- Networking
	The OSI Reference Model
	Networking APIs
	Network-Resource Name Resolution
	Protocol Drivers
	NDIS Drivers
	Binding
	Layered Network Services
	Conclusion

	Footnotes
	About the Authors
	David Solomon
	Mark Russinovich

	About This Electronic Book
	About Microsoft Press

