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Introduction

W indows Internals, Sixth Edition is intended for advanced computer professionals 
(both  developers and system administrators) who want to understand how the 

core components of the Microsoft Windows 7 and Windows Server 2008 R2 operating 
systems work internally. With this knowledge, developers can better comprehend the 
rationale behind design choices when  building applications specific to the  Windows 
platform. Such knowledge can also help developers debug  complex problems.  System 
administrators can benefit from this information as well, because  understanding how 
the operating system works “under the covers” facilitates understanding the perfor-
mance behavior of the system and makes troubleshooting system problems much 
easier when things go wrong. After reading this book, you should have a better 
 understanding of how Windows works and why it behaves as it does.

Structure of the Book

For the first time, Windows Internals has been divided into two parts. Updating the 
book for each release of Windows takes considerable time so producing it in two parts 
allows us to publish the first part earlier.

This book, Part 1, begins with two chapters that define key concepts, introduce the 
tools used in the book, and describe the overall system architecture and components. 
The next two chapters  present key  underlying system and management mechanisms. 
Part 1 wraps up by covering three core  components of the operating system: processes, 
threads, and jobs; security; and networking.  

Part 2, which will be available separately in fall 2012, covers the remaining core 
 subsystems: I/O, storage, memory management, the cache  manager, and file systems. 
Part 2 concludes with a description of the startup and shutdown processes and a 
 description of crash-dump analysis.
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History of the Book

This is the sixth edition of a book that was originally called Inside Windows NT 
( Microsoft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft 
Windows NT 3 .1) . Inside Windows NT was the first book ever published about Windows 
NT and provided key insights into the architecture and design of the system . Inside 
Windows NT, Second Edition (Microsoft Press, 1998) was written by David Solomon . It 
updated the original book to cover Windows NT 4 .0 and had a greatly increased level 
of technical depth . 

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by  David 
 Solomon and Mark Russinovich . It added many new topics, such as startup and 
 shutdown, service internals, registry internals, file-system drivers, and networking. It 
also covered kernel changes in Windows 2000, such as the Windows Driver Model 
(WDM), Plug and Play, power management, Windows Management Instrumentation 
(WMI), encryption, the job object, and Terminal Services . Windows Internals, Fourth 
 Edition was the Windows XP and Windows Server 2003 update and added more content 
focused on helping IT professionals make use of their knowledge of Windows internals, 
such as using key tools from Windows Sysinternals (www.microsoft.com/technet 
/sysinternals) and analyzing crash dumps . Windows Internals, Fifth Edition was the 
update for Windows Vista and Windows Server 2008 . New content included the image 
loader, user-mode debugging facility, and Hyper-V .

Sixth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows 7 
and Windows Server 2008 R2. Hands-on experiments have been updated to reflect 
changes in tools .

Hands-on Experiments

Even without access to the Windows source code, you can glean much about  Windows 
internals from tools such as the kernel debugger and tools from Sysinternals and 
 Winsider Seminars & Solutions . When a tool can be used to expose or demonstrate 
some aspect of the internal behavior of Windows, the steps for trying the tool yourself 
are listed in “EXPERIMENT” boxes . These appear throughout the book, and we encour-
age you to try these as you’re reading—seeing visible proof of how Windows works 
internally will make much more of an impression on you than just reading about it will .
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Topics Not Covered

Windows is a large and complex operating system . This book doesn’t cover everything 
relevant to Windows internals but instead focuses on the base system components . For 
example, this book doesn’t describe COM+, the Windows distributed object-oriented 
programming infrastructure, or the Microsoft  .NET Framework, the foundation of 
 managed code applications .

Because this is an internals book and not a user, programming, or system 
 administration book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and 
the operation of the Windows operating system (such as internal kernel structures and 
functions), this content is subject to change between releases . (External interfaces, such 
as the Windows API, are not subject to incompatible changes .)

By “subject to change,” we don’t necessarily mean that details described in this 
book will change between releases, but you can’t count on them not changing . Any 
 software that uses these undocumented interfaces might not work on future releases 
of  Windows . Even worse, software that runs in kernel mode (such as device drivers) and 
uses these undocumented interfaces might experience a system crash when running on 
a newer release of Windows .

Acknowledgments

First, thanks to Jamie Hanrahan and Brian Catlin of Azius, LLC for joining us on this 
 project—the book would not have been finished without their help. They did the bulk 
of the updates on the “Security” and “Networking” chapters and contributed to the 
update of the “Management Mechanisms” and “Processes and Threads” chapters . Azius 
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information .
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Errata & Book Support

We’ve made every effort to ensure the accuracy of this book . Any errors that have 
been reported since this book was published are listed on our Microsoft Press site at 
oreilly .com: 

http://go.microsoft.com/FWLink/?Linkid=245675

If you find an error that is not already listed, you can report it to us through the 
same page .

If you need additional support, email Microsoft Press Book Support at  
mspinput@microsoft.com .

Please note that product support for Microsoft software is not offered through the 
addresses above .

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset . Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas . Thanks in 
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://go.microsoft.com/FWLink/?Linkid=245675
mailto:mspinput@microsoft.com
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C H A P T E R  1

Concepts and Tools

In this chapter, we’ll introduce the key Microsoft Windows operating system concepts and terms we’ll 
be using throughout this book, such as the Windows API, processes, threads, virtual memory, kernel 

mode and user mode, objects, handles, security, and the registry . We’ll also introduce the tools that 
you can use to explore Windows internals, such as the kernel debugger, the Performance Monitor, 
and key tools from Windows Sysinternals (www.microsoft.com/technet/sysinternals) . In addition, we’ll 
explain how you can use the Windows Driver Kit (WDK) and the Windows Software Development Kit 
(SDK) as resources for finding further information on Windows internals.

Be sure that you understand everything in this chapter—the remainder of the book is written 
 assuming that you do .

Windows Operating System Versions

This book covers the most recent version of the Microsoft Windows client and server operating 
systems: Windows 7 (32-bit and 64-bit versions) and Windows Server 2008 R2 (64-bit version only) . 
Unless specifically stated, the text applies to all versions. As background information, Table 1-1 lists 
the Windows product names, their internal version number, and their release date .

TABLE 1-1 Windows Operating System Releases

Product Name Internal Version Number Release Date

Windows NT 3 .1 3 .1 July 1993

Windows NT 3 .5 3 .5 September 1994

Windows NT 3 .51 3 .51 May 1995

Windows NT 4 .0 4 .0 July 1996

Windows 2000 5 .0 December 1999

Windows XP 5 .1 August 2001

Windows Server 2003 5 .2 March 2003

Windows Vista 6 .0 (Build 6000) January 2007

Windows Server 2008 6 .0 (Build 6001) March 2008

Windows 7 6 .1 (Build 7600) October 2009

Windows Server 2008 R2 6 .1 (Build 7600) October 2009
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Note The “7” in the “Windows 7” product name does not refer to the internal version 
number, but is rather a generational index . In fact, to minimize application compatibility 
issues, the version number for Windows 7 is actually 6 .1, as shown in Table 1-1 . This allows 
applications checking for the major version number to continue behaving on Windows 
7 as they did on Windows Vista . In fact, Windows 7 and Server 2008 R2 have identical 
 version/build numbers because they were built from the same Windows code base .

Foundation Concepts and Terms

In the course of this book, we’ll be referring to some structures and concepts that might be unfamiliar 
to some readers. In this section, we’ll define the terms we’ll be using throughout. You should become 
familiar with them before proceeding to subsequent chapters .

Windows API
The Windows application programming interface (API) is the user-mode system programming 
 interface to the Windows operating system family . Prior to the introduction of 64-bit versions of 
 Windows, the programming interface to the 32-bit versions of the Windows operating systems was 
called the Win32 API to distinguish it from the original 16-bit Windows API, which was the program-
ming interface to the original 16-bit versions of Windows . In this book, the term Windows API refers 
to both the 32-bit and 64-bit programming interfaces to Windows .

Note The Windows API is described in the Windows Software Development Kit (SDK) 
 documentation . (See the section “Windows Software Development Kit” later in this chap-
ter .) This documentation is available for free viewing online at www.msdn.microsoft.com . It 
is also included with all subscription levels to the Microsoft Developer Network (MSDN), 
Microsoft’s support program for developers . For more information, see www.msdn. 
microsoft.com . An excellent description of how to program the Windows base API is in 
the book Windows via C/C++, Fifth Edition by Jeffrey Richter and Christophe Nasarre 
(Microsoft Press, 2007) .

The Windows API consists of thousands of callable functions, which are divided into the following 
major categories:

 ■ Base Services

 ■ Component Services

 ■ User Interface Services
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 ■ Graphics and Multimedia Services

 ■ Messaging and Collaboration

 ■ Networking

 ■ Web Services

This book focuses on the internals of the key base services, such as processes and threads, memory 
management, I/O, and security .

What About .NET?
The Microsoft  .NET Framework consists of a library of classes called the Framework Class 
 Library (FCL) and a Common Language Runtime (CLR) that provides a managed code  execution 
 environment with features such as just-in-time compilation, type verification, garbage 
 collection, and code access security . By offering these features, the CLR provides a  development 
 environment that improves programmer productivity and reduces common programming 
 errors . For an excellent description of the  .NET Framework and its core architecture, see CLR via 
C#, Third Edition by Jeffrey Richter (Microsoft Press, 2010) .

The CLR is implemented as a classic COM server whose code resides in a standard  user-mode 
Windows DLL . In fact, all components of the  .NET Framework are implemented as standard 
user-mode Windows DLLs layered over unmanaged Windows API functions . (None of the 
 .NET Framework runs in kernel mode .) Figure 1-1 illustrates the relationship between these 
 components:

.NET Application
(Standard User-Mode EXEs)

Framework Class Library Assemblies
(Standard User-Mode DLLs)

CLR DLLs
(COM server)

Windows API DLLs

Windows Kernel

User mode
(managed code)

User mode
(unmanaged code)

Kernel mode

FIGURE 1-1 Relationship between  .NET Framework components
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History of the Win32 API
Interestingly, Win32 wasn’t slated to be the original programming interface to what was then 
called Windows NT . Because the Windows NT project started as a replacement for OS/2 ver-
sion 2, the primary programming interface was the 32-bit OS/2 Presentation Manager API . A 
year into the project, however, Microsoft Windows 3 .0 hit the market and took off . As a result, 
Microsoft changed direction and made Windows NT the future replacement for the Windows 
family of products as opposed to the replacement for OS/2 . It was at this juncture that the need 
to specify the Windows API arose—before this, in Windows 3 .0, the API existed only as a 16-bit 
interface .

Although the Windows API would introduce many new functions that hadn’t been available 
on Windows 3 .1, Microsoft decided to make the new API compatible with the 16-bit Windows 
API function names, semantics, and use of data types whenever possible to ease the burden of 
porting existing 16-bit Windows applications to Windows NT . This explains why many function 
names and interfaces might seem inconsistent: –this was required to ensure that the then new 
Windows API was compatible with the old 16-bit Windows API .

Services, Functions, and Routines
Several terms in the Windows user and programming documentation have different meanings in 
 different contexts . For example, the word service can refer to a callable routine in the operating 
 system, a device driver, or a server process . The following list describes what certain terms mean in 
this book:

 ■ Windows API functions Documented, callable subroutines in the Windows API . Examples 
include CreateProcess, CreateFile, and GetMessage .

 ■ Native system services (or system calls) The undocumented, underlying services in the 
operating system that are callable from user mode . For example, NtCreateUserProcess is the 
internal system service the Windows CreateProcess function calls to create a new process . For 
a definition of system calls, see the section “System Service Dispatching” in Chapter 3, “System 
Mechanisms .”

 ■ Kernel support functions (or routines) Subroutines inside the Windows  operating 
 system that can be called only from kernel mode (defined later in this chapter). For example, 
 ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the 
 Windows system heaps (called pools) .

 ■ Windows services Processes started by the Windows service control manager . For example, 
the Task Scheduler service runs in a user-mode process that supports the at command (which 
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is similar to the UNIX commands at or cron). (Note: although the registry defines Windows 
device drivers as “services,” they are not referred to as such in this book .)

 ■ DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary file 
that can be dynamically loaded by applications that use the subroutines . Examples include 
 Msvcrt .dll (the C run-time library) and Kernel32 .dll (one of the Windows API  subsystem 
 libraries) . Windows user-mode components and applications use DLLs extensively . The 
 advantage DLLs provide over static libraries is that applications can share DLLs, and Windows 
ensures that there is only one in-memory copy of a DLL’s code among the applications that are 
referencing it . Note that nonexecutable  .NET assemblies are compiled as DLLs but without any 
exported subroutines . Instead, the CLR parses  compiled metadata to access the corresponding 
types and members . 

Processes, Threads, and Jobs
Although programs and processes appear similar on the surface, they are fundamentally different . 
A program is a static sequence of instructions, whereas a process is a container for a set of resources 
used when executing the instance of the program . At the highest level of abstraction, a Windows 
process comprises the following:

 ■ A private virtual address space, which is a set of virtual memory addresses that the process can 
use

 ■ An executable program, which defines initial code and data and is mapped into the process’ 
virtual address space

 ■ A list of open handles to various system resources—such as semaphores, communication 
ports, and files—that are accessible to all threads in the process

 ■ A security context called an access token that identifies the user, security groups, privileges, 
User Account Control (UAC) virtualization state, session, and limited user account state 
 associated with the process

 ■ A unique identifier called a process ID (internally part of an identifier called a client ID)

 ■ At least one thread of execution (although an “empty” process is possible, it is not useful)

Each process also points to its parent or creator process . If the parent no longer exists, this 
 information is not updated . Therefore, it is possible for a process to refer to a nonexistent parent . 
This is not a problem, because nothing relies on this information being kept current . In the case of 
 ProcessExplorer, the start time of the parent process is taken into account to avoid attaching a child 
process based on a reused process ID . The following experiment illustrates this behavior .
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EXPERIMENT: Viewing the Process Tree
One unique attribute about a process that most tools don’t display is the parent or creator 
process ID . You can retrieve this value with the Performance Monitor (or programmatically) by 
querying the Creating Process ID . The Tlist .exe tool (in the Debugging Tools for Windows) can 
show the process tree by using the /t switch . Here’s an example of output from tlist /t:

C:\>tlist /t  
System Process (0) 
System (4) 
  smss.exe (224) 
csrss.exe (384) 
csrss.exe (444) 
  conhost.exe (3076) OleMainThreadWndName 
winlogon.exe (496) 
wininit.exe (504) 
  services.exe (580) 
    svchost.exe (696) 
    svchost.exe (796) 
    svchost.exe (912) 
    svchost.exe (948) 
    svchost.exe (988) 
    svchost.exe (244) 
      WUDFHost.exe (1008) 
      dwm.exe (2912) DWM Notification Window 
    btwdins.exe (268) 
    svchost.exe (1104) 
    svchost.exe (1192) 
    svchost.exe (1368) 
    svchost.exe (1400) 
    spoolsv.exe (1560) 
    svchost.exe (1860) 
    svchost.exe (1936) 
    svchost.exe (1124) 
    svchost.exe (1440) 
    svchost.exe (2276) 
    taskhost.exe (2816) Task Host Window 
    svchost.exe (892) 
  lsass.exe (588) 
  lsm.exe (596) 
explorer.exe (2968) Program Manager 
  cmd.exe (1832) Administrator: C:\Windows\system32\cmd.exe - "c:\tlist.exe"  /t 
    tlist.exe (2448)

The list indents each process to show its parent/child relationship . Processes whose parents 
aren’t alive are left-justified (as is Explorer.exe in the preceding example) because even if a 
grandparent process exists, there’s no way to find that relationship. Windows maintains only the 
creator process ID, not a link back to the creator of the creator, and so forth .
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To demonstrate the fact that Windows doesn’t keep track of more than just the parent 
 process ID, follow these steps:

1. Open a Command Prompt window .

2. Type title Parent (to change the window title to Parent) .

3. Type start cmd (which starts a second command prompt) .

4. Type title Child in the second command prompt .

5. Bring up Task Manager .

6. Type mspaint (which runs Microsoft Paint) in the second command prompt .

7. Go back to the second command prompt and type exit . (Notice that Paint remains .)

8. Switch to Task Manager .

9. Click on the Applications tab .

10. Right-click on the Parent task, and select Go To Process .

11. Right-click on this cmd .exe process, and select End Process Tree .

12. Click End Process Tree in the Task Manager confirmation message box.

The first command prompt window will disappear, but you should still see the Paint window 
because it was the grandchild of the command prompt process you terminated; and because 
the intermediate process (the parent of Paint) was terminated, there was no link between the 
parent and the grandchild .

A number of tools for viewing (and modifying) processes and process information are available . 
The following experiments illustrate the various views of process information you can obtain with 
some of these tools . While many of these tools are included within Windows itself and within the 
Debugging Tools for Windows and the Windows SDK, others are stand-alone tools from Sysinternals . 
Many of these tools show overlapping subsets of the core process and thread information, some-
times identified by different names.

Probably the most widely used tool to examine process activity is Task Manager . (Because there 
is no such thing as a “task” in the Windows kernel, the name of this tool, Task Manager, is a bit odd .) 
The following experiment shows the difference between what Task Manager lists as applications  
and processes .
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EXPERIMENT: Viewing Process Information with Task Manager
The built-in Windows Task Manager provides a quick list of the processes on the system . You 
can start Task Manager in one of four ways: (1) press Ctrl+Shift+Esc, (2) right-click on the taskbar 
and click Start Task Manager, (3) press Ctrl+Alt+Delete and click the Start Task Manager button, 
or (4) start the executable Taskmgr .exe . Once Task Manager has started, click on the Processes 
tab to see the list of processes. Notice that processes are identified by the name of the image 
of which they are an instance . Unlike some objects in Windows, processes can’t be given global 
names . To display additional details, choose Select Columns from the View menu and select 
 additional columns to be added, as shown here:

Although the Task Manager Processes tab shows a list of processes, what the Applications 
tab displays isn’t as obvious . The Applications tab lists the top-level visible windows on all the 
desktops in the interactive window station you are connected to . (By default, there is only one 
interactive desktop—an application can create more by using the Windows CreateDesktop 
function, as is done by the Sysinternals Desktops tool .) The Status column indicates whether 
or not the thread that owns the window is in a window message wait state . “Running” means 
the thread is waiting for windowing input; “Not Responding” means the thread isn’t waiting 
for  windowing input (for example, the thread might be running or waiting for I/O or some 
 Windows synchronization object) .
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On the Applications tab, you can match a task to the process that owns the thread that owns 
the task window by right-clicking on the task name and choosing Go To Process as shown in the 
previous tlist experiment .

Process Explorer, from Sysinternals, shows more details about processes and threads than any 
other available tool, which is why you will see it used in a number of experiments throughout the 
book . The following are some of the unique things that Process Explorer shows or enables:

 ■ Process security token (such as lists of groups and privileges and the virtualization state)

 ■ Highlighting to show changes in the process and thread list

 ■ List of services inside service-hosting processes, including the display name and description

 ■ Processes that are part of a job and job details

 ■ Processes hosting .NET applications and .NET-specific details (such as the list of AppDomains, 
loaded assemblies, and CLR performance counters)

 ■ Start time for processes and threads

 ■ Complete list of memory-mapped files (not just DLLs)

 ■ Ability to suspend a process or a thread

 ■ Ability to kill an individual thread
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 ■ Easy identification of which processes were consuming the most CPU time over a  period 
of time (The Performance Monitor can display process CPU utilization for a given set 
of  processes, but it won’t automatically show processes created after the performance 
 monitoring session has started—only a manual trace in binary output format can do that .)

Process Explorer also provides easy access to information in one place, such as:

 ■ Process tree (with the ability to collapse parts of the tree)

 ■ Open handles in a process (including unnamed handles)

 ■ List of DLLs (and memory-mapped files) in a process

 ■ Thread activity within a process

 ■ User-mode and kernel-mode thread stacks (including the mapping of addresses to names 
 using the Dbghelp .dll that comes with the Debugging Tools for Windows)

 ■ More accurate CPU percentage using the thread cycle count (an even better representation of 
precise CPU activity, as explained in Chapter 5, “Processes and Threads”)

 ■ Integrity level

 ■ Memory manager details such as peak commit charge and kernel memory paged and 
 nonpaged pool limits (other tools show only current size)

An introductory experiment using Process Explorer follows .

EXPERIMENT: Viewing Process Details with Process Explorer
Download the latest version of Process Explorer from Sysinternals and run it. The first time you 
run it, you will receive a message that symbols are not currently configured. If properly con-
figured, Process Explorer can access symbol information to display the symbolic name of the 
thread start function and functions on a thread’s call stack (available by double-clicking on a 
process and clicking on the Threads tab) . This is useful for identifying what threads are doing 
within a process . To access symbols, you must have the Debugging Tools for Windows installed 
(described later in this chapter). Then click on Options, choose Configure Symbols, and fill in the 
path to the Dbghelp .dll in the Debugging Tools folder and a valid symbol path . For example, on 
a 64-bit system this configuration is correct:
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In the preceding example, the on-demand symbol server is being used to access symbols 
and a copy of the symbol files is being stored on the local machine in the c:\symbols folder. For 
more information on configuring the use of the symbol server, see http://msdn.microsoft.com 
/en-us/windows/hardware/gg462988.aspx.

When Process Explorer starts, it shows by default the process tree view . It has an optional 
lower pane that can show open handles or mapped DLLs and memory-mapped files. (These are 
explored in Chapter 3, “System Mechanisms” in Part 1 and Chapter 10, “Memory Management” 
in Part 2 .) It also shows tooltips for several kinds of hosting processes:

 ■ The services inside a service-hosting process (Svchost .exe) if you hover your mouse over 
the name

 ■ The COM object tasks inside a Taskeng .exe process (started by the Task Scheduler)

 ■ The target of a Rundll32 .exe process (used for things such as Control Panel items)

 ■ The COM object being hosted inside a Dllhost .exe process

 ■ Internet Explorer tab processes

 ■ Console host processes

Here are a few steps to walk you through some basic capabilities of Process Explorer:

1. Notice that processes hosting services are highlighted by default in pink . Your own processes 
are highlighted in blue. (These colors can be configured.)
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2. Hover your mouse pointer over the image name for processes, and notice the full path 
 displayed by the tooltip . As noted earlier, certain types of processes have additional details in 
the tooltip .

3. Click on View, Select Columns from the Process Image tab, and add the image path .

4. Sort by clicking on the process column, and notice the tree view disappears . (You can either 
display tree view or sort by any of the columns shown .) Click again to sort from Z to A . Then 
click again, and the display returns to tree view .

5. Deselect View, Show Processes From All Users to show only your processes .

6. Go to Options, Difference Highlight Duration, and change the value to 5 seconds . Then 
launch a new process (anything), and notice the new process highlighted in green for 5 
 seconds . Exit this new process, and notice the process is highlighted in red for 5 seconds 
before disappearing from the display . This can be useful to see processes being created and 
exiting on your system .

7.  Finally, double-click on a process and explore the various tabs available from the process 
properties display . (These will be referenced in various experiments throughout the book 
where the information being shown is being explained .)

A thread is the entity within a process that Windows schedules for execution . Without it, the 
 process’ program can’t run . A thread includes the following essential components:

 ■ The contents of a set of CPU registers representing the state of the processor .

 ■ Two stacks—one for the thread to use while executing in kernel mode and one for executing 
in user mode .

 ■ A private storage area called thread-local storage (TLS) for use by subsystems, run-time 
 libraries, and DLLs .

 ■ A unique identifier called a thread ID (part of an internal structure called a client ID—process 
IDs and thread IDs are generated out of the same namespace, so they never overlap) .

 ■ Threads sometimes have their own security context, or token, that is often used by multi-
threaded server applications that impersonate the security context of the clients that they 
serve .

The volatile registers, stacks, and private storage area are called the thread’s context . Because 
this information is different for each machine architecture that Windows runs on, this structure, by 
necessity, is architecture-specific. The Windows GetThreadContext function provides access to this 
 architecture-specific information (called the CONTEXT block) .
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Note The threads of a 32-bit application running on a 64-bit version of Windows will 
 contain both 32-bit and 64-bit contexts, which Wow64 will use to switch the application 
from running in 32-bit to 64-bit mode when required . These threads will have two user 
stacks and two CONTEXT blocks, and the usual Windows API functions will return the 
 64-bit context instead . The Wow64GetThreadContext function, however, will return the 
 32-bit context . See Chapter 3 for more information on Wow64 .

Fibers and User-Mode Scheduler Threads
Because switching execution from one thread to another involves the kernel scheduler, it can 
be an expensive operation, especially if two threads are often switching between each other . 
Windows implements two mechanisms for reducing this cost: fibers and user-mode scheduling 
(UMS) .

Fibers allow an application to schedule its own “threads” of execution rather than rely on  
the priority-based scheduling mechanism built into Windows . Fibers are often called “light-
weight” threads, and in terms of scheduling, they’re invisible to the kernel because they’re 
implemented in user mode in Kernel32.dll. To use fibers, a call is first made to the Windows 
ConvertThreadToFiber function. This function converts the thread to a running fiber. Afterward, 
the newly converted fiber can create additional fibers with the CreateFiber function. (Each fiber 
can have its own set of fibers.) Unlike a thread, however, a fiber doesn’t begin execution until it’s 
manually selected through a call to the SwitchToFiber function. The new fiber runs until it exits 
or until it calls SwitchToFiber, again selecting another fiber to run. For more information, see the 
Windows SDK documentation on fiber functions.

UMS threads, which are available only on 64-bit versions of Windows, provide the same 
 basic advantages as fibers, without many of the disadvantages. UMS threads have their own 
kernel thread state and are therefore visible to the kernel, which allows multiple UMS threads 
to issue blocking system calls, share and contend on resources, and have per-thread state . 
However, as long as two or more UMS threads only need to perform work in user mode, they 
can periodically switch execution contexts (by yielding from one thread to another) without 
involving the scheduler: the context switch is done in user mode . From the kernel’s perspective, 
the same kernel thread is still running and nothing has changed . When a UMS thread performs 
an operation that requires entering the kernel (such as a system call), it switches to its dedicated 
kernel-mode thread (called a directed context switch) . See Chapter 5 for more information on 
UMS .

Although threads have their own execution context, every thread within a process shares the 
process’ virtual address space (in addition to the rest of the resources belonging to the process), 
meaning that all the threads in a process have full read-write access to the process virtual address 
space . Threads cannot accidentally reference the address space of another process, however, unless 
the other process makes available part of its private address space as a shared memory section (called 
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a file mapping object in the Windows API) or unless one process has the right to open another process 
to use cross-process memory functions such as ReadProcessMemory and WriteProcessMemory .

In addition to a private address space and one or more threads, each process has a security 
 context and a list of open handles to kernel objects such as files, shared memory sections, or one of 
the synchronization objects such as mutexes, events, or semaphores, as illustrated in Figure 1-2 .

Process
object

VAD VAD VAD

Virtual address descriptors (VADs)

Thread Thread Thread . . . 

Access token

Access token

Object

Object

Handle table

FIGURE 1-2 A process and its resources

Each process’ security context is stored in an object called an access token . The process access 
 token contains the security identification and credentials for the process. By default, threads don’t 
have their own access token, but they can obtain one, thus allowing individual threads to impersonate 
the security context of another process—including processes on a remote Windows system—with-
out affecting other threads in the process . (See Chapter 6, “Security,” for more details on process and 
thread security .)

The virtual address descriptors (VADs) are data structures that the memory manager uses to keep 
track of the virtual addresses the process is using . These data structures are described in more depth 
in Chapter 10 in Part 2 .

Windows provides an extension to the process model called a job . A job object’s main function is 
to allow groups of processes to be managed and manipulated as a unit . A job object allows control 
of certain attributes and provides limits for the process or processes associated with the job . It also 
records basic accounting information for all processes associated with the job and for all processes 
that were associated with the job but have since terminated . In some ways, the job object compen-
sates for the lack of a structured process tree in Windows—yet in many ways it is more powerful than 
a UNIX-style process tree .

You’ll find out much more about the internal structure of jobs, processes, and threads; the 
 mechanics of process and thread creation; and the thread-scheduling algorithms in Chapter 5 .
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Virtual Memory
Windows implements a virtual memory system based on a flat (linear) address space that provides 
each process with the illusion of having its own large, private address space . Virtual memory pro-
vides a logical view of memory that might not correspond to its physical layout . At run time, the 
memory manager, with assistance from hardware, translates, or maps, the virtual addresses into 
physical  addresses, where the data is actually stored . By controlling the protection and mapping, 
the  operating system can ensure that individual processes don’t bump into one another or over-
write operating system data . Figure 1-3 illustrates three virtually contiguous pages mapped to three 
 discontiguous pages in physical memory .

Physical memory

Virtual memory

FIGURE 1-3 Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total virtual memory in use by 
the running processes, the memory manager transfers, or pages, some of the memory contents to 
disk . Paging data to disk frees physical memory so that it can be used for other processes or for the 
operating system itself . When a thread accesses a virtual address that has been paged to disk, the 
virtual memory manager loads the information back into memory from disk . Applications don’t have 
to be altered in any way to take advantage of paging because hardware support enables the memory 
manager to page without the knowledge or assistance of processes or threads .

The size of the virtual address space varies for each hardware platform . On 32-bit x86 systems, 
the total virtual address space has a theoretical maximum of 4 GB . By default, Windows allocates 
half this address space (the lower half of the 4-GB virtual address space, from 0x00000000 through 
0x7FFFFFFF) to processes for their unique private storage and uses the other half (the upper half, 
 addresses 0x80000000 through 0xFFFFFFFF) for its own protected operating system memory 
 utilization. The mappings of the lower half change to reflect the virtual address space of the currently 
executing process, but the mappings of the upper half always consist of the operating system’s virtual 
memory . Windows supports boot-time options (the increaseuserva qualifier in the Boot Configu-
ration Database, described in Chapter 13, “Startup and Shutdown,” in Part 2) that give processes 
 running specially marked programs (the large address space aware flag must be set in the header 
of the  executable image) the ability to use up to 3 GB of private address space (leaving 1 GB for the 
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 operating system) . This option allows applications such as database servers to keep larger portions of 
a database in the process address space, thus reducing the need to map subset views of the database . 
Figure 1-4 shows the two typical virtual address space layouts supported by 32-bit Windows . (The 
increaseuserva option allows anywhere from 2 to 3 GB to be used by marked applications .)

Default

2 GB User
process space

3 GB User space

2 GB System
space

3 GB User
process space

1 GB System
space

FIGURE 1-4 Typical address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very large 
(multigigabyte) databases . To address this need on 32-bit systems, Windows provides a mechanism 
called Address Windowing Extension (AWE), which allows a 32-bit application to allocate up to 64 GB 
of physical memory and then map views, or windows, into its 2-GB virtual address space . Although 
using AWE puts the burden of managing mappings of virtual to physical memory on the programmer, 
it does address the need of being able to directly access more physical memory than can be mapped 
at any one time in a 32-bit process address space .

64-bit Windows provides a much larger address space for processes: 7152 GB on IA-64 systems 
and 8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system address space 
layouts . (For a detailed description, see Chapter 10 in Part 2 .) Note that these sizes do not represent 
the architectural limits for these platforms . Sixty-four bits of address space is over 17 billion GB, but 
current 64-bit hardware limits this to smaller values . And Windows implementation limits in the 
 current versions of 64-bit Windows further reduce this to 8192 GB (8 TB) .

x64

8192 GB
(8 TB) User

process space

IA-64

8192 GB
System space

7152 GB
(7 TB) User

process space

7152 GB
System space

FIGURE 1-5 Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including how address translation works 
and how Windows manages physical memory, are described in Chapter 10 in Part 2 .
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Kernel Mode vs. User Mode
To protect user applications from accessing and/or modifying critical operating system data, Windows 
uses two processor access modes (even if the processor on which Windows is running supports more 
than two): user mode and kernel mode . User application code runs in user mode, whereas operating 
system code (such as system services and device drivers) runs in kernel mode . Kernel mode refers to 
a mode of execution in a processor that grants access to all system memory and all CPU instructions . 
By providing the operating system software with a higher privilege level than the application software 
has, the processor provides a necessary foundation for operating system designers to ensure that a 
misbehaving application can’t disrupt the stability of the system as a whole .

Note The architectures of the x86 and x64 processors define four privilege levels (or rings) 
to protect system code and data from being overwritten either inadvertently or maliciously 
by code of lesser privilege . Windows uses privilege level 0 (or ring 0) for kernel mode and 
privilege level 3 (or ring 3) for user mode . The reason Windows uses only two levels is that 
some hardware architectures that were supported in the past (such as Compaq Alpha and 
Silicon Graphics MIPS) implemented only two privilege levels .

Although each Windows process has its own private memory space, the kernel-mode operating 
system and device driver code share a single virtual address space . Each page in virtual memory is 
tagged to indicate what access mode the processor must be in to read and/or write the page . Pages 
in system space can be accessed only from kernel mode, whereas all pages in the user address space 
are accessible from user mode . Read-only pages (such as those that contain static data) are not 
writable from any mode . Additionally, on processors that support no-execute memory protection, 
Windows marks pages containing data as nonexecutable, thus preventing inadvertent or malicious 
code execution in data areas . 

32-bit Windows doesn’t provide any protection to private read/write system memory being used 
by components running in kernel mode . In other words, once in kernel mode, operating system and 
device driver code has complete access to system space memory and can bypass Windows security to 
access objects . Because the bulk of the Windows operating system code runs in kernel mode, it is vital 
that components that run in kernel mode be carefully designed and tested to ensure that they don’t 
violate system security or cause system instability .

This lack of protection also emphasizes the need to take care when loading a third-party device 
driver, because once in kernel mode the software has complete access to all operating system data . 
This weakness was one of the reasons behind the driver-signing mechanism introduced in Windows, 
which warns (and, if configured as such, blocks) the user if an attempt is made to add an unsigned 
Plug and Play driver . (See Chapter 8, “I/O System,” in Part 2 for more information on driver  signing .) 
Also, a mechanism called Driver Verifier helps device driver writers to find bugs (such as buffer 
overruns or memory leaks) that can cause security or reliability issues. Driver Verifier is explained in 
Chapter 10 in Part 2 .

On 64-bit versions of Windows, the Kernel Mode Code Signing (KMCS) policy dictates that any 
64-bit device drivers (not just Plug and Play) must be signed with a cryptographic key assigned by 
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one of the major code certification authorities. The user cannot explicitly force the installation of 
an unsigned driver, even as an administrator, but, as a one-time exception, this restriction can be 
disabled manually at boot time by pressing F8 and choosing the advanced boot option Disable Driver 
Signature Enforcement . This causes a watermark on the desktop wallpaper and certain digital rights 
management (DRM) features to be disabled . 

As you’ll see in Chapter 2, “System Architecture,” user applications switch from user mode to kernel 
mode when they make a system service call . For example, a Windows ReadFile function eventually 
needs to call the internal Windows routine that actually handles reading data from a file. That routine, 
because it accesses internal system data structures, must run in kernel mode . The transition from user 
mode to kernel mode is accomplished by the use of a special processor instruction that causes the 
processor to switch to kernel mode and enter the system service dispatching code in the kernel which 
calls the appropriate internal function in Ntoskrnl .exe or Win32k .sys . Before returning control to the 
user thread, the processor mode is switched back to user mode . In this way, the operating system 
protects itself and its data from perusal and modification by user processes.

Note A transition from user mode to kernel mode (and back) does not affect thread 
scheduling per se—a mode transition is not a context switch . Further details on system 
 service dispatching are included in Chapter 3 .

Thus, it’s normal for a user thread to spend part of its time executing in user mode and part in 
 kernel mode . In fact, because the bulk of the graphics and windowing system also runs in kernel 
mode, graphics-intensive applications spend more of their time in kernel mode than in user mode . 
An easy way to test this is to run a graphics-intensive application such as Microsoft Paint or Microsoft 
Chess Titans and watch the time split between user mode and kernel mode using one of the perfor-
mance counters listed in Table 1-2 . More advanced applications can use newer technologies such as 
Direct2D and compositing, which perform bulk computations in user mode and send only the raw 
surface data to the kernel, reducing the time spent transitioning between user and kernel modes .

TABLE 1-2 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU (or all CPUs) has run in kernel mode 
during a specified interval

Processor: % User Time Percentage of time that an individual CPU (or all CPUs) has run in user mode 
during a specified interval

Process: % Privileged Time Percentage of time that the threads in a process have run in kernel mode during 
a specified interval

Process: % User Time Percentage of time that the threads in a process have run in user mode during a 
specified interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel mode during a specified 
 interval

Thread: % User Time Percentage of time that a thread has run in user mode during a specified 
 interval
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EXPERIMENT: Kernel Mode vs. User Mode
You can use the Performance Monitor to see how much time your system spends executing in 
kernel mode vs . in user mode . Follow these steps:

1. Run the Performance Monitor by opening the Start menu and selecting All Programs 
/Administrative Tools/Performance Monitor . Select the Performance Monitor node under 
Performance/Monitoring Tools on the left-side tree .

2. Click the Add button (+) on the toolbar .

3. Expand the Processor counter section, click the % Privileged Time counter and, while 
 holding down the Ctrl key, click the % User Time counter .

4. Click Add, and then click OK .

5. Open a command prompt, and do a directory scan of your C drive over the network by 
 typing dir \\%computername%\c$ /s .

6. When you’re finished, just close the tool.
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You can also quickly see this by using Task Manager . Just click the Performance tab, and then 
select Show Kernel Times from the View menu . The CPU usage bar will show total CPU usage in 
green and kernel-mode time in red .

To see how the Performance Monitor itself uses kernel time and user time, run it again, but 
add the individual Process counters % User Time and % Privileged Time for every process in the 
system:

1. If it’s not already running, run the Performance Monitor again . (If it is already running, start 
with a blank display by right-clicking in the graph area and selecting Remove All Counters .)

2. Click the Add button (+) on the toolbar .

3. In the available counters area, expand the Process section .

4. Select the % Privileged Time and % User Time counters .

5. Select a few processes in the Instance box (such as mmc, csrss, and Idle) .

6. Click Add, and then click OK .

7.  Move the mouse rapidly back and forth .

8. Press Ctrl+H to turn on highlighting mode . This highlights the currently selected counter in 
black .

9. Scroll through the counters at the bottom of the display to identify the processes whose 
threads were running when you moved the mouse, and note whether they were running in 
user mode or kernel mode .

You should see the Performance Monitor process (by looking in the Instance column for the 
mmc process) kernel-mode and user-mode time go up when you move the mouse because it 
is executing application code in user mode and calling Windows functions that run in kernel 
mode . You’ll also notice kernel-mode thread activity in a process named csrss when you move 
the mouse . This activity occurs because the Windows subsystem’s kernel-mode raw input 
thread, which handles keyboard and mouse input, is attached to this process . (See Chapter 2 for 
more information about system threads .) Finally, the process named Idle that you see spending 
nearly 100 percent of its time in kernel mode isn’t really a process—it’s a fake process used to 
account for idle CPU cycles . As you can observe from the mode in which the threads in the Idle 
process run, when Windows has nothing to do, it does it in kernel mode .

Terminal Services and Multiple Sessions
Terminal Services refers to the support in Windows for multiple interactive user sessions on a single 
system . With Windows Terminal Services, a remote user can establish a session on another machine, 
log in, and run applications on the server . The server transmits the graphical user interface to the 
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 client (as well as other configurable resources such as audio and clipboard), and the client transmits 
the user’s input back to the server . (Similar to the X Window System, Windows permits running indi-
vidual applications on a server system with the display remoted to the client instead of remoting the 
entire desktop .)

The first session is considered the services session, or session zero, and contains system service 
hosting processes (explained in further detail in Chapter 4, “Management Mechanisms”). The first 
login session at the physical console of the machine is session one, and additional sessions can be 
created through the use of the remote desktop connection program (Mstsc .exe) or through the use 
of fast user switching (described later) .

Windows client editions permits a single remote user to connect to the machine, but if someone 
is logged in at the console, the workstation is locked (that is, someone can be using the system either 
locally or remotely, but not at the same time) . Windows editions that include Windows Media Center 
allow one interactive session and up to four Windows Media Center Extender sessions .

Windows server systems support two simultaneous remote connections (to facilitate remote 
management—for example, use of management tools that require being logged in to the machine 
being managed) and more than two remote sessions if it’s appropriately licensed and configured as a 
terminal server .

All Windows client editions support multiple sessions created locally through a feature called fast 
user switching that can be used one at a time . When a user chooses to disconnect her session instead 
of log off (for example, by clicking Start and choosing Switch User from the Shutdown submenu or by 
holding down the Windows key and pressing L and then clicking the Switch User button), the  current 
session (that is, the processes running in that session and all the sessionwide data structures that 
describe the session) remains active in the system and the system returns to the main logon screen . If 
a new user logs in, a new session is created .

For applications that want to be aware of running in a terminal server session, there are a set 
of Windows APIs for programmatically detecting that as well as for controlling various aspects of 
 Terminal Services . (See the Windows SDK and the Remote Desktop Services API for details .)

Chapter 2 describes briefly how sessions are created and has some experiments showing how to 
view session information with various tools, including the kernel debugger . The “Object Manager” 
section in Chapter 3 describes how the system namespace for objects is instantiated on a per-session 
basis and how applications that need to be aware of other instances of themselves on the same 
 system can accomplish that . Finally, Chapter 10 in Part 2 covers how the memory manager sets up 
and manages sessionwide data .

Objects and Handles
In the Windows operating system, a kernel object is a single, run-time instance of a statically defined 
object type . An object type comprises a system-defined data type, functions that operate on instances 
of the data type, and a set of object attributes . If you write Windows applications, you might encoun-
ter process, thread, file, and event objects, to name just a few examples. These objects are based on 
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lower-level objects that Windows creates and manages . In Windows, a process is an instance of the 
process object type, a file is an instance of the file object type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An object 
of type process, for example, would have attributes that include the process ID, a base scheduling 
priority, and a pointer to an access token object . Object methods, the means for manipulating objects, 
usually read or change the object attributes . For example, the open method for a process would 
 accept a process identifier as input and return a pointer to the object as output.

Note Although there is a parameter named ObjectAttributes that a caller supplies when 
creating an object using the kernel object manager APIs, that parameter shouldn’t be 
 confused with the more general meaning of the term as used in this book .

The most fundamental difference between an object and an ordinary data structure is that the 
internal structure of an object is opaque . You must call an object service to get data out of an object 
or to put data into it . You can’t directly read or change data inside an object . This difference separates 
the underlying implementation of the object from code that merely uses it, a technique that allows 
object implementations to be changed easily over time .

Objects, through the help of a kernel component called the object manager, provide a convenient 
means for accomplishing the following four important operating system tasks:

 ■ Providing human-readable names for system resources

 ■ Sharing resources and data among processes

 ■ Protecting resources from unauthorized access

 ■ Reference tracking, which allows the system to know when an object is no longer in use so 
that it can be automatically deallocated

Not all data structures in the Windows operating system are objects . Only data that needs to be 
shared, protected, named, or made visible to user-mode programs (via system services) is placed in 
objects . Structures used by only one component of the operating system to implement internal func-
tions are not objects . Objects and handles (references to an instance of an object) are discussed in 
more detail in Chapter 3 .

Security
Windows was designed from the start to be secure and to meet the requirements of various formal 
government and industry security ratings, such as the Common Criteria for Information Technology 
Security Evaluation (CCITSE) specification. Achieving a government-approved security rating allows an 
operating system to compete in that arena . Of course, many of these capabilities are advantageous 
features for any multiuser system .

The core security capabilities of Windows include discretionary (need-to-know) and mandatory 
integrity protection for all shareable system objects (such as files, directories, processes, threads, and 
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so forth), security auditing (for accountability of subjects, or users and the actions they initiate), user 
authentication at logon, and the prevention of one user from accessing uninitialized resources (such 
as free memory or disk space) that another user has deallocated .

Windows has three forms of access control over objects. The first form—discretionary access 
control—is the protection mechanism that most people think of when they think of operating system 
security. It’s the method by which owners of objects (such as files or printers) grant or deny access 
to others . When users log in, they are given a set of security credentials, or a security context . When 
they attempt to access objects, their security context is compared to the access control list on the 
object they are trying to access to determine whether they have permission to perform the requested 
operation .

Privileged access control is necessary for those times when discretionary access control isn’t 
enough . It’s a method of ensuring that someone can get to protected objects if the owner isn’t 
 available . For example, if an employee leaves a company, the administrator needs a way to gain  access 
to files that might have been accessible only to that employee. In that case, under Windows, the 
 administrator can take ownership of the file so that he can manage its rights as necessary.

Finally, mandatory integrity control is required when an additional level of security control is 
required to protect objects that are being accessed from within the same user account . It’s used both 
to isolate Protected Mode Internet Explorer from a user’s configuration and to protect objects  created 
by an elevated administrator account from access by a nonelevated administrator account . (See 
 Chapter 6 for more information on User Account Control—UAC .)

Security pervades the interface of the Windows API . The Windows subsystem implements 
 object-based security in the same way the operating system does; the Windows subsystem protects 
shared Windows objects from unauthorized access by placing Windows security descriptors on them . 
The first time an application tries to access a shared object, the Windows subsystem verifies the appli-
cation’s right to do so . If the security check succeeds, the Windows subsystem allows the application 
to proceed .

For a comprehensive description of Windows security, see Chapter 6 .

Registry
If you’ve worked at all with Windows operating systems, you’ve probably heard about or looked at 
the registry . You can’t talk much about Windows internals without referring to the registry because 
it’s the system database that contains the information required to boot and configure the system, 
 systemwide software settings that control the operation of Windows, the security database, and 
 per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such as the current hardware 
state of the system (what device drivers are loaded, the resources they are using, and so on) as well as 
the Windows performance counters . The performance counters, which aren’t actually “in” the registry, 
are accessed through the registry functions . See Chapter 4 for more on how performance counter 
information is accessed from the registry .
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Although many Windows users and administrators will never need to look directly into the registry 
(because you can view or change most configuration settings with standard administrative utilities), 
it is still a useful source of Windows internals information because it contains many settings that 
 affect system performance and behavior . (If you decide to directly change registry settings, you must 
 exercise extreme caution; any changes might adversely affect system performance or, worse, cause 
the system to fail to boot successfully.) You’ll find references to individual registry keys through-
out this book as they pertain to the component being described . Most registry keys referred to in 
this book are under the systemwide configuration, HKEY_LOCAL_MACHINE, which we’ll abbreviate 
throughout as HKLM .

For further information on the registry and its internal structure, see Chapter 4 .

Unicode
Windows differs from most other operating systems in that most internal text strings are stored and 
processed as 16-bit-wide Unicode characters . Unicode is an international character set standard that 
defines unique 16-bit values for most of the world’s known character sets. 

Because many applications deal with 8-bit (single-byte) ANSI character strings, many Windows 
functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) version and 
an ANSI (narrow, 8-bit) version . If you call the narrow version of a Windows function, there is a slight 
performance impact as input string parameters are converted to Unicode before being processed 
by the system and output parameters are converted from Unicode to ANSI before being returned to 
the application . Thus, if you have an older service or piece of code that you need to run on Windows 
but this code is written using ANSI character text strings, Windows will convert the ANSI characters 
into Unicode for its own use . However, Windows never converts the data inside files—it’s up to the 
 application to decide whether to store data as Unicode or as ANSI .

Regardless of language, all versions of Windows contain the same functions . Instead of having 
separate language versions, Windows has a single worldwide binary so that a single installation can 
support multiple languages (by adding various language packs) . Applications can also take advan-
tage of Windows functions that allow single worldwide application binaries that can support multiple 
languages .

For more information about Unicode, see www.unicode.org as well as the programming 
 documentation in the MSDN Library .

Digging into Windows Internals

Although much of the information in this book is based on reading the Windows source code and 
talking to the developers, you don’t have to take everything on faith . Many details about the internals 
of Windows can be exposed and demonstrated by using a variety of available tools, such as those that 
come with Windows and the Windows debugging tools. These tool packages are briefly described 
later in this section .
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To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars 
throughout the book that describe steps you can take to examine a particular aspect of Windows 
internal behavior . (You already saw a few of these sections earlier in this chapter .) We encourage you 
to try these experiments so that you can see in action many of the internals topics described in this 
book .

Table 1-3 shows a list of the principal tools used in this book and where they come from .

TABLE 1-3 Tools for Viewing Windows Internals

Tool Image Name Origin

Startup Programs Viewer AUTORUNS Sysinternals 

Access Check ACCESSCHK Sysinternals

Dependency Walker DEPENDS www.dependencywalker.com

Global Flags GFLAGS Debugging tools

Handle Viewer HANDLE Sysinternals

Kernel debuggers WINDBG, KD Debugging tools, Windows SDK

Object Viewer WINOBJ Sysinternals

Performance Monitor PERFMON .MSC Windows built-in tool

Pool Monitor POOLMON Windows Driver Kit

Process Explorer PROCEXP Sysinternals

Process Monitor PROCMON Sysinternals

Task (Process) List TLIST Debugging tools

Task Manager TASKMGR Windows built-in tool

Performance Monitor
We’ll refer to the Performance Monitor found in the Administrative Tools folder on the Start menu 
(or via Control Panel) throughout this book; specifically, we’ll focus on the Performance Monitor and 
Resource Monitor . The Performance Monitor has three functions: system monitoring, viewing perfor-
mance counter logs, and setting alerts (by using data collector sets, which also contain performance 
counter logs and trace and configuration data). For simplicity, when we refer to the Performance 
Monitor, we are referring to the System Monitor function within the tool .

The Performance Monitor provides more information about how your system is operating than 
any other single utility . It includes hundreds of base and extensible counters for various objects . 
For each major topic described in this book, a table of the relevant Windows performance counters 
is included .

The Performance Monitor contains a brief description for each counter . To see the descriptions, 
select a counter in the Add Counters window and select the Show Description check box . 
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Although all the low-level system monitoring we’ll do in this book can be done with the 
 Performance Monitor, Windows also includes a Resource Monitor utility (accessible from the start 
menu or from the Task Manager Performance tab) that shows four primary system resources: CPU, 
Disk, Network, and Memory . In their basic states, these resources are displayed with the same level 
of information that you would find in Task Manager. However, they also provide sections that can be 
expanded for more information .

When expanded, the CPU tab displays information about per-process CPU usage, just like Task 
Manager . However, it adds a column for average CPU usage, which can give you a better idea of 
which processes are most active . The CPU tab also includes a separate display of services and their 
associated CPU usage and average. Each service hosting process is identified by the service group 
it is hosting . As with Process Explorer, selecting a process (by clicking its associated check box) will 
display a list of named handles opened by the process, as well as a list of modules (such as DLLs) that 
are loaded in the process address space . The Search Handles box can also be used to search for which 
processes have opened a handle to a given named resource .

The Memory section displays much of the same information that one can obtain with Task 
 Manager, but it is organized for the entire system . A physical memory bar graph displays the current 
organization of physical memory into either hardware reserved, in use, modified, standby, and free 
memory . See Chapter 10 in Part 2 for the exact meaning of these terms .

The Disk section, on the other hand, displays per-file information for I/Os in a way that makes it 
easy to identify the most accessed, written to, or read from files on the system. These results can be 
further filtered down by process.

The Networking section displays the active network connections and which processes own them, 
as well as how much data is going through them . This information makes it possible to see back-
ground network activity that might be hard to detect otherwise . In addition, the TCP connections 
that are active on the system are shown, organized by process, with data such as the remote and local 
port and address, and packet latency . Finally, a list of listening ports is displayed by process,  allowing 
an administrator to see which services (or applications) are currently waiting for connections on a 
given port. The protocol and firewall policy for each port and process is also shown.

Note that all of the Windows performance counters are accessible programmatically . The section 
“HKEY_PERFORMANCE_DATA” in Chapter 4 has a brief description of the components involved in 
retrieving performance counters through the Windows API .

Kernel Debugging
Kernel debugging means examining internal kernel data structures and/or stepping through  functions 
in the kernel . It is a useful way to investigate Windows internals because you can display internal 
system information not available through any other tools and get a clearer idea of code flows within 
the kernel .
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Before describing the various ways you can debug the kernel, let’s examine a set of files that you’ll 
need in order to perform any type of kernel debugging .

Symbols for Kernel Debugging
Symbol files contain the names of functions and variables and the layout and format of data 
 structures . They are generated by the linker and used by debuggers to reference and display these 
names during a debug session . This information is not usually stored in the binary image because it is 
not needed to execute the code . This means that binaries are smaller and faster . However, this means 
that when debugging, you must make sure that the debugger can access the symbol files that are 
 associated with the images you are referencing during a debugging session .

To use any of the kernel debugging tools to examine internal Windows kernel data structures (such 
as the process list, thread blocks, loaded driver list, memory usage information, and so on), you must 
have the correct symbol files for at least the kernel image, Ntoskrnl .exe . (The section “Architecture 
Overview” in Chapter 2 explains more about this file.) Symbol table files must match the version of 
the image they were taken from. For example, if you install a Windows Service Pack or hot fix that 
updates the kernel, you must obtain the matching, updated symbol files.

While it is possible to download and install symbols for various versions of Windows, updated 
symbols for hot fixes are not always available. The easiest solution to obtain the correct version of 
symbols for debugging is to use the Microsoft on-demand symbol server by using a special syntax for 
the symbol path that you specify in the debugger . For example, the following symbol path causes the 
debugging tools to load required symbols from the Internet symbol server and keep a local copy in 
the c:\symbols folder:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

For detailed instructions on how to use the symbol server, see the debugging tools help file or the 
Web page http://msdn.microsoft.com/en-us/windows/hardware/gg462988.aspx .

Debugging Tools for Windows
The Debugging Tools for Windows package contains advanced debugging tools used in this book 
to explore Windows internals . The latest version is included as part of the Windows Software 
 Development Kit (SDK) . These tools can be used to debug user-mode processes as well as the kernel . 
(See the following sidebar .)

Note The Debugging Tools for Windows are updated frequently and released 
 independently of Windows operating system versions, so check often for new versions .
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User-Mode Debugging
The debugging tools can also be used to attach to a user-mode process and examine and/or 
change process memory . There are two options when attaching to a process:

 ■ Invasive Unless specified otherwise, when you attach to a running process, the 
 DebugActiveProcess Windows function is used to establish a connection between the 
debugger and the debugee . This permits examining and/or changing process memory, 
setting breakpoints, and performing other debugging functions . Windows allows you to 
stop debugging without killing the target process, as long as the debugger is detached, 
not killed .

 ■ Noninvasive With this option, the debugger simply opens the process with the 
 OpenProcess function . It does not attach to the process as a debugger . This allows you to 
examine and/or change memory in the target process, but you cannot set breakpoints . 

You can also open user-mode process dump files with the debugging tools. User-mode 
dump files are explained in Chapter 3 in the section on exception dispatching.

There are two debuggers that can be used for kernel debugging: a command-line version (Kd .exe) 
and a graphical user interface (GUI) version (Windbg .exe) . Both provide the same set of commands, 
so which one you choose is a matter of personal preference . You can perform three types of kernel 
debugging with these tools:

 ■ Open a crash dump file created as a result of a Windows system crash . (See Chapter 14, “Crash 
Dump Analysis,” in Part 2 for more information on kernel crash dumps .)

 ■ Connect to a live, running system and examine the system state (or set breakpoints if you’re 
debugging device driver code) . This operation requires two computers—a target and a host . 
The target is the system being debugged, and the host is the system running the debugger . 
The target system can be connected to the host via a null modem cable, an IEEE 1394 cable, 
or a USB 2 .0 debugging cable . The target system must be booted in debugging mode (either 
by pressing F8 during the boot process and selecting Debugging Mode or by configuring 
the system to boot in debugging mode using Bcdedit or Msconfig.exe). You can also connect 
through a named pipe, which is useful when debugging through a virtual machine product 
such as Hyper-V, Virtual PC, or VMWare, by exposing the guest operating system’s serial port 
as a named pipe device .

 ■ Windows systems also allow you to connect to the local system and examine the system state . 
This is called local kernel debugging . To initiate local kernel debugging with WinDbg, open the 
File menu, choose Kernel Debug, click on the Local tab, and then click OK . The target system 
must be booted in debugging mode . An example output screen is shown in Figure 1-6 . Some 
kernel debugger commands do not work when used in local kernel debugging mode (such as 
creating a memory dump with the  .dump command—however, this can be done with LiveKd, 
described later in this section) .
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FIGURE 1-6 Local kernel debugging

Once connected in kernel debugging mode, you can use one of the many debugger extension 
commands (commands that begin with “!”) to display the contents of internal data structures such 
as threads, processes, I/O request packets, and memory management information . Throughout this 
book, the relevant kernel debugger commands and output are included as they apply to each topic 
being discussed . An excellent companion reference is the Debugger.chm help file, contained in the 
WinDbg installation folder, which documents all the kernel debugger functionality and extensions . In 
addition, the dt (display type) command can format over 1000 kernel structures because the kernel 
symbol files for Windows contain type information that the debugger can use to format structures.

EXPERIMENT: Displaying Type Information for Kernel Structures
To display the list of kernel structures whose type information is included in the kernel symbols, 
type dt nt!_* in the kernel debugger . A sample partial output is shown here:

lkd> dt nt!_*  
          nt!_LIST_ENTRY  
          nt!_LIST_ENTRY  
          nt!_IMAGE_NT_HEADERS  
          nt!_IMAGE_FILE_HEADER  
          nt!_IMAGE_OPTIONAL_HEADER  
          nt!_IMAGE_NT_HEADERS  
          nt!_LARGE_INTEGER

You can also use the dt command to search for specific structures by using its wildcard 
lookup capability . For example, if you were looking for the structure name for an interrupt 
object, type dt nt!_*interrupt*:

lkd> dt nt!_*interrupt*  
          nt!_KINTERRUPT  
          nt!_KINTERRUPT_MODE 
          nt!_KINTERRUPT_POLARITY 
          nt!_UNEXPECTED_INTERRUPT
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Then you can use dt to format a specific structure as shown next:

lkd> dt nt!_kinterrupt  
nt!_KINTERRUPT  
   +0x000 Type             : Int2B 
   +0x002 Size             : Int2B 
   +0x008 InterruptListEntry : _LIST_ENTRY 
   +0x018 ServiceRoutine   : Ptr64     unsigned char  
   +0x020 MessageServiceRoutine : Ptr64     unsigned char  
   +0x028 MessageIndex     : Uint4B 
   +0x030 ServiceContext   : Ptr64 Void 
   +0x038 SpinLock         : Uint8B 
   +0x040 TickCount        : Uint4B 
   +0x048 ActualLock       : Ptr64 Uint8B 
   +0x050 DispatchAddress  : Ptr64     void  
   +0x058 Vector           : Uint4B 
   +0x05c Irql             : UChar 
   +0x05d SynchronizeIrql  : UChar 
   +0x05e FloatingSave     : UChar 
   +0x05f Connected        : UChar 
   +0x060 Number           : Uint4B 
   +0x064 ShareVector      : UChar 
   +0x065 Pad              : [3] Char 
   +0x068 Mode             : _KINTERRUPT_MODE 
   +0x06c Polarity         : _KINTERRUPT_POLARITY 
   +0x070 ServiceCount     : Uint4B 
   +0x074 DispatchCount    : Uint4B 
   +0x078 Rsvd1            : Uint8B 
   +0x080 TrapFrame        : Ptr64 _KTRAP_FRAME 
   +0x088 Reserved         : Ptr64 Void 
   +0x090 DispatchCode     : [4] Uint4B

Note that dt does not show substructures (structures within structures) by default . To recurse 
through substructures, use the –r switch . For example, using this switch to display the kernel 
interrupt object shows the format of the _LIST_ENTRY structure stored at the InterruptListEntry 
field:

lkd> dt nt!_kinterrupt -r  
nt!_KINTERRUPT  
   +0x000 Type             : Int2B 
   +0x002 Size             : Int2B 
   +0x008 InterruptListEntry : _LIST_ENTRY 
      +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x008 Blink            : Ptr64 _LIST_ENTRY 
      +0x008 Blink            : Ptr64 _LIST_ENTRY 
         +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x008 Blink            : Ptr64 _LIST_ENTRY
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The Debugging Tools for Windows help file also explains how to set up and use the kernel 
 debuggers . Additional details on using the kernel debuggers that are aimed primarily at device driver 
writers can be found in the Windows Driver Kit documentation . 

LiveKd Tool
LiveKd is a free tool from Sysinternals that allows you to use the standard Microsoft kernel debuggers 
just described to examine the running system without booting the system in debugging mode . This 
approach might be useful when kernel-level troubleshooting is required on a machine that wasn’t 
booted in debugging mode—certain issues might be hard to reproduce reliably, so a reboot with the 
debug option enabled might not readily exhibit the error .

You run LiveKd just as you would WinDbg or Kd . LiveKd passes any command-line options you 
specify to the debugger you select . By default, LiveKd runs the command-line kernel debugger (Kd) . 
To have it run WinDbg, specify the –w switch. To see the help files for LiveKd switches, specify the –? 
switch .

LiveKd presents a simulated crash dump file to the debugger, so you can perform any operations 
in LiveKd that are supported on a crash dump . Because LiveKd is relying on physical memory to back 
the simulated dump, the kernel debugger might run into situations in which data structures are in the 
middle of being changed by the system and are inconsistent . Each time the debugger is launched, 
it starts with a fresh view of the system state . If you want to refresh the snapshot, quit the  debugger 
(with the q command), and LiveKd will ask you whether you want to start it again . If the  debugger 
enters a loop in printing output, press Ctrl+C to interrupt the output and quit . If it hangs, press 
Ctrl+Break, which will terminate the debugger process . LiveKd will then ask you whether you want to 
run the debugger again .

Windows Software Development Kit
The Windows Software Development Kit (SDK) is available as part of the MSDN subscription program 
or can be downloaded for free from msdn.microsoft.com . Besides the Debugging Tools, it contains 
the documentation, C header files, and libraries necessary to compile and link Windows applications. 
(Although Microsoft Visual C++ comes with a copy of these header files, the versions contained in 
the Windows SDK always match the latest version of the Windows operating systems, whereas the 
version that comes with Visual C++ might be an older version that was current when Visual C++ was 
released .) From an internals perspective, items of interest in the Windows SDK include the Windows 
API header files (\Program Files\Microsoft SDKs\Windows\v7.0A\Include). A few of these tools are also 
shipped as sample source code in both the Windows SDK and the MSDN Library .

Windows Driver Kit
The Windows Driver Kit (WDK) is also available through the MSDN subscription program, and just 
like the Windows SDK, it is available for free download . The Windows Driver Kit documentation is 
included in the MSDN Library .



32 Windows Internals, Sixth Edition, Part 1

Although the WDK is aimed at device driver developers, it is an abundant source of Windows 
 internals information . For example, while Chapter 8 in Part 2 describes the I/O system architecture, 
driver model, and basic device driver data structures, it does not describe the individual kernel 
 support functions in detail . The WDK documentation contains a comprehensive description of all 
the Windows kernel support functions and mechanisms used by device drivers in both a tutorial and 
reference form .

Besides including the documentation, the WDK contains header files (in particular, ntddk.h, ntifs.h, 
and wdm.h) that define key internal data structures and constants as well as interfaces to many 
internal system routines. These files are useful when exploring Windows internal data structures with 
the kernel debugger because although the general layout and content of these structures are shown 
in this book, detailed field-level descriptions (such as size and data types) are not. A number of these 
data structures (such as object dispatcher headers, wait blocks, events, mutants, semaphores, and so 
on) are, however, fully described in the WDK .

So if you want to dig into the I/O system and driver model beyond what is presented in this book, 
read the WDK documentation (especially the Kernel-Mode Driver Architecture Design Guide and 
Reference manuals). You might also find useful Programming the Microsoft Windows Driver Model, 
Second Edition by Walter Oney (Microsoft Press, 2002) and Developing Drivers with the Windows 
Driver Foundation by Penny Orwick and Guy Smith (Microsoft Press, 2007) .

Sysinternals Tools
Many experiments in this book use freeware tools that you can download from Sysinternals . Mark 
Russinovich, coauthor of this book, wrote most of these tools . The most popular tools include Process 
Explorer and Process Monitor . Note that many of these utilities involve the installation and execution 
of kernel-mode device drivers and thus require (elevated) administrator privileges, though they can 
run with limited functionality and output in a standard (or nonelevated) user account .

Since the Sysinternals tools are updated frequently, it is best to make sure you have the  latest 
 version. To be notified of tool updates, you can follow the Sysinternals Site Blog (which has an 
RSS feed) .

For a description of all the tools, a description of how to use them, and case studies of 
 problems solved, see Windows Sysinternals Administrator’s Reference (Microsoft Press, 2011) by 
Mark  Russinovich and Aaron Margosis .

For questions and discussions on the tools, use the Sysinternals Forums .

Conclusion

In this chapter, you’ve been introduced to the key Windows technical concepts and terms that will be 
used throughout the book . You’ve also had a glimpse of the many useful tools available for  digging 
into Windows internals . Now we’re ready to begin our exploration of the internal design of the 
 system, beginning with an overall view of the system architecture and its key components .
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C H A P T E R  2

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re ready 
to start our exploration of the internal design goals and structure of the Microsoft Windows 

operating system . This chapter explains the overall architecture of the system—the key components, 
how they interact with each other, and the context in which they run . To provide a framework for 
understanding the internals of Windows, let’s first review the requirements and goals that shaped the 
original design and specification of the system.

Requirements and Design Goals

The following requirements drove the specification of Windows NT back in 1989:

 ■ Provide a true 32-bit, preemptive, reentrant, virtual memory operating system

 ■ Run on multiple hardware architectures and platforms

 ■ Run and scale well on symmetric multiprocessing systems

 ■ Be a great distributed computing platform, both as a network client and as a server

 ■ Run most existing 16-bit MS-DOS and Microsoft Windows 3 .1 applications

 ■ Meet government requirements for POSIX 1003 .1 compliance

 ■ Meet government and industry requirements for operating system security

 ■ Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these 
 requirements, the Windows NT design team adopted the following design goals at the beginning of 
the project:

 ■ Extensibility The code must be written to comfortably grow and change as market 
 requirements change .

 ■ Portability The system must be able to run on multiple hardware architectures and must be 
able to move with relative ease to new ones as market demands dictate .
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 ■ Reliability and robustness The system should protect itself from both internal  malfunction 
and external tampering . Applications should not be able to harm the operating system or 
other applications .

 ■ Compatibility Although Windows NT should extend existing technology, its user interface 
and APIs should be compatible with older versions of Windows and with MS-DOS . It should 
also interoperate well with other systems, such as UNIX, OS/2, and NetWare .

 ■ Performance Within the constraints of the other design goals, the system should be as fast 
and responsive as possible on each hardware platform .

As we explore the details of the internal structure and operation of Windows, you’ll see how these 
original design goals and market requirements were woven successfully into the construction of the 
system . But before we start that exploration, let’s examine the overall design model for Windows and 
compare it with other modern operating systems .

Operating System Model

In most multiuser operating systems, applications are separated from the operating system itself—
the operating system kernel code runs in a privileged processor mode (referred to as kernel mode in 
this book), with access to system data and to the hardware; application code runs in a nonprivileged 
processor mode (called user mode), with a limited set of interfaces available, limited access to system 
data, and no direct access to hardware . When a user-mode program calls a system service, the pro-
cessor executes a special instruction that switches the calling thread to kernel mode . When the system 
service completes, the operating system switches the thread context back to user mode and allows 
the caller to continue .

Windows is similar to most UNIX systems in that it’s a monolithic operating system in the sense 
that the bulk of the operating system and device driver code shares the same kernel-mode protected 
memory space . This means that any operating system component or device driver can potentially 
corrupt data being used by other operating system components . However, Windows does imple-
ment some kernel protection mechanisms, such as PatchGuard and Kernel Mode Code Signing (both 
described in Chapter 3, “System Mechanisms”), which help in the mitigation and prevention of issues 
related to the shared kernel-mode address space .

All these operating system components are, of course, fully protected from errant applications 
 because applications don’t have direct access to the code and data of the privileged part of the 
 operating system (although they can quickly call other kernel services) . This protection is one of the 
reasons that Windows has the reputation for being both robust and stable as an application server 
and as a workstation platform, yet fast and nimble from the perspective of core operating system 
services, such as virtual memory management, file I/O, networking, and file and print sharing.
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The kernel-mode components of Windows also embody basic object-oriented design principles . 
For example, in general they don’t reach into one another’s data structures to access information 
maintained by individual components . Instead, they use formal interfaces to pass parameters and 
 access and/or modify data structures .

Despite its pervasive use of objects to represent shared system resources, Windows is not an 
object-oriented system in the strict sense . Most of the operating system code is written in C for 
portability . The C programming language doesn’t directly support object-oriented constructs such as 
dynamic binding of data types, polymorphic functions, or class inheritance . Therefore, the C-based 
implementation of objects in Windows borrows from, but doesn’t depend on, features of particular 
object-oriented languages .

Architecture Overview

With this brief overview of the design goals and packaging of Windows, let’s take a look at the key 
system components that make up its architecture. A simplified version of this architecture is shown 
in Figure 2-1 . Keep in mind that this diagram is basic—it doesn’t show everything . (For example, the 
networking components and the various types of device driver layering are not shown .)

User mode

Kernel mode

Windowing
and graphics

Hardware abstraction layer (HAL)

Device driversKernel

Executive

System
support

processes

Service
processes

User
applications

Environment
subsystems

Subsystem DLLs

FIGURE 2-1 Simplified Windows architecture

In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the Windows 
operating system . The boxes above the line represent user-mode processes, and the components 
below the line are kernel-mode operating system services . As mentioned in Chapter 1, “Concepts 
and Tools,” user-mode threads execute in a protected process address space (although while they 
are executing in kernel mode, they have access to system space) . Thus, system support processes, 
service processes, user applications, and environment subsystems each have their own private process 
 address space .
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The four basic types of user-mode processes are described as follows:

 ■ Fixed (or hardwired) system support processes, such as the logon process and the Session 
Manager, that are not Windows services . (That is, they are not started by the service control 
manager . Chapter 4, “Management and Mechanisms,” describes services in detail .)

 ■ Service processes that host Windows services, such as the Task Scheduler and Print Spooler 
services . Services generally have the requirement that they run independently of user logons . 
Many Windows server applications, such as Microsoft SQL Server and Microsoft Exchange 
Server, also include components that run as services .

 ■ User applications, which can be one of the following types: Windows 32-bit or 64-bit, Windows 
3 .1 16-bit, MS-DOS 16-bit, or POSIX 32-bit or 64-bit . Note that 16-bit applications can be run 
only on 32-bit Windows .

 ■ Environment subsystem server processes, which implement part of the support for the 
 operating system environment, or personality, presented to the user and programmer . 
 Windows NT originally shipped with three environment subsystems: Windows, POSIX, and 
OS/2 . However, the POSIX and OS/2 subsystems last shipped with Windows 2000 . The Ultimate 
and Enterprise editions of Windows client as well as all of the server versions include support 
for an enhanced POSIX subsystem called Subsystem for Unix-based Applications (SUA) .

In Figure 2-1, notice the “Subsystem DLLs” box below the “Service processes” and “User 
 applications” boxes . Under Windows, user applications don’t call the native Windows operating 
system services directly; rather, they go through one or more subsystem dynamic-link libraries (DLLs) . 
The role of the subsystem DLLs is to translate a documented function into the appropriate internal 
(and generally undocumented) native system service calls . This translation might or might not involve 
sending a message to the environment subsystem process that is serving the user application .

The kernel-mode components of Windows include the following:

 ■ The Windows executive contains the base operating system services, such as memory 
 management, process and thread management, security, I/O, networking, and interprocess 
communication .

 ■ The Windows kernel consists of low-level operating system functions, such as thread 
 scheduling, interrupt and exception dispatching, and multiprocessor synchronization . It also 
provides a set of routines and basic objects that the rest of the executive uses to implement 
higher-level constructs .

 ■ Device drivers include both hardware device drivers, which translate user I/O function calls 
into specific hardware device I/O requests, as well as nonhardware device drivers such as file 
system and network drivers .

 ■ The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, the device 
 drivers, and the rest of the Windows executive from platform-specific hardware differences 
(such as differences between motherboards) .
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 ■ The windowing and graphics system implements the graphical user interface (GUI) functions 
(better known as the Windows USER and GDI functions), such as dealing with windows, user 
interface controls, and drawing .

Table 2-1 lists the file names of the core Windows operating system components . (You’ll need 
to know these file names because we’ll be referring to some system files by name.) Each of these 
 components is covered in greater detail both later in this chapter and in the chapters that follow .

TABLE 2-1 Core Windows System Files

File Name Components

Ntoskrnl .exe Executive and kernel

Ntkrnlpa .exe (32-bit systems only) Executive and kernel, with support for Physical Address Extension (PAE), which 
allows 32-bit systems to address up to 64 GB of physical memory and to mark 
memory as nonexecutable (see the section “No Execute Page Prevention” in 
Chapter 10, “Memory Management,” in Part 2)

Hal .dll Hardware abstraction layer

Win32k .sys Kernel-mode part of the Windows subsystem

Ntdll .dll Internal support functions and system service dispatch stubs to executive 
 functions

Kernel32 .dll, Advapi32 .dll,  
User32 .dll, Gdi32 .dll

Core Windows subsystem DLLs

Before we dig into the details of these system components, though, let’s examine some basics 
about the Windows kernel design, starting with how Windows achieves portability across multiple 
hardware architectures .

Portability
Windows was designed to run on a variety of hardware architectures . The initial release of Windows 
NT supported the x86 and MIPS architectures . Support for the Digital Equipment Corporation (which 
was bought by Compaq, which later merged with Hewlett-Packard) Alpha AXP was added shortly 
thereafter . (Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode . During the 
development of Windows 2000, a native 64-bit version was running on Alpha AXP, but this was never 
released .) Support for a fourth processor architecture, the Motorola PowerPC, was added in  Windows 
NT 3 .51 . Because of changing market demands, however, support for the MIPS and  PowerPC 
 architectures was dropped before development began on Windows 2000 . Later, Compaq withdrew 
support for the Alpha AXP architecture, resulting in Windows 2000 being supported only on the 
x86 architecture . Windows XP and Windows Server 2003 added support for three 64-bit processor 
families: the Intel Itanium IA-64 family, the AMD64 family, and the Intel 64-bit Extension Technology 
(EM64T) for x86 (which is compatible with the AMD64 architecture, although there are slight differ-
ences in  instructions supported) . The latter two processor families are called 64-bit extended systems 
and in this book are referred to as x64 . (How Windows runs 32-bit applications on 64-bit Windows is 
explained in Chapter 3 .)
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Windows achieves portability across hardware architectures and platforms in two primary ways:

 ■ Windows has a layered design, with low-level portions of the system that are processor- 
architecture-specific or platform-specific isolated into separate modules so that upper layers 
of the system can be shielded from the differences between architectures and among hard-
ware platforms . The two key components that provide operating system portability are the 
kernel (contained in Ntoskrnl .exe) and the hardware abstraction layer (or HAL, contained in 
Hal .dll) . Both these components are described in more detail later in this chapter . Functions 
that are architecture-specific (such as thread context switching and trap dispatching) are im-
plemented in the kernel . Functions that can differ among systems within the same architecture 
(for example, different motherboards) are implemented in the HAL . The only other component 
with a significant amount of architecture-specific code is the memory manager, but even that 
is a small amount compared to the system as a whole .

 ■ The vast majority of Windows is written in C, with some portions in C++ . Assembly language is 
used only for those parts of the operating system that need to communicate directly with sys-
tem hardware (such as the interrupt trap handler) or that are extremely performance- sensitive 
(such as context switching) . Assembly language code exists not only in the kernel and the 
HAL but also in a few other places within the core operating system (such as the routines that 
implement interlocked instructions as well as one module in the local procedure call facility), in 
the kernel-mode part of the Windows subsystem, and even in some user-mode libraries, such 
as the process startup code in Ntdll .dll (a system library explained later in this chapter) .

Symmetric Multiprocessing
Multitasking is the operating system technique for sharing a single processor among multiple threads 
of execution . When a computer has more than one processor, however, it can execute multiple 
threads simultaneously . Thus, whereas a multitasking operating system only appears to execute 
multiple threads at the same time, a multiprocessing operating system actually does it, executing one 
thread on each of its processors .

As mentioned at the beginning of this chapter, one of the key design goals for Windows was that it 
had to run well on multiprocessor computer systems . Windows is a symmetric multiprocessing (SMP) 
operating system . There is no master processor—the operating system as well as user threads can be 
scheduled to run on any processor . Also, all the processors share just one memory space . This model 
contrasts with asymmetric multiprocessing (ASMP), in which the operating system typically selects one 
processor to execute operating system kernel code while other processors run only user code . The 
differences in the two multiprocessing models are illustrated in Figure 2-2 .

Windows also supports three modern types of multiprocessor systems: multicore, Hyper-Threading 
enabled, and NUMA (non-uniform memory architecture). These are briefly mentioned in the  following 
paragraphs . (For a complete, detailed description of the scheduling support for these systems, see the 
thread scheduling section in Chapter 5, “Processes and Threads” .) 
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FIGURE 2-2 Symmetric vs . asymmetric multiprocessing

Hyper-Threading is a technology introduced by Intel that provides two logical processors for each 
physical core . Each logical processor has its own CPU state, but the execution engine and onboard 
cache are shared . This permits one logical CPU to make progress while the other logical CPU is stalled 
(such as after a cache miss or branch misprediction) . The scheduling algorithms are enhanced to make 
optimal use of Hyper-Threading-enabled machines, such as by scheduling threads on an idle  physical 
processor versus choosing an idle logical processor on a physical processor whose other logical 
 processors are busy . For more details on thread scheduling, see Chapter 5 .

In NUMA systems, processors are grouped in smaller units called nodes . Each node has its own 
processors and memory and is connected to the larger system through a cache-coherent intercon-
nect bus . Windows on a NUMA system still runs as an SMP system, in that all processors have access 
to all memory—it’s just that node-local memory is faster to reference than memory attached to other 
nodes . The system attempts to improve performance by scheduling threads on processors that are 
in the same node as the memory being used . It attempts to satisfy memory-allocation requests from 
within the node, but it will allocate memory from other nodes if necessary .

Naturally, Windows also natively supports multicore systems—because these systems have real 
physical cores (simply on the same package), the original SMP code in Windows treats them as 
 discrete processors, except for certain accounting and identification tasks (such as licensing, described 
shortly) that distinguish between cores on the same processor and cores on different sockets .
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Windows was not originally designed with a specific processor number limit in mind, other than 
the licensing policies that differentiate the various Windows editions . However, for convenience and 
efficiency, Windows does keep track of processors (total number, idle, busy, and other such details) 
in a bitmask (sometimes called an affinity mask) that is the same number of bits as the native data 
type of the machine (32-bit or 64-bit), which allows the processor to manipulate bits directly within a 
register . Due to this fact, Windows systems were originally limited to the number of CPUs in a native 
word, because the affinity mask couldn’t arbitrarily be increased. To maintain compatibility, as well as 
support larger processor systems, Windows implements a higher-order construct called a processor 
group. The processor group is a set of processors that can all be defined by a single affinity  bitmask, 
and the kernel as well as the applications can choose which group they refer to during affinity 
 updates . Compatible applications can query the number of supported groups (currently limited to 4) 
and then enumerate the bitmask for each group . Meanwhile, legacy applications continue to function 
by seeing only their current group . More information on how exactly Windows assigns processors to 
groups (which is also related to NUMA) is detailed in Chapter 5 .

As mentioned, the actual number of supported licensed processors depends on the edition of 
Windows being used . (See Table 2-2 later in this chapter .) This number is stored in the system  license 
policy file (\Windows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft 
\Software ProtectionPlatform\tokens.dat) as a policy value called “Kernel-RegisteredProcessors.”  
(Keep in mind that tampering with that data is a violation of the software license, and modifying 
licensing policies to allow the use of more processors involves more than just changing this value .)

Scalability
One of the key issues with multiprocessor systems is scalability . To run correctly on an SMP system, 
operating system code must adhere to strict guidelines and rules . Resource contention and other 
 performance issues are more complicated in multiprocessing systems than in uniprocessor systems 
and must be accounted for in the system’s design . Windows incorporates several features that are 
crucial to its success as a multiprocessor operating system:

 ■ The ability to run operating system code on any available processor and on multiple 
 processors at the same time

 ■ Multiple threads of execution within a single process, each of which can execute 
 simultaneously on different processors

 ■ Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks, and 
pushlocks, described in Chapter 3) as well as within device drivers and server processes, which 
allows more components to run concurrently on multiple processors

 ■ Programming mechanisms such as I/O completion ports (described in Chapter 8, “I/O System,” 
in Part 2) that facilitate the efficient implementation of multithreaded server processes that 
can scale well on multiprocessor systems
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The scalability of the Windows kernel has evolved over time . For example, Windows Server 2003 
introduced per-CPU scheduling queues, which permit thread scheduling decisions to occur in parallel 
on multiple processors . Windows 7 and Windows Server 2008 R2 eliminated global locking on the 
scheduling database . This step-wise improvement of the granularity of locking has also occurred in 
other areas, such as the memory manager . Further details on multiprocessor synchronization can be 
found in Chapter 3 .

Differences Between Client and Server Versions
Windows ships in both client and server retail packages . As of this writing, there are six client 
 versions of Windows 7: Windows 7 Home Basic, Windows 7 Home Premium, Windows 7 Professional, 
 Windows 7 Ultimate, Windows 7 Enterprise, and Windows 7 Starter . 

There are seven different versions of Windows Server 2008 R2: Windows Server 2008 R2 
 Foundation, Windows Server 2008 R2 Standard, Windows Server 2008 R2 Enterprise, Windows Server 
2008 R2 Datacenter, Windows Web Server 2008 R2, Windows HPC Server 2008 R2, and Windows 
Server 2008 R2 for Itanium-Based Systems (which is the last release of Windows to support the Intel 
Itanium processor) .

Additionally, there are “N” versions of the client that do not include Windows Media Player . Finally, 
the Standard, Enterprise, and Datacenter editions of Windows Server 2008 R2 also include “with 
Hyper-V” editions, which include Hyper-V . (Hyper-V virtualization is discussed in Chapter 3 .)

These versions differ by

 ■ The number of processors supported (in terms of sockets, not cores or threads)

 ■ The amount of physical memory supported (actually highest physical address usable for 
RAM—see Chapter 10 in Part 2 for more information on physical memory limits)

 ■ The number of concurrent network connections supported (For example, a maximum of 10 
concurrent connections are allowed to the file and print services in the client version.)

 ■ Support for Media Center

 ■ Support for Multi-Touch, Aero, and Desktop Compositing

 ■ Support for features such as BitLocker, VHD Booting, AppLocker, Windows XP Compatibility 
Mode, and more than 100 other configurable licensing policy values

 ■ Layered services that come with Windows Server editions that don’t come with the client 
 editions (for example, directory services and clustering)

Table 2-2 lists the differences in memory and processor support for Windows 7 and Windows 
Server 2008 R2 . For a detailed comparison chart of the different editions of Windows Server 2008 R2, 
see www.microsoft.com/windowsserver2008/en/us/r2-compare-specs.aspx .
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TABLE 2-2 Differences Between Windows 7 and Windows Server 2008 R2

Number 
of Sockets 
Supported  
(32-Bit Edition)

Physical 
Memory 
Supported  
(32-Bit Edition)

Number 
of Sockets 
Supported  
(64-Bit Edition)

Physical 
Memory 
Supported 
(Itanium 
Editions)

Physical Memory 
Supported  
(x64 Editions)

Windows 7 Starter 1 2 GB Not available Not available 2 GB

Windows 7 Home 
Basic

1 4 GB 1 Not available 8 GB

Windows 7 Home 
Premium

1 4 GB 1 Not available 16 GB

Windows 7 
Professional

2 4 GB 2 Not available 192 GB

Windows 7 
Enterprise

2 4 GB 2 Not available 192 GB

Windows 7 
Ultimate

2 4 GB 2 Not available 192 GB

Windows 
Server 2008 R2 
Foundation

Not available Not available 1 Not available 8 GB

Windows Web 
Server 2008 R2

Not available Not available 4 Not available 32 GB

Windows Server 
2008 R2 Standard 

Not available Not available 4 Not available 32 GB

Windows HPC 
Server 2008 R2 

Not available Not available 4 Not available 128 GB

Windows Server 
2008 R2 Enterprise 

Not available Not available 8 Not available 2048 GB

Windows 
Server 2008 R2 
Datacenter 

Not available  Not available 64 Not available 2048 GB

Windows Server 
2008 R2 for 
Itanium-Based 
Systems

Not available Not available 64 2048 GB Not available

Although there are several client and server retail packages of the Windows operating system, they 
share a common set of core system files, including the kernel image, Ntoskrnl .exe (and the PAE ver-
sion, Ntkrnlpa .exe); the HAL libraries; the device drivers; and the base system utilities and DLLs . These 
files are identical for all editions of Windows 7 and Windows Server 2008 R2.

With so many different editions of Windows and each having the same kernel image, how does the 
system know which edition is booted? By querying the registry values ProductType and  ProductSuite 
under the HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType is used to 
distinguish whether the system is a client system or a server system (of any flavor). These values are 
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loaded into the registry based on the licensing policy file described earlier. The valid values are listed 
in Table 2-3 . This can be queried from the user-mode GetVersionEx function or from a device driver 
using the kernel-mode support function RtlGetVersion .

TABLE 2-3 ProductType Registry Values

Edition of Windows Value of ProductType

Windows client WinNT

Windows server (domain controller) LanmanNT

Windows server (server only) ServerNT

A different registry value, ProductPolicy, contains a cached copy of the data inside the tokens .dat 
file, which differentiates between the editions of Windows and the features that they enable.

If user programs need to determine which edition of Windows is running, they can call the 
Windows VerifyVersionInfo function, documented in the Windows Software Development Kit (SDK) . 
Device drivers can call the kernel-mode function RtlVerifyVersionInfo, documented in the WDK .

So if the core files are essentially the same for the client and server versions, how do the systems 
differ in operation? In short, server systems are optimized by default for system throughput as high-
performance application servers, whereas the client version (although it has server capabilities) is 
optimized for response time for interactive desktop use . For example, based on the product type, 
several resource allocation decisions are made differently at system boot time, such as the size and 
number of operating system heaps (or pools), the number of internal system worker threads, and the 
size of the system data cache . Also, run-time policy decisions, such as the way the memory manager 
trades off system and process memory demands, differ between the server and client editions . Even 
some thread scheduling details have different default behavior in the two families (the default length 
of the time slice, or thread quantum—see Chapter 5 for details). Where there are significant opera-
tional differences in the two products, these are highlighted in the pertinent chapters throughout the 
rest of this book . Unless otherwise noted, everything in this book applies to both the client and server 
versions .

EXPERIMENT: Determining Features Enabled by Licensing Policy
As mentioned earlier, Windows supports more than 100 different features that can be enabled 
through the software licensing mechanism . These policy settings determine the various differ-
ences not only between a client and server installation, but also between each edition (or SKU) 
of the operating system, such as BitLocker support (available on Windows server as well as the 
Ultimate and Enterprise editions of Windows client) . You can use the SlPolicy tool available from 
Winsider Seminars & Solutions (www.winsiderss.com/tools/slpolicy.htm) to display these policy 
values on your machine .
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Policy settings are organized by a facility, which represents the owner module for which the 
policy applies . You can display a list of all facilities on your system by running Slpolicy .exe with 
the –f switch: 

C:\>SlPolicy.exe -f  
SlPolicy v1.05 - Show Software Licensing Policies 
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc. 
www.winsiderss.com 
 
Software Licensing Facilities: 
 
Kernel 
Licensing and Activation 
Core 
DWM 
SMB 
IIS 
. 
. 
.

You can then add the name of any facility after the switch to display the policy value for that 
facility . For example, to look at the limitations on CPUs and available memory, use the Kernel 
facility . Here’s the expected output on a machine running Windows 7 Ultimate:

C:\>SlPolicy.exe -f Kernel 
 
 
SlPolicy v1.05 - Show Software Licensing Policies 
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc. 
www.winsiderss.com 
 
Kernel 
------ 
Processor Limit: 2 
Maximum Memory Allowed (x86): 4096 
Maximum Memory Allowed (x64): 196608 
Maximum Memory Allowed (IA64): 196608 
Maximum Physical Page: 4096 
Addition of Physical Memory Allowed: No 
Addition of Physical Memory Allowed, if virtualized: Yes 
Product Information: 1 
Dynamic Partitioning Supported: No 
Virtual Dynamic Partitioning Supported: No 
Memory Mirroring Supported: No 
Native VHD Boot Supported: Yes 
Bad Memory List Persistance Supported: No 
Number of MUI Languages Allowed: 1000 
List of Allowed Languages: EMPTY 
List of Disallowed Languages: EMPTY 
MUI Language SKU: 
Expiration Date: 0
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Checked Build
There is a special debug version of Windows called the checked build (available only with an MSDN 
Operating Systems subscription) . It is a recompilation of the Windows source code with a compile-
time flag defined called “DBG” (to cause compile-time, conditional debugging and tracing code to 
be included) . Also, to make it easier to understand the machine code, the post-processing of the 
Windows binaries to optimize code layout for faster execution is not performed . (See the section 
“ Debugging Performance-Optimized Code” in the Debugging Tools for Windows help file.)

The checked build is provided primarily to aid device driver developers because it performs more 
stringent error checking on kernel-mode functions called by device drivers or other system code . 
For example, if a driver (or some other piece of kernel-mode code) makes an invalid call to a system 
function that is checking parameters (such as acquiring a spinlock at the wrong interrupt level), the 
system will stop execution when the problem is detected rather than allow some data structure to be 
corrupted and the system to possibly crash at a later time .

EXPERIMENT: Determining If You Are Running the Checked Build
There is no built-in tool to display whether you are running the checked build or the retail build 
(called the free build) . However, this information is available through the “Debug” property of 
the Windows Management Instrumentation (WMI) Win32_OperatingSystem class . The following 
sample Microsoft Visual Basic script displays this property:

strComputer = "."  
Set objWMIService = GetObject("winmgmts:" _  
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")  
Set colOperatingSystems = objWMIService.ExecQuery _  
 ("SELECT * FROM Win32_OperatingSystem")  
For Each objOperatingSystem in colOperatingSystems  
 Wscript.Echo "Caption: " & objOperatingSystem.Caption  
 Wscript.Echo "Debug: " & objOperatingSystem.Debug  
 Wscript.Echo "Version: " & objOperatingSystem.Version  
Next

To try this, type in the preceding script and save it as file. The following is the output from 
running the script:

C:\>cscript osversion.vbs  
Microsoft (R) Windows Script Host Version 5.8 
Copyright (C) Microsoft Corporation. All rights reserved.  
  
Caption: Microsoft Windows Server 2008 R2 Enterprise 
Debug: False  
Version: 6.1.7600

This system is not running the checked build, because the Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a result of using the ASSERT and/or 
NT_ASSERT macros, which are defined in the WDK header file Wdm.h and documented in the WDK 
documentation . These macros test a condition (such as the validity of a data structure or parameter), 
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and if the expression evaluates to FALSE, the macros call the kernel-mode function RtlAssert, which 
calls DbgPrintEx to send the text of the debug message to a debug message buffer . If a kernel debug-
ger is attached, this message is displayed automatically followed by a prompt asking the user what 
to do about the assertion failure (breakpoint, ignore, terminate process, or terminate thread) . If the 
system wasn’t booted with the kernel debugger (using the debug option in the Boot Configuration 
Database—BCD) and no kernel debugger is currently attached, failure of an ASSERT test will bug-
check the system . For a list of ASSERT checks made by some of the kernel support routines, see the 
section “Checked Build ASSERTs” in the WDK documentation .

The checked build is also useful for system administrators because of the additional detailed 
informational tracing that can be enabled for certain components . (For detailed instructions, see the 
Microsoft Knowledge Base Article number 314743, titled HOWTO: Enable Verbose Debug Tracing in 
Various Drivers and Subsystems .) This information output is sent to an internal debug message buffer 
using the DbgPrintEx function referred to earlier . To view the debug messages, you can either attach a 
kernel debugger to the target system (which requires booting the target system in debugging mode), 
use the !dbgprint command while performing local kernel debugging, or use the Dbgview .exe tool 
from Sysinternals (www.microsoft.com/technet/sysinternals) .

You don’t have to install the entire checked build to take advantage of the debug version of the 
operating system . You can just copy the checked version of the kernel image (Ntoskrnl .exe) and 
the appropriate HAL (Hal .dll) to a normal retail installation . The advantage of this approach is that 
device drivers and other kernel code get the rigorous checking of the checked build without  having 
to run the slower debug versions of all components in the system . For detailed instructions on how 
to do this, see the section “Installing Just the Checked Operating System and HAL” in the WDK 
 documentation . 

Finally, the checked build can also be useful for testing user-mode code only because the timing of 
the system is different . (This is because of the additional checking taking place within the kernel and 
the fact that the components are compiled without optimizations .) Often, multithreaded synchroni-
zation bugs are related to specific timing conditions. By running your tests on a system running the 
checked build (or at least the checked kernel and HAL), the fact that the timing of the whole system is 
different might cause latent timing bugs to surface that do not occur on a normal retail system .

Key System Components

Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the internal 
structure and the role each key operating system component plays . Figure 2-3 is a more detailed and 
complete diagram of the core Windows system architecture and components than was shown earlier 
in the chapter (in Figure 2-1) . Note that it still does not show all components (networking in particular, 
which is explained in Chapter 7, “Networking .”

The following sections elaborate on each major element of this diagram . Chapter 3 explains the 
primary control mechanisms the system uses (such as the object manager, interrupts, and so forth) . 
Chapter 13, “Startup and Shutdown,” in Part 2 describes the process of starting and shutting down 
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Windows, and Chapter 4 details management mechanisms such as the registry, service processes, 
and Windows Management Instrumentation . Other chapters explore in even more detail the internal 
structure and operation of key areas such as processes and threads, memory management, security, 
the I/O manager, storage management, the cache manager, the Windows file system (NTFS), and 
networking .
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Environment Subsystems and Subsystem DLLs
The role of an environment subsystem is to expose some subset of the base Windows executive 
system services to application programs . Each subsystem can provide access to different subsets of 
the native services in Windows . That means that some things can be done from an application built 
on one subsystem that can’t be done by an application built on another subsystem . For example, a 
Windows application can’t use the SUA fork function .

Each executable image ( .exe) is bound to one and only one subsystem . When an image is run, the 
process creation code examines the subsystem type code in the image header so that it can notify the 
proper subsystem of the new process. This type code is specified with the /SUBSYSTEM qualifier of the 
link command in Microsoft Visual C++ .

As mentioned earlier, user applications don’t call Windows system services directly . Instead, they 
go through one or more subsystem DLLs . These libraries export the documented interface that the 
programs linked to that subsystem can call . For example, the Windows subsystem DLLs (such as 
Kernel32 .dll, Advapi32 .dll, User32 .dll, and Gdi32 .dll) implement the Windows API functions . The SUA 
subsystem DLL (Psxdll .dll) implements the SUA API functions .

EXPERIMENT: Viewing the Image Subsystem Type
You can see the image subsystem type by using the Dependency Walker tool (Depends .exe) 
(available at www.dependencywalker.com) . For example, notice the image types for two different 
Windows images, Notepad .exe (the simple text editor) and Cmd .exe (the Windows command 
prompt):

This shows that Notepad is a GUI program, while Cmd is a console, or character-based, 
program . And although this implies there are two different subsystems for GUI and character-
based programs, there is just one Windows subsystem, and GUI programs can have consoles, 
just like console programs can display GUIs .
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When an application calls a function in a subsystem DLL, one of three things can occur:

 ■ The function is entirely implemented in user mode inside the subsystem DLL . In other words, 
no message is sent to the environment subsystem process, and no Windows executive system 
services are called . The function is performed in user mode, and the results are returned 
to the caller . Examples of such functions include GetCurrentProcess (which always returns 
–1, a value that is defined to refer to the current process in all process-related functions) 
and  GetCurrentProcessId . (The process ID doesn’t change for a running process, so this ID is 
 retrieved from a cached location, thus avoiding the need to call into the kernel .)

 ■ The function requires one or more calls to the Windows executive . For example, the Windows 
ReadFile and WriteFile functions involve calling the underlying internal (and undocumented) 
Windows I/O system services NtReadFile and NtWriteFile, respectively .

 ■ The function requires some work to be done in the environment subsystem process . (The 
environment subsystem processes, running in user mode, are responsible for maintaining the 
state of the client applications running under their control .) In this case, a client/server request 
is made to the environment subsystem via a message sent to the subsystem to perform some 
operation . The subsystem DLL then waits for a reply before returning to the caller .

Some functions can be a combination of the second and third items just listed, such as the 
 Windows CreateProcess and CreateThread functions .

Subsystem Startup
Subsystems are started by the Session Manager (Smss .exe) process . The subsystem startup 
 information is stored under the registry key HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\SubSystems. Figure 2-4 shows the values under this key.

FIGURE 2-4 Registry Editor showing Windows startup information

The Required value lists the subsystems that load when the system boots . The value has two 
strings: Windows and Debug. The Windows value contains the file specification of the Windows 
subsystem, Csrss .exe, which stands for Client/Server Run-Time Subsystem . Debug is blank (because 
it’s used for internal testing) and therefore does nothing . The Optional value indicates that the 
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SUA subsystem will be started on demand . The registry value Kmode contains the file name of the 
 kernel-mode portion of the Windows subsystem, Win32k .sys (explained later in this chapter) .

Let’s take a closer look at each of the environment subsystems .

Windows Subsystem
Although Windows was designed to support multiple, independent environment subsystems, from 
a practical perspective, having each subsystem implement all the code to handle windowing and 
display I/O would result in a large amount of duplication of system functions that, ultimately, would 
negatively affect both system size and performance . Because Windows was the primary subsystem, 
the Windows designers decided to locate these basic functions there and have the other subsystems 
call on the Windows subsystem to perform display I/O . Thus, the SUA subsystem calls services in the 
Windows subsystem to perform display I/O .

As a result of this design decision, the Windows subsystem is a required component for any 
 Windows system, even on server systems with no interactive users logged in . Because of this, the 
 process is marked as a critical process (which means if for any reason it exits, the system crashes) .

The Windows subsystem consists of the following major components:

 ■ For each session, an instance of the environment subsystem process (Csrss .exe) loads three 
DLLs (Basesrv .dll, Winsrv .dll, and Csrsrv .dll) that contain support for the following:

• Creating and deleting processes and threads

• Portions of the support for 16-bit virtual DOS machine (VDM) processes (32-bit Windows 
only)

• Side-by-Side (SxS)/Fusion and manifest support

• Other miscellaneous functions—such as GetTempFile, DefineDosDevice, ExitWindowsEx, and 
several natural language support functions

 ■ A kernel-mode device driver (Win32k .sys) that contains the following:

• The window manager, which controls window displays; manages screen output; collects 
input from keyboard, mouse, and other devices; and passes user messages to applications .

• The Graphics Device Interface (GDI), which is a library of functions for graphics 
 output  devices. It includes functions for line, text, and figure drawing and for graphics 
 manipulation .

• Wrappers for DirectX support that is implemented in another kernel driver (Dxgkrnl .sys) .

 ■ The console host process (Conhost .exe), which provides support for console (character cell) 
applications .

 ■ Subsystem DLLs (such as Kernel32 .dll, Advapi32 .dll, User32 .dll, and Gdi32 .dll) that  translate 
documented Windows API functions into the appropriate and mostly undocumented 
 kernel-mode system service calls in Ntoskrnl .exe and Win32k .sys .
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 ■ Graphics device drivers for hardware-dependent graphics display drivers, printer drivers, and 
video miniport drivers .

Note As part of a refactoring effort in the Windows architecture called MinWin, the 
 subsystem DLLs are now generally composed of specific libraries that implement API 
Sets, which are then linked together into the subsystem DLL and resolved using a special 
redirection scheme . More information on this refactoring is available in Chapter 5 in the 
“Image Loader” section .

Applications call the standard USER functions to create user interface controls, such as windows 
and buttons, on the display . The window manager communicates these requests to the GDI, which 
passes them to the graphics device drivers, where they are formatted for the display device . A display 
driver is paired with a video miniport driver to complete video display support .

The GDI provides a set of standard two-dimensional functions that let applications communicate 
with graphics devices without knowing anything about the devices . GDI functions mediate between 
applications and graphics devices such as display drivers and printer drivers . The GDI interprets appli-
cation requests for graphic output and sends the requests to graphics display drivers . It also provides 
a standard interface for applications to use varying graphics output devices . This interface enables 
application code to be independent of the hardware devices and their drivers . The GDI tailors its mes-
sages to the capabilities of the device, often dividing the request into manageable parts . For example, 
some devices can understand directions to draw an ellipse; others require the GDI to interpret the 
command as a series of pixels placed at certain coordinates . For more information about the graphics 
and video driver architecture, see the “Design Guide” section of the “Display (Adapters and Monitors)” 
chapter in the Windows Driver Kit .

Because much of the subsystem—in particular, display I/O functionality—runs in kernel mode, only 
a few Windows functions result in sending a message to the Windows subsystem process:  process 
and thread creation and termination, network drive letter mapping, and creation of temporary files. 
In general, a running Windows application won’t be causing many, if any, context switches to the 
 Windows subsystem process .

Console Window Host
In the original Windows subsystem design, the subsystem process (Csrss .exe) was  responsible 
for the managing of console windows and each console application (such as Cmd .exe, the 
 command prompt) communicated with Csrss . Windows now uses a separate process, the 
console window host (Conhost .exe), for each console window on the system . (A single console 
window can be shared by multiple console applications, such as when you launch a command 
prompt from the command prompt . By default, the second command prompt shares the 
 console window of the first.)
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Whenever a console application registers itself with the Csrss instance running in the current 
session, Csrss creates a new instance of Conhost using the client process’ security token instead 
of Csrss’ System token . It then maps a shared memory section that is used to allow all Conhosts 
to share part of their memory with Csrss for efficient buffer handling (because these threads do 
not live within Csrss anymore) and creates a named Asynchronous Local Procedure Call (ALPC) 
port in the \RPC Control object directory. (For more information on ALPC, see  Chapter 3.) The 
name of the port is of the format console-PID-lpc-handle, where PID is the process ID of the 
Conhost process . It then registers its PID with the kernel process structure associated with 
the user application, which can then query this information to open the newly created ALPC 
port . This process also creates a mapping of a shared section memory object between the 
 command-line application and its Conhost so that the two can share data . Finally, a wait event 
is created in the session 0 BaseNamedObjects directory (named ConsoleEvent-PID) so that 
the command-line application and the Conhost can notify each other of new buffer data . The 
 following figure shows a Conhost process with handles open to its ALPC port and event.

Because the Conhost is running with the user’s credentials (which also implies the user’s 
privilege level), as well as in a process associated with the console application itself, the User 
Interface Privilege Isolation (UIPI, described in Chapter 6, “Security”) security mechanism 
covers console processes. In addition, CPU-bound console applications can be identified 
with their supporting console host process (which a user can kill if needed) . As a side effect, 
 because  Conhost processes now run outside the special enclave of the Csrss subsystem, console 
 applications (whose windows are actually owned by Conhost) can be fully themed, load third-
party DLLs, and run with full windowing capabilities . 
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Subsystem for Unix-based Applications
The Subsystem for UNIX-based Applications (SUA) enables compiling and running custom 
 UNIX-based applications on a computer running Windows Server or the Enterprise or Ultimate 
editions of Windows client . SUA provides nearly 2000 UNIX functions and 300 UNIX-like tools and 
utilities . (See http://technet.microsoft.com/en-us/library/cc771470.aspx for more information on SUA .) 
For more information on how Windows handles running SUA applications, see the section “Flow of 
 CreateProcess” in Chapter 5 .

Original POSIX Subsystem
POSIX, an acronym loosely defined as “a portable operating system interface based on UNIX,” 
refers to a collection of international standards for UNIX-style operating system interfaces . The 
POSIX standards encourage vendors implementing UNIX-style interfaces to make them com-
patible so that programmers can move their applications easily from one system to another .

Windows initially implemented only one of the many POSIX standards, POSIX .1, formally 
known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003 .1-1990 . This standard was included 
primarily to meet U .S . government procurement requirements set in the mid-to-late 1980s that 
mandated POSIX.1 compliance as specified in Federal Information Processing Standard (FIPS) 
151-2, developed by the National Institute of Standards and Technology . Windows NT 3 .5, 3 .51, 
and 4 were formally tested and certified according to FIPS 151-2.

Because POSIX .1 compliance was a mandatory goal for Windows, the operating system 
was designed to ensure that the required base system support was present to allow for the 
implementation of a POSIX .1 subsystem (such as the fork function, which is implemented in the 
Windows executive, and the support for hard file links in the Windows file system). 

Ntdll.dll
Ntdll .dll is a special system support library primarily for the use of subsystem DLLs . It contains two 
types of functions:

 ■ System service dispatch stubs to Windows executive system services

 ■ Internal support functions used by subsystems, subsystem DLLs, and other native images

The first group of functions provides the interface to the Windows executive system services 
that can be called from user mode . There are more than 400 such functions, such as NtCreateFile, 
 NtSetEvent, and so on . As noted earlier, most of the capabilities of these functions are accessible 
through the Windows API . (A number are not, however, and are for use only within the operating 
system .)
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For each of these functions, Ntdll contains an entry point with the same name . The code inside 
the function contains the architecture-specific instruction that causes a transition into kernel mode 
to invoke the system service dispatcher (explained in more detail in Chapter 3), which, after verify-
ing some parameters, calls the actual kernel-mode system service that contains the real code inside 
Ntoskrnl .exe .

Ntdll also contains many support functions, such as the image loader (functions that start with Ldr), 
the heap manager, and Windows subsystem process communication functions (functions that start 
with Csr) . Ntdll also includes general run-time library routines (functions that start with Rtl), support 
for user-mode debugging (functions that start with DbgUi), and Event Tracing for Windows (functions 
starting in Etw), and the user-mode asynchronous procedure call (APC) dispatcher and exception 
dispatcher. (APCs and exceptions are explained in Chapter 3.) Finally, you’ll find a small subset of the 
C Run-Time (CRT) routines in Ntdll, limited to those routines that are part of the string and standard 
libraries (such as memcpy, strcpy, itoa, and so on) .

Executive
The Windows executive is the upper layer of Ntoskrnl .exe . (The kernel is the lower layer .) The 
 executive includes the following types of functions:

 ■ Functions that are exported and callable from user mode . These functions are called 
 system services and are exported via Ntdll . Most of the services are accessible through the 
 Windows API or the APIs of another environment subsystem . A few services, however, aren’t 
 available through any documented subsystem function . (Examples include ALPC and vari-
ous query functions such as NtQueryInformationProcess, specialized functions such as 
 NtCreatePagingFile, and so on .)

 ■ Device driver functions that are called through the use of the DeviceIoControl function . This 
provides a general interface from user mode to kernel mode to call functions in device drivers 
that are not associated with a read or write .

 ■ Functions that can be called only from kernel mode that are exported and are documented in 
the WDK .

 ■ Functions that are exported and callable from kernel mode but are not documented in the 
WDK (such as the functions called by the boot video driver, which start with Inbv) . 

 ■ Functions that are defined as global symbols but are not exported. These include  internal 
 support functions called within Ntoskrnl, such as those that start with Iop (internal I/O 
 manager support functions) or Mi (internal memory management support functions) .

 ■ Functions that are internal to a module that are not defined as global symbols.

The executive contains the following major components, each of which is covered in detail in a 
subsequent chapter of this book:

 ■ The configuration manager (explained in Chapter 4) is responsible for implementing and 
 managing the system registry .
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 ■ The process manager (explained in Chapter 5) creates and terminates processes and threads . 
The underlying support for processes and threads is implemented in the Windows kernel; the 
executive adds additional semantics and functions to these lower-level objects .

 ■ The security reference monitor (or SRM, described in Chapter 6) enforces security policies 
on the local computer . It guards operating system resources, performing run-time object 
 protection and auditing .

 ■ The I/O manager (explained in Chapter 8 in Part 2) implements device-independent I/O and is 
responsible for dispatching to the appropriate device drivers for further processing .

 ■ The Plug and Play (PnP) manager (explained in Chapter 8 in Part 2) determines which drivers 
are required to support a particular device and loads those drivers . It retrieves the hardware 
resource requirements for each device during enumeration . Based on the resource require-
ments of each device, the PnP manager assigns the appropriate hardware resources such as 
I/O ports, IRQs, DMA channels, and memory locations . It is also responsible for sending proper 
event notification for device changes (addition or removal of a device) on the system.

 ■ The power manager (explained in Chapter 8 in Part 2) coordinates power events and  generates 
power management I/O notifications to device drivers. When the system is idle, the power 
manager can be configured to reduce power consumption by putting the CPU to sleep. 
Changes in power consumption by individual devices are handled by device drivers but are 
coordinated by the power manager .

 ■ The Windows Driver Model Windows Management Instrumentation routines (explained in 
Chapter 4) enable device drivers to publish performance and configuration information and 
receive commands from the user-mode WMI service . Consumers of WMI information can be 
on the local machine or remote across the network .

 ■ The cache manager (explained in Chapter 11, “Cache Manager,” in Part 2) improves the 
 performance of file-based I/O by causing recently referenced disk data to reside in main 
memory for quick access (and by deferring disk writes by holding the updates in memory for 
a short time before sending them to the disk) . As you’ll see, it does this by using the memory 
manager’s support for mapped files.

 ■ The memory manager (explained in Chapter 10 in Part 2) implements virtual memory, a 
 memory management scheme that provides a large, private address space for each pro-
cess that can exceed available physical memory . The memory manager also provides the 
 underlying support for the cache manager .

 ■ The logical prefetcher and Superfetch (explained in Chapter 10 in Part 2) accelerate system and 
process startup by optimizing the loading of data referenced during the startup of the system 
or a process .
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In addition, the executive contains four main groups of support functions that are used by the 
 executive components just listed . About a third of these support functions are documented in the 
WDK because device drivers also use them . These are the four categories of support functions:

 ■ The object manager, which creates, manages, and deletes Windows executive objects and 
abstract data types that are used to represent operating system resources such as  processes, 
threads, and the various synchronization objects . The object manager is explained in 
 Chapter 3 .

 ■ The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a client 
process and a server process on the same computer . Among other things, ALPC is used as a 
 local transport for remote procedure call (RPC), an industry-standard communication facility 
for client and server processes across a network .

 ■ A broad set of common run-time library functions, such as string processing, arithmetic 
 operations, data type conversion, and security structure processing .

 ■ Executive support routines, such as system memory allocation (paged and nonpaged 
pool),  interlocked memory access, as well as three special types of synchronization objects: 
 resources, fast mutexes, and pushlocks .

The executive also contains a variety of other infrastructure routines, some of which we will 
 mention only briefly throughout the book: 

 ■ The kernel debugger library, which allows debugging of the kernel from a debugger 
 supporting KD, a portable protocol supported over a variety of transports (such as USB and 
IEEE 1394) and implemented by WinDbg and the Kd .exe utilities .

 ■ The user-mode debugging framework, which is responsible for sending events to the 
 user-mode debugging API and allowing breakpoints and stepping through code to work, as 
well as for changing contexts of running threads .

 ■ The kernel transaction manager, which provides a common, two-phase commit mechanism to 
resource managers, such as the transactional registry (TxR) and transactional NTFS (TxF) .

 ■ The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides kernel 
support for the virtual machine environment and optimizes certain parts of the code when the 
system knows it’s running in a client partition (virtual environment) .

 ■ The errata manager provides workarounds for nonstandard or noncompliant hardware 
 devices .

 ■ The Driver Verifier implements optional integrity checks of kernel-mode drivers and code .

 ■ Event Tracing for Windows provides helper routines for systemwide event tracing for 
 kernel-mode and user-mode components .

 ■ The Windows diagnostic infrastructure enables intelligent tracing of system activity based on 
diagnostic scenarios .
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 ■ The Windows hardware error architecture support routines provide a common framework for 
reporting hardware errors .

 ■ The file-system runtime library provides common support routines for file system drivers.

Kernel
The kernel consists of a set of functions in Ntoskrnl .exe that provides fundamental mechanisms (such 
as thread scheduling and synchronization services) used by the executive components, as well as 
 low-level hardware architecture–dependent support (such as interrupt and exception  dispatching) 
that is different on each processor architecture . The kernel code is written primarily in C, with 
 assembly code reserved for those tasks that require access to specialized processor instructions and 
registers not easily accessible from C .

Like the various executive support functions mentioned in the preceding section, a number of 
functions in the kernel are documented in the WDK (and can be found by searching for functions 
beginning with Ke) because they are needed to implement device drivers .

Kernel Objects
The kernel provides a low-level base of well-defined, predictable operating system primitives and 
mechanisms that allow higher-level components of the executive to do what they need to do . The 
kernel separates itself from the rest of the executive by implementing operating system mechanisms 
and avoiding policy making . It leaves nearly all policy decisions to the executive, with the exception of 
thread scheduling and dispatching, which the kernel implements .

Outside the kernel, the executive represents threads and other shareable resources as objects . 
These objects require some policy overhead, such as object handles to manipulate them, security 
checks to protect them, and resource quotas to be deducted when they are created . This overhead is 
eliminated in the kernel, which implements a set of simpler objects, called kernel objects, that help the 
kernel control central processing and support the creation of executive objects . Most executive-level 
objects encapsulate one or more kernel objects, incorporating their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for controlling various 
 operating system functions . This set includes the APC object, the deferred procedure call (DPC) object, 
and several objects the I/O manager uses, such as the interrupt object .

Another set of kernel objects, known as dispatcher objects, incorporates synchronization 
 capabilities that alter or affect thread scheduling . The dispatcher objects include the kernel thread, 
mutex (called mutant internally), event, kernel event pair, semaphore, timer, and waitable timer . The 
executive uses kernel functions to create instances of kernel objects, to manipulate them, and to 
construct the more complex objects it provides to user mode . Objects are explained in more detail in 
Chapter 3, and processes and threads are described in Chapter 5 .
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Kernel Processor Control Region and Control Block (KPCR and KPRCB)
The kernel uses a data structure called the processor control region, or KPCR, to store 
 processor- specific data. The KPCR contains basic information such as the processor’s interrupt 
dispatch table (IDT), task-state segment (TSS), and global descriptor table (GDT) . It also includes the 
interrupt controller state, which it shares with other modules, such as the ACPI driver and the HAL . To 
 provide easy access to the KPCR, the kernel stores a pointer to it in the fs register on 32-bit Windows 
and in the gs register on an x64 Windows system . On IA64 systems, the KPCR is always located at 
0xe0000000ffff0000 .

The KPCR also contains an embedded data structure called the kernel processor control block 
(KPRCB) . Unlike the KPCR, which is documented for third-party drivers and other internal Windows 
kernel components, the KPRCB is a private structure used only by the kernel code in Ntoskrnl .exe . It 
contains scheduling information such as the current, next, and idle threads scheduled for execution 
on the processor; the dispatcher database for the processor (which includes the ready queues for each 
priority level); the DPC queue; CPU vendor and identifier information (model, stepping, speed, feature 
bits); CPU and NUMA topology (node information, cores per package, logical processors per core, and 
so on); cache sizes; time accounting information (such as the DPC and interrupt time); and more . The 
KPRCB also contains all the statistics for the processor, such as I/O statistics, cache manager statistics 
(see Chapter 11, “Cache Manager,” in Part 2 for a description of these), DPC statistics, and memory 
manager statistics . (See Chapter 10 in Part 2 for more information .) Finally, the KPRCB is  sometimes 
used to store cache-aligned, per-processor structures to optimize memory access, especially on 
NUMA systems . For example, the nonpaged and paged-pool system look-aside lists are stored in 
the KPRCB .

EXPERIMENT: Viewing the KPCR and KPRCB
You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel debugger 
commands. If you don’t include flags, the debugger will display information for CPU 0 by de-
fault; otherwise, you can specify a CPU by adding its number after the command (for example, 
!pcr 2) . The following example shows what the output of the !pcr and !prcb commands looks 
like . If the system had pending DPCs, those would also be shown .

lkd> !pcr 
KPCR for Processor 0 at 81d09800: 
    Major 1 Minor 1 
    NtTib.ExceptionList: 9b31ca3c 
        NtTib.StackBase: 00000000 
       NtTib.StackLimit: 00000000 
     NtTib.SubSystemTib: 80150000 
          NtTib.Version: 1c47209e 
      NtTib.UserPointer: 00000001 
          NtTib.SelfTib: 7ffde000 
 
                SelfPcr: 81d09800 
                   Prcb: 81d09920 
                   Irql: 00000002 
                    IRR: 00000000 
                    IDR: ffffffff 
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          InterruptMode: 00000000 
                    IDT: 82fb8400 
                    GDT: 82fb8000 
                    TSS: 80150000 
 
          CurrentThread: 86d317e8 
             NextThread: 00000000 
             IdleThread: 81d0d640 
 
              DpcQueue:  
 
lkd> !prcb 
PRCB for Processor 0 at 81d09920: 
Current IRQL -- 0 
Threads--  Current 86d317e8 Next 00000000 Idle 81d0d640 
Number 0 SetMember 1 
Interrupt Count -- 294ccce0 
Times -- Dpc    0002a87f Interrupt 00010b87  
         Kernel 026270a1 User      00140e5e

You can use the dt command to directly dump the _KPCR and _KPRCB data structures 
 because both debugger commands give you the address of the structure (shown in bold for 
clarity in the previous output) . For example, if you wanted to determine the speed of the 
 processor, you could look at the MHz field with the following command: 

lkd> dt nt!_KPRCB 81d09920 MHz 
 
   +0x3c4 MHz : 0xbb4 
lkd> ? bb4 
Evaluate expression: 2996 = 00000bb4

On this machine, the processor was running at about 3 GHz .

Hardware Support
The other major job of the kernel is to abstract or isolate the executive and device drivers from 
 variations between the hardware architectures supported by Windows . This job includes han-
dling variations in functions such as interrupt handling, exception dispatching, and multiprocessor 
 synchronization .

Even for these hardware-related functions, the design of the kernel attempts to maximize the 
amount of common code . The kernel supports a set of interfaces that are portable and semantically 
identical across architectures . Most of the code that implements these portable interfaces is also 
identical across architectures .

Some of these interfaces are implemented differently on different architectures or are partially 
 implemented with architecture-specific code. These architecturally independent interfaces can 
be called on any machine, and the semantics of the interface will be the same whether or not the 
code varies by architecture . Some kernel interfaces (such as spinlock routines, which are described 
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in  Chapter 3) are actually implemented in the HAL (described in the next section) because their 
 implementation can vary for systems within the same architecture family .

The kernel also contains a small amount of code with x86-specific interfaces needed to support 
old MS-DOS programs . These x86 interfaces aren’t portable in the sense that they can’t be called on a 
machine based on any other architecture; they won’t be present. This x86-specific code, for example, 
supports calls to manipulate global descriptor tables (GDTs) and local descriptor tables (LDTs), which 
are hardware features of the x86 .

Other examples of architecture-specific code in the kernel include the interfaces to provide 
 translation buffer and CPU cache support . This support requires different code for the different 
 architectures because of the way caches are implemented .

Another example is context switching . Although at a high level the same algorithm is used for 
thread selection and context switching (the context of the previous thread is saved, the context of 
the new thread is loaded, and the new thread is started), there are architectural differences among 
the implementations on different processors . Because the context is described by the processor state 
(registers and so on), what is saved and loaded varies depending on the architecture .

Hardware Abstraction Layer
As mentioned at the beginning of this chapter, one of the crucial elements of the Windows design is 
its portability across a variety of hardware platforms . The hardware abstraction layer (HAL) is a key 
part of making this portability possible . The HAL is a loadable kernel-mode module (Hal .dll) that 
provides the low-level interface to the hardware platform on which Windows is running . It hides 
hardware-dependent details such as I/O interfaces, interrupt controllers, and multiprocessor commu-
nication mechanisms—any functions that are both architecture-specific and machine-dependent.

So rather than access hardware directly, Windows internal components as well as user-written 
device drivers maintain portability by calling the HAL routines when they need platform-dependent 
information. For this reason, the HAL routines are documented in the WDK. To find out more about 
the HAL and its use by device drivers, refer to the WDK .

Although several HALs are included (as shown in Table 2-4), Windows has the ability to detect at 
boot-up time which HAL should be used, eliminating the problem that existed on earlier versions of 
Windows when attempting to boot a Windows installation on a different kind of system .

TABLE 2-4 List of x86 HALs 

HAL File Name Systems Supported

Halacpi .dll Advanced Configuration and Power Interface (ACPI) PCs. Implies uniprocessor-only machine, 
without APIC support (the presence of either one would make the system use the HAL below 
instead) .

Halmacpi .dll Advanced Programmable Interrupt Controller (APIC) PCs with an ACPI . The existence of an 
APIC implies SMP support .
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Note On x64 machines, there is only one HAL image, called Hal .dll . This results from all 
x64 machines having the same motherboard configuration, because the processors require 
ACPI and APIC support . Therefore, there is no need to support machines without ACPI or 
with a standard PIC .

EXPERIMENT: Determining Which HAL You’re Running
You can determine which version of the HAL you’re running by using WinDbg and opening a 
local kernel debugging session . Be sure you have the symbols loaded by entering  .reload, and 
then typing lm vm hal . For example, the following output is from a system running the ACPI 
HAL:

lkd> lm vm hal 
start    end        module name 
fffff800'0181b000 fffff800'01864000   hal        (deferred) 
    Loaded symbol image file: halmacpi.dll 
    Image path: halmacpi.dll 
    Image name: halmacpi.dll 
    Timestamp:        Mon Jul 13 21:27:36 2009 (4A5BDF08) 
    CheckSum:         0004BD36 
    ImageSize:        00049000 
    File version:     6.1.7600.16385 
    Product version:  6.1.7600.16385 
    File flags:       0 (Mask 3F) 
    File OS:          40004 NT Win32 
    File type:        2.0 Dll 
    File date:        00000000.00000000 
    Translations:     0409.04b0 
    CompanyName:      Microsoft Corporation 
    ProductName:      Microsoft® Windows® Operating System 
    InternalName:     halmacpi.dll 
    OriginalFilename: halmacpi.dll 
    ProductVersion:   6.1.7600.16385 
    FileVersion:      6.1.7600.16385 (win7_rtm.090713-1255) 
    FileDescription:  Hardware Abstraction Layer DLL 
    LegalCopyright:   © Microsoft Corporation. All rights reserved.

EXPERIMENT: Viewing NTOSKRNL and HAL Image Dependencies
You can view the relationship of the kernel and HAL images by examining their export and 
import tables using the Dependency Walker tool (Depends .exe) . To examine an image in the 
Dependency Walker, select Open from the File menu to open the desired image file.
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Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using 
this tool:

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl . (They 
both use functions in each other .) Ntoskrnl is also linked to the following binaries:

 ■ Pshed.dll, the Platform-Specific Hardware Error Driver. PSHED provides an abstraction of 
the hardware error reporting facilities of the underlying platform by hiding the details 
of a platform’s error-handling mechanisms from the operating system and exposing a 
 consistent interface to the Windows operating system .

 ■ On 32-bit systems only, Bootvid .dll, the Boot Video Driver . Bootvid provides support 
for the VGA commands required to display boot text and the boot logo during startup . 
On x64 systems, this library is built into the kernel to avoid conflicts with Kernel Patch 
 Protection (KPP) . (See Chapter 3 for more information on KPP and PatchGuard .)

 ■ Kdcom .dll, the Kernel Debugger Protocol (KD) Communications Library .

 ■ Ci .dll, the code integrity library . (See Chapter 3 for more information on code integrity .)

 ■ Clfs.sys, the common logging file system driver, used by, among other things, the Kernel 
Transaction Manager (KTM) . (See Chapter 3 for more information on the KTM .)

For a detailed description of the information displayed by this tool, see the Dependency 
Walker help file (Depends.hlp).
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Device Drivers
Although device drivers are explained in detail in Chapter 8 in Part 2, this section provides a brief 
 overview of the types of drivers and explains how to list the drivers installed and loaded on your 
system .

Device drivers are loadable kernel-mode modules (typically ending in  .sys) that interface between 
the I/O manager and the relevant hardware . They run in kernel mode in one of three contexts:

 ■ In the context of the user thread that initiated an I/O function

 ■ In the context of a kernel-mode system thread

 ■ As a result of an interrupt (and therefore not in the context of any particular process or 
thread—whichever process or thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows don’t manipulate hardware directly, 
but rather they call functions in the HAL to interface with the hardware . Drivers are typically written 
in C (sometimes C++) and therefore, with proper use of HAL routines, can be source-code portable 
across the CPU architectures supported by Windows and binary portable within an architecture 
 family .

There are several types of device drivers:

 ■ Hardware device drivers manipulate hardware (using the HAL) to write output to or retrieve 
 input from a physical device or network . There are many types of hardware device drivers, 
such as bus drivers, human interface drivers, mass storage drivers, and so on .

 ■ File system drivers are Windows drivers that accept file-oriented I/O requests and translate 
them into I/O requests bound for a particular device .

 ■ File system filter drivers, such as those that perform disk mirroring and encryption, intercept  
I/Os, and perform some added-value processing before passing the I/O to the next layer .

 ■ Network redirectors and servers are file system drivers that transmit file system I/O requests to 
a machine on the network and receive such requests, respectively .

 ■ Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and IPX/SPX .

 ■ Kernel streaming filter drivers are chained together to perform signal processing on data 
streams, such as recording or displaying audio and video .

Because installing a device driver is the only way to add user-written kernel-mode code to the 
system, some programmers have written device drivers simply as a way to access internal operating 
system functions or data structures that are not accessible from user mode (but that are documented 
and supported in the WDK) . For example, many of the utilities from Sysinternals combine a Windows 
GUI application and a device driver that is used to gather internal system state and call kernel-mode-
only accessible functions not available from the user-mode Windows API .
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Windows Driver Model (WDM) 
Windows 2000 added support for Plug and Play, Power Options, and an extension to the Windows 
NT driver model called the Windows Driver Model (WDM) . Windows 2000 and later can run legacy 
Windows NT 4 drivers, but because these don’t support Plug and Play and Power Options, systems 
running these drivers will have reduced capabilities in these two areas .

From the WDM perspective, there are three kinds of drivers:

 ■ A bus driver services a bus controller, adapter, bridge, or any device that has child devices . Bus 
drivers are required drivers, and Microsoft generally provides them; each type of bus (such as 
PCI, PCMCIA, and USB) on a system has one bus driver . Third parties can write bus drivers to 
provide support for new buses, such as VMEbus, Multibus, and Futurebus .

 ■ A function driver is the main device driver and provides the operational interface for its device . 
It is a required driver unless the device is used raw (an implementation in which I/O is done by 
the bus driver and any bus filter drivers, such as SCSI PassThru). A function driver is by defini-
tion the driver that knows the most about a particular device, and it is usually the only driver 
that accesses device-specific registers.

 ■ A filter driver is used to add functionality to a device (or existing driver) or to modify I/O 
 requests or responses from other drivers (and is often used to fix hardware that provides 
incorrect information about its hardware resource requirements) . Filter drivers are optional 
and can exist in any number, placed above or below a function driver and above a bus driver . 
Usually, system original equipment manufacturers (OEMs) or independent hardware vendors 
(IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus driver 
is concerned with reporting the devices on its bus to the PnP manager, while a function driver 
 manipulates the device .

In most cases, lower-level filter drivers modify the behavior of device hardware. For example, if 
a device reports to its bus driver that it requires 4 I/O ports when it actually requires 16 I/O ports, 
a lower-level, device-specific function filter driver could intercept the list of hardware resources 
 reported by the bus driver to the PnP manager and update the count of I/O ports .

Upper-level filter drivers usually provide added-value features for a device. For example, an 
 upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3 . Further details about the I/O manager, WDM, Plug 
and Play, and Power Options are included in Chapter 8 in Part 2 .

Windows Driver Foundation
The Windows Driver Foundation (WDF) simplifies Windows driver development by providing two 
frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode Driver Framework 
(UMDF) . Developers can use KMDF to write drivers for Windows 2000 SP4 and later, while UMDF 
 supports Windows XP and later .
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KMDF provides a simple interface to WDM and hides its complexity from the driver writer without 
modifying the underlying bus/function/filter model. KMDF drivers respond to events that they can 
register and call into the KMDF library to perform work that isn’t specific to the hardware they are 
managing, such as generic power management or synchronization . (Previously, each driver had to 
implement this on its own .) In some cases, more than 200 lines of WDM code can be replaced by a 
single KMDF function call .

UMDF enables certain classes of drivers (mostly USB-based or other high-latency protocol 
 buses)—such as those for video cameras, MP3 players, cell phones, PDAs, and printers—to be 
 implemented as user-mode drivers . UMDF runs each user-mode driver in what is essentially a user-
mode service, and it uses ALPC to communicate to a kernel-mode wrapper driver that provides actual 
access to hardware . If a UMDF driver crashes, the process dies and usually restarts, so the system 
doesn’t become unstable—the device simply becomes unavailable while the service hosting the 
driver restarts . Finally, UMDF drivers are written in C++ using COM-like classes and semantics, further 
 lowering the bar for programmers to write device drivers .

EXPERIMENT: Viewing the Installed Device Drivers
You can list the installed drivers by running Msinfo32 . (To launch this, click Start and then type 
Msinfo32 and then press Enter .) Under System Summary, expand Software Environment and 
open System Drivers . Here’s an example output of the list of installed drivers:

This window displays the list of device drivers defined in the registry, their type, and their 
state (Running or Stopped). Device drivers and Windows service processes are both defined in 
the same place: HKLM\SYSTEM\CurrentControlSet\Services. However, they are distinguished 
by a type code—for example, type 1 is a kernel-mode device driver . (For a complete list of the 
information stored in the registry for device drivers, see Table 4-7 in Chapter 4 .)

Alternatively, you can list the currently loaded device drivers by selecting the System process 
in Process Explorer and opening the DLL view . 
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Peering into Undocumented Interfaces
Examining the names of the exported or global symbols in key system images (such as   
Ntoskrnl .exe, Hal .dll, or Ntdll .dll) can be enlightening—you can get an idea of the kinds of 
things Windows can do versus what happens to be documented and supported today . Of 
course, just because you know the names of these functions doesn’t mean that you can or 
should call them—the interfaces are undocumented and are subject to change . We suggest 
that you look at these functions purely to gain more insight into the kinds of internal functions 
Windows performs, not to bypass supported interfaces .

For example, looking at the list of functions in Ntdll .dll gives you the list of all the  system 
services that Windows provides to user-mode subsystem DLLs versus the subset that each 
 subsystem exposes . Although many of these functions map clearly to documented and 
 supported Windows functions, several are not exposed via the Windows API . (See the article 
“Inside the Native API” from Sysinternals .)

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs (such as 
Kernel32 .dll or Advapi32 .dll) and which functions they call in Ntdll .

Another interesting image to dump is Ntoskrnl .exe—although many of the exported 
 routines that kernel-mode device drivers use are documented in the Windows Driver Kit, quite a 
few are not. You might also find it interesting to take a look at the import table for Ntoskrnl and 
the HAL; this table shows the list of functions in the HAL that Ntoskrnl uses and vice versa .

Table 2-5 lists most of the commonly used function name prefixes for the executive 
 components. Each of these major executive components also uses a variation of the prefix to 
denote internal functions—either the first letter of the prefix followed by an i (for internal) or 
the full prefix followed by a p (for private) . For example, Ki represents internal kernel functions, 
and Psp refers to internal process support functions .

TABLE 2-5 Commonly Used Prefixes

Prefix Component

Alpc Advanced Local Inter-Process Communication

Cc Common Cache

Cm Configuration manager

Dbgk Debugging Framework for User-Mode

Em Errata Manager

Etw Event Tracing for Windows

Ex Executive support routines

FsRtl File system driver run-time library
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Prefix Component

Hvl Hypervisor Library

Io I/O manager

Kd Kernel Debugger

Ke Kernel

Lsa Local Security Authority

Mm Memory manager

Nt NT system services (most of which are exported as Windows functions)

Ob Object manager

Pf Prefetcher

Po Power manager

Pp PnP manager

Ps Process support

Rtl Run-time library

Se Security

Sm Store Manager

Tm Transaction Manager

Vf Verifier

Wdi Windows Diagnostic Infrastructure

Whea Windows Hardware Error Architecture

Wmi Windows Management Instrumentation

Zw Mirror entry point for system services (beginning with Nt) that sets previous 
 access mode to kernel, which eliminates parameter validation, because Nt 
 system services validate parameters only if previous access mode is user

You can decipher the names of these exported functions more easily if you understand the 
naming convention for Windows system routines . The general format is

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Operation tells what 
is being done to the object or resource, and Object identifies what is being operated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a 
paged or nonpaged pool . KeInitializeThread is the routine that allocates and sets up a kernel 
thread object .
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System Processes
The following system processes appear on every Windows system . (Two of these—Idle and System—
are not full processes because they are not running a user-mode executable .)

 ■ Idle process (contains one thread per CPU to account for idle CPU time)

 ■ System process (contains the majority of the kernel-mode system threads)

 ■ Session manager (Smss .exe)

 ■ Local session manager (Lsm .exe)

 ■ Windows subsystem (Csrss .exe)

 ■ Session 0 initialization (Wininit .exe)

 ■ Logon process (Winlogon .exe)

 ■ Service control manager (Services .exe) and the child service processes it creates (such as the 
system-supplied generic service-host process, Svchost .exe)

 ■ Local security authentication server (Lsass .exe)

To understand the relationship of these processes, it is helpful to view the process “tree”—that is, 
the parent/child relationship between processes . Seeing which process created each process helps 
to understand where each process comes from . Figure 2-5 is a screen snapshot of the process tree 
viewed after taking a Process Monitor boot trace . Using Process Monitor allows you to see processes 
that have since exited (indicated by the muted icon) . 

FIGURE 2-5 Initial system process tree
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The next sections explain the key system processes shown in Figure 2-5 . Although these sections 
briefly indicate the order of process startup, Chapter 13 in Part 2 contains a detailed description of 
the steps involved in booting and starting Windows .

System Idle Process
The first process listed in Figure 2-5 is the system idle process . As we’ll explain in Chapter 5, processes 
are identified by their image name. However, this process (as well as the process named System) 
isn’t running a real user-mode image (in that there is no “System Idle Process.exe” in the \Windows 
 directory) . In addition, the name shown for this process differs from utility to utility (because of 
implementation details) . Table 2-6 lists several of the names given to the Idle process (process ID 0) . 
The Idle process is explained in detail in Chapter 5 .

TABLE 2-6 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0

Task Manager System Idle Process

Process Status (Pstat .exe) Idle Process

Process Explorer (Procexp .exe) System Idle Process

Task List (Tasklist .exe) System Idle Process

Tlist (Tlist .exe) System Process

Now let’s look at system threads and the purpose of each of the system processes that are running 
real images .

System Process and System Threads
The System process (process ID 4) is the home for a special kind of thread that runs only in kernel 
mode: a kernel-mode system thread . System threads have all the attributes and contexts of regular 
user-mode threads (such as a hardware context, priority, and so on) but are different in that they run 
only in kernel-mode executing code loaded in system space, whether that is in Ntoskrnl .exe or in any 
other loaded device driver . In addition, system threads don’t have a user process address space and 
hence must allocate any dynamic storage from operating system memory heaps, such as a paged or 
nonpaged pool .

System threads are created by the PsCreateSystemThread function (documented in the WDK), 
which can be called only from kernel mode . Windows, as well as various device drivers, create system 
threads during system initialization to perform operations that require thread context, such as issuing 
and waiting for I/Os or other objects or polling a device . For example, the memory manager uses 
system threads to implement such functions as writing dirty pages to the page file or mapped files, 
swapping processes in and out of memory, and so forth . The kernel creates a system thread called 
the balance set manager that wakes up once per second to possibly initiate various scheduling and 
memory management related events . The cache manager also uses system threads to  implement 
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both read-ahead and write-behind I/Os. The file server device driver (Srv2.sys) uses system threads 
to  respond to network I/O requests for file data on disk partitions shared to the network. Even the 
 floppy driver has a system thread to poll the floppy device. (Polling is more efficient in this case 
because an interrupt-driven floppy driver consumes a large amount of system resources.) Fur-
ther  information on specific system threads is included in the chapters in which the component is 
 described .

By default, system threads are owned by the System process, but a device driver can create a 
system thread in any process . For example, the Windows subsystem device driver (Win32k .sys) creates 
a system thread inside the Canonical Display Driver (Cdd .dll) part of the Windows subsystem process 
(Csrss .exe) so that it can easily access data in the user-mode address space of that process .

When you’re troubleshooting or going through a system analysis, it’s useful to be able to map the 
execution of individual system threads back to the driver or even to the subroutine that contains the 
code. For example, on a heavily loaded file server, the System process will likely be consuming con-
siderable CPU time . But the knowledge that when the System process is running that “some system 
thread” is running isn’t enough to determine which device driver or operating system component is 
running .

So if threads in the System process are running, first determine which ones are running (for 
 example, with the Performance Monitor tool). Once you find the thread (or threads) that is running, 
look up in which driver the system thread began execution (which at least tells you which driver 
likely created the thread) or examine the call stack (or at least the current address) of the thread in 
 question, which would indicate where the thread is currently executing .

Both of these techniques are illustrated in the following experiment .

EXPERIMENT: Mapping a System Thread to a Device Driver
In this experiment, we’ll see how to map CPU activity in the System process to the responsible 
system thread (and the driver it falls in) generating the activity . This is important because when 
the System process is running, you must go to the thread granularity to really understand 
what’s going on . For this experiment, we will generate system thread activity by generating 
file server activity on your machine. (The file server driver, Srv2.sys, creates system threads to 
handle inbound requests for file I/O. See Chapter 7 for more information on this component.)

1. Open a command prompt .

2. Do a directory listing of your entire C drive using a network path to access your C 
drive . For example, if your computer name is COMPUTER1, type dir \\computer1\c$ 
/s (The /s switch lists all subdirectories .)

3. Run Process Explorer, and double-click on the System process .
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4. Click on the Threads tab .

5. Sort by the CSwitch Delta (context switch delta) column . You should see one or more 
threads in Srv2 .sys running, such as the following:

If you see a system thread running and you are not sure what the driver is, click 
the Module button, which will bring up the file properties. Clicking the Module 
 button while highlighting the thread in the Srv2 .sys previously shown results in the 
 following display .
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Session Manager (Smss)
The session manager (%SystemRoot%\System32\Smss.exe) is the first user-mode process created in 
the system. The kernel-mode system thread that performs the final phase of the initialization of the 
executive and kernel creates this process .

When Smss starts, it checks whether it is the first instance (the master Smss) or an instance of itself 
that the master Smss launched to create a session . (If command-line arguments are present, it is the 
latter .) By creating multiple instances of itself during boot-up and Terminal Services session creation, 
Smss can create multiple sessions at the same time (at maximum, four concurrent sessions, plus one 
more for each extra CPU beyond one) . This ability enhances logon performance on Terminal Server 
systems where multiple users connect at the same time. Once a session finishes initializing, the copy 
of Smss terminates . As a result, only the initial Smss .exe process remains active . (For a description of 
Terminal Services, see the section “Terminal Services and Multiple Sessions” in Chapter 1 .)

The master Smss performs the following one-time initialization steps:

1. Marks the process and the initial thread as critical . (If a process or thread marked critical exits 
for any reason, Windows crashes . See Chapter 5 for more information .)

2. Increases the process base priority to 11 .

3. If the system supports hot processor add, enables automatic processor affinity updates so 
that if new processors are added new sessions will take advantage of the new processors . 
(For more information about dynamic processor additions, see Chapter 5 .)
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4. Creates named pipes and mailslots used for communication between Smss, Csrss, and Lsm 
(described in upcoming paragraphs) .

5. Creates ALPC port to receive commands .

6. Creates systemwide environment variables as defined in HKLM\SYSTEM\CurrentControlSet 
\Control\Session Manager\Environment.

7.  Creates symbolic links for devices defined in HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\DOS Devices under the \Global?? directory in the Object Manager 
namespace .

8. Creates root \Sessions directory in the Object Manager namespace.

9. Runs the programs in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager 
\BootExecute. (The default is Autochk .exe, which performs a check disk .)

10. Processes pending file renames as specified in HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\PendingFileRenameOperations.

11. Initializes paging file(s).

12. Initializes the rest of the registry (HKLM Software, SAM, and Security hives) .

13. Runs the programs in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager 
\SetupExecute.

14. Opens known DLLs (HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs) 
and maps them as permanent sections (mapped files).

15. Creates a thread to respond to session create requests .

16. Creates the Smss to initialize session 0 (noninteractive session) .

17. Creates the Smss to initialize session 1 (interactive session) .

Once these steps have been completed, Smss waits forever on the handle to the session 0 instance 
of Csrss .exe . Because Csrss is marked as a critical process (see Chapter 5), if Csrss exits, this wait will 
never complete because the system will crash .

A session startup instance of Smss does the following:

1. Calls NtSetSystemInformation with a request to set up kernel-mode session data structures . 
This in turn calls the internal memory manager function MmSessionCreate, which sets up the 
session virtual address space that will contain the session paged pool and the per-session data 
structures allocated by the kernel-mode part of the Windows subsystem (Win32k .sys) and 
other session-space device drivers . (See Chapter 10 in Part 2 for more details .)

2. Creates the subsystem process(es) for the session (by default, the Windows subsystem  
Csrss .exe) .

3. Creates an instance of Winlogon (interactive sessions) or Wininit (for session 0) . See the 
 upcoming paragraphs for more information on these two processes .
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Then this intermediate Smss process exits (leaving the subsystem processes and Winlogon or 
 Wininit as parent-less processes) .

Windows Initialization Process (Wininit.exe)
The Wininit .exe process performs the following system initialization functions:

 ■ Marks itself critical so that if it exits prematurely and the system is booted in debugging mode, 
it will break into the debugger (if not, the system will crash) .

 ■ Initializes the user-mode scheduling infrastructure .

 ■ Creates the %windir%\temp folder.

 ■ Creates a window station (Winsta0) and two desktops (Winlogon and Default) for processes to 
run on in session 0 .

 ■ Creates Services .exe (Service Control Manager or SCM) . See upcoming paragraphs for a brief 
description or Chapter 4 for more details .

 ■ Starts Lsass .exe (Local Security Authentication Subsystem Server) . See Chapter 6 for more 
information on Lsass .

 ■ Starts Lsm .exe (Local Session Manager) . See the upcoming “Local Session Manager (Lsm .exe),” 
section for a brief description .

 ■ Waits forever for system shutdown .

Service Control Manager (SCM)
Recall from earlier in the chapter that “services” on Windows can refer either to a server process or to 
a device driver . This section deals with services that are user-mode processes . Services are like UNIX 
“daemon processes” or VMS “detached processes” in that they can be configured to start automati-
cally at system boot time without requiring an interactive logon . They can also be started manually 
(such as by running the Services administrative tool or by calling the Windows StartService function) . 
Typically, services do not interact with the logged-on user, although there are special conditions when 
this is possible . (See Chapter 4 .)

The service control manager is a special system process running the image %SystemRoot% 
\System32\Services.exe that is responsible for starting, stopping, and interacting with service 
 processes . Service programs are really just Windows images that call special Windows functions to 
 interact with the service control manager to perform such actions as registering the service’s suc-
cessful startup, responding to status requests, or pausing or shutting down the service . Services are 
defined in the registry under HKLM\SYSTEM\CurrentControlSet\Services. 

Keep in mind that services have three names: the process name you see running on the system, the 
internal name in the registry, and the display name shown in the Services administrative tool . (Not all 
services have a display name—if a service doesn’t have a display name, the internal name is shown .) 
With Windows, services can also have a description field that further details what the service does.
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To map a service process to the services contained in that process, use the tlist /s or tasklist /svc 
command . Note that there isn’t always one-to-one mapping between service processes and running 
services, however, because some services share a process with other services . In the registry, the type 
code indicates whether the service runs in its own process or shares a process with other services in 
the image .

A number of Windows components are implemented as services, such as the Print Spooler, Event 
Log, Task Scheduler, and various networking components . For more details on services, see Chapter 4 .

EXPERIMENT: Listing Installed Services
To list the installed services, select Administrative Tools from Control Panel, and then select 
Services . You should see output like this:

To see the detailed properties about a service, right-click on a service and select 
 Properties . For example, here are the properties for the Print Spooler service (highlighted 
in the previous screen shot):
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Notice that the Path To Executable field identifies the program that contains this service. 
Remember that some services share a process with other services—mapping isn’t always one 
to one .

EXPERIMENT: Viewing Service Details Inside Service Processes
Process Explorer highlights processes hosting one service or more. (You can configure this by 
selecting the Configure Colors entry in the Options menu.) If you double-click on a service-
hosting process, you will see a Services tab that lists the services inside the process, the name 
of the registry key that defines the service, the display name seen by the administrator, the 
description text for that service (if present), and for Svchost services, the path to the DLL that 
implements the service . For example, listing the services in a Svchost .exe process running under 
the System account looks like the following:

Local Session Manager (Lsm.exe)
The Local Session Manager (Lsm .exe) manages the state of terminal server sessions on the local 
 machine . It sends requests to Smss through the ALPC port SmSsWinStationApiPort to start new 
 sessions (for example, creating the Csrss and Winlogon processes) such as when a user selects Switch 
User from Explorer . Lsm also communicates with Winlogon and Csrss (using a local system RPC) . It 
notifies Csrss of events such as connect, disconnect, terminate, and broadcast system message. It 
receives notification from Winlogon for the following events:

 ■ Logon and logoff
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 ■ Shell start and termination

 ■ Connect to a session

 ■ Disconnect from a session

 ■ Lock or unlock desktop

Winlogon, LogonUI, and Userinit
The Windows logon process (%SystemRoot%\System32\Winlogon.exe) handles interactive user logons 
and logoffs. Winlogon is notified of a user logon request when the secure attention sequence (SAS) 
keystroke combination is entered . The default SAS on Windows is the combination Ctrl+Alt+Delete . 
The reason for the SAS is to protect users from password-capture programs that simulate the logon 
process, because this keyboard sequence cannot be intercepted by a user-mode application .

The identification and authentication aspects of the logon process are implemented through 
DLLs called credential providers . The standard Windows credential providers implement the default 
Windows authentication interfaces: password and smartcard . However, developers can provide their 
own credential providers to implement other identification and authentication mechanisms in place 
of the standard Windows user name/password method (such as one based on a voice print or a 
biometric device such as a fingerprint reader). Because Winlogon is a critical system process on which 
the system depends, credential providers and the UI to display the logon dialog box run inside a 
child process of Winlogon called LogonUI . When Winlogon detects the SAS, it launches this process, 
which initializes the credential providers . Once the user enters her credentials or dismisses the logon 
 interface, the LogonUI process terminates .

In addition, Winlogon can load additional network provider DLLs that need to perform  secondary 
authentication. This capability allows multiple network providers to gather identification and 
 authentication information all at one time during normal logon .

Once the user name and password have been captured, they are sent to the local security 
 authentication server process (%SystemRoot%\System32\Lsass.exe, described in Chapter 6) to be 
authenticated . LSASS calls the appropriate authentication package (implemented as a DLL) to perform 
the actual verification, such as checking whether a password matches what is stored in the Active 
 Directory or the SAM (the part of the registry that contains the definition of the local users and 
groups) .

Upon a successful authentication, LSASS calls a function in the security reference monitor (for 
example, NtCreateToken) to generate an access token object that contains the user’s security profile. 
If User Account Control (UAC) is used and the user logging on is a member of the administrators 
group or has administrator privileges, LSASS will create a second, restricted version of the token . This 
access token is then used by Winlogon to create the initial process(es) in the user’s session . The initial 
process(es) are stored in the registry value Userinit under the registry key HKLM\SOFTWARE 
\Microsoft\Windows NT\CurrentVersion\Winlogon. (The default is Userinit.exe, but there can be more 
than one image in the list .)
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Userinit performs some initialization of the user environment (such as running the login script and 
applying group policies) and then looks in the registry at the Shell value (under the same Winlogon 
key referred to previously) and creates a process to run the system-defined shell (by default,  
Explorer .exe) . Then Userinit exits . This is the reason Explorer .exe is shown with no parent—its  parent 
has exited, and as explained in Chapter 1, tlist left-justifies processes whose parent isn’t running. 
 (Another way of looking at it is that Explorer is the grandchild of Winlogon .)

Winlogon is active not only during user logon and logoff but also whenever it intercepts 
the SAS from the keyboard . For example, when you press Ctrl+Alt+Delete while logged on, the 
 Windows  Security screen comes up, providing the options to log off, start the Task Manager, lock 
the  workstation, shut down the system, and so forth . Winlogon and LogonUI are the processes that 
handle this interaction .

For a complete description of the steps involved in the logon process, see the section “Smss, Csrss, 
and Wininit” in Chapter 13 in Part 2 . For more details on security authentication, see Chapter 6 . For 
details on the callable functions that interface with LSASS (the functions that start with Lsa), see the 
documentation in the Windows SDK .

Conclusion

In this chapter, we’ve taken a broad look at the overall system architecture of Windows . We’ve 
 examined the key components of Windows and seen how they interrelate . In the next chapter, we’ll 
look in more detail at the core system mechanisms that these components are built on, such as the 
object manager and synchronization .
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C H A P T E R  3

System Mechanisms

The Windows operating system provides several base mechanisms that kernel-mode components 
such as the executive, the kernel, and device drivers use . This chapter explains the following 

 system mechanisms and describes how they are used:

 ■ Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous 
 procedure calls (APCs), exception dispatching, and system service dispatching

 ■ The executive object manager

 ■ Synchronization, including spinlocks, kernel dispatcher objects, how waits are implemented, as 
well as user-mode-specific synchronization primitives that avoid trips to kernel mode (unlike 
typical dispatcher objects)

 ■ System worker threads

 ■ Miscellaneous mechanisms such as Windows global flags

 ■ Advanced Local Procedure Calls (ALPCs)

 ■ Kernel event tracing

 ■ Wow64

 ■ User-mode debugging

 ■ The image loader

 ■ Hypervisor (Hyper-V)

 ■ Kernel Transaction Manager (KTM)

 ■ Kernel Patch Protection (KPP)

 ■ Code integrity

Trap Dispatching

Interrupts and exceptions are operating system conditions that divert the processor to code outside 
the normal flow of control. Either hardware or software can detect them. The term trap refers to a 
processor’s mechanism for capturing an executing thread when an exception or an interrupt  occurs 
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and transferring control to a fixed location in the operating system. In Windows, the processor 
 transfers control to a trap handler, which is a function specific to a particular interrupt or exception. 
Figure 3-1 illustrates some of the conditions that activate trap handlers .

The kernel distinguishes between interrupts and exceptions in the following way . An interrupt is 
an asynchronous event (one that can occur at any time) that is unrelated to what the processor is 
executing . Interrupts are generated primarily by I/O devices, processor clocks, or timers, and they can 
be enabled (turned on) or disabled (turned off) . An exception, in contrast, is a synchronous condition 
that usually results from the execution of a particular instruction . (Aborts, such as machine checks, 
is a type of processor exception that’s typically not associated with instruction execution .) Running 
a program a second time with the same data under the same conditions can reproduce exceptions . 
Examples of exceptions include memory-access violations, certain debugger instructions, and divide-
by-zero errors . The kernel also regards system service calls as exceptions (although technically they’re 
system traps) .

Virtual memory
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Exception
dispatcher

System
services

Interrupt
service
routines

Exception
handlers

Hardware exceptions
Software exceptions

Virtual address
exceptions

(Exception
frame)

System service call

Interrupt
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FIGURE 3-1 Trap dispatching

Either hardware or software can generate exceptions and interrupts . For example, a bus error 
exception is caused by a hardware problem, whereas a divide-by-zero exception is the result of a soft-
ware bug . Likewise, an I/O device can generate an interrupt, or the kernel itself can issue a software 
interrupt (such as an APC or DPC, both of which are described later in this chapter) .

When a hardware exception or interrupt is generated, the processor records enough machine state 
on the kernel stack of the thread that’s interrupted to return to that point in the control flow and 
continue execution as if nothing had happened . If the thread was executing in user mode, Windows 
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switches to the thread’s kernel-mode stack . Windows then creates a trap frame on the kernel stack of 
the interrupted thread into which it stores the execution state of the thread . The trap frame is a subset 
of a thread’s complete context, and you can view its definition by typing dt nt!_ktrap_frame in the 
kernel debugger . (Thread context is described in Chapter 5, “Processes and Threads .”) The kernel 
handles software interrupts either as part of hardware interrupt handling or synchronously when a 
thread invokes kernel functions related to the software interrupt .

In most cases, the kernel installs front-end, trap-handling functions that perform general trap- 
handling tasks before and after transferring control to other functions that field the trap. For example, 
if the condition was a device interrupt, a kernel hardware interrupt trap handler transfers control to 
the interrupt service routine (ISR) that the device driver provided for the interrupting device . If the 
condition was caused by a call to a system service, the general system service trap handler transfers 
control to the specified system service function in the executive. The kernel also installs trap han-
dlers for traps that it doesn’t expect to see or doesn’t handle . These trap handlers typically execute 
the system function KeBugCheckEx, which halts the computer when the kernel detects problematic 
or  incorrect behavior that, if left unchecked, could result in data corruption . (For more information 
on bug checks, see Chapter 14, “Crash Dump Analysis,” in Part 2 .) The following sections describe 
 interrupt, exception, and system service dispatching in greater detail .

Interrupt Dispatching
Hardware-generated interrupts typically originate from I/O devices that must notify the processor 
when they need service . Interrupt-driven devices allow the operating system to get the maximum 
use out of the processor by overlapping central processing with I/O operations . A thread starts an 
I/O transfer to or from a device and then can execute other useful work while the device completes 
the transfer. When the device is finished, it interrupts the processor for service. Pointing devices, 
printers, keyboards, disk drives, and network cards are generally interrupt driven .

System software can also generate interrupts . For example, the kernel can issue a software 
 interrupt to initiate thread dispatching and to asynchronously break into the execution of a thread . 
The kernel can also disable interrupts so that the processor isn’t interrupted, but it does so only 
infrequently—at critical moments while it’s programming an interrupt controller or dispatching an 
exception, for example .

The kernel installs interrupt trap handlers to respond to device interrupts . Interrupt trap handlers 
transfer control either to an external routine (the ISR) that handles the interrupt or to an internal 
 kernel routine that responds to the interrupt . Device drivers supply ISRs to service device interrupts, 
and the kernel provides interrupt-handling routines for other types of interrupts .

In the following subsections, you’ll find out how the hardware notifies the processor of device 
interrupts, the types of interrupts the kernel supports, the way device drivers interact with the kernel 
(as a part of interrupt processing), and the software interrupts the kernel recognizes (plus the kernel 
objects that are used to implement them) .
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Hardware Interrupt Processing
On the hardware platforms supported by Windows, external I/O interrupts come into one of the lines 
on an interrupt controller . The controller, in turn, interrupts the processor on a single line . Once the 
processor is interrupted, it queries the controller to get the interrupt request (IRQ) . The interrupt con-
troller translates the IRQ to an interrupt number, uses this number as an index into a structure called 
the interrupt dispatch table (IDT), and transfers control to the appropriate interrupt dispatch routine . 
At system boot time, Windows fills in the IDT with pointers to the kernel routines that handle each 
interrupt and exception .

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the IDT 
to configure trap handlers for exceptions. For example, the x86 and x64 exception number for a page 
fault (an exception that occurs when a thread attempts to access a page of virtual memory that isn’t 
defined or present) is 0xe (14). Thus, entry 0xe in the IDT points to the system’s page-fault handler. 
Although the architectures supported by Windows allow up to 256 IDT entries, the number of IRQs a 
particular machine can support is determined by the design of the interrupt controller the machine 
uses .

EXPERIMENT: Viewing the IDT
You can view the contents of the IDT, including information on what trap handlers Windows has 
assigned to interrupts (including exceptions and IRQs), using the !idt kernel debugger com-
mand . The !idt command with no flags shows simplified output that includes only registered 
hardware interrupts (and, on 64-bit machines, the processor trap handlers) .

The following example shows what the output of the !idt command looks like:

lkd> !idt 
 
Dumping IDT: 
 
 
00:    fffff80001a7ec40 nt!KiDivideErrorFault 
01:    fffff80001a7ed40 nt!KiDebugTrapOrFault 
02:    fffff80001a7ef00 nt!KiNmiInterrupt    Stack = 0xFFFFF80001865000 
03:    fffff80001a7f280 nt!KiBreakpointTrap 
04:    fffff80001a7f380 nt!KiOverflowTrap 
05:    fffff80001a7f480 nt!KiBoundFault 
06:    fffff80001a7f580 nt!KiInvalidOpcodeFault 
07:    fffff80001a7f7c0 nt!KiNpxNotAvailableFault 
08:    fffff80001a7f880 nt!KiDoubleFaultAbort    Stack = 0xFFFFF80001863000 
09:    fffff80001a7f940 nt!KiNpxSegmentOverrunAbort 
0a:    fffff80001a7fa00 nt!KiInvalidTssFault 
0b:    fffff80001a7fac0 nt!KiSegmentNotPresentFault 
0c:    fffff80001a7fc00 nt!KiStackFault 
0d:    fffff80001a7fd40 nt!KiGeneralProtectionFault 
0e:    fffff80001a7fe80 nt!KiPageFault 
10:    fffff80001a80240 nt!KiFloatingErrorFault 
11:    fffff80001a803c0 nt!KiAlignmentFault 
12:    fffff80001a804c0 nt!KiMcheckAbort    Stack = 0xFFFFF80001867000 
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13:    fffff80001a80840 nt!KiXmmException 
1f:    fffff80001a5ec10 nt!KiApcInterrupt 
2c:    fffff80001a80a00 nt!KiRaiseAssertion 
2d:    fffff80001a80b00 nt!KiDebugServiceTrap 
2f:    fffff80001acd590 nt!KiDpcInterrupt 
37:    fffff8000201c090 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c000) 
3f:    fffff8000201c130 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c0a0) 
51:    fffffa80045babd0 dxgkrnl!DpiFdoLineInterruptRoutine (KINTERRUPT fffffa80045bab40) 
52:    fffffa80029f1390 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1300) 
62:    fffffa80029f15d0 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1540) 
                     USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1240) 
72:    fffffa80029f1e10 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1d80) 
81:    fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 
fffffa80045bad80) 
82:    fffffa80029f1ed0 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1e40) 
90:    fffffa80045bad50 Vid+0x7918 (KINTERRUPT fffffa80045bacc0) 
91:    fffffa80045baed0 i8042prt!I8042MouseInterruptService (KINTERRUPT fffffa80045bae40) 
a0:    fffffa80045bac90 vmbus!XPartPncIsr (KINTERRUPT fffffa80045bac00) 
a2:    fffffa80029f1210 sdbus!SdbusInterrupt (KINTERRUPT fffffa80029f1180) 
                     rimmpx64+0x9FFC (KINTERRUPT fffffa80029f10c0) 
                     rimspx64+0x7A14 (KINTERRUPT fffffa80029f1000) 
                     rixdpx64+0x9C50 (KINTERRUPT fffffa80045baf00) 
a3:    fffffa80029f1510 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1480) 
                     HDAudBus!HdaController::Isr (KINTERRUPT fffffa80029f1c00) 
a8:    fffffa80029f1bd0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1b40) 
a9:    fffffa80029f1b10 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1a80) 
aa:    fffffa80029f1a50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f19c0) 
ab:    fffffa80029f1990 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1900) 
ac:    fffffa80029f18d0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1840) 
ad:    fffffa80029f1810 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1780) 
ae:    fffffa80029f1750 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f16c0) 
af:    fffffa80029f1690 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1600) 
b0:    fffffa80029f1d50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1cc0) 
b1:    fffffa80029f1f90 ACPI!ACPIInterruptServiceRoutine (KINTERRUPT fffffa80029f1f00) 
b3:    fffffa80029f1450 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f13c0) 
c1:    fffff8000201c3b0 hal!HalpBroadcastCallService (KINTERRUPT fffff8000201c320) 
d1:    fffff8000201c450 hal!HalpHpetClockInterrupt (KINTERRUPT fffff8000201c3c0) 
d2:    fffff8000201c4f0 hal!HalpHpetRolloverInterrupt (KINTERRUPT fffff8000201c460) 
df:    fffff8000201c310 hal!HalpApicRebootService (KINTERRUPT fffff8000201c280) 
e1:    fffff80001a8e1f0 nt!KiIpiInterrupt 
e2:    fffff8000201c270 hal!HalpDeferredRecoveryService (KINTERRUPT fffff8000201c1e0) 
e3:    fffff8000201c1d0 hal!HalpLocalApicErrorService (KINTERRUPT fffff8000201c140) 
fd:    fffff8000201c590 hal!HalpProfileInterrupt (KINTERRUPT fffff8000201c500) 
fe:    fffff8000201c630 hal!HalpPerfInterrupt (KINTERRUPT fffff8000201c5a0)

On the system used to provide the output for this experiment, the keyboard device driver’s 
(I8042prt .sys) keyboard ISR is at interrupt number 0x81 . You can also see that interrupt 0xe 
 corresponds to KiPageFault, as explained earlier .

Each processor has a separate IDT so that different processors can run different ISRs, if  appropriate . 
For example, in a multiprocessor system, each processor receives the clock interrupt, but only one 
processor updates the system clock in response to this interrupt . All the processors, however, use the 
interrupt to measure thread quantum and to initiate rescheduling when a thread’s quantum ends . 
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Similarly, some system configurations might require that a particular processor handle certain device 
interrupts .

x86 Interrupt Controllers
Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a variant of 
the i82489 Advanced Programmable Interrupt Controller (APIC); today’s computers include an APIC . 
The PIC standard originates with the original IBM PC . The i8259A PIC works only with uniprocessor 
systems and has only eight interrupt lines. However, the IBM PC architecture defined the addition of 
a second PIC, called the slave, whose interrupts are multiplexed into one of the master PIC’s inter-
rupt lines . This provides 15 total interrupts (seven on the master and eight on the slave, multiplexed 
through the master’s eighth interrupt line) . APICs and Streamlined Advanced Programmable Inter-
rupt Controllers (SAPICs, discussed shortly) work with multiprocessor systems and have 256 interrupt 
lines. Intel and other companies have defined the Multiprocessor Specification (MP Specification), 
a design standard for x86 multiprocessor systems that centers on the use of APIC . To provide com-
patibility with uniprocessor operating systems and boot code that starts a multiprocessor system 
in  uniprocessor mode, APICs support a PIC compatibility mode with 15 interrupts and delivery of 
 interrupts to only the primary processor . Figure 3-2 depicts the APIC architecture . 

The APIC actually consists of several components: an I/O APIC that receives interrupts from 
devices, local APICs that receive interrupts from the I/O APIC on the bus and that interrupt the CPU 
they are associated with, and an i8259A-compatible interrupt controller that translates APIC input into 
PIC-equivalent signals . Because there can be multiple I/O APICs on the system, motherboards typi-
cally have a piece of core logic that sits between them and the processors . This logic is responsible for 
implementing interrupt routing algorithms that both balance the device interrupt load across proces-
sors and attempt to take advantage of locality, delivering device interrupts to the same processor 
that has just fielded a previous interrupt of the same type. Software programs can reprogram the I/O 
APICs with a fixed routing algorithm that bypasses this piece of chipset logic. Windows does this by 
programming the APICs in an “interrupt one processor in the following set” routing mode .

CPU 0

Local APIC

Processor Core

CPU 1

i8259A-
equivalent

PIC

I/O
APIC

Device
interrupts

Local APIC

Processor Core

FIGURE 3-2 x86 APIC architecture 
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x64 Interrupt Controllers
Because the x64 architecture is compatible with x86 operating systems, x64 systems must provide 
the same interrupt controllers as the x86. A significant difference, however, is that the x64 versions of 
Windows will not run on systems that do not have an APIC because they use the APIC for interrupt 
control .

IA64 Interrupt Controllers
The IA64 architecture relies on the Streamlined Advanced Programmable Interrupt Controller (SAPIC), 
which is an evolution of the APIC. Even if load balancing and routing are present in the firmware, 
Windows does not take advantage of it; instead, it statically assigns interrupts to processors in a 
round-robin manner .

EXPERIMENT: Viewing the PIC and APIC
You can view the configuration of the PIC on a uniprocessor and the current local APIC on a 
multiprocessor by using the !pic and !apic kernel debugger commands, respectively . Here’s the 
output of the !pic command on a uniprocessor . (Note that the !pic command doesn’t work if 
your system is using an APIC HAL .)

lkd> !pic  
----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F  
Physically in service:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  
Physically masked:      .  .  .  Y  .  .  Y  Y  .  .  Y  .  .  Y  .  .  
Physically requested:   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  
Level Triggered:        .  .  .  .  .  Y  .  .  .  Y  .  Y  .  .  .  .

Here’s the output of the !apic command on a system running with an APIC HAL . Note that 
during local kernel debugging, this command shows the APIC associated with the current 
processor—in other words, whichever processor the debugger’s thread happens to be running 
on as you enter the command . When looking at a crash dump or remote system, you can use 
the ~(tilde) command followed by the processor number to switch the processor of whose local 
APIC you want to see .

lkd> !apic 
Apic @ fffe0000  ID:0 (50014)  LogDesc:01000000  DestFmt:ffffffff  TPR 20 
TimeCnt: 00000000clk  SpurVec:3f  FaultVec:e3  error:0 
Ipi Cmd: 01000000'0000002f  Vec:2F  FixedDel  Ph:01000000      edg high        
Timer..: 00000000'000300fd  Vec:FD  FixedDel    Dest=Self      edg high      m 
Linti0.: 00000000'0001003f  Vec:3F  FixedDel    Dest=Self      edg high      m 
Linti1.: 00000000'000004ff  Vec:FF  NMI         Dest=Self      edg high        
TMR: 51-52, 62, A3, B1, B3 
IRR:  
ISR:: 

The various numbers following the Vec labels indicate the associated vector in the IDT with 
the given command . For example, in this output, interrupt number 0xFD is associated with 
the APIC Timer, and interrupt number 0xE3 handles APIC errors . Because this experiment was 
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run on the same machine as the earlier !idt experiment, you can notice that 0xFD is the HAL’s 
 Profiling Interrupt (which uses a timer for profile intervals), and 0xe3 is the HAL’s Local APIC 
 Error Handler, as expected .

The following output is for the !ioapic command, which displays the configuration of the I/O 
APICs, the interrupt controller components connected to devices:

lkd> !ioapic 
IoApic @ FEC00000  ID:0 (51)  Arb:A951 
Inti00.: 0000a951'0000a951  Vec:51  LowestDl  Lg:0000a951      lvl low 

Software Interrupt Request Levels (IRQLs)
Although interrupt controllers perform interrupt prioritization, Windows imposes its own interrupt 
priority scheme known as interrupt request levels (IRQLs) . The kernel represents IRQLs internally as a 
number from 0 through 31 on x86 and from 0 to 15 on x64 and IA64, with higher numbers repre-
senting higher-priority interrupts. Although the kernel defines the standard set of IRQLs for software 
interrupts, the HAL maps hardware-interrupt numbers to the IRQLs. Figure 3-3 shows IRQLs defined 
for the x86 architecture, and Figure 3-4 shows IRQLs for the x64 and IA64 architectures .
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FIGURE 3-3 x86 interrupt request levels (IRQLs) 

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the  servicing of 
a lower-priority interrupt . When a high-priority interrupt occurs, the processor saves the  interrupted 
thread’s state and invokes the trap dispatchers associated with the interrupt . The trap dispatcher  raises 
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the IRQL and calls the interrupt’s service routine . After the service routine executes, the  interrupt 
dispatcher lowers the processor’s IRQL to where it was before the interrupt occurred and then loads 
the saved machine state . The interrupted thread resumes executing where it left off . When the kernel 
lowers the IRQL, lower-priority interrupts that were masked might materialize . If this  happens, the 
kernel repeats the process to handle the new interrupts .
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FIGURE 3-4 x64 and IA64 interrupt request levels (IRQLs) 

IRQL priority levels have a completely different meaning than thread-scheduling priorities (which 
are described in Chapter 5) . A scheduling priority is an attribute of a thread, whereas an IRQL is an 
 attribute of an interrupt source, such as a keyboard or a mouse . In addition, each processor has an 
IRQL setting that changes as operating system code executes .

Each processor’s IRQL setting determines which interrupts that processor can receive . IRQLs are 
also used to synchronize access to kernel-mode data structures. (You’ll find out more about synchro-
nization later in this chapter .) As a kernel-mode thread runs, it raises or lowers the processor’s IRQL 
 either directly by calling KeRaiseIrql and KeLowerIrql or, more commonly, indirectly via calls to func-
tions that acquire kernel synchronization objects . As Figure 3-5 illustrates, interrupts from a source 
with an IRQL above the current level interrupt the processor, whereas interrupts from sources with 
IRQLs equal to or below the current level are masked until an executing thread lowers the IRQL .

Because accessing a PIC is a relatively slow operation, HALs that require accessing the I/O bus to 
change IRQLs, such as for PIC and 32-bit Advanced Configuration and Power Interface (ACPI) systems, 
implement a performance optimization, called lazy IRQL, that avoids PIC accesses . When the IRQL 
is raised, the HAL notes the new IRQL internally instead of changing the interrupt mask . If a lower-
priority interrupt subsequently occurs, the HAL sets the interrupt mask to the settings appropriate 
for the first interrupt and does not quiesce the lower-priority interrupt until the IRQL is lowered (thus 
keeping the interrupt pending) . Thus, if no lower-priority interrupts occur while the IRQL is raised, the 
HAL doesn’t need to modify the PIC .
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A kernel-mode thread raises and lowers the IRQL of the processor on which it’s running, 
 depending on what it’s trying to do . For example, when an interrupt occurs, the trap handler (or 
perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt source . This 
elevation masks all interrupts at and below that IRQL (on that processor only), which ensures that 
the processor servicing the interrupt isn’t waylaid by an interrupt at the same level or a lower level . 
The masked interrupts are either handled by another processor or held back until the IRQL drops . 
Therefore, all components of the system, including the kernel and device drivers, attempt to keep the 
IRQL at  passive level (sometimes called low level) . They do this because device drivers can respond to 
hardware interrupts in a timelier manner if the IRQL isn’t kept unnecessarily elevated for long periods .

Note An exception to the rule that raising the IRQL blocks interrupts of that level and 
lower relates to APC-level interrupts . If a thread raises the IRQL to APC level and then 
is rescheduled because of a dispatch/DPC-level interrupt, the system might deliver an 
 APC-level interrupt to the newly scheduled thread . Thus, APC level can be considered a 
thread-local rather than processor-wide IRQL .

EXPERIMENT: Viewing the IRQL
You can view a processor’s saved IRQL with the !irql debugger command . The saved IRQL 
 represents the IRQL at the time just before the break-in to the debugger, which raises the IRQL 
to a static, meaningless value:

kd> !irql  
Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)
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Note that the IRQL value is saved in two locations. The first, which represents the current 
IRQL, is the processor control region (PCR), while its extension, the processor region control 
block (PRCB), contains the saved IRQL in the DebuggerSaveIrql field. The PCR and PRCB contain 
information about the state of each processor in the system, such as the current IRQL, a pointer 
to the hardware IDT, the currently running thread, and the next thread selected to run . The 
kernel and the HAL use this information to perform architecture-specific and machine-specific 
actions. Portions of the PCR and PRCB structures are defined publicly in the Windows Driver Kit 
(WDK) header file Ntddk.h.

You can view the contents of the current processor’s PCR with the kernel debugger by using 
the !pcr command. To view the PCR of a specific processor, add the processor’s number after 
the command, separated with a space:

lkd> !pcr 0 
KPCR for Processor 0 at fffff80001bfad00: 
    Major 1 Minor 1 
    NtTib.ExceptionList: fffff80001853000 
        NtTib.StackBase: fffff80001854080 
       NtTib.StackLimit: 000000000026ea28 
     NtTib.SubSystemTib: fffff80001bfad00 
          NtTib.Version: 0000000001bfae80 
      NtTib.UserPointer: fffff80001bfb4f0 
          NtTib.SelfTib: 000007fffffdb000 
 
                SelfPcr: 0000000000000000 
                   Prcb: fffff80001bfae80 
                   Irql: 0000000000000000 
                    IRR: 0000000000000000 
                    IDR: 0000000000000000 
          InterruptMode: 0000000000000000 
                    IDT: 0000000000000000 
                    GDT: 0000000000000000 
                    TSS: 0000000000000000 
 
          CurrentThread: fffff80001c08c40 
             NextThread: 0000000000000000 
             IdleThread: fffff80001c08c40 
 
              DpcQueue: 

Because changing a processor’s IRQL has such a significant effect on system operation, the 
change can be made only in kernel mode—user-mode threads can’t change the processor’s 
IRQL . This means that a processor’s IRQL is always at passive level when it’s executing user-
mode code . Only when the processor is executing kernel-mode code can the IRQL be higher .

Each interrupt level has a specific purpose. For example, the kernel issues an interprocessor 
interrupt (IPI) to request that another processor perform an action, such as dispatching a par-
ticular thread for execution or updating its translation look-aside buffer (TLB) cache . The system 
clock generates an interrupt at regular intervals, and the kernel responds by updating the clock 
and measuring thread execution time . If a hardware platform supports two clocks, the kernel 
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adds another clock interrupt level to measure performance . The HAL provides a number of 
interrupt levels for use by interrupt-driven devices; the exact number varies with the processor 
and system configuration. The kernel uses software interrupts (described later in this chapter) to 
initiate thread scheduling and to asynchronously break into a thread’s execution .

Mapping Interrupts to IRQLs
IRQL levels aren’t the same as the interrupt requests (IRQs) defined by interrupt controllers—
the architectures on which Windows runs don’t implement the concept of IRQLs in hardware . 
So how does Windows determine what IRQL to assign to an interrupt? The answer lies in the 
HAL . In Windows, a type of device driver called a bus driver determines the presence of devices 
on its bus (PCI, USB, and so on) and what interrupts can be assigned to a device . The bus driver 
reports this information to the Plug and Play manager, which decides, after taking into account 
the acceptable interrupt assignments for all other devices, which interrupt will be assigned to 
each device . Then it calls a Plug and Play interrupt arbiter, which maps interrupts to IRQLs . (The 
root arbiter is used on non-ACPI systems, while the ACPI HAL has its own arbiter on ACPI- 
compatible systems .)

The algorithm for assignment differs for the various HALs that Windows includes . On ACPI 
systems (including x86, x64, and IA64), the HAL computes the IRQL for a given interrupt by 
dividing the interrupt vector assigned to the IRQ by 16 . As for selecting an interrupt vector for 
the IRQ, this depends on the type of interrupt controller present on the system . On today’s APIC 
systems, this number is generated in a round-robin fashion, so there is no computable way to 
figure out the IRQ based on the interrupt vector or the IRQL. However, an experiment later in 
this section shows how the debugger can query this information from the interrupt arbiter .

Predefined IRQLs
Let’s take a closer look at the use of the predefined IRQLs, starting from the highest level shown 
in Figure 3-4:

 ■ The kernel uses high level only when it’s halting the system in KeBugCheckEx and masking 
out all interrupts .

 ■ Power fail level originated in the original Windows NT design documents, which specified 
the behavior of system power failure code, but this IRQL has never been used .

 ■ Interprocessor interrupt level is used to request another processor to perform an action, 
such as updating the processor’s TLB cache, system shutdown, or system crash .

 ■ Clock level is used for the system’s clock, which the kernel uses to track the time of day as 
well as to measure and allot CPU time to threads .

 ■ The system’s real-time clock (or another source, such as the local APIC timer) uses profile 
level when kernel profiling (a performance-measurement mechanism) is enabled. When 
kernel profiling is active, the kernel’s profiling trap handler records the address of the code 
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that was executing when the interrupt occurred . A table of address samples is constructed 
over time that tools can extract and analyze. You can obtain Kernrate, a kernel profil-
ing tool that you can use to configure and view profiling-generated statistics, from the 
 Windows Driver Kit (WDK) . See the Kernrate experiment for more information on using 
this tool .

 ■ The synchronization IRQL is internally used by the dispatcher and scheduler code to 
protect access to global thread scheduling and wait/synchronization code . It is typically 
defined as the highest level right after the device IRQLs.

 ■ The device IRQLs are used to prioritize device interrupts . (See the previous section for how 
hardware interrupt levels are mapped to IRQLs .)

 ■ The corrected machine check interrupt level is used to signal the operating system after 
a serious but corrected hardware condition or error that was reported by the CPU or 
 firmware through the Machine Check Error (MCE) interface .

 ■ DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel and 
device drivers generate . (DPCs and APCs are explained in more detail later in this chapter .)

 ■ The lowest IRQL, passive level, isn’t really an interrupt level at all; it’s the setting at which 
normal thread execution takes place and all interrupts are allowed to occur .

EXPERIMENT: Using Kernel Profiler (Kernrate) to Profile Execution
You can use the Kernel Profiler tool (Kernrate) to enable the system-profiling timer, collect 
samples of the code that is executing when the timer fires, and display a summary showing 
the frequency distribution across image files and functions. It can be used to track CPU usage 
consumed by individual processes and/or time spent in kernel mode independent of processes 
(for example, interrupt service routines). Kernel profiling is useful when you want to obtain a 
breakdown of where the system is spending time .

In its simplest form, Kernrate samples where time has been spent in each kernel module (for 
example, Ntoskrnl, drivers, and so on) . For example, after installing the Windows Driver Kit, try 
performing the following steps:

1. Open a command prompt .

2. Type cd C:\WinDDK\7600 .16385 .1\tools\other (the path to your installation of the 
Windows 7/Server 2008R2 WDK) .

3. Type dir . (You will see directories for each platform .)

4. Run the image that matches your platform (with no arguments or switches) . For 
 example, i386\kernrate.exe is the image for an x86 system .
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5. While Kernrate is running, perform some other activity on the system . For example, 
run Windows Media Player and play some music, run a graphics-intensive game, or 
perform network activity such as doing a directory listing of a remote network share .

6. Press Ctrl+C to stop Kernrate . This causes Kernrate to display the statistics from the 
sampling period .

In the following sample output from Kernrate, Windows Media Player was running, playing a 
recorded movie from disk:

C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe 
 
 /==============================\ 
<         KERNRATE LOG           > 
 \==============================/ 
Date: 2011/03/09   Time: 16:44:24 
Machine Name: TEST-LAPTOP 
Number of Processors: 2 
PROCESSOR_ARCHITECTURE: x86 
PROCESSOR_LEVEL: 6 
PROCESSOR_REVISION: 0f06 
Physical Memory: 3310 MB 
Pagefile Total: 7285 MB 
Virtual Total: 2047 MB 
PageFile1: \??\C:\pagefile.sys, 4100MB 
OS Version: 6.1 Build 7601 Service-Pack: 1.0 
WinDir: C:\Windows 
 
Kernrate Executable Location: C:\WINDDK\7600.16385.1\TOOLS\OTHER\I386 
 
Kernrate User-Specified Command Line: 
kernrate.exe 
 
 
Kernel Profile (PID = 0): Source= Time, 
Using Kernrate Default Rate of 25000 events/hit 
Starting to collect profile data 
 
***> Press ctrl-c to finish collecting profile data 
===> Finished Collecting Data, Starting to Process Results 
 
------------Overall Summary:-------------- 
 
P0     K 0:00:00.000 ( 0.0%)  U 0:00:00.234 ( 4.7%)  I 0:00:04.789 (95.3%)   
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 
       Interrupts= 9254, Interrupt Rate= 1842/sec. 
 
P1     K 0:00:00.031 ( 0.6%)  U 0:00:00.140 ( 2.8%)  I 0:00:04.851 (96.6%)   
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 
       Interrupts= 7051, Interrupt Rate= 1404/sec. 
 
TOTAL  K 0:00:00.031 ( 0.3%)  U 0:00:00.374 ( 3.7%)  I 0:00:09.640 (96.0%)   
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 
       Total Interrupts= 16305, Total Interrupt Rate= 3246/sec. 
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Total Profile Time = 5023 msec 
 
                                       BytesStart          BytesStop        BytesDiff. 
    Available Physical Memory   ,      1716359168,      1716195328,         -163840 
    Available Pagefile(s)       ,      5973733376,      5972783104,         -950272 
    Available Virtual           ,      2122145792,      2122145792,               0 
    Available Extended Virtual  ,               0,               0,               0 
    Committed Memory Bytes      ,      1665404928,      1666355200,          950272 
    Non Paged Pool Usage Bytes  ,        66211840,        66211840,               0 
    Paged Pool Usage Bytes      ,       189083648,       189087744,            4096 
    Paged Pool Available Bytes  ,       150593536,       150593536,               0 
    Free System PTEs            ,           37322,           37322,               0 
 
                                  Total          Avg. Rate 
    Context Switches     ,        30152,         6003/sec. 
    System Calls         ,       110807,         22059/sec. 
    Page Faults          ,          226,         45/sec. 
    I/O Read Operations  ,          730,         145/sec. 
    I/O Write Operations ,         1038,         207/sec. 
    I/O Other Operations ,          858,         171/sec. 
    I/O Read Bytes       ,      2013850,         2759/ I/O 
    I/O Write Bytes      ,        28212,         27/ I/O 
    I/O Other Bytes      ,        19902,         23/ I/O 
 
----------------------------- 
 
Results for Kernel Mode: 
----------------------------- 
 
OutputResults: KernelModuleCount = 167 
Percentage in the following table is based on the Total Hits for the Kernel 
 
Time   3814 hits, 25000 events per hit -------- 
Module                                 Hits       msec  %Total  Events/Sec 
NTKRNLPA                               3768       5036    98 %    18705321 
NVLDDMKM                                 12       5036     0 %       59571 
HAL                                      12       5036     0 %       59571 
WIN32K                                   10       5037     0 %       49632 
DXGKRNL                                   9       5036     0 %       44678 
NETW4V32                                  2       5036     0 %        9928 
FLTMGR                                    1       5036     0 %        4964 
 
================================= END OF RUN ================================== 
============================== NORMAL END OF RUN ==============================

The overall summary shows that the system spent 0 .3 percent of the time in kernel mode, 
3 .7 percent in user mode, 96 .0 percent idle, 0 .0 percent at DPC level, and 0 .0 percent at inter-
rupt level . The module with the highest hit rate was Ntkrnlpa .exe, the kernel for machines with 
 Physical Address Extension (PAE) or NX support . The module with the second highest hit rate 
was nvlddmkm .sys, the driver for the video card on the machine used for the test . This makes 
sense because the major activity going on in the system was Windows Media Player sending 
video I/O to the video driver .
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If you have symbols available, you can zoom in on individual modules and see the time spent 
by function name. For example, profiling the system while rapidly dragging a window around 
the screen resulted in the following (partial) output:

 C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe -z ntkrnlpa -z win32k 
 /==============================\ 
<         KERNRATE LOG           > 
 \==============================/ 
Date: 2011/03/09   Time: 16:49:56 
  
Time   4191 hits, 25000 events per hit -------- 
Module                                 Hits       msec  %Total  Events/Sec 
NTKRNLPA                               3623       5695    86 %    15904302 
WIN32K                                  303       5696     7 %     1329880 
INTELPPM                                141       5696     3 %      618855 
HAL                                      61       5695     1 %      267778 
CDD                                      30       5696     0 %      131671 
NVLDDMKM                                 13       5696     0 %       57057 
  
----- Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down) -------- 
Module                                 Hits       msec  %Total  Events/Sec 
BltLnkReadPat                            34       5696    10 %      149227 
memmove                                  21       5696     6 %       92169 
vSrcTranCopyS8D32                        17       5696     5 %       74613 
memcpy                                   12       5696     3 %       52668 
RGNOBJ::bMerge                           10       5696     3 %       43890 
HANDLELOCK::vLockHandle                   8       5696     2 %       35112 
  
----- Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) -------- 
Module                                 Hits       msec  %Total  Events/Sec 
KiIdleLoop                             3288       5695    87 %    14433713 
READ_REGISTER_USHORT                     95       5695     2 %      417032 
READ_REGISTER_ULONG                      93       5695     2 %      408252 
RtlFillMemoryUlong                       31       5695     0 %      136084 
KiFastCallEntry                          18       5695     0 %       79016

The module with the second hit rate was Win32k .sys, the windowing system driver . Also high 
on the list were the video driver and Cdd .dll, a global video driver used for the 3D-accelerated 
Aero desktop theme . These results make sense because the main activity in the system was 
drawing on the screen . Note that in the zoomed display for Win32k .sys, the functions with the 
highest hits are related to merging, copying, and moving bits, the main GDI operations for 
painting a window dragged on the screen .

One important restriction on code running at DPC/dispatch level or above is that it can’t wait 
for an object if doing so necessitates the scheduler to select another thread to execute, which is 
an illegal operation because the scheduler relies on DPC-level software interrupts to schedule 
threads . Another restriction is that only nonpaged memory can be accessed at IRQL DPC/dis-
patch level or higher . 

This rule is actually a side effect of the first restriction because attempting to access memory 
that isn’t resident results in a page fault . When a page fault occurs, the memory manager initi-
ates a disk I/O and then needs to wait for the file system driver to read the page in from disk. 



 CHAPTER 3 System Mechanisms 95

This wait would, in turn, require the scheduler to perform a context switch (perhaps to the idle 
thread if no user thread is waiting to run), thus violating the rule that the scheduler can’t be 
invoked (because the IRQL is still DPC/dispatch level or higher at the time of the disk read) . A 
further problem results in the fact that I/O completion typically occurs at APC_LEVEL, so even in 
cases where a wait wouldn’t be required, the I/O would never complete because the completion 
APC would not get a chance to run .

If either of these two restrictions is violated, the system crashes with an IRQL_NOT_LESS_
OR_EQUAL or a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code . (See Chapter 14 in Part 2 for a 
thorough discussion of system crashes .) Violating these restrictions is a common bug in device 
drivers. The Windows Driver Verifier (explained in the section “Driver Verifier” in Chapter 10, 
“Memory Management,” in Part 2) has an option you can set to assist in finding this particular 
type of bug .

Interrupt Objects
The kernel provides a portable mechanism—a kernel control object called an interrupt object—
that allows device drivers to register ISRs for their devices . An interrupt object contains all the 
information the kernel needs to associate a device ISR with a particular level of interrupt, includ-
ing the address of the ISR, the IRQL at which the device interrupts, and the entry in the kernel’s 
interrupt dispatch table (IDT) with which the ISR should be associated . When an interrupt object 
is initialized, a few instructions of assembly language code, called the dispatch code, are copied 
from an interrupt-handling template, KiInterruptTemplate, and stored in the object . When an 
interrupt occurs, this code is executed .

This interrupt-object resident code calls the real interrupt dispatcher, which is typically 
either the kernel’s KiInterruptDispatch or KiChainedDispatch routine, passing it a pointer to the 
interrupt object . KiInterruptDispatch is the routine used for interrupt vectors for which only 
one interrupt object is registered, and KiChainedDispatch is for vectors shared among multiple 
interrupt objects . The interrupt object contains information that this second dispatcher routine 
needs to locate and properly call the ISR the device driver provides . 

The interrupt object also stores the IRQL associated with the interrupt so that 
 KiInterruptDispatch or KiChainedDispatch can raise the IRQL to the correct level before calling 
the ISR and then lower the IRQL after the ISR has returned . This two-step process is required 
because there’s no way to pass a pointer to the interrupt object (or any other argument for that 
matter) on the initial dispatch because the initial dispatch is done by hardware . On a multipro-
cessor system, the kernel allocates and initializes an interrupt object for each CPU, enabling the 
local APIC on that CPU to accept the particular interrupt . 

On x64 Windows systems, the kernel optimizes interrupt dispatch by using specific routines that 
save processor cycles by omitting functionality that isn’t needed, such as KiInterruptDispatchNoLock, 
which is used for interrupts that do not have an associated kernel-managed spinlock (typically used 
by drivers that want to synchronize with their ISRs), and KiInterruptDispatchNoEOI, which is used for 
interrupts that have programmed the APIC in “Auto-End-of-Interrupt” (Auto-EOI) mode—because 
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the interrupt controller will send the EOI signal automatically, the kernel does not need to the extra 
code to do perform the EOI itself. Finally, for the performance/profiling interrupt specifically, the 
 KiInterruptDispatchLBControl handler is used, which supports the Last Branch Control MSR available 
on modern CPUs . This register enables the kernel to track/save the branch instruction when  tracing; 
during an interrupt, this information would be lost because it’s not stored in the normal thread 
register context, so special code must be added to preserve it. The HAL’s performance and profiling 
interrupts use this functionality, for example, while the other HAL interrupt routines take advantage of 
the “no-lock” dispatch code, because the HAL does not require the kernel to synchronize with its ISR .

Another kernel interrupt handler is KiFloatingDispatch, which is used for interrupts that require 
 saving the floating-point state. Unlike kernel-mode code, which typically is not allowed to use 
floating-point (MMX, SSE, 3DNow!) operations because these registers won’t be saved across con-
text switches, ISRs might need to use these registers (such as the video card ISR performing a quick 
 drawing operation) . When connecting an interrupt, drivers can set the FloatingSave argument to 
TRUE, requesting that the kernel use the floating-point dispatch routine, which will save the floating 
registers . (However, this greatly increases interrupt latency .) Note that this is supported only on 32-bit 
systems .

Figure 3-6 shows typical interrupt control flow for interrupts associated with interrupt objects.
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EXPERIMENT: Examining Interrupt Internals
Using the kernel debugger, you can view details of an interrupt object, including its IRQL, ISR 
address, and custom interrupt-dispatching code . First, execute the !idt command and locate the 
entry that includes a reference to I8042KeyboardInterruptService, the ISR routine for the PS2 
keyboard device:

81:    fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 
fffffa80045bad80)

To view the contents of the interrupt object associated with the interrupt, execute    
dt nt!_kinterrupt with the address following KINTERRUPT:

lkd> dt nt!_KINTERRUPT fffffa80045bad80 
   +0x000 Type             : 22 
   +0x002 Size             : 160 
   +0x008 InterruptListEntry : _LIST_ENTRY [ 0x00000000'00000000 - 0x0 ] 
   +0x018 ServiceRoutine   : 0xfffff880'0356ca04     unsigned char 
  i8042prt!I8042KeyboardInterruptService+0 
   +0x020 MessageServiceRoutine : (null)  
   +0x028 MessageIndex     : 0 
   +0x030 ServiceContext   : 0xfffffa80'02c839f0  
   +0x038 SpinLock         : 0 
   +0x040 TickCount        : 0 
   +0x048 ActualLock       : 0xfffffa80'02c83b50  -> 0 
   +0x050 DispatchAddress  : 0xfffff800'01a7db90     void  nt!KiInterruptDispatch+0 
   +0x058 Vector           : 0x81 
   +0x05c Irql             : 0x8 '' 
   +0x05d SynchronizeIrql  : 0x9 '' 
   +0x05e FloatingSave     : 0 '' 
   +0x05f Connected        : 0x1 '' 
   +0x060 Number           : 0 
   +0x064 ShareVector      : 0 '' 
   +0x065 Pad              : [3]  "" 
   +0x068 Mode             : 1 ( Latched ) 
   +0x06c Polarity         : 0 ( InterruptPolarityUnknown ) 
   +0x070 ServiceCount     : 0 
   +0x074 DispatchCount    : 0 
   +0x078 Rsvd1            : 0 
   +0x080 TrapFrame        : 0xfffff800'0185ab00 _KTRAP_FRAME 
   +0x088 Reserved         : (null)  
   +0x090 DispatchCode     : [4] 0x8d485550

In this example, the IRQL that Windows assigned to the interrupt is 8 . Although there is 
no direct mapping between an interrupt vector and an IRQ, Windows does keep track of this 
translation when managing device resources through what are called arbiters . For each resource 
type, an arbiter maintains the relationship between virtual resource usage (such as an interrupt 
vector) and physical resources (such as an interrupt line) . As such, you can query either the root 
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IRQ arbiter (on systems without ACPI) or the ACPI IRQ arbiter and obtain this mapping . Use the 
!apciirqarb command to obtain information on the ACPI IRQ arbiter:

lkd> !acpiirqarb 
 
Processor 0 (0, 0): 
Device Object: 0000000000000000 
Current IDT Allocation: 
... 
   0000000000000081 - 0000000000000081   D   fffffa80029b4c20  (i8042prt)  
A:0000000000000000 IRQ:0 
...

If you don’t have an ACPI system, you can use !arbiter 4 (4 tells the debugger to display only 
IRQ arbiters):

lkd> !arbiter 4 
 
DEVNODE fffffa80027c6d90 (HTREE\ROOT\0) 
  Interrupt Arbiter "RootIRQ" at fffff80001c82500 
    Allocated ranges: 
      0000000000000081 - 0000000000000081   Owner    fffffa80029b4c20 (i8042prt)

In both cases, you will be given the owner of the vector, in the type of a device object . You 
can then use the !devobj command to get information on the i8042prt device in this example 
(which corresponds to the PS/2 driver):

lkd> !devobj fffffa80029b4c20 
Device object (fffffa80029b4c20) is for: 
 00000061 \Driver\ACPI DriverObject fffffa8002888e70 
Current Irp 00000000 RefCount 1 Type 00000032 Flags 00003040 
Dacl fffff9a100096a41 DevExt fffffa800299f740 DevObjExt fffffa80029b4d70 DevNode 
fffffa80029b54b0  
The device object is associated to a device node, which stores all the device's physical 
resources.  
You can now dump these resources with the !devnode command, and using the 6 flag to ask  
for resource information: 
lkd> !devnode fffffa80029b54b0 6 
DevNode 0xfffffa80029b54b0 for PDO 0xfffffa80029b4c20 
  Parent 0xfffffa800299b390   Sibling 0xfffffa80029b5230   Child 0000000000 
  InstancePath is "ACPI\PNP0303\4&17aa870d&0" 
  ServiceName is "i8042prt" 
... 
  CmResourceList at 0xfffff8a00185bf40  Version 1.1  Interface 0xf  Bus #0 
    Entry 0 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x60 for 0x1 bytes 
    Entry 1 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x64 for 0x1 bytes 
    Entry 2 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x62 for 0x1 bytes 
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    Entry 3 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x66 for 0x1 bytes 
    Entry 4 - Interrupt (0x2) Device Exclusive (0x1) 
      Flags (0x01) - LATCHED  
      Level 0x1, Vector 0x1, Group 0, Affinity 0xffffffff

The device node tells you that this device has a resource list with 4 entries, one of which is an 
interrupt entry corresponding to IRQ 1 . (The level and vector numbers represent the IRQ vector, 
not the interrupt vector .) IRQ 1 is the traditional PC/AT IRQ number associated with the PS/2 
keyboard device, so this is the expected value . (A USB keyboard would have a different inter-
rupt .)

On ACPI systems, you can obtain this information in a slightly easier way by reading the 
extended output of the !acpiirqarb command introduced earlier . As part of its output, it displays 
the IRQ to IDT mapping table:

Interrupt Controller (Inputs: 0x0-0x17  Dev: 0000000000000000): 
     (00)Cur:IDT-a1 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (01)Cur:IDT-81 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (02)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (03)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (04)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (05)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (06)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (07)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (08)Cur:IDT-71 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (09)Cur:IDT-b1 Ref-1 lev hi   Pos:IDT-00 Ref-0 edg hi  
    (0a)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0b)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0c)Cur:IDT-91 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0d)Cur:IDT-61 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0e)Cur:IDT-82 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0f)Cur:IDT-72 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (10)Cur:IDT-51 Ref-3 lev low  Pos:IDT-00 Ref-0 edg hi  
    (11)Cur:IDT-b2 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi  
    (12)Cur:IDT-a2 Ref-5 lev low  Pos:IDT-00 Ref-0 edg hi  
    (13)Cur:IDT-92 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi  
    (14)Cur:IDT-62 Ref-2 lev low  Pos:IDT-00 Ref-0 edg hi  
    (15)Cur:IDT-a3 Ref-2 lev low  Pos:IDT-00 Ref-0 edg hi  
     (16)Cur:IDT-b3 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi  
     (17)Cur:IDT-52 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi 

As expected, IRQ 1 is associated with IDT entry 0x81 . For more information on device 
 objects, resources, and other related concepts, see Chapter 8, “I/O System,” in Part 2 .

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is what 
!idt displays in its output), and the interrupt code that actually executes when an interrupt 
 occurs is stored in the DispatchCode array at the end of the interrupt object . The interrupt code 
stored there is programmed to build the trap frame on the stack and then call the function 
stored in the DispatchAddress field (KiInterruptDispatch in the example), passing it a pointer to 
the interrupt object .



100 Windows Internals, Sixth Edition, Part 1

Windows and Real-Time Processing
Deadline requirements, either hard or soft, characterize real-time environments . Hard real-time 
systems (for example, a nuclear power plant control system) have deadlines the system must 
meet to avoid catastrophic failures, such as loss of equipment or life . Soft real-time systems (for 
example, a car’s fuel-economy optimization system) have deadlines the system can miss, but 
timeliness is still a desirable trait . In real-time systems, computers have sensor input devices and 
control output devices . The designer of a real-time computer system must know worst-case 
delays between the time an input device generates an interrupt and the time the device’s driver 
can control the output device to respond . This worst-case analysis must take into account the 
delays the operating system introduces as well as the delays the application and device drivers 
impose .

Because Windows doesn’t enable controlled prioritization of device IRQs and user-level 
 applications execute only when a processor’s IRQL is at passive level, Windows isn’t typi-
cally suitable as a real-time operating system . The system’s devices and device drivers—not 
 Windows—ultimately determine the worst-case delay . This factor becomes a problem when the 
real-time system’s designer uses off-the-shelf hardware. The designer can have difficulty deter-
mining how long every off-the-shelf device’s ISR or DPC might take in the worst case . Even after 
testing, the designer can’t guarantee that a special case in a live system won’t cause the system 
to miss an important deadline . Furthermore, the sum of all the delays a system’s DPCs and ISRs 
can introduce usually far exceeds the tolerance of a time-sensitive system .

Although many types of embedded systems (for example, printers and automotive 
 computers) have real-time requirements, Windows Embedded Standard 7 doesn’t have real-
time characteristics . It is simply a version of Windows 7 that makes it possible to produce small-
footprint versions of Windows 7 suitable for running on devices with limited resources . For 
example, a device that has no networking capability would omit all the Windows 7 components 
related to networking, including network management tools and adapter and protocol stack 
device drivers .

Still, there are third-party vendors that supply real-time kernels for Windows . The approach 
these vendors take is to embed their real-time kernel in a custom HAL and to have Windows 
run as a task in the real-time operating system . The task running Windows serves as the user 
interface to the system and has a lower priority than the tasks responsible for managing the 
device . 

Associating an ISR with a particular level of interrupt is called connecting an interrupt object, and 
dissociating an ISR from an IDT entry is called disconnecting an interrupt object . These operations, 
 accomplished by calling the kernel functions IoConnectInterruptEx and IoDisconnectInterruptEx, allow 
a device driver to “turn on” an ISR when the driver is loaded into the system and to “turn off” the ISR 
if the driver is unloaded .
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Using the interrupt object to register an ISR prevents device drivers from fiddling directly with 
 interrupt hardware (which differs among processor architectures) and from needing to know any 
details about the IDT . This kernel feature aids in creating portable device drivers because it eliminates 
the need to code in assembly language or to reflect processor differences in device drivers.

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel can 
synchronize the execution of the ISR with other parts of a device driver that might share data with the 
ISR . (See Chapter 8 in Part 2 for more information about how device drivers respond to interrupts .)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any interrupt 
level . If multiple device drivers create interrupt objects and connect them to the same IDT entry, the 
interrupt dispatcher calls each routine when an interrupt occurs at the specified interrupt line. This 
capability allows the kernel to easily support daisy-chain configurations, in which several devices share 
the same interrupt line . The chain breaks when one of the ISRs claims ownership for the interrupt by 
returning a status to the interrupt dispatcher .

If multiple devices sharing the same interrupt require service at the same time, devices not 
 acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher has  lowered 
the IRQL . Chaining is permitted only if all the device drivers wanting to use the same interrupt 
 indicate to the kernel that they can share the interrupt; if they can’t, the Plug and Play manager 
 reorganizes their interrupt assignments to ensure that it honors the sharing requirements of each . If 
the interrupt vector is shared, the interrupt object invokes KiChainedDispatch, which will invoke the 
ISRs of each registered interrupt object in turn until one of them claims the interrupt or all have been 
executed . In the earlier sample !idt output (in the “EXPERIMENT: Viewing the IDT” section), vector 
0xa2 is connected to several chained interrupt objects . On the system it was run on, it happens to 
correspond to an integrated 7-in-1 media card reader, which is a combination of Secure Digital (SD), 
Compact Flash (CF), MultiMedia Card (MMC) and other types of readers, each having their individual 
interrupt . Because it’s packaged as one device by the same vendor, it makes sense that its interrupts 
share the same vector . 

Line-Based vs. Message Signaled-Based Interrupts
Shared interrupts are often the cause of high interrupt latency and can also cause stability 
 issues . They are typically undesirable and a side effect of the limited number of physical inter-
rupt lines on a computer . For example, in the previous example of the 7-in-1 media card reader, 
a much better solution is for each device to have its own interrupt and for one driver to manage 
the different interrupts knowing which device they came from . However, consuming four IRQ 
lines for a single device quickly leads to IRQ line exhaustion . Additionally, PCI devices are each 
connected to only one IRQ line anyway, so the media card reader cannot use more than one 
IRQ in the first place. 

Other problems with generating interrupts through an IRQ line is that incorrect 
 management of the IRQ signal can lead to interrupt storms or other kinds of deadlocks 
on the machine,  because the signal is driven “high” or “low” until the ISR acknowledges it . 
( Furthermore, the  interrupt controller must typically receive an EOI signal as well .) If either 
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of these does not  happen due to a bug, the system can end up in an interrupt state forever, 
further interrupts could be masked away, or both . Finally, line-based interrupts provide poor 
scalability in multiprocessor environments. In many cases, the hardware has the final decision 
as to which processor will be interrupted out of the possible set that the Plug and Play manager 
selected for this interrupt, and there is little device drivers can do .

A solution to all these problems is a new interrupt mechanism first introduced in the PCI 
2 .2 standard called message-signaled interrupts (MSI) . Although it remains an optional compo-
nent of the standard that is seldom found in client machines, an increasing number of servers 
and workstations implement MSI support, which is fully supported by the all recent versions 
of Windows . In the MSI model, a device delivers a message to its driver by writing to a spe-
cific memory address. This action causes an interrupt, and Windows then calls the ISR with 
the message content (value) and the address where the message was delivered . A device can 
also deliver multiple messages (up to 32) to the memory address, delivering different payloads 
based on the event .

Because communication is based across a memory value, and because the content is de-
livered with the interrupt, the need for IRQ lines is removed (making the total system limit of 
MSIs equal to the number of interrupt vectors, not IRQ lines), as is the need for a driver ISR to 
query the device for data related to the interrupt, decreasing latency . Due to the large number 
of device interrupts available through this model, this effectively nullifies any benefit of sharing 
interrupts, decreasing latency further by directly delivering the interrupt data to the concerned 
ISR .

Finally, MSI-X, an extension to the MSI model, which is introduced in PCI 3 .0, adds support 
for 32-bit messages (instead of 16-bit), a maximum of 2048 different messages (instead of just 
32), and more importantly, the ability to use a different address (which can be dynamically de-
termined) for each of the MSI payloads . Using a different address allows the MSI payload to be 
written to a different physical address range that belongs to a different processor, or a different 
set of target processors, effectively enabling nonuniform memory access (NUMA)-aware inter-
rupt delivery by sending the interrupt to the processor that initiated the related device request . 
This improves latency and scalability by monitoring both load and closest NUMA node during 
interrupt completion .

Interrupt Affinity and Priority
On systems that both support ACPI and contain an APIC, Windows enables driver developers 
and administrators to somewhat control the processor affinity (selecting the processor or group 
of processors that receives the interrupt) and affinity policy (selecting how processors will be 
chosen and which processors in a group will be chosen) . Furthermore, it enables a  primitive 
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mechanism of interrupt prioritization based on IRQL selection. Affinity policy is defined 
 according to Table 3-1, and it’s configurable through a registry value called InterruptPolicyValue 
in the Interrupt Management\Affinity Policy key under the device’s instance key in the  registry. 
 Because of this, it does not require any code to configure—an administrator can add this 
value to a given driver’s key to influence its behavior. Microsoft provides such a tool, called the 
 Interrupt Affinity policy Tool, which can be downloaded from http://www.microsoft.com/whdc 
/system/sysperf/intpolicy.mspx .

TABLE 3-1 IRQ Affinity Policies

Policy Meaning

IrqPolicyMachineDefault The device does not require a particular affinity policy. 
Windows uses the default machine policy, which (for machines 
with less than eight logical processors) is to select any avail-
able processor on the machine .

IrqPolicyAllCloseProcessors On a NUMA machjne, the Plug and Play manager assigns the 
interrupt to all the processors that are close to the device (on 
the same node) . On non-NUMA machines, this is the same as 
IrqPolicyAllProcessorsInMachine .

IrqPolicyOneCloseProcessor On a NUMA machjne, the Plug and Play manager assigns the 
 interrupt to one processor that is close to the device (on the 
same node) . On non-NUMA machines, the chosen processor 
will be any available on the system .

IrqPolicyAllProcessorsInMachine The interrupt is processed by any available processor on the 
 machine .

IrqPolicySpecifiedProcessors The interrupt is processed only by one of the pro-
cessors  specified in the affinity mask under the 
AssignmentSetOverride registry value .

IrqPolicySpreadMessagesAcrossAllProcessors Different message-signaled interrupts are distributed across 
an optimal set of eligible processors, keeping track of NUMA 
topology issues, if possible . This requires MSI-X support on 
the device and platform .

Other than setting this affinity policy, another registry value can also be used to set the 
interrupt’s priority, based on the values in Table 3-2 .

TABLE 3-2 IRQ Priorities

Priority Meaning

IrqPriorityUndefined No particular priority is required by the device . It receives the default priority 
(IrqPriorityNormal) .

IrqPriorityLow The device can tolerate high latency and should receive a lower IRQL than usual .

IrqPriorityNormal The device expects average latency . It receives the default IRQL associated with 
its interrupt vector .

IrqPriorityHigh The device requires as little latency as possible . It receives an elevated IRQL 
 beyond its normal assignment .
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As discussed earlier, it is important to note that Windows is not a real-time operating 
 system, and as such, these IRQ priorities are hints given to the system that control only the 
IRQL  associated with the interrupt and provide no extra priority other than the Windows 
IRQL  priority-scheme mechanism . Because the IRQ priority is also stored in the registry, 
 administrators are free to set these values for drivers should there be a requirement of lower 
latency for a driver not taking advantage of this feature .

Software Interrupts
Although hardware generates most interrupts, the Windows kernel also generates software interrupts 
for a variety of tasks, including these:

 ■ Initiating thread dispatching

 ■ Non-time-critical interrupt processing

 ■ Handling timer expiration

 ■ Asynchronously executing a procedure in the context of a particular thread

 ■ Supporting asynchronous I/O operations

These tasks are described in the following subsections .

Dispatch or Deferred Procedure Call (DPC) Interrupts When a thread can no longer continue 
executing, perhaps because it has terminated or because it voluntarily enters a wait state, the kernel 
calls the dispatcher directly to effect an immediate context switch . Sometimes, however, the kernel 
detects that rescheduling should occur when it is deep within many layers of code . In this situation, 
the kernel requests dispatching but defers its occurrence until it completes its current activity . Using a 
DPC software interrupt is a convenient way to achieve this delay .

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs to 
synchronize access to shared kernel structures . This disables additional software interrupts and thread 
dispatching . When the kernel detects that dispatching should occur, it requests a DPC/dispatch-level 
interrupt; but because the IRQL is at or above that level, the processor holds the interrupt in check . 
When the kernel completes its current activity, it sees that it’s going to lower the IRQL below  
DPC/dispatch level and checks to see whether any dispatch interrupts are pending . If there are, the 
IRQL drops to DPC/dispatch level and the dispatch interrupts are processed . Activating the thread dis-
patcher by using a software interrupt is a way to defer dispatching until conditions are right . However, 
Windows uses software interrupts to defer other types of processing as well .
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In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs) at this 
IRQL . A DPC is a function that performs a system task—a task that is less time-critical than the current 
one . The functions are called deferred because they might not execute immediately .

DPCs provide the operating system with the capability to generate an interrupt and execute a 
system function in kernel mode . The kernel uses DPCs to process timer expiration (and release threads 
waiting for the timers) and to reschedule the processor after a thread’s quantum expires . Device 
 drivers use DPCs to process interrupts . To provide timely service for hardware interrupts, Windows—
with the cooperation of device drivers—attempts to keep the IRQL below device IRQL levels . One way 
that this goal is achieved is for device driver ISRs to perform the minimal work necessary to acknowl-
edge their device, save volatile interrupt state, and defer data transfer or other less time-critical 
interrupt processing activity for execution in a DPC at DPC/dispatch IRQL . (See Chapter 8 in Part 2 for 
more information on DPCs and the I/O system .)

A DPC is represented by a DPC object, a kernel control object that is not visible to user-mode 
 programs but is visible to device drivers and other system code . The most important piece of infor-
mation the DPC object contains is the address of the system function that the kernel will call when it 
processes the DPC interrupt . DPC routines that are waiting to execute are stored in kernel-managed 
queues, one per processor, called DPC queues . To request a DPC, system code calls the kernel to 
initialize a DPC object and then places it in a DPC queue .

By default, the kernel places DPC objects at the end of the DPC queue of the processor on which 
the DPC was requested (typically the processor on which the ISR executed) . A device driver can over-
ride this behavior, however, by specifying a DPC priority (low, medium, medium-high, or high, where 
medium is the default) and by targeting the DPC at a particular processor. A DPC aimed at a specific 
CPU is known as a targeted DPC . If the DPC has a high priority, the kernel inserts the DPC object at 
the front of the queue; otherwise, it is placed at the end of the queue for all other priorities .

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher to a 
lower IRQL (APC or passive level), the kernel processes DPCs . Windows ensures that the IRQL remains 
at DPC/dispatch level and pulls DPC objects off the current processor’s queue until the queue is 
empty (that is, the kernel “drains” the queue), calling each DPC function in turn . Only when the queue 
is empty will the kernel let the IRQL drop below DPC/dispatch level and let regular thread execution 
continue . DPC processing is depicted in Figure 3-7 .

DPC priorities can affect system behavior another way . The kernel usually initiates DPC queue 
draining with a DPC/dispatch-level interrupt . The kernel generates such an interrupt only if the DPC 
is directed at the current processor (the one on which the ISR executes) and the DPC has a priority 
higher than low . If the DPC has a low priority, the kernel requests the interrupt only if the number 
of outstanding DPC requests for the processor rises above a threshold or if the number of DPCs 
 requested on the processor within a time window is low .
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The dispatcher executes each DPC routine
in the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.
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FIGURE 3-7 Delivering a DPC

If a DPC is targeted at a CPU different from the one on which the ISR is running and the DPC’s 
priority is either high or medium-high, the kernel immediately signals the target CPU (by sending it 
a dispatch IPI) to drain its DPC queue, but only as long as the target processor is idle . If the priority is 
medium or low, the number of DPCs queued on the target processor must exceed a threshold for the 
kernel to trigger a DPC/dispatch interrupt . The system idle thread also drains the DPC queue for the 
processor it runs on. Although DPC targeting and priority levels are flexible, device drivers rarely need 
to change the default behavior of their DPC objects . Table 3-3 summarizes the situations that initiate 
DPC queue draining . Medium-high and high appear and are, in fact, equal priorities when looking at 
the generation rules . The difference comes from their insertion in the list, with high interrupts being 
at the head and medium-high interrupts at the tail .

TABLE 3-3 DPC Interrupt Generation Rules

DPC Priority DPC Targeted at ISR’s Processor DPC Targeted at Another Processor

Low DPC queue length exceeds maximum DPC 
queue length, or DPC request rate is less 
than minimum DPC request rate

DPC queue length exceeds maximum DPC 
queue length, or system is idle

Medium Always DPC queue length exceeds maximum DPC 
queue length, or system is idle

Medium-High Always Target processor is idle

High Always Target processor is idle
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Because user-mode threads execute at low IRQL, the chances are good that a DPC will interrupt 
the execution of an ordinary user’s thread . DPC routines execute without regard to what thread 
is running, meaning that when a DPC routine runs, it can’t assume what process address space is 
 currently mapped . DPC routines can call kernel functions, but they can’t call system services, generate 
page faults, or create or wait for dispatcher objects (explained later in this chapter) . They can, how-
ever, access nonpaged system memory addresses, because system address space is always mapped 
regardless of what the current process is .

DPCs are provided primarily for device drivers, but the kernel uses them too . The kernel most 
frequently uses a DPC to handle quantum expiration . At every tick of the system clock, an interrupt 
occurs at clock IRQL . The clock interrupt handler (running at clock IRQL) updates the system time 
and then decrements a counter that tracks how long the current thread has run . When the coun-
ter  reaches 0, the thread’s time quantum has expired and the kernel might need to reschedule the 
processor, a lower-priority task that should be done at DPC/dispatch IRQL . The clock interrupt handler 
queues a DPC to initiate thread dispatching and then finishes its work and lowers the processor’s 
IRQL . Because the DPC interrupt has a lower priority than do device interrupts, any pending device 
interrupts that surface before the clock interrupt completes are handled before the DPC interrupt 
occurs .

Because DPCs execute regardless of whichever thread is currently running on the system (much 
like interrupts), they are a primary cause for perceived system unresponsiveness of client systems 
or workstation workloads because even the highest-priority thread will be interrupted by a pend-
ing DPC . Some DPCs run long enough that users might perceive video or sound lagging, and 
even  abnormal mouse or keyboard latencies, so for the benefit of drivers with long-running DPCs, 
 Windows supports threaded DPCs .

Threaded DPCs, as their name implies, function by executing the DPC routine at passive level on 
a real-time priority (priority 31) thread . This allows the DPC to preempt most user-mode threads 
( because most application threads don’t run at real-time priority ranges), but it allows other 
 interrupts, nonthreaded DPCs, APCs, and higher-priority threads to preempt the routine . 

The threaded DPC mechanism is enabled by default, but you can disable it by adding a DWORD 
value HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\kernel 
\ ThreadDpcEnable and setting it to 0. Because threaded DPCs can be disabled, driver  developers 
who make use of threaded DPCs must write their routines following the same rules as for 
 nonthreaded DPC routines and cannot access paged memory, perform dispatcher waits, or make 
 assumptions about the IRQL level at which they are executing . In addition, they must not use the 
KeAcquire/ReleaseSpinLockAtDpcLevel APIs because the functions assume the CPU is at dispatch level . 
Instead, threaded DPCs must use KeAcquire/ReleaseSpinLockForDpc, which performs the appropriate 
action after checking the current IRQL .
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EXPERIMENT: Monitoring Interrupt and DPC Activity
You can use Process Explorer to monitor interrupt and DPC activity by opening the System 
 Information dialog and switching to the CPU tab, where it lists the number of interrupts and 
DPCs executed each time Process Explorer refreshes the display (1 second by default):

You can also trace the execution of specific interrupt service routines and deferred 
 procedure calls with the built-in event tracing support (described later in this chapter):

1. Start capturing events by opening an elevated command prompt, navigating to the 
Microsoft Windows Performance Toolkit directory (typically in c:\Program Files) and 
typing the following command (make sure no other program is capturing events, such 
as Process Explorer or Process Monitor, or this will fail with an error):

xperf –on PROC_THREAD+LOADER+DPC+INTERRUPT

2. Stop capturing events by typing the following:

xperf –d dpcisr.etl
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3. Generate reports for the event capture by typing this:

xperf dpcisr.etl 
tracerpt \kernel.etl –report dpcisr.html –f html

This will generate a web page called dpcisr .html . 

4. Open report .html, and expand the DPC/ISR subsection . Expand the DPC/ISR 
 Breakdown area, and you will see summaries of the time spent in ISRs and DPCs by 
each driver . For example:

Running an ln command in the kernel debugger on the address of each event record shows 
the name of the function that executed the DPC or ISR:

lkd> ln 0x806321C7 
(806321c7)   ndis!ndisInterruptDpc

lkd> ln 0x820AED3F 
(820aed3f)   nt!IopTimerDispatch

lkd> ln 0x82051312 
(82051312)   nt!PpmPerfIdleDpc

The first is a DPC queued by a network card NDIS miniport driver. The second is a DPC for a 
generic I/O timer expiration . The third address is the address of a DPC for an idle performance 
operation . 



110 Windows Internals, Sixth Edition, Part 1

Other than using it to get an HTML report, you can use the Xperf Viewer to show a detailed 
overview of all DPC and ISR events by right-clicking on the DPC and/or ISR CPU Usage graphs in 
the main Xperf window and choosing Summary Table . You will be able to see a per-driver view 
of each DPC and ISR in detail, along with its duration and count, just as shown in the following 
graphic:

Asynchronous Procedure Call Interrupts Asynchronous procedure calls (APCs) provide a way for 
user programs and system code to execute in the context of a particular user thread (and hence a 
particular process address space) . Because APCs are queued to execute in the context of a particular 
thread and run at an IRQL less than DPC/dispatch level, they don’t operate under the same restric-
tions as a DPC . An APC routine can acquire resources (objects), wait for object handles, incur page 
faults, and call system services .

APCs are described by a kernel control object, called an APC object . APCs waiting to execute 
reside in a kernel-managed APC queue . Unlike the DPC queue, which is systemwide, the APC queue 
is thread-specific—each thread has its own APC queue. When asked to queue an APC, the kernel 
inserts it into the queue belonging to the thread that will execute the APC routine . The kernel, in turn, 
requests a software interrupt at APC level, and when the thread eventually begins running, it executes 
the APC .

There are two kinds of APCs: kernel mode and user mode . Kernel-mode APCs don’t require 
 permission from a target thread to run in that thread’s context, while user-mode APCs do . Kernel-
mode APCs interrupt a thread and execute a procedure without the thread’s intervention or consent . 
There are also two types of kernel-mode APCs: normal and special . Special APCs execute at APC level 
and allow the APC routine to modify some of the APC parameters . Normal APCs execute at passive 
level and receive the modified parameters from the special APC routine (or the original parameters if 
they weren’t modified).



 CHAPTER 3 System Mechanisms 111

Both normal and special APCs can be disabled by raising the IRQL to APC level or by calling 
 KeEnterGuardedRegion . KeEnterGuardedRegion disables APC delivery by setting the  SpecialApcDisable 
field in the calling thread’s KTHREAD structure (described further in Chapter 5). A thread can  disable 
normal APCs only by calling KeEnterCriticalRegion, which sets the KernelApcDisable field in the 
thread’s KTHREAD structure . Table 3-4 summarizes the APC insertion and delivery behavior for each 
type of APC .

The executive uses kernel-mode APCs to perform operating system work that must be completed 
within the address space (in the context) of a particular thread . It can use special kernel-mode APCs 
to direct a thread to stop executing an interruptible system service, for example, or to record the 
results of an asynchronous I/O operation in a thread’s address space . Environment subsystems use 
special kernel-mode APCs to make a thread suspend or terminate itself or to get or set its user-mode 
 execution context . The Subsystem for UNIX Applications uses kernel-mode APCs to emulate the 
 delivery of UNIX signals to Subsystem for UNIX Application processes .

Another important use of kernel-mode APCs is related to thread suspension and termination . 
 Because these operations can be initiated from arbitrary threads and directed to other arbitrary 
threads, the kernel uses an APC to query the thread context as well as to terminate the thread .  Device 
drivers often block APCs or enter a critical or guarded region to prevent these operations from 
 occurring while they are holding a lock; otherwise, the lock might never be released, and the system 
would hang .

TABLE 3-4 APC Insertion and Delivery

APC Type Insertion Behavior Delivery Behavior

Special (kernel) Inserted at the tail of the 
 kernel-mode APC list

Delivered at APC level as soon as IRQL drops and the 
thread is not in a guarded region . It is given pointers to 
arguments specified when inserting the APC.

Normal (kernel) Inserted right after the last 
 special APC (at the head of all 
other normal APCs)

Delivered at PASSIVE_LEVEL after the associated special 
APC was executed . It is given arguments returned by 
the associated special APC (which can be the original 
arguments used during insertion or new ones) .

Normal (user) Inserted at the tail of the 
 user-mode APC list

Delivered at PASSIVE_LEVEL as soon as IRQL drops, the 
thread is not in a critical (or guarded) region, and the 
thread is in an alerted state . It is given arguments re-
turned by the associated special APC (which can be the 
original arguments used during insertion or new ones) .

Normal (user) 
Thread Exit 
(PsExitSpecialApc) 

Inserted at the head of the 
 user-mode APC list

Delivered at PASSIVE_LEVEL on return to user mode, 
if the thread is doing an alerted user-mode wait . It is 
given arguments returned by the thread-termination 
special APC .

Device drivers also use kernel-mode APCs . For example, if an I/O operation is initiated and a 
thread goes into a wait state, another thread in another process can be scheduled to run . When the 
device finishes transferring data, the I/O system must somehow get back into the context of the 
thread that initiated the I/O so that it can copy the results of the I/O operation to the buffer in the ad-
dress space of the process containing that thread . The I/O system uses a special kernel-mode APC to 
perform this action, unless the application used the SetFileIoOverlappedRange API or I/O  completion 
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ports—in which case, the buffer will either be global in memory or copied only after the thread pulls 
a completion item from the port . (The use of APCs in the I/O system is discussed in more detail in 
Chapter 8 in Part 2 .)

Several Windows APIs—such as ReadFileEx, WriteFileEx, and QueueUserAPC—use user-mode APCs . 
For example, the ReadFileEx and WriteFileEx functions allow the caller to specify a completion routine 
to be called when the I/O operation finishes. The I/O completion is implemented by queuing an APC 
to the thread that issued the I/O . However, the callback to the completion routine doesn’t necessar-
ily take place when the APC is queued because user-mode APCs are delivered to a thread only when 
it’s in an alertable wait state . A thread can enter a wait state either by waiting for an object handle 
and specifying that its wait is alertable (with the Windows WaitForMultipleObjectsEx function) or by 
testing directly whether it has a pending APC (using SleepEx) . In both cases, if a user-mode APC is 
pending, the kernel interrupts (alerts) the thread, transfers control to the APC routine, and resumes 
the thread’s execution when the APC routine completes . Unlike kernel-mode APCs, which can execute 
at APC level, user-mode APCs execute at passive level .

APC delivery can reorder the wait queues—the lists of which threads are waiting for what, and in 
what order they are waiting . (Wait resolution is described in the section “Low-IRQL Synchronization,” 
later in this chapter .) If the thread is in a wait state when an APC is delivered, after the APC routine 
completes, the wait is reissued or re-executed . If the wait still isn’t resolved, the thread returns to the 
wait state, but now it will be at the end of the list of objects it’s waiting for . For example, because 
APCs are used to suspend a thread from execution, if the thread is waiting for any objects, its wait is 
removed until the thread is resumed, after which that thread will be at the end of the list of threads 
waiting to access the objects it was waiting for . A thread performing an alertable kernel-mode wait 
will also be woken up during thread termination, allowing such a thread to check whether it woke up 
as a result of termination or for a different reason .

Timer Processing
The system’s clock interval timer is probably the most important device on a Windows machine, 
as evidenced by its high IRQL value (CLOCK_LEVEL) and due to the critical nature of the work it is 
responsible for . Without this interrupt, Windows would lose track of time, causing erroneous results in 
calculations of uptime and clock time—and worse, causing timers not to expire anymore and threads 
never to lose their quantum anymore . Windows would also not be a preemptive operating system, 
and unless the current running thread yielded the CPU, critical background tasks and scheduling 
could never occur on a given processor .

Windows programs the system clock to fire at the most appropriate interval for the machine, and 
subsequently allows drivers, applications, and administrators to modify the clock interval for their 
needs . Typically, the system clock is maintained either by the PIT (Programmable Interrupt Timer) 
chip that is present on all computers since the PC/AT, or the RTC (Real Time Clock) . The PIT works on 
a crystal that is tuned at one-third the NTSC color carrier frequency (because it was originally used 
for TV-Out on the first CGA video cards), and the HAL uses various achievable multiples to reach 
millisecond-unit intervals, starting at 1 ms all the way up to 15 ms . The RTC, on the other hand, runs 
at 32.768 KHz, which, by being a power of two, is easily configured to run at various intervals that 
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are also  powers of two. On today’s machines, the APIC Multiprocessor HAL configures the RTC to fire 
every 15 .6 milliseconds, which corresponds to about 64 times a second .

Some types of Windows applications require very fast response times, such as multimedia 
 applications . In fact, some multimedia tasks require rates as low as 1 ms . For this reason, Windows 
implements APIs and mechanisms that enable lowering the interval of the system’s clock interrupt, 
which results in more clock interrupts (at least on processor 0) . Note that this increases the resolution 
of all timers in the system, potentially causing other timers to expire more frequently . 

Windows tries its best to restore the clock timer back to its original value whenever it can . Each 
time a process requests a clock interval change, Windows increases an internal reference count and 
associates it with the process . Similarly, drivers (which can also change the clock rate) get added to the 
global reference count . When all drivers have restored the clock and all processes that modified the 
clock either have exited or restored it, Windows restores the clock to its default value (or, barring that, 
to the next highest value that’s been required by a process or driver) . 

EXPERIMENT: Identifying High-Frequency Timers
Due to the problems that high-frequency timers can cause, Windows uses Event Tracing for 
Windows (ETW) to trace all processes and drivers that request a change in the system’s clock 
interval, displaying the time of the occurrence and the requested interval . The current interval 
is also shown . This data is of great use to both developers and system administrators in identi-
fying the causes of poor battery performance on otherwise healthy systems, and to decrease 
overall power consumption on large systems as well . To obtain it, simply run powercfg /energy 
and you should obtain an HTML file called energy-report.html similar to the one shown here:
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Scroll down to the section on Platform Timer Resolution, and you will be shown all the 
 applications that have modified the timer resolution and are still active, along with the call 
stacks that caused this call . Timer resolutions are shown in hundreds of nanoseconds, so 
a  period of 20,000 corresponds to 2 ms . In the sample shown, two applications—namely, 
 Microsoft PowerPoint and the UltraVNC remote desktop server—each requested a higher 
resolution . 

You can also use the debugger to obtain this information . For each process, the EPROCESS 
structure contains a number of fields, shown next, that help identify changes in timer resolution:

   +0x4a8 TimerResolutionLink : _LIST_ENTRY [ 0xfffffa80'05218fd8 - 0xfffffa80'059cd508 ] 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4bc ActiveThreadsHighWatermark : 0x1d 
   +0x4c0 SmallestTimerResolution : 0x2710 
   +0x4c8 TimerResolutionStackRecord : 0xfffff8a0'0476ecd0 _PO_DIAG_STACK_RECORD

Note that the debugger shows you an additional piece of information: the smallest timer 
 resolution that was ever requested by a given process . In this example, the process shown cor-
responds to PowerPoint 2010, which typically requests a lower timer resolution during slide-
shows, but not during slide editing mode. The EPROCESS fields of PowerPoint, shown in the 
preceding code, prove this, and the stack could be parsed by dumping the PO_DIAG_STACK_
RECORD structure .

Finally, the TimerResolutionLink field connects all processes that have made changes to timer 
resolution, through the ExpTimerResolutionListHead doubly linked list . Parsing this list with 
the !list debugger command can reveal all processes on the system that have, or had, made 
changes to the timer resolution, when the powercfg command is unavailable or information on 
past processes is required:

lkd> !list "-e -x \"dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, 
TimerResolutionLink))  
ImageFileName SmallestTimerResolution RequestedTimerResolution\" 
nt!ExpTimerResolutionListHead" 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "audiodg.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "chrome.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
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   +0x2e0 ImageFileName            : [15]  "calc.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "devenv.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "POWERPNT.EXE" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "winvnc.exe" 
   +0x4b8 RequestedTimerResolution : 0x2710 
   +0x4c0 SmallestTimerResolution  : 0x2710

Timer Expiration
As we said, one of the main tasks of the ISR associated with the interrupt that the RTC or PIT will 
generate is to keep track of system time, which is mainly done by the KeUpdateSystemTime routine . Its 
second job is to keep track of logical run time, such as process/thread execution times and the system 
tick time, which is the underlying number used by APIs such as GetTickCount that developers use to 
time operations in their applications . This part of the work is performed by KeUpdateRunTime . Before 
doing any of that work, however, KeUpdateRunTime checks whether any timers have expired . 

Windows timers can be either absolute timers, which implies a distinct expiration time in the 
future, or relative timers, which contain a negative expiration value used as a positive offset from the 
current time during timer insertion . Internally, all timers are converted to an absolute expiration time, 
although the system keeps track of whether or not this is the “true” absolute time or a converted 
relative time . This difference is important in certain scenarios, such as Daylight Savings Time (or even 
manual clock changes). An absolute timer would still fire at ”8PM” if the user moved the clock from 
1PM to 7PM, but a relative timer—say, one set to expire “in two hours”—would not feel the effect of 
the clock change because two hours haven’t really elapsed . During system time-change events such 
as these, the kernel reprograms the absolute time associated with relative timers to match the new 
settings .

Because the clock fires at known interval multiples, the bottom bits of the current system time 
will be at one of 64 known positions (on an APIC HAL) . Windows uses that fact to organize all driver 
and application timers into linked lists based on an array where each entry corresponds to a possible 
multiple of the system time . This table, called the timer table, is located in the PRCB, which enables 
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each processor to perform its own independent timer expiration without needing to acquire a global 
lock, as shown in Figure 3-8 . Later, you will see what determines which logical processor’s timer table 
a timer is inserted on . Because each processor has its own timer table, each processor also does its 
own timer expiration work. As each processor gets initialized, the table is filled with absolute timers 
with an infinite expiration time, to avoid any incoherent state. Each multiple of the system time that a 
timer can be associated with is called the hand, and it’s stored in the timer object’s dispatcher header . 
Therefore, to determine if a clock has expired, it is only necessary to check if there are any timers on 
the linked list associated with the current hand . 

 

Driver

Timer 1 Timer 2

Timer Hand

CPU 0
Timer Table

255

0

31 0

Process

Timer 3 Timer 4

Timer Hand

31

CPU 1
Timer Table

255

0

0

FIGURE 3-8 Example of per-processor timer lists

Although updating counters and checking a linked list are fast operations, going through every 
timer and expiring it is a potentially costly operation—keep in mind that all this work is currently 
 being performed at CLOCK_LEVEL, an exceptionally elevated IRQL . Similarly to how a driver ISR 
queues a DPC to defer work, the clock ISR requests a DPC software interrupt, setting a flag in the 
PRCB so that the DPC draining mechanism knows timers need expiration . Likewise, when updating 
process/thread runtime, if the clock ISR determines that a thread has expired its quantum, it also 
queues a DPC software interrupt and sets a different PRCB flag. These flags are per-PRCB because 
each processor normally does its own processing of run-time updates, because each processor is 
 running a different thread and has different tasks associated with it . Table 3-5 displays the various 
fields used in timer expiration and processing.

Once the IRQL eventually drops down back to DISPATCH_LEVEL, as part of DPC processing, these 
two flags will be picked up.
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TABLE 3-5 Timer Processing KPRCB Fields

KPRCB Field Type Description

ReadySummary Bitmask (32 bits) Bitmask of priority levels that have one or 
more ready threads

DeferredReadyListHead Singly linked list Single list head for the deferred ready 
queue

DispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

Chapter 5 covers the actions related to thread scheduling and quantum expiration . Here we will 
take a look at the timer expiration work . Because the timers are linked together by hand, the expira-
tion code (executed by the DPC associated with the PRCB in the TimerExpiryDpc field) parses this list 
from head to tail. (At insertion time, the timers nearest to the clock interval multiple will be first, fol-
lowed by timers closer and closer to the next interval, but still within this hand .) There are two primary 
tasks to expiring a timer:

 ■ The timer is treated as a dispatcher synchronization object (threads are waiting on the timer as 
part of a timeout or directly as part of a wait) . The wait-testing and wait-satisfaction algo-
rithms will be run on the timer . This work is described in a later section on synchronization in 
this chapter . This is how user-mode applications, and some drivers, make use of timers .

 ■ The timer is treated as a control object associated with a DPC callback routine that executes 
when the timer expires . This method is reserved only for drivers and enables very low latency 
response to timer expiration . (The wait/dispatcher method requires all the extra logic of wait 
signaling .) Additionally, because timer expiration itself executes at DISPATCH_LEVEL, where 
DPCs also run, it is perfectly suited as a timer callback .

As each processor wakes up to handle the clock interval timer to perform system-time and 
 run-time processing, it therefore also processes timer expirations after a slightly latency/delay in 
which the IRQL drops from CLOCK_LEVEL to DISPATCH_LEVEL . Figure 3-9 shows this behavior on two 
processors—the solid arrows indicate the clock interrupt firing, while the dotted arrows indicate any 
timer expiration processing that might occur if the processor had associated timers .
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Processor Selection
A critical determination that must be made when a timer is inserted is to pick the appropriate table 
to use—in other words, the most optimal processor choice . If the timer has no DPC associated with 
it, the kernel scans all processors in the current processor’s group that have not been parked . (For 
more information on Core Parking, see Chapter 5 .) If the current processor is parked, it picks the next 
processor in the group; otherwise, the current processor is used . On the other hand, if the timer does 
have an associated DPC, the insertion code simply looks at the target processor associated with the 
DPC and selects that processor’s timer table .

In the case where the driver developer did not specify a target processor for the DPC, the kernel 
must make the choice . Because driver developers typically expect the DPC to execute on the same 
processor as the one the driver code was running on at insertion time, the kernel typically chooses 
CPU 0, since CPU 0 is the timekeeping processor that will always be active to pick up clock interrupts 
(more on this later) . However, on server systems, the kernel picks a processor, just as it normally does 
when there is no DPC, by using the same checks just described .

This behavior is intended to improve performance and scalablity on server systems that make use 
of Hyper-V, although it can improve performance on any heavily loaded system . As system timers pile 
up—because most drivers do not affinitize their DPCs—CPU 0 becomes more and more congested 
with the execution of timer expiration code, which increases latency and can even cause heavy delays 
or missed DPCs . Additionally, the timer expiration can start competing with the DPC timer typi-
cally associated with driver interrupt processing, such as network packet code, causing systemwide 
slowdowns . This process is exacerbated in a Hyper-V scenario, where CPU 0 must process the timers 
and DPCs associated with potentially numerous virtual machines, each with their own timers and 
 associated devices .

By spreading the timers across processors, as shown in Figure 3-10, each processor’s timer- 
expiration load is fully distributed among unparked logical processors . The timer object stores its 
associated processor number in the dispatcher header on 32-bit systems and in the object itself on 
64-bit systems .

Note This behavior is controlled by the kernel variable KiDistributeTimers, which is 
 initialized based on a registry key whose value is different between a server and client 
installation . By modifying, or creating, the value DistributeTimers under HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\kernel, this behavior can be configured 
 differently from its SKU-based default .
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FIGURE 3-10 Timer queuing behaviors

EXPERIMENT: Listing System Timers
You can use the kernel debugger to dump all the current registered timers on the system, as 
well as information on the DPC associated with each timer (if any) . See the following output for 
a sample:

[lkd> !timer 
Dump system timers 
 
Interrupt time: 61876995 000003df [ 4/ 5/2010 18:58:09.189] 
 
List Timer    Interrupt Low/High     Fire Time              DPC/thread 
PROCESSOR 0 (nt!_KTIMER_TABLE fffff80001bfd080) 
  5 fffffa8003099810   627684ac 000003df [ 4/ 5/2010 18:58:10.756]  
NDIS!ndisMTimerObjectDpc (DPC @ fffffa8003099850)  
13 fffffa8003027278   272dde78 000004cf [ 4/ 6/2010 23:34:30.510]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030272b8)  
    fffffa8003029278   272e0588 000004cf [ 4/ 6/2010 23:34:30.511]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030292b8)  
    fffffa8003025278   272e0588 000004cf [ 4/ 6/2010 23:34:30.511]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030252b8)  
    fffffa8003023278   272e2c99 000004cf [ 4/ 6/2010 23:34:30.512]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030232b8)  
 16 fffffa8006096c20   6c1613a6 000003df [ 4/ 5/2010 18:58:26.901]  thread 
fffffa8006096b60  
 19 fffff80001c85c40   64f9aeb5 000003df [ 4/ 5/2010 18:58:14.971]  
nt!CmpLazyFlushDpcRoutine (DPC @ fffff80001c85c00)  
31 fffffa8002c43660 P dc527b9b 000003e8 [ 4/ 5/2010 20:06:00.673]  
intelppm!LongCapTraceDpc (DPC @ fffffa8002c436a0)  
 40 fffff80001c86f60   62ca1080 000003df [ 4/ 5/2010 18:58:11.304]  nt!CcScanDpc (DPC @ 
fffff80001c86f20)  
    fffff88004039710   62ca1080 000003df [ 4/ 5/2010 18:58:11.304]  
luafv!ScavengerTimerRoutine (DPC @ fffff88004039750)  
... 
252 fffffa800458ed50   62619a91 000003df [ 4/ 5/2010 18:58:10.619]  netbt!TimerExpiry (DPC 
@ fffffa800458ed10)  
    fffffa8004599b60   fe2fc6ce 000003e0 [ 4/ 5/2010 19:09:41.514]  netbt!TimerExpiry (DPC 
@ fffffa8004599b20)  
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PROCESSOR 1 (nt!_KTIMER_TABLE fffff880009ba380) 
  0 fffffa8004ec9700   626be121 000003df [ 4/ 5/2010 18:58:10.686]  thread 
fffffa80027f3060  
    fffff80001c84dd0 P 70b3f446 000003df [ 4/ 5/2010 18:58:34.647]  
nt!IopIrpStackProfilerTimer (DPC @ fffff80001c84e10)  
11 fffffa8005c26cd0   62859842 000003df [ 4/ 5/2010 18:58:10.855]  afd!AfdTimeoutPoll (DPC 
@ fffffa8005c26c90)  
    fffffa8002ce8160   6e6c45f4 000003df [ 4/ 5/2010 18:58:30.822]  thread 
fffffa80053c2b60  
    fffffa8004fdb3d0   77f0c2cb 000003df [ 4/ 5/2010 18:58:46.789]  thread 
fffffa8004f4bb60  
 13 fffffa8005051c20   60713a93 800003df [         NEVER         ]  thread 
fffffa8005051b60  
 15 fffffa8005ede120   77f9fb8c 000003df [ 4/ 5/2010 18:58:46.850]  thread 
fffffa8005ede060  
 20 fffffa8004f40ef0   629a3748 000003df [ 4/ 5/2010 18:58:10.990]  thread 
fffffa8004f4bb60  
 22 fffffa8005195120   6500ec7a 000003df [ 4/ 5/2010 18:58:15.019]  thread 
fffffa8005195060  
 28 fffffa8004760e20   62ad4e07 000003df [ 4/ 5/2010 18:58:11.115]  btaudio (DPC @ 
fffffa8004760e60)+12d10  
 31 fffffa8002c40660 P dc527b9b 000003e8 [ 4/ 5/2010 20:06:00.673]  
intelppm!LongCapTraceDpc (DPC @ fffffa8002c406a0)  
 ... 
232 fffff80001c85040 P 62317a00 000003df [ 4/ 5/2010 18:58:10.304]  nt!IopTimerDispatch 
(DPC @ fffff80001c85080)  
    fffff80001c26fc0 P 6493d400 000003df [ 4/ 5/2010 18:58:14.304]  
nt!EtwpAdjustBuffersDpcRoutine (DPC @ fffff80001c26f80)  
235 fffffa80047471a8   6238ba5c 000003df [ 4/ 5/2010 18:58:10.351]  stwrt64 (DPC @ 
fffffa80047471e8)+67d4  
242 fffff880023ae480   11228580 000003e1 [ 4/ 5/2010 19:10:13.304]  dfsc!DfscTimerDispatch 
(DPC @ fffff880023ae4c0)  
245 fffff800020156b8 P 72fb2569 000003df [ 4/ 5/2010 18:58:38.469]  
hal!HalpCmcDeferredRoutine (DPC @ fffff800020156f8)  
248 fffffa80029ee460 P 62578455 000003df [ 4/ 5/2010 18:58:10.553]  
ataport!IdePortTickHandler (DPC @ fffffa80029ee4a0)  
    fffffa8002776460 P 62578455 000003df [ 4/ 5/2010 18:58:10.553]  
ataport!IdePortTickHandler (DPC @ fffffa80027764a0)  
    fffff88001678500   fe2f836f 000003e0 [ 4/ 5/2010 19:09:41.512]  cng!seedFileDpcRoutine 
(DPC @ fffff880016784c0)   
    fffff80001c25b80   885e52b3 0064a048 [12/31/2099 23:00:00.008]  
nt!ExpCenturyDpcRoutine (DPC @ fffff80001c25bc0)  
 
 
Total Timers: 254, Maximum List: 8

In this example, there are multiple driver-associated timers, due to expire shortly, associated 
with the Ndis .sys and Afd .sys drivers (both related to networking), as well as audio, Bluetooth, 
and ATA/IDE drivers . There are also background housekeeping timers due to expire, such as 
those related to power management, ETW, registry flushing, and Users Account Control (UAC) 
virtualization . Additionally, there are a dozen or so timers that don’t have any DPC associ-
ated with them—this likely indicates user-mode or kernel-mode timers that are used for wait 
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dispatching . You can use !thread on the thread pointers to verify this . Finally, three  interesting 
timers that are always present on a Windows system are the timer that checks for Daylight 
 Savings Time time-zone changes, the timer that checks for the arrival of the upcoming year, and 
the timer that checks for entry into the next century . One can easily locate them based on their 
typically distant expiration time, unless this experiment is performed on the eve of one of these 
events .

Intelligent Timer Tick Distribution
Figure 3-11, which shows processors handling the clock ISR and expiring timers, reveals that 
 processor 1 wakes up a number of times (the solid arrows) even when there are no associated  expiring 
timers (the dotted arrows) . Although that behavior is required as long as processor 1 is running (to 
update the thread/process run times and scheduling state), what if processor 1 is idle (and has no 
expiring timers) . Does it still need to handle the clock interrupt? Because the only other work required 
that was referenced earlier is to update the overall system time/clock ticks, it’s sufficient to designate 
merely one processor as the time-keeping processor (in this case, processor 0) and allow other pro-
cessors to remain in their sleep state; if they wake, any time-related adjustments can be performed by 
resynchronizing with processor 0 .

Windows does, in fact, make this realization (internally called intelligent timer tick distribution), 
and Figure 3-11 shows the processor states under the scenario where processor 1 is sleeping (unlike 
earlier, when we assumed it was running code) . As you can see, processor 1 wakes up only 5 times to 
handle its expiring timers, creating a much larger gap (sleeping period) . The kernel uses a variable 
KiPendingTimer, which contains an array of affinity mask structures that indicate which logical proces-
sors need to receive a clock interval for the given timer hand (clock-tick interval) . It can then appro-
priately program the interrupt controller, as well as determine to which processors it will send an IPI 
to initiate timer processing .
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FIGURE 3-11 Intelligent timer tick distribution applied to processor 1
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Leaving as large a gap as possible is important due to the way power management works in 
processors: as the processor detects that the work load is going lower and lower, it decreases its 
power consumption (P states), until it finally reaches an idle state. The processor then has the ability 
to selectively turn off parts of itself and enter deeper and deeper idle/sleep states, such as turn-
ing off caches . However, if the processor has to wake again, it will consume energy and take time to 
power up; for this reason, processor designers will risk entering these lower idle/sleep states (C states) 
only if the time spent in a given state outweighs the time and energy it takes to enter and exit the 
state . Obviously, it makes no sense to spend 10 ms to enter a sleep state that will last only 1 ms . By 
 preventing clock interrupts from waking sleeping processors unless needed (due to timers), they can 
enter deeper C-states and stay there longer .

Timer Coalescing
Although minimizing clock interrupts to sleeping processors during periods of no timer expiration 
gives a big boost to longer C-state intervals, with a timer granularity of 15 ms, many timers likely will 
be queued at any given hand and expiring often, even if just on processor 0 . Reducing the amount 
of software timer-expiration work would both help to decrease latency (by requiring less work at 
DISPATCH_LEVEL) as well as allow other processors to stay in their sleep states even longer (because 
we’ve established that the processors wake up only to handle expiring timers, fewer timer expirations 
result in longer sleep times) . In truth, it is not just the amount of expiring timers that really affects 
sleep state (it does affect latency), but the periodicity of these timer expirations—six timers all expir-
ing at the same hand is a better option than six timers expiring at six different hands . Therefore, to 
fully optimize idle-time duration, the kernel needs to employ a coalescing mechanism to combine 
separate timer hands into an individual hand with multiple expirations .

Timer coalescing works on the assumption that most drivers and user-mode applications do 
not particularly care about the exact firing period of their timers (except in the case of multimedia 
 applications, for example) . This “don’t care” region actually grows as the original timer period grows—
an application waking up every 30 seconds probably doesn’t mind waking up every 31 or 29 seconds 
instead, while a driver polling every second could probably poll every second plus or minus 50 ms 
without too many problems . The important guarantee most periodic timers depend on is that their 
firing period remains constant within a certain range—for example, when a timer has been changed 
to fire every second plus 50 ms, it continues to fire within that range forever, not sometimes at every 
two seconds and other times at half a second . Even so, not all timers are ready to be coalesced into 
coarser granularities, so Windows enables this mechanism only for timers that have marked them-
selves as coalescable, either through the KeSetCoalescableTimer kernel API or through its user-mode 
counterpart, SetWaitableTimerEx .

With these APIs, driver and application developers are free to provide the kernel with the 
 maximum tolerance (or tolerably delay) that their timer will endure, which is defined as the maxi-
mum amount of time past the requested period at which the timer will still function correctly . (In 
the  previous example, the 1-second timer had a tolerance of 50 milliseconds .) The recommended 
minimum tolerance is 32 ms, which corresponds to about twice the 15 .6-ms clock tick—any smaller 
value wouldn’t really result in any coalescing, because the expiring timer could not be moved even 
from one clock tick to the next. Regardless of the tolerance that is specified, Windows aligns the timer 
to one of four preferred coalescing intervals: 1 second, 250 ms, 100 ms, or 50 ms .



 CHAPTER 3 System Mechanisms 123

When a tolerable delay is set for a periodic timer, Windows uses a process called shifting, which 
causes the timer to drift between periods until it gets aligned to the most optimal multiple of the 
 period interval within the preferred coalescing interval associated with the specified tolerance 
(which is then encoded in the dispatcher header) . For absolute timers, the list of preferred  coalescing 
 intervals is scanned, and a preferred expiration time is generated based on the closest acceptable 
coalescing interval to the maximum tolerance the caller specified. This behavior means that absolute 
timers are always pushed out as far as possible past their real expiration point, which spreads out 
 timers as far as possible and creates longer sleep times on the processors .

Now with timer coalescing, refer back to Figure 3-11 and assume all the timers specified tolerances 
and are thus coalescable . In one scenario, Windows could decide to coalesce the timers as shown in 
Figure 3-12. Notice that now, processor 1 receives a total of only three clock interrupts, significantly 
increasing the periods of idle sleep, thus achieving a lower C-state . Furthermore, there is less work to 
do for some of the clock interrupts on processor 0, possibly removing the latency of requiring a drop 
to DISPATCH_LEVEL at each clock interrupt .
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FIGURE 3-12 Timer coalescing 

Exception Dispatching
In contrast to interrupts, which can occur at any time, exceptions are conditions that result directly 
from the execution of the program that is running . Windows uses a facility known as structured 
 exception handling, which allows applications to gain control when exceptions occur . The application 
can then fix the condition and return to the place the exception occurred, unwind the stack (thus 
terminating execution of the subroutine that raised the exception), or declare back to the system that 
the exception isn’t recognized and the system should continue searching for an exception han-
dler that might process the exception . This section assumes you’re familiar with the basic concepts 
behind Windows structured exception handling—if you’re not, you should read the overview in the 
Windows API reference documentation in the Windows SDK or Chapters 23 through 25 in Jeffrey 
Richter and Christophe Nasarre’s book Windows via C/C++ (Microsoft Press, 2007) before proceed-
ing . Keep in mind that although exception handling is made accessible through language extensions 
(for  example, the __try construct in Microsoft Visual C++), it is a system mechanism and hence isn’t 
language  specific. 
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On the x86 and x64 processors, all exceptions have predefined interrupt numbers that directly 
correspond to the entry in the IDT that points to the trap handler for a particular exception . Table 3-6 
shows x86-defined exceptions and their assigned interrupt numbers. Because the first entries of the 
IDT are used for exceptions, hardware interrupts are assigned entries later in the table, as mentioned 
earlier .

All exceptions, except those simple enough to be resolved by the trap handler, are serviced by 
a kernel module called the exception dispatcher. The exception dispatcher’s job is to find an excep-
tion handler that can dispose of the exception . Examples of architecture-independent exceptions 
that the kernel defines include memory-access violations, integer divide-by-zero, integer overflow, 
floating-point exceptions, and debugger breakpoints . For a complete list of architecture-independent 
 exceptions, consult the Windows SDK reference documentation .

TABLE 3-6 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 Debug (Single Step)

2 Non-Maskable Interrupt (NMI)

3 Breakpoint

4 Overflow

5 Bounds Check

6 Invalid Opcode

7 NPX Not Available

8 Double Fault

9 NPX Segment Overrun

10 Invalid Task State Segment (TSS)

11 Segment Not Present

12 Stack Fault

13 General Protection

14 Page Fault

15 Intel Reserved

16 Floating Point

17 Alignment Check

18 Machine Check

19 SIMD Floating Point

The kernel traps and handles some of these exceptions transparently to user programs . For 
 example, encountering a breakpoint while executing a program being debugged generates an 
 exception, which the kernel handles by calling the debugger . The kernel handles certain other 
 exceptions by returning an unsuccessful status code to the caller .
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A few exceptions are allowed to filter back, untouched, to user mode. For example, certain types of 
memory-access violations or an arithmetic overflow generate an exception that the operating system 
doesn’t handle . 32-bit applications can establish frame-based exception handlers to deal with these 
exceptions . The term frame-based refers to an exception handler’s association with a particular proce-
dure activation . When a procedure is invoked, a stack frame representing that activation of the pro-
cedure is pushed onto the stack . A stack frame can have one or more exception handlers associated 
with it, each of which protects a particular block of code in the source program . When an exception 
occurs, the kernel searches for an exception handler associated with the current stack frame . If none 
exists, the kernel searches for an exception handler associated with the previous stack frame, and so 
on, until it finds a frame-based exception handler. If no exception handler is found, the kernel calls its 
own default exception handlers .

For 64-bit applications, structured exception handling does not use frame-based handlers . Instead, 
a table of handlers for each function is built into the image during compilation . The kernel looks for 
handlers associated with each function and generally follows the same algorithm we described for 
32-bit code .

Structured exception handling is heavily used within the kernel itself so that it can safely verify 
whether pointers from user mode can be safely accessed for read or write access . Drivers can make 
use of this same technique when dealing with pointers sent during I/O control codes (IOCTLs) .

Another mechanism of exception handling is called vectored exception handling . This method can 
be used only by user-mode applications. You can find more information about it in the Windows SDK 
or the MSDN Library .

When an exception occurs, whether it is explicitly raised by software or implicitly raised by 
 hardware, a chain of events begins in the kernel . The CPU hardware transfers control to the kernel 
trap handler, which creates a trap frame (as it does when an interrupt occurs) . The trap frame allows 
the system to resume where it left off if the exception is resolved . The trap handler also creates an 
exception record that contains the reason for the exception and other pertinent information .

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to locate 
a frame-based exception handler that will handle the exception . Because unhandled kernel-mode 
exceptions are considered fatal operating system errors, you can assume that the dispatcher always 
finds an exception handler. Some traps, however, do not lead into an exception handler because the 
kernel always assumes such errors to be fatal—these are errors that could have been caused only by 
severe bugs in the internal kernel code or by major inconsistencies in driver code (that could have 
 occurred only through deliberate, low-level system modifications that drivers should not be responsi-
ble for) . Such fatal errors will result in a bug check with the UNEXPECTED_KERNEL_MODE_TRAP code .

If the exception occurred in user mode, the exception dispatcher does something more elaborate . 
As you’ll see in Chapter 5, the Windows subsystem has a debugger port (this is actually a  debugger 
object, which will be discussed later) and an exception port to receive notification of user-mode 
exceptions in Windows processes . (In this case, by “port” we mean an LPC port object, which will 
be discussed later in this chapter .) The kernel uses these ports in its default exception handling, as 
 illustrated in Figure 3-13 .



126 Windows Internals, Sixth Edition, Part 1

Debugger breakpoints are common sources of exceptions. Therefore, the first action the exception 
dispatcher takes is to see whether the process that incurred the exception has an associated debug-
ger process . If it does, the exception dispatcher sends a debugger object message to the debug object 
associated with the process (which internally the system refers to as a “port” for compatibility with 
programs that might rely on behavior in Windows 2000, which used an LPC port instead of a debug 
object) .
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FIGURE 3-13 Dispatching an exception 

If the process has no debugger process attached or if the debugger doesn’t handle the exception, 
the exception dispatcher switches into user mode, copies the trap frame to the user stack formatted 
as a CONTEXT data structure (documented in the Windows SDK), and calls a routine to find a struc-
tured or vectored exception handler . If none is found or if none handles the exception, the exception 
dispatcher switches back into kernel mode and calls the debugger again to allow the user to do more 
debugging . (This is called the second-chance notification .)

If the debugger isn’t running and no user-mode exception handlers are found, the kernel sends 
a message to the exception port associated with the thread’s process . This exception port, if one ex-
ists, was registered by the environment subsystem that controls this thread . The exception port gives 
the environment subsystem, which presumably is listening at the port, the opportunity to translate 
the exception into an environment-specific signal or exception. For example, when Subsystem for 
UNIX Applications gets a message from the kernel that one of its threads generated an exception, 
 Subsystem for UNIX Applications sends a UNIX-style signal to the thread that caused the exception . 
However, if the kernel progresses this far in processing the exception and the subsystem doesn’t 
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handle the exception, the kernel sends a message to a systemwide error port that Csrss (Client/Server 
Run-Time Subsystem) uses for Windows Error Reporting (WER)—which will be discussed shortly—and 
executes a default exception handler that simply terminates the process whose thread caused the 
exception .

Unhandled Exceptions
All Windows threads have an exception handler that processes unhandled exceptions . This exception 
handler is declared in the internal Windows start-of-thread function . The start-of-thread function runs 
when a user creates a process or any additional threads . It calls the environment-supplied thread start 
routine specified in the initial thread context structure, which in turn calls the user-supplied thread 
start routine specified in the CreateThread call .

EXPERIMENT: Viewing the Real User Start Address for Windows Threads
The fact that each Windows thread begins execution in a system-supplied function (and not 
the user-supplied function) explains why the start address for thread 0 is the same for every 
Windows process in the system (and why the start addresses for secondary threads are also the 
same) . To see the user-supplied function address, use Process Explorer or the kernel debugger .

Because most threads in Windows processes start at one of the system-supplied wrapper 
functions, Process Explorer, when displaying the start address of threads in a process, skips the 
initial call frame that represents the wrapper function and instead shows the second frame on 
the stack . For example, notice the thread start address of a process running Notepad .exe:
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Process Explorer does display the complete call hierarchy when it displays the call stack . 
Notice the following results when the Stack button is clicked:

Line 18 in the preceding screen shot is the first frame on the stack—the start of the internal 
thread wrapper . The second frame (line 17) is the environment subsystem’s thread wrapper—in 
this case, kernel32, because you are dealing with a Windows subsystem application . The third 
frame (line 16) is the main entry point into Notepad .exe .

The generic code for the internal thread start functions is shown here:

VOID RtlUserThreadStart(VOID) 
{ 
    LPVOID lpStartAddr = (R/E)AX; // Located in the initial thread context structure 
    LPVOID lpvThreadParam = (R/E)BX; // Located in the initial thread context structure 
    LPVOID lpWin32StartAddr;

    lpWin32StartAddr = Kernel32ThreadInitThunkFunction ? Kernel32ThreadInitThunkFunction : 
lpStartAddr; 
    __try 
    {  
        DWORD dwThreadExitCode = lpWin32StartAddr(lpvThreadParam);  
        RtlExitUserThread(dwThreadExitCode);  
    } 
    __except(RtlpGetExceptionFilter(GetExceptionInformation())) 
    {   
        NtTerminateProcess(NtCurrentProcess(), GetExceptionCode());  
    }  
} 
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VOID Win32StartOfProcess(  
    LPTHREAD_START_ROUTINE lpStartAddr,  
    LPVOID lpvThreadParam) 
{   
    lpStartAddr(lpvThreadParam);  
}

Notice that the Windows unhandled exception filter is called if the thread has an exception that it 
doesn’t handle. The purpose of this function is to provide the system-defined behavior for what to do 
when an exception is not handled, which is to launch the WerFault .exe process . However, in a default 
configuration the Windows Error Reporting service, described next, will handle the exception and this 
unhandled exception filter never executes. 

WerFault.exe checks the contents of the HKLM\SOFTWARE\Microsoft\Windows NT 
\ CurrentVersion\AeDebug registry key and makes sure that the process isn’t on the exclusion list. 
There are two important values in the key: Auto and Debugger . Auto tells the unhandled exception 
filter whether to automatically run the debugger or ask the user what to do. Installing development 
tools, such as Microsoft Visual Studio, changes this value to 0 if it is already set . (If the value was not 
set, 0 is the default option .) The Debugger value is a string that points to the path of the debug-
ger executable to run in the case of an unhandled exception, and WerFault passes the process ID of 
the crashing process and an event name to signal when the debugger has started as command-line 
 arguments when it starts the debugger .

Windows Error Reporting
Windows Error Reporting (WER) is a sophisticated mechanism that automates the submission of both 
user-mode process crashes as well as kernel-mode system crashes . (For a description of how this 
 applies to system crashes, see Chapter 14 in Part 2 .)

Windows Error Reporting can be configured by going to Control Panel, choosing Action Center, 
Change Action Center settings, and then Problem Reporting Settings .

When an unhandled exception is caught by the unhandled exception filter (described in the 
previous section), it builds context information (such as the current value of the registers and stack) 
and opens an ALPC port connection to the WER service . This service begins to analyze the crashed 
program’s state and performs the appropriate actions to notify the user . As described previously, in 
most cases this means launching the WerFault .exe program, which executes with the current user’s 
credentials and, unless the system is configured not to, displays a message box informing the user 
of the crash . On systems where a debugger is installed, an additional option to debug the process is 
shown, as you can see in Figure 3-14 . When you click the Debug button, the debugger (registered in 
the Debugger string value described earlier in the AeDebug key) will be launched so that it can attach 
to the crashing process . 
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FIGURE 3-14 Windows Error Reporting dialog box

On default configured systems, an error report (a minidump and an XML file with various details, 
such as the DLL version numbers loaded in the process) is sent to Microsoft’s online crash analysis 
server. Eventually, as the service is notified of a solution for a problem, it will display a tooltip to the 
user informing her of steps that should be taken to solve the problem . An entry will also be displayed 
in the Action Center . Furthermore, the Reliability Monitor will also show all instances of application 
and system crashes . 

Note WER will actively (visually) inform the user of a crashed application only if the 
 application has at least one visible/interactive window; otherwise, the crash will be logged, 
but the user will have to manually visit the Action Center to view it . This behavior attempts 
to avoid user confusion by not displaying a WER dialog box about an invisible crashed 
 process the user might not be aware of, such as a background service .

In environments where systems are not connected to the Internet or where the administrator 
wants to control which error reports are submitted to Microsoft, the destination for the error report 
can be configured to be an internal file server. Microsoft System Center Desktop Error Monitoring un-
derstands the directory structure created by Windows Error Reporting and provides the administrator 
with the option to take selective error reports and submit them to Microsoft .

If all the operations we’ve described had to occur within the crashing thread’s context—that is, as 
part of the unhandled exception filter that was initially set up—these complex steps would sometimes 
become impossible for a badly damaged thread to perform, and the unhandled exception filter itself 
would crash . This “silent process death” would be impossible to log, making it hard to debug and also 
resulting in invisible crashes in cases where no user was present on the machine . To avoid such issues, 
Windows’ WER mechanism performs this work externally from the crashed thread if the unhandled 
exception filter itself crashes, which allows any kind of process or thread crash to be logged and for 
the user to be notified.

WER contains many customizable settings that can be configured by the user through the 
Group Policy editor or by manually making changes to the registry . Table 3-7 lists the WER registry 
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configurationoptions,theiruse,andpossiblevalues.Thesevaluesarelocatedunderthe 
HKLM\SOFTWARE\Microsoft\Windows\WindowsErrorReportingsubkeyforcomputerconfiguration
andintheequivalentpathunderHKEY_CURRENT_USERforper-userconfiguration.

TABLE 3-7 WERRegistrySettings

Setting Meaning Values

ConfigureArchive Contentsofarchiveddata 1forparameters,2foralldata

Consent\DefaultConsent Whatkindofdatashouldrequire
consent

1foranydata,2forparametersonly,3
forparametersandsafedata,4forall
data.

Consent\DefaultOverrideBehavior WhethertheDefaultConsentover-
ridesWERplug-inconsentvalues

1toenableoverride

Consent\PluginName ConsentvalueforaspecificWER
plug-in

Same as DefaultConsent

CorporateWERDirectory DirectoryforacorporateWERstore Stringcontainingthepath

CorporateWERPortNumber PorttouseforacorporateWERstore Portnumber

CorporateWERServer NametouseforacorporateWER
store

Stringcontainingthename

CorporateWERUseAuthentication UseWindowsIntegrated
AuthenticationforcorporateWER
store

1toenablebuilt-inauthentication

CorporateWERUseSSL UseSecureSocketsLayer(SSL)for
corporateWERstore

1toenableSSL

DebugApplications Listofapplicationsthatrequirethe
usertochoosebetweenDebugand
Continue

1torequiretheusertochoose

DisableArchive Whetherthearchiveisenabled 1todisablearchive

Disabled WhetherWERisdisabled 1todisableWER

DisableQueue Determineswhetherreportsareto
bequeued

1todisablequeue

DontShowUI DisablesorenablestheWERUI 1todisableUI

DontSendAdditionalData Preventsadditionalcrashdatafrom
beingsent

1nottosend

ExcludedApplications\AppName Listofapplicationsexcludedfrom
WER

Stringcontainingtheapplicationlist

ForceQueue Whetherreportsshouldbesentto
theuserqueue

1tosendreportstothequeue

LocalDumps\DumpFolder Pathatwhichtostorethedumpfiles Stringcontainingthepath

LocalDumps\DumpCount Maximumnumberofdumpfilesin
thepath

Count

LocalDumps\DumpType Typeofdumptogenerateduringa
crash

0foracustomdump,1foraminidump,
2forafulldump

LocalDumps\CustomDumpFlags Forcustomdumps,specifiescustom
options

ValuesdefinedinMINIDUMP_TYPE(see
Chapter13,“StartupandShutdown,”in
Part2formoreinformation)
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Setting Meaning Values

LoggingDisabled Enables or disables logging 1 to disable logging

MaxArchiveCount Maximum size of the archive (in files) Value between 1–5000

MaxQueueCount Maximum size of the queue Value between 1–500

QueuePesterInterval Days between requests to have the 
user check for solutions

Number of days

Note The values listed under LocalDumps can also be configured per application by 
 adding the application name in the subkey path between LocalDumps and the relevant 
value. However, they cannot be configured per user; they exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for communicating with crashed  processes . 
This mechanism uses a systemwide error port that the WER service registers through 
 NtSetInformationProcess (which uses DbgkRegisterErrorPort) . As a result, all Windows processes now 
have an error port that is actually an ALPC port object registered by the WER service . The kernel, 
which is first notified of an exception, uses this port to send a message to the WER service, which then 
analyzes the crashing process . This means that even in severe cases of thread state damage, WER 
will still be able to receive notifications and launch WerFault.exe to display a user interface instead 
of  having to do this work within the crashing thread itself . Additionally, WER will be able to gener-
ate a crash dump for the process, and a message will be written to the Event Log . This solves all the 
problems of silent process death: users are notified, debugging can occur, and service administrators 
can see the crash event . 

System Service Dispatching
As Figure 3-1 illustrated, the kernel’s trap handlers dispatch interrupts, exceptions, and system service 
calls . In the preceding sections, you saw how interrupt and exception handling work; in this section, 
you’ll learn about system services . A system service dispatch is triggered as a result of executing an 
 instruction assigned to system service dispatching . The instruction that Windows uses for system 
service dispatching depends on the processor on which it’s executing .

System Service Dispatching
On x86 processors prior to the Pentium II, Windows uses the int 0x2e instruction (46 decimal), which 
results in a trap. Windows fills in entry 46 in the IDT to point to the system service dispatcher. (Refer to 
Table 3-3 .) The trap causes the executing thread to transition into kernel mode and enter the system 
service dispatcher . A numeric argument passed in the EAX processor register indicates the system 
service number being requested . The EDX register points to the list of parameters the caller passes 
to the system service . To return to user mode, the system service dispatcher uses the iret (interrupt 
return instruction) .
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On x86 Pentium II processors and higher, Windows uses the sysenter instruction, which Intel 
defined specifically for fast system service dispatches. To support the instruction, Windows stores at 
boot time the address of the kernel’s system service dispatcher routine in a machine-specific register 
(MSR) associated with the instruction . The execution of the instruction causes the change to kernel 
mode and execution of the system service dispatcher . The system service number is passed in the EAX 
processor register, and the EDX register points to the list of caller arguments . To return to user mode, 
the system service dispatcher usually executes the sysexit instruction . (In some cases, like when the 
single-step flag is enabled on the processor, the system service dispatcher uses the iret instead be-
cause sysexit does not allow returning to user-mode with a different EFLAGS register, which is needed 
if sysenter was executed while the trap flag was set as a result of a user-mode debugger tracing or 
stepping over a system call .)

Note Because certain older applications might have been hardcoded to use the int 0x2e 
instruction to manually perform a system call (an unsupported operation), 32-bit Windows 
keeps this mechanism usable even on systems that support the sysenter instruction by still 
having the handler registered .

On the x64 architecture, Windows uses the syscall instruction, passing the system call number in 
the EAX register, the first four parameters in registers, and any parameters beyond those four on the 
stack .

On the IA64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The first eight 
system call arguments are passed in registers, and the rest are passed on the stack .

EXPERIMENT: Locating the System Service Dispatcher 
As mentioned, 32-bit system calls occur through an interrupt, which means that the handler 
needs to be registered in the IDT or through a special sysenter instruction that uses an MSR 
to store the handler address at boot time . On certain 32-bit AMD systems, Windows uses the 
syscall instruction instead, which is similar to the 64-bit syscall instruction . Here’s how you can 
locate the appropriate routine for either method:

1. To see the handler on 32-bit systems for the interrupt 2E version of the system call 
dispatcher, type !idt 2e in the kernel debugger . 

lkd> !idt 2e 
 
Dumping IDT: 
 
2e:    8208c8ee nt!KiSystemService

2. To see the handler for the sysenter version, use the rdmsr debugger command to read 
from the MSR register 0x176, which stores the handler:

lkd> rdmsr 176 
msr[176] = 00000000'8208c9c0 
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lkd> ln 00000000'8208c9c0 
(8208c9c0)   nt!KiFastCallEntry

If you have a 64-bit machine, you can look at the 64-bit service call dispatcher by 
 repeating this step, but using the 0xC0000082 MSR instead, which is used by the 
 syscall version for 64-bit code . You will see it corresponds to nt!KiSystemCall64:

lkd> rdmsr c0000082 
msr[c0000082] = fffff800'01a71ec0 
lkd> ln fffff800'01a71ec0 
(fffff800'01a71ec0)   nt!KiSystemCall64

3. You can disassemble the KiSystemService or KiSystemCall64 routine with the u 
 command . On a 32-bit system, you’ll eventually notice the following instructions:

nt!KiSystemService+0x7b: 
8208c969 897d04          mov     dword ptr [ebp+4],edi 
8208c96c fb              sti 
8208c96d e9dd000000      jmp     nt!KiFastCallEntry+0x8f (8208ca4f)

Because the actual system call dispatching operations are common regardless of the 
 mechanism used to reach the handler, the older interrupt-based handler simply calls into the 
middle of the newer sysenter-based handler to perform the same generic tasks . The only parts 
of the handlers that are different are related to the generation of the trap frame and the setup 
of certain registers .

At boot time, 32-bit Windows detects the type of processor on which it’s executing and sets up the 
appropriate system call code to use by storing a pointer to the correct code in the SharedUserData 
structure . The system service code for NtReadFile in user mode looks like this:

0:000> u ntdll!NtReadFile 
ntdll!ZwReadFile: 
77020074 b802010000      mov     eax,102h 
77020079 ba0003fe7f      mov     edx,offset SharedUserData!SystemCallStub (7ffe0300) 
7702007e ff12            call    dword ptr [edx] 
77020080 c22400          ret     24h 
77020083 90              nop

The system service number is 0x102 (258 in decimal), and the call instruction executes the system 
service dispatch code set up by the kernel, whose pointer is at address 0x7ffe0300 . (This corresponds 
to the SystemCallStub member of the KUSER_SHARED_DATA structure, which starts at 0x7FFE0000 .) 
Because the following output was taken from an Intel Core 2 Duo, it contains a pointer to sysenter:

0:000> dd SharedUserData!SystemCallStub l 1 
7ffe0300  77020f30 
0:000> u 77020f30 
ntdll!KiFastSystemCall: 
77020f30 8bd4            mov     edx,esp 
77020f32 0f34            sysenter
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Because 64-bit systems have only one mechanism for performing system calls, the system service 
entry points in Ntdll .dll use the syscall instruction directly, as shown here:

ntdll!NtReadFile:  
00000000'77f9fc60 4c8bd1           mov     r10,rcx  
00000000'77f9fc63 b810200000       mov     eax,0x102  
00000000'77f9fc68 0f05             syscall  
00000000'77f9fc6a c3               ret

Kernel-Mode System Service Dispatching

As Figure 3-15 illustrates, the kernel uses the system call number to locate the system service 
 information in the system service dispatch table . On 32-bit systems, this table is similar to the interrupt 
dispatch table described earlier in the chapter except that each entry contains a pointer to a system 
service rather than to an interrupt-handling routine . On 64-bit systems, the table is implemented 
slightly differently—instead of containing pointers to the system service, it contains offsets relative to 
the table itself . This addressing mechanism is more suited to the x64 application binary interface (ABI) 
and instruction-encoding format .

Note System service numbers can change between service packs—Microsoft  occasionally 
adds or removes system services, and the system service numbers are generated 
 automatically as part of a kernel compile .
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FIGURE 3-15 System service exceptions

The system service dispatcher, KiSystemService, copies the caller’s arguments from the thread’s 
user-mode stack to its kernel-mode stack (so that the user can’t change the arguments as the kernel 
is accessing them) and then executes the system service . The kernel knows how many stack bytes 
require copying by using a second table, called the argument table, which is a byte array (instead of 
a pointer array like the dispatch table), each entry describing the number of bytes to copy . On 64-bit 
systems, Windows actually encodes this information within the service table itself through a process 
called system call table compaction . If the arguments passed to a system service point to buffers in 
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user space, these buffers must be probed for accessibility before kernel-mode code can copy data to 
or from them . This probing is performed only if the previous mode of the thread is set to user mode . 
The previous mode is a value (kernel or user) that the kernel saves in the thread whenever it executes 
a trap handler and identifies the privilege level of the incoming exception, trap, or system call. As an 
optimization, if a system call comes from a driver or the kernel itself, the probing and capturing of 
parameters is skipped, and all parameters are assumed to be pointing to valid kernel-mode buffers 
(also, access to kernel-mode data is allowed) .

Because kernel-mode code can also make system calls, let’s look at the way these are done . 
Because the code for each system call is in kernel mode and the caller is already in kernel mode, you 
can see that there shouldn’t be a need for an interrupt or sysenter operation: the CPU is already at the 
right privilege level, and drivers, as well as the kernel, should only be able to directly call the func-
tion required . In the executive’s case, this is actually what happens: the kernel has access to all its own 
routines and can simply call them just like standard routines . Externally, however, drivers can access 
these system calls only if they have been exported just like other standard kernel-mode APIs . In fact, 
quite a few of the system calls are exported . Drivers, however, are not supposed to access system calls 
this way . Instead, drivers must use the Zw versions of these calls—that is, instead of NtCreateFile, they 
must use ZwCreateFile . These Zw versions must also be manually exported by the kernel, and only a 
handful are, but they are fully documented and supported .

The Zw versions are officially available only for drivers because of the previous mode concept 
discussed earlier . Because this value is updated only each time the kernel builds a trap frame, its value 
won’t actually change across a simple API call—no trap frame is being generated . By calling a func-
tion such as NtCreateFile directly, the kernel preserves the previous mode value that indicates that it 
is user mode, detects that the address passed is a kernel-mode address, and fails the call, correctly 
asserting that user-mode applications should not pass kernel-mode pointers . However, this is not 
actually what happens, so how can the kernel be aware of the correct previous mode? The answer lies 
in the Zw calls .

These exported APIs are not actually simple aliases or wrappers around the Nt versions . Instead, 
they are “trampolines” to the appropriate Nt system call, which use the same system call-dispatching 
mechanism . Instead of generating an interrupt or a sysenter, which would be slow and/or unsupport-
ed, they build a fake interrupt stack (the stack that the CPU would generate after an interrupt) and call 
the KiSystemService routine directly, essentially emulating the CPU interrupt . The handler executes the 
same operations as if this call came from user mode, except it detects the actual privilege level this 
call came from and set the previous mode to kernel . Now NtCreateFile sees that the call came from 
the kernel and does not fail anymore . Here’s what the kernel-mode trampolines look like on both 
 32-bit and 64-bit systems . The system call number is highlighted in bold .

lkd> u nt!ZwReadFile 
nt!ZwReadFile: 
8207f118 b802010000      mov     eax,102h 
8207f11d 8d542404        lea     edx,[esp+4] 
8207f121 9c              pushfd 
8207f122 6a08            push    8 
8207f124 e8c5d70000      call    nt!KiSystemService (8208c8ee) 
8207f129 c22400          ret     24h 
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lkd> uf nt!ZwReadFile 
nt!ZwReadFile: 
fffff800'01a7a520 488bc4          mov     rax,rsp 
fffff800'01a7a523 fa              cli 
fffff800'01a7a524 4883ec10        sub     rsp,10h 
fffff800'01a7a528 50              push    rax 
fffff800'01a7a529 9c              pushfq 
fffff800'01a7a52a 6a10            push    10h 
fffff800'01a7a52c 488d05bd310000  lea     rax,[nt!KiServiceLinkage (fffff800'01a7d6f0)] 
fffff800'01a7a533 50              push    rax 
fffff800'01a7a534 b803000000      mov     eax,3 
fffff800'01a7a539 e902690000      jmp     nt!KiServiceInternal (fffff800'01a80e40)

As you’ll see in Chapter 5, Windows has two system service tables, and third-party drivers cannot 
extend the tables or insert new ones to add their own service calls . On 32-bit and IA64 versions of 
Windows, the system service dispatcher locates the tables via a pointer in the thread kernel structure, 
and on x64 versions it finds them via their global addresses. The system service dispatcher determines 
which table contains the requested service by interpreting a 2-bit field in the 32-bit system service 
number as a table index . The low 12 bits of the system service number serve as the index into the 
table specified by the table index. The fields are shown in Figure 3-16.

Table Index

Index into table System service number

31 13 11 0

0

1

0

1

Native API

Unused

Native API

Win32k.sys API

KeServiceDescriptorTable KeServiceDescriptorTableShadow

FIGURE 3-16 System service number to system service translation 

Service Descriptor Tables
A primary default array table, KeServiceDescriptorTable, defines the core executive system services 
implemented in Ntosrknl .exe . The other table array, KeServiceDescriptorTableShadow, includes the 
Windows USER and GDI services implemented in the kernel-mode part of the Windows subsystem, 
Win32k.sys. On 32-bit and IA64 versions of Windows, the first time a Windows thread calls a  Windows 
USER or GDI service, the address of the thread’s system service table is changed to point to a table 
that includes the Windows USER and GDI services . The KeAddSystemServiceTable function allows 
Win32k .sys to add a system service table . 
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The system service dispatch instructions for Windows executive services exist in the system library 
Ntdll .dll . Subsystem DLLs call functions in Ntdll to implement their documented functions . The 
exception is Windows USER and GDI functions, for which the system service dispatch instructions 
are implemented in User32 .dll and Gdi32 .dll—Ntdll .dll is not involved . These two cases are shown in 
Figure 3-17 .

As shown in Figure 3-17, the Windows WriteFile function in Kernel32 .dll imports and calls the 
WriteFile function in API-MS-Win-Core-File-L1-1-0 .dll, one of the MinWin redirection DLLs (see 
the next section for more information on API redirection), which in turn calls the WriteFile function 
in  KernelBase.dll, where the actual implementation lies. After some subsystem-specific parameter 
checks, it then calls the NtWriteFile function in Ntdll .dll, which in turn executes the appropriate in-
struction to cause a system service trap, passing the system service number representing NtWriteFile . 
The system service dispatcher (function KiSystemService in Ntoskrnl .exe) then calls the real NtWriteFile 
to process the I/O request . For Windows USER and GDI functions, the system service dispatch calls 
functions in the loadable kernel-mode part of the Windows subsystem, Win32k .sys .
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FIGURE 3-17 System service dispatching  
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EXPERIMENT: Mapping System Call Numbers to Functions and 
Arguments
You can duplicate the same lookup performed by the kernel when dealing with a system call ID 
to figure out which function is responsible for handling it and how many arguments it takes 

1. The KeServiceDescriptorTable and KeServiceDescriptorTableShadow tables both point 
to the same array of pointers (or offsets, on 64-bit) for kernel system calls, called 
 KiServiceTable, and the same array of stack bytes, called KiArgumentTable . On a 32-bit 
system, you can use the kernel debugger command dds to dump the data along with 
symbolic information . The debugger attempts to match each pointer with a symbol . 
Here’s a partial output:

lkd> dds KiServiceTable 
820807d0  821be2e5 nt!NtAcceptConnectPort 
820807d4  820659a6 nt!NtAccessCheck 
820807d8  8224a953 nt!NtAccessCheckAndAuditAlarm 
820807dc  820659dd nt!NtAccessCheckByType 
820807e0  8224a992 nt!NtAccessCheckByTypeAndAuditAlarm 
820807e4  82065a18 nt!NtAccessCheckByTypeResultList 
820807e8  8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm 
820807ec  8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle 
820807f0  822892af nt!NtAddAtom

2. As described earlier, 64-bit Windows organizes the system call table differently and 
uses relative pointers (an offset) to system calls instead of the absolute addresses used 
by 32-bit Windows . The base of the pointer is the KiServiceTable itself, so you’ll have to 
dump the data in its raw format with the dq command . Here’s an example of output 
from a 64-bit system:

lkd> dq nt!KiServiceTable 
fffff800'01a73b00  02f6f000'04106900 031a0105'fff72d00

3. Instead of dumping the entire table, you can also look up a specific number. On 
32-bit Windows, because each system call number is an index into the table and 
because each element is 4 bytes, you can use the following calculation: Handler 
=  KiServiceTable + Number * 4 . Let’s use the number 0x102, obtained during our 
 description of the NtReadFile stub code in Ntdll .dll .

lkd> ln poi(KiServiceTable + 102 * 4) 
(82193023)   nt!NtReadFile

On 64-bit Windows, each offset can be mapped to each function with the ln com-
mand, by shifting right by 4 bits (used as described earlier) and adding the remaining 
value to the base of KiServiceTable itself, as shown here: 

lkd> ln @@c++(((int*)@@(nt!KiServiceTable))[3] >> 4) + nt!KiServiceTable 
(fffff800'01d9cb10)   nt!NtReadFile   |  (fffff800'01d9d24c)   nt!NtOpenFile 
Exact matches: 
    nt!NtReadFile = <no type information>
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4. Because drivers, including kernel-mode rootkits, are able to patch this table on 32-bit 
versions of Windows, which is something the operating system does not support, you 
can use dds to dump the entire table and look for any values outside the range of valid 
kernel addresses (dds will also make this clear by not being able to look up a symbol 
for the function) . On 64-bit Windows, Kernel Patch Protection monitors the system 
service tables and crashes the system when it detects modifications. 

EXPERIMENT: Viewing System Service Activity
You can monitor system service activity by watching the System Calls/Sec performance  counter 
in the System object . Run the Performance Monitor, click on Performance Monitor under 
 Monitoring Tools, and click the Add button to add a counter to the chart . Select the System 
object, select the System Calls/Sec counter, and then click the Add button to add the counter to 
the chart .

Object Manager

As mentioned in Chapter 2, “System Architecture,” Windows implements an object model to  provide 
consistent and secure access to the various internal services implemented in the executive . This 
 section describes the Windows object manager, the executive component responsible for creating, 
deleting, protecting, and tracking objects . The object manager centralizes resource control operations 
that otherwise would be scattered throughout the operating system . It was designed to meet the 
goals listed on the next page .

EXPERIMENT: Exploring the Object Manager
Throughout this section, you’ll find experiments that show you how to peer into the object 
manager database . These experiments use the following tools, which you should become 
 familiar with if you aren’t already:

 ■ WinObj (available from Sysinternals) displays the internal object manager’s namespace 
and information about objects (such as the reference count, the number of open handles, 
security descriptors, and so forth) .

 ■ Process Explorer and Handle from Sysinternals, as well as Resource Monitor (introduced in 
Chapter 1) display the open handles for a process .

 ■ The Openfiles /query command displays the open file handles for a process, but it requires 
a global flag to be set in order to operate.

 ■ The kernel debugger !handle command displays the open handles for a process .
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WinObj provides a way to traverse the namespace that the object manager maintains . (As 
we’ll explain later, not all objects have names .) Run WinObj, and examine the layout, shown next .

As noted previously, the Windows Openfiles /query command requires that a Windows 
global flag called maintain objects list be enabled . (See the “Windows Global Flags” section later 
in this chapter for more details about global flags.) If you type Openfiles /Local, it will tell you 
whether the flag is enabled. You can enable it with the Openfiles /Local ON command . In either 
case, you must reboot the system for the setting to take effect . Process Explorer, Handle, and 
Resource Monitor do not require object tracking to be turned on because they query all system 
handles and create a per-process object list .

The object manager was designed to meet the following goals:

 ■ Provide a common, uniform mechanism for using system resources

 ■ Isolate object protection to one location in the operating system to ensure uniform and 
 consistent object access policy 

 ■ Provide a mechanism to charge processes for their use of objects so that limits can be placed 
on the usage of system resources

 ■ Establish an object-naming scheme that can readily incorporate existing objects, such as the 
devices, files, and directories of a file system, or other independent collections of objects

 ■ Support the requirements of various operating system environments, such as the ability of a 
process to inherit resources from a parent process (needed by Windows and Subsystem for 
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UNIX Applications) and the ability to create case-sensitive file names (needed by Subsystem 
for UNIX Applications)

 ■ Establish uniform rules for object retention (that is, for keeping an object available until all 
processes have finished using it)

 ■ Provide the ability to isolate objects for a specific session to allow for both local and global 
objects in the namespace

Internally, Windows has three kinds of objects: executive objects, kernel objects, and GDI/User 
 objects . Executive objects are objects implemented by various components of the executive (such as 
the process manager, memory manager, I/O subsystem, and so on) . Kernel objects are a more primi-
tive set of objects implemented by the Windows kernel . These objects are not visible to user-mode 
code but are created and used only within the executive . Kernel objects provide fundamental capa-
bilities, such as synchronization, on which executive objects are built . Thus, many executive objects 
contain (encapsulate) one or more kernel objects, as shown in Figure 3-18 . 

Kernel object

Name
HandleCount
ReferenceCount
Type

Executive objectOwned by the
executive

Owned by the
kernel

Owned by the
object manager

FIGURE 3-18 Executive objects that contain kernel objects

Note GDI/User objects, on the other hand, belong to the Windows subsystem  
(Win32k .sys) and do not interact with the kernel . For this reason, they are outside the  
scope of this book, but you can get more information on them from the Windows SDK .

Details about the structure of kernel objects and how they are used to implement  synchronization 
are given later in this chapter . The remainder of this section focuses on how the object manager 
works and on the structure of executive objects, handles, and handle tables and just briefly describes 
how objects are involved in implementing Windows security access checking; Chapter 6 thoroughly 
covers that topic .
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Executive Objects
Each Windows environment subsystem projects to its applications a different image of the operating 
system . The executive objects and object services are primitives that the environment subsystems use 
to construct their own versions of objects and other resources .

Executive objects are typically created either by an environment subsystem on behalf of a user 
application or by various components of the operating system as part of their normal operation . For 
example, to create a file, a Windows application calls the Windows CreateFileW function, implement-
ed in the Windows subsystem DLL Kernelbase .dll . After some validation and initialization, CreateFileW 
in turn calls the native Windows service NtCreateFile to create an executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or smaller 
than the set the executive provides . The Windows subsystem uses executive objects to export its own 
set of objects, many of which correspond directly to executive objects . For example, the Windows 
mutexes and semaphores are directly based on executive objects (which, in turn, are based on cor-
responding kernel objects) . In addition, the Windows subsystem supplies named pipes and mailslots, 
resources that are based on executive file objects. Some subsystems, such as Subsystem for UNIX 
Applications, don’t support objects as objects at all . Subsystem for UNIX Applications uses executive 
objects and services as the basis for presenting UNIX-style processes, pipes, and other resources to its 
applications .

Table 3-8 lists the primary objects the executive provides and briefly describes what they 
 represent. You can find further details on executive objects in the chapters that describe the related 
executive components (or in the case of executive objects directly exported to Windows, in the 
 Windows API reference documentation) . You can see the full list of object types by running Winobj 
with elevated rights and navigating to the ObjectTypes directory . 

Note The executive implements a total of 4242 object types . Many of these objects are for 
use only by the executive component that defines them and are not directly accessible by 
Windows APIs . Examples of these objects include Driver, Device, and EventPair .

TABLE 3-8 Executive Objects Exposed to the Windows API

Object Type Represents

Process The virtual address space and control information necessary for the execution of a 
set of thread objects .

Thread An executable entity within a process .

Job A collection of processes manageable as a single entity through the job .

Section A region of shared memory (known as a file-mapping object in Windows).

File An instance of an opened file or an I/O device.

Token The security profile (security ID, user rights, and so on) of a process or a thread.

Event An object with a persistent state (signaled or not signaled) that can be used for 
synchronization or notification.
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Object Type Represents

Semaphore A counter that provides a resource gate by allowing some maximum number of 
threads to access the resources protected by the semaphore .

Mutex A synchronization mechanism used to serialize access to a resource .

Timer A mechanism to notify a thread when a fixed period of time elapses.

IoCompletion A method for threads to enqueue and dequeue notifications of the completion of 
I/O operations (known as an I/O completion port in the Windows API) .

Key A mechanism to refer to data in the registry . Although keys appear in the object 
manager namespace, they are managed by the configuration manager, in a way 
similar to that in which file objects are managed by file system drivers. Zero or more 
key values are associated with a key object; key values contain data about the key .

Directory A virtual directory in the object manager’s namespace responsible for containing 
other objects or object directories .

TpWorkerFactory A collection of threads assigned to perform a specific set of tasks. The kernel can 
manage the number of work items that will be performed on the queue, how many 
threads should be responsible for the work, and dynamic creation and termination 
of worker threads, respecting certain limits the caller can set . Windows exposes the 
worker factory object through thread pools .

TmRm (Resource Manager), 
TmTx (Transaction), TmTm 
(Transaction Manager), 
TmEn (Enlistment)

Objects used by the Kernel Transaction Manager (KTM) for various transactions 
and/or enlistments as part of a resource manager or transaction manager . Objects 
can be created through the CreateTransactionManager, CreateResourceManager, 
CreateTransaction, and CreateEnlistment APIs .

WindowStation An object that contains a clipboard, a set of global atoms, and a group of Desktop 
objects .

Desktop An object contained within a window station . A desktop has a logical display 
 surface and contains windows, menus, and hooks .

PowerRequest An object associated with a thread that executes, among other things, a call to 
SetThreadExecutionState to request a given power change, such as blocking sleeps 
(due to a movie being played, for example) .

EtwConsumer Represents a connected ETW real-time consumer that has registered with the 
StartTrace API (and can call ProcessTrace to receive the events on the object queue) .

EtwRegistration Represents the registration object associated with a user-mode (or kernel-mode) 
ETW provider that registered with the EventRegister API .

Note Because Windows NT was originally supposed to support the OS/2 operating 
 system, the mutex had to be compatible with the existing design of OS/2 mutual-exclusion 
objects, a design that required that a thread be able to abandon the object, leaving it 
 inaccessible . Because this behavior was considered unusual for such an object, another 
kernel object—the mutant—was created. Eventually, OS/2 support was dropped, and the 
object became used by the Windows 32 subsystem under the name mutex (but it is still 
called mutant internally) .
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Object Structure
As shown in Figure 3-19, each object has an object header and an object body . The object manager 
controls the object headers, and the owning executive components control the object bodies of the 
object types they create . Each object header also contains an index to a special object, called the 
type object, that contains information common to each instance of the object. Additionally, up to five 
optional subheaders exist: the name information header, the quota information header, the process 
information header, the handle information header, and the creator information header .

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Object
header

Object
body Object-specific data

Process
1 Process

2 Process
3

Type name
Pool type
Default quota charges
Access types
Generic access rights mapping
Synchronizable? (Y/N)
Methods:

Open, close, delete,
parse, security,
query name

Type object

Object name

Security descriptor

Open handles list

Quota charges

Object directory

034DEF0
2A1DDAF
6D3AED4
0A3C44A1
3DF12AB4

Object Type Table

FIGURE 3-19 Structure of an object 

Object Headers and Bodies
The object manager uses the data stored in an object’s header to manage objects without regard 
to their type. Table 3-9 briefly describes the object header fields, and Table 3-10 describes the fields 
found in the optional object subheaders .
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TABLE 3-9 Object Header Fields

Field Purpose

Handle count Maintains a count of the number of currently opened handles to the object .

Pointer count Maintains a count of the number of references to the object (including one reference for 
each handle) . Kernel-mode components can reference an object by pointer without using 
a handle .

Security descriptor Determines who can use the object and what they can do with it . Note that unnamed 
 objects, by definition, cannot have security.

Object type index Contains the index to a type object that contains attributes common to objects of this type . 
The table that stores all the type objects is ObTypeIndexTable .

Subheader mask Bitmask describing which of the optional subheader structures described in Table 
3-10 are present, except for the creator information subheader, which, if present, 
 always precedes the object . The bitmask is converted to a negative offset by using the 
ObpInfoMaskToOffset table, with each subheader being associated with a 1-byte index that 
places it relative to the other subheaders present .

Flags Characteristics and object attributes for the object . See Table 3-12 for a list of all the object 
flags.

Lock Per-object lock used when modifying fields belonging to this object header or any of its 
subheaders .

In addition to the object header, which contains information that applies to any kind of object, the 
subheaders contain optional information regarding specific aspects of the object. Note that these 
structures are located at a variable offset from the start of the object header, the value of which 
depends on the number of subheaders associated with the main object header (except, as mentioned 
earlier, for creator information) . For each subheader that is present, the InfoMask field is updated to 
reflect its existence. When the object manager checks for a given subheader, it checks if the corre-
sponding bit is set in the InfoMask and then uses the remaining bits to select the correct offset into 
the ObpInfoMaskToOffset table, where it finds the offset of the subheader from the start of the object 
header . 

These offsets exist for all possible combinations of subheader presence, but because the 
 subheaders, if present, are always allocated in a fixed, constant order, a given header will have only 
as many possible locations as the maximum number of subheaders that precede it . For example, 
 because the name information subheader is always allocated first, it has only one possible offset. 
On the other hand, the handle information subheader (which is allocated third) has three possible 
locations, because it might or might not have been allocated after the quota subheader, itself hav-
ing  possibly been allocated after the name information . Table 3-10 describes all the optional object 
subheaders and their location . In the case of creator information, a value in the object header flags 
determines whether the subheader is present. (See Table 3-12 for information about these flags.)

TABLE 3-10 Optional Object Subheaders

Name Purpose Bit Location

Creator 
 information

Links the object into a list for all the objects 
of the same type, and records the process 
that created the object, along with a back 
trace .

0 (0x1) Object header -  
ObpInfoMaskToOffset[0])
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Name Purpose Bit Location

Name 
 information

Contains the object name, responsible for 
making an object visible to other processes 
for sharing, and a pointer to the object direc-
tory, which provides the hierarchical structure 
in which the object names are stored .

1 (0x2) Object header - ObpInfoMaskToOffset - 
ObpInfoMaskToOffset[InfoMask & 0x3]

Handle 
 information

Contains a database of entries (or just a single 
entry) for a process that has an open handle 
to the object (along with a  per-process 
handle count) .

2 (0x4) Object header - 
ObpInfoMaskToOffset[InfoMask & 0x7]

Quota 
 information

Lists the resource charges levied against a 
process when it opens a handle to the object .

3 (0x8) Object header - 
ObpInfoMaskToOffset[InfoMask & 0xF]

Process 
 information

Contains a pointer to the owning process 
if this is an exclusive object . More informa-
tion on exclusive objects follows later in the 
chapter .

4 (0x10) Object header - 
ObpInfoMaskToOffset[InfoMask & 0x1F]

Each of these subheaders is optional and is present only under certain conditions, either during 
system boot up or at object creation time . Table 3-11 describes each of these conditions .

TABLE 3-11 Conditions Required for Presence of Object Subheaders

Name Condition

Name information The object must have been created with a name .

Quota information The object must not have been created by the initial (or idle) system process .

Process information The object must have been created with the exclusive object flag. (See Table 3-12 for 
 information about object flags.)

Handle information The object type must have enabled the maintain handle count flag. File objects, ALPC objects, 
WindowStation objects, and Desktop objects have this flag set in their object type structure.

Creator information The object type must have enabled the maintain type list flag. Driver objects have this flag 
set if the Driver Verifier is enabled. However, enabling the maintain object type list global flag 
(discussed earlier) will enable this for all objects, and Type objects always have the flag set.

Finally, a number of attributes and/or flags determine the behavior of the object during creation 
time or during certain operations. These flags are received by the object manager whenever any new 
object is being created, in a structure called the object attributes. This structure defines the object 
name, the root object directory where it should be inserted, the security descriptor for the object, and 
the object attribute flags. Table 3-12 lists the various flags that can be associated with an object.

Note When an object is being created through an API in the Windows subsystem (such as 
CreateEvent or CreateFile), the caller does not specify any object attributes—the subsys-
tem DLL performs the work behind the scenes . For this reason, all named objects created 
through Win32 go in the BaseNamedObjects directory, either the global or per-session 
instance, because this is the root object directory that Kernelbase.dll specifies as part of the 
object attributes structure . More information on BaseNamedObjects and how it relates to 
the per-session namespace will follow later in this chapter .
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TABLE 3-12 Object Flags

Attributes Flag Header Flag Purpose

OBJ_INHERIT Saved in the handle table entry Determines whether the handle to the 
 object will be inherited by child pro-
cesses, and whether a process can use 
DuplicateHandle to make a copy .

OBJ_PERMANENT OB_FLAG_PERMANENT_OBJECT Defines object retention behavior related to 
reference counts, described later .

OBJ_EXCLUSIVE OB_FLAG_EXCLUSIVE_OBJECT Specifies that the object can be used only 
by the process that created it .

OBJ_CASE_INSENSITIVE Stored in the handle table entry Specifies that lookups for this object in the 
namespace should be case insensitive . It 
can be overridden by the case insensitive 
flag in the object type.

OBJ_OPENIF Not stored, used at run time Specifies that a create operation for this 
object name should result in an open, if the 
object exists, instead of a failure .

OBJ_OPENLINK Not stored, used at run time Specifies that the object manager should 
open a handle to the symbolic link, not the 
target .

OBJ_KERNEL_HANDLE OB_FLAG_KERNEL_OBJECT Specifies that the handle to this object 
should be a kernel handle (more on this 
later) .

OBJ_FORCE_ACCESS_CHECK Not stored, used at run time Specifies that even if the object is being 
opened from kernel mode, full access 
checks should be performed .

OBJ_KERNEL_EXCLUSIVE OB_FLAG_KERNEL_ONLY_ACCESS Disables any user-mode process from 
opening a handle to the object; used 
to protect the /Device/PhysicalMemory 
 section object .

N/A OF_FLAG_DEFAULT_SECURITY_QUOTA Specifies that the object’s security 
 descriptor is using the default 2-KB quota .

N/A OB_FLAG_SINGLE_HANDLE_ENTRY Specifies that the handle information 
 subheader contains only a single entry and 
not a database .

N/A OB_FLAG_NEW_OBJECT Specifies that the object has been  created 
but not yet inserted into the object 
namespace .

N/A OB_FLAG_DELETED_INLINE Specifies that the object is being deleted 
through the deferred deletion worker thread .

In addition to an object header, each object has an object body whose format and contents are 
unique to its object type; all objects of the same type share the same object body format . By creating 
an object type and supplying services for it, an executive component can control the manipulation of 
data in all object bodies of that type . Because the object header has a static and well-known size, the 
object manager can easily look up the object header for an object simply by subtracting the size of 
the header from the pointer of the object . As explained earlier, to access the subheaders, the object 
manager subtracts yet another well-known value from the pointer of the object header .
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Because of the standardized object header and subheader structures, the object manager is able 
to provide a small set of generic services that can operate on the attributes stored in any object 
header and can be used on objects of any type (although some generic services don’t make sense for 
certain objects) . These generic services, some of which the Windows subsystem makes available to 
Windows applications, are listed in Table 3-13 .

Although these generic object services are supported for all object types, each object has its own 
create, open, and query services. For example, the I/O system implements a create file service for its 
file objects, and the process manager implements a create process service for its process objects. 

Although a single create object service could have been implemented, such a routine would have 
been quite complicated, because the set of parameters required to initialize a file object, for example, 
differs markedly from that required to initialize a process object . Also, the object manager would have 
incurred additional processing overhead each time a thread called an object service to determine the 
type of object the handle referred to and to call the appropriate version of the service .

TABLE 3-13 Generic Object Services

Service Purpose

Close Closes a handle to an object

Duplicate Shares an object by duplicating a handle and giving it to another process

Make permanent/temporary Changes the retention of an object (described later)

Query object Gets information about an object’s standard attributes

Query security Gets an object’s security descriptor

Set security Changes the protection on an object

Wait for a single object Synchronizes a thread’s execution with one object

Signal an object and wait for another Signals an object (such as an event), and synchronizes a thread’s execution 
with another

Wait for multiple objects Synchronizes a thread’s execution with multiple objects

Type Objects
Object headers contain data that is common to all objects but that can take on different values for 
each instance of an object . For example, each object has a unique name and can have a unique 
security descriptor . However, objects also contain some data that remains constant for all objects of 
a particular type. For example, you can select from a set of access rights specific to a type of object 
when you open a handle to objects of that type . The executive supplies terminate and suspend access 
(among others) for thread objects and read, write, append, and delete access (among others) for file 
objects. Another example of an object-type-specific attribute is synchronization, which is described 
shortly .

To conserve memory, the object manager stores these static, object-type-specific attributes once 
when creating a new object type . It uses an object of its own, a type object, to record this data . As 
Figure 3-20 illustrates, if the object-tracking debug flag (described in the “Windows Global Flags” 
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 section later in this chapter) is set, a type object also links together all objects of the same type (in this 
case, the process type), allowing the object manager to find and enumerate them, if necessary. This 
functionality takes advantage of the creator information subheader discussed previously .

Process
type

object

Process
Object 1

Process
Object 2

Process
Object 3

Process
Object 4

FIGURE 3-20 Process objects and the process type object

EXPERIMENT: Viewing Object Headers and Type Objects
You can look at the process object type data structure in the kernel debugger by first 
 identifying a process object with the !process command:

lkd> !process 0 0 
**** NT ACTIVE PROCESS DUMP **** 
PROCESS fffffa800279cae0 
    SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 
    DirBase: 00187000  ObjectTable: fffff8a000001920  HandleCount: 541. 
    Image: System

Then execute the !object command with the process object address as the argument:

lkd> !object fffffa800279cae0 
Object: fffffa800279cae0  Type: (fffffa8002755b60) Process 
    ObjectHeader: fffffa800279cab0 (new version) 
    HandleCount: 3  PointerCount: 172 3172 

Notice that on 32-bit Windows, the object header starts 0x18 (24 decimal) bytes prior to the 
start of the object body, and on 64-bit Windows, it starts 0x30 (48 decimal) bytes prior—the 
size of the object header itself . You can view the object header with this command:

lkd> dt nt!_OBJECT_HEADER fffffa800279cab0  
   +0x000 PointerCount     : 172 
   +0x008 HandleCount      : 33 
   +0x008 NextToFree       : 0x000000000x00000000'00000003  
   +0x010 Lock             : _EX_PUSH_LOCK 
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   +0x018 TypeIndex        : 0x7 '' 
   +0x019 TraceFlags       : 0 '' 
   +0x01a InfoMask         : 0 '' 
   +0x01b Flags            : 0x2 '' 
   +0x020 ObjectCreateInfo : 0xfffff800'01c53a80 _OBJECT_CREATE_INFORMATION 
   +0x020 QuotaBlockCharged : 0xfffff800'01c53a80  
   +0x028 SecurityDescriptor : 0xfffff8a0'00004b29  
   +0x030 Body             : _QUAD

Now look at the object type data structure by obtaining its address from the 
 ObTypeIndexTable table for the entry associated with the TypeIndex field of the object header 
data structure:

lkd> ?? ((nt!_OBJECT_TYPE**)@@(nt!ObTypeIndexTable))[((nt!_OBJECT_
HEADER*)0xfffffa800279cab0)->TypeIndex] 
struct _OBJECT_TYPE * 0xfffffa80'02755b60 
   +0x000 TypeList         : _LIST_ENTRY [ 0xfffffa80'02755b60 - 0xfffffa80'02755b60 ] 
   +0x010 Name             : _UNICODE_STRING "Process" 
   +0x020 DefaultObject    : (null)  
   +0x028 Index            : 0x70x7 '' 
   +0x02c TotalNumberOfObjects : 0x380x38 
   +0x030 TotalNumberOfHandles : 0x1320x132 
   +0x034 HighWaterNumberOfObjects : 0x3d 
   +0x038 HighWaterNumberOfHandles : 0x13c 
   +0x040 TypeInfo         : _OBJECT_TYPE_INITIALIZER 
   +0x0b0 TypeLock         : _EX_PUSH_LOCK 
   +0x0b8 Key              : 0x636f7250 
   +0x0c0 CallbackList     : _LIST_ENTRY [ 0xfffffa80'02755c20 - 0xfffffa80'02755c20 ]

The output shows that the object type structure includes the name of the object type, tracks 
the total number of active objects of that type, and tracks the peak number of handles and 
objects of that type . The CallbackList also keeps track of any object manager filtering callbacks 
that are associated with this object type . The TypeInfo field stores the pointer to the data struc-
ture that stores attributes common to all objects of the object type as well as pointers to the 
object type’s methods:

lkd> ?? ((nt!_OBJECT_TYPE*)0xfffffa8002755b60)->TypeInfo*)0xfffffa8002755b60)->TypeInfo 
   +0x000 Length           : 0x70 
   +0x002 ObjectTypeFlags  : 0x4a 'J' 
   +0x002 CaseInsensitive  : 0y0 
   +0x002 UnnamedObjectsOnly : 0y1 
   +0x002 UseDefaultObject : 0y0 
   +0x002 SecurityRequired : 0y1 
   +0x002 MaintainHandleCount : 0y0 
   +0x002 MaintainTypeList : 0y0 
   +0x002 SupportsObjectCallbacks : 0y1 
   +0x004 ObjectTypeCode   : 0 
   +0x008 InvalidAttributes : 0xb0 
   +0x00c GenericMapping   : _GENERIC_MAPPING 
   +0x01c ValidAccessMask  : 0x1fffff 
   +0x020 RetainAccess     : 0x101000 
   +0x024 PoolType         : 0 ( NonPagedPool ) 
   +0x028 DefaultPagedPoolCharge : 0x1000 
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   +0x02c DefaultNonPagedPoolCharge : 0x528 
   +0x030 DumpProcedure    : (null)  
   +0x038 OpenProcedure    : 0xfffff800'01d98d58     long  nt!PspProcessOpen+0 
   +0x040 CloseProcedure   : 0xfffff800'01d833c4     void  nt!PspProcessClose+0 
   +0x048 DeleteProcedure  : 0xfffff800'01d83090     void  nt!PspProcessDelete+0 
   +0x050 ParseProcedure   : (null)  
   +0x058 SecurityProcedure : 0xfffff800'01d8bb50     long  nt!SeDefaultObjectMethod+0 
   +0x060 QueryNameProcedure : (null)  
   +0x068 OkayToCloseProcedure : (null)

Type objects can’t be manipulated from user mode because the object manager supplies no 
 services for them. However, some of the attributes they define are visible through certain  native 
 services and through Windows API routines . The information stored in the type initializers is  described 
in Table 3-14 .

TABLE 3-14 Type Initializer Fields

Attribute Purpose

Type name The name for objects of this type (“process,” “event,” “port,” and so on) .

Pool type Indicates whether objects of this type should be allocated from paged or 
 nonpaged memory .

Default quota charges Default paged and nonpaged pool values to charge to process quotas .

Valid access mask The types of access a thread can request when opening a handle to an object of 
this type (“read,” “write,” “terminate,” “suspend,” and so on) .

Generic access rights mapping A mapping between the four generic access rights (read, write, execute, and all) 
to the type-specific access rights.

Flags Indicate whether objects must never have names (such as process objects), 
whether their names are case-sensitive, whether they require a security descriptor, 
whether they support object-filtering callbacks, and whether a handle database 
(handle information subheader) and/or a type-list linkage (creator information 
subheader) should be maintained . The use default object flag also defines the 
behavior for the default object field shown later in this table.

Object type code Used to describe the type of object this is (versus comparing with a well-known 
name value) . File objects set this to 1, synchronization objects set this to 2, 
and thread objects set this to 4. This field is also used by ALPC to store handle 
 attribute information associated with a message .

Invalid attributes Specifies object attribute flags (shown earlier in Table 3-12) that are invalid for this 
object type .

Default object Specifies the internal object manager event that should be used during waits for 
this object, if the object type creator requested one . Note that certain objects, 
such as File objects and ALPC port objects already contain their own embedded 
dispatcher object; in this case, this field is an offset into the object body. For ex-
ample, the event inside the FILE_OBJECT structure is embedded in a field called 
Event .

Methods One or more routines that the object manager calls automatically at certain 
points in an object’s lifetime .
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Synchronization, one of the attributes visible to Windows applications, refers to a thread’s ability 
to synchronize its execution by waiting for an object to change from one state to another . A thread 
can synchronize with executive job, process, thread, file, event, semaphore, mutex, and timer objects. 
Other executive objects don’t support synchronization . An object’s ability to support synchronization 
is based on three possibilities:

 ■ The executive object is a wrapper for a dispatcher object and contains a dispatcher header, a 
kernel structure that is covered in the section “Low-IRQL Synchronization” later in this chapter .

 ■ The creator of the object type requested a default object, and the object manager provided 
one .

 ■ The executive object has an embedded dispatcher object, such as an event somewhere inside 
the object body, and the object’s owner supplied its offset to the object manager when 
 registering the object type (described in Table 3-14) .

Object Methods
The last attribute in Table 3-14, methods, comprises a set of internal routines that are similar to C++ 
constructors and destructors—that is, routines that are automatically called when an object is created 
or destroyed . The object manager extends this idea by calling an object method in other situations 
as well, such as when someone opens or closes a handle to an object or when someone attempts to 
change the protection on an object . Some object types specify methods whereas others don’t, de-
pending on how the object type is to be used .

When an executive component creates a new object type, it can register one or more methods 
with the object manager. Thereafter, the object manager calls the methods at well-defined points in 
the lifetime of objects of that type, usually when an object is created, deleted, or modified in some 
way . The methods that the object manager supports are listed in Table 3-15 .

The reason for these object methods is to address the fact that, as you’ve seen, certain object 
operations are generic (close, duplicate, security, and so on) . Fully generalizing these generic routines 
would have required the designers of the object manager to anticipate all object types . However, the 
routines to create an object type are exported by the kernel, enabling external kernel components to 
create their own object types . Although this functionality is not documented for driver developers, 
it is internally used by Win32k.sys to define WindowStation and Desktop objects. Through object- 
method extensibility, Win32k.sys defines its routines for handling operations such as create and query. 

One exception to this rule is the security routine, which does, unless otherwise instructed, default 
to SeDefaultObjectMethod . This routine does not need to know the internal structure of the object 
because it deals only with the security descriptor for the object, and you’ve seen that the pointer to 
the security descriptor is stored in the generic object header, not inside the object body . However, if 
an object does require its own additional security checks, it can define a custom security routine. The 
other reason for having a generic security method is to avoid complexity, because most objects rely 
on the security reference monitor to manage their security .
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TABLE 3-15 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that exists in a secondary object 
namespace

Parse When the object manager is searching for an object name that exists in a secondary object 
namespace

Dump Not used

Okay to close When the object manager is instructed to close a handle

Security When a process reads or changes the protection of an object, such as a file, that exists in a 
 secondary object namespace

The object manager calls the open method whenever it creates a handle to an object, which it 
does when an object is created or opened . The WindowStation and Desktop objects provide an open 
method; for example, the WindowStation object type requires an open method so that Win32k .sys 
can share a piece of memory with the process that serves as a desktop-related memory pool .

An example of the use of a close method occurs in the I/O system . The I/O manager registers 
a close method for the file object type, and the object manager calls the close method each time 
it closes a file object handle. This close method checks whether the process that is closing the file 
handle owns any outstanding locks on the file and, if so, removes them. Checking for file locks isn’t 
something the object manager itself can or should do .

The object manager calls a delete method, if one is registered, before it deletes a temporary 
object from memory . The memory manager, for example, registers a delete method for the section 
object type that frees the physical pages being used by the section. It also verifies that any internal 
data structures the memory manager has allocated for a section are deleted before the section object 
is deleted . Once again, the object manager can’t do this work because it knows nothing about the 
internal workings of the memory manager . Delete methods for other types of objects perform similar 
functions .

The parse method (and similarly, the query name method) allows the object manager to relinquish 
control of finding an object to a secondary object manager if it finds an object that exists outside 
the object manager namespace . When the object manager looks up an object name, it suspends its 
search when it encounters an object in the path that has an associated parse method . The object 
manager calls the parse method, passing to it the remainder of the object name it is looking for . 
There are two namespaces in Windows in addition to the object manager’s: the registry namespace, 
which the configuration manager implements, and the file system namespace, which the I/O manager 
implements with the aid of file system drivers. (See Chapter 4, “Management Mechanisms,” for more 
information on the configuration manager and Chapter 8 in Part 2 for more details about the I/O 
manager and file system drivers.)
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For example, when a process opens a handle to the object named \Device\HarddiskVolume1\docs 
\resume.doc, the object manager traverses its name tree until it reaches the device object named 
HarddiskVolume1 . It sees that a parse method is associated with this object, and it calls the method, 
passing to it the rest of the object name it was searching for—in this case, the string docs\resume.doc . 
The parse method for device objects is an I/O routine because the I/O manager defines the device 
object type and registers a parse method for it . The I/O manager’s parse routine takes the name 
string and passes it to the appropriate file system, which finds the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse method . It is called 
whenever a thread tries to query or change the security information protecting a file. This information 
is different for files than for other objects because security information is stored in the file itself rather 
than in memory. The I/O system, therefore, must be called to find the security information and read 
or change it .

Finally, the okay-to-close method is used as an additional layer of protection around the mali-
cious—or incorrect—closing of handles being used for system purposes . For example, each process 
has a handle to the Desktop object or objects on which its thread or threads have windows visible . 
Under the standard security model, it is possible for those threads to close their handles to their 
desktops because the process has full control of its own objects . In this scenario, the threads end up 
without a desktop associated with them—a violation of the windowing model . Win32k .sys registers 
an okay-to-close routine for the Desktop and WindowStation objects to prevent this behavior .

Object Handles and the Process Handle Table
When a process creates or opens an object by name, it receives a handle that represents its access 
to the object . Referring to an object by its handle is faster than using its name because the object 
manager can skip the name lookup and find the object directly. Processes can also acquire handles to 
objects by inheriting handles at process creation time (if the creator specifies the inherit handle flag 
on the CreateProcess call and the handle was marked as inheritable, either at the time it was cre-
ated or afterward by using the Windows SetHandleInformation function) or by receiving a duplicated 
handle from another process . (See the Windows DuplicateHandle function .)

All user-mode processes must own a handle to an object before their threads can use the object . 
Using handles to manipulate system resources isn’t a new idea . C and Pascal (an older programming 
language similar to Delphi) run-time libraries, for example, return handles to opened files. Handles 
serve as indirect pointers to system resources; this indirection keeps application programs from 
 fiddling directly with system data structures.

Object handles provide additional benefits. First, except for what they refer to, there is no 
 difference between a file handle, an event handle, and a process handle. This similarity provides a 
consistent interface to reference objects, regardless of their type . Second, the object manager has 
the exclusive right to create handles and to locate an object that a handle refers to . This means that 
the object manager can scrutinize every user-mode action that affects an object to see whether the 
security profile of the caller allows the operation requested on the object in question.
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Note Executive components and device drivers can access objects directly because they 
are running in kernel mode and therefore have access to the object structures in system 
memory . However, they must declare their usage of the object by incrementing the refer-
ence count so that the object won’t be de-allocated while it’s still being used . (See the 
section “Object Retention” later in this chapter for more details .) To successfully make use 
of this object, however, device drivers need to know the internal structure definition of the 
object, and this is not provided for most objects . Instead, device drivers are encouraged to 
use the appropriate kernel APIs to modify or read information from the object . For exam-
ple, although device drivers can get a pointer to the Process object (EPROCESS), the struc-
ture is opaque, and Ps* APIs must be used . For other objects, the type itself is opaque (such 
as most executive objects that wrap a dispatcher object—for example, events or mutexes) . 
For these objects, drivers must use the same system calls that user-mode applications end 
up calling (such as ZwCreateEvent) and use handles instead of object pointers .

EXPERIMENT: Viewing Open Handles
Run Process Explorer, and make sure the lower pane is enabled and configured to show open 
handles . (Click on View, Lower Pane View, and then Handles) . Then open a command prompt 
and view the handle table for the new Cmd.exe process. You should see an open file handle to 
the current directory. For example, assuming the current directory is C:\Users\Administrator, 
Process Explorer shows the following:

Now pause Process Explorer by pressing the space bar or clicking on View, Update Speed 
and choosing Pause . Then change the current directory with the cd command and press F5 
to refresh the display . You will see in Process Explorer that the handle to the previous current 
 directory is closed and a new handle is opened to the new current directory . The previous 
handle is highlighted in red and the new handle is highlighted in green . 
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Process Explorer’s differences-highlighting feature makes it easy to see changes in the 
handle table . For example, if a process is leaking handles, viewing the handle table with Process 
Explorer can quickly show what handle or handles are being opened but not closed . (Typically, 
you see a long list of handles to the same object .) This information can help the programmer 
find the handle leak.

Resource Monitor also shows open handles to named handles for the processes you select 
by checking the boxes next to their names . Here are the command prompt’s open handles:

You can also display the open handle table by using the command-line Handle tool from 
Sysinternals. For example, note the following partial output of Handle when examining the file 
object handles located in the handle table for a Cmd .exe process before and after changing 
the directory. By default, Handle filters out nonfile handles unless the –a switch is used, which 
displays all the handles in the process, similar to Process Explorer .

C:\>handle -p cmd.exe 
 
Handle v3.46 
Copyright (C) 1997-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
------------------------------------------------------------------------------ 
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu 
   3C: File  (R-D)   C:\Windows\System32\en-US\KernelBase.dll.mui 
   44: File  (RW-)   C:\ 
 
C:\>cd windows 
 
C:\Windows>handle -p cmd.exe 
 
Handle v3.46 
Copyright (C) 1997-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
------------------------------------------------------------------------------ 
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu 
   3C: File  (R-D)   C:\Windows\System32\en-US\KernelBase.dll.mui 
   40: File  (RW-)   C:\Windows
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An object handle is an index into a process-specific handle table, pointed to by the executive 
process (EPROCESS) block (described in Chapter 5). The first handle index is 4, the second 8, and so 
on . A process’ handle table contains pointers to all the objects that the process has opened a handle 
to . Handle tables are implemented as a three-level scheme, similar to the way that the x86 memory 
management unit implements virtual-to-physical address translation, giving a maximum of more than 
16,000,000 handles per process . (See Chapter 10 in Part 2 for details about memory management in 
x86 systems .)

Note With a three-table scheme, the top-level table can contain a page full of pointers to 
mid-level tables, allowing for well over half a billion handles . However, to maintain compat-
ibility with Windows 2000’s handle scheme and inherent limitation of 16,777,216 handles, 
the top-level table only contains up to a maximum of 32 pointers to the mid-level tables, 
capping newer versions of Windows at the same limit .

Only the lowest-level handle table is allocated on process creation—the other levels are created 
as needed. The subhandle table consists of as many entries as will fit in a page minus one entry that 
is used for handle auditing . For example, for x86 systems a page is 4096 bytes, divided by the size 
of a handle table entry (8 bytes), which is 512, minus 1, which is a total of 511 entries in the lowest-
level handle table . The mid-level handle table contains a full page of pointers to subhandle tables, 
so the number of subhandle tables depends on the size of the page and the size of a pointer for the 
 platform . Figure 3-21 describes the handle table layout on Windows .

Process

Handle
table

Top-level
pointers

Middle-level
pointers

Subhandle
table

FIGURE 3-21 Windows process handle table architecture 
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EXPERIMENT: Creating the Maximum Number of Handles
The test program Testlimit from Sysinternals has an option to open handles to an object until it 
cannot open any more handles . You can use this to see how many handles can be created in a 
single process on your system . Because handle tables are allocated from paged pool, you might 
run out of paged pool before you hit the maximum number of handles that can be created in a 
single process . To see how many handles you can create on your system, follow these steps:

1. Download the Testlimit executable file corresponding to the 32/64 bit Windows you 
need from http://live.sysinternals.com/WindowsInternals .

2. Run Process Explorer, click View and then System Information, and then click on the 
Memory tab . Notice the current and maximum size of paged pool . (To display the 
maximum pool size values, Process Explorer must be configured properly to access 
the symbols for the kernel image, Ntoskrnl .exe .) Leave this system information display 
 running so that you can see pool utilization when you run the Testlimit program .

3. Open a command prompt .

4. Run the Testlimit program with the –h switch (do this by typing testlimit –h) . When 
Testlimit fails to open a new handle, it displays the total number of handles it was 
able to create . If the number is less than approximately 16 million, you are probably 
 running out of paged pool before hitting the theoretical per-process handle limit .

5. Close the Command Prompt window; doing this kills the Testlimit process, thus closing 
all the open handles .

As shown in Figure 3-22, on x86 systems, each handle entry consists of a structure with two 32-bit 
members: a pointer to the object (with flags), and the granted access mask. On 64-bit systems, a 
handle table entry is 12 bytes long: a 64-bit pointer to the object header and a 32-bit access mask . 
(Access masks are described in Chapter 6, “Security .”)

Audit on close

Lock
Inheritable

IAPointer to object header

Access mask

32 bits

Protect from close

P

L

FIGURE 3-22 Structure of a handle table entry 
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The first flag is a lock bit, indicating whether the entry is currently in use. The second flag is the 
inheritance designation—that is, it indicates whether processes created by this process will get a 
copy of this handle in their handle tables. As already noted, handle inheritance can be specified on 
handle creation or later with the SetHandleInformation function. The third flag indicates whether 
closing the object should generate an audit message. (This flag isn’t exposed to Windows—the object 
manager uses it internally .) Finally, the protect-from-close bit, stored in an unused portion of the 
access mask, indicates whether the caller is allowed to close this handle. (This flag can be set with the 
 NtSetInformationObject system call .)

System components and device drivers often need to open handles to objects that user-mode 
applications shouldn’t have access to . This is done by creating handles in the kernel handle table 
 (referenced internally with the name ObpKernelHandleTable) . The handles in this table are acces-
sible only from kernel mode and in any process context . This means that a kernel-mode function can 
 reference the handle in any process context with no performance impact . The object manager recog-
nizes references to handles from the kernel handle table when the high bit of the handle is set—that 
is, when references to kernel-handle-table handles have values greater than 0x80000000 . The kernel 
handle table also serves as the handle table for the System process, and all handles created by the 
System process (such as code running in system threads) are automatically marked as kernel handles 
because they live in the kernel handle table by definition.

EXPERIMENT: Viewing the Handle Table with the Kernel Debugger
The !handle command in the kernel debugger takes three arguments:

!handle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table. (Zero means “display all 
handles.”) The first handle is index 4, the second 8, and so on. For example, typing !handle 4 
will show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means “display only the information in 
the handle entry,” bit 1 means “display free handles (not just used handles),” and bit 2 means 
“display information about the object that the handle refers to .” The following command 
 displays full details about the handle table for process ID 0x62C:

lkd> !handle 0 7 62c 
processor number 0, process 000000000000062c 
Searching for Process with Cid == 62c 
PROCESS fffffa80052a7060 
    SessionId: 1  Cid: 062c    Peb: 7fffffdb000  ParentCid: 0558 
    DirBase: 7e401000  ObjectTable: fffff8a00381fc80  HandleCount: 111. 
    Image: windbg.exe 
 
Handle table at fffff8a0038fa000 with 113 Entries in use 
0000: free handle, Entry address fffff8a0038fa000, Next Entry 00000000fffffffe 
0004: Object: fffff8a005022b70  GrantedAccess: 00000003 Entry: fffff8a0038fa010 
Object: fffff8a005022b70  Type: (fffffa8002778f30) Directory 
    ObjectHeader: fffff8a005022b40fffff8a005022b40 (new version) 
        HandleCount: 25  PointerCount: 63 
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        Directory Object: fffff8a000004980  Name: KnownDlls 
 
0008: Object: fffffa8005226070  GrantedAccess: 00100020 Entry: fffff8a0038fa020 
Object: fffffa8005226070  Type: (fffffa80027b3080) File 
    ObjectHeader: fffffa8005226040fffffa8005226040 (new version) 
        HandleCount: 1  PointerCount: 1 
        Directory Object: 00000000  Name: \Program Files\Debugging Tools for Windows (x64) 
{HarddiskVolume2}

EXPERIMENT: Searching for Open Files with the Kernel Debugger
Although you can use Process Explorer, Handle, and the OpenFiles .exe utility to search for 
open file handles, these tools are not available when looking at a crash dump or analyzing a 
system remotely . You can instead use the !devhandles command to search for handles opened 
to files on a specific volume. (See Chapter 8 in Part 2 for more information on devices, files, and 
volumes .)

1. First you need to pick the drive letter you are interested in and obtain the pointer to 
its Device object. You can use the !object command as shown here:

1: kd> !object \Global??\C:  
Object: fffff8a00016ea40  Type: (fffffa8000c38bb0) SymbolicLink 
    ObjectHeader: fffff8a00016ea10 (new version) 
    HandleCount: 0  PointerCount: 1 
    Directory Object: fffff8a000008060  Name: C: 
    Target String is '\Device\HarddiskVolume1' 
    Drive Letter Index is 3 (C:)

2. Next use the !object command to get the Device object of the target volume name: 

1: kd> !object \Device\HarddiskVolume1 
Object: fffffa8001bd3cd0  Type: (fffffa8000ca0750) Device

3. Now you can use the pointer of the Device object with the !devhandles command . 
Each object shown points to a file:

!devhandles fffffa8001bd3cd0 
Checking handle table for process 0xfffffa8000c819e0 
Kernel handle table at fffff8a000001830 with 434 entries in use 
  
PROCESS fffffa8000c819e0 
    SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 
    DirBase: 00187000  ObjectTable: fffff8a000001830  HandleCount: 434. 
    Image: System 
 
0048: Object: fffffa8001d4f2a0  GrantedAccess: 0013008b Entry: fffff8a000003120 
Object: fffffa8001d4f2a0  Type: (fffffa8000ca0360) File 
    ObjectHeader: fffffa8001d4f270 (new version) 
        HandleCount: 1  PointerCount: 19 
        Directory Object: 00000000  Name: \Windows\System32\LogFiles\WMI\
RtBackup\EtwRTEventLog-Application.etl {HarddiskVolume1}
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Reserve Objects
Because objects represent anything from events to files to interprocess messages, the ability for 
 applications and kernel code to create objects is essential to the normal and desired runtime behavior 
of any piece of Windows code . If an object allocation fails, this usually causes anywhere from loss of 
functionality (the process cannot open a file) to data loss or crashes (the process cannot allocate a 
synchronization object) . Worse, in certain situations, the reporting of errors that led to object creation 
failure might themselves require new objects to be allocated . Windows implements two special 
 reserve objects to deal with such situations: the User APC reserve object and the I/O Completion 
packet reserve object . Note that the reserve-object mechanism itself is fully extensible, and future 
versions of Windows might add other reserve object types—from a broad view, the reserve object is a 
mechanism enabling any kernel-mode data structure to be wrapped as an object (with an associated 
handle, name, and security) for later use .

As was discussed in the APC section earlier in this chapter, APCs are used for operations such as 
suspension, termination, and I/O completion, as well as communication between user-mode applica-
tions that want to provide asynchronous callbacks . When a user-mode application requests a User 
APC to be targeted to another thread, it uses the QueueUserApc API in Kernelbase .dll, which calls 
the NtQueueUserApcThread system call . In the kernel, this system call attempts to allocate a piece 
of paged pool in which to store the KAPC control object structure associated with an APC . In low- 
memory situations, this operation fails, preventing the delivery of the APC, which, depending on what 
the APC was used for, could cause loss of data or functionality .

To prevent this, the user-mode application, can, on startup, use the NtAllocateReserveObject 
system call to request the kernel to pre-allocate the KAPC structure . Then the application uses a 
 different system call, NtQueueUserApcThreadEx, that contains an extra parameter that is used to store 
the handle to the reserve object . Instead of allocating a new structure, the kernel attempts to acquire 
the reserve object (by setting its InUse bit to true) and use it until the KAPC object is not needed 
anymore, at which point the reserve object is released back to the system . Currently, to prevent mis-
management of system resources by third-party developers, the reserve object API is available only 
internally through system calls for operating system components . For example, the RPC library uses 
reserved APC objects to guarantee asynchronous callbacks will still be able to return in low-memory 
situations .

A similar scenario can occur when applications need failure-free delivery of an I/O  completion 
port message, or packet . Typically, packets are sent with the PostQueuedCompletionStatus API 
in  Kernelbase .dll, which calls the NtSetIoCompletion API . Similarly to the user APC, the kernel 
must allocate an I/O manager structure to contain the completion-packet information, and if this 
 allocation fails, the packet cannot be created . With reserve objects, the application can use the 
 NtAllocateReserveObject API on startup to have the kernel pre-allocate the I/O completion packet, 
and the NtSetIoCompletionEx system call can be used to supply a handle to this reserve object, 
 guaranteeing a success path . Just like User APC reserve objects, this functionality is reserved for 
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system components and is used both by the RPC library and the Windows Peer-To-Peer BranchCache 
service (see Chapter 7, “Networking,” for more information on networking) to guarantee completion 
of asynchronous I/O operations .

Object Security
When you open a file, you must specify whether you intend to read or to write. If you try to write to a 
file that is opened for read access, you get an error. Likewise, in the executive, when a process creates 
an object or opens a handle to an existing object, the process must specify a set of desired  access 
rights—that is, what it wants to do with the object . It can request either a set of standard access rights 
(such as read, write, and execute) that apply to all object types or specific access rights that vary 
 depending on the object type . For example, the process can request delete access or append access 
to a file object. Similarly, it might require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the security reference 
monitor, the kernel-mode portion of the security system, sending it the process’ set of desired  access 
rights . The security reference monitor checks whether the object’s security descriptor permits the 
type of access the process is requesting . If it does, the reference monitor returns a set of granted 
 access rights that the process is allowed, and the object manager stores them in the object handle it 
creates . How the security system determines who gets access to which objects is explored in Chapter 6 .

Thereafter, whenever the process’ threads use the handle through a service call, the object 
 manager can quickly check whether the set of granted access rights stored in the handle corresponds 
to the usage implied by the object service the threads have called . For example, if the caller asked for 
read access to a section object but then calls a service to write to it, the service fails .

EXPERIMENT: Looking at Object Security
You can look at the various permissions on an object by using either Process Explorer, WinObj, 
or AccessCheck, which are all tools from Sysinternals . Let’s look at different ways you can display 
the access control list (ACL) for an object:

 ■ You can use WinObj to navigate to any object on the system, including object directories, 
right-click on the object, and select Properties . For example, select the BaseNamedObjects 
directory, select Properties, and click on the Security tab . You should see a dialog box 
similar to the one shown next .

By examining the settings in the dialog box, you can see that the Everyone group doesn’t 
have delete access to the directory, for example, but the SYSTEM account does (because 
this is where session 0 services with SYSTEM privileges will store their objects) . 
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 ■ Instead of using WinObj, you can view the handle table of a process using Process 
 Explorer, as shown in the experiment “Viewing Open Handles” earlier in the chapter . Look 
at the handle table for the Explorer .exe process . You should notice a Directory object 
handle to the \Sessions\n\BaseNamedObjects directory. (We’ll describe the per-session 
namespace shortly .) You can double-click on the object handle and then click on the 
 Security tab and see a similar dialog box (with more users and rights granted) . Process 
Explorer cannot decode the specific object directory access rights, so all you’ll see are 
generic rights .

 ■ Finally, you can use AccessCheck to query the security information of any object by using 
the –o switch as shown in the following output . Note that using AccessCheck will also 
show you the integrity level of the object . (See Chapter 6 for more information on integrity 
levels and the security reference monitor .)

C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects 
 
Accesschk v5.02 - Reports effective permissions for securable objects 
Copyright (C) 2006-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com  
 
\sessions\2\BaseNamedObjects 
  Type: Directory 
  RW NT AUTHORITY\SYSTEM 
  RW NTDEV\markruss 
  RW NTDEV\S-1-5-5-0-5491067-markruss 
  RW BUILTIN\Administrators 
  R  Everyone 
     NT AUTHORITY\RESTRICTED
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Windows also supports Ex (Extended) versions of the APIs—CreateEventEx, CreateMutexEx, 
 CreateSemaphoreEx—that add another argument for specifying the access mask . This makes it 
 possible for applications to properly use discretionary access control lists (DACLs) to secure their 
 objects without breaking their ability to use the create object APIs to open a handle to them . You 
might be wondering why a client application would not simply use OpenEvent, which does support 
a desired access argument . Using the open object APIs leads to an inherent race condition when 
dealing with a failure in the open call—that is, when the client application has attempted to open 
the event before it has been created . In most applications of this kind, the open API is followed by a 
create API in the failure case . Unfortunately, there is no guaranteed way to make this create operation 
atomic—in other words, to occur only once . Indeed, it would be possible for multiple threads  
and/or processes to have executed the create API concurrently and all attempt to create the event at 
the same time . This race condition and the extra complexity required to try and handle it makes using 
the open object APIs an inappropriate solution to the problem, which is why the Ex APIs should be 
used instead .

Object Retention
There are two types of objects: temporary and permanent . Most objects are temporary—that is, 
they remain while they are in use and are freed when they are no longer needed . Permanent objects 
remain until they are explicitly freed . Because most objects are temporary, the rest of this section 
describes how the object manager implements object retention—that is, retaining temporary objects 
only as long as they are in use and then deleting them . Because all user-mode processes that ac-
cess an object must first open a handle to it, the object manager can easily track how many of these 
processes, and even which ones, are using an object . Tracking these handles represents one part of 
implementing retention. The object manager implements object retention in two phases. The first 
phase is called name retention, and it is controlled by the number of open handles to an object that 
exist . Every time a process opens a handle to an object, the object manager increments the open 
handle counter in the object’s header. As processes finish using the object and close their handles to 
it, the object manager decrements the open handle counter . When the counter drops to 0, the object 
manager deletes the object’s name from its global namespace . This deletion prevents processes from 
opening a handle to the object .

The second phase of object retention is to stop retaining the objects themselves (that is, to delete 
them) when they are no longer in use . Because operating system code usually accesses objects by 
using pointers instead of handles, the object manager must also record how many object pointers it 
has dispensed to operating system processes . It increments a reference count for an object each time 
it gives out a pointer to the object; when kernel-mode components finish using the pointer, they call 
the object manager to decrement the object’s reference count . The system also increments the refer-
ence count when it increments the handle count, and likewise decrements the reference count when 
the handle count decrements, because a handle is also a reference to the object that must be tracked . 

Figure 3-23 illustrates two event objects that are in use. Process A has the first event open. 
 Process B has both events open. In addition, the first event is being referenced by some kernel-mode 
structure; thus, the reference count is 3. So even if Processes A and B closed their handles to the first 
event object, it would continue to exist because its reference count is 1 . However, when Process B 
closes its handle to the second event object, the object would be deallocated .
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So even after an object’s open handle counter reaches 0, the object’s reference count might 
remain positive, indicating that the operating system is still using the object . Ultimately, when the 
reference count drops to 0, the object manager deletes the object from memory . This deletion has 
to respect certain rules and also requires cooperation from the caller in certain cases . For example, 
because objects can be present both in paged or nonpaged pool memory (depending on the settings 
located in their object type), if a dereference occurs at an IRQL level of dispatch or higher and this 
dereference causes the pointer count to drop to 0, the system would crash if it attempted to imme-
diately free the memory of a paged-pool object . (Recall that such access is illegal because the page 
fault will never be serviced .) In this scenario, the object manager performs a deferred delete opera-
tion, queuing the operation on a worker thread running at passive level (IRQL 0) . We’ll describe more 
about system worker threads later in this chapter . 

Another scenario that requires deferred deletion is when dealing with Kernel Transaction  Manager 
(KTM) objects . In some scenarios, certain drivers might hold a lock related to this object, and 
 attempting to delete the object will result in the system attempting to acquire this lock . However, 
the driver might never get the chance to release its lock, causing a deadlock . When dealing with 
KTM  objects, driver developers must use ObDereferenceObjectDeferDelete to force deferred dele-
tion regardless of IRQL level . Finally, the I/O manager also uses this mechanism as an optimization so 
that certain I/Os can complete more quickly, instead of waiting for the object manager to delete the 
object .

Other structure
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Event object
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ReferenceCount=3
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Handle table

Process A System space
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DuplicateHandle

Index

FIGURE 3-23 Handles and reference counts
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Because of the way object retention works, an application can ensure that an object and its name 
remain in memory simply by keeping a handle open to the object . Programmers who write appli-
cations that contain two or more cooperating processes need not be concerned that one process 
might delete an object before the other process has finished using it. In addition, closing an applica-
tion’s object handles won’t cause an object to be deleted if the operating system is still using it . For 
example, one process might create a second process to execute a program in the background; it 
then immediately closes its handle to the process . Because the operating system needs the second 
process to run the program, it maintains a reference to its process object . Only when the background 
program finishes executing does the object manager decrement the second process’ reference count 
and then delete it .

Because object leaks can be dangerous to the system by leaking kernel pool memory and 
 eventually causing systemwide memory starvation—and can also break applications in subtle ways—
Windows includes a number of debugging mechanisms that can be enabled to monitor, analyze, and 
debug issues with handles and objects . Additionally, Debugging Tools for Windows come with two 
extensions that tap into these mechanisms and provide easy graphical analysis . Table 3-16 describes 
them .

TABLE 3-16 Debugging Mechanisms for Object Handles

Mechanism Enabled By Kernel Debugger Extension

Handle Tracing 
Database

Kernel Stack Trace systemwide and/or per-process 
with the User Stack Trace option checked with 
Gflags.exe.

!htrace <handle value> <process ID>

Object Reference 
Tracing

Per-process-name(s), or per-object-type-pool-tag(s), 
with Gflags.exe, under Object Reference Tracing.

!obtrace <object pointer>

Object Reference 
Tagging

Drivers must call appropriate API . N/A

Enabling the handle-tracing database is useful when attempting to understand the use of each 
handle within an application or the system context . The !htrace debugger extension can display the 
stack trace captured at the time a specified handle was opened. After you discover a handle leak, the 
stack trace can pinpoint the code that is creating the handle, and it can be analyzed for a missing call 
to a function such as CloseHandle .

The object-reference-tracing !obtrace extension monitors even more by showing the stack trace 
for each new handle created as well as each time a handle is referenced by the kernel (and also each 
time it is opened, duplicated, or inherited) and dereferenced . By analyzing these patterns, misuse 
of an object at the system level can be more easily debugged . Additionally, these reference traces 
provide a way to understand the behavior of the system when dealing with certain objects . Tracing 
processes, for example, display references from all the drivers on the system that have registered call-
back notifications (such as Process Monitor) and help detect rogue or buggy third-party drivers that 
might be referencing handles in kernel mode but never dereferencing them .
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Note When enabling object-reference tracing for a specific object type, you can obtain 
the name of its pool tag by looking at the key member of the OBJECT_TYPE structure 
when using the dt command . Each object type on the system has a global variable that 
 references this structure—for example, PsProcessType . Alternatively, you can use the !object 
command, which displays the pointer to this structure .

Unlike the previous two mechanisms, object-reference tagging is not a debugging feature that 
must be enabled with global flags or the debugger, but rather a set of APIs that should be used by 
device-driver developers to reference and dereference objects, including ObReferenceObjectWith-
Tag and ObDereferenceObjectWithTag. Similar to pool tagging (see Chapter 10 in Part 2 for more 
information on pool tagging), these APIs allow developers to supply a four-character tag identifying 
each  reference/dereference pair . When using the !obtrace extension just described, the tag for each 
reference or dereference operation is also shown, which avoids solely using the call stack as a mecha-
nism to identify where leaks or under-references might occur, especially if a given call is performed 
 thousands of times by the driver .

Resource Accounting
Resource accounting, like object retention, is closely related to the use of object handles . A positive 
open handle count indicates that some process is using that resource . It also indicates that some 
process is being charged for the memory the object occupies . When an object’s handle count and 
reference count drop to 0, the process that was using the object should no longer be charged for it .

Many operating systems use a quota system to limit processes’ access to system resources . 
 However, the types of quotas imposed on processes are sometimes diverse and complicated, and the 
code to track the quotas is spread throughout the operating system . For example, in some operating 
systems, an I/O component might record and limit the number of files a process can open, whereas a 
memory component might impose a limit on the amount of memory a process’ threads can allocate . 
A process component might limit users to some maximum number of new processes they can create 
or a maximum number of threads within a process . Each of these limits is tracked and enforced in 
 different parts of the operating system .

In contrast, the Windows object manager provides a central facility for resource accounting . Each 
object header contains an attribute called quota charges that records how much the object manager 
subtracts from a process’ allotted paged and/or nonpaged pool quota when a thread in the process 
opens a handle to the object .

Each process on Windows points to a quota structure that records the limits and current values 
for nonpaged-pool, paged-pool, and page-file usage. These quotas default to 0 (no limit) but can be 
specified by modifying registry values. (You need to add/edit NonPagedPoolQuota, PagedPoolQuota, 
and PagingFileQuota under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 
Management .) Note that all the processes in an interactive session share the same quota block (and 
there’s no documented way to create processes with their own quota blocks) .
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Object Names
An important consideration in creating a multitude of objects is the need to devise a successful 
 system for keeping track of them . The object manager requires the following information to help you 
do so:

 ■ A way to distinguish one object from another

 ■ A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an extension 
of what most operating systems provide—the ability to name selected resources, files, pipes, or a 
block of shared memory, for example . The executive, in contrast, allows any resource represented by 
an object to have a name. The second requirement, finding and retrieving an object, is also satisfied 
by object names. If the object manager stores objects by name, it can find an object by looking up its 
name .

Object names also satisfy a third requirement, which is to allow processes to share objects . The 
 executive’s object namespace is a global one, visible to all processes in the system . One process 
can create an object and place its name in the global namespace, and a second process can open a 
handle to the object by specifying the object’s name . If an object isn’t meant to be shared in this way, 
its creator doesn’t need to give it a name .

To increase efficiency, the object manager doesn’t look up an object’s name each time someone 
uses the object. Instead, it looks up a name under only two circumstances. The first is when a process 
creates a named object: the object manager looks up the name to verify that it doesn’t already exist 
before storing the new name in the global namespace . The second is when a process opens a handle 
to a named object: the object manager looks up the name, finds the object, and then returns an 
object handle to the caller; thereafter, the caller uses the handle to refer to the object . When looking 
up a name, the object manager allows the caller to select either a case-sensitive or case-insensitive 
search, a feature that supports Subsystem for UNIX Applications and other environments that use 
case-sensitive file names.

Object Directories
The object directory object is the object manager’s means for supporting this hierarchical naming 
structure. This object is analogous to a file system directory and contains the names of other objects, 
possibly even other object directories . The object directory object maintains enough information to 
translate these object names into pointers to the objects themselves . The object manager uses the 
pointers to construct the object handles that it returns to user-mode callers . Both kernel-mode code 
(including executive components and device drivers) and user-mode code (such as subsystems) can 
create object directories in which to store objects . For example, the I/O manager creates an object 
directory named \Device, which contains the names of objects representing I/O devices.

Where the names of objects are stored depends on the object type . Table 3-17 lists the 
 standard object directories found on all Windows systems and what types of objects have their 
names stored there. Of the directories listed, only \BaseNamedObjects and \Global?? are visible to 
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 standard  Windows applications . (See the “Session Namespace” section later in this chapter for more 
 information .)

TABLE 3-17 Standard Object Directories

Directory Types of Object Names Stored

\ArcName Symbolic links mapping ARC-style paths to NT-style paths .

\BaseNamedObjects Global mutexes, events, semaphores, waitable timers, jobs, ALPC ports, symbolic 
links, and section objects . 

\Callback Callback objects .

\Device Device objects .

\Driver Driver objects .

\FileSystem File-system driver objects and file-system-recognizer device objects. The Filter 
Manager also creates its own device objects under the Filters subkey .

\GLOBAL?? MS-DOS device names. (The \Sessions\0\DosDevices\<LUID>\Global directories are 
symbolic links to this directory .)

\KernelObjects Contains event objects that signal low resource conditions, memory errors, the 
 completion of certain operating system tasks, as well as objects representing 
Sessions .

\KnownDlls Section names and path for known DLLs (DLLs mapped by the system at startup 
time) .

\KnownDlls32 On a 64-bit Windows installation, \KnownDlls contains the native 64-bit binaries, so 
this directory is used instead to store Wow64 32-bit versions of those DLLs .

\Nls Section names for mapped national language support tables .

\ObjectTypes Names of types of objects .

\PSXSS If Subsystem for UNIX Applications is enabled (through installation of the SUA 
 component), this contains ALPC ports used by Subsystem for UNIX Applications .

\RPC Control ALPC ports used by remote procedure calls (RPCs), and events used by Conhost .exe 
as part of the console isolation mechanism .

\Security ALPC ports and events used by names of objects specific to the security subsystem.

\Sessions Per-session namespace directory . (See the next subsection .)

\UMDFCommunicationPorts ALPC ports used by the User-Mode Driver Framework (UMDF) .

\Windows Windows subsystem ALPC ports, shared section, and window stations .

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and sec-
tions have their names stored in a single object directory, no two of these objects can have the same 
name, even if they are of a different type . This restriction emphasizes the need to choose names care-
fully so that they don’t collide with other names. For example, you could prefix names with a GUID 
and/or combine the name with the user’s security identifier (SID).

Object names are global to a single computer (or to all processors on a multiprocessor computer), 
but they’re not visible across a network . However, the object manager’s parse method makes it pos-
sible to access named objects that exist on other computers . For example, the I/O manager, which 
supplies file-object services, extends the functions of the object manager to remote files. When asked 
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to open a remote file object, the object manager calls a parse method, which allows the I/O manager 
to intercept the request and deliver it to a network redirector, a driver that accesses files across the 
network . Server code on the remote Windows system calls the object manager and the I/O manager 
on that system to find the file object and return the information back across the network.

One security consideration to keep in mind when dealing with named objects is the possibility of 
object name squatting . Although object names in different sessions are protected from each other, 
there’s no standard protection inside the current session namespace that can be set with the stan-
dard Windows API . This makes it possible for an unprivileged application running in the same session 
as a privileged application to access its objects, as described earlier in the object security subsec-
tion . Unfortunately, even if the object creator used a proper DACL to secure the object, this doesn’t 
help against the squatting attack, in which the unprivileged application creates the object before the 
 privileged application, thus denying access to the legitimate application .

Windows exposes the concept of a private namespace to alleviate this issue . It allows user-mode 
applications to create object directories through the CreatePrivateNamespace API and associate these 
directories with boundary descriptors, which are special data structures protecting the directories . 
These descriptors contain SIDs describing which security principals are allowed access to the object 
directory . In this manner, a privileged application can be sure that unprivileged applications will not 
be able to conduct a denial-of-service attack against its objects . (This doesn’t stop a privileged ap-
plication from doing the same, however, but this point is moot .) Additionally, a boundary descriptor 
can also contain an integrity level, protecting objects possibly belonging to the same user account as 
the application, based on the integrity level of the process . (See Chapter 6 for more information on 
integrity levels .)

EXPERIMENT: Looking at the Base Named Objects
You can see the list of base objects that have names with the WinObj tool from Sysinternals . 
Run Winobj.exe., and click on \BaseNamedObjects, as shown here:
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The named objects are shown on the right . The icons indicate the object type:

 ■ Mutexes are indicated with a lock sign .

 ■ Sections (Windows file-mapping objects) are shown as memory chips.

 ■ Events are shown as exclamation points .

 ■ Semaphores are indicated with an icon that resembles a traffic signal.

 ■ Symbolic links have icons that are curved arrows .

 ■ Folders indicate object directories .

 ■ Gears indicate other objects, such as ALPC ports .

EXPERIMENT: Tampering with Single Instancing
Applications such as Windows Media Player and those in Microsoft Office are common 
 examples of single-instancing enforcement through named objects . Notice that when launching 
the Wmplayer .exe executable, Windows Media Player appears only once—every other launch 
simply results in the window coming back into focus . You can tamper with the handle list by 
 using Process Explorer to turn the computer into a media mixer! Here’s how:

1. Launch Windows Media Player and Process Explorer to view the handle table (by 
 clicking View, Lower Pane View, and then Handles) . You should see a handle whose 
name column contains CheckForOtherInstanceMutex .

2. Right-click on the handle, and select Close Handle. Confirm the action when asked.

3. Now run Windows Media Player again . Notice that this time a second process is 
 created .
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4. Go ahead and play a different song in each instance . You can also use the Sound Mixer 
in the system tray (click on the Volume icon) to select which of the two processes will 
have greater volume, effectively creating a mixing environment .

Instead of closing a handle to a named object, an application could have run on its own 
before Windows Media Player and created an object with the same name . In this scenario, 
 Windows Media Player would never run, fooled into believing it was already running on the 
system .

Symbolic Links In certain file systems (on NTFS and some UNIX systems, for example), a symbolic 
link lets a user create a file name or a directory name that, when used, is translated by the operating 
system into a different file or directory name. Using a symbolic link is a simple method for allowing 
users to indirectly share a file or the contents of a directory, creating a cross-link between different 
directories in the ordinarily hierarchical directory structure .

The object manager implements an object called a symbolic link object, which performs a similar 
function for object names in its object namespace . A symbolic link can occur anywhere within an 
 object name string . When a caller refers to a symbolic link object’s name, the object manager tra-
verses its object namespace until it reaches the symbolic link object . It looks inside the symbolic link 
and finds a string that it substitutes for the symbolic link name. It then restarts its name lookup .

One place in which the executive uses symbolic link objects is in translating MS-DOS-style device 
names into Windows internal device names . In Windows, a user refers to hard disk drives using the 
names C:, D:, and so on and serial ports as COM1, COM2, and so on . The Windows subsystem makes 
these symbolic link objects protected, global data by placing them in the object manager namespace 
under the \Global?? directory.

Session Namespace
Services have access to the global namespace, a namespace that serves as the first instance of the 
namespace . Additional sessions are given a session-private view of the namespace known as a local 
namespace. The parts of the namespace that are localized for each session include \DosDevices,   
\Windows, and \BaseNamedObjects. Making separate copies of the same parts of the namespace is 
known as instancing the namespace. Instancing \DosDevices makes it possible for each user to have 
different network drive letters and Windows objects such as serial ports . On Windows, the global  
\DosDevices directory is named \Global?? and is the directory to which \DosDevices points, and 
 local \DosDevices directories are identified by the logon session ID.

The \Windows directory is where Win32k.sys inserts the interactive window station created by 
Winlogon, \WinSta0. A Terminal Services environment can support multiple interactive users, but 
each user needs an individual version of WinSta0 to preserve the illusion that he is accessing the 
predefined interactive window station in Windows. Finally, applications and the system create shared 
objects in \BaseNamedObjects, including events, mutexes, and memory sections. If two users are run-
ning an application that creates a named object, each user session must have a private version of the 
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object so that the two instances of the application don’t interfere with one another by accessing the 
same object .

The object manager implements a local namespace by creating the private versions of the three 
directories mentioned under a directory associated with the user’s session under \Sessions\n (where n 
is the session identifier). When a Windows application in remote session two creates a named event, 
for example, the object manager transparently redirects the object’s name from \BaseNamedObjects 
to \Sessions\2\BaseNamedObjects.

All object-manager functions related to namespace management are aware of the instanced 
 directories and participate in providing the illusion that all sessions use the same namespace . 
 Windows subsystem DLLs prefix names passed by Windows applications that reference objects in  
\DosDevices with \?? (for example, C:\Windows becomes \??\C:\Windows). When the object manager 
sees the special \?? prefix, the steps it takes depends on the version of Windows, but it always relies 
on a field named DeviceMap in the executive process object (EPROCESS, which is described further in 
Chapter 5) that points to a data structure shared by other processes in the same session . 

The DosDevicesDirectory field of the DeviceMap structure points at the object manager 
 directory that represents the process’ local \DosDevices. When the object manager sees a refer-
ence to \??, it locates the process’ local \DosDevices by using the DosDevicesDirectory field of the 
 DeviceMap. If the object manager doesn’t find the object in that directory, it checks the DeviceMap 
field of the  directory object. If it’s valid, it looks for the object in the directory pointed to by the 
 GlobalDosDevicesDirectory field of the DeviceMap structure, which is always \Global??.

Under certain circumstances, applications that are session–aware need to access objects in the 
global session even if the application is running in another session . The application might want to 
do this to synchronize with instances of itself running in other remote sessions or with the console 
session (that is, session 0). For these cases, the object manager provides the special override “\Global” 
that an application can prefix to any object name to access the global namespace . For example, an 
application in session two opening an object named \Global\ApplicationInitialized is directed to  
\BaseNamedObjects\ApplicationInitialized instead of \Sessions\2\BaseNamedObjects 
\ApplicationInitialized.

An application that wants to access an object in the global \DosDevices directory does not need 
to use the \Global prefix as long as the object doesn’t exist in its local \DosDevices directory. This is 
because the object manager automatically looks in the global directory for the object if it doesn’t find 
it in the local directory . However, an application can force checking the global directory by using  
\GLOBALROOT.

Session directories are isolated from each other, and administrative privileges are required to 
create a global object (except for section objects) . A special privilege named create global object is 
verified before allowing such operations.
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EXPERIMENT: Viewing Namespace Instancing
You can see the separation between the session 0 namespace and other session namespaces 
as soon as you log in. The reason you can is that the first console user is logged in to session 1 
(while services run in session 0). Run Winobj.exe, and click on the \Sessions directory. You’ll see 
a subdirectory with a numeric name for each active session . If you open one of these directo-
ries, you’ll see subdirectories named \DosDevices, \Windows, and \BaseNamedObjects, which 
are the local namespace subdirectories of the session . The following screen shot shows a local 
namespace:

Next run Process Explorer and select a process in your session (such as Explorer .exe), and 
then view the handle table (by clicking View, Lower Pane View, and then Handles) . You should 
see a handle to \Windows\WindowStations\WinSta0 underneath \Sessions\n, where n is the 
session ID . 
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Object Filtering
Windows includes a filtering model in the object manager, similar to the file system minifilter model 
described in Chapter 8 in Part 2. One of the primary benefits of this filtering model is the ability to use 
the altitude concept that these existing filtering technologies use, which means that multiple drivers 
can filter object-manager events at appropriate locations in the filtering stack. Additionally, drivers are 
permitted to intercept calls such as NtOpenThread and NtOpenProcess and even to modify the access 
masks being requested from the process manager . This allows protection against certain operations 
on an open handle—however, an open operation cannot be entirely blocked because doing so would 
too closely resemble a malicious operation (processes that could never be managed) .

Furthermore, drivers are able to take advantage of both pre and post callbacks, allowing them to 
prepare for a certain operation before it occurs, as well as to react or finalize information after the 
operation has occurred. These callbacks can be specified for each operation (currently, only open, 
create, and duplicate are supported) and be specific for each object type (currently, only process and 
thread objects are supported) . For each callback, drivers can specify their own internal context value, 
which can be returned across all calls to the driver or across a pre/post pair . These callbacks can be 
registered with the ObRegisterCallbacks API and unregistered with the ObUnregisterCallbacks API—it 
is the responsibility of the driver to ensure deregistration happens .

Use of the APIs is restricted to images that have certain characteristics:

 ■ The image must be signed, even on 32-bit computers, according to the same rules set forth 
in the Kernel Mode Code Signing (KMCS) policy . (Code integrity will be discussed later in 
this chapter .) The image must be compiled with the /integritycheck linker flag, which sets the 
IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header . This instructs the 
memory manager to check the signature of the image regardless of any other defaults that 
might not normally result in a check .

 ■ The image must be signed with a catalog containing cryptographic per-page hashes of the 
 executable code . This allows the system to detect changes to the image after it has been 
loaded in memory .

Before executing a callback, the object manager calls the MmVerifyCallbackFunction on the target 
function pointer, which in turn locates the loader data table entry associated with the module owning 
this address, and verifies whether or not the LDRP_IMAGE_INTEGRITY_FORCED flag is set. (See the 
“Loaded Module Database” section in this chapter for more information .)

Synchronization

The concept of mutual exclusion is a crucial one in operating systems development . It refers to the 
guarantee that one, and only one, thread can access a particular resource at a time . Mutual exclusion 
is necessary when a resource doesn’t lend itself to shared access or when sharing would result in an 
unpredictable outcome. For example, if two threads copy a file to a printer port at the same time, 
their output could be interspersed . Similarly, if one thread reads a memory location while another 
one writes to it, the first thread will receive unpredictable data. In general, writable resources can’t 
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be shared without restrictions, whereas resources that aren’t subject to modification can be shared. 
Figure 3-24 illustrates what happens when two threads running on different processors both write 
data to a circular queue .

Time

Get queue tail
Insert data at current location

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Increment tail pointer

Processor A Processor B

Get queue tail

Insert data at current location /*ERROR*/
Increment tail pointer

FIGURE 3-24 Incorrect sharing of memory

Because the second thread obtained the value of the queue tail pointer before the first thread 
 finished updating it, the second thread inserted its data into the same location that the first thread 
used, overwriting data and leaving one queue location empty . Even though Figure 3-24 illustrates 
what could happen on a multiprocessor system, the same error could occur on a single-processor 
 system if the operating system performed a context switch to the second thread before the first 
thread updated the queue tail pointer .

Sections of code that access a nonshareable resource are called critical sections . To ensure correct 
code, only one thread at a time can execute in a critical section. While one thread is writing to a file, 
updating a database, or modifying a shared variable, no other thread can be allowed to access the 
same resource . The pseudocode shown in Figure 3-24 is a critical section that incorrectly accesses a 
shared data structure without mutual exclusion .

The issue of mutual exclusion, although important for all operating systems, is especially  important 
(and intricate) for a tightly coupled, symmetric multiprocessing (SMP) operating system such as 
Windows, in which the same system code runs simultaneously on more than one processor, sharing 
certain data structures stored in global memory . In Windows, it is the kernel’s job to provide mecha-
nisms that system code can use to prevent two threads from modifying the same structure at the 
same time . The kernel provides mutual-exclusion primitives that it and the rest of the executive use to 
synchronize their access to global data structures .

Because the scheduler synchronizes access to its data structures at DPC/dispatch level IRQL, the 
kernel and executive cannot rely on synchronization mechanisms that would result in a page fault or 
reschedule operation to synchronize access to data structures when the IRQL is DPC/dispatch level 
or higher (levels known as an elevated or high IRQL). In the following sections, you’ll find out how the 
kernel and executive use mutual exclusion to protect their global data structures when the IRQL is 
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high and what mutual-exclusion and synchronization mechanisms the kernel and executive use when 
the IRQL is low (below DPC/dispatch level) .

High-IRQL Synchronization
At various stages during its execution, the kernel must guarantee that one, and only one, processor at 
a time is executing within a critical section . Kernel critical sections are the code segments that modify 
a global data structure such as the kernel’s dispatcher database or its DPC queue . The operating sys-
tem can’t function correctly unless the kernel can guarantee that threads access these data structures 
in a mutually exclusive manner .

The biggest area of concern is interrupts . For example, the kernel might be updating a global data 
structure when an interrupt occurs whose interrupt-handling routine also modifies the structure. 
 Simple single-processor operating systems sometimes prevent such a scenario by disabling all inter-
rupts each time they access global data, but the Windows kernel has a more sophisticated solution . 
Before using a global resource, the kernel temporarily masks the interrupts whose interrupt handlers 
also use the resource . It does so by raising the processor’s IRQL to the highest level used by any 
 potential interrupt source that accesses the global data . For example, an interrupt at DPC/dispatch 
level causes the dispatcher, which uses the dispatcher database, to run . Therefore, any other part of 
the kernel that uses the dispatcher database raises the IRQL to DPC/dispatch level, masking  
DPC/dispatch-level interrupts before using the dispatcher database .

This strategy is fine for a single-processor system, but it’s inadequate for a multiprocessor 
 configuration. Raising the IRQL on one processor doesn’t prevent an interrupt from occurring on 
 another processor . The kernel also needs to guarantee mutually exclusive access across several 
 processors .

Interlocked Operations
The simplest form of synchronization mechanisms rely on hardware support for multiprocessor-
safe manipulation of integer values and for performing comparisons . They include functions such as 
InterlockedIncrement, InterlockedDecrement, InterlockedExchange, and InterlockedCompareExchange . 
The InterlockedDecrement function, for example, uses the x86 lock instruction prefix (for example, lock 
xadd) to lock the multiprocessor bus during the subtraction operation so that another processor that’s 
also modifying the memory location being decremented won’t be able to modify it between the 
decrementing processor’s read of the original value and its write of the decremented value . This form 
of basic synchronization is used by the kernel and drivers . In today’s Microsoft compiler suite, these 
functions are called intrinsic because the code for them is generated in an inline assembler, directly 
during the compilation phase, instead of going through a function call . (It’s likely that pushing the 
parameters onto the stack, calling the function, copying the parameters into registers, and then pop-
ping the parameters off the stack and returning to the caller would be a more expensive operation 
than the actual work the function is supposed to do in the first place.)
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Spinlocks
The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a spinlock . A 
spinlock is a locking primitive associated with a global data structure such as the DPC queue shown in 
Figure 3-25 .

DPC DPC
Begin
 Add DPC from queue
End

Release DPC queue spinlockRelease DPC queue spinlock

Begin
 Remove DPC from queue
End

•
•
•

•
•
•

DPC queue

Critical section

Do 
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Do
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Processor A Processor B

Spinlock

FIGURE 3-25 Using a spinlock

Before entering either critical section shown in Figure 3-25, the kernel must acquire the spinlock 
associated with the protected DPC queue . If the spinlock isn’t free, the kernel keeps trying to acquire 
the lock until it succeeds . The spinlock gets its name from the fact that the kernel (and thus, the 
 processor) waits, “spinning,” until it gets the lock .

Spinlocks, like the data structures they protect, reside in nonpaged memory mapped into the 
system address space . The code to acquire and release a spinlock is written in assembly language for 
speed and to exploit whatever locking mechanism the underlying processor architecture provides . On 
many architectures, spinlocks are implemented with a hardware-supported test-and-set operation, 
which tests the value of a lock variable and acquires the lock in one atomic instruction . Testing and 
acquiring the lock in one instruction prevents a second thread from grabbing the lock between the 
time the first thread tests the variable and the time it acquires the lock. Additionally, the lock instruc-
tion mentioned earlier can also be used on the test-and-set operation, resulting in the combined lock 
bts assembly operation, which also locks the multiprocessor bus; otherwise, it would be possible for 
more than one processor to atomically perform the operation . (Without the lock, the operation is 
guaranteed to be atomic only on the current processor .)

All kernel-mode spinlocks in Windows have an associated IRQL that is always DPC/dispatch level or 
higher . Thus, when a thread is trying to acquire a spinlock, all other activity at the spinlock’s IRQL or 
lower ceases on that processor . Because thread dispatching happens at DPC/dispatch level, a thread 
that holds a spinlock is never preempted because the IRQL masks the dispatching mechanisms . This 
masking allows code executing in a critical section protected by a spinlock to continue executing so 
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that it will release the lock quickly . The kernel uses spinlocks with great care, minimizing the num-
ber of instructions it executes while it holds a spinlock . Any processor that attempts to acquire the 
 spinlock will essentially be busy, waiting indefinitely, consuming power (a busy wait results in 100% 
CPU usage) and performing no actual work .

On x86 and x64 processors, a special pause assembly instruction can be inserted in busy wait 
loops . This instruction offers a hint to the processor that the loop instructions it is processing are part 
of a spinlock (or a similar construct) acquisition loop. The instruction provides three benefits: 

 ■ It significantly reduces power usage by delaying the core ever so slightly instead of 
 continuously looping .

 ■ On HyperThreaded cores, it allows the CPU to realize that the “work” being done by the 
 spinning logical core is not terribly important and awards more CPU time to the second logical 
core instead .

 ■ Because a busy wait loop results in a storm of read requests coming to the bus from the 
 waiting thread (which might be generated out of order), the CPU attempts to correct for viola-
tions of memory order as soon as it detects a write (that is, when the owning thread releases 
the lock) . Thus, as soon as the spinlock is released, the CPU reorders any pending memory 
read operations to ensure proper ordering . This reordering results in a large penalty in system 
performance and can be avoided with the pause instruction .

The kernel makes spinlocks available to other parts of the executive through a set of kernel 
functions, including KeAcquireSpinLock and KeReleaseSpinLock . Device drivers, for example, require 
spinlocks to guarantee that device registers and other global data structures are accessed by only 
one part of a device driver (and from only one processor) at a time . Spinlocks are not for use by 
user  programs—user programs should use the objects described in the next section . Device drivers 
also need to protect access to their own data structures from interrupts associated with themselves . 
Because the spinlock APIs typically raise the IRQL only to DPC/dispatch level, this isn’t enough to 
protect against interrupts . For this reason, the kernel also exports the KeAcquireInterruptSpinLock 
and KeReleaseInterruptSpinLock APIs that take as a parameter the KINTERRUPT object discussed at 
the beginning of this chapter . The system looks inside the interrupt object for the associated DIRQL 
with the interrupt and raises the IRQL to the appropriate level to ensure correct access to structures 
shared with the ISR . Devices can use the KeSynchronizeExecution API to synchronize an entire function 
with an ISR, instead of just a critical section . In all cases, the code protected by an interrupt spinlock 
must execute extremely quickly—any delay causes higher-than-normal interrupt latency and will have 
significant negative performance effects.

Kernel spinlocks carry with them restrictions for code that uses them . Because spinlocks always 
have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a spinlock will crash 
the system if it attempts to make the scheduler perform a dispatch operation or if it causes a page 
fault .
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Queued Spinlocks
To increase the scalability of spinlocks, a special type of spinlock, called a queued spinlock, is used 
in most circumstances instead of a standard spinlock . A queued spinlock works like this: When a 
processor wants to acquire a queued spinlock that is currently held, it places its identifier in a queue 
associated with the spinlock . When the processor that’s holding the spinlock releases it, it hands the 
lock over to the first processor identified in the queue. In the meantime, a processor waiting for a 
busy spinlock checks the status not of the spinlock itself but of a per-processor flag that the processor 
ahead of it in the queue sets to indicate that the waiting processor’s turn has arrived .

The fact that queued spinlocks result in spinning on per-processor flags rather than global 
 spinlocks has two effects. The first is that the multiprocessor’s bus isn’t as heavily trafficked by 
 interprocessor synchronization . The second is that instead of a random processor in a waiting group 
acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to the lock. FIFO 
ordering means more consistent performance across processors accessing the same locks .

Windows defines a number of global queued spinlocks by storing pointers to them in an array 
contained in each processor’s processor region control block (PRCB) . A global spinlock can be acquired 
by calling KeAcquireQueuedSpinLock with the index into the PRCB array at which the pointer to the 
spinlock is stored . The number of global spinlocks has grown in each release of the operating system, 
and the table of index definitions for them is published in the WDK header file Wdm.h. Note, how-
ever, that acquiring one of these queued spinlocks from a device driver is an unsupported and heavily 
frowned-upon operation . These locks are reserved for the kernel’s own internal use .

EXPERIMENT: Viewing Global Queued Spinlocks
You can view the state of the global queued spinlocks (the ones pointed to by the queued 
 spinlock array in each processor’s PCR) by using the !qlocks kernel debugger command . In 
the following example, the page frame number (PFN) database queued spinlock is held by 
 processor 1, and the other queued spinlocks are not acquired . (The PFN database is described 
in Chapter 10 in Part 2 .)

lkd> !qlocks 
Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt 
 
                       Processor Number 
    Lock Name         0  1 
 
KE   - Unused Spare          
MM   - Expansion           
MM   - Unused Spare 
MM   - System Space        
CC   - Vacb                
CC   - Master      
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Instack Queued Spinlocks
Device drivers can use dynamically allocated queued spinlocks with the 
 KeAcquireInStackQueuedSpinLock and KeReleaseInStackQueuedSpinLock functions . Several 
 components—including the cache manager, executive pool manager, and NTFS—take advantage 
of these types of locks instead of using global queued spinlocks . 

KeAcquireInStackQueuedSpinLock takes a pointer to a spinlock data structure and a spinlock queue 
handle . The spinlock handle is actually a data structure in which the kernel stores information about 
the lock’s status, including the lock’s ownership and the queue of processors that might be waiting for 
the lock to become available . For this reason, the handle shouldn’t be a global variable . It is usually a 
stack variable, guaranteeing locality to the caller thread and is responsible for the InStack part of the 
spinlock and API name .

Executive Interlocked Operations
The kernel supplies a number of simple synchronization functions constructed on spinlocks for 
more advanced operations, such as adding and removing entries from singly and doubly linked lists . 
 Examples include ExInterlockedPopEntryList and ExInterlockedPushEntryList for singly linked lists, 
and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for doubly linked lists . All these 
functions require a standard spinlock as a parameter and are used throughout the kernel and device 
drivers . 

Instead of relying on the standard APIs to acquire and release the spinlock parameter, these 
 functions place the code required inline and also use a different ordering scheme . Whereas the Ke 
spinlock APIs first test and set the bit to see whether the lock is released and then atomically do a 
locked test-and-set operation to actually make the acquisition, these routines disable interrupts on 
the processor and immediately attempt an atomic test-and-set . If the initial attempt fails, interrupts 
are enabled again, and the standard busy waiting algorithm continues until the test-and-set operation 
returns 0—in which case, the whole function is restarted again . Because of these subtle differences, a 
spinlock used for the executive interlocked functions must not be used with the standard kernel APIs 
discussed previously . Naturally, noninterlocked list operations must not be mixed with interlocked 
operations .

Note Certain executive interlocked operations silently ignore the spinlock when possible . 
For example, the ExInterlockedIncrementLong or ExInterlockedCompareExchange APIs actu-
ally use the same lock prefix used by the standard interlocked functions and the intrinsic 
functions . These functions were useful on older systems (or non-x86 systems) where the 
lock operation was not suitable or available . For this reason, these calls are now deprecated 
in favor of the intrinsic functions .
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Low-IRQL Synchronization
Executive software outside the kernel also needs to synchronize access to global data structures in a 
multiprocessor environment . For example, the memory manager has only one page frame database, 
which it accesses as a global data structure, and device drivers need to ensure that they can gain ex-
clusive access to their devices . By calling kernel functions, the executive can create a spinlock, acquire 
it, and release it .

Spinlocks only partially fill the executive’s needs for synchronization mechanisms, however. 
 Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under the 
 following strictly limited circumstances:

 ■ The protected resource must be accessed quickly and without complicated interactions with 
other code .

 ■ The critical section code can’t be paged out of memory, can’t make references to pageable 
data, can’t call external procedures (including system services), and can’t generate interrupts 
or exceptions .

These restrictions are confining and can’t be met under all circumstances. Furthermore, the 
 executive needs to perform other types of synchronization in addition to mutual exclusion, and it 
must also provide synchronization mechanisms to user mode .

There are several additional synchronization mechanisms for use when spinlocks are not suitable:

 ■ Kernel dispatcher objects

 ■ Fast mutexes and guarded mutexes

 ■ Pushlocks

 ■ Executive resources

Additionally, user-mode code, which also executes at low IRQL, must be able to have its own 
 locking primitives. Windows supports various user-mode-specific primitives:

 ■ Condition variables (CondVars)

 ■ Slim Reader-Writer Locks (SRW Locks)

 ■ Run-once initialization (InitOnce)

 ■ Critical sections

We’ll take a look at the user-mode primitives and their underlying kernel-mode support later; for 
now, we’ll focus on kernel-mode objects . Table 3-18 serves as a reference that compares and contrasts 
the capabilities of these mechanisms and their interaction with kernel-mode APC delivery .
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TABLE 3-18 Kernel Synchronization Mechanisms

Exposed for 
Use by Device 
Drivers

Disables 
Normal 
Kernel-Mode 
APCs

Disables 
Special 
Kernel-Mode 
APCs

Supports 
Recursive 
Acquisition

Supports 
Shared and 
Exclusive 
Acquisition

Kernel dispatcher 
mutexes 

Yes Yes No Yes No

Kernel dispatcher 
semaphores or events

Yes No No No No

Fast mutexes Yes Yes Yes No No

Guarded mutexes Yes Yes Yes No No

Pushlocks No No No No Yes

Executive resources Yes No No Yes Yes

Kernel Dispatcher Objects
The kernel furnishes additional synchronization mechanisms to the executive in the form of  kernel 
objects, known collectively as dispatcher objects . The Windows API-visible synchronization  objects 
acquire their synchronization capabilities from these kernel dispatcher objects . Each  Windows 
API-visible object that supports synchronization encapsulates at least one kernel dispatcher  object . 
The executive’s synchronization semantics are visible to Windows programmers through the 
 WaitForSingleObject and WaitForMultipleObjects functions, which the Windows subsystem imple-
ments by calling analogous system services that the object manager supplies . A thread in a Windows 
application can synchronize with a variety of objects, including a Windows process, thread, event, 
semaphore, mutex, waitable timer, I/O completion port, ALPC port, registry key, or file object. In 
fact, almost all objects exposed by the kernel can be waited on . Some of these are proper dispatcher 
 objects, while others are larger objects that have a dispatcher object within them (such as ports, keys, 
or files). Table 3-19 shows the proper dispatcher objects, so any other object that the Windows API 
 allows waiting on probably internally contains one of those primitives .

One other type of executive synchronization object worth noting is called an executive resource . 
Executive resources provide exclusive access (like a mutex) as well as shared read access (multiple 
readers sharing read-only access to a structure) . However, they’re available only to kernel-mode 
code and thus are not accessible from the Windows API . The remaining subsections describe the 
 implementation details of waiting for dispatcher objects .

Waiting for Dispatcher Objects
A thread can synchronize with a dispatcher object by waiting for the object’s handle . Doing so causes 
the kernel to put the thread in a wait state .

At any given moment, a synchronization object is in one of two states: signaled state or 
 nonsignaled state. A thread can’t resume its execution until its wait is satisfied, a condition that occurs 
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when the dispatcher object whose handle the thread is waiting for also undergoes a state change, 
from the nonsignaled state to the signaled state (when another thread sets an event object, for 
example) . To synchronize with an object, a thread calls one of the wait system services that the object 
manager supplies, passing a handle to the object it wants to synchronize with . The thread can wait for 
one or several objects and can also specify that its wait should be canceled if it hasn’t ended within a 
certain amount of time . Whenever the kernel sets an object to the signaled state, one of the kernel’s 
signal routines checks to see whether any threads are waiting for the object and not also waiting for 
other objects to become signaled . If there are, the kernel releases one or more of the threads from 
their waiting state so that they can continue executing .

The following example of setting an event illustrates how synchronization interacts with thread 
dispatching:

 ■ A user-mode thread waits for an event object’s handle .

 ■ The kernel changes the thread’s scheduling state to waiting and then adds the thread to a list 
of threads waiting for the event .

 ■ Another thread sets the event .

 ■ The kernel marches down the list of threads waiting for the event . If a thread’s conditions for 
waiting are satisfied (see the following note), the kernel takes the thread out of the waiting 
state . If it is a variable-priority thread, the kernel might also boost its execution priority . (For 
details on thread scheduling, see Chapter 5 .)

Note Some threads might be waiting for more than one object, so they continue  waiting, 
unless they specified a WaitAny wait, which will wake them up as soon as one object 
( instead of all) is signaled .

What Signals an Object?
The signaled state is defined differently for different objects. A thread object is in the nonsignaled 
state during its lifetime and is set to the signaled state by the kernel when the thread terminates . 
Similarly, the kernel sets a process object to the signaled state when the process’ last thread termi-
nates . In contrast, the timer object, like an alarm, is set to “go off” at a certain time . When its time 
expires, the kernel sets the timer object to the signaled state .

When choosing a synchronization mechanism, a program must take into account the rules 
 governing the behavior of different synchronization objects . Whether a thread’s wait ends when 
an object is set to the signaled state varies with the type of object the thread is waiting for, as 
Table 3-19 illustrates .
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TABLE 3-19 Definitions of the Signaled State

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All are released .

Thread Thread terminates All are released .

Event (notification type) Thread sets the event All are released .

Event (synchronization type) Thread sets the event One thread is released and might receive a 
boost; the event object is reset .

Gate (locking type) Thread signals the gate First waiting thread is released and receives a 
boost .

Gate (signaling type) Thread signals the type First waiting thread is released .

Keyed event Thread sets event with a key Thread that’s waiting for the key and which is 
of the same process as the signaler is released .

Semaphore Semaphore count drops by 1 One thread is released .

Timer (notification type) Set time arrives, or time interval 
expires

All are released .

Timer (synchronization type) Set time arrives, or time interval 
expires

One thread is released .

Mutex Thread releases the mutex One thread is released and takes ownership of 
the mutex .

Queue Item is placed on queue One thread is released .

When an object is set to the signaled state, waiting threads are generally released from their wait 
states immediately . Some of the kernel dispatcher objects and the system events that induce their 
state changes are shown in Figure 3-26 .

For example, a notification event object (called a manual reset event in the Windows API) is used 
to announce the occurrence of some event . When the event object is set to the signaled state, all 
threads waiting for the event are released . The exception is any thread that is waiting for more than 
one object at a time; such a thread might be required to continue waiting until additional objects 
reach the signaled state .

In contrast to an event object, a mutex object has ownership associated with it (unless it was 
acquired during a DPC) . It is used to gain mutually exclusive access to a resource, and only one thread 
at a time can hold the mutex . When the mutex object becomes free, the kernel sets it to the signaled 
state and then selects one waiting thread to execute, while also inheriting any priority boost that had 
been applied . (See Chapter 5 for more information on priority boosting .) The thread selected by the 
kernel acquires the mutex object, and all other threads continue waiting .

A mutex object can also be abandoned: this occurs when the thread currently owning it becomes 
terminated . When a thread terminate, the kernel enumerates all mutexes owned by the thread and 
sets them to the abandoned state, which, in terms of signaling logic, is treated as a signaled state in 
that ownership of the mutex is transferred to a waiting thread .
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Dispatcher object
System events and

resulting state change
Effect of signaled state

on waiting threads

Kernel resumes one
waiting thread.SignaledNonsignaled

Resumed thread
acquires the mutex.

Owning thread
releases the mutex.

Kernel resumes one
waiting thread.SignaledNonsignaled

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

Kernel resumes one
or more waiting threads.SignaledNonsignaled

A thread acquires the semaphore.
More resources are not available.

One thread releases the
semaphore, freeing a resource.

Kernel resumes one
or more waiting threads.SignaledNonsignaled

Kernel resumes one
or more threads.

A thread sets the event.

Kernel resumes waiting
dedicated thread.SignaledNonsignaled

Kernel resumes the
other dedicated thread.

Dedicated thread sets
one event in the event pair.

Kernel resumes all
waiting threads.SignaledNonsignaled

A thread reinitializes
the thread object.

Thread terminates.

Kernel resumes all
waiting threads.SignaledNonsignaled

Mutex (kernel-
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Thread

Timer

A thread (re)initializes
the timer.

Timer expires.

FIGURE 3-26 Selected kernel dispatcher objects 
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This brief discussion wasn’t meant to enumerate all the reasons and applications for using the 
various executive objects but rather to list their basic functionality and synchronization behavior . For 
information on how to put these objects to use in Windows programs, see the Windows reference 
documentation on synchronization objects or Jeffrey Richter and Christophe Nasarre’s book Windows 
via C/C++.

Data Structures
Three data structures are key to tracking who is waiting, how they are waiting, what they are waiting 
for, and which state the entire wait operation is at . These three structures are the dispatcher header, 
the wait block, and the wait status register. The former two structures are publicly defined in the WDK 
include file Wdm.h, while the latter is not documented. 

The dispatcher header is a packed structure because it needs to hold lots of information in a fixed-
size structure. (See the upcoming “EXPERIMENT: Looking at Wait Queues” section to see the definition 
of the dispatcher header data structure.) One of the main tricks is to define mutually exclusive flags at 
the same memory location (offset) in the structure . By using the Type field, the kernel knows which of 
these fields actually applies. For example, a mutex can be abandoned, but a timer can be absolute or 
relative . Similarly, a timer can be inserted into the timer list, but the Debug Active field makes sense 
only for processes . On the other hand, the dispatcher header does contain information generic for 
any dispatcher object: the object type, signaled state, and a list of the threads waiting for that object . 

The wait block represents a thread waiting for an object . Each thread that is in a wait state has a list 
of the wait blocks that represent the objects the thread is waiting for . Each dispatcher object has a list 
of the wait blocks that represent which threads are waiting for the object . This list is kept so that when 
a dispatcher object is signaled, the kernel can quickly determine who is waiting for that object . Finally, 
because the balance-set-manager thread running on each CPU (see Chapter 5 for more information 
about the balance set manager) needs to analyze the time that each thread has been waiting for (in 
order to decide whether or not to page out the kernel stack), each PRCB has a list of waiting threads .

The wait block has a pointer to the object being waited for, a pointer to the thread waiting for the 
object, and a pointer to the next wait block (if the thread is waiting for more than one object) . It also 
records the type of wait (any or all) as well as the position of that entry in the array of handles passed 
by the thread on the WaitForMultipleObjects call (position 0 if the thread was waiting for only one 
object) . The wait type is very important during wait satisfaction, because it determines whether or not 
all the wait blocks belonging to the thread waiting on the signaled object should be processed: for a 
wait any, the dispatcher does not care what the state of the other objects is because at least one (the 
current one) of the objects is now signaled . On the other hand, for a wait all, the dispatcher can wake 
the thread only if all the other objects are also in a signaled state, which requires traversing the wait 
blocks and associated objects .

The wait block also contains a volatile wait block state, which defines the current state of this wait 
block in the transactional wait operation it is currently being engaged in . The different states, their 
meaning, and their effects in the wait logic code, are explained in Table 3-20 .
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TABLE 3-20 Wait Block States

State Meaning Effect

WaitBlockActive (2) This wait block is actively linked to 
an object as part of a thread that is 
in a wait state .

During wait satisfaction, this wait block will 
be unlinked from the wait block list .

WaitBlockInactive (3) The thread wait associated with this 
wait block has been satisfied (or the 
timeout has already expired while 
setting it up) .

During wait satisfaction, this wait block will 
not be unlinked from the wait block list be-
cause the wait satisfaction must have aleady 
unlinked during its active state .

WaitBlockBypassStart (0) A signal is being delivered to the 
thread while the wait has not yet 
been committed .

During wait satisfaction (which would be 
immediate, before the thread enters the true 
wait state), the waiting thread must synchro-
nize with the signaler because there is a risk 
that the wait object might be on the stack—
marking the wait block as inactive would 
cause the waiter to unwind the stack while 
the signaler might still be accessing it .

WaitBlockBypassComplete (1) The thread wait associated with this 
wait block has now been properly 
synchronized (the wait satisfaction 
has completed), and the bypass 
 scenario is now completed .

The wait block is now essentially treated the 
same as an inactive wait block (ignored) .

Because the overall state of the thread (or any of the objects it is being required to start waiting 
on) can change while wait operations are still being set up (because there is nothing blocking another 
thread executing on a different logical processor from attempting to signal one of the objects, or 
possibly alerting the thread, or even sending it an APC), the kernel dispatcher needs to keep track 
of two additional pieces of data for each waiting thread: the current fine-grained wait state of the 
thread, as well as any pending state changes that could modify the result of the attempted wait 
 operation .

When a thread is instructed to wait for a given object (such as due to a WaitForSingleObject call), it 
first attempts to enter the in-progress wait state (WaitInProgress) by beginning the wait . This opera-
tion succeeds if there are no pending alerts to the thread at the moment (based on the alertability of 
the wait and the current processor mode of the wait, which determine whether or not the alert can 
preempt the wait) . If there is an alert, the wait is not even entered at all, and the caller receives the 
appropriate status code; otherwise, the thread now enters the WaitInProgress state, at which point the 
main thread state is set to Waiting, and the wait reason and wait time are recorded, with any timeout 
specified also being registered.

Once the wait is in progress, the thread can initialize the wait blocks as needed (and mark them 
as WaitBlockActive in the process) and then proceed to lock all the objects that are part of this wait . 
Because each object has its own lock, it is important that the kernel be able to maintain a consistent 
locking ordering scheme when multiple processors might be analyzing a wait chain consisting of 
many objects (caused by a WaitForMultipleObjects call) . The kernel uses a technique known as  address 
ordering to achieve this: because each object has a distinct and static kernel-mode address, the 
objects can be ordered in monotonically increasing address order, guaranteeing that locks are always 
acquired and released in the same order by all callers . This means that the caller-supplied array of 
objects will be duplicated and sorted accordingly .
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The next step is to check for immediate satisfaction of the wait, such as when a thread is being told 
to wait on a mutex that has already been released or an event that is already signaled . In such cases, 
the wait is immediately satisfied, which involves unlinking the associated wait blocks (however, in 
this case, no wait blocks have yet been inserted) and performing a wait exit (processing any pending 
scheduler operations marked in the wait status register) . If this shortcut fails, the kernel next attempts 
to check whether the timeout specified for the wait (if any) has actually already expired. In this case, 
the wait is not “satisfied” but merely “timed out,” which results in slightly faster processing of the exit 
code, albeit with the same result .

If none of these shortcuts were effective, the wait block is inserted into the thread’s wait list, and 
the thread now attempts to commit its wait . (Meanwhile, the object lock or locks have been released, 
allowing other processors to modify the state of any of the objects that the thread is now supposed 
to attempt waiting on .) Assuming a noncontended scenario, where other processors are not interest-
ed in this thread or its wait objects, the wait switches into the committed state as long as there are no 
pending changes marked by the wait status register . The commit operation links the waiting thread 
in the PRCB list, activates an extra wait queue thread if needed, and inserts the timer associated with 
the wait timeout, if any . Because potentially quite a lot of cycles have elapsed by this point, it is again 
possible that the timeout has already elapsed . In this scenario, inserting the timer will cause immedi-
ate signaling of the thread, and thus a wait satisfaction on the timer, and the overall timeout of the 
wait . Otherwise, in the much more common scenario, the CPU now context switches away to the next 
thread that is ready for execution . (See Chapter 5 for more information on scheduling .)

In highly contended code paths on multiprocessor machines, it is possible and likely that the 
thread attempting to commit its wait has experienced a change while its wait was still in progress . 
One possible scenario is that one of the objects it was waiting on has just been signaled . As touched 
upon earlier, this causes the associated wait block to enter the WaitBlockBypassStart state, and the 
thread’s wait status register now shows the WaitAborted wait state . Another possible scenario is for 
an alert or APC to have been issued to the waiting thread, which does not set the WaitAborted state 
but enables one of the corresponding bits in the wait status register . Because APCs can break waits 
( depending on the type of APC, wait mode, and alertability), the APC is delivered and the wait is 
aborted . Other operations that will modify the wait status register without generating a full abort 
cycle include modifications to the thread’s priority or affinity, which will be processed when exiting 
the wait due to failure to commit, as with the previous cases mentioned .

Figure 3-27 shows the relationship of dispatcher objects to wait blocks to threads to PRCB . In this 
example, CPU 0 has two waiting (committed) threads: thread 1 is waiting for object B, and thread 
2 is waiting for objects A and B . If object A is signaled, the kernel sees that because thread 2 is also 
waiting for another object, thread 2 can’t be readied for execution . On the other hand, if object B is 
signaled, the kernel can ready thread 1 for execution right away because it isn’t waiting for any other 
objects . (Alternatively, if thread 1 was also waiting for other objects but its wait type was a WaitAny, 
the kernel could still wake it up .)
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FIGURE 3-27 Wait data structures 

EXPERIMENT: Looking at Wait Queues
You can see the list of objects a thread is waiting for with the kernel debugger’s !thread com-
mand . For example, the following excerpt from the output of a !process command shows that 
the thread is waiting for an event object:

kd> !process  
§  
        THREAD fffffa8005292060  Cid 062c062c.0660  Teb: 000007fffffde000 Win32Thread:  
fffff900c01c68f0 WAIT: (WrUserRequest) UserMode Non-Alertable 
            fffffa80047b8240  SynchronizationEvent
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You can use the dt command to interpret the dispatcher header of the object like this:

lkd> dt nt!_DISPATCHER_HEADER fffffa80047b8240 
   +0x000 Type             : 0x1 '' 
   +0x001 TimerControlFlags : 0 '' 
   +0x001 Absolute         : 0y0 
   +0x001Coalescable      : 0y0 
   +0x001 KeepShifting     : 0y0 
   +0x001 EncodedTolerableDelay : 0y00000 (0) 
   +0x001 Abandoned        : 0 '' 
   +0x001 Signalling       : 0 '' 
   +0x002 ThreadControlFlags : 0x6 '' 
   +0x002 CpuThrottled     : 0y0 
   +0x002 CycleProfiling   : 0y1 
   +0x002 CounterProfiling : 0y1 
   +0x002 Reserved         : 0y00000 (0) 
   +0x002 Hand             : 0x6 '' 
   +0x002 Size             : 0x6 
   +0x003 TimerMiscFlags   : 0 '' 
   +0x003 Index            : 0y000000 (0) 
   +0x003 Inserted         : 0y0 
   +0x003 Expired          : 0y0 
   +0x003 DebugActive      : 0 '' 
   +0x003 ActiveDR7        : 0y0 
   +0x003 Instrumented     : 0y0 
   +0x003 Reserved2        : 0y0000 
   +0x003 UmsScheduled     : 0y0 
   +0x003 UmsPrimary       : 0y0 
   +0x003 DpcActive        : 0 '' 
   +0x000 Lock             : 393217 
   +0x004 SignalState      : 0 
   +0x008 WaitListHead     : _LIST_ENTRY [ 0xfffffa80'047b8248 - 0xfffffa80'047b8248 ]

You should ignore any values that do not correspond to the given object type, because 
they might be either incorrectly decoded by the debugger (because the wrong type or field is 
being used) or simply contain stale or invalid data from a previous allocation value . There is no 
defined correlation you can see between which fields apply to which object, other than by look-
ing at the Windows kernel source code or the WDK header files’ comments. For convenience, 
Table 3-21 lists the dispatcher header flags and the objects to which they apply.

TABLE 3-21 Usage and Meaning of the Dispatcher Header Flags

Flag Applies To Meaning

Absolute Timers The expiration time is absolute, not relative .

Coalescable Periodic Timers Indicates whether coalescing should be used for this 
timer .

KeepShifting Coalescable Timers Indicates whether or not the kernel dispatcher should 
continue attempting to shift the timer’s expiration time . 
When alignment is reached with the machine’s periodic 
interval, this eventually becomes FALSE .

EncodedTolerableDelay Coalescable Timers The maximum amount of tolerance (shifted as a power 
of two) that the timer can support when running 
 outside of its expected periodicity .
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Flag Applies To Meaning

Abandoned Mutexes The thread holding the mutex was terminated .

Signaling Gates A priority boost should be applied to the woken thread 
when the gate is signaled .

CpuThrottled Threads CPU throttling has been enabled for this thread, 
such as when running under DFSS mode (Distributed 
 Fair-Share Scheduler) . 

CycleProfiling Threads CPU cycle profiling has been enabled for this thread.

CounterProfiling Threads Hardware CPU performance counter monitoring/ 
profiling has been enabled for this thread.

Size All objects Size of the object divided by 4, to fit in a single byte.

Hand Timers Index into the timer handle table .

Index Timers Index into the timer expiration table .

Inserted Timers Set if the timer was inserted into the timer handle 
table .

Expired Timers Set if the timer has already expired .

DebugActive Processes Specifies whether the process is being debugged. 

ActiveDR7 Thread Hardware breakpoints are being used, so DR7 is active 
and should be sanitized during context operations .

Instrumented Thread Specifies whether the thread has a user-mode 
 instrumentation callback (supported only on Windows 
for x64 processors) .

UmsScheduled Thread This thread is a UMS Worker (scheduled) thread .

UmsPrimary Thread This thread is a UMS Scheduler (primary) thread .

DpcActive Mutexes The mutex was acquired during a DPC .

Lock All objects Used for locking an object during wait operations 
which need to modify its state or linkage; actually 
 corresponds to bit 7 (0x80) of the Type field.

Apart from these flags, the Type field contains the identifier for the object. This  identifier 
 corresponds to a number in the KOBJECTS enumeration, which you can dump with the 
 debugger:

lkd> dt nt!_KOBJECTS 
   EventNotificationObject = 0 
   EventSynchronizationObject = 1 
   MutantObject = 2 
   ProcessObject = 3 
   QueueObject = 4 
   SemaphoreObject = 5 
   ThreadObject = 6 
   GateObject = 7 
   TimerNotificationObject = 8 
   TimerSynchronizationObject = 9 
   Spare2Object = 10 
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   Spare3Object = 11 
   Spare4Object = 12 
   Spare5Object = 13 
   Spare6Object = 14 
   Spare7Object = 15 
   Spare8Object = 16 
   Spare9Object = 17 
   ApcObject = 18 
   DpcObject = 19 
   DeviceQueueObject = 20 
   EventPairObject = 21 
   InterruptObject = 22 
   ProfileObject = 23 
   ThreadedDpcObject = 24 
   MaximumKernelObject = 25

When the wait list head pointers are identical, there are either zero threads or one thread 
waiting on this object . Dumping a wait block for an object that is part of a multiple wait from a 
thread, or that multiple threads are waiting on, can yield the following:

dt nt!_KWAIT_BLOCK 0xfffffa80'053cf628 
   +0x000 WaitListEntry    : _LIST_ENTRY [ 0xfffffa80'02efe568 - 0xfffffa80'02803468 ] 
   +0x010 Thread           : 0xfffffa80'053cf520 _KTHREAD 
   +0x018 Object           : 0xfffffa80'02803460  
   +0x020 NextWaitBlock    : 0xfffffa80'053cf628 _KWAIT_BLOCK 
   +0x028 WaitKey          : 0 
   +0x02a WaitType         : 0x1 '' 
   +0x02b BlockState       : 0x2 '' 
   +0x02c SpareLong        : 8

If the wait list has more than one entry, you can execute the same command on the second 
pointer value in the WaitListEntry field of each wait block (by executing !thread on the thread 
pointer in the wait block) to traverse the list and see what other threads are waiting for the ob-
ject . This would indicate more than one thread waiting on this object . On the other hand, when 
dealing with an object that’s part of a collection of objects being waited on by a single thread, 
you have to parse the NextWaitBlock field instead.

Keyed Events
A synchronization object called a keyed event bears special mention because of the role it plays 
in user-mode-exclusive synchronization primitives . Keyed events were originally implemented to 
help processes deal with low-memory situations when using critical sections, which are user-mode 
synchronization objects that we’ll see more about shortly . A keyed event, which is not documented, 
allows a thread to specify a “key” for which it waits, where the thread wakes when another thread of 
the same process signals the event with the same key .

If there is contention, EnterCriticalSection dynamically allocates an event object, and the thread 
wanting to acquire the critical section waits for the thread that owns the critical section to signal 
it in LeaveCriticalSection . Unfortunately, this introduces a new problem . Without keyed events, the 
system could be critically out of memory and critical-section acquisition could fail because the system 
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was unable to allocate the event object required . The low-memory condition itself might have been 
caused by the application trying to acquire the critical section, so the system would deadlock in this 
situation . Low memory isn’t the only scenario that could cause this to fail: a less likely scenario is 
handle exhaustion . If the process reaches its 16-million-handle limit, the new handle for the event 
object could fail .

The failure caused by low-memory conditions typically are an exception from the code  responsible 
for acquiring the critical section . Unfortunately, the result is also a damaged critical section, 
which makes the situation hard to debug and makes the object useless for a reacquisition at-
tempt .  Attempting a LeaveCriticalSection results in another event-object allocation attempt, further 
 generating exceptions and corrupting the structure . 

Allocating a global standard event object would not fix the issue because standard event primitives 
can be used only for a single object . Each critical section in the process still requires its own event 
object, so the same problem would resurface . The implementation of keyed events allows multiple 
critical sections (waiters) to use the same global (per-process) keyed event handle . This allows the 
critical section functions to operate properly even when memory is temporarily low .

When a thread signals a keyed event or performs a wait on it, it uses a unique identifier called a 
key, which identifies the instance of the keyed event (an association of the keyed event to a single 
critical section) . When the owner thread releases the keyed event by signaling it, only a single 
thread waiting on the key is woken up (the same behavior as synchronization events, in contrast to 
 notification events) . Additionally, only the waiters in the current process are awakened, so the key is 
even isolated across processes, meaning that there is actually only a single keyed event object for the 
entire system . When a critical section uses the keyed event, EnterCriticalSection sets the key as the 
 address of the critical section and performs a wait .

When EnterCriticalSection calls NtWaitForKeyedEvent to perform a wait on the keyed event, it 
can now give a NULL handle as parameter for the keyed event, telling the kernel that it was unable 
to create a keyed event . The kernel recognizes this behavior and uses a global keyed event named 
ExpCritSecOutOfMemoryEvent. The primary benefit is that processes don’t need to waste a handle for 
a named keyed event anymore because the kernel keeps track of the object and its references .

However, keyed events are more than just fallback objects for low-memory conditions . When 
 multiple waiters are waiting on the same key and need to be woken up, the key is actually signaled 
multiple times, which requires the object to keep a list of all the waiters so that it can perform a 
“wake” operation on each of them . (Recall that the result of signaling a keyed event is the same 
as that of signaling a synchronization event .) However, a thread can signal a keyed event without 
any threads on the waiter list . In this scenario, the signaling thread instead waits on the event itself . 
 Without this fallback, a signaling thread could signal the keyed event during the time that the user-
mode code saw the keyed event as unsignaled and attempt a wait . The wait might have come after 
the signaling thread signaled the keyed event, resulting in a missed pulse, so the waiting thread would 
deadlock . By forcing the signaling thread to wait in this scenario, it actually signals the keyed event 
only when someone is looking (waiting) .
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Note When the keyed-event wait code itself needs to perform a wait, it uses a 
built-in semaphore located in the kernel-mode thread object (ETHREAD) called 
KeyedWaitSemaphore. (This semaphore actually shares its location with the ALPC wait 
semaphore .) See Chapter 5 for more information on thread objects .

Keyed events, however, do not replace standard event objects in the critical section implemen-
tation . The initial reason, during the Windows XP timeframe, was that keyed events do not offer 
scalable performance in heavy-usage scenarios . Recall that all the algorithms described were meant 
to be used only in critical, low-memory scenarios, when performance and scalability aren’t all that 
important . To replace the standard event object would place strain on keyed events that they weren’t 
implemented to handle . The primary performance bottleneck was that keyed events maintained the 
list of waiters described in a doubly linked list . This kind of list has poor traversal speed, meaning 
the time required to loop through the list . In this case, this time depended on the number of waiter 
threads . Because the object is global, dozens of threads could be on the list, requiring long traversal 
times every single time a key was set or waited on .

Note The head of the list is kept in the keyed event object, while the threads are actually 
linked through the KeyedWaitChain field (which is actually shared with the thread’s exit 
time, stored as a LARGE_INTEGER, the same size as a doubly linked list) in the kernel-mode 
thread object (ETHREAD) . See Chapter 5 for more information on this object .

Windows improves keyed-event performance by using a hash table instead of a linked list to hold 
the waiter threads . This optimization allows Windows to include three new lightweight user-mode 
synchronization primitives (to be discussed shortly) that all depend on the keyed event . Critical 
 sections, however, still continue to use event objects, primarily for application compatibility and 
 debugging, because the event object and internals are well known and documented, while keyed 
events are opaque and not exposed to the Win32 API .

Fast Mutexes and Guarded Mutexes
Fast mutexes, which are also known as executive mutexes, usually offer better performance than 
 mutex objects because, although they are built on dispatcher event objects, they perform a wait 
through the dispatcher only if the fast mutex is contended—unlike a standard mutex, which al-
ways attempts the acquisition through the dispatcher . This gives the fast mutex especially good 
 performance in a multiprocessor environment . Fast mutexes are used widely in device drivers .

However, fast mutexes are suitable only when normal kernel-mode APC (described  earlier 
in this chapter) delivery can be disabled. The executive defines two functions for acquiring 
them:  ExAcquireFastMutex and ExAcquireFastMutexUnsafe . The former function blocks all APC 
 delivery by raising the IRQL of the processor to APC level . The latter expects to be called with 
 normal  kernel-mode APC delivery disabled, which can be done by raising the IRQL to APC level . 
 ExTryToAcquireFastMutex performs similarly to the first, but it does not actually wait if the fast mutex 
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is already held, returning FALSE instead . Another limitation of fast mutexes is that they can’t be 
 acquired recursively, like mutex objects can .

Guarded mutexes are essentially the same as fast mutexes (although they use a different 
 synchronization object, the KGATE, internally) . They are acquired with the KeAcquireGuardedMutex 
and KeAcquireGuardedMutexUnsafe functions, but instead of disabling APCs by raising the IRQL to 
APC level, they disable all kernel-mode APC delivery by calling KeEnterGuardedRegion . Similarly to 
fast mutexes, a KeTryToAcquireGuardedMutex method also exists . Recall that a guarded region, un-
like a critical region, disables both special and normal kernel-mode APCs, which allows the guarded 
mutex to avoid raising the IRQL .

Three differences make guarded mutexes faster than fast mutexes:

 ■ By avoiding raising the IRQL, the kernel can avoid talking to the local APIC of every processor 
on the bus, which is a significant operation on large SMP systems. On uniprocessor systems, 
this isn’t a problem because of lazy IRQL evaluation, but lowering the IRQL might still require 
accessing the PIC .

 ■ The gate primitive is an optimized version of the event . By not having both synchronization 
and notification versions and by being the exclusive object that a thread can wait on, the code 
for acquiring and releasing a gate is heavily optimized . Gates even have their own dispatcher 
lock instead of acquiring the entire dispatcher database .

 ■ In the noncontended case, the acquisition and release of a guarded mutex works on a 
single bit, with an atomic bit test-and-reset operation instead of the more complex integer 
 operations fast mutexes perform .

Note The code for a fast mutex is also optimized to account for almost all these 
 optimizations—it uses the same atomic lock operation, and the event object is actually a 
gate object (although by dumping the type in the kernel debugger, you would still see an 
event object structure; this is actually a compatibility lie) . However, fast mutexes still raise 
the IRQL instead of using guarded regions .

Because the flag responsible for special kernel APC delivery disabling (and the guarded-region 
functionality) was not added until Windows Server 2003, many drivers do not take advantage of 
guarded mutexes . Doing so would raise compatibility issues with earlier versions of Windows, which 
require a recompiled driver making use only of fast mutexes . Internally, however, the Windows kernel 
has replaced almost all uses of fast mutexes with guarded mutexes because the two have identical 
semantics and can be easily interchanged .

Another problem related to the guarded mutex was the kernel function KeAreApcsDisabled . Prior 
to Windows Server 2003, this function indicated whether normal APCs were disabled by checking 
whether the code was running inside a critical section . In Windows Server 2003, this function was 
changed to indicate whether the code was in a critical, or guarded, region, changing the functionality 
to also return TRUE if special kernel APCs are also disabled .
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Because there are certain operations that drivers should not perform when special kernel APCs are 
disabled, it makes sense to call KeGetCurrentIrql to check whether the IRQL is APC level or not, which 
is the only way special kernel APCs could have been disabled . However, because the memory man-
ager makes use of guarded mutexes instead, this check fails because guarded mutexes do not raise 
IRQL . Drivers should instead call KeAreAllApcsDisabled for this purpose . This function checks whether 
special kernel APCs are disabled and/or whether the IRQL is APC level—the sure-fire way to detect 
both guarded mutexes and fast mutexes . 

Executive Resources
Executive resources are a synchronization mechanism that supports shared and exclusive access; 
like fast mutexes, they require that normal kernel-mode APC delivery be disabled before they are 
 acquired . They are also built on dispatcher objects that are used only when there is contention . 
 Executive resources are used throughout the system, especially in file-system drivers, because such 
drivers tend to have long-lasting wait periods in which I/O should still be allowed to some extent 
(such as reads) . 

Threads waiting to acquire an executive resource for shared access wait for a semaphore 
 associated with the resource, and threads waiting to acquire an executive resource for exclusive access 
wait for an event . A semaphore with unlimited count is used for shared waiters because they can all 
be woken and granted access to the resource when an exclusive holder releases the resource simply 
by signaling the semaphore . When a thread waits for exclusive access of a resource that is currently 
owned, it waits on a synchronization event object because only one of the waiters will wake when the 
event is signaled . In the earlier section on synchronization events, it was mentioned that some event 
unwait operations can actually cause a priority boost: this scenario occurs when executive resources 
are used, which is one reason why they also track ownership like mutexes do . (See Chapter 5 for more 
information on the executive resource priority boost .)

Because of the flexibility that shared and exclusive access offer, there are a number of 
 functions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResourceExclusiveLite, 
 ExAcquireSharedStarveExclusive, ExAcquireShareWaitForExclusive . These functions are documented in 
the WDK .

EXPERIMENT: Listing Acquired Executive Resources
The kernel debugger !locks command searches paged pool for executive resource objects and 
dumps their state . By default, the command lists only executive resources that are currently 
owned, but the –d option lists all executive resources . Here is partial output of the command:

lkd> !locks  
**** DUMP OF ALL RESOURCE OBJECTS ****  
KD: Scanning for held locks.  
  
Resource @ 0x89929320    Exclusively owned 
    Contention Count = 3911396 
     Threads: 8952d030-01<*> 
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KD: Scanning for held locks.......................................  
  
Resource @ 0x89da1a68    Shared 1 owning threads  
     Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530

Note that the contention count, which is extracted from the resource structure, records the 
number of times threads have tried to acquire the resource and had to wait because it was 
already owned .

You can examine the details of a specific resource object, including the thread that owns the 
resource and any threads that are waiting for the resource, by specifying the –v switch and the 
address of the resource:

lkd> !locks -v 0x89929320     
  
Resource @ 0x89929320    Exclusively owned 
    Contention Count = 3913573 
     Threads: 8952d030-01<*>  
 
     THREAD 8952d030  Cid 0acc.050c  Teb: 7ffdf000 Win32Thread: fe82c4c0 RUNNING on 
processor 0 
     Not impersonating 
     DeviceMap                 9aa0bdb8 
     Owning Process            89e1ead8       Image:         windbg.exe 
     Wait Start TickCount      24620588       Ticks: 12 (0:00:00:00.187) 
     Context Switch Count      772193              
     UserTime                  00:00:02.293 
     KernelTime                00:00:09.828 
     Win32 Start Address windbg (0x006e63b8) 
     Stack Init a7eba000 Current a7eb9c10 Base a7eba000 Limit a7eb7000 Call 0 
     Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5 
Unable to get context for thread running on processor 1, HRESULT 0x80004001 
1 total locks, 1 locks currently held

Pushlocks
Pushlocks are another optimized synchronization mechanism built on gate objects; like guarded 
mutexes, they wait for a gate object only when there’s contention on the lock . They offer advan-
tages over the guarded mutex in that they can be acquired in shared or exclusive mode . However, 
their main advantage is their size: a resource object is 56 bytes, but a pushlock is pointer-size . 
 Unfortunately, they are not documented in the WDK and are therefore reserved for use by the 
 operating system (although the APIs are exported, so internal drivers do use them) .

There are two types of pushlocks: normal and cache-aware . Normal pushlocks require only the 
size of a pointer in storage (4 bytes on 32-bit systems, and 8 bytes on 64-bit systems) . When a thread 
 acquires a normal pushlock, the pushlock code marks the pushlock as owned if it is not currently 
owned . If the pushlock is owned exclusively or the thread wants to acquire the thread exclusively 
and the pushlock is owned on a shared basis, the thread allocates a wait block on the thread’s stack, 
initializes a gate object in the wait block, and adds the wait block to the wait list associated with 
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the pushlock . When a thread releases a pushlock, the thread wakes a waiter, if any are present, by 
 signaling the event in the waiter’s wait block .

Because a pushlock is only pointer-sized, it actually contains a variety of bits to describe its state . 
The meaning of those bits changes as the pushlock changes from being contended to noncontended . 
In its initial state, the pushlock contains the following structure:

 ■ One lock bit, set to 1 if the lock is acquired

 ■ One waiting bit, set to 1 if the lock is contended and someone is waiting on it

 ■ One waking bit, set to 1 if the lock is being granted to a thread and the waiter’s list needs to 
be optimized

 ■ One multiple shared bit, set to 1 if the pushlock is shared and currently acquired by more than 
one thread

 ■ 28 (on 32-bit Windows) or 60 (on 64-bit Windows) share count bits, containing the number of 
threads that have acquired the pushlock

As discussed previously, when a thread acquires a pushlock exclusively while the pushlock is 
already acquired by either multiple readers or a writer, the kernel allocates a pushlock wait block . 
The structure of the pushlock value itself changes . The share count bits now become the pointer to 
the wait block. Because this wait block is allocated on the stack and the header files contain a special 
alignment directive to force it to be 16-byte aligned, the bottom 4 bits of any pushlock wait-block 
structure will be all zeros . Therefore, those bits are ignored for the purposes of pointer dereferencing; 
instead, the 4 bits shown earlier are combined with the pointer value . Because this alignment removes 
the share count bits, the share count is now stored in the wait block instead .

A cache-aware pushlock adds layers to the normal (basic) pushlock by allocating a pushlock for 
each processor in the system and associating it with the cache-aware pushlock . When a thread wants 
to acquire a cache-aware pushlock for shared access, it simply acquires the pushlock allocated for its 
current processor in shared mode; to acquire a cache-aware pushlock exclusively, the thread acquires 
the pushlock for each processor in exclusive mode .

Other than a much smaller memory footprint, one of the large advantages that pushlocks have 
over executive resources is that in the noncontended case they do not require lengthy accounting 
and integer operations to perform acquisition or release . By being as small as a pointer, the kernel can 
use atomic CPU instructions to perform these tasks . (lock cmpxchg is used, which atomically com-
pares and exchanges the old lock with a new lock .) If the atomic compare and exchange fails, the lock 
contains values the caller did not expect (callers usually expect the lock to be unused or acquired as 
shared), and a call is then made to the more complex contended version . To improve performance 
even further, the kernel exposes the pushlock functionality as inline functions, meaning that no 
function calls are ever generated during noncontended acquisition—the assembly code is directly 
inserted in each function . This increases code size slightly, but it avoids the slowness of a function call . 
Finally, pushlocks use several algorithmic tricks to avoid lock convoys (a situation that can occur when 
multiple threads of the same priority are all waiting on a lock and little actual work gets done), and 
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they are also self-optimizing: the list of threads waiting on a pushlock will be periodically rearranged 
to provide fairer behavior when the pushlock is released .

Areas in which pushlocks are used include the object manager, where they protect global object-
manager data structures and object security descriptors, and the memory manager, where their 
cache-aware counterpart is used to protect Address Windowing Extension (AWE) data structures . 

Deadlock Detection with Driver Verifier
A deadlock is a synchronization issue resulting from two threads or processors holding 
 resources that the other wants and neither yielding what it has . This situation might result 
in system or process hangs. Driver Verifier, described in Chapter 8 in Part 2 and Chapter 9 in 
Part  2, has an option to check for deadlocks involving spinlocks, fast mutexes, and mutexes . For 
information on when to enable Driver Verifier to help resolve system hangs, see Chapter 14 in 
Part 2 .

Critical Sections
Critical sections are one of the main synchronization primitives that Windows provides to user-mode 
applications on top of the kernel-based synchronization primitives . Critical sections and the other 
user-mode primitives you’ll see later have one major advantage over their kernel counterparts, which 
is saving a round-trip to kernel mode in cases in which the lock is noncontended (which is typically 
99 percent of the time or more) . Contended cases still require calling the kernel, however, because 
it is the only piece of the system that is able to perform the complex waking and dispatching logic 
required to make these objects work . 

Critical sections are able to remain in user mode by using a local bit to provide the main exclusive 
locking logic, much like a spinlock . If the bit is 0, the critical section can be acquired, and the owner 
sets the bit to 1 . This operation doesn’t require calling the kernel but uses the interlocked CPU opera-
tions discussed earlier . Releasing the critical section behaves similarly, with bit state changing from 
1 to 0 with an interlocked operation . On the other hand, as you can probably guess, when the bit is 
already 1 and another caller attempts to acquire the critical section, the kernel must be called to put 
the thread in a wait state .Finally, because critical sections are not kernel objects, they have certain 
limitations . The primary one is that you cannot obtain a kernel handle to a critical section; as such, 
no security, naming, or other object manager functionality can be applied to a critical section . Two 
processes cannot use the same critical section to coordinate their operations, nor can duplication or 
inheritance be used .

User-Mode Resources
User-mode resources also provide more fine-grained locking mechanisms than kernel primitives . A 
resource can be acquired for shared mode or for exclusive mode, allowing it to function as a multiple-
reader (shared), single-writer (exclusive) lock for data structures such as databases . When a resource 
is acquired in shared mode and other threads attempt to acquire the same resource, no trip to the 
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 kernel is required because none of the threads will be waiting . Only when a thread attempts to 
acquire the resource for exclusive access, or the resource is already locked by an exclusive owner, will 
this be required .

To make use of the same dispatching and synchronization mechanism you saw in the kernel, 
resources actually make use of existing kernel primitives . A resource data structure (RTL_RESOURCE) 
contains handles to a kernel mutex as well as a kernel semaphore object . When the resource is ac-
quired exclusively by more than one thread, the resource uses the mutex because it permits only one 
owner . When the resource is acquired in shared mode by more than one thread, the resource uses a 
semaphore because it allows multiple owner counts . This level of detail is typically hidden from the 
programmer, and these internal objects should never be used directly .

Resources were originally implemented to support the SAM (or Security Account Manager, which 
is discussed in Chapter 6) and not exposed through the Windows API for standard applications . Slim 
Reader-Writer Locks (SRW Locks), described next, were implemented in Windows Vista to expose a 
similar locking primitive through a documented API, although some system components still use the 
resource mechanism .

Condition Variables
Condition variables provide a Windows native implementation for synchronizing a set of threads 
that are waiting on a specific result to a conditional test. Although this operation was possible with 
other user-mode synchronization methods, there was no atomic mechanism to check the result of the 
 conditional test and to begin waiting on a change in the result . This required that additional synchro-
nization be used around such pieces of code .

A user-mode thread initializes a condition variable by calling InitializeConditionVariable to set up 
the initial state . When it wants to initiate a wait on the variable, it can call SleepConditionVariableCS, 
which uses a critical section (that the thread must have initialized) to wait for changes to the variable . 
The setting thread must use WakeConditionVariable (or WakeAllConditionVariable) after it has modi-
fied the variable. (There is no automatic detection mechanism.) This call releases the critical section of 
either one or all waiting threads, depending on which function was used .

Before condition variables, it was common to use either a notification event or a synchronization 
event (recall that these are referred to as auto-reset or manual-reset in the Windows API) to signal 
the change to a variable, such as the state of a worker queue . Waiting for a change required a critical 
section to be acquired and then released, followed by a wait on an event . After the wait, the critical 
section had to be re-acquired . During this series of acquisitions and releases, the thread might have 
switched contexts, causing problems if one of the threads called PulseEvent (a similar problem to 
the one that keyed events solve by forcing a wait for the signaling thread if there is no waiter) . With 
condition variables, acquisition of the critical section can be maintained by the application while 
SleepConditionVariableCS is called and can be released only after the actual work is done . This makes 
writing work-queue code (and similar implementations) much simpler and predictable . 

Internally, condition variables can be thought of as a port of the existing pushlock algorithms 
 present in kernel mode, with the additional complexity of acquiring and releasing critical sections 
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in the SleepConditionVariableCS API . Condition variables are pointer-size ( just like pushlocks), avoid 
using the dispatcher (which requires a ring transition to kernel mode in this scenario, making the 
advantage even more noticeable), automatically optimize the wait list during wait operations, and 
protect against lock convoys . Additionally, condition variables make full use of keyed events instead of 
the regular event object that developers would have used on their own, which makes even contended 
cases more optimized .

Slim Reader-Writer Locks
Although condition variables are a synchronization mechanism, they are not fully primitive locking 
objects . As you’ve seen, they still depend on the critical section lock, whose acquisition and release 
uses standard dispatcher event objects, so trips through kernel mode can still happen and callers still 
require the initialization of the large critical section object . If condition variables share a lot of similari-
ties with pushlocks, Slim Reader-Writer Locks (SRW Locks) are nearly identical . They are also pointer-
size, use atomic operations for acquisition and release, rearrange their waiter lists, protect against lock 
convoys, and can be acquired both in shared and exclusive mode . Some differences from pushlocks, 
however, include the fact that SRW Locks cannot be “upgraded” or converted from shared to exclu-
sive or vice versa . Additionally, they cannot be recursively acquired . Finally, SRW Locks are exclusive to 
user-mode code, while pushlocks are exclusive to kernel-mode code, and the two cannot be shared 
or exposed from one layer to the other .

Not only can SRW Locks entirely replace critical sections in application code, but they also  offer 
multiple-reader, single-writer functionality. SRW Locks must first be initialized with  InitializeSRWLock, 
after which they can be acquired or released in either exclusive or shared mode with the 
 appropriate APIs: AcquireSRWLockExclusive, ReleaseSRWLockExclusive, AcquireSRWLockShared, and 
 ReleaseSRWLockShared. 

Note Unlike most other Windows APIs, the SRW locking functions do not return with a 
value—instead they generate exceptions if the lock could not be acquired . This makes 
it obvious that an acquisition has failed so that code that assumes success will terminate 
 instead of potentially proceeding to corrupt user data . 

The Windows SRW Locks do not prefer readers or writers, meaning that the performance for either 
case should be the same . This makes them great replacements for critical sections, which are writer-
only or exclusive synchronization mechanisms, and they provide an optimized alternative to resources . 
If SRW Locks were optimized for readers, they would be poor exclusive-only locks, but this isn’t the 
case . As a result, the design of the condition variable mechanism introduced earlier also allows for 
the use of SRW Locks instead of critical sections, through the SleepConditionVariableSRW API . Finally, 
SRW Locks also use keyed events instead of standard event objects, so the combination of condition 
variables and SRW Locks results in scalable, pointer-size synchronization mechanisms with very few 
trips to kernel mode—except in contended cases, which are optimized to take less time and memory 
to wake and set because of the use of keyed events .
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Run Once Initialization
The ability to guarantee the atomic execution of a piece of code responsible for performing some 
sort of initialization task—such as allocating memory, initializing certain variables, or even creating 
objects on demand—is a typical problem in multithreaded programming . In a piece of code that can 
be called simultaneously by multiple threads (a good example is the DllMain routine, which initializes 
a DLL), there are several ways of attempting to ensure the correct, atomic, and unique execution of 
initialization tasks .

In this scenario, Windows implements init once, or one-time initialization (also called run once 
initialization internally) . This mechanism allows for both synchronous (meaning that the other threads 
must wait for initialization to complete) execution of a certain piece of code, as well as asynchronous 
(meaning that the other threads can attempt to do their own initialization and race) execution . We’ll 
look at the logic behind asynchronous execution after explaining the synchronous mechanism .

In the synchronous case, the developer writes the piece of code that would normally execute after 
double-checking the global variable in a dedicated function . Any information that this routine needs 
can be passed through the parameter variable that the init-once routine accepts . Any output infor-
mation is returned through the context variable . (The status of the initialization itself is returned as 
a Boolean .) All the developer has to do to ensure proper execution is call InitOnceExecuteOnce with 
the parameter, context, and run-once function pointer after initializing an INIT_ONCE object with 
 InitOnceInitialize API . The system will take care of the rest .

For applications that want to use the asynchronous model instead, the threads call 
 InitOnceBeginInitialize and receive a BOOLEAN pending status and the context described earlier . If 
the pending status is FALSE, initialization has already taken place, and the thread uses the context 
value for the result . (It’s also possible for the function itself to return FALSE, meaning that initializa-
tion failed .) However, if the pending status comes back as TRUE, the thread should race to be the first 
to create the object . The code that follows performs whatever initialization tasks are required, such 
as creating objects or allocating memory . When this work is done, the thread calls InitOnceComplete 
with the result of the work as the context and receives a BOOLEAN status . If the status is TRUE, the 
thread won the race, and the object that it created or allocated is the one that will be the global 
 object . The thread can now save this object or return it to a caller, depending on the usage .

In the more complex scenario when the status is FALSE, this means that the thread lost the race . 
The thread must undo all the work it did, such as deleting objects or freeing memory, and then call 
InitOnceBeginInitialize again . However, instead of requesting to start a race as it did initially, it uses 
the INIT_ONCE_CHECK_ONLY flag, knowing that it has lost, and requests the winner’s context instead 
(for example, the objects or memory that were created or allocated by the winner) . This returns an-
other status, which can be TRUE, meaning that the context is valid and should be used or returned to 
the caller, or FALSE, meaning that initialization failed and nobody has actually been able to perform 
the work (such as in the case of a low-memory condition, perhaps) .

In both cases, the mechanism for run-once initialization is similar to the mechanism for condition 
variables and SRW Locks . The init once structure is pointer-size, and inline assembly versions of the 
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SRW acquisition/release code are used for the noncontended case, while keyed events are used when 
contention has occurred (which happens when the mechanism is used in synchronous mode) and 
the other threads must wait for initialization . In the asynchronous case, the locks are used in shared 
mode, so multiple threads can perform initialization at the same time .

System Worker Threads

During system initialization, Windows creates several threads in the System process, called system 
worker threads, which exist solely to perform work on behalf of other threads . In many cases, threads 
executing at DPC/dispatch level need to execute functions that can be performed only at a lower 
IRQL . For example, a DPC routine, which executes in an arbitrary thread context (because DPC execu-
tion can usurp any thread in the system) at DPC/dispatch level IRQL, might need to access paged pool 
or wait for a dispatcher object used to synchronize execution with an application thread . Because a 
DPC routine can’t lower the IRQL, it must pass such processing to a thread that executes at an IRQL 
below DPC/dispatch level .

Some device drivers and executive components create their own threads dedicated to processing 
work at passive level; however, most use system worker threads instead, which avoids the unneces-
sary scheduling and memory overhead associated with having additional threads in the system . An 
executive component requests a system worker thread’s services by calling the executive functions 
ExQueueWorkItem or IoQueueWorkItem. Device drivers should use only the latter (because this 
 associates the work item with a Device object, allowing for greater accountability and the handling of 
scenarios in which a driver unloads while its work item is active) . These functions place a work item on 
a queue dispatcher object where the threads look for work . (Queue dispatcher objects are described 
in more detail in the section “I/O Completion Ports” in Chapter 8 in Part 2 .) 

The IoQueueWorkItemEx, IoSizeofWorkItem, IoInitializeWorkItem, and IoUninitializeWorkItem APIs 
act similarly, but they create an association with a driver’s Driver object or one of its Device objects . 

Work items include a pointer to a routine and a parameter that the thread passes to the routine 
when it processes the work item . The device driver or executive component that requires passive-level 
execution implements the routine . For example, a DPC routine that must wait for a dispatcher object 
can initialize a work item that points to the routine in the driver that waits for the dispatcher object, 
and perhaps points to a pointer to the object . At some stage, a system worker thread will remove 
the work item from its queue and execute the driver’s routine. When the driver’s routine finishes, the 
system worker thread checks to see whether there are more work items to process . If there aren’t any 
more, the system worker thread blocks until a work item is placed on the queue . The DPC routine 
might or might not have finished executing when the system worker thread processes its work item. 

There are three types of system worker threads:

 ■ Delayed worker threads execute at priority 12, process work items that aren’t considered 
 time-critical, and can have their stack paged out to a paging file while they wait for work 
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items . The object manager uses a delayed work item to perform deferred object deletion, 
which deletes kernel objects after they have been scheduled for freeing .

 ■ Critical worker threads execute at priority 13, process time-critical work items, and on 
 Windows Server systems have their stacks present in physical memory at all times .

 ■ A single hypercritical worker thread executes at priority 15 and also keeps its stack in memory . 
The process manager uses the hypercritical work item to execute the thread “reaper” function 
that frees terminated threads .

The number of delayed and critical worker threads created by the executive’s 
 ExpWorkerInitialization function, which is called early in the boot process, depends on the  
amount of memory present on the system and whether the system is a server . Table 3-22 
shows the initial number of threads created on default configurations. You can specify that 
 ExpInitializeWorker create up to 16 additional delayed and 16 additional critical worker threads with 
the  AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads values under the registry 
key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Executive.

TABLE 3-22 Initial Number of System Worker Threads

Work Queue Type Default Number of Threads

Delayed 7

Critical 5

Hypercritical 1

The executive tries to match the number of critical worker threads with changing workloads as 
the system executes . Once every second, the executive function ExpWorkerThreadBalanceManager 
determines whether it should create a new critical worker thread . The critical worker threads that are 
created by ExpWorkerThreadBalanceManager are called dynamic worker threads, and all the following 
conditions must be satisfied before such a thread is created:

 ■ Work items exist in the critical work queue .

 ■ The number of inactive critical worker threads (ones that are either blocked waiting for work 
items or that have blocked on dispatcher objects while executing a work routine) must be less 
than the number of processors on the system .

 ■ There are fewer than 16 dynamic worker threads .

Dynamic worker threads exit after 10 minutes of inactivity . Thus, when the workload dictates, the 
executive can create up to 16 dynamic worker threads .
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EXPERIMENT: Listing System Worker Threads
You can use the !exqueue kernel debugger command to see a listing of system worker threads 
classified by their type:

lkd> !exqueue 
Dumping ExWorkerQueue: 820FDE40 
 
**** Critical WorkQueue( current = 0 maximum = 2 ) 
THREAD 861160b8  Cid 0004.001c  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613b020  Cid 0004.0020  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613bd78  Cid 0004.0024  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613bad0  Cid 0004.0028  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613b828  Cid 0004.002c  Teb: 00000000 Win32Thread: 00000000 WAIT 
 
**** Delayed WorkQueue( current = 0 maximum = 2 ) 
THREAD 8613b580  Cid 0004.0030  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613b2d8  Cid 0004.0034  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613c020  Cid 0004.0038  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613cd78  Cid 0004.003c  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613cad0  Cid 0004.0040  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613c828  Cid 0004.0044  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613c580  Cid 0004.0048  Teb: 00000000 Win32Thread: 00000000 WAIT 
 
**** HyperCritical WorkQueue( current = 0 maximum = 2 ) 
THREAD 8613c2d8  Cid 0004.004c  Teb: 00000000 Win32Thread: 00000000 WAIT

Windows Global Flags

Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that enable 
various internal debugging, tracing, and validation support in the operating system . The system vari-
able NtGlobalFlag is initialized from the registry key HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager in the value GlobalFlag at system boot time . By default, this registry value is 0, so 
it’s likely that on your systems, you’re not using any global flags. In addition, each image has a set of 
global flags that also turn on internal tracing and validation code (although the bit layout of these 
flags is entirely different from the systemwide global flags). 

Fortunately, the debugging tools contains a utility named Gflags.exe you can use to view and 
change the system global flags (either in the registry or in the running system) as well as image global 
flags. Gflags has both a command-line and a GUI interface. To see the command-line flags, type 
gflags /? . If you run the utility without any switches, the dialog box shown in Figure 3-28 is displayed .
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FIGURE 3-28 Setting system debugging options with Gflags

You can configure a variable’s settings in the registry on the System Registry page or the current 
value of a variable in system memory on the Kernel Flags page . 

The Image File page requires you to fill in the file name of an executable image. Use this option 
to change a set of global flags that apply to an individual image (rather than to the whole system). In 
Figure 3-29, notice that the flags are different from the operating system ones shown in Figure 3-28.

FIGURE 3-29 Setting image global flags with Gflags
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EXPERIMENT: Viewing and Setting NtGlobalFlag
You can use the !gflag kernel debugger command to view and set the state of the NtGlobalFlag 
kernel variable . The !gflag command lists all the flags that are enabled. You can use !gflag -? to 
get the entire list of supported global flags.

Advanced Local Procedure Call

All modern operating systems require a mechanism for securely transferring data between one or 
more processes in user mode, as well as between a service in the kernel and clients in user mode . 
Typically, UNIX mechanisms such as mailslots, files, named pipes, and sockets are used for portability, 
while other developers use window messages for graphical applications . Windows implements an in-
ternal IPC mechanism called  Advanced Local Procedure Call, or ALPC, which is a high-speed, scalable, 
and secured facility for message passing arbitrary-size messages . Although it is internal, and thus not 
available for third-party developers, ALPC is widely used in various parts of Windows:

 ■ Windows applications that use remote procedure call (RPC), a documented API, indirectly use 
ALPC when they specify local-RPC over the ncalrpc transport, a form of RPC used to commu-
nicate between processes on the same system . Kernel-mode RPC, used by the network stack, 
also uses ALPC .

 ■ Whenever a Windows process and/or thread starts, as well as during any Windows subsystem 
operation (such as all console I/O), ALPC is used to communicate with the subsystem process 
(CSRSS) . All subsystems communicate with the session manager (SMSS) over ALPC .

 ■ Winlogon uses ALPC to communicate with the local security authentication process, LSASS .

 ■ The security reference monitor (an executive component explained in Chapter 6) uses ALPC to 
communicate with the LSASS process .

 ■ The user-mode power manager and power monitor communicate with the kernel-mode 
power manager over ALPC, such as whenever the LCD brightness is changed .

 ■ Windows Error Reporting uses ALPC to receive context information from crashing processes .

 ■ The User-Mode Driver Framework (UMDF) enables user-mode drivers to communicate using 
ALPC .

Note ALPC is the replacement for an older IPC mechanism initially shipped with the very 
first kernel design of Windows NT, called LPC, which is why certain variables, fields, and 
functions might still refer to “LPC” today . Keep in mind that LPC is now emulated on top 
of ALPC for compatibility and has been removed from the kernel (legacy system calls still 
 exist, which get wrapped into ALPC calls) .
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Connection Model
Typically, ALPCs are used between a server process and one or more client processes of that server . 
An ALPC connection can be established between two or more user-mode processes or between a 
kernel-mode component and one or more user-mode processes . ALPC exports a single executive 
 object called the port object to maintain the state needed for communication . Although this is just 
one object, there are actually several kinds of ALPC ports that it can represent:

 ■ Server connection port A named port that is a server connection request point . Clients can 
connect to the server by connecting to this port .

 ■ Server communication port An unnamed port a server uses to communicate with a 
 particular client . The server has one such port per active client .

 ■ Client communication port An unnamed port a particular client thread uses to 
 communicate with a particular server .

 ■ Unconnected communication port An unnamed port a client can use to communicate 
locally with itself .

ALPC follows a connection and communication model that’s somewhat reminiscent of BSD 
socket programming. A server first creates a server connection port (NtAlpcCreatePort), while a 
 client  attempts to connect to it (NtAlpcConnectPort) . If the server was in a listening state, it re-
ceives a  connection request message and can choose to accept it (NtAlpcAcceptPort) . In doing 
so, both the client and server communication ports are created, and each respective endpoint 
process receives a handle to its communication port . Messages are then sent across this handle 
( NtAlpcSendWaitReceiveMessage), typically in a dedicated thread, so that the server can continue 
listening for connection requests on the original connection port (unless this server expects only one 
client) .

The server also has the ability to deny the connection, either for security reasons or simply due to 
protocol or versioning issues . Because clients can send a custom payload with a connection request, 
this is usually used by various services to ensure that the correct client, or only one client, is talking to 
the server . If any anomalies are found, the server can reject the connection, and, optionally, return a 
payload containing information on why the client was rejected (allowing the client to take corrective 
action, if possible, or for debugging purposes) .

Once a connection is made, a connection information structure (actually, a blob, as will be 
 described shortly) stores the linkage between all the different ports, as shown in Figure 3-30 .
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FIGURE 3-30 Use of ALPC ports

Message Model
Using ALPC, a client and thread using blocking messages each take turns performing a loop around 
the NtAlpcSendWaitReplyPort system call, in which one side sends a request and waits for a reply 
while the other side does the opposite . However, because ALPC supports asynchronous messages, 
it’s possible for either side not to block and choose instead to perform some other runtime task 
and check for messages later (some of these methods will be described shortly) . ALPC supports the 
 following three methods of exchanging payloads sent with a message:

 ■ A message can be sent to another process through the standard double-buffering mechanism, 
in which the kernel maintains a copy of the message (copying it from the source process), 
switches to the target process, and copies the data from the kernel’s buffer . For compatibility, 
if legacy LPC is being used, only messages up to 256 bytes can be sent this way, while ALPC 
has the ability to allocate an extension buffer for messages up to ~64KB .

 ■ A message can be stored in an ALPC section object from which the client and server processes 
map views . (See Chapter 10 in Part 2 for more information on section mappings .)
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 ■ A message can be stored in a message zone, which is an Memory Descriptor List (MDL) that 
backs the physical pages containing the data and that is mapped into the kernel’s address 
space .

An important side effect of the ability to send asynchronuos messages is that a message can be 
canceled—for example, when a request takes too long or the user has indicated that she wants to 
cancel the operation it implements . ALPC supports this with the NtAlpcCancelMessage system call . 

An ALPC message can be on one of four different queues implemented by the ALPC port object:

 ■ Main queue A message has been sent, and the client is processing it .

 ■ Pending queue A message has been sent and the caller is waiting for a reply, but the reply 
has not yet been sent .

 ■ Large message queue A message has been sent, but the caller’s buffer was too small to 
receive it . The caller gets another chance to allocate a larger buffer and request the message 
payload again .

 ■ Canceled queue A message that was sent to the port, but has since been canceled .

Note that a fifth queue, called the wait queue, does not link messages together; instead, it links all 
the threads waiting on a message .

EXPERIMENT: Viewing Subsystem ALPC Port Objects
You can see named ALPC port objects with the WinObj tool from Sysinternals . Run Winobj .exe, 
and select the root directory. A gear icon identifies the port objects, as shown here:
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You should see the ALPC ports used by the power manager, the security manager, and 
other internal Windows services . If you want to see the ALPC port objects used by RPC, you can 
select the \RPC Control directory. One of the primary users of ALPC, outside of Local RPC, is the 
 Windows subsystem, which uses ALPC to communicate with the Windows subsystem DLLs that 
are present in all Windows processes . (Subsystem for UNIX Applications uses a similar mecha-
nism.) Because CSRSS loads once for each session, you will find its ALPC port objects under the 
appropriate \Sessions\X\Windows directory, such as shown here:

Asynchronous Operation
The synchronous model of ALPC is tied to the original LPC architecture in the early NT design, and 
is similar to other blocking IPC mechanisms, such as Mach ports . Although it is simple to design, a 
blocking IPC algorithm includes many possibilities for deadlock, and working around those scenarios 
creates complex code that requires support for a more flexible asynchronous (nonblocking) model. As 
such, ALPC was primarily designed to support asynchronous operation as well, which is a requirement 
for scalable RPC and other uses, such as support for pending I/O in user-mode drivers . A basic feature 
of ALPC, which wasn’t originally present in LPC, is that blocking calls can have a timeout parameter . 
This allows legacy applications to avoid certain deadlock scenarios .

However, ALPC is optimized for asynchronous messages and provides three different models for 
asynchronous notifications. The first doesn’t actually notify the client or server, but simply copies 
the data payload . Under this model, it’s up to the implementor to choose a reliable synchronization 
method. For example, the client and the server can share a notification event object, or the client can 
poll for data arrival . The data structure used by this model is the ALPC completion list (not to be con-
fused with the Windows I/O completion port). The ALPC completion list is an efficient,  nonblocking 



214 Windows Internals, Sixth Edition, Part 1

data structure that enables atomic passing of data between clients, and its internals are described 
further in the “Performance” section .

The next notification model is a waiting model that uses the Windows completion-port  mechanism 
(on top of the ALPC completion list) . This enables a thread to retrieve multiple payloads at once, 
control the maximum number of concurrent requests, and take advantage of native completion-port 
functionality . The user-mode thread pool (described later in this chapter) implementation provides 
internal APIs that processes use to manage ALPC messages within the same infrastructure as worker 
threads, which are implemented using this model . The RPC system in Windows, when using Local 
RPC (over ncalrpc), also makes use of this functionality to provide efficient message delivery by taking 
advantage of this kernel support .

Finally, because drivers can also use asynchronous ALPC, but do not typically support  completion 
ports at such a high-level, ALPC also provides a mechanism for a more basic, kernel-based noti-
fication using executive callback objects . A driver can register its own callback and context with 
 NtSetInformationAlpcPort, after which it will get called whenever a message is received . The 
 user-mode, power-manager interfaces in the kernel employ this mechanism for asynchronous LCD 
backlight operation on laptops, for example .

Views, Regions, and Sections
Instead of sending message buffers between their two respective processes, a server and client can 
choose a more efficient data-passing mechanism that is at the core of Windows’ memory manager: 
the section object . (More information is available in Chapter 10 in Part 2 .) This allows a piece of 
memory to be allocated as shared, and for both client and server to have a consistent, and equal, 
view of this memory. In this scenario, as much data as can fit can be transferred, and data is merely 
copied into one address range and immediately available in the other . Unfortunately, shared-memory 
communication, such as LPC traditionally provided, has its share of drawbacks, especially when con-
sidering security ramifications. For one, because both client and server must have access to the shared 
memory, an unprivileged client can use this to corrupt the server’s shared memory, and even build 
executable payloads for potential exploits . Additionally, because the client knows the location of the 
server’s data, it can use this information to bypass ASLR protections . (See Chapter 8 in Part 2 for more 
information .)

ALPC provides its own security on top of what’s provided by section objects. With ALPC, a specific 
ALPC section object must be created with the appropriate NtAlpcCreatePortSection API, which will 
create the correct references to the port, as well as allow for automatic section garbage collection . (A 
manual API also exists for deletion .) As the owner of the ALPC section object begins using the section, 
the allocated chunks are created as ALPC regions, which represent a range of used addresses within 
the section and add an extra reference to the message . Finally, within a range of shared memory, the 
clients obtain views to this memory, which represents the local mapping within their address space .

Regions also support a couple of security options . First of all, regions can be mapped either using 
a secure mode or an unsecure mode . In the secure mode, only two views (mappings) are allowed 
to the region . This is typically used when a server wants to share data privately with a single  client 
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 process . Additionally, only one region for a given range of shared memory can be opened from 
within the context of a given port . Finally, regions can also be marked with write-access  protection, 
which enables only one process context (the server) to have write access to the view (by using 
 MmSecureVirtualMemoryAgainstWrites) . Other clients, meanwhile, will have read-only access only . 
These settings mitigate many privilege-escalation attacks that could happen due to attacks on shared 
memory, and they make ALPC more resilient than typical IPC mechanisms .

Attributes
ALPC provides more than simple message passing: it also enables specific contextual information to 
be added to each message and have the kernel track the validity, lifetime, and implementation of that 
information . Users of ALPC have the ability to assign their own custom context information as well . 
Whether it’s system-managed or user-managed, ALPC calls this data attributes. There are three of 
these that the kernel manages:

 ■ The security attribute, which holds key information to allow impersonation of clients, as well as 
advanced ALPC security functionality (which is described later)

 ■ The data view attribute, responsible for managing the different views associated with the 
regions of an ALPC section

 ■ The handle attribute, which contains information about which handles to associate with the 
message (which is described in more detail later in the “Security” section) .

Normally, these attributes are initially passed in by the server or client when the message is sent 
and converted into the kernel’s own internal ALPC representation . If the ALPC user requests this data 
back, it is exposed back securely . By implementing this kind of model and combining it with its own 
internal handle table, described next, ALPC can keep critical data opaque between clients and servers, 
while still maintaining the true pointers in kernel mode .

Finally, a fourth attribute is supported, called the context attribute . This attribute supports the 
 traditional, LPC-style, user-specific context pointer that could be associated with a given message, 
and it is still supported for scenarios where custom data needs to be associated with a client/server 
pair .

To define attributes correctly, a variety of APIs are available for internal ALPC consumers, such as 
AlpcInitializeMessageAttribute and AlpcGetMessageAttribute .

Blobs, Handles, and Resources
Although the ALPC library exposes only one Object Manager object type (the port), it internally must 
manage a number of data structures that allow it to perform the tasks required by its mechanisms . 
For example, ALPC needs to allocate and track the messages associated with each port, as well as the 
message attributes, which it must track for the duration of their lifetime . Instead of using the Object 
Manager’s routines for data management, ALPC implements its own lightweight objects called blobs. 
Just like objects, blobs can automatically be allocated and garbage collected, reference tracked, and 
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locked through synchronization . Additionally, blobs can have custom allocation and deallocation 
 callbacks, which let their owners control extra information that might need to be tracked for each 
blob . Finally, ALPC also uses the executive’s handle table implementation (used for objects and  
PIDs/TIDs) to have an ALPC-specific handle table, which allows ALPC to generate private handles for 
blobs, instead of using pointers .

In the ALPC model, messages are blobs, for example, and their constructor generates a message 
ID, which is itself a handle into ALPC’s handle table . Other ALPC blobs include the following:

 ■ The connection blob, which stores the client and server communication ports, as well as the 
server connection port and ALPC handle table .

 ■ The security blob, which stores the security data necessary to allow impersonation of a client . 
It stores the security attribute .

 ■ The section, region, and view blobs, which describe ALPC’s shared-memory model . The view 
blob is ultimately responsible for storing the data view attribute .

 ■ The reserve blob, which implements support for ALPC Reserve Objects . (See the “Reserve 
Objects” section in this chapter .)

 ■ The handle data blob, which contains the information that enables ALPC’s handle attribute 
support .

Because blobs are allocated from pageable memory, they must carefully be tracked to ensure their 
deletion at the appropriate time . For certain kinds of blobs, this is easy: for example, when an ALPC 
message is freed, the blob used to contain it is also deleted . However, certain blobs can represent 
 numerous attributes attached to a single ALPC message, and the kernel must manage their lifetime 
appropriately . For example, because a message can have multiple views associated with it (when 
many clients have access to the same shared memory), the views must be tracked with the mes-
sages that reference them . ALPC implements this functionality by using a concept of resources . Each 
message is associated with a resource list, and whenever a blob associated with a message (that isn’t 
a simple pointer) is allocated, it is also added as a resource of the message . In turn, the ALPC library 
provides functionality for looking up, flushing, and deleting associated resources. Security blobs, 
reserve blobs, and view blobs are all stored as resources .

Security
ALPC implements several security mechanisms, full security boundaries, and mitigations to prevent 
attacks in case of generic IPC parsing bugs . At a base level, ALPC port objects are managed by the 
same object manager interfaces that manage object security, preventing nonprivileged applica-
tions from obtaining handles to  server ports with ACL . On top of that, ALPC provides a SID-based 
trust model, inherited from the original LPC design . This model enables clients to validate the server 
they are connecting to by relying on more than just the port name . With a secured port, the client 
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process submits to the kernel the SID of the server process it expects on the side of the endpoint. At 
 connection time, the kernel validates that the client is indeed connecting to the expected server, miti-
gating namespace squatting attacks where an untrusted server creates a port to spoof a server.

ALPC also allows both clients and servers to atomically and uniquely identify the thread and 
 process responsible for each message. It also supports the full Windows impersonation model 
through the NtAlpcImpersonateClientThread API. Other APIs give an ALPC server the ability to query 
the SIDs associated with all connected clients and to query the LUID (locally unique identifier) of the  
client’s security token (which is further described in Chapter 6).

Performance
ALPC uses several strategies to enhance performance, primarily through its support of completion 
lists, which were briefly described earlier. At the kernel level, a completion list is essentially a user MDL 
that’s been probed and locked and then mapped to an address. (For more information on Memory 
Descriptor Lists, see Chapter 10 in Part 2.) Because it’s associated with an MDL (which tracks physi-
cal pages), when a client sends a message to a server, the payload copy can happen directly at the 
 physical level, instead of requiring the kernel to double-buffer the message, as is common in other 
IPC mechanisms. 

The completion list itself is implemented as a 64-bit queue of completed entries, and both user-
mode and kernel-mode consumers can use an interlocked compare-exchange operation to insert and 
remove entries from the queue. Furthermore, to simplify allocations, once an MDL has been initial-
ized, a bitmap is used to identify available areas of memory that can be used to hold new messages 
that are still being queued. The bitmap algorithm also uses native lock instructions on the proces-
sor to provide atomic allocation and de-allocation of areas of physical memory that can be used by 
completion lists.

Another ALPC performance optimization is the use of message zones. A message zone is simply a 
pre-allocated kernel buffer (also backed by an MDL) in which a message can be stored until a server 
or client retrieves it. A message zone associates a system address with the message, allowing it to be 
made visible in any process address space. More importantly, in the case of asynchronous operation, 
it does not require the complex setup of delayed payloads because no matter when the consumer 
finally retrieves the message data, the message zone will still be valid. Both completion lists and 
 message zones can be set up with NtAlpcSetInformationPort.

A final optimization worth mentioning is that instead of copying data as soon as it is sent, the 
kernel sets up the payload for a delayed copy, capturing only the needed information, but without 
any copying. The message data is copied only when the receiver requests the message. Obviously, if a 
message zone or shared memory is being used, there’s no advantage to this method, but in asyn-
chronous, kernel-buffer message passing, this can be used to optimize cancellations and high-traffic 
scenarios.
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Debugging and Tracing
On checked builds of the kernel, ALPC messages can be logged . All ALPC attributes, blobs, message 
zones, and dispatch transactions can be individually logged, and undocumented !alpc commands in 
WinDbg can dump the logs . On retail systems, IT administrators and troubleshooters can enable the 
ALPC Event Tracing for Windows (ETW) logger to monitor ALPC messages . ETW events do not include 
payload data, but they do contain connection, disconnection, and send/receive and wait/unblock 
information . Finally, even on retail systems, certain !alpc commands obtain information on ALPC ports 
and messages .

EXPERIMENT: Dumping a Connection Port
In this experiment, you’ll use the CSRSS API port for Windows processes running in Session 1, 
which is the typical interactive session for the console user . Whenever a Windows application 
launches, it connects to CSRSS’s API port in the appropriate session .

1. Start by obtaining a pointer to the connection port with the !object command:

0: kd> !object \Sessions\1\Windows\ApiPort 
Object: fffffa8004dc2090  Type: (fffffa80027a2ed0) ALPC Port 
    ObjectHeader: fffffa8004dc2060 (new version) 
    HandleCount: 1  PointerCount: 50 
    Directory Object: fffff8a001a5fb30  Name: ApiPort

2. Now dump information on the port object itself with !alpc /p. This will confirm, for 
example, that CSRSS is the owner:

0: kd> !alpc /p fffffa8004dc2090 
Port @ fffffa8004dc2090 
  Type                      : ALPC_CONNECTION_PORT 
  CommunicationInfo         : fffff8a001a22560 
    ConnectionPort          : fffffa8004dc2090 
    ClientCommunicationPort : 0000000000000000 
    ServerCommunicationPort : 0000000000000000 
  OwnerProcess              : fffffa800502db30 (csrss.exe) 
  SequenceNo                : 0x000003C9 (969) 
  CompletionPort            : 0000000000000000 
  CompletionList            : 0000000000000000 
  MessageZone               : 0000000000000000 
  ConnectionPending         : No 
  ConnectionRefused         : No 
  Disconnected              : No 
  Closed                    : No 
  FlushOnClose              : Yes

  ReturnExtendedInfo        : No 
  Waitable                  : No 
  Security                  : Static 
  Wow64CompletionList       : No 
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  Main queue is empty. 
  Large message queue is empty. 
  Pending queue is empty. 
  Canceled queue is empty.

3. You can see what clients are connected to the port, which will include all Windows 
processes running in the session, with the undocumented !alpc /lpc command . You will 
also see the server and client communication ports associated with each connection 
and any pending messages on any of the queues:

0: kd> !alpc /lpc fffffa8004dc2090 
 
Port @fffffa8004dc2090 has 14 connections 
 
SRV:fffffa8004809c50 (m:0, p:0, l:0) <-> CLI:fffffa8004809e60 (m:0, p:0, l:0), 
 Process=fffffa8004ffcb30 ('winlogon.exe') 
SRV:fffffa80054dfb30 (m:0, p:0, l:0) <-> CLI:fffffa80054dfe60 (m:0, p:0, l:0), 
 Process=fffffa80054de060 ('dwm.exe') 
SRV:fffffa8005394dd0 (m:0, p:0, l:0) <-> CLI:fffffa80054e1440 (m:0, p:0, l:0), 
 Process=fffffa80054e2290 ('winvnc.exe') 
SRV:fffffa80053965d0 (m:0, p:0, l:0) <-> CLI:fffffa8005396900 (m:0, p:0, l:0), 
 Process=fffffa80054ed060 ('explorer.exe') 
SRV:fffffa80045a8070 (m:0, p:0, l:0) <-> CLI:fffffa80045af070 (m:0, p:0, l:0), 
 Process=fffffa80045b1340 ('logonhlp.exe') 
SRV:fffffa8005197940 (m:0, p:0, l:0) <-> CLI:fffffa800519a900 (m:0, p:0, l:0), 
 Process=fffffa80045da060 ('TSVNCache.exe') 
SRV:fffffa800470b070 (m:0, p:0, l:0) <-> CLI:fffffa800470f330 (m:0, p:0, l:0), 
 Process=fffffa8004713060 ('vmware-tray.ex') 
SRV:fffffa80045d7670 (m:0, p:0, l:0) <-> CLI:fffffa80054b16f0 (m:0, p:0, l:0), 
 Process=fffffa80056b8b30 ('WINWORD.EXE') 
SRV:fffffa80050e0e60 (m:0, p:0, l:0) <-> CLI:fffffa80056fee60 (m:0, p:0, l:0), 
 Process=fffffa800478f060 ('Winobj.exe') 
SRV:fffffa800482e670 (m:0, p:0, l:0) <-> CLI:fffffa80047b7680 (m:0, p:0, l:0), 
 Process=fffffa80056aab30 ('cmd.exe') 
SRV:fffffa8005166e60 (m:0, p:0, l:0) <-> CLI:fffffa80051481e0 (m:0, p:0, l:0), 
 Process=fffffa8002823b30 ('conhost.exe') 
SRV:fffffa80054a2070 (m:0, p:0, l:0) <-> CLI:fffffa80056e6210 (m:0, p:0, l:0), 
 Process=fffffa80055669e0 ('livekd.exe') 
SRV:fffffa80056aa390 (m:0, p:0, l:0) <-> CLI:fffffa80055a6c00 (m:0, p:0, l:0), 
 Process=fffffa80051b28b0 ('livekd64.exe') 
SRV:fffffa8005551d90 (m:0, p:0, l:0) <-> CLI:fffffa80055bfc60 (m:0, p:0, l:0), 
 Process=fffffa8002a69b30 ('kd.exe')

4. Note that if you have other sessions, you can repeat this experiment on those  sessions 
also (as well as with session 0, the system session) . You will eventually get a list of 
all the Windows processes on your machine . If you are using Subsystem for UNIX 
 Applications, you can also use this technique on the \PSXSS\ApiPort object.



220 Windows Internals, Sixth Edition, Part 1

Kernel Event Tracing

Various components of the Windows kernel and several core device drivers are instrumented to 
record trace data of their operations for use in system troubleshooting . They rely on a common in-
frastructure in the kernel that provides trace data to the user-mode Event Tracing for Windows (ETW) 
facility . An application that uses ETW falls into one or more of three categories:

 ■ Controller A controller starts and stops logging sessions and manages buffer pools . 
 Example controllers include Reliability and Performance Monitor (see the “EXPERIMENT: 
 Tracing TCP/IP Activity with the Kernel Logger” section, later in this section) and XPerf from 
the Windows Performance Toolkit (see the “EXPERIMENT: Monitoring Interrupt and DPC 
 Activity” section, earlier in this chapter) .

 ■ Provider A provider defines GUIDs (globally unique identifiers) for the event classes it can 
produce traces for and registers them with ETW . The provider accepts commands from a 
 controller for starting and stopping traces of the event classes for which it’s responsible .

 ■ Consumer A consumer selects one or more trace sessions for which it wants to read trace 
data. Consumers can receive the events in buffers in real time or in log files.

Windows includes dozens of user-mode providers, for everything from Active Directory to the 
Service Control Manager to Explorer. ETW also defines a logging session with the name NT Kernel 
Logger (also known as the kernel logger) for use by the kernel and core drivers . The providers for the 
NT Kernel Logger are implemented by ETW code in Ntoskrnl .exe and the core drivers .

When a controller in user mode enables the kernel logger, the ETW library (which is implemented 
in \Windows\System32\Ntdll.dll) calls the NtTraceControl system function, telling the ETW code in 
the kernel which event classes the controller wants to start tracing. If file logging is configured (as 
opposed to in-memory logging to a buffer), the kernel creates a system thread in the system process 
that creates a log file. When the kernel receives trace events from the enabled trace sources, it records 
them to a buffer. If it was started, the file logging thread wakes up once per second to dump the 
contents of the buffers to the log file.

Trace records generated by the kernel logger have a standard ETW trace event header, which 
records time stamp, process, and thread IDs, as well as information on what class of event the record 
corresponds to . Event classes can provide additional data specific to their events. For example, 
disk event class trace records indicate the operation type (read or write), disk number at which the 
 operation is directed, and sector offset and length of the operation .

Some of the trace classes that can be enabled for the kernel logger and the component that 
 generates each class include the following:

 ■ Disk I/O Disk class driver

 ■ File I/O File system drivers
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 ■ File I/O Completion File system drivers

 ■ Hardware Configuration Plug and Play manager (See Chapter 9 in Part 2 for information 
on the Plug and Play manager .)

 ■ Image Load/Unload The system image loader in the kernel

 ■ Page Faults Memory manager (See Chapter 10 in Part 2 for more information on page 
faults .)

 ■ Hard Page Faults Memory manager

 ■ Process Create/Delete Process manager (See Chapter 5 for more information on the 
 process manager .)

 ■ Thread Create/Delete Process manager

 ■ Registry Activity Configuration manager (See “The Registry” section in Chapter 4 for more 
information on the configuration manager.)

 ■ Network TCP/IP TCP/IP driver

 ■ Process Counters Process manager

 ■ Context Switches Kernel dispatcher

 ■ Deferred Procedure Calls Kernel dispatcher

 ■ Interrupts Kernel dispatcher

 ■ System Calls Kernel dispatcher

 ■ Sample Based Profiling Kernel dispatcher and HAL

 ■ Driver Delays I/O manager

 ■ Split I/O I/O manager

 ■ Power Events Power manager

 ■ ALPC Advanced local procedure call

 ■ Scheduler and Synchronization Kernel dispatcher (See Chapter 5 for more information 
about thread scheduling)

You can find more information on ETW and the kernel logger, including sample code for 
 controllers and consumers, in the Windows SDK .
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EXPERIMENT: Tracing TCP/IP Activity with the Kernel Logger
To enable the kernel logger and have it generate a log file of TCP/IP activity, follow these steps:

1. Run the Performance Monitor, and click on Data Collector Sets, User Defined.

2. Right-click on User Defined, choose New, and select Data Collector Set.

3. When prompted, enter a name for the data collector set (for example, experiment), 
and choose Create Manually (Advanced) before clicking Next .

4. In the dialog box that opens, select Create Data Logs, check Event Trace Data, and 
then click Next . In the Providers area, click Add, and locate Windows Kernel Trace . In 
the Properties list, select Keywords(Any), and then click Edit . 

5. From this list, select only Net for Network TCP/IP, and then click OK .
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6. Click Next to select a location where the files are saved. By default, this location is  
C:\Perflogs\<User>\experiment\, if this is how you named the data collector set. Click 
Next, and in the Run As edit box, enter the Administrator account name and set the 
password to match it . Click Finish . You should now see a window similar to the one 
shown here:

7. Right-click on “experiment” (or whatever name you gave your data collector set), and 
then click Start . Now generate some network activity by opening a browser and visit-
ing a web site .

8. Right-click on the data collector set node again, and then click Stop .

9. Open a command prompt, and change to the C:\Perflogs\experiment\00001 directory 
(or the directory into which you specified that the trace log file be stored).

10. Run tracerpt, and pass it the name of the trace log file:

tracerpt DataCollector01.etl –o dumpfile.csv –of CSV

11. Open dumpfile.csv in Microsoft Excel or in a text editor. You should see TCP and/or 
UDP trace records like the following: 

TcpIp  SendIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1388  157 .54 .86 .28  172 .31 .234 .35 80 49414 646659 646661

UdpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 4 50  172 .31 .239 .255  172 .31 .233 .110 137 137 0  0x0

UdpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 4 50  172 .31 .239 .255  172 .31 .234 .162 137 137 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1425  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1380  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 45  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1415  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 740  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0
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Wow64

Wow64 (Win32 emulation on 64-bit Windows) refers to the software that permits the execution 
of 32-bit x86 applications on 64-bit Windows . It is implemented as a set of user-mode DLLs, with 
some support from the kernel for creating 32-bit versions of what would normally only be 64-bit 
data  structures, such as the process environment block (PEB) and thread environment block (TEB) . 
 Changing Wow64 contexts through Get/SetThreadContext is also implemented by the kernel . Here 
are the user-mode DLLs responsible for Wow64:

 ■ Wow64 .dll Manages process and thread creation, and hooks exception-dispatching and 
base system calls exported by Ntoskrnl.exe. It also implements file-system redirection and 
registry redirection .

 ■ Wow64Cpu .dll Manages the 32-bit CPU context of each running thread inside Wow64, and 
provides processor architecture-specific support for switching CPU mode from 32-bit to 64-bit 
and vice versa .

 ■ Wow64Win .dll Intercepts the GUI system calls exported by Win32k .sys .

 ■ IA32Exec .bin and Wowia32x .dll on IA64 systems Contain the IA-32 software  emulator 
and its interface library . Because Itanium processors cannot natively execute x86 32-bit in-
structions in an efficient manner (performance is worse than 30 percent), software emulation 
(through binary translation) is required through the use of these two additional components .

The relationship of these DLLs is shown in Figure 3-31 .

32-bit EXE, DLLs

32-bit Ntdll.dll

Wow64cpu.dll

Wow64.dll Wow64win.dll

64-bit Ntdll.dll

Ntoskrnl.exe Win32k.sys

User32.dllGdi32.dll

FIGURE 3-31 Wow64 architecture 

Wow64 Process Address Space Layout
Wow64 processes can run with 2 GB or 4 GB of virtual space . If the image header has the 
 large-address-aware flag set, the memory manager reserves the user-mode address space above 
the 4-GB boundary through the end of the user-mode boundary . If the image is not marked as large 
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address space aware, the memory manager reserves the user-mode address space above 2 GB . (For 
more information on large-address-space support, see the section “x86 User Address Space Layouts” 
in Chapter 10 in Part 2 .)

System Calls
Wow64 hooks all the code paths where 32-bit code would transition to the native 64-bit system 
or when the native system needs to call into 32-bit user-mode code . During process creation, the 
process manager maps into the process address space the native 64-bit Ntdll .dll, as well as the 32-bit 
Ntdll .dll for Wow64 processes . When the loader initialization is called, it calls the Wow64 initialization 
code inside Wow64 .dll . Wow64 then sets up the startup context required by the 32-bit Ntdll, switches 
the CPU mode to 32-bits, and starts executing the 32-bit loader . From this point onward, execution 
continues as if the process is running on a native 32-bit system .

Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll are located in the \Windows\Syswow64 
folder (as well as certain other DLLs that perform interprocess communication, such as Rpcrt4 .dll) . 
These call into Wow64 rather than issuing the native 32-bit system call instruction . Wow64 transitions 
to native 64-bit mode, captures the parameters associated with the system call (converting 32-bit 
pointers to 64-bit pointers), and issues the corresponding native 64-bit system call . When the native 
system call returns, Wow64 converts any output parameters if necessary from 64-bit to 32-bit formats 
before returning to 32-bit mode .

Exception Dispatching
Wow64 hooks exception dispatching through Ntdll’s KiUserExceptionDispatcher . Whenever the 64-bit 
kernel is about to dispatch an exception to a Wow64 process, Wow64 captures the native excep-
tion and context record in user mode and then prepares a 32-bit exception and context record and 
dispatches it the same way the native 32-bit kernel would .

User APC Dispatching
Wow64 also hooks user-mode APC delivery through Ntdll’s KiUserApcDispatcher . Whenever the 
 64-bit kernel is about to dispatch a user-mode APC to a Wow64 process, it maps the 32-bit APC 
 address to a higher range of 64-bit address space . The 64-bit Ntdll then captures the native APC and 
context record in user mode and maps it back to a 32-bit address . It then prepares a 32-bit user-
mode APC and context record and dispatches it the same way the native 32-bit kernel would .

Console Support
Because console support is implemented in user mode by Csrss .exe, of which only a single native 
binary exists, 32-bit applications would be unable to perform console I/O while on 64-bit Windows . 
Similarly to how a special rpcrt4 .dll exits to thunk 32-bit to 64-bit RPCs, the 32-bit Kernel .dll for 
Wow64 contains special code to call into Wow, for thunking parameters during interaction with Csrss 
and Conhost .exe .
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User Callbacks
Wow64 intercepts all callbacks from the kernel into user mode . Wow64 treats such calls as system 
calls; however, the data conversion is done in the reverse order: input parameters are converted 
from 64 bits to 32 bits, and output parameters are converted when the callback returns from 32 bits 
to 64 bits .

File System Redirection
To maintain application compatibility and to reduce the effort of porting applications from Win32 
to 64-bit Windows, system directory names were kept the same. Therefore, the \Windows\System32 
folder contains native 64-bit images . Wow64, as it hooks all the system calls, translates all the path-
related APIs and replaces the path name of the \Windows\System32 folder with \Windows\Syswow64. 
Wow64 also redirects \Windows\LastGood to \Windows\LastGood\syswow64 and \Windows 
\Regedit.exe to \Windows\syswow64\Regedit.exe. Through the use of system environment 
variables, the %PROGRAMFILES% variable is also set to \Program Files (x86) for 32-bit applica-
tions, while it is set to \Program Files folder for 64-bit applications. CommonProgramFiles and 
 CommonProgramFiles (x86) also exist, which always point to the 32-bit location, while ProgramW6432 
and  CommonProgramW6432 point to the 64-bit locations unconditionally .

Note Because certain 32-bit applications might indeed be aware and able to deal with 
 64-bit images, a virtual directory, \Windows\Sysnative, allows any I/Os originating from 
a 32-bit application to this directory to be exempted from file redirection. This directory 
doesn’t actually exist—it is a virtual path that allows access to the real System32 directory, 
even from an application running under Wow64 .

There are a few subdirectories of \Windows\System32 that, for compatibility reasons, are  exempted 
from being redirected such that access attempts to them made by 32-bit applications actually access 
the real one . These directories include the following:

 ■ %windir%\system32\drivers\etc

 ■ %windir%\system32\spool

 ■ %windir%\system32\catroot and %windir%\system32\catroot2

 ■ %windir%\system32\logfiles

 ■ %windir%\system32\driverstore

Finally, Wow64 provides a mechanism to control the file system redirection built 
into Wow64 on a per-thread basis through the Wow64DisableWow64FsRedirection and 
 Wow64RevertWow64FsRedirection functions . This mechanism can have issues with delay-loaded DLLs, 
opening files through the common file dialog and even internationalization—because once redirec-
tion is disabled, the system no longer users it during internal loading either, and certain 64-bit-only 
files would then fail to be found. Using the c:\windows\sysnative path or some of the other consistent 
paths introduced earlier is usually a safer methodology for developers to use .



 CHAPTER 3 System Mechanisms 227

Registry Redirection 
Applications and components store their configuration data in the registry. Components usually 
write their configuration data in the registry when they are registered during installation. If the same 
component is installed and registered both as a 32-bit binary and a 64-bit binary, the last component 
registered will override the registration of the previous component because they both write to the 
same location in the registry .

To help solve this problem transparently without introducing any code changes to 32-bit 
 components, the registry is split into two portions: Native and Wow64 . By default, 32-bit components 
access the 32-bit view and 64-bit components access the 64-bit view . This provides a safe execution 
environment for 32-bit and 64-bit components and separates the 32-bit application state from the 
64-bit one if it exists .

To implement this, Wow64 intercepts all the system calls that open registry keys and retranslates 
the key path to point it to the Wow64 view of the registry . Wow64 splits the registry at these points:

 ■ HKLM\SOFTWARE

 ■ HKEY_CLASSES_ROOT

However, note that many of the subkeys are actually shared between 32-bit and 64-bit apps—that 
is, not the entire hive is split .

Under each of these keys, Wow64 creates a key called Wow6432Node . Under this key is stored 
 32-bit configuration information. All other portions of the registry are shared between 32-bit and 
 64-bit applications (for example, HKLM\SYSTEM).

As an extra help, if a 32-bit application writes a REG_SZ or REG_EXPAND_SZ value that starts 
with the data “%ProgramFiles%” or “%commonprogramfiles%” to the registry, Wow64 modifies the 
actual values to “%ProgramFiles(x86)%” and “%commonprogramfiles(x86)%” to match the file sys-
tem redirection and layout explained earlier . The 32-bit application must write exactly these strings 
using this case—any other data will be ignored and written normally . Finally, any key containing 
“ system32” is replaced with “syswow64” in all cases, regardless of flags and case sensitivity, unless 
KEY_WOW64_64KEY is used and the key is on the list of “reflected keys”, which is available on MSDN.

For applications that need to explicitly specify a registry key for a certain view, the following 
flags on the RegOpenKeyEx, RegCreateKeyEx, RegOpenKeyTransacted, RegCreateKeyTransacted, and 
 RegDeleteKeyEx functions permit this:

 ■ KEY_WOW64_64KEY—Explicitly opens a 64-bit key from either a 32-bit or 64-bit application, 
and disables the REG_SZ or REG_EXPAND_SZ interception explained earlier

 ■ KEY_WOW64_32KEY—Explicitly opens a 32-bit key from either a 32-bit or 64-bit application

I/O Control Requests
Besides normal read and write operations, applications can communicate with some device drivers 
through device I/O control functions using the Windows DeviceIoControl API . The application might 
specify an input and/or output buffer along with the call . If the buffer contains pointer-dependent 
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data and the process sending the control request is a Wow64 process, the view of the input and/or 
output structure is different between the 32-bit application and the 64-bit driver, because pointers 
are 4 bytes for 32-bit applications and 8 bytes for 64-bit applications . In this case, the kernel driver is 
expected to convert the associated pointer-dependent structures . Drivers can call the  IoIs32bitProcess 
function to detect whether or not an I/O request originated from a Wow64 process . Look for 
“ Supporting 32-Bit I/O in Your 64-Bit Driver” on MSDN for more details .

16-Bit Installer Applications
Wow64 doesn’t support running 16-bit applications . However, because many application installers 
are 16-bit programs, Wow64 has special case code to make references to certain well-known 16-bit 
installers work . These installers include the following:

 ■ Microsoft ACME Setup version: 1 .2, 2 .6, 3 .0, and 3 .1

 ■ InstallShield version 5 .x (where x is any minor version number)

Whenever a 16-bit process is about to be created using the CreateProcess() API, Ntvdm64 .dll is 
loaded and control is transferred to it to inspect whether the 16-bit executable is one of the sup-
ported installers . If it is, another CreateProcess is issued to launch a 32-bit version of the installer with 
the same command-line arguments .

Printing
32-bit printer drivers cannot be used on 64-bit Windows . Print drivers must be ported to native 64-bit 
versions . However, because printer drivers run in the user-mode address space of the requesting pro-
cess and only native 64-bit printer drivers are supported on 64-bit Windows, a special mechanism is 
needed to support printing from 32-bit processes . This is done by redirecting all printing functions to 
Splwow64 .exe, the Wow64 RPC print server . Because Splwow64 is a 64-bit process, it can load 64-bit 
printer drivers .

Restrictions
Wow64 does not support the execution of 16-bit applications (this is supported on 32-bit versions of 
Windows) or the loading of 32-bit kernel-mode device drivers (they must be ported to native 64-bits) . 
Wow64 processes can load only 32-bit DLLs and can’t load native 64-bit DLLs . Likewise, native 64-bit 
processes can’t load 32-bit DLLs . The one exception is the ability to load resource or data-only DLLs 
cross-architecture, which is allowed because those DLLs contain only data, not code .

In addition to the above, due to page size differences, Wow64 on IA64 systems does not support 
the ReadFileScatter, WriteFileGather, GetWriteWatch, AVX registers, XSAVE, and AWE functions . Also, 
hardware acceleration through DirectX is not available . (Software emulation is provided for Wow64 
processes .)
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User-Mode Debugging

Support for user-mode debugging is split into three different modules. The first one is located in 
the executive itself and has the prefix Dbgk, which stands for Debugging Framework . It provides the 
necessary internal functions for registering and listening for debug events, managing the debug 
object, and packaging the information for consumption by its user-mode counterpart . The user-mode 
component that talks directly to Dbgk is located in the native system library, Ntdll .dll, under a set of 
APIs that begin with the prefix DbgUi . These APIs are responsible for wrapping the underlying debug 
object implementation (which is opaque), and they allow all subsystem applications to use debug-
ging by wrapping their own APIs around the DbgUi implementation . Finally, the third component in 
user-mode debugging belongs to the subsystem DLLs . It is the exposed, documented API (located in 
KernelBase .dll for the Windows subsystem) that each subsystem supports for performing debugging 
of other applications . 

Kernel Support
The kernel supports user-mode debugging through an object mentioned earlier, the debug object . It 
provides a series of system calls, most of which map directly to the Windows debugging API, typically 
accessed through the DbgUi layer first. The debug object itself is a simple construct, composed of 
a series of flags that determine state, an event to notify any waiters that debugger events are pres-
ent, a doubly linked list of debug events waiting to be processed, and a fast mutex used for locking 
the object . This is all the information that the kernel requires for successfully receiving and sending 
debugger events, and each debugged process has a debug port member in its structure pointing to 
this debug object .

Once a process has an associated debug port, the events described in Table 3-23 can cause a 
 debug event to be inserted into the list of events . 

TABLE 3-23 Kernel-Mode Debugging Events

Event Identifier Meaning Triggered By

DbgKmExceptionApi An exception has occurred . KiDispatchException during an exception that 
occurred in user mode

DbgKmCreateThreadApi A new thread has been created . Startup of a user-mode thread

DbgKmCreateProcessApi A new process has been 
 created .

Startup of a user-mode thread that is the first 
thread in the process

DbgKmExitThreadApi A thread has exited . Death of a user-mode thread

DbgKmExitProcessApi A process has exited . Death of a user-mode thread that was the last 
thread in the process

DbgKmLoadDllApi A DLL was loaded . NtMapViewOfSection when the section is an 
image file (could be an EXE as well)

DbgKmUnloadDllApi A DLL was unloaded . NtUnmapViewOfSection when the section is 
an image file (could be an EXE as well)

DbgKmErrorReportApi An exception needs to be 
forwarded to Windows Error 
Reporting (WER) . 

KiDispatchException during an exception that 
occurred in user mode, after the debugger 
was unable to handle it
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Apart from the causes mentioned in the table, there are a couple of special triggering cases 
 outside the regular scenarios that occur at the time a debugger object first becomes associated with a 
process. The first create process and create thread messages will be manually sent when the debugger 
is attached, first for the process itself and its main thread and followed by create thread messages for 
all the other threads in the process . Finally, load dll events for the executable being debugged  
(Ntdll .dll) and then all the current DLLs loaded in the debugged process will be sent .

Once a debugger object has been associated with a process, all the threads in the process are 
suspended . At this point, it is the debugger’s responsibility to start requesting that debug events be 
sent through . Debuggers request that debug events be sent back to user mode by performing a wait 
on the debug object . This call loops the list of debug events . As each request is removed from the list, 
its contents are converted from the internal dbgk structure to the native structure that the next layer 
up understands . As you’ll see, this structure is different from the Win32 structure as well, and another 
layer of conversion has to occur . Even after all pending debug messages have been processed by the 
debugger, the kernel does not automatically resume the process . It is the debugger’s responsibility to 
call the ContinueDebugEvent function to resume execution .

Apart from some more complex handling of certain multithreading issues, the basic model for the 
framework is a simple matter of producers—code in the kernel that generates the debug events in 
the previous table—and consumers—the debugger waiting on these events and acknowledging their 
receipt .

Native Support
Although the basic protocol for user-mode debugging is quite simple, it’s not directly usable by 
Windows applications—instead, it’s wrapped by the DbgUi functions in Ntdll .dll . This abstraction is 
required to allow native applications, as well as different subsystems, to use these routines (because 
code inside Ntdll .dll has no dependencies) . The functions that this component provides are mostly 
analogous to the Windows API functions and related system calls. Internally, the code also provides 
the functionality required to create a debug object associated with the thread . The handle to a debug 
object that is created is never exposed . It is saved instead in the thread environment block (TEB) of 
the debugger thread that performs the attachment . (For more information on the TEB, see Chapter 5 .) 
This value is saved in DbgSsReserved[1] .

When a debugger attaches to a process, it expects the process to be broken into—that is, an int 3 
(breakpoint) operation should have happened, generated by a thread injected into the process . If this 
didn’t happen, the debugger would never actually be able to take control of the process and would 
merely see debug events flying by. Ntdll.dll is responsible for creating and injecting that thread into 
the target process . 

Finally, Ntdll .dll also provides APIs to convert the native structure for debug events into the 
 structure that the Windows API understands .
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EXPERIMENT: Viewing Debugger Objects
Although you’ve been using WinDbg to do kernel-mode debugging, you can also use it to 
 debug user-mode programs . Go ahead and try starting Notepad .exe with the debugger 
 attached using these steps:

1. Run WinDbg, and then click File, Open Executable .

2. Navigate to the \Windows\System32\ directory, and choose Notepad.exe.

3. You’re not going to do any debugging, so simply ignore whatever might come up . 
You can type g in the command window to instruct WinDbg to continue executing 
Notepad .

Now run Process Explorer, and be sure the lower pane is enabled and configured to show 
open handles . (Click on View, Lower Pane View, and then Handles .) You also want to look at 
 unnamed handles, so click on View, Show Unnamed Handles And Mappings .

Next, click on the Windbg .exe process and look at its handle table . You should see an open, 
unnamed handle to a debug object. (You can organize the table by Type to find this entry more 
readily .) You should see something like the following:

You can try right-clicking on the handle and closing it . Notepad should disappear, and the 
following message should appear in WinDbg:

ERROR: WaitForEvent failed, NTSTATUS 0xC0000354 
This usually indicates that the debuggee has been 
killed out from underneath the debugger. 
You can use .tlist to see if the debuggee still exists. 
WaitForEvent failed

In fact, if you look at the description for the NTSTATUS code given, you will find the text: “An 
attempt to do an operation on a debug port failed because the port is in the process of being 
deleted,” which is exactly what you’ve done by closing the handle .
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As you can see, the native DbgUi interface doesn’t do much work to support the framework except 
for this abstraction . The most complicated task it does is the conversion between native and Win32 
debugger structures . This involves several additional changes to the structures .

Windows Subsystem Support
The final component responsible for allowing debuggers such as Microsoft Visual Studio or WinDbg 
to debug user-mode applications is in Kernel32 .dll . It provides the documented Windows APIs . Apart 
from this trivial conversion of one function name to another, there is one important management 
job that this side of the debugging infrastructure is responsible for: managing the duplicated file and 
thread handles .

Recall that each time a load DLL event is sent, a handle to the image file is duplicated by the kernel 
and handed off in the event structure, as is the case with the handle to the process executable during 
the create process event . During each wait call, Kernel32 .dll checks whether this is an event that results 
in new duplicated process and/or thread handles from the kernel (the two create events) . If so, it 
 allocates a structure in which it stores the process ID, thread ID, and the thread and/or process handle 
associated with the event. This structure is linked into the first DbgSsReserved array index in the TEB, 
where we mentioned the debug object handle is stored . Likewise, Kernel32 .dll also checks for exit 
events . When it detects such an event, it “marks” the handles in the data structure .

Once the debugger is finished using the handles and performs the continue call, Kernel32 .dll 
parses these structures, looks for any handles whose threads have exited, and closes the handles for 
the debugger . Otherwise, those threads and processes would actually never exit, because there would 
always be open handles to them as long as the debugger was running .

Image Loader

When a process is started on the system, the kernel creates a process object to represent it (see 
Chapter 5 for more information on processes) and performs various kernel-related initialization tasks . 
However, these tasks do not result in the execution of the application, merely in the preparation of its 
context and environment . In fact, unlike drivers, which are kernel-mode code, applications execute in 
user mode . So most of the actual initialization work is done outside the kernel . This work is performed 
by the image loader, also internally referred to as Ldr.

The image loader lives in the user-mode system DLL Ntdll.dll and not in the kernel library . There-
fore, it behaves just like standard code that is part of a DLL, and it is subject to the same restrictions 
in terms of memory access and security rights . What makes this code special is the guaranty that it 
will always be present in the running process (Ntdll.dll is always loaded) and that it is the first piece 
of code to run in user mode as part of a new application . (When the system builds the initial context, 
the program counter, or instruction pointer, is set to an initialization function inside Ntdll .dll . See 
 Chapter 5 for more information .)
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Because the loader runs before the actual application code, it is usually invisible to users and de-
velopers . Additionally, although the loader’s initialization tasks are hidden, a program typically does 
interact with its interfaces during the run time of a program—for example, whenever loading or un-
loading a DLL or querying the base address of one . Some of the main tasks the loader is  responsible 
for include these:

 ■ Initializing the user-mode state for the application, such as creating the initial heap and setting 
up the thread-local storage (TLS) and fiber-local storage (FLS) slots

 ■ Parsing the import table (IAT) of the application to look for all DLLs that it requires (and then 
recursively parsing the IAT of each DLL), followed by parsing the export table of the DLLs to 
make sure the function is actually present (Special forwarder entries can also redirect an export 
to yet another DLL .)

 ■ Loading and unloading DLLs at run time, as well as on demand, and maintaining a list of all 
loaded modules (the module database)

 ■ Allowing for run-time patching (called hotpatching) support, explained later in the chapter

 ■ Handling manifest files

 ■ Reading the application compatibility database for any shims, and loading the shim engine 
DLL if required

 ■ Enabling support for API sets and API redirection, a core part of the MinWin refactoring effort

 ■ Enabling dynamic runtime compatibility mitigations through the SwitchBranch mechanism

As you can see, most of these tasks are critical to enabling an application to actually run its code; 
without them, everything from calling external functions to using the heap would immediately fail . 
After the process has been created, the loader calls a special native API to continue execution based 
on a context frame located on the stack . This context frame, built by the kernel, contains the actual 
entry point of the application . Therefore, because the loader doesn’t use a standard call or jump into 
the running application, you’ll never see the loader initialization functions as part of the call tree in a 
stack trace for a thread .

EXPERIMENT: Watching the Image Loader
In this experiment, you’ll use global flags to enable a debugging feature called loader snaps . 
This allows you to see debug output from the image loader while debugging application 
startup . 

1. From the directory where you’ve installed WinDbg, launch the Gflags.exe application, 
and then click on the Image File tab .

2. In the Image field, type Notepad .exe, and then press the Tab key . This should enable 
the check boxes . Select the Show Loader Snaps option, and then click OK to dismiss 
the dialog box .
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3. Now follow the steps in the “EXPERIMENT: Viewing Debugger Objects” section to start 
debugging the Notepad .exe application .

4. You should now see a couple of screens of debug information similar to that shown 
here:

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Initializing process 0x924 
0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Beginning execution of  
          notepad.exe (C:\Windows\notepad.exe) 
0924:0248 @ 116983652 - LdrpLoadDll - INFO: Loading DLL "kernel32.dll" from path  
          "C:\Windows;C:\Windows\system32;C:\Windows\system;C:\Windows; 
0924:0248 @ 116983652 - LdrpMapDll - INFO: Mapped DLL "kernel32.dll" at address  
           76BD000 
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure  
          "BaseThreadInitThunk" by name 
0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: Calling init routine  
          76C14592 for DLL "C:\Windows\system32\kernel32.dll" 
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure  
          "BaseQueryModuleData" by name

5. Eventually, the debugger breaks somewhere inside the loader code, at a special place 
where the image loader checks whether a debugger is attached and fires a breakpoint. 
If you press the G key to continue execution, you will see more messages from the 
loader, and Notepad will appear .

6. Try interacting with Notepad and see how certain operations invoke the loader . A 
good experiment is to open the Save/Open dialog . That demonstrates that the loader 
not only runs at startup, but continuously responds to thread requests that can cause 
delayed loads of other modules (which can then be unloaded after use) .

Early Process Initialization
Because the loader is present in Ntdll .dll, which is a native DLL that’s not associated with any 
 particular subsystem, all processes are subject to the same loader behavior (with some minor 
 differences) . In Chapter 5, we’ll look in detail at the steps that lead to the creation of a process in 
kernel mode, as well as some of the work performed by the Windows function CreateProcess. Here, 
however, we’ll cover the work that takes place in user mode, independent of any subsystem, as soon 
as the first user-mode instruction starts execution. When a process starts, the loader performs the 
following steps:

1. Build the image path name for the application, and query the Image File Execution Options 
key for the application, as well as the DEP and SEH validation linker settings .

2. Look inside the executable’s header to see whether it is a .NET application (specified by the 
presence of a .NET-specific image directory).

3. Initialize the National Language Support (NLS for internationalization) tables for the process .

4. Initialize the Wow64 engine if the image is 32-bit and is running on 64-bit Windows .
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5. Load any configuration options specified in the executable’s header. These options, which a 
developer can define when compiling the application, control the behavior of the executable.

6. Set the affinity mask if one was specified in the executable header.

7.  Initialize FLS and TLS .

8. Initialize the heap manager for the process, and create the first process heap.

9. Allocate an SxS (Side-by-Side Assembly)/Fusion activation context for the process . This  allows 
the system to use the appropriate DLL version file, instead of defaulting to the DLL that 
shipped with the operating system . (See Chapter 5 for more information .)

10. Open the \KnownDlls object directory, and build the known DLL path. For a Wow64 process,  
\KnownDlls32 is used instead.

11. Determine the process’ current directory and default load path (used when loading images 
and opening files).

12. Build the first loader data table entries for the application executable and Ntdll.dll, and insert 
them into the module database .

At this point, the image loader is ready to start parsing the import table of the executable 
 belonging to the application and start loading any DLLs that were dynamically linked during the 
compilation of the application . Because each imported DLL can also have its own import table, this 
operation will continue recursively until all DLLs have been satisfied and all functions to be imported 
have been found . As each DLL is loaded, the loader will keep state information for it and build the 
module database .

DLL Name Resolution and Redirection
Name resolution is the process by which the system converts the name of a PE-format binary to a 
physical file in situations where the caller has not specified or cannot specify a unique file identity. 
Because the locations of various directories (the application directory, the system directory, and so 
on) cannot be hardcoded at link time, this includes the resolution of all binary dependencies as well as 
LoadLibrary operations in which the caller does not specify a full path . 

When resolving binary dependencies, the basic Windows application model locates files in a search 
path—a list of locations that is searched sequentially for a file with a matching base name—although 
various system components override the search path mechanism in order to extend the default ap-
plication model . The notion of a search path is a holdover from the era of the command line, when an 
application’s current directory was a meaningful notion; this is somewhat anachronistic for modern 
GUI applications .

However, the placement of the current directory in this ordering allowed load operations on 
 system binaries to be overridden by placing malicious binaries with the same base name in the ap-
plication’s current directory . To prevent security risks associated with this behavior, a feature known as 
safe DLL search mode was added to the path search computation and, starting with Windows XP SP2, 
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is enabled by default for all processes . Under safe search mode, the current directory is moved behind 
the three system directories, resulting in the following path ordering: 

1. The directory from which the application was launched 

2. The native Windows system directory (for example, C:\Windows\System32) 

3. The 16-bit Windows system directory (for example, C:\Windows\System) 

4. The Windows directory (for example, C:\Windows) 

5. The current directory at application launch time 

6. Any directories specified by the %PATH% environment variable 

The DLL search path is recomputed for each subsequent DLL load operation . The algorithm 
used to compute the search path is the same as the one used to compute the default search path, 
but the application can change specific path elements by editing the %PATH% variable using the 
 SetEnvironmentVariable API, changing the current directory using the SetCurrentDirectory API, or 
using the SetDllDirectory API to specify a DLL directory for the process . When a DLL directory is 
 specified, the directory replaces the current directory in the search path and the loader ignores the 
safe DLL search mode setting for the process . 

Callers can also modify the DLL search path for specific load operations by supplying the   
LOAD_WITH_ALTERED_SEARCH_PATH flag to the LoadLibraryEx API. When this flag is supplied and 
the DLL name supplied to the API specifies a full path string, the path containing the DLL file is used in 
place of the application directory when computing the search path for the operation .

DLL Name Redirection 
Before attempting to resolve a DLL name string to a file, the loader attempts to apply DLL name 
 redirection rules . These redirection rules are used to extend or override portions of the DLL 
namespace—which normally corresponds to the Win32 file system namespace—to extend the 
 Windows application model . In order of application, they are

 ■ MinWin API Set Redirection The API set mechanism is designed to allow the Windows 
team to change the binary that exports a given system API in a manner that is transparent to 
applications .    

 ■  .LOCAL Redirection The  .LOCAL redirection mechanism allows applications to redirect all 
loads of a specific DLL base name, regardless of whether a full path is specified, to a local copy 
of the DLL in the application directory—either by creating a copy of the DLL with the same 
base name followed by .local (for example, MyLibrary.dll.local) or by creating a file folder with 
the name  .local under the application directory and placing a copy of the local DLL in the 
folder (for example, C:\Program Files\My App\.LOCAL\MyLibrary.dll). DLLs redirected by the 
 .LOCAL mechanism are handled identically to those redirected by SxS . (See the next bullet 
point .) The loader honors  .LOCAL redirection of DLLs only when the executable does not have 
an associated manifest, either embedded or external . 
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 ■ Fusion (SxS) Redirection Fusion (also referred to as side-by-side, or SxS) is an extension 
to the Windows application model that allows components to express more detailed binary 
dependency information (usually versioning information) by embedding binary resources 
known as manifests. The Fusion mechanism was first used so that applications could load the 
correct version of the Windows common controls package (comctl32 .dll) after that binary was 
split into different versions that could be installed alongside one another; other binaries have 
since been versioned in the same fashion . As of Visual Studio 2005, applications built with the 
Microsoft linker will use Fusion to locate the appropriate version of the C runtime libraries .

The Fusion runtime tool reads embedded dependency information from a binary’s resource 
section using the Windows resource loader, and it packages the dependency information into 
lookup structures known as activation contexts . The system creates default activation contexts 
at the system and process level at boot and process startup time, respectively; in addition, 
each thread has an associated activation context stack, with the activation context structure 
at the top of the stack considered active . The per-thread activation context stack is managed 
both explicitly, via the ActivateActCtx and DeactivateActCtx APIs, and implicitly by the system 
at certain points, such as when the DLL main routine of a binary with embedded dependency 
information is called . When a Fusion DLL name redirection lookup occurs, the system searches 
for redirection information in the activation context at the head of the thread’s activation con-
text stack, followed by the process and system activation contexts; if redirection information is 
present, the file identity specified by the activation context is used for the load operation.  

 ■ Known DLL Redirection Known DLLs is a mechanism that maps specific DLL base names to 
files in the system directory, preventing the DLL from being replaced with an alternate version 
in a different location . 

One edge case in the DLL path search algorithm is the DLL versioning check performed on 
64-bit and WOW64 applications . If a DLL with a matching base name is located but is subse-
quently determined to have been compiled for the wrong machine architecture—for example, 
a 64-bit image in a 32-bit application—the loader ignores the error and resumes the path 
search operation, starting with the path element after the one used to locate the incorrect file. 
This behavior is designed to allow applications to specify both 64-bit and 32-bit entries in the 
global %PATH% environment variable . 

EXPERIMENT: Observing DLL Load Search Order
You can use Sysinternals Process Monitor to watch how the loader searches for DLLs . When the 
loader attempts to resolve a DLL dependency, you will see it perform CreateFile calls to probe 
each location in the search sequence until either it finds the specified DLL or the load fails. 

Here’s the capture of the loader’s search when an executable named Myapp .exe has a static 
dependency on a library named Mylibrary.dll. The executable is stored in C:\Myapp, but the 
current working directory was C:\ when the executable was launched. For the sake of demon-
stration, the executable does not include a manifest (by default, Visual Studio has one) so that 
the loader will check inside the C:\Myapp\Myapp.exe.local subdirectory that was created for the 
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experiment. To reduce noise, the Process Monitor filter includes the myapp.exe process and any 
paths that contain the string “mylibrary .dll” .

Note how the search order matches that described . First, the loader checks the  .LOCAL 
 subdirectory, then the directory where the executable resides, then C:\Windows\System32 
 directory (because this is a 32-bit executable, that redirects to C:\Windows\SysWOW64), then 
the 16-bit Windows directory, then C:\Windows, and finally, the current directory at the time 
the executable was launched. The Load Image event confirms that the loader successfully 
 resolved the import . 

Loaded Module Database
The loader maintains a list of all modules (DLLs as well as the primary executable) that have been 
loaded by a process . This information is stored in a per-process structure called the process 
 environment block, or PEB (see Chapter 5 for a full description of the PEB)—namely, in a substructure 
identified by Ldr and called PEB_LDR_DATA . In the structure, the loader maintains three doubly-
linked lists, all containing the same information but ordered differently (either by load order, memory 
 location, or initialization order) . These lists contain structures called loader data table entries  
(LDR_DATA_TABLE_ENTRY) that store information about each module . Table 3-24 lists the various 
pieces of information the loader maintains in an entry .

TABLE 3-24 Fields in a Loader Data Table Entry

Field Meaning

BaseDllName Name of the module itself, without the full path

ContextInformation Used by SwitchBranch (described later) to store the current Windows context GUID 
associated with this module

DllBase Holds the base address at which the module was loaded

EntryPoint Contains the initial routine of the module (such as DllMain)

EntryPointActivationContext Contains the SxS/Fusion activation context when calling initializers

Flags Loader state flags for this module (See Table 3-25 for a description of the flags.)
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Field Meaning

ForwarderLinks Linked list of modules that were loaded as a result of export table forwarders from 
the module

FullDllName Fully qualified path name of the module

HashLinks Linked list used during process startup and shutdown for quicker lookups

List Entry Links Links this entry into each of the three ordered lists part of the loader database

LoadCount Reference count for the module (that is, how many times it has been loaded)

LoadTime Stores the system time value when this module was being loaded

OriginalBase Stores the original base address (set by the linker) of this module, enabling faster 
processing of relocated import entries

PatchInformation Information that’s relevant during a hotpatch operation on this module

ServiceTagLinks Linked list of services (see Chapter 4 for more information) referencing this module

SizeOfImage Size of the module in memory

StaticLinks Linked list of modules loaded as a result of static references from this one

TimeDateStamp Time stamp written by the linker when the module was linked, which the loader 
obtains from the module’s image PE header

TlsIndex Thread local storage slot associated with this module

One way to look at a process’ loader database is to use WinDbg and its formatted output of the 
PEB . The next experiment shows you how to do this and how to look at the LDR_DATA_TABLE_ENTRY 
structures on your own .

EXPERIMENT: Dumping the Loaded Modules Database
Before starting the experiment, perform the same steps as in the previous two experiments to 
launch Notepad.exe with WinDbg as the debugger. When you get to the first prompt (where 
you’ve been instructed to type g until now), follow these instructions: 

1. You can look at the PEB of the current process with the !peb command . For now, you’re 
interested only in the Ldr data that will be displayed . (See Chapter 5 for details about 
other information stored in the PEB .)

0: kd> !peb 
PEB at 000007fffffda000 
    InheritedAddressSpace:    No 
    ReadImageFileExecOptions: No 
    BeingDebugged:            No 
    ImageBaseAddress:         00000000ff590000 
    Ldr                       0000000076e72640 
    Ldr.Initialized:          Yes 
    Ldr.InInitializationOrderModuleList: 0000000000212880 . 0000000004731c20 
    Ldr.InLoadOrderModuleList:           0000000000212770 . 0000000004731c00 
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    Ldr.InMemoryOrderModuleList:         0000000000212780 . 0000000004731c10 
            Base TimeStamp                     Module 
        ff590000 4ce7a144 Nov 20 11:21:56 2010 C:\Windows\Explorer.EXE 
        76d40000 4ce7c8f9 Nov 20 14:11:21 2010 C:\Windows\SYSTEM32\ntdll.dll 
        76870000 4ce7c78b Nov 20 14:05:15 2010 C:\Windows\system32\kernel32.dll 
     7fefd2d0000 4ce7c78c Nov 20 14:05:16 2010 C:\Windows\system32\KERNELBASE.dll 
     7fefee20000 4a5bde6b Jul 14 02:24:59 2009 C:\Windows\system32\ADVAPI32.dll

2. The address shown on the Ldr line is a pointer to the PEB_LDR_DATA structure 
 described earlier . Notice that WinDbg shows you the address of the three lists and 
dumps the initialization order list for you, displaying the full path, time stamp, and 
base address of each module . 

3. You can also analyze each module entry on its own by going through the module list 
and then dumping the data at each address, formatted as a LDR_DATA_TABLE_ENTRY 
structure . Instead of doing this for each entry, however, WinDbg can do most of the 
work by using the !list extension and the following syntax: 

!list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY @$extret\" 
0000000076e72640

Note that the last number is variable: it depends on whatever is shown on your 
 machine under Ldr.InLoadOrderModuleList .

4. You should then see the entries for each module:

0:001> !list -t ntdll!_LIST_ENTRY.Flink -x "dt ntdll!_LDR_DATA_TABLE_ENTRY 
@$extret\" 001c1cf8  
   +0x000 InLoadOrderLinks : _LIST_ENTRY [ 0x1c1d68 - 0x76fd4ccc ] 
   +0x008 InMemoryOrderLinks : _LIST_ENTRY [ 0x1c1d70 - 0x76fd4cd4 ] 
   +0x010 InInitializationOrderLinks : _LIST_ENTRY [ 0x0 - 0x0 ] 
   +0x018 DllBase          : 0x00d80000  
   +0x01c EntryPoint       : 0x00d831ed  
   +0x020 SizeOfImage      : 0x28000 
   +0x024 FullDllName      : _UNICODE_STRING "C:\Windows\notepad.exe" 
   +0x02c BaseDllName      : _UNICODE_STRING "notepad.exe" 
   +0x034 Flags            : 0x4010

Although this section covers the user-mode loader in Ntdll .dll, note that the kernel also 
employs its own loader for drivers and dependent DLLs, with a similar loader entry struc-
ture . Likewise, the kernel-mode loader has its own database of such entries, which is directly 
 accessible through the PsActiveModuleList global data variable . To dump the kernel’s loaded 
 module database, you can use a similar !list command as shown in the preceding experiment by 
 replacing the pointer at the end of the command with “nt!PsActiveModuleList” .

Looking at the list in this raw format gives you some extra insight into the loader’s internals, 
such as the flags field, which contains state information that !peb on its own would not show 
you . See Table 3-25 for their meaning . Because both the kernel and user-mode loaders use this 
structure, some flags apply only to kernel-mode drivers, while others apply only to user-mode 
applications (such as  .NET state) .
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TABLE 3-25 Loader Data Table Entry Flags

Flag Meaning

LDRP_STATIC_LINK (0x2) This module is referenced by an import table and is 
required .

LDRP_IMAGE_DLL (0x4) The module is an image DLL (and not a data DLL or 
executable) .

LDRP_IMAGE_INTEGRITY_FORCED (0x20) The module was linked with /FORCEINTEGRITY 
(contains IMAGE_DLLCHARACTERISTICS_FORCE_
INTEGRITY_in its PE header) .

LDRP_LOAD_IN_PROGRESS (0x1000) This module is currently being loaded .

LDRP_UNLOAD_IN_PROGRESS (0x2000) This module is currently being unloaded .

LDRP_ENTRY_PROCESSED (0x4000) The loader has finished processing this module.

LDRP_ENTRY_INSERTED (0x8000) The loader has finished inserting this entry into the 
loaded module database .

LDRP_FAILED_BUILTIN_LOAD (0x20000) Indicates this boot driver failed to load .

LDRP_DONT_CALL_FOR_THREADS (0x40000) Do not send DLL_THREAD_ATTACH/DETACH 
 notifications to this DLL.

LDRP_PROCESS_ATTACH_CALLED (0x80000) This DLL has been sent the DLL_PROCESS_ATTACH 
notification.

LDRP_DEBUG_SYMBOLS_LOADED (0x100000) The debug symbols for this module have been 
loaded by the kernel or user debugger .

LDRP_IMAGE_NOT_AT_BASE (0x200000) This image was relocated from its original base 
 address .

LDRP_COR_IMAGE (0x400000) This module is a  .NET application .

LDRP_COR_OWNS_UNMAP (0x800000) This module should be unmapped by the  .NET 
 runtime .

LDRP_SYSTEM_MAPPED (0x1000000) This module is mapped into kernel address space 
with System PTEs (versus being in the initial boot 
loader’s memory) .

LDRP_IMAGE_VERIFYING (0x2000000) This module is currently being verified by Driver 
Verifier.

LDRP_DRIVER_DEPENDENT_DLL (0x4000000) This module is a DLL that is in a driver’s import 
table .

LDRP_ENTRY_NATIVE (0x8000000) This module was compiled for Windows 2000 or 
later. It’s used by Driver Verifier as an indication that 
a driver might be suspect .

LDRP_REDIRECTED (0x10000000) The manifest file specified a redirected file for this 
DLL .

LDRP_NON_PAGED_DEBUG_INFO (0x20000000) The debug information for this module is in non-
paged memory .

LDRP_MM_LOADED (0x40000000) This module was loaded by the kernel loader 
through MmLoadSystemImage .

LDRP_COMPAT_DATABASE_PROCESSED (0x80000000) The shim engine has processed this DLL .
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Import Parsing
Now that we’ve explained the way the loader keeps track of all the modules loaded for a process, you 
can continue analyzing the startup initialization tasks performed by the loader. During this step, the 
loader will do the following:

1. Load each DLL referenced in the import table of the process’ executable image.

2. Check whether the DLL has already been loaded by checking the module database. If it 
doesn’t find it in the list, the loader opens the DLL and maps it into memory.

3. During the mapping operation, the loader first looks at the various paths where it should 
 attempt to find this DLL, as well as whether this DLL is a “known DLL,” meaning that the sys-
tem has already loaded it at startup and provided a global memory mapped file for accessing 
it. Certain deviations from the standard lookup algorithm can also occur, either through the 
use of a .local file (which forces the loader to use DLLs in the local path) or through a manifest 
file, which can specify a redirected DLL to use to guarantee a specific version.

4. After the DLL has been found on disk and mapped, the loader checks whether the kernel has 
loaded it somewhere else—this is called relocation. If the loader detects relocation, it parses 
the relocation information in the DLL and performs the operations required. If no relocation 
information is present, DLL loading fails.

5. The loader then creates a loader data table entry for this DLL and inserts it into the database.

6. After a DLL has been mapped, the process is repeated for this DLL to parse its import table 
and all its dependencies.

7.  After each DLL is loaded, the loader parses the IAT to look for specific functions that are being 
imported. Usually this is done by name, but it can also be done by ordinal (an index number). 
For each name, the loader parses the export table of the imported DLL and tries to locate a 
match. If no match is found, the operation is aborted.

8. The import table of an image can also be bound. This means that at link time, the  developers 
already assigned static addresses pointing to imported functions in external DLLs. This 
removes the need to do the lookup for each name, but it assumes that the DLLs the appli-
cation will use will always be located at the same address. Because Windows uses address 
space randomization (see Chapter 10 in Part 2 for more information on Address Space Load 
 Randomization, or ASLR), this is usually not the case for system applications and libraries.

9. The export table of an imported DLL can use a forwarder entry, meaning that the actual 
 function is implemented in another DLL. This must essentially be treated like an import or 
 dependency, so after parsing the export table, each DLL referenced by a forwarder is also 
loaded and the loader goes back to step 1.

After all imported DLLs (and their own dependencies, or imports) have been loaded, all the 
required imported functions have been looked up and found, and all forwarders also have been 
loaded and processed, the step is complete: all dependencies that were defined at compile time by 
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the application and its various DLLs have now been fulfilled. During execution, delayed dependencies 
(called delay load), as well as run-time operations (such as calling LoadLibrary) can call into the loader 
and essentially repeat the same tasks . Note, however, that a failure in these steps will result in an error 
launching the application if they are done during process startup . For example, attempting to run an 
application that requires a function that isn’t present in the current version of the operating system 
can result in a message similar to the one in Figure 3-32 .

FIGURE 3-32 Dialog box shown when a required (imported) function is not present in a DLL

Post-Import Process Initialization
After the required dependencies have been loaded, several initialization tasks must be performed to 
fully finalize launching the application. In this phase, the loader will do the following:

1. Check if the application is a  .NET application, and redirect execution to the  .NET runtime entry 
point instead, assuming the image has been validated by the framework .

2. Check if the application itself requires relocation, and process the relocation entries for the 
application . If the application cannot be relocated, or does not have relocation information, 
the loading will fail .

3. Check if the application makes use of TLS, and look in the application executable for the TLS 
entries it needs to allocate and configure. 

4. If this is a Windows application, the Windows subsystem thread-initialization thunk code is 
located after loading kernel32 .dll, and the Authz/AppLocker enforcement is enabled . (See 
Chapter 6 for more information on Software Restriction Policies .) If Kernel32 .dll is not found, 
the system is presumably assumed to be running in MinWin and only Kernelbase .dll is loaded .

5. Any static imports are now loaded .

6. At this point, the initial debugger breakpoint will be hit when using a debugger such as 
WinDbg . This is where you had to type g to continue execution in the earlier experiments .

7.  Make sure that the application will be able to run properly if the system is a multiprocessor 
system .

8. Set up the default data execution prevention (DEP) options, including for exception-chain 
validation, also called “software” DEP . (See Chapter 10 in Part 2 for more information on DEP .)
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9. Check whether this application requires any application compatibility work, and load the shim 
engine if required .

10. Detect if this application is protected by SecuROM, SafeDisc, and other kinds of wrapper or 
protection utilities that could have issues with DEP (and reconfigure DEP settings in those 
cases) .

11. Run the initializers for all the loaded modules .

12. Run the post-initialization Shim Engine callback if the module is being shimmed for 
 application compatibility .

13. Run the associated subsystem DLL post-process initialization routine registered in the PEB . For 
Windows applications, this does Terminal Services–specific checks, for example.

Running the initializers is the last main step in the loader’s work . This is the step that calls the 
DllMain routine for each DLL (allowing each DLL to perform its own initialization work, which might 
even include loading new DLLs at run time) as well as processes the TLS initializers of each DLL . This 
is one of the last steps in which loading an application can fail . If all the loaded DLLs do not return a 
successful return code after finishing their DllMain routines, the loader aborts starting the application . 
As a very last step, the loader calls the TLS initializer of the actual application .

SwitchBack
As each new version of Windows fixes bugs such as race conditions and incorrect parameter 
 validation checks in existing API functions, an application-compatibility risk is created for each 
change, no matter how minor . Windows makes use of a technology called SwitchBack, implemented 
in the loader, which enables software developers to embed a GUID specific to the Windows version 
they are targeting in their executable’s associated manifest . For example, if a developer wants to take 
advantage of improvements added in Windows 7 to a given API, she would include the Windows 7 
GUID in her manifest, while if a developer has a legacy application that depends on Windows Vista–
specific behavior, she would put the Windows Vista GUID in the manifest instead . SwitchBack parses 
this information and correlates it with embedded information in SwitchBack-compatible DLLs (in the 
 .sb_data image section) to decide which version of an affected API should be called by the module . 
Because SwitchBack works at the loaded-module level, it enables a process to have both legacy and 
current DLLs concurrently calling the same API, yet observing different results .

Windows currently defines two GUIDs that represent either Windows Vista or Windows 7 
 compatibility settings:

 ■ {e2011457-1546-43c5-a5fe-008deee3d3f0} for Windows Vista

 ■ {35138b9a-5d96-4fbd-8e2d-a2440225f93a} for Windows 7

These GUIDs must be present in the application’s manifest file under the SupportedOS ID  present 
in a compatibility attribute entry . (If the application manifest does not contain a GUID, Windows 
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Vista is chosen as the default compatibility mode .) Running under the Windows 7 context affects the 
 following components:

 ■ RPC components use the Windows thread pool instead of a private implementation .

 ■ DirectDraw Lock cannot be acquired on the primary buffer .

 ■ Blitting on the desktop is not allowed without a clipping window .

 ■ A race condition in GetOverlappedResult is fixed.

Whenever a Windows API is affected by changes that might break compatibility, the function’s 
entry code calls the SbSwitchProcedure to invoke the SwitchBack logic . It passes along a pointer to 
the SwitchBack Module Table, which contains information about the SwitchBack mechanisms em-
ployed in the module . The table also contains a pointer to an array of entries for each SwitchBack 
point. This table contains a description of each branch-point that identifies it with a symbolic name 
and a comprehensive description, along with an associated mitigation tag . Typically, there will be 
two branch-points in a module, one for Windows Vista behavior, and one for Windows 7 behavior . 
For each branch-point, the required SwitchBack context is given—it is this context that determines 
which of the two (or more) branches is taken at runtime . Finally, each of these descriptors contains a 
function pointer to the actual code that each branch should execute . If the application is running with 
the Windows 7 GUID, this will be part of its SwitchBack context, and the SbSelectProcedure API, upon 
parsing the module table, will perform a match operation. It finds the module entry descriptor for the 
context and proceeds to call the function pointer included in the descriptor . 

SwitchBack uses ETW to trace the selection of given SwitchBack contexts and branch-points and 
feeds the data into the Windows AIT (Application Impact Telemetry) logger . This data can be peri-
odically collected by Microsoft to determine the extent to which each compatibility entry is being 
used, identify the applications using it (a full stack trace is provided in the log), and notify third-party 
vendors .

As mentioned, the compatibility level of the application is stored in its manifest . At load time, the 
loader parses the manifest file, creates a context data structure, and caches it in the pContextData 
member of the process environment block . (For more information on the PEB, see Chapter 5 .) This 
context data contains the associated compatibility GUIDs that this process is executing under and 
determines which version of the branch-points in the called APIs that employ SwitchBack will be 
executed .

API Sets
While SwitchBack uses API redirection for specific application-compatibility scenarios, there is a 
much more pervasive redirection mechanism used in Windows for all applications, called API Sets . Its 
purpose is to enable fine-grained categorization of Windows APIs into sub-DLLs instead of having 
large multipurpose DLLs that span nearly thousands of APIs that might not be needed on all types of 
 Windows systems today and in the future . This technology, developed mainly to support the refactor-
ing of the bottom-most layers of the Windows architecture to separate it from higher layers, goes 
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hand in hand with the breakdown of Kernel32 .dll and Advapi32 .dll (among others) into multiple, 
virtual DLL files.

For example, the following graphic shows that Kernel32 .dll, which is a core Windows library, 
 imports from many other DLLs, beginning with API-MS-WIN . Each of these DLLs contain a small 
subset of the APIs that Kernel32 normally provides, but together they make up the entire API surface 
exposed by Kernel32 .dll . The CORE-STRING library, for instance, provides only the Windows base 
string functions . 

In splitting functions across discrete files, two objectives are achieved: first, doing this allows future 
applications to link only with the API libraries that provide the functionality that they need, and 
second, if Microsoft were to create a version of Windows that did not support, for example, Localiza-
tion (say a non-user-facing, English-only embedded system), it would be possible to simply remove 
the sub-DLL and modify the API Set schema . This would result in a smaller Kernel32 binary, and any 
applications that ran without requiring localization would still run .

With this technology, a “base” Windows system called “MinWin” is defined (and, at the source level, 
built), with a minimum set of services that includes the kernel, core drivers (including file systems, 
basic system processes such as CSRSS and the Service Control Manager, and a handful of Windows 
services) . Windows Embedded, with its Platform Builder, provides what might seem to be a similar 
technology, as system builders are able to remove select “Windows components,” such as the shell, or 
the network stack . However, removing components from Windows leaves dangling dependencies—
code paths that, if exercised, would fail because they depend on the removed components . MinWin’s 
dependencies, on the other hand, are entirely self-contained .
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When the process manager initializes, it calls the PspInitializeApiSetMap function, which is respon-
sible for creating a section object (using a standard section object) of the API Set redirection table, 
which is stored in %SystemRoot%\System32\ApiSetSchema.dll. The DLL contains no executable code, 
but it has a section called .apiset that contains API Set mapping data that maps virtual API Set DLLs 
to logical DLLs that implement the APIs . Whenever a new process starts, the process manager maps 
the section object into the process’ address space and sets the ApiSetMap field in the process’ PEB to 
point to the base address where the section object was mapped .

In turn, the loader’s LdrpApplyFileNameRedirection function, which is normally responsible for the 
 .local and SxS/Fusion manifest redirection that was mentioned earlier, also checks for API Set redirec-
tion data whenever a new import library that has a name starting with “API-“ loads (either dynamically 
or statically) . The API Set table is organized by library with each entry describing in which logical DLL 
the function can be found, and that DLL is what gets loaded . Although the schema data is a binary 
format, you can dump its strings with the Sysinternals Strings tool to see which DLLs are currently 
defined:

C:\Windows\System32>strings apisetschema.dll 
... 
MS-Win-Core-Console-L1-1-0 
kernel32.dllMS-Win-Core-DateTime-L1-1-0 
MS-Win-Core-Debug-L1-1-0 
kernelbase.dllMS-Win-Core-DelayLoad-L1-1-0 
MS-Win-Core-ErrorHandling-L1-1-0 
MS-Win-Core-Fibers-L1-1-0 
MS-Win-Core-File-L1-1-0 
MS-Win-Core-Handle-L1-1-0 
MS-Win-Core-Heap-L1-1-0 
MS-Win-Core-Interlocked-L1-1-0 
MS-Win-Core-IO-L1-1-0 
MS-Win-Core-LibraryLoader-L1-1-0 
MS-Win-Core-Localization-L1-1-0 
MS-Win-Core-LocalRegistry-L1-1-0 
MS-Win-Core-Memory-L1-1-0 
MS-Win-Core-Misc-L1-1-0 
MS-Win-Core-NamedPipe-L1-1-0 
MS-Win-Core-ProcessEnvironment-L1-1-0 
MS-Win-Core-ProcessThreads-L1-1-0 
MS-Win-Core-Profile-L1-1-0 
MS-Win-Core-RtlSupport-L1-1-0 
ntdll.dll 
MS-Win-Core-String-L1-1-0
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Hypervisor (Hyper-V)

One of the key technologies in the software industry—used by system administrators, developers, 
and testers alike—is called virtualization, and it refers to the ability to run multiple operating systems 
simultaneously on the same physical machine . One operating system, in which the virtualization soft-
ware is executing, is called the host, while the other operating systems are running as guests inside the 
virtualization software . The usage scenarios for this model cover everything from being able to test 
an application on different platforms to having fully virtual servers all actually running as part of the 
same machine and managed through one central point .

Until recently, all the virtualization was done by the software itself, sometimes assisted by 
 hardware-level virtualization technology (called host-based virtualization) . Thanks to hardware 
 virtualization, the CPU can do most of the notifications required for trapping instructions and virtual-
izing access to memory. These notifications, as well as the various configuration steps required for 
allowing guest operating systems to run concurrently, must be handled by a piece of infrastructure 
compatible with the CPU’s virtualization support . Instead of relying on a piece of separate software 
running inside a host operating system to perform these tasks, a thin piece of low-level system 
software, which uses strictly hardware-assisted virtualization support, can be used—a hypervisor . 
 Figure 3-33 shows a simple architectural overview of these two kinds of systems .

Guest 2Guest 1

Host OS VMM*

Hardware

Hosted virtualization

* Represents software product such as Virtual PC

Guest 2Guest 1

VMM**

Hardware

Hypervisor virtualization

** This VMM is the hypervisor.

FIGURE 3-33 Two architectures for virtualization

With Hyper-V, Windows server computers can install support for hypervisor-based virtualization as 
a server role (as long as an edition with Hyper-V support is licensed) . Because the hypervisor is part of 
the operating system, managing the guests inside it, as well as interacting with them, is fully integrat-
ed in the operating system through standard management mechanisms such as WMI and services . 
(See Chapter 4 for more information on these topics .) 

Finally, apart from having a hypervisor that allows running other guests managed by a Windows 
Server host, both client and server editions of Windows also ship with enlightenments, which are spe-
cial optimizations in the kernel and possibly device drivers that detect that the code is being run as 
a guest under a hypervisor and perform certain tasks differently, or more efficiently, considering this 
environment . We will look at some of these improvements later; for now, we’ll take a look at the basic 
architecture of the Windows virtualization stack, shown in Figure 3-34 .



 CHAPTER 3 System Mechanisms 249

VSPWindows
kernel

Windows hypervisor

“Designed for Windows” server hardware

Windows
Server 2008

VMBus
IHV

drivers

Non–
hypervisor-aware

OS

Windows
Server 2003, 2008

Windows
kernel

VMBus

VSC
Emulation

Xen-enabled
Linux kernel

VMBus

Linux VSC

Hypercall adapter

Applications

WMI provider

VM service

Applications Applications Applications

VM worker
processes

FIGURE 3-34 Windows Hyper-V architectural stack

Partitions
One of the key architectural components behind the Windows hypervisor is the concept of a  partition. 
A partition essentially references an instance of an operating system installation, which can refer 
either to what’s traditionally called the host or to the guest . Under the Windows hypervisor model, 
these two terms are not used; instead, we talk of either a parent partition or a child partition, respec-
tively . Consequently, at a minimum, a Hyper-V system will have a parent partition, which is recom-
mended to contain a Windows Server Core installation, as well as the virtualization stack and its 
associated components . Although this installation type is recommended because it allows minimiz-
ing patches and reducing the security surface area, resulting in increased availability of the server, a 
full installation is also supported . Each operating system running within the virtualized environment 
represents a child partition, which might contain certain additional tools that optimize access to the 
hardware or allow management of the operating system .

Parent Partition
One of the main goals behind the design of the Windows hypervisor was to have it as small and 
modular as possible, much like a microkernel, instead of providing a full, monolithic module . This 
means that most of the virtualization work is actually done by a separate virtualization stack and that 
there are also no hypervisor drivers. In lieu of these, the hypervisor uses the existing Windows driver 
architecture and talks to actual Windows device drivers . This architecture results in several compo-
nents that provide and manage this behavior, which are collectively called the hypervisor stack .
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Logically, it is the parent partition that is responsible for providing the hypervisor, as well as the 
entire hypervisor stack . Because these are Microsoft components, only a Windows machine can be a 
root partition, naturally . A parent partition should have almost no resource usage for itself because its 
role is to run other operating systems . The main components that the parent partition provides are 
shown in Figure 3-35 .
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drivers
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FIGURE 3-35 Components of a parent partition

Parent Partition Operating System
The Windows installation (typically the minimal footprint server installation, called Windows Server 
Core, to minimize resource usage) is responsible for providing the hypervisor and the device drivers 
for the hardware on the system (which the hypervisor will need to access), as well as for running the 
hypervisor stack . It is also the management point for all the child partitions .

Virtual Machine Manager Service and Worker Processes
The virtual machine management service (%SystemRoot%\System32\Vmms.exe) is responsible for 
providing the Windows Management Instrumentation (WMI) interface to the hypervisor, which allows 
managing the child partitions through a Microsoft Management Console (MMC) plug-in . It is also 
responsible for communicating requests to applications that need to communicate to the hypervisor 
or to child partitions . It controls settings such as which devices are visible to child partitions, how the 
memory and processor allocation for each partition is defined, and more. 

The virtual machine worker processes (VMWPs), on the other hand, perform various virtualization 
work that a typical monolithic hypervisor would perform (similar to the work of a software-based 
virtualization solution) . This means managing the state machine for a given child partition (to allow 
support for features such as snapshots and state transitions), responding to various notifications com-
ing in from the hypervisor, performing the emulation of certain devices exposed to child partitions, 
and collaborating with the VM service and configuration component. 
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On a system with child partitions performing lots of I/O or privileged operations, you would 
 expect most of the CPU usage to be visible in the parent partition: you can identify them by the name 
Vmwp .exe (one for each child partition) . The worker process also includes components responsible 
for remote management of the virtualization stack, as well as an RDP component that allows using 
the remote desktop client to connect to any child partition and remotely view its user interface and 
interact with it .

Virtualization Service Providers
Virtualization service providers (VSPs) are responsible for the high-speed emulation of certain devices 
visible to child partitions (the exact difference between VSP-emulated devices and user-mode– 
process-emulated devices will be explained later), and unlike the VM service and processes, VSPs can 
also run in kernel mode as drivers . More detail on VSPs will follow in the section that describes device 
architecture in the virtualization stack .

VM Infrastructure Driver and Hypervisor API Library
Because the hypervisor cannot be directly accessed by user-mode applications, such as the VM 
 service that is responsible for management, the virtualization stack must actually talk to a driver in 
kernel mode that is responsible for relaying the requests to the hypervisor . This is the job of the VM 
infrastructure driver (VID) . The VID also provides support for certain low-memory memory devices, 
such as MMIO and ROM emulation .

A library located in kernel mode provides the actual interface to the hypervisor (called hypercalls) . 
Messages can also come from child partitions (which will perform their own hypercalls), because there 
is only one hypervisor for the whole system and it can listen to messages coming from any partition . 
You can find this functionality in the Winhv.sys device driver.

Hypervisor
At the bottom of the architecture is the hypervisor itself, which registers itself with the processor at 
system boot-up time and provides its services for the stack to use (through the use of the hypercall 
interface) . This early initialization is performed by the hvboot.sys driver, which is configured to start 
early on during a system boot . Because Intel and AMD processors have slightly differing implementa-
tions of hardware-assisted virtualization, there are actually two different hypervisors—the correct one 
is selected at boot-up time by querying the processor through CPUID instructions . On Intel systems, 
the Hvix64 .exe binary is loaded, while on AMD systems, the Hvax64 .exe image is used .

Child Partitions
The child partition, as discussed earlier, is an instance of any operating system running parallel to the 
parent partition . (Because you can save or pause the state of any child, it might not necessarily be 
running, but there will be a worker process for it .) Unlike the parent partition, which has full access 
to the APIC, I/O ports, and physical memory, child partitions are limited for security and manage-
ment reasons to their own view of address space (the Guest Virtual Address Space, or GVA, which is 
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 managed by the hypervisor) and have no direct access to hardware . In terms of hypervisor access, it 
is also limited mainly to notifications and state changes. For example, a child partition doesn’t have 
control over other partitions (and can’t create new ones) .

Child partitions have many fewer virtualization components than a parent partition because they 
are not responsible for running the virtualization stack—only for communicating with it . Also, these 
components can also be considered optional because they enhance performance of the environment 
but are not critical to its use . Figure 3-36 shows the components present in a typical Windows child 
partition .

User mode

Guest applications

Kernel mode

Windows
kernel

Virtualization
service
clients
(VSCs)

Enlightenments

FIGURE 3-36 Components in a child partition

EXPERIMENT: Examining Child Partitions from the Parent with LiveKd
With Sysinternals LiveKd, you can examine a Windows XP or higher virtual machine from the 
parent partition without having to boot the child operating system in debugging mode . First, 
specify the –hvl option to LiveKd, which has it list the IDs and names of active child partitions:

Then run LiveKd with the –hv switch and specify the ID or name of the child partition that 
you want to examine . Just as for debugging the local system with Livekd, the contents of the 
virtual machine’s memory can change as you execute LiveKd commands, resulting in LiveKd 
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seeing inconsistencies caused by data reflecting different points in time. If you want LiveKd to 
see a consistent view, you can specify the –p option to have the child partition paused while 
LiveKd is running . All commands that work on a local system also work when you use LiveKd 
to explore a virtual machine . Here’s the partial output of the !vm kernel debugger command, 
which lists various memory-related statistics, when executed on a Hyper-V child partition:

Virtualization Service Clients
Virtualization service clients (VSCs) are the child partition analogues of VSPs . Like VSPs, VSCs are used 
for device emulation, which is a topic of later discussion .

Enlightenments
Enlightenments are one of the key performance optimizations that Windows virtualization takes 
advantage of. They are direct modifications to the standard Windows kernel code that can detect that 
this operating system is running in a child partition and perform work differently . Usually, these opti-
mizations are highly hardware-specific and result in a hypercall to notify the hypervisor. An example 
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is notifying the hypervisor of a long busy-wait spin loop . The hypervisor can keep some state stale in 
this scenario instead of keeping track of the state at every single loop instruction . Entering and exiting 
an interrupt state can also be coordinated with the hypervisor, as well as access to the APIC, which 
can be enlightened to avoid trapping the real access and then virtualizing it .

Another example has to do with memory management, specifically TLB flushing and changing 
address space . (See Chapter 9 for more information on these concepts .) Usually, the operating system 
executes a CPU instruction to flush this information, which affects the entire processor. However, 
because a child partition could be sharing a CPU with many other child partitions, such an operation 
would also flush this information for those operating systems, resulting in noticeable performance 
degradation . If Windows is running under a hypervisor, it instead issues a hypercall to have the 
 hypervisor flush only the specific information belonging to the child partition.

Hardware Emulation and Support
A virtualization solution must also provide optimized access to devices . Unfortunately, most de-
vices aren’t made to accept multiple requests coming in from different operating systems . The 
 hypervisor steps in by providing the same level of synchronization where possible and by emulating 
certain  devices when real access to hardware cannot be permitted . In addition to devices, memory 
and  processors must also be virtualized . Table 3-26 describes the three types of hardware that the 
 hypervisor must manage . 

TABLE 3-26 Virtualized Hardware

Component Managed By Usage

Processor Hypervisor built-in scheduler and 
related microkernel components

Manage usage of hardware’s processing power, share 
 multiple processors across multiple child partitions, 
manage and switch processor states (such as registers) .

Memory Hypervisor built-in memory 
manager and related microkernel 
components

Manage hardware’s RAM usage and availability . Protect 
memory from child partitions and parent partition . 
Provide a contiguous view of physical memory starting 
at address 0 .

Devices VM worker processes—hypervisor 
responsible only for interception 
and notification

Provide hardware multiplexing so that multiple child 
partitions can access the same device on the physical 
machine . Optimize access to physical devices to be as 
fast as possible .

Instead of exposing actual hardware to child partitions, the hypervisor exposes virtual devices 
(called VDevs) . VDevs are packaged as COM components that run inside a VM worker process, and 
they are the central manageable object behind the device . (Usually, VDevs expose a WMI interface .) 
The Windows virtualization stack provides support for two kinds of virtual devices: emulated devices 
and synthetic devices (also called enlightened I/O) . The former provide support for various devices that 
the operating systems on the child partition would expect to find, while the latter requires specific 
support from the guest operating system. On the other hand, synthetic devices provide a significant 
performance benefit by reducing CPU overhead.
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Emulated Devices
Emulated devices work by presenting the child partition with a set of I/O ports, memory ranges, and 
interrupts that are being controlled and monitored by the hypervisor . When access to these resources 
is detected, the VM worker process eventually gets notified through the virtualization stack (shown 
earlier in Figure 3-34) . The process then emulates whatever action is expected from the device and 
completes the request, going back through the hypervisor and then to the child partition . From 
this topological view alone, one can see that there is a definite loss in performance, without even 
 considering that the software emulation of a hardware device is usually slow .

The need for emulated devices comes from the fact that the hypervisor needs to support 
 nonhypervisor-aware operating systems, as well as the early installation steps of even Windows itself . 
During the boot process, the installer can’t simply load all the child partition’s required components 
(such as VSCs) to use synthetic devices, so a Windows installation will always use emulated devices 
(which is why installation will seem very slow, but once installed the operating system will run quite 
close to native speed) . Emulated devices are also used for hardware that doesn’t require high-speed 
emulation and for which software emulation might even be faster . This includes items such as COM 
(serial) ports, parallel ports, or the motherboard itself . 

Note Hyper-V emulates an Intel i440BX motherboard, an S3 Trio video card, and an Intel 
21140 NIC .

Synthetic Devices
Although emulated devices work adequately for 10-Mbit network connections, low-resolution VGA 
displays, and 16-bit sound cards, the operating systems and hardware that child partitions usually 
 require in today’s usage scenarios require a lot more processing power, such as support for 1000-
Mbit GbE connections; full-color, high-resolution 3D support; and high-speed access to storage 
devices . To support this kind of virtualized hardware access at an acceptable CPU usage level and 
virtualized throughput, the virtualization stack uses a variety of components to optimize device I/Os 
to their  fullest (similar to kernel enlightenments) . Three components are part of this support, and they 
all belong to what’s presented to the user as integration components or ICs:

 ■ Virtualization service providers (VSPs)

 ■ Virtualization service clients/consumers (VSCs)

 ■ VMBus

Figure 3-37 shows a diagram of how an enlightened, or synthetic storage I/O, is handled by the 
virtualization stack .
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FIGURE 3-37 I/O handling paths in Hyper-V

As shown in Figure 3-37, VSPs run in the parent partition, where they are associated with a specific 
device that they are responsible for enlightening. (We’ll use that as a term instead of emulating when 
referring to synthetic devices.) VSCs reside in the child partition and are also associated with a specific 
device . Note, however, that the term provider can refer to multiple components spread across the 
device stack . For example, a VSP can be any of the following:

 ■ A user-mode service

 ■ A user-mode COM component

 ■ A kernel-mode driver

In all three cases, the VSP will be associated with the actual virtual device inside the VM worker 
process . VSCs, on the other hand, are almost always designed to be drivers sitting at the lowest level 
of the device stack (see Chapter 8 in Part 2 for more information on device stacks) and intercept I/Os 
to a device and redirect them through a more optimized path . The main optimization that is per-
formed by this model is to avoid actual hardware access and use VMBus instead . Under this model, 
the hypervisor is unaware of the I/O, and the VSP redirects it directly to the parent partition’s kernel 
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storage stack, avoiding a trip to user mode as well . Other VSPs can perform work directly on the 
device, by talking to the actual hardware and bypassing any driver that might have been loaded on 
the parent partition . Another option is to have a user-mode VSP, which can make sense when dealing 
with lower-bandwidth devices .

As described earlier, VMBus is the name of the bus transport used to optimize device access by 
implementing a communications protocol using hypervisor services . VMBus is a bus driver present 
on both the parent partition and the child partitions responsible for the Plug and Play enumeration 
of synthetic devices in a child . It also contains the optimized cross-partition messaging protocol that 
uses a transport method that is appropriate for the data size . One of these methods is to provide a 
shared ring buffer between each partition—essentially an area of memory on which a certain amount 
of data is loaded on one side and unloaded on the other side . No memory needs to be allocated 
or freed because the buffer is continuously reused and simply rotated . Eventually, it might become 
full with requests, which would mean that newer I/Os would overwrite older I/Os . In this uncom-
mon  scenario, VMBus simply delays newer requests until older ones complete . The other messaging 
 transport is direct child memory mapping to the parent address space for large enough transfers .

Virtual Processors
Just as the hypervisor doesn’t allow direct access to hardware (or to memory, as you’ll see later), child 
partitions don’t really see the actual processors on the machine but have a virtualized view of CPUs 
as well . On the root machine, the administrator and the operating system deal with logical processors, 
which are the actual processors on which threads can run (for example, a dual quad-core machine 
has eight logical processors), and assign these processors to various child partitions . For example, one 
child partition could be scheduled on logical processors 1, 2, 3, and 4, while the second child partition 
is scheduled on processors 5, 6, 7, and 8 . These operations are all made possible through the use of 
virtual processors, or VPs . 

Because processors can be shared across multiple child partitions, the hypervisor includes its own 
scheduler that distributes the workload of the various partitions across each processor . Additionally, 
the hypervisor maintains the register state for each virtual processor and to an appropriate “processor 
switch” when the same logical processor is being used by another child partition . The parent parti-
tion has the ability to access all these contexts and modify them as required, an essential part of the 
virtualization stack that must respond to certain instructions and perform actions .

The hypervisor is also directly responsible for virtualizing processor APICs and providing a  simpler, 
less-featured virtual APIC, including support for the timer that’s found on most APICs (however, 
at a slower rate) . Because not all operating systems support APICs, the hypervisor also allows for 
the  injection of interrupts through a hypercall, which permits the virtualization stack to emulate a 
 standard i8059 PIC .

Finally, because Windows supports dynamic processor addition, an administrator can add new 
processors to a child partition at run time to increase the responsiveness of the guest operating 
 systems if it’s under heavy load .
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Memory Virtualization
The final piece of hardware that must be abstracted away from child partitions is memory, not only 
for the normal behavior of the guest operating systems, but also for security and stability . Improperly 
managing the child partitions’ access to memory could result in privacy disclosures and data corrup-
tion, as well as possible malicious attacks by “escaping” the child partition and attacking the parent 
(which would then allow attacks on the other child partitions) . Apart from this aspect, there is also the 
matter of the guest operating system’s view of physical address space . Almost all operating systems 
expect memory to begin at address 0 and be somewhat contiguous, so simply assigning chunks of 
physical memory to each child partition wouldn’t work even if enough memory was available on the 
system .

To solve this problem, the hypervisor implements an address space called the guest  physical 
 address space (GPA space). The GPA starts at address 0, which satisfies the needs of operating systems 
inside child partitions . However, the GPA is not a simple mapping to a chunk of physical memory 
because of the second problem (the lack of contiguous memory) . As such, GPAs can point to any 
location in the machine’s physical memory (which is called the system physical address space, or 
SPA space), and there must be a translation system to go from one address type to another . This 
 translation system is maintained by the hypervisor and is nearly identical to the way virtual memory 
is mapped to physical memory on x86 and x64 processors . (See Chapter 10 in Part 2 for more 
 information on the memory manager and address translation .)

As for actual virtual addresses in the child partition (which are called guest virtual address space—
GVA space), these continue to be managed by the operating system without any change in behavior . 
What the operating system believes are real physical addresses in its own page tables are actually 
SPAs . Figure 3-38 shows an overview of the mapping between each level .
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0x910B4

 NtWriteFile
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FIGURE 3-38 Guest virtual and physical address translation

This means that when a guest operating system boots up and creates the page tables to map 
virtual to physical memory, the hypervisor intercepts SPAs and keeps its own copy of the page tables . 
Conceptually, whenever a piece of code accesses a virtual address inside a guest operating system, 
the hypervisor does the initial page table translation to go from the guest virtual address to the GPA 
and then maps that GPA to the respective SPA . In reality, this operation is optimized through the use 
of shadow page tables (SPTs), which the hypervisor maintains to have direct GVA-to-SPA translations 
and simply loads when appropriate so that the guest accesses the SPA directly . 
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Second-Level Address Translation and Tagged TLB
Because the translation from GVA to GPA to SPA is expensive (because it must be done in 
software), CPU manufacturers have worked to curtail this inefficiency by making the processor 
natively aware of the address translation requirements of a virtual machine—in other words, 
an advanced processor could understand that the memory access is occurring from a hosted 
virtual machine and perform the GVA-to-SPA lookup on its own, without requiring assistance 
from the hypervisor . This lookup technology is called Second-Level Address Translation (SLAT) 
because it covers both the target-to-host translation (second level) and the host VA–to–host 
PA translation (first level). For marketing purposes, however, Intel has called this support VT 
Extended/Nested Page Table (NPT) technology, while AMD calls it AMD-V Rapid Virtualization 
Indexing (RVI) . 

The latest version of the Hyper-V stack takes full advantage of this processor support, 
reducing the complexity of its code and minimizing the number of context switches required 
to handle page faults in hosted partitions . Additionally, SLAT enables Hyper-V to throw out its 
shadow page tables and relevant mappings, which allows an additional reduction of memory 
overhead as well . These changes increase the scalability of Hyper-V on such systems, notably 
leading to an increase in the maximum number of virtual machines that a single host (Hyper-V 
server) can serve, or run concurrently . According to tests performed by Microsoft, support for 
SLAT increases the maximum number of supported sessions between 1 .6 and 2 .5 times . Fur-
thermore, the processor overhead drops from about 10 percent to 2 percent, and each virtual 
machine consumes one less megabyte of physical RAM on the host .

In addition, both Intel and AMD introduced a functionality that was typically found only on 
RISC processors such as ARM, MIPS, or PPC, which is the ability of the processor to differentiate 
between the processes associated with each cached virtual-to-physical translation entry in the 
translation look-aside buffer (TLB) . On CISC processors such as the x86 and x64, the TLB was 
built as a systemwide resource—each time the operating system switched the currently execut-
ing process, the TLB had to be flushed to invalidate any cached entries that might’ve belonged 
to the previous executing process . If the processor, instead, could be told that the process has 
changed, the TLB would avoid a flush and the processor would simply not use the cached en-
tries that did not correspond to this process . New entries would be created, eventually overrid-
ing other processes’ older entries . This type of smarter TLB is called a tagged TLB, because each 
cache entry is tagged with a per-process identifier.

Flushing the TLB is even worse when dealing with Hyper-V systems because a different 
process can actually correspond to a completely different VM . In other words, each time the 
hypervisor and operating system scheduled another VM for execution, the host’s TLB had to 
be flushed, flushing away all the cached translations the previous VM had performed, slow-
ing down memory access, and causing significant latency. When running on a processor that 
implements a tagged TLB, the Hyper-V can simply notify the processor that a new process/VM 
is running and that the entries of other VM should not be used . AMD processors with RVI sup-
port tagged TLBs through an Address Space Identifier, or ASID, while recent Intel Nehalem-EX 
processors implement a tagged TLB by using a Virtual Processor Identifier (VPID). 
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Dynamic Memory
A feature called Dynamic Memory enables systems administrators to make a virtual machine’s 
physical memory allocation variable based on the memory demands of the active virtual ma-
chines, in much the same way that the Windows memory manager adjusts the physical memory 
assigned to each process based on their memory demands . The capability means that adminis-
trators do not have to precisely gauge the size of a virtual machine required for optimal perfor-
mance and that the system’s physical memory is more effectively used by the virtual machines 
that need it . 

Dynamic Memory’s architecture consists of several components, shown in Figure 3-39 . 
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FIGURE 3-39 Dynamic Memory architecture

The principle components of the architecture are as follows:

 ■ The Dynamic Memory balancer, which is implemented in the virtual machine management 
service . The balancer is responsible for assigning physical memory to child partitions .

 ■ The Dynamic Memory VSP (DM VSP), which runs in the VMWPs of child partitions that 
have dynamic memory enabled .

 ■ The Dynamic Memory VSC (DM VSC, %SystemRoot%\System32\Drivers\Dmvsc.sys), 
 installed as an enlightenment driver running in the child partitions .
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To configure a VM for dynamic memory, an administrator chooses Dynamic in the VM’s 
memory settings as shown in Figure 3-40 . 

FIGURE 3-40 Dynamic memory configuration dialog

The associated settings include the amount of memory that will be assigned to the VM 
when it starts (Startup RAM), the maximum amount that it can be assigned (Maximum RAM), 
the percentage of the VM’s memory that should be available for immediate use by the operat-
ing system if its memory demand increases, and finally, the weight of the VM with respect to 
other VMs . In addition to serving as weighting for the distribution of physical memory among 
virtual machines that have dynamic memory enabled, the hypervisor also uses it as a guide for 
the startup order of virtual machines configured to start when the system boots. Finally, the 
available memory percentage is a reference to memory within the VM that the VM’s operating 
system has not assigned to a process, device drivers, or itself, and that can be assigned without 
incurring a page fault . Chapter 10 in Part 2 describes available memory in more detail . 

When the DM VSC starts in a child partition that has dynamic memory enabled in its 
memory configuration, it first checks to see if the operating system supports dynamic memory 
capabilities . It performs this check by simply calling the memory manager’s hot-add memory 
function, specifying a block of child physical memory already assigned to the virtual machine . 
If the memory manager supports hot add, it returns an error indicating that the address range 
is already in use, and if it doesn’t, it reports that the function is not supported . If dynamic 
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memory is supported, the DM VSC establishes a connection to the DM VSP via VMBus . Because 
the system’s memory usage fluctuates during the boot process, after all autostart Windows 
services have finished initializing, the VSC begins reporting memory statistics once per second 
that indicate the current system commit level in the virtual machine . (See Chapter 10 in Part 2 
for more information on system commit .)

The DM VSP in the parent partition calculates a memory pressure value for its corresponding 
VM using the following calculation based on the VM’s memory report:

Memory Pressure = Committed Memory / Physical Memory 

Physical Memory refers to the amount of memory currently assigned to the VM’s partition . It 
also keeps a running exponential average pressure that represents the previous 20 seconds of 
pressure reports, adjusting the average pressure only when the current pressure deviates from 
the average by at least a standard deviation . 

A component called the balancer executes in the VMMS service . Once per second, it  analyzes 
the memory pressures reported by the DM VSPs, considers VM policy configuration, and de-
termines if and how much memory should be redistributed . If a global Hyper-V setting called 
NUMA spanning is enabled, the balancer uses two balancing engines: one engine is the global 
balancer, and it is responsible for assigning new VMs to NUMA nodes . It does so based on the 
memory usage and VM pressures of the nodes at the time of the assignment . Each NUMA node 
has its own local balancer that manages the distribution of the node’s memory across the VMs 
assigned to the node . If the NUMA spanning option is off, the global balancer has no role other 
than to invoke the only local balancer for the system . 

The benefit of assigning VMs to NUMA nodes is that VMs will be guaranteed the fastest 
memory accesses possible . The tradeoff, however, is that it might not be possible to start or 
add memory to a VM in the case where the sum of unassigned memory is sufficient but no one 
node has enough available memory to accommodate the amount of memory requested . 

A local balancer increases or decreases a global target memory pressure to use all  available 
memory under its management or to use it until a minimum pressure level is reached that 
indicates all VMs have ample memory . The balancer then loops over the VMs, determining 
how much memory to add or remove from each VM to reach the target pressure . During the 
calculations, the balancer reserves a minimum amount of memory for the host . The host’s 
reservation is a base amount of approximately 400 MB plus 30 MB for each 1 GB of RAM on 
the system . Factors that can affect the amount of memory reserved include whether or not the 
system is using SLAT or software paging, and whether multimedia redirection is enabled . Every 
five minutes, the balancer also removes memory from VMs that have so much memory that 
their pressure is essentially zero . 

Note that if the child partition’s operating system is running a 32-bit version of Windows, the 
dynamic memory engine will not assign the partition more than 4 GB of memory . 

Once it has calculated the amounts of memory to add and remove from VMs, it asks each 
WP to perform the desired operation . If the operation is to remove memory, the WP signals 
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the child DM VSC over VMBUS of the amount to remove and the DM VSC balloons its memory 
usage by allocating physical memory from the system using the MmAllocatePagesForMdlEx 
function . It retrieves the allocated GPAs and sends that back to the WP, which passes them to 
the Hyper-V memory manager . The Hyper-V memory manager then converts the GPAs to SPAs 
and adds the memory to its free memory pool . 

If it’s a memory add operation, the WP asks the Hyper-V memory manager first if the VM 
has any physical memory assigned to it but currently allocated by the VSC’s balloon . If it does, 
the WP retrieves the GPAs for an amount that should be unballooned and asks the VSC to free 
those pages, making them available again for use by the VM’s operating system . If the amount 
that can be released by unballooning falls short of the amount of physical memory the balancer 
wants to give the VM, it asks the Hyper-V memory manager to give the remaining amount 
from its free memory pool to the child partition via Windows support for hot-add memory and 
reports the GPAs it added to the WP, which in turn relays them to the child’s DM VSC .

EXPERIMENT: Watching Dynamic Memory
You can watch the behavior of Dynamic Memory by configuring Dynamic Memory for a 
VM running a 64-bit Dynamic Memory-compatible operating system, such as Windows 7 or 
 Windows Server 2008 R2 . Hyper-V exposes several Dynamic Memory–related performance 
counters under Hyper-V Dynamic Memory Balancer and Dynamic Memory VM . Counters 
 include the amount of memory assigned to a guest, the guest operating system–visible 
memory (the amount of memory it thinks it has), its current and average memory pressure, and 
the amount of memory added and removed over time:
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After freshly booting the virtual machine, add the Guest Visible Physical Memory and 
 Physical Memory counters . Set the scale to three times the current Guest Visible Physical 
 Memory value, which will be at least as large as the Physical Memory value . Then run the 
 Sysinternals Testlimit tool in the virtual machine with the following commandline:  
testlimit -m 1000 -c 1 

Assuming you have enough available physical memory on the system, this causes Testlimit 
to allocate about 1 GB of virtual memory, raising the memory pressure in the virtual machine . 
After a few seconds, you will see the guest visible and actual physical memory assigned to the 
virtual machine jump to the same value . Roughly 30 seconds later, you’ll see another jump 
when the balancer decides that the additional memory is not enough to completely relieve the 
memory pressure in the virtual machine and, because there’s more memory available on the 
host, gives the virtual machine some more .

If you terminate Testlimit, the memory levels remain constant for several minutes if there’s 
no memory demands from the host or other virtual machines, but eventually the balancer will 
respond to the lack of memory pressure in the virtual machine by trimming memory . Note that 



 CHAPTER 3 System Mechanisms 265

the Guest Visible Physical Memory counter remains unchanged, but the Physical Memory 
 counter drops back to a level near what it was before Testlimit executed:

Intercepts
We’ve talked about the various ways in which access to hardware, processors, and memory is 
 virtualized by the hypervisor and sometimes handed off to a VM worker process, but we haven’t 
yet talked about the mechanism that allows this to happen—intercepts. Intercepts are configurable 
hooks that a parent partition can install and configure in order to respond to. These can include the 
 following items:

 ■ I/O intercepts, useful for device emulation

 ■ MSR intercepts, useful for APIC emulation and profiling

 ■ Access to GPAs, useful for device emulation, monitoring, and profiling (Additionally, the 
 intercept can be fine-tuned to a specific access, such as read, write, or execute.)

 ■ Exception intercepts such as page faults, useful for maintaining machine state and memory 
emulation (for example, maintaining copy-on-write)
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Once the hypervisor detects an event for which an intercept has been registered, it sends an 
 intercept message through the virtualization stack and puts the VP in a suspended state . The virtu-
alization stack (usually the worker process) must then handle the event and resume the VP (typically 
with a modified register state that reflects the work performed to handle the intercept).

Live Migration
To support scenarios such as planned hardware upgrades and resource load balancing across  servers, 
Hyper-V includes support for migrating virtual machines between nodes of a Windows Failover 
 Cluster with minimal downtime . The key to Live Migration’s efficiency is that the bulk of the transfer of 
the virtual machine’s memory from the source to the target occurs while the virtual machine contin-
ues to run on the source node; only when the memory transfer is complete does the virtual machine 
suspend and resume operating on the target node. This small window when final virtual machine 
state migrates is typically less than the default TCP timeout value, preserving open connections 
from clients using services of the virtual machine and making the migration transparent from their 
 perspective . Figure 3-41 shows the Live Migration process .
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FIGURE 3-41 Live migration transfer steps

The Live Migration process proceeds in a number of steps, shown in Figure 3-41:

1. Migration Setup The VMMS of the hosting (source) node of the virtual machine opens 
a TCP connection with the destination host. It transfers the virtual machine’s configuration 
information, which includes virtual hardware specifications such as the number of processors 
and amount of RAM, to the destination . VMMS on the destination (target) node instantiates a 
paused virtual machine matching the configuration. The VMMS on the source notifies the vir-
tual machine’s worker process that the live migration is ready to proceed and hands it the TCP 
connection . Likewise, the target VMMS hands its end of the connection to the target worker 
process . 

2. Memory Transfer The memory transfer phase consists of several subphases:

a. The source VMWP creates a bitmap with one bit representing each page of the virtual 
machine’s guest physical memory . It sets every bit to indicate that the page is dirty, which 
means that the page’s current contents have not yet been sent to the target . 
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b. The source VMWP registers a memory-change notification callback with the hypervisor 
that sets the corresponding bit in the bitmap for each page of the virtual machine that 
changes . 

c. The source VMWP proceeds to walk through the dirty-page bitmap in 16-KB blocks, 
clearing the dirty bits in the dirty-page bitmap for the pages in the block, reading each 
dirty page’s contents via a hypervisor call, and sending the contents to the target . The 
target VMWP invokes the hypervisor to inject the memory contents into the target virtual 
machine’s guest physical memory . 

d. When it’s finished iterating over the dirty-page bitmap, the source VMWP checks to see if 
any pages have been dirtied during the iteration . If not, it moves to the next phase of the 
migration, but if any pages have been dirtied, it repeats the iteration. If it’s iterated five 
times, the virtual machine is dirtying memory faster than the worker process can send 
modifications, so it proceeds to the next phase of the migration.

5. State Transfer The source VMWP suspends the virtual machine and makes a final iteration 
through the dirty-page bitmap to send over any pages that were dirtied since the last pass . 
Because the virtual machine is suspended during the transfer, no more pages will be dirtied . 
Then the source worker process sends the virtual machine’s state, including the contents of 
the virtual processor registers. Finally, it notifies VMMS that the migration is complete, waits 
for acknowledgement, and then sends a message to the target transferring ownership of the 
virtual machine . As the last migration step, the target worker process moves the virtual ma-
chine to the running state . 

6. Another aspect of Live Migration is the transfer of ownership of the virtual machine’s files, 
including its VHDs . Traditional Windows Clustering is a shared-nothing model, where each 
LUN of the cluster’s storage system is owned by one node at a time . The LUN’s owning node 
has sole access to the LUN and any files stored on it. This model can lead to management 
complexity because each virtual machine must be stored on a separate LUN and therefore a 
separate volume, causing an explosion of volumes in a cluster hosting many virtual machines . 
It poses an even more significant challenge for Live Migration because LUN ownership transfer 
is an expensive operation, consisting of the source node flushing any modified file data to the 
LUN, the source node unmounting the volumes formatted on the LUN, ownership transfer 
from the source node to target node, and the target node mounting the volumes . Depending 
on the number of volumes on the LUN and the amount of dirty data that needs to be written 
back, the entire sequence can take tens of seconds, which would prevent Live Migration from 
meeting its goal of perceived nearly-instantaneous migrations . 

7.  To address the limitations of the traditional clustering model and make Live Migration pos-
sible, Live Migration leverages a storage feature called Clustered Shared Volumes (CSV) . With 
CSV, one node owns the namespace of the volumes on a LUN while others can have exclusive 
ownership of individual files. Exclusive ownership permits the node hosting the virtual ma-
chine to directly access the on-disk storage of the VHD file, bypassing the network file system 
accesses normally required to interact with a LUN owned by another node . Only when a node 
wants to create or delete files, change the size of files (for example, to extend the size of a 
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dynamic or differencing VHD), or change other file metadata such as timestamps does it need 
to send a request via the SMB2 protocol to the owning node if it’s not the owner .

8. The hybrid sharing model of CSV enables LUN ownership to remain unchanged during Live 
Migration and enables only ownership of individual migrating virtual machine’s file to change, 
avoiding the unmounts and mount operations. Also, only dirty data specific to the virtual ma-
chine files must be written before the migration, something that can typically happen concur-
rently with the memory migration . Figure 3-42 depicts the storage ownership changes during 
a Live Migration . CSV’s implementation is described in the “File System Filter Drivers” section 
of Chapter 12, “File Systems,” in Part 2 . 

VHD
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Node
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LUN

LUN Owner
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FIGURE 3-42 Clustered Shared Volumes in Live Migration

Kernel Transaction Manager

One of the more tedious aspects of software development is handling error conditions . This is 
 especially true if, in the course of performing a high-level operation, an application has completed 
one or more subtasks that result in changes to the file system or registry. For example, an applica-
tion’s software updating service might make several registry updates, replace one of the application’s 
executables, and then be denied access when it attempts to update a second executable . If the service 
doesn’t want to leave the application in the resulting inconsistent state, it must track all the changes it 
makes and be prepared to undo them. Testing the error-recovery code is difficult, and consequently 
often skipped, so errors in the recovery code can negate the effort .

Applications can, with very little effort, gain automatic error-recovery capabilities by using a kernel 
mechanism called the Kernel Transaction Manager (KTM), which provides the facilities required to 
perform such transactions and enables services such as the distributed transaction coordinator (DTC) 
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in user mode to take advantage of them . Any developer who uses the appropriate APIs can take 
 advantage of these services as well .

KTM does more than solve large-scale issues like the one presented . Even on single-user home 
computers, installing a service patch or performing a system restore are large operations that involve 
both files and registry keys. Unplug an older Windows computer during such an operation, and the 
chances for a successful boot are slim . Even though the NT File System (NTFS) has always had a log 
file permitting the file system to guarantee atomic operations (see Chapter 12 in Part 2 for more 
information on NTFS), this only means that whichever file was being written to during the process 
will get fully written or fully deleted—it does not guarantee the entire update or restore  operation . 
Likewise, the registry has had numerous improvements over the years to deal with  corruption (see 
Chapter 4 for more information on the registry), but the fixes apply only at the key/value level. 

As the heart of transaction support, KTM allows transactional resource managers such as NTFS and 
the registry to coordinate their updates for a specific set of changes made by an application. NTFS 
uses an extension to support transactions, called TxF . The registry uses a similar extension, called TxR . 
These kernel-mode resource managers work with KTM to coordinate the transaction state, just as 
user-mode resource managers use DTC to coordinate transaction state across multiple user-mode 
resource managers . Third parties can also use KTM to implement their own resource managers .

TxF and TxR both define a new set of file system and registry APIs that are similar to existing ones, 
except that they include a transaction parameter. If an application wants to create a file within a trans-
action, it first uses KTM to create the transaction, and then it passes the resulting transaction handle 
to the new file creation API. Although we’ll look at the registry and NTFS implementations of KTM 
later, these are not its only possible uses . In fact, it provides four system objects that allow a variety of 
operations to be supported . These are listed in Table 3-27 .

TABLE 3-27 KTM Objects

Object Meaning Usage

Transaction Collection of data operations to 
be performed . Provides atomic, 
consistent, isolated, and durable 
operations .

Can be associated with the registry and file 
I/O to make those operations part of the same 
larger operation . 

Enlistment Association between a resource 
manager and a transaction .

Register with a transaction to receive 
 notifications on it. The enlistment can specify 
which notifications should be generated.

Resource Manager (RM) Container for the transactions and 
the data on which they operate .

Provides an interface for clients to read and 
write the data, typically on a database .

Transaction Manager 
(TM)

Container of all transactions that 
are part of the associated resource 
managers . As an instance of a log, 
it knows about all transaction states 
but not their data .

Provides an infrastructure through which clients 
and resource managers can communicate, and 
provides and coordinates recovery operations 
after a crash . Clients use the TM for transactions; 
RMs use the TM for enlistments .
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EXPERIMENT: Listing Transaction Managers
Windows ships with a built-in tool called Ktmutil .exe that allows you to see ongoing 
 transactions as well as registered transaction managers on the system (and force the outcome 
of ongoing transactions) . In this experiment, you’ll use it to display the transaction managers 
typically seen on a Windows machine .

Start an elevated command prompt and type:

Ktmutil.exe tm list

Here’s an example of output on a typical Windows system:

C:\Windows\system32>ktmutil tm list 
TmGuid                                 TmLogPath 
-------------------------------------- ----------------------------------------- 
{fef0dc5f-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume2\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog 
{fef0dc63-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume1\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog 
{5e68e4aa-129e-11e0-8635-806e6f6e6963} \Device\HarddiskVolume2\Windows\ServiceProfiles\
NetworkService\ntuser.dat{5e68e4a8-129e-11e0-8635-806e6f6e6963}.TM 
{5e68e4ae-129e-11e0-8635-005056c00008} \Device\HarddiskVolume2\Windows\ServiceProfiles\
LocalService\ntuser.dat{5e68e4ac-129e-11e0-8635-005056c00008}.TM 
{51ce23c9-0d6c-11e0-8afb-806e6f6e6963} \SystemRoot\System32\Config\TxR\{51ce23c7-0d6c-
11e0-8afb-806e6f6e6963}.TM 
{51ce23ee-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\ntuser.
dat{51ce23ec-0d6c-11e0-8afb-005056c00008}.TM 
{51ce23f2-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\AppData\
Local\Microsoft\Windows\UsrClass.dat{51ce23f0-0d6c-11e0-8afb-005056c00008}.TM 

Hotpatch Support

Rebooting a machine to apply the latest patches can mean significant downtime for a server, which 
is why Windows supports a run-time method of patching, called a hot patch (or simply hotpatch), in 
contrast to a cold patch, which requires a reboot. Hotpatching doesn’t simply allow files to be over-
written during execution; instead, it includes a complex series of operations that can be requested 
(and combined) . These operations are listed in Table 3-28 .

TABLE 3-28 Hotpatch Operations

Operation Meaning Usage

Rename Image Replacing a DLL that is on the disk 
and currently used by other applica-
tions, or replacing a driver that is on 
the disk and is currently loaded by 
the kernel

When an entire library in user mode needs to 
be replaced, the kernel can detect which pro-
cesses and services are referencing it, unload 
them, and then update the DLL and restart the 
programs and services (which is done through 
the restart manager) . When a driver needs to 
be replaced, the kernel can unload the driver 
(the driver requires an unload routine), update 
it, and then reload it .
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Operation Meaning Usage

Object Swap Atomically renaming an object in 
the object directory namespace

When a file (typically a known DLL) needs to 
be renamed atomically but not affect any pro-
cess that might be using it (so that the process 
can start using the new file immediately, using 
the old handle, without requiring an applica-
tion restart) .

Patch Function Code Replacing the code of one or more 
functions inside an image file with 
another version

If a DLL or driver can’t be replaced or renamed 
during run time, functions in the image can be 
directly patched . A hotpatch DLL that contains 
the newer code is jumped to whenever an 
older function is called .

Refresh System DLL Reload the memory mapped 
 section object for Ntdll .dll

The system native library, Ntdll .dll, is loaded 
only once during boot-up and then simply 
duplicated into the address space of every 
new process . If it has been hotpatched, the 
system must refresh this section to load the 
newer version .

Although hotpatches use internal kernel mechanisms, their actual implementation is no different 
from cold patches. The patch is delivered through Windows Update, typically as an executable file 
containing a program called Update .exe that performs the extraction of the patch and the update 
process. For hotpatches, however, an additional hotpatch file, containing the .hp extension, will be 
present. This file contains a special PE header called .HOT1 . This header contains a data structure 
describing the various patch descriptors present inside the file. Each of these descriptors identifies 
the offset in the original file that needs to be patched, a validation mechanism (which can include a 
simple comparison of the old data, a checksum, or a hash), and the new data to be patched . The ker-
nel parses the descriptors and applies the appropriate modifications. In the case of a protected process 
(see Chapter 5 for more information on processes) and other digitally signed images, the hotpatch 
must also be digitally signed in order to prevent fake patches from being applied to sensitive files or 
processes .

Note Because the hotpatch file also includes the original data, the hotpatching mechanism 
can also be used to uninstall a patch at run time .

Compile-time hotpatching support works by adding 7 additional bytes to the beginning of 
each function—4 are considered part of the end of the previous function, and 2 are part of the 
 function prolog—that is, the function’s beginning . Here’s an example of a function that was built with 
 hotpatching information:

lkd> u nt!NtCreateFile - 5 
nt!FsRtlTeardownPerFileContexts+0x169: 
82227ea5 90              nop 
82227ea6 90              nop 
82227ea7 90              nop 
82227ea8 90              nop 
82227ea9 90              nop 
nt!NtCreateFile: 
82227eaa 8bff            mov     edi,edi
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Notice that the five nop instructions don’t actually do anything, while the mov edi, edi at the 
beginning of the NtCreateFile function are also essentially meaningless—no actual state-changing 
operation takes place . Because 7 bytes are available, the NtCreateFile prologue can be transformed 
into a short jump to the buffer of five instructions available, which are then converted to a near jump 
instruction to the patched routine . Here’s NtCreateFile after having been hotpatched:

lkd> u nt!NtCreateFile - 5 
nt!FsRtlTeardownPerFileContexts+0x169: 
82227ea5 e93d020010      jmp     nt_patch!NtCreateFile (922280e7) 
nt!NtCreateFile: 
82227eaa ebfc            jmp     nt!FsRtlTeardownPerFileContexts+0x169 (82227ea5)

This method allows only the addition of 2 bytes to each function by jumping into the previous 
function’s alignment padding that it would most likely have at its end anyway . 

There are some limitations to the hotpatching functionality:

 ■ Patches that third-party applications such as security software might block or that might be 
incompatible with the operation of third-party applications

 ■ Patches that modify a file’s export table or import table

 ■ Patches that change data structures, fix infinite loops, or contain inline assembly code

Kernel Patch Protection

Some 32-bit device drivers modify the behavior of Windows in unsupported ways . For example, 
they patch the system call table to intercept system calls or patch the kernel image in memory to 
add functionality to specific internal functions. Shortly after the release of 64-bit Windows for x64 
and before a rich third-party ecosystem had developed, Microsoft saw an opportunity to preserve 
the  stability of 64-bit Windows . To prevent these kinds of changes, x64 Windows implements Kernel 
Patch Protection (KPP), also referred to as PatchGuard . KPP’s job on the system is similar to what 
its name implies—it attempts to deter common techniques for patching the system, or hooking it . 
Table 3-29 lists which components or structures are protected and for what purpose .

TABLE 3-29 Components Protected by KPP

Component Legitimate Usage Potential Malicious Usage

Ntoskrnl .exe, Hal .dll, Ci .dll, 
Kdcom .dll, Pshed .dll, Clfs .sys, 
Ndis .sys, Tcpip .sys

Kernel, HAL, and their dependen-
cies . Lower layer of network stack .

Patching code in the kernel and/or HAL to 
 subvert normal operation and behavior . 
Patching Ndis .sys to silently add back doors on 
open ports .

Global Descriptor Table (GDT) CPU hardware protection for the 
implementation of ring privilege 
levels (Ring 0 vs . Ring 3) .

Ability to set up a callgate, a CPU  mechanism 
through which user (Ring 3) code could per-
form operations with  kernel privileges (Ring 0) .
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Component Legitimate Usage Potential Malicious Usage

Interrupt Descriptor Table 
(IDT)

Table read by the CPU to deliver 
interrupt vectors to the correct 
 handling routine .

Malicious drivers could intercept file I/Os 
directly at the interrupt level, or hook page 
faults to hide contents of memory . Rootkits 
could hook the INT2E handler to hook all 
 system calls from a single point .

System Service Descriptor 
Table (SSDT)

Table containing the array of 
 pointers for each system call 
 handler .

Rootkits could modify the output or input of 
calls from user mode and hide processes, files, 
or registry keys .

Processor Machine State 
Registers (MSRs)

LSTAR MSR is used to set the 
handler of the SYSENTER and/
or SYSCALL instructions used for 
 system calls .

LSTAR could be overwritten by a malicious 
driver to provide a single hook for all system 
calls performed on the system .

KdpStub, KiDebugRoutine, 
KdpTrap function pointers

Used for run-time configuration of 
where exceptions should be deliv-
ered, based on whether a kernel 
debugger is remotely connected to 
the machine .

Value of the pointers could be overwritten by a 
malicious rootkit to take control of the system 
at predetermined times and perform invisible 
background tasks .

PsInvertedFunctionTable Cache of exception directories used 
on x64, allowing quick mapping 
between code where an exception 
happened and its handler .

Could be used to take control of the system 
during the exception handling of unrelated 
system code, including KPP’s own exception 
code responsible for detecting modifications 
in the first place.

Kernel stacks Store function arguments, the call 
stack (where a function should 
 return), and variables .

A driver could allocate memory on the side, 
set it as a kernel stack for a thread, and then 
manipulate its contents to redirect calls and 
parameters .

Object types Definitions for the various objects 
(such as processes and files) that the 
system supports through the object 
manager .

Could be used as part of a technique called 
DKOM (Direct Kernel Object Modification) 
to modify system behavior—for example, by 
hooking the object callbacks that each object 
type has registered .

Other Code related to bug-checking the 
system during a KPP violation, 
 executing the DPCs and timers 
 associated with KPP, and more . 

By modifying certain parts of the system used 
by KPP, malicious drivers could attempt to 
silence, ignore, or otherwise cripple KPP . 

Note Because certain 64-bit Intel processors implement a slightly different feature set of 
the x64 architecture, the kernel needs to perform run-time code patching to work around 
the lack of a prefetch instruction . KPP can deter kernel patching even on these processors, 
by exempting those specific patches from detection. Additionally, because of hypervisor 
(Hyper-V) enlightenments (more information on the hypervisor is provided earlier in this 
chapter), certain functions in the kernel are patched at boot time, such as the swap  context 
routine . These patches are also allowed by very explicit checks to make sure they are 
known patches to the hypervisor-enlightened versions .
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When KPP detects a change in any of the structures mentioned (as well as some other internal 
consistency checks), it crashes the system with code 0x109—CRITICAL_STRUCTURE_CORRUPTION .

For third-party developers who used techniques that KPP deters, the following supported 
 techniques can be used:

 ■ File system minifilters (see Chapter 8 in Part 2 for more information on these) to hook all file 
operations, including loading image files and DLLs, that can be intercepted to purge malicious 
code on-the-fly or block reading of known bad executables.

 ■ Registry filter notifications (see Chapter 4 for more information on these notifications) to hook 
all registry operations. Security software can block modification of critical parts of the registry, 
as well as heuristically determine malicious software by registry access patterns or known bad 
registry keys .

 ■ Process notifications (see Chapter 5 for more information on these notifications). Security 
 software can monitor the execution and termination of all processes and threads on the 
system, as well as DLLs being loaded or unloaded. With the enhanced notifications added for 
antivirus and other security vendors, they also have the ability to block process launch .

 ■ Object manager filtering (explained in the object manager section earlier). Security software 
can remove certain access rights being granted to processes and/or threads to defend their 
own utilities against certain operations .

There is no way to disable KPP once it’s enabled . Because device driver developers might need to 
make changes to a running system as part of debugging, KPP does not enable if the system boots in 
debugging mode with an active kernel-debugging connection .

Code Integrity

Code integrity is a Windows mechanism that authenticates the integrity and source of executable 
images (such as applications, DLLs, or drivers) by validating a digital certificate contained within the 
image’s resources. This mechanism works in conjunction with system policies, defining how sign-
ing should be enforced . One of these policies is the Kernel Mode Code Signing (KMCS) policy, which 
 requires that kernel-mode code be signed with a valid Authenticode certificate rooted by one of 
several recognized code signing authorities, such as Verisign or Thawte . 

To address backward-compatibility concerns, the KMCS policy is only fully enforced on 64-bit 
machines, because those drivers have to be recompiled recently in order to run on that Windows 
architecture . This, in turn, implies that a company or individual is still responsible for maintaining the 
driver and is able to sign it . On 32-bit machines, however, many older devices ship with outdated 
 drivers, possibly from out-of-business companies, so signing those drivers would sometimes be 
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 unfeasible . Figure 3-43 shows the warning displayed on 64-bit Windows machines that attempt to 
load an unsigned driver .

Note Windows also has a second driver-signing policy, which is part of the Plug and Play 
manager . This policy is applied solely to Plug and Play drivers, and unlike the kernel-mode 
code-signing policy, it can be configured to allow unsigned Plug and Play drivers (but not 
on 64-bit systems, where the KMCS policy takes precedence) . See Chapter 8 in Part 2 for 
more information on the Plug and Play manager .

 
FIGURE 3-43 Warning when attempting to install an unsigned 64-bit driver

Even on 32-bit Windows, code integrity writes an event to the Code Integrity event log when it 
loads an unsigned driver .

Note Protected Media Path applications can also query the kernel for its integrity state, 
which includes information on whether or not unsigned 32-bit drivers are loaded on the 
system. In such scenarios, they are allowed to disable protected, high-definition media 
playback as a method to ensure the security and reliability of the encrypted stream .

The code-integrity mechanism doesn’t stop at driver load time, however . Stronger measures also 
exist to authenticate per-page image contents for executable pages . This requires using a special 
flag while signing the driver binary and will generate a catalog with the cryptographic hash of every 
executable page on which the driver will reside . (Pages are a unit of protection on the CPU; for more 
information, see Chapter 10 in Part 2.) This method allows for detection of modification of an  existing 
driver, which might happen either at run time by another driver or through a page file or  hibernation 
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file attack (in which the contents of memory are edited on the disk and then reloaded into  memory). 
Generating such per-page hashes is also a requirement for the new filtering model, as well as 
 Protected Media Path components .

Conclusion

In this chapter, we examined the key base system mechanisms on which the Windows executive is 
built . In the next chapter, we’ll look at three important mechanisms involved with the management 
infrastructure of Windows: the registry, services, and Windows Management Instrumentation (WMI) .
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C H A P T E R  4

Management Mechanisms

This chapter describes four fundamental mechanisms in the Microsoft Windows operating system 
that are critical to its management and configuration:

 ■ The registry

 ■ Services

 ■ Unified Background Process Manager

 ■ Windows Management Instrumentation

 ■ Windows Diagnostics Infrastructure

The Registry

The registry plays a key role in the configuration and control of Windows systems. It is the  repository 
for both systemwide and per-user settings . Although most people think of the registry as static 
data stored on the hard disk, as you’ll see in this section, the registry is also a window into various 
 in- memory structures maintained by the Windows executive and kernel .

We’ll start by providing you with an overview of the registry structure, a discussion of the data 
types it supports, and a brief tour of the key information Windows maintains in the registry . Then 
we’ll look inside the internals of the configuration manager, the executive component responsible for 
implementing the registry database . Among the topics we’ll cover are the internal on-disk structure 
of the registry, how Windows retrieves configuration information when an application requests it, and 
what measures are employed to protect this critical system database .

Viewing and Changing the Registry
In general, you should never have to edit the registry directly: application and system settings 
stored in the registry that might require manual changes should have a corresponding user 
 interface to control their modification. However, as you’ve already seen a number of times in this 
book, some advanced and debug settings have no editing user interface . Therefore, both graphical 
user interface (GUI) and command-line tools are included with Windows to enable you to view and 
modify the registry .
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Windows comes with one main GUI tool for editing the registry—Regedit .exe—and a number of 
command-line registry tools . Reg .exe, for instance, has the ability to import, export, back up, and 
restore keys, as well as to compare, modify, and delete keys and values. It can also set or query flags 
used in UAC virtualization . Regini .exe, on the other hand, allows you to import registry data based on 
text files that contain ASCII or Unicode configuration data.

The Windows Driver Kit (WDK) also supplies a redistributable component, Offreg .dll, which hosts 
the Offline Registry Library. This library allows loading registry hive files in their binary format and 
applying operations on the files themselves, bypassing the usual logical loading and mapping that 
Windows requires for registry operations. Its use is primarily to assist in offline registry access, such 
as for purposes of integrity checking and validation. It can also provide performance benefits if the 
underlying data is not meant to be visible by the system, because the access is done through local 
file I/O instead of registry system calls.

Registry Usage
There are four principal times at which configuration data is read:

 ■ During the initial boot process, the boot loader reads configuration data and the list of 
boot device drivers to load into memory before initializing the kernel . Because the Boot 
 Configuration Database (BCD) is really stored in a registry hive, one could argue that registry 
access happens even earlier, when the Boot Manager displays the list of operating systems .

 ■ During the kernel boot process, the kernel reads settings that specify which device  drivers 
to load and how various system elements—such as the memory manager and process 
 manager—configure themselves and tune system behavior.

 ■ During logon, Explorer and other Windows components read per-user preferences from the 
registry, including network drive-letter mappings, desktop wallpaper, screen saver, menu 
 behavior, icon placement, and perhaps most importantly, which startup programs to launch 
and which files were most recently accessed.

 ■ During their startup, applications read systemwide settings, such as a list of optionally installed 
components and licensing data, as well as per-user settings that might include menu and 
 toolbar placement and a list of most-recently accessed documents .

However, the registry can be read at other times as well, such as in response to a modification of 
a registry value or key . Although the registry provides asynchronous callbacks that are the preferred 
way to receive change notifications, some applications constantly monitor their configuration set-
tings in the registry through polling and automatically take updated settings into account . In general, 
however, on an idle system there should be no registry activity and such applications violate best 
practices . (Process Monitor, from Sysinternals, is a great tool for tracking down such activity and the 
application or applications at fault .)
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The registry is commonly modified in the following cases:

 ■ Although not a modification, the registry’s initial structure and many default settings are 
defined by a prototype version of the registry that ships on the Windows setup media that is 
copied onto a new installation .

 ■ Application setup utilities create default application settings and settings that reflect 
 installation configuration choices.

 ■ During the installation of a device driver, the Plug and Play system creates settings in the 
 registry that tell the I/O manager how to start the driver and creates other settings that con-
figure the driver’s operation. (See Chapter 8, “I/O System,” in Part 2 for more information on 
how device drivers are installed .)

 ■ When you change application or system settings through user interfaces, the changes are 
often stored in the registry .

Registry Data Types
The registry is a database whose structure is similar to that of a disk volume . The registry contains 
keys, which are similar to a disk’s directories, and values, which are comparable to files on a disk. 
A key is a container that can consist of other keys (subkeys) or values . Values, on the other hand, 
store data . Top-level keys are root keys . Throughout this section, we’ll use the words subkey and key 
 interchangeably .

Both keys and values borrow their naming convention from the file system. Thus, you can 
 uniquely identify a value with the name mark, which is stored in a key called trade, with the name 
trade\mark. One exception to this naming scheme is each key’s unnamed value . Regedit displays the 
unnamed value as (Default) .

Values store different kinds of data and can be one of the 12 types listed in Table 4-1 . The majority 
of registry values are REG_DWORD, REG_BINARY, or REG_SZ . Values of type REG_DWORD can store 
numbers or Booleans (on/off values); REG_BINARY values can store numbers larger than 32 bits or raw 
data such as encrypted passwords; REG_SZ values store strings (Unicode, of course) that can represent 
elements such as names, file names, paths, and types.

TABLE 4-1 Registry Value Types

Value Type Description

REG_NONE No value type

REG_SZ Fixed-length Unicode string

REG_EXPAND_SZ Variable-length Unicode string that can have embedded 
environment variables

REG_BINARY Arbitrary-length binary data
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Value Type Description

REG_DWORD 32-bit number

REG_DWORD_BIG_ENDIAN 32-bit number, with high byte first

REG_LINK Unicode symbolic link

REG_MULTI_SZ Array of Unicode NULL-terminated strings

REG_RESOURCE_LIST Hardware resource description

REG_FULL_RESOURCE_DESCRIPTOR Hardware resource description

REG_RESOURCE_REQUIREMENTS_LIST Resource requirements

REG_QWORD  64-bit number

The REG_LINK type is particularly interesting because it lets a key transparently point to another 
key . When you traverse the registry through a link, the path searching continues at the target of the 
link. For example, if \Root1\Link has a REG_LINK value of \Root2\RegKey and RegKey contains the 
value RegValue, two paths identify RegValue: \Root1\Link\RegValue and \Root2\RegKey\RegValue. As 
explained in the next section, Windows prominently uses registry links: three of the six registry root 
keys are links to subkeys within the three nonlink root keys .

Registry Logical Structure
You can chart the organization of the registry via the data stored within it . There are six root keys (and 
you can’t add new root keys or delete existing ones) that store information, as shown in Table 4-2 .

TABLE 4-2 The Six Root Keys

Root Key Description

HKEY_CURRENT_USER Stores data associated with the currently logged-on user

HKEY_USERS Stores information about all the accounts on the machine

HKEY_CLASSES_ROOT Stores file association and Component Object Model (COM) object 
 registration information

HKEY_LOCAL_MACHINE Stores system-related information

HKEY_PERFORMANCE_DATA Stores performance information

HKEY_CURRENT_CONFIG Stores some information about the current hardware profile

Why do root-key names begin with an H? Because the root-key names represent Windows handles 
(H) to keys (KEY) . As mentioned in Chapter 1, “Concepts and Tools,” HKLM is an abbreviation used 
for HKEY_LOCAL_MACHINE . Table 4-3 lists all the root keys and their abbreviations . The following 
 sections explain in detail the contents and purpose of each of these six root keys .
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TABLE 4-3 Registry Root Keys

Root Key Abbreviation Description Link

HKEY_CURRENT_USER HKCU Points to the user profile 
of the currently logged-
on user

Subkey under HKEY_USERS 
 corresponding to currently logged-
on user

HKEY_USERS HKU Contains subkeys for all 
loaded user profiles

Not a link

HKEY_CLASSES_ROOT HKCR Contains file association 
and COM registration in-
formation

Not a direct link; rather, a merged 
view of HKLM\SOFTWARE\Classes 
and   
HKEY_USERS\<SID>\SOFTWARE\
Classes

HKEY_LOCAL_MACHINE HKLM Global settings for the 
machine .

Not a link

HKEY_CURRENT_CONFIG HKCC Current hardware profile HKLM\SYSTEM\CurrentControlSet\
Hardware Profiles\Current

HKEY_PERFORMANCE_DATA HKPD Performance counters Not a link

HKEY_CURRENT_USER
The HKCU root key contains data regarding the preferences and software configuration of the locally 
logged-on user. It points to the currently logged-on user’s user profile, located on the hard disk at  
\Users\<username>\Ntuser.dat. (See the section “Registry Internals” later in this chapter to find out 
how root keys are mapped to files on the hard disk.) Whenever a user profile is loaded (such as at 
logon time or when a service process runs under the context of a specific user name), HKCU is created 
to map to the user’s key under HKEY_USERS . Table 4-4 lists some of the subkeys under HKCU .

TABLE 4-4 HKEY_CURRENT_USER Subkeys

Subkey Description

AppEvents Sound/event associations

Console Command window settings (for example, width, height, and colors)

Control Panel Screen saver, desktop scheme, keyboard, and mouse settings, as well as 
 accessibility and regional settings

Environment Environment variable definitions

EUDC Information on end-user defined characters

Identities Windows Mail account information

Keyboard Layout Keyboard layout setting (for example, U .S . or U .K .)

Network Network drive mappings and settings

Printers Printer connection settings

Software User-specific software preferences

Volatile Environment Volatile environment variable definitions
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HKEY_USERS
HKU contains a subkey for each loaded user profile and user class registration database on the 
system. It also contains a subkey named HKU\.DEFAULT that is linked to the profile for the system 
(which is used by processes running under the local system account and is described in more detail in 
the section “Services” later in this chapter). This is the profile used by Winlogon, for example, so that 
changes to the desktop background settings in that profile will be implemented on the logon screen. 
When a user logs on to a system for the first time and her account does not depend on a roaming 
domain profile (that is, the user’s profile is obtained from a central network location at the direction 
of a domain controller), the system creates a profile for her account that’s based on the profile stored 
in %SystemDrive%\Users\Default.

The location under which the system stores profiles is defined by the registry value  
HKLM\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory, which is by 
default set to %SystemDrive%\Users. The ProfileList key also stores the list of profiles present on a 
system. Information for each profile resides under a subkey that has a name reflecting the security 
identifier (SID) of the account to which the profile corresponds. (See Chapter 6, “Security,” for more 
information on SIDs.) Data stored in a profile’s key includes the time of the last load of the profile in 
the ProfileLoadTimeLow value, the binary representation of the account SID in the Sid value, and the 
path to the profile’s on-disk hive (which is described later in this chapter in the “Hives” section) in the 
ProfileImagePath directory. Windows shows the list of profiles stored on a system in the User  Profiles 
management dialog box, shown in Figure 4-1, which you access by clicking Settings in the User 
 Profiles section of the Advanced tab in the Advanced System Settings of the System Control Panel 
applet .

FIGURE 4-1 The User Profiles management dialog box
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EXPERIMENT: Watching Profile Loading and Unloading
You can see a profile load into the registry and then unload by using the Runas command to 
launch a process in an account that’s not currently logged on to the machine . While the new 
process is running, run Regedit and note the loaded profile key under HKEY_USERS. After 
 terminating the process, perform a refresh in Regedit by pressing the F5 key and the profile 
should no longer be present .

HKEY_CLASSES_ROOT
HKCR consists of three types of information: file extension associations, COM class registrations, and 
the virtualized registry root for User Account Control (UAC) . (See Chapter 6 for more information 
on UAC.) A key exists for every registered file name extension. Most keys contain a REG_SZ value 
that points to another key in HKCR containing the association information for the class of files that 
 extension represents .

For example, HKCR\.xls would point to information on Microsoft Office Excel files in a key such as 
HKCU\.xls\Excel.Sheet.8. Other keys contain configuration details for COM objects registered on the 
system . The UAC virtualized registry is located in the VirtualStore key, which is not related to the other 
kinds of data stored in HKCR .

The data under HKEY_CLASSES_ROOT comes from two sources:

 ■ The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file on hard 
disk \Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat)

 ■ Systemwide class registration data in HKLM\SOFTWARE\Classes

The reason that there is a separation of per-user registration data from systemwide registration 
data is so that roaming profiles can contain these customizations. It also closes a security hole: a non-
privileged user cannot change or delete keys in the systemwide version HKEY_CLASSES_ROOT, and 
thus cannot affect the operation of applications on the system . Nonprivileged users and applications 
can read systemwide data and can add new keys and values to systemwide data (which are mirrored 
in their per-user data), but they can modify existing keys and values in their private data only .

HKEY_LOCAL_MACHINE
HKLM is the root key that contains all the systemwide configuration subkeys: BCD00000000, 
 COMPONENTS (loaded dynamically as needed), HARDWARE, SAM, SECURITY, SOFTWARE, and 
 SYSTEM .

The HKLM\BCD00000000 subkey contains the Boot Configuration Database (BCD) information 
loaded as a registry hive . This database replaces the Boot.ini file that was used before Windows 
Vista and adds greater flexibility and isolation of per-installation boot configuration data. (For more 
 information on the BCD, see Chapter 13, "Startup and Shutdown,” in Part 2 .)
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Each entry in the BCD, such as a Windows installation or the command-line settings for the 
 installation, is stored in the Objects subkey, either as an object referenced by a GUID (in the case of a 
boot entry) or as a numeric subkey called an element . Most of these raw elements are  documented 
in the BCD reference in the MSDN Library and define various command-line settings or boot 
 parameters . The value associated with each element subkey corresponds to the value for its respective 
command-line flag or boot parameter.

The BCDEdit command-line utility allows you to modify the BCD using symbolic names for the 
elements and objects . It also provides extensive help for all the boot options available; unfortunately, 
it works only locally . Because the registry can be opened remotely as well as imported from a hive 
file, you can modify or read the BCD of a remote computer by using the Registry Editor. The following 
experiment shows you how to enable kernel debugging by using the Registry Editor .

EXPERIMENT: Offline or Remote BCD Editing
In this experiment, you enable debugging through editing the BCD inside the registry . For 
the purposes of this example, you edit the local copy of the BCD, but the point of this tech-
nique is that it can be used on any machine’s BCD hive . Follow these steps to add the /DEBUG 
 command-line flag:

1. Open the Registry Editor, and then navigate to the HKLM\BCD00000000 key. Expand 
every subkey so that the numerical identifiers of each Elements key are fully visible.
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2. Identify the boot entry for your Windows installation by locating the Description 
with a Type value of 0x10200003, and then check ID 0x12000004 in the Elements 
tree. In the Element value of that subkey, you should find the name of your version of 
 Windows, such as Windows 7 . If you have more than one Windows installation on your 
machine, you may need to check the 0x22000002 Element, which contains the path, 
such as \Windows.

3. Now that you’ve found the correct GUID for your Windows installation, create a new 
subkey under the Elements subkey for that GUID and name it 0x260000a0 . If this 
 subkey already exists, simply navigate to it .

4. If you had to create the subkey, now create a binary value called Element inside it .

5. Edit the value and set it to 01 . This will enable kernel-mode debugging . Here’s what 
these changes should look like:

Note The 0x12000004 ID corresponds to BcdLibraryString_ApplicationPath, 
while the 0x22000002 ID corresponds to BcdOSLoaderString_SystemRoot . 
Finally, the ID you added, 0x260000a0, corresponds to BcdOSLoaderBoolean_
KernelDebuggerEnabled . These values are documented in the BCD reference 
in the MSDN Library .

The HKLM\COMPONENTS subkey contains information pertinent to the Component Based 
 Servicing (CBS) stack. This stack contains various files and resources that are part of a Windows 
installation image (used by the Automated Installation Kit or the OEM Preinstallation Kit) or an active 
installation . The CBS APIs that exist for servicing purposes use the information located in this key to 
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identify installed components and their configuration information. This information is used whenever 
components are installed, updated, or removed either individually (called units) or in groups (called 
packages) . To optimize system resources, because this key can get quite large, it is only dynamically 
loaded and unloaded as needed if the CBS stack is servicing a request .

The HKLM\HARDWARE subkey maintains descriptions of the system’s legacy hardware and some 
hardware device-to-driver mappings . On a modern system, only a few peripherals—such as keyboard, 
mouse, and ACPI BIOS data—are likely to be found here . The Device Manager tool (which is avail-
able by running System from Control Panel and then clicking Device Manager) lets you view registry 
hardware information that it obtains by simply reading values out of the HARDWARE key (although it 
primarily uses the HKLM\SYSTEM\CurrentControlSet\Enum tree). 

HKLM\SAM holds local account and group information, such as user passwords, group definitions, 
and domain associations . Windows Server systems that are operating as domain controllers store 
domain accounts and groups in Active Directory, a database that stores domainwide settings and 
information . (Active Directory isn’t described in this book .) By default, the security descriptor on the 
SAM key is configured so that even the administrator account doesn’t have access.

HKLM\SECURITY stores systemwide security policies and user-rights assignments. HKLM\SAM is 
linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default, you can’t view the contents 
of HKLM\SECURITY or HKLM\SAM\SAM because the security settings of those keys allow access only 
by the System account . (System accounts are discussed in greater detail later in this chapter .) You 
can change the security descriptor to allow read access to administrators, or you can use PsExec to 
run Regedit in the local system account if you want to peer inside . However, that glimpse won’t be 
very revealing because the data is undocumented and the passwords are encrypted with one-way 
 mapping—that is, you can’t determine a password from its encrypted form .

HKLM\SOFTWARE is where Windows stores systemwide configuration information not needed to 
boot the system . Also, third-party applications store their systemwide settings here, such as paths to 
application files and directories and licensing and expiration date information.

HKLM\SYSTEM contains the systemwide configuration information needed to boot the system, 
such as which device drivers to load and which services to start . Because this information is criti-
cal to starting the system, Windows also maintains a copy of part of this information, called the last 
known good control set, under this key . The maintenance of a copy allows an administrator to select 
a  previously working control set in the case that configuration changes made to the current control 
set prevent the system from booting . For details on when Windows declares the current control set 
“good,” see the section “Accepting the Boot and Last Known Good” later in this chapter .

HKEY_CURRENT_CONFIG
HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under HKLM\SYSTEM 
\CurrentControlSet\Hardware Profiles\Current. Hardware profiles are no longer supported in 
 Windows, but the key still exists to support legacy applications that might be depending on its 
 presence .
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HKEY_PERFORMANCE_DATA
The registry is the mechanism used to access performance counter values on Windows, whether those 
are from operating system components or server applications. One of the side benefits of providing 
access to the performance counters via the registry is that remote performance monitoring works “for 
free” because the registry is easily accessible remotely through the normal registry APIs .

You can access the registry performance counter information directly by opening a special key 
named HKEY_PERFORMANCE_DATA and querying values beneath it. You won’t find this key by look-
ing in the Registry Editor; this key is available only programmatically through the Windows registry 
functions, such as RegQueryValueEx . Performance information isn’t actually stored in the registry; the 
registry functions use this key to locate the information from performance data providers .

You can also access performance counter information by using the Performance Data Helper 
(PDH) functions available through the Performance Data Helper API (Pdh .dll) . Figure 4-2 shows the 
 components involved in accessing performance counter information .
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FIGURE 4-2 Registry performance counter architecture

Transactional Registry (TxR)
Thanks to the Kernel Transaction Manager (KTM; for more information see the section about the KTM 
in Chapter 3, “System Mechanisms”), developers have access to a straightforward API that allows them 
to implement robust error-recovery capabilities when performing registry operations, which can be 
linked with nonregistry operations, such as file or database operations.

Three APIs support transactional modification of the registry: RegCreateKeyTransacted, 
 RegOpenKeyTransacted, and RegDeleteKeyTransacted . These new routines take the same parameters 
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as their nontransacted analogs, except that a new transaction handle parameter is added . A developer 
supplies this handle after calling the KTM function CreateTransaction .

After a transacted create or open operation, all subsequent registry operations—such as  creating, 
deleting, or modifying values inside the key—will also be transacted . However, operations on 
the subkeys of a transacted key will not be automatically transacted, which is why the third API, 
 RegDeleteKeyTransacted exists . It allows the transacted deletion of subkeys, which RegDeleteKeyEx 
would not normally do .

Data for these transacted operations is written to log files using the common logging file system 
(CLFS) services, similar to other KTM operations . Until the transaction itself is committed or rolled 
back (both of which might happen programmatically or as a result of a power failure or system 
crash, depending on the state of the transaction), the keys, values, and other registry modifica-
tions  performed with the transaction handle will not be visible to external applications through the 
 nontransacted APIs. Also, transactions are isolated from each other; modifications made inside one 
transaction will not be visible from inside other transactions or outside the transaction until the 
 transaction is committed .

Note A nontransactional writer will abort a transaction in case of conflict—for example, 
if a value was created inside a transaction and later, while the transaction is still active, a 
 nontransactional writer tries to create a value under the same key . The nontransactional 
operation will succeed, and all operations in the conflicting transaction will be aborted.

The isolation level (the “I” in ACID) implemented by TxR resource managers is read-commit, which 
means that changes become available to other readers (transacted or not) immediately after being 
committed . This mechanism is important for people who are familiar with transactions in databases, 
where the isolation level is predictable-reads (or cursor-stability, as it is called in database literature) . 
With a predictable-reads isolation level, after you read a value inside a transaction, subsequent reads 
will give you back the same data . Read-commit does not make this guarantee . One of the conse-
quences is that registry transactions can’t be used for “atomic” increment/decrement operations on a 
registry value .

To make permanent changes to the registry, the application that has been using the  transaction 
handle must call the KTM function CommitTransaction . (If the application decides to undo the 
changes, such as during a failure path, it can call the RollbackTransaction API .) The changes will then 
be visible through the regular registry APIs as well .

Note If a transaction handle created with CreateTransaction is closed before the 
 transaction is committed (and there are no other handles open to that transaction), the 
system will roll back that transaction .
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Apart from using the CLFS support provided by the KTM, TxR also stores its own internal log files in 
the %SystemRoot%\System32\Config\Txr folder on the system volume; these files have a  . regtrans-ms 
extension and are hidden by default . Even if there are no third-party applications installed, your 
 system likely will contain files in this directory because Windows Update and Component Based 
 Servicing make use of TxR to atomically write data to the registry to avoid system failure or incon-
sistent component data in the case of an incomplete update . In fact, if you take a look at some of 
the transaction files, you should be able to see the key names on which the transaction was being 
performed .

There is a global registry resource manager (RM) that services all the hives that are mounted 
at boot time . For every hive that is mounted explicitly, an RM is created . For applications that use 
registry transactions, the creation of an RM is transparent because KTM ensures that all RMs taking 
part in the same transaction are coordinated in the two-phase commit/abort protocol . For the global 
registry RM, the CLFS log files are stored, as mentioned earlier, inside System32\Config\Txr. For other 
hives, they are stored alongside the hive (in the same directory) . They are hidden and follow the same 
naming convention, ending in .regtrans-ms. The log file names are prefixed with the name of the hive 
to which they correspond .

Monitoring Registry Activity
Because the system and applications depend so heavily on configuration settings to guide their 
behavior, system and application failures can result from changing registry data or security . When the 
system or an application fails to read settings that it assumes it will always be able to access, it might 
not function properly, display error messages that hide the root cause, or even crash . It’s virtually 
impossible to know what registry keys or values are misconfigured without understanding how the 
system or the application that’s failing is accessing the registry . In such situations, the Process Monitor 
utility from Windows Sysinternals (http://technet.microsoft.com/sysinternals) might provide the answer .

Process Monitor lets you monitor registry activity as it occurs . For each registry access, Process 
Monitor shows you the process that performed the access; the time, type, and result of the access; 
and the stack of the thread at the moment of the access . This information is useful for seeing how 
applications and the system rely on the registry, discovering where applications and the system store 
configuration settings, and troubleshooting problems related to applications having missing registry 
keys or values. Process Monitor includes advanced filtering and highlighting so that you can zoom in 
on activity related to specific keys or values or to the activity of particular processes.

Process Monitor Internals
Process Monitor relies on a device driver that it extracts from its executable image at run time and 
then starts. Its first execution requires that the account running it have the Load Driver privilege as 
well as the Debug privilege; subsequent executions in the same boot session require only the Debug 
privilege because, once loaded, the driver remains resident .
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EXPERIMENT: Viewing Registry Activity on an Idle System
Because the registry implements the RegNotifyChangeKey function that applications can use 
to request notification of registry changes without polling for them, when you launch Process 
Monitor on a system that’s idle you should not see repetitive accesses to the same registry keys 
or values. Any such activity identifies a poorly written application that unnecessarily negatively 
affects a system’s overall performance .

Run Process Monitor, and after several seconds examine the output log to see whether 
you can spot polling behavior . Right-click on an output line associated with polling, and then 
choose Process Properties from the context menu to view details about the process performing 
the activity .

EXPERIMENT: Using Process Monitor to Locate Application Registry 
Settings
In some troubleshooting scenarios, you might need to determine where in the registry the 
system or an application stores particular settings . This experiment has you use Process Monitor 
to discover the location of Notepad’s settings . Notepad, like most Windows applications, saves 
user preferences—such as word-wrap mode, font and font size, and window position—across 
executions . By having Process Monitor watching when Notepad reads or writes its settings, you 
can identify the registry key in which the settings are stored . Here are the steps for doing this:

1. Have Notepad save a setting you can easily search for in a Process Monitor trace . 
You can do this by running Notepad, setting the font to Times New Roman, and then 
 exiting Notepad .

2. Run Process Monitor. Open the filter dialog box and the Process Name filter, and type 
notepad.exe as the string to match. This step specifies that Process Monitor will log 
only activity by the notepad .exe process .

3. Run Notepad again, and after it has launched stop Process Monitor’s event capture by 
toggling Capture Events on the Process Monitor File menu .

4. Scroll to the top line of the resultant log and select it .

5. Press Ctrl+F to open a Find dialog box, and search for times new . Process Monitor 
should highlight a line like the one shown in the following screen that represents 
Notepad reading the font value from the registry . Other operations in the immediate 
vicinity should relate to other Notepad settings .
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6. Finally, right-click the highlighted line and click Jump To . Process Monitor will execute 
Regedit (if it’s not already running) and cause it to navigate to and select the Notepad-
referenced registry value .

Process Monitor Troubleshooting Techniques
Two basic Process Monitor troubleshooting techniques are effective for discovering the cause of 
registry-related application or system problems:

 ■ Look at the last thing in the Process Monitor trace that the application did before it failed . This 
action might point to the problem .

 ■ Compare a Process Monitor trace of the failing application with a trace from a working system .

To follow the first approach, run Process Monitor and then run the application. At the point the 
failure occurs, go back to Process Monitor and stop the logging (by pressing Ctrl+E) . Then go to the 
end of the log and find the last operations performed by the application before it failed (or crashed, 
hung, or whatever). Starting with the last line, work your way backward, examining the files, registry 
keys, or both that were referenced—often this will help pinpoint the problem .

Use the second approach when the application fails on one system but works on another . Capture 
a Process Monitor trace of the application on the working and failing systems, and save the output 
to a log file. Then open the good and bad log files with Microsoft Excel (accepting the defaults in the 
Import wizard), and delete the first three columns. (If you don’t delete the first three columns, the 
comparison will show every line as different because the first three columns contain information that 
is different from run to run, such as the time and the process ID .) Finally, compare the resulting log 
files. (You can do this by using WinDiff, which is included in the Windows SDK).

Entries in a Process Monitor trace that have values of NAME NOT FOUND or ACCESS DENIED in 
the Result column are ones you should investigate . NAME NOT FOUND is reported when an applica-
tion attempts to read from a registry key or value that doesn’t exist . In many cases, a missing key or 



292 Windows Internals, Sixth Edition, Part 1

value is innocuous because a process that fails to read a setting from the registry simply falls back on 
default values. In some cases, however, applications expect to find values for which there is no default 
and will fail if they are missing .

Access-denied errors are a common source of registry-related application failures and occur when 
an application doesn’t have permission to access a key the way that it wants . Applications that do not 
validate registry operation results or perform proper error recovery will fail .

A common result string that might appear suspicious is BUFFER OVERFLOW . It does not indicate 
a buffer-overflow exploit in the application that receives it. Instead, it’s used by the configuration 
manager to inform an application that the buffer it specified to store a registry value is too small to 
hold the value . Application developers often take advantage of this behavior to determine how large 
a buffer to allocate to store a value. They first perform a registry query with a zero-length buffer that 
returns a buffer-overflow error and the length of the data it attempted to read. The application then 
allocates a buffer of the indicated size and rereads the value . You should therefore see operations that 
return BUFFER OVERFLOW repeat with a successful result .

In one example of Process Monitor being used to troubleshoot a real problem, it saved a user from 
doing a complete reinstall of his Windows system . The symptom was that Internet Explorer would 
hang on startup if the user did not first manually dial the Internet connection. This Internet connec-
tion was set as the default connection for the system, so starting Internet Explorer should have caused 
an automatic dial-up to the Internet (because Internet Explorer was set to display a default home 
page upon startup) .

An examination of a Process Monitor log of Internet Explorer startup activity, going backward 
from the point in the log where Internet Explorer hung, showed a query to a key under  
HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously uninstalled the 
dialer program associated with the key and manually created the dial-up connection . Because the 
dial-up connection name did not match that of the uninstalled dialer program, it appeared that the 
key had not been deleted by the dialer’s uninstall program and that it was causing Internet Explorer 
to hang . After the key was deleted, Internet Explorer functioned as expected .

Logging Activity in Unprivileged Accounts or During Logon/Logoff
A common application-failure scenario is that an application works when run in an account that has 
Administrative group membership but not when run in the account of an unprivileged user . As de-
scribed earlier, executing Process Monitor requires security privileges that are not normally assigned 
to standard user accounts, but you can capture a trace of applications executing in the logon session 
of an unprivileged user by using the Runas command to execute Process Monitor in an administrative 
account .

If a registry problem relates to account logon or logoff, you’ll also have to take special steps to 
be able to use Process Monitor to capture a trace of those phases of a logon session . Applications 
that are run in the local system account are not terminated when a user logs off, and you can take 
advantage of that fact to have Process Monitor run through a logoff and subsequent logon . You can 
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launch Process Monitor in the local system account either by using the At command that’s built into 
Windows and specifying the /interactive flag, or by using the Sysinternals PsExec utility, like this:

psexec –i 0 –s –d c:\procmon.exe

The –i 0 switch directs PsExec to have Process Monitor’s window appear on the session 0 
 interactive window station’s default desktop, the –s switch has PsExec run Process Monitor in the local 
system account, and the –d switch has PsExec launch Process Monitor and exit without waiting for 
Process Monitor to terminate . When you execute this command, the instance of Process Monitor that 
executes will survive logoff and reappear on the desktop when you log back on, having captured the 
registry activity of both actions .

Another way to monitor registry activity during the logon, logoff, boot, or shutdown process is to 
use the Process Monitor log boot feature, which you can enable by selecting Log Boot on the Options 
menu . The next time you boot the system, the Process Monitor device driver logs registry activity 
from early in the boot to %SystemRoot%\Procmon.pml. It will continue logging to that file until disk 
space runs out, the system shuts down, or you run Process Monitor. A log file storing a registry trace 
of startup, logon, logoff, and shutdown on a Windows system will typically be between 50 and 150 
MB in size .

Registry Internals
In this section, you’ll find out how the configuration manager—the executive subsystem that 
 implements the registry—organizes the registry’s on-disk files. We’ll examine how the configura-
tion manager manages the registry as applications and other operating system components read 
and change registry keys and values. We’ll also discuss the mechanisms by which the configuration 
 manager tries to ensure that the registry is always in a recoverable state, even if the system crashes 
while the registry is being modified.

Hives
On disk, the registry isn’t simply one large file but rather a set of discrete files called hives . Each hive 
contains a registry tree, which has a key that serves as the root or starting point of the tree . Subkeys 
and their values reside beneath the root . You might think that the root keys displayed by the Registry 
Editor correlate to the root keys in the hives, but such is not the case . Table 4-5 lists registry hives and 
their on-disk file names. The path names of all hives except for user profiles are coded into the con-
figuration manager. As the configuration manager loads hives, including system profiles, it notes each 
hive’s path in the values under the HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, remov-
ing the path if the hive is unloaded . It creates the root keys, linking these hives together to build the 
registry structure you’re familiar with and that the Registry Editor displays .

You’ll notice that some of the hives listed in Table 4-5 are volatile and don’t have associated 
files. The system creates and manages these hives entirely in memory; the hives are therefore 
 temporary . The system creates volatile hives every time it boots . An example of a volatile hive is the 
HKLM\HARDWARE hive, which stores information about physical devices and the devices’ assigned 
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resources . Resource assignment and hardware detection occur every time the system boots, so not 
storing this data on disk is logical .

TABLE 4-5 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path Hive File Path

HKEY_LOCAL_MACHINE\BCD00000000 \Boot\BCD

HKEY_LOCAL_MACHINE\COMPONENTS %SystemRoot%\System32\Config\Components

HKEY_LOCAL_MACHINE\SYSTEM %SystemRoot%\System32\Config\System

HKEY_LOCAL_MACHINE\SAM %SystemRoot%\System32\Config\Sam

HKEY_LOCAL_MACHINE\SECURITY %SystemRoot%\System32\Config\Security

HKEY_LOCAL_MACHINE\SOFTWARE %SystemRoot%\System32\Config\Software

HKEY_LOCAL_MACHINE\HARDWARE Volatile hive

HKEY_USERS\<SID of local service account> %SystemRoot%\ServiceProfiles\LocalService\Ntuser.dat

HKEY_USERS\<SID of network service account> %SystemRoot%\ServiceProfiles\NetworkService\NtUser.dat

HKEY_USERS\<SID of username> \Users\<username>\Ntuser.dat

HKEY_USERS\<SID of username>_Classes \Users\<username>\AppData\Local\Microsoft\Windows\
Usrclass .dat

HKEY_USERS\.DEFAULT %SystemRoot%\System32\Config\Default

EXPERIMENT: Manually Loading and Unloading Hives
Regedit has the ability to load hives that you can access through its File menu . This  capability 
can be useful in troubleshooting scenarios where you want to view or edit a hive from an un-
bootable system or a backup medium . In this experiment, you’ll use Regedit to load a version of 
the HKLM\SYSTEM hive that Windows Setup creates during the install process.

1. Hives can be loaded only underneath HKLM or HKU, so open Regedit, select HKLM, 
and choose Load Hive from the Regedit File menu .

2. Navigate to the %SystemRoot%\System32\Config\RegBack directory in the Load Hive 
dialog box, select System and open it . When prompted, type Test as the name of the 
key under which it will load .

3. Open the newly created HKLM\Test key, and explore the contents of the hive.

4. Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and locate the entry  
\Registry\Machine\Test, which demonstrates how the configuration manager lists 
loaded hives in the Hivelist key .

5. Select HKLM\Test, and then choose Unload Hive from the Regedit File menu to unload 
the hive .
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Hive Size Limits
In some cases, hive sizes are limited . For example, Windows places a limit on the size of the  
HKLM\SYSTEM hive. It does so because Winload reads the entire HKLM\SYSTEM hive into physical 
memory near the start of the boot process when virtual memory paging is not enabled . Winload 
also loads Ntoskrnl and boot device drivers into physical memory, so it must constrain the amount of 
physical memory assigned to HKLM\SYSTEM. (See Chapter 13 in Part 2 for more information on the 
role Winload plays during the startup process .) On 32-bit systems, Winload allows the hive to be as 
large as 400 MB or one-half the amount of physical memory on the system, whichever is lower . On 
x64 systems, the lower bound is 1 .5 GB . On Itanium systems, it is 32 MB .

Registry Symbolic Links
A special type of key known as a registry symbolic link makes it possible for the configuration 
 manager to link keys to organize the registry. A symbolic link is a key that redirects the  configuration 
manager to another key. Thus, the key HKLM\SAM is a symbolic link to the key at the root of the SAM 
hive . Symbolic links are created by specifying the REG_CREATE_LINK parameter to  RegCreateKey 
or RegCreateKeyEx. Internally, the configuration manager will create a REG_LINK value called 
 SymbolicLinkValue, which will contain the path to the target key . Because this value is a REG_LINK 
 instead of a REG_SZ, it will not be visible with Regedit—it is, however, part of the on-disk registry hive .

EXPERIMENT: Looking at Hive Handles
The configuration manager opens hives by using the kernel handle table (described in 
 Chapter 3) so that it can access hives from any process context . Using the kernel handle table 
is an efficient alternative to approaches that involve using drivers or executive components to 
access from the System process only handles that must be protected from user processes . You 
can use Process Explorer to see the hive handles, which will be displayed as being opened in the 
System process . Select the System process, and then select Handles from the Lower Pane View 
menu entry on the View menu. Sort by handle type, and scroll until you see the hive files, as 
shown in the following screen .
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Hive Structure
The configuration manager logically divides a hive into allocation units called blocks in much the 
same way that a file system divides a disk into clusters. By definition, the registry block size is 4096 
bytes (4 KB) . When new data expands a hive, the hive always expands in block-granular increments . 
The first block of a hive is the base block.

The base block includes global information about the hive, including a signature—regf—that 
identifies the file as a hive, updated sequence numbers, a time stamp that shows the last time a write 
operation was initiated on the hive, information on registry repair or recovery performed by  Winload, 
the hive format version number, a checksum, and the hive file’s internal file name (for example,  
\Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM). We’ll clarify the significance of the 
updated sequence numbers and time stamp when we describe how data is written to a hive file.

The hive format version number specifies the data format within the hive. The configuration 
manager uses hive format version 1.3 (which improved searching by caching the first four charac-
ters of the name inside the cell index structure for quick lookups) for all hives except for System and 
Software for roaming profile compatibility with Windows 2000. For System and Software hives, it uses 
version 1 .5 because of the later format’s optimizations for large values (values larger than 1 MB are 
supported) and searching (instead of caching the first four characters of a name, a hash of the entire 
name is used to reduce collisions) .

Windows organizes the registry data that a hive stores in containers called cells . A cell can hold a 
key, a value, a security descriptor, a list of subkeys, or a list of key values . A 4-byte character tag at the 
beginning of a cell’s data describes the data’s type as a signature . Table 4-6 describes each cell data 
type in detail. A cell’s header is a field that specifies the cell’s size as the 1’s complement (not  present 
in the CM_ structures) . When a cell joins a hive and the hive must expand to contain the cell, the 
 system creates an allocation unit called a bin .

A bin is the size of the new cell rounded up to the next block or page boundary, whichever is 
higher . The system considers any space between the end of the cell and the end of the bin to be free 
space that it can allocate to other cells . Bins also have headers that contain a signature, hbin, and a 
field that records the offset into the hive file of the bin and the bin’s size.

TABLE 4-6 Cell Data Types

Data Type Structure Type Description

Key cell CM_KEY_NODE A cell that contains a registry key, also called a key node . A key 
cell contains a signature (kn for a key, kl for a link node), the 
time stamp of the most recent update to the key, the cell index 
of the key’s parent key cell, the cell index of the subkey-list cell 
that identifies the key’s subkeys, a cell index for the key’s secu-
rity descriptor cell, a cell index for a string key that specifies the 
class name of the key, and the name of the key (for example, 
CurrentControlSet) . It also saves cached information such as the 
number of subkeys under the key, as well as the size of the largest 
key, value name, value data, and class name of the subkeys under 
this key .
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Data Type Structure Type Description

Value cell CM_KEY_VALUE A cell that contains information about a key’s value . This cell 
 includes a signature (kv), the value’s type (for example,   
REG_ DWORD or REG_BINARY), and the value’s name (for 
 example, Boot-Execute) . A value cell also contains the cell index of 
the cell that contains the value’s data .

Subkey-list cell CM_KEY_INDEX A cell composed of a list of cell indexes for key cells that are all 
subkeys of a common parent key .

Value-list cell CM_KEY_INDEX A cell composed of a list of cell indexes for value cells that are all 
values of a common parent key .

Security-descriptor cell CM_KEY_SECURITY A cell that contains a security descriptor . Security-descriptor cells 
include a signature (ks) at the head of the cell and a reference 
count that records the number of key nodes that share the securi-
ty descriptor . Multiple key cells can share security-descriptor cells .

By using bins, instead of cells, to track active parts of the registry, Windows minimizes some 
management chores . For example, the system usually allocates and deallocates bins less frequently 
than it does cells, which lets the configuration manager manage memory more efficiently. When the 
configuration manager reads a registry hive into memory, it reads the whole hive, including empty 
bins, but it can choose to discard them later . When the system adds and deletes cells in a hive, the 
hive can contain empty bins interspersed with active bins . This situation is similar to disk fragmenta-
tion, which occurs when the system creates and deletes files on the disk. When a bin becomes empty, 
the configuration manager joins to the empty bin any adjacent empty bins to form as large a contigu-
ous empty bin as possible. The configuration manager also joins adjacent deleted cells to form larger 
free cells. (The configuration manager shrinks a hive only when bins at the end of the hive become 
free . You can compact the registry by backing it up and restoring it using the Windows RegSaveKey 
and RegReplaceKey functions, which are used by the Windows Backup utility .)

The links that create the structure of a hive are called cell indexes . A cell index is the offset of a cell 
into the hive file minus the size of the base block. Thus, a cell index is like a pointer from one cell to 
another cell that the configuration manager interprets relative to the start of a hive. For example, as 
you saw in Table 4-6, a cell that describes a key contains a field specifying the cell index of its parent 
key; a cell index for a subkey specifies the cell that describes the subkeys that are subordinate to the 
specified subkey. A subkey-list cell contains a list of cell indexes that refer to the subkey’s key cells. 
Therefore, if you want to locate, for example, the key cell of subkey A, whose parent is key B, you 
must first locate the cell containing key B’s subkey list using the subkey-list cell index in key B’s cell. 
Then you locate each of key B’s subkey cells by using the list of cell indexes in the subkey-list cell . For 
each subkey cell, you check to see whether the subkey’s name, which a key cell stores, matches the 
one you want to locate, in this case, subkey A .

The distinction between cells, bins, and blocks can be confusing, so let’s look at an example of a 
simple registry hive layout to help clarify the differences. The sample registry hive file in Figure 4-3 
contains a base block and two bins. The first bin is empty, and the second bin contains several cells. 
Logically, the hive has only two keys: the root key Root, and a subkey of Root, Sub Key . Root has two 
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values, Val 1 and Val 2 . A subkey-list cell locates the root key’s subkey, and a value-list cell locates 
the root key’s values . The free spaces in the second bin are empty cells . Figure 4-3 doesn’t show the 
security cells for the two keys, which would be present in a hive .

Block boundaries

Key cell (key node)
Value cell
Value-list cell

Subkey-list cell
Free space

Base block Empty bin Root Val 1 Val 2Sub
Key

Bin 1

Bin 2

FIGURE 4-3 Internal structure of a registry hive

To optimize searches for both values and subkeys, the configuration manager sorts subkey-list 
cells alphabetically . The configuration manager can then perform a binary search when it looks for a 
subkey within a list of subkeys. The configuration manager examines the subkey in the middle of the 
list, and if the name of the subkey the configuration manager is looking for is alphabetically before 
the name of the middle subkey, the configuration manager knows that the subkey is in the first half 
of the subkey list; otherwise, the subkey is in the second half of the subkey list . This splitting process 
continues until the configuration manager locates the subkey or finds no match. Value-list cells aren’t 
sorted, however, so new values are always added to the end of the list .

Cell Maps
If hives never grew, the configuration manager could perform all its registry management on the 
in-memory version of a hive as if the hive were a file. Given a cell index, the configuration manager 
could calculate the location in memory of a cell simply by adding the cell index, which is a hive file 
offset, to the base of the in-memory hive image . Early in the system boot, this process is exactly 
what Winload does with the SYSTEM hive: Winload reads the entire SYSTEM hive into memory as 
a  read-only hive and adds the cell indexes to the base of the in-memory hive image to locate cells . 
Unfortunately, hives grow as they take on new keys and values, which means the system must allocate 
paged pool memory to store the new bins that contain added keys and values . Thus, the paged pool 
that keeps the registry data in memory isn’t necessarily contiguous .

EXPERIMENT: Viewing Hive Paged Pool Usage
There are no administrative-level tools that show you the amount of paged pool that registry 
hives, including user profiles, are consuming on Windows. However, the !reg dumppool kernel 
debugger command shows you not only how many pages of the paged pool each loaded hive 
consumes but also how many of the pages store volatile and nonvolatile data . The command 
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prints the total hive memory usage at the end of the output . (The command shows only the last 
32 characters of a hive’s name .)

kd> !reg dumppool  
  
dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)  
  Stable Length = 1000  
  1/1 pages present  
  Volatile Length = 0  
  
dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)  
  Stable Length = f2000  
  242/242 pages present  
  Volatile Length = 2000  
  2/2 pages present  
  
dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)  
  Stable Length = 5000  
  5/5 pages present  
  Volatile Length = 0  
  
...

To deal with noncontiguous memory addresses referencing hive data in memory, the  configuration 
manager adopts a strategy similar to what the Windows memory manager uses to map virtual 
 memory addresses to physical memory addresses. The configuration manager employs a two-level 
scheme, which Figure 4-4 illustrates, that takes as input a cell index (that is, a hive file offset) and 
returns as output both the address in memory of the block the cell index resides in and the address 
in memory of the block the cell resides in . Remember that a bin can contain one or more blocks and 
that hives grow in bins, so Windows always represents a bin with a contiguous region of memory . 
Therefore, all blocks within a bin occur within the same cache manager view .

Cell index

Directory index Table index Byte offset

Hive’s cell map
directory

Target block
Cell map table

32 0

1023

0

0

Hive cell map directory pointer

511

Cell

FIGURE 4-4 Structure of a cell index
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To implement the mapping, the configuration manager divides a cell index logically into fields, 
in the same way that the memory manager divides a virtual address into fields. Windows interprets 
a cell index’s first field as an index into a hive’s cell map directory. The cell map directory contains 
1024 entries, each of which refers to a cell map table that contains 512 map entries . An entry in this 
cell map table is specified by the second field in the cell index. That entry locates the bin and block 
memory addresses of the cell . Not all bins are necessarily mapped into memory, and if a cell lookup 
yields an address of 0, the configuration manager maps the bin into memory, unmapping another on 
the mapping LRU list it maintains, if necessary .

In the final step of the translation process, the configuration manager interprets the last field of 
the cell index as an offset into the identified block to precisely locate a cell in memory. When a hive 
initializes, the configuration manager dynamically creates the mapping tables, designating a map 
entry for each block in the hive, and it adds and deletes tables from the cell directory as the changing 
size of the hive requires .

The Registry Namespace and Operation
The configuration manager defines a key object type to integrate the registry’s namespace with the 
kernel’s general namespace. The configuration manager inserts a key object named Registry into the 
root of the Windows namespace, which serves as the entry point to the registry . Regedit shows key 
names in the form HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet, but the Windows subsystem 
translates such names into their object namespace form (for example, \Registry\Machine\System 
\CurrentControlSet). When the Windows object manager parses this name, it encounters the key 
object by the name of Registry first and hands the rest of the name to the configuration manager. The 
configuration manager takes over the name parsing, looking through its internal hive tree to find the 
desired key or value. Before we describe the flow of control for a typical registry operation, we need 
to discuss key objects and key control blocks . Whenever an application opens or creates a registry 
key, the object manager gives a handle with which to reference the key to the application . The handle 
corresponds to a key object that the configuration manager allocates with the help of the object 
manager . By using the object manager’s object support, the configuration manager takes advantage 
of the security and reference-counting functionality that the object manager provides .

For each open registry key, the configuration manager also allocates a key control block . A key 
control block stores the name of the key, includes the cell index of the key node that the control block 
refers to, and contains a flag that notes whether the configuration manager needs to delete the key 
cell that the key control block refers to when the last handle for the key closes . Windows places all key 
control blocks into a hash table to enable quick searches for existing key control blocks by name . A 
key object points to its corresponding key control block, so if two applications open the same registry 
key, each will receive a key object, and both key objects will point to a common key control block .

When an application opens an existing registry key, the flow of control starts with the application 
specifying the name of the key in a registry API that invokes the object manager’s name-parsing rou-
tine. The object manager, upon encountering the configuration manager’s registry key object in the 
namespace, hands the path name to the configuration manager. The configuration manager performs 
a lookup on the key control block hash table . If the related key control block is found there, there’s no 
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need for any further work; otherwise, the lookup provides the configuration manager with the closest 
key control block to the searched key, and the lookup continues by using the in-memory hive data 
structures to search through keys and subkeys to find the specified key. If the configuration man-
ager finds the key cell, the configuration manager searches the key control block tree to determine 
whether the key is open (by the same application or another one) . The search routine is optimized 
to always start from the closest ancestor with a key control block already opened . For example, if an 
application opens \Registry\Machine\Key1\Subkey2, and \Registry\Machine is already opened, the 
parse routine uses the key control block of \Registry\Machine as a starting point. If the key is open, 
the configuration manager increments the existing key control block’s reference count. If the key isn’t 
open, the configuration manager allocates a new key control block and inserts it into the tree. Then 
the configuration manager allocates a key object, points the key object at the key control block, and 
returns control to the object manager, which returns a handle to the application .

When an application creates a new registry key, the configuration manager first finds the key cell 
for the new key’s parent. The configuration manager then searches the list of free cells for the hive in 
which the new key will reside to determine whether cells exist that are large enough to hold the new 
key cell. If there aren’t any free cells large enough, the configuration manager allocates a new bin and 
uses it for the cell, placing any space at the end of the bin on the free cell list. The new key cell fills 
with pertinent information—including the key’s name—and the configuration manager adds the key 
cell to the subkey list of the parent key’s subkey-list cell . Finally, the system stores the cell index of the 
parent cell in the new subkey’s key cell .

The configuration manager uses a key control block’s reference count to determine when to delete 
the key control block . When all the handles that refer to a key in a key control block close, the refer-
ence count becomes 0, which denotes that the key control block is no longer necessary . If an applica-
tion that calls an API to delete the key sets the delete flag, the configuration manager can delete the 
associated key from the key’s hive because it knows that no application is keeping the key open .

EXPERIMENT: Viewing Key Control Blocks
You can use the kernel debugger to list all the key control blocks allocated on a system with the 
command !reg openkeys command . Alternatively, if you want to view the key control block for a 
particular open key, use !reg findkcb:

kd> !reg findkcb \registry\machine\software\microsoft  
  
Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT

You can then examine a reported key control block with the !reg kcb command:

kd> !reg kcb e1034d40  
  
Key              : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT  
RefCount         : 1f  
Flags            : CompressedName, Stable  
ExtFlags         :  
Parent           : 0xe1997368  
KeyHive          : 0xe1c8a768  
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KeyCell          : 0x64e598 [cell index]  
TotalLevels      : 4  
DelayedCloseIndex: 2048  
MaxNameLen       : 0x3c  
MaxValueNameLen  : 0x0  
MaxValueDataLen  : 0x0  
LastWriteTime    : 0x 1c42501:0x7eb6d470  
KeyBodyListHead  : 0xe1034d70 0xe1034d70  
SubKeyCount      : 137  
ValueCache.Count : 0  
KCBLock          : 0xe1034d40  
KeyLock          : 0xe1034d40

The Flags field indicates that the name is stored in compressed form, and the SubKeyCount 
field shows that the key has 137 subkeys.

Stable Storage
To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a recoverable state, 
the configuration manager uses log hives . Each nonvolatile hive has an associated log hive, which is 
a hidden file with the same base name as the hive and a logN extension. To ensure forward progress, 
the configuration manger uses a dual-logging scheme. There are potentially two log files: .log1 and 
 .log2 . If, for any reason,  .log1 was written but a failure occurred while writing dirty data to the primary 
log file, the next time a flush happens, a switch to .log2 will occur with the cumulative dirty data. If 
that fails as well, the cumulative dirty data (the data in  .log1 and the data that was dirtied in between) 
is saved in  .log2 . As a consequence,  .log1 will be used again next time around, until a successful write 
operation is done to the primary log file. If no failure occurs, only .log1 is used.

For example, if you look in your %SystemRoot%\System32\Config directory (and you have the 
Show Hidden Files And Folders folder option selected), you’ll see System .log1, Sam .log1, and other 
.log1 and .log2 files. When a hive initializes, the configuration manager allocates a bit array in which 
each bit represents a 512-byte portion, or sector, of the hive . This array is called the dirty sector 
array because an on bit in the array means that the system has modified the corresponding  sector 
in the hive in memory and must write the sector back to the hive file. (An off bit means that the 
 corresponding sector is up to date with the in-memory hive’s contents .)

When the creation of a new key or value or the modification of an existing key or value takes place, 
the configuration manager notes the sectors of the hive that change in the hive’s dirty sector array. 
Then the configuration manager schedules a lazy write operation, or a hive sync. The hive lazy writer 
system thread wakes up five seconds after the request to synchronize the hive and writes dirty hive 
sectors for all hives from memory to the hive files on disk. Thus, the system flushes, at the same time, 
all the registry modifications that take place between the time a hive sync is requested and the time 
the hive sync occurs . When a hive sync takes place, the next hive sync will occur no sooner than five 
seconds later .
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Note The RegFlushKey API’s name implies that the function flushes only modified 
data for a specified key to disk, but it actually triggers a full registry flush, which has a 
 major  performance impact on the system . For that reason and the fact that the registry 
 automatically makes sure that modified data is in stable storage within seconds,  application 
programmers should avoid using it .

If the lazy writer simply wrote all a hive’s dirty sectors to the hive file and the system crashed in 
mid-operation, the hive file would be in an inconsistent (corrupted) and unrecoverable state . To 
prevent such an occurrence, the lazy writer first dumps the hive’s dirty sector array and all the dirty 
sectors to the hive’s log file, increasing the log file’s size if necessary. The lazy writer then updates 
a sequence number in the hive’s base block and writes the dirty sectors to the hive . When the lazy 
writer is finished, it updates a second sequence number in the base block. Thus, if the system crashes 
during the write operations to the hive, at the next reboot the configuration manager will notice 
that the two sequence numbers in the hive’s base block don’t match. The configuration manager can 
update the hive with the dirty sectors in the hive’s log file to roll the hive forward. The hive is then up 
to date and consistent .

The Windows Boot Loader also contains some code related to registry reliability . For example, it 
can parse the System.log file before the kernel is loaded and do repairs to fix consistency. Addition-
ally, in certain cases of hive corruption (such as if a base block, bin, or cell contains data that fails 
consistency checks), the configuration manager can reinitialize corrupted data structures, possibly 
deleting subkeys in the process, and continue normal operation . If it has to resort to a self-healing 
operation, it pops up a system error dialog box notifying the user .

Registry Filtering
The configuration manager in the Windows kernel implements a powerful model of registry filtering, 
which allows for monitoring of registry activity by tools such as Process Monitor . When a driver uses 
the callback mechanism, it registers a callback function with the configuration manager. The configu-
ration manager executes the driver’s callback function before and after the execution of registry sys-
tem services so that the driver has full visibility and control over registry accesses . Antivirus products 
that scan registry data for viruses or prevent unauthorized processes from modifying the registry are 
other users of the callback mechanism .

Registry callbacks are also associated with the concept of altitudes . Altitudes are a way for different 
vendors to register a “height” on the registry filtering stack so that the order in which the system calls 
each callback routine can be deterministic and correct . This avoids a scenario in which an antivirus 
product would be scanning encrypted keys before an encryption product would run its own callback 
to decrypt them . With the Windows registry callback model, both types of tools are assigned a base 
altitude corresponding to the type of filtering they are doing—in this case, encryption versus scan-
ning . Secondly, companies that create these types of tools must register with Microsoft so that within 
their own group, they will not collide with similar or competing products .
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The filtering model also includes the ability to either completely take over the processing of 
the registry operation (bypassing the configuration manager and preventing it from handling the 
request) or redirect the operation to a different operation (such as Wow64’s registry redirection) . 
 Additionally, it is also possible to modify the output parameters as well as the return value of a 
 registry operation .

Finally, drivers can assign and tag per-key or per-operation driver-defined information for their 
own purposes . A driver can create and assign this context data during a create or open operation, 
which the configuration manager will remember and return during each subsequent operation on the 
key .

Registry Optimizations
The configuration manager makes a few noteworthy performance optimizations . First, virtually every 
registry key has a security descriptor that protects access to the key . Storing a unique security-de-
scriptor copy for every key in a hive would be highly inefficient, however, because the same security 
settings often apply to entire subtrees of the registry . When the system applies security to a key, the 
configuration manager checks a pool of the unique security descriptors used within the same hive as 
the key to which new security is being applied, and it shares any existing descriptor for the key, ensur-
ing that there is at most one copy of every unique security descriptor in a hive .

The configuration manager also optimizes the way it stores key and value names in a hive. Al-
though the registry is fully Unicode-capable and specifies all names using the Unicode convention, if 
a name contains only ASCII characters, the configuration manager stores the name in ASCII form in 
the hive. When the configuration manager reads the name (such as when performing name lookups), 
it converts the name into Unicode form in memory. Storing the name in ASCII form can significantly 
reduce the size of a hive .

To minimize memory usage, key control blocks don’t store full key registry path names . Instead, 
they reference only a key’s name. For example, a key control block that refers to \Registry\System\
Control would refer to the name Control rather than to the full path . A further memory optimiza-
tion is that the configuration manager uses key name control blocks to store key names, and all key 
control blocks for keys with the same name share the same key name control block . To optimize 
performance, the configuration manager stores the key control block names in a hash table for quick 
lookups .

To provide fast access to key control blocks, the configuration manager stores frequently accessed 
key control blocks in the cache table, which is configured as a hash table. When the configuration 
manager needs to look up a key control block, it first checks the cache table. Finally, the configuration 
manager has another cache, the delayed close table, that stores key control blocks that applications 
close so that an application can quickly reopen a key it has recently closed . To optimize lookups, these 
cache tables are stored for each hive. The configuration manager removes the oldest key control 
blocks from the delayed close table as it adds the most recently closed blocks to the table .   
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Services

Almost every operating system has a mechanism to start processes at system startup time that 
provide services not tied to an interactive user . In Windows, such processes are called services or 
Windows services, because they rely on the Windows API to interact with the system . Services are 
similar to UNIX daemon processes and often implement the server side of client/server applications . 
An example of a Windows service might be a web server, because it must be running regardless of 
whether anyone is logged on to the computer and it must start running when the system starts so 
that an administrator doesn’t have to remember, or even be present, to start it .

Windows services consist of three components: a service application, a service control  program 
(SCP), and the service control manager (SCM) . First, we’ll describe service applications, service 
 accounts, and the operations of the SCM . Then we’ll explain how auto-start services are started 
 during the system boot . We’ll also cover the steps the SCM takes when a service fails during its 
startup and the way the SCM shuts down services .

Service Applications
Service applications, such as web servers, consist of at least one executable that runs as a Windows 
service. A user wanting to start, stop, or configure a service uses an SCP. Although Windows supplies 
built-in SCPs that provide general start, stop, pause, and continue functionality, some service applica-
tions include their own SCP that allows administrators to specify configuration settings particular to 
the service they manage .

Service applications are simply Windows executables (GUI or console) with additional code to 
receive commands from the SCM as well as to communicate the application’s status back to the SCM . 
Because most services don’t have a user interface, they are built as console programs .

When you install an application that includes a service, the application’s setup program 
must  register the service with the system . To register the service, the setup program calls the 
 Windows  CreateService function, a services-related function implemented in Advapi32 .dll  
(%SystemRoot%\System32\Advapi32.dll). Advapi32, the “Advanced API” DLL, implements all the 
client-side SCM APIs .

When a setup program registers a service by calling CreateService, a message is sent to the SCM 
on the machine where the service will reside . The SCM then creates a registry key for the service 
 under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the nonvolatile representation 
of the SCM’s database. The individual keys for each service define the path of the executable image 
that contains the service as well as parameters and configuration options.

After creating a service, an installation or management application can start the service via the 
StartService function . Because some service-based applications also must initialize during the boot 
process to function, it’s not unusual for a setup program to register a service as an auto-start service, 
ask the user to reboot the system to complete an installation, and let the SCM start the service as the 
system boots .
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When a program calls CreateService, it must specify a number of parameters describing the 
service’s characteristics . The characteristics include the service’s type (whether it’s a service that runs 
in its own process rather than a service that shares a process with other services), the location of the 
service’s executable image file, an optional display name, an optional account name and password 
used to start the service in a particular account’s security context, a start type that indicates whether 
the service starts automatically when the system boots or manually under the direction of an SCP, 
an error code that indicates how the system should react if the service detects an error when start-
ing, and, if the service starts automatically, optional information that specifies when the service starts 
 relative to other services .

The SCM stores each characteristic as a value in the service’s registry key . Figure 4-5 shows an 
example of a service registry key .

FIGURE 4-5 Example of a service registry key

Table 4-7 lists all the service characteristics, many of which also apply to device drivers . (Not every 
characteristic applies to every type of service or device driver.) If a service needs to store configura-
tion information that is private to the service, the convention is to create a subkey named Parameters 
under its service key and then store the configuration information in values under that subkey. The 
service then can retrieve the values by using standard registry functions .

Note The SCM does not access a service’s Parameters subkey until the service is deleted, at 
which time the SCM deletes the service’s entire key, including subkeys like Parameters .
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TABLE 4-7 Service and Driver Registry Parameters

Value Setting Value Name Value Setting Description

Start SERVICE_BOOT_START (0) Winload preloads the driver so that it is in 
memory during the boot . These drivers are 
initialized just prior to SERVICE_ SYSTEM_
START drivers .

SERVICE_SYSTEM_START (1) The driver loads and initializes during kernel 
initialization after SERVICE_ BOOT_START 
drivers have initialized .

SERVICE_AUTO_START (2) The SCM starts the driver or service after the 
SCM process, Services .exe, starts .

SERVICE_DEMAND_START (3) The SCM starts the driver or service on 
 demand .

SERVICE_DISABLED (4) The driver or service doesn’t load or initialize .

ErrorControl SERVICE_ERROR_IGNORE (0) Any error the driver or service returns 
is  ignored, and no warning is logged or 
 displayed .

SERVICE_ERROR_NORMAL (1) If the driver or service reports an error, an 
event log message is written .

SERVICE_ERROR_SEVERE (2) If the driver or service returns an error and 
last known good isn’t being used, reboot into 
last known good; otherwise, continue the 
boot .

SERVICE_ERROR_CRITICAL (3) If the driver or service returns an error and 
last known good isn’t being used, reboot into 
last known good; otherwise, stop the boot 
with a blue screen crash .

Type SERVICE_KERNEL_DRIVER (1) Device driver .

SERVICE_FILE_SYSTEM_DRIVER (2) Kernel-mode file system driver.

SERVICE_ADAPTER (4) Obsolete .

SERVICE_RECOGNIZER_DRIVER (8) File system recognizer driver .

SERVICE_WIN32_OWN_PROCESS (16) The service runs in a process that hosts only 
one service .

SERVICE_WIN32_SHARE_PROCESS (32) The service runs in a process that hosts 
 multiple services .

SERVICE_INTERACTIVE_PROCESS (256) The service is allowed to display windows on 
the console and receive user input, but only 
on the console session (0) to prevent interact-
ing with user/console applications on other 
sessions .

Group Group name The driver or service initializes when its group 
is initialized .

Tag Tag number The specified location in a group  initialization 
order . This parameter doesn’t apply to 
 services .

ImagePath Path to the service or driver executable file If ImagePath isn’t specified, the I/O  manager 
looks for drivers in %SystemRoot%\
System32\Drivers. Required for Windows 
services .
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Value Setting Value Name Value Setting Description

DependOnGroup Group name The driver or service won’t load unless a 
 driver or service from the specified group 
loads .

DependOnService Service name The service won’t load until after the 
 specified service loads. This parameter 
doesn’t apply to device drivers other than 
those with a start type of SERVICE_AUTO_
START or SERVICE_DEMAND_START .

ObjectName Usually LocalSystem, but it can be an 
 account name, such as .\Administrator

Specifies the account in which the ser-
vice will run . If ObjectName isn’t speci-
fied, LocalSystem is the account used. This 
 parameter doesn’t apply to device drivers .

DisplayName Name of the service The service application shows services by this 
name. If no name is specified, the name of 
the service’s registry key becomes its name .

Description Description of service Up to 32767-byte description of the service .

FailureActions Description of actions the SCM should 
take when the service process exits 
 unexpectedly

Failure actions include restarting the service 
process, rebooting the system, and running 
a specified program. This value doesn’t apply 
to drivers .

FailureCommand Program command line The SCM reads this value only if 
FailureActions specifies that a program 
should execute upon service failure . This 
value doesn’t apply to drivers .

DelayedAutoStart 0 or 1 (TRUE or FALSE) Tells the SCM to start this service after a 
certain delay has passed since the SCM was 
started . This reduces the number of services 
starting simultaneously during startup .

PreshutdownTimeout Timeout in milliseconds This value allows services to override the 
default preshutdown notification timeout of 
180 seconds . After this timeout, the SCM will 
perform shutdown actions on the service if it 
has not yet responded .

ServiceSidType SERVICE_SID_TYPE_NONE (0) Backward-compatibility setting .

SERVICE_SID_TYPE_UNRESTRICTED (1) The SCM will add the service SID as a group 
owner to the service process’ token when it 
is created . 

SERVICE_SID_TYPE_RESTRICTED (3) Same as above, but the SCM will also add the 
service SID to the restricted SID list of the 
service process, along with the world, logon, 
and write-restricted SIDs .

RequiredPrivileges List of privileges This value contains the list of privileges that 
the service requires to function . The SCM will 
compute their union when creating the token 
for the shared process related to this service, 
if any .

Security Security descriptor This value contains the optional security 
 descriptor that defines who has what access 
to the service object created internally by the 
SCM . If this value is omitted, the SCM applies 
a default security descriptor .
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Notice that Type values include three that apply to device drivers: device driver, file system driver, 
and file system recognizer. These are used by Windows device drivers, which also store their parame-
ters as registry data in the Services registry key . The SCM is responsible for starting drivers with a Start 
value of SERVICE_AUTO_START or SERVICE_DEMAND_START, so it’s natural for the SCM database to 
include drivers . Services use the other types, SERVICE_WIN32_OWN_PROCESS and SERVICE_WIN32_
SHARE_PROCESS, which are mutually exclusive . An executable that hosts more than one service 
 specifies the SERVICE_WIN32_SHARE_PROCESS type.

An advantage to having a process run more than one service is that the system resources that 
would otherwise be required to run them in distinct processes are saved . A potential disadvantage is 
that if one of the services of a collection running in the same process causes an error that terminates 
the process, all the services of that process terminate . Also, another limitation is that all the services 
must run under the same account (however, if a service takes advantage of service security hardening 
mechanisms, it can limit some of its exposure to malicious attacks) .

When the SCM starts a service process, the process must immediately invoke the 
 StartServiceCtrlDispatcher function . StartServiceCtrlDispatcher accepts a list of entry points into 
services, one entry point for each service in the process. Each entry point is identified by the name of 
the service the entry point corresponds to . After making a named-pipe communications  connection 
to the SCM, StartServiceCtrlDispatcher waits for commands to come through the pipe from the SCM . 
The SCM sends a service-start command each time it starts a service the process owns . For each 
start command it receives, the StartServiceCtrlDispatcher function creates a thread, called a service 
thread, to invoke the starting service’s entry point and implement the command loop for the service . 
StartServiceCtrlDispatcher waits indefinitely for commands from the SCM and returns control to the 
process’ main function only when all the process’ services have stopped, allowing the service process 
to clean up resources before exiting .

A service entry point’s first action is to call the RegisterServiceCtrlHandler function . This  function 
receives and stores a pointer to a function, called the control handler, which the service  implements to 
handle various commands it receives from the SCM . RegisterServiceCtrlHandler doesn’t  communicate 
with the SCM, but it stores the function in local process memory for the  StartServiceCtrlDispatcher 
function . The service entry point continues initializing the service, which can include allocating mem-
ory, creating communications end points, and reading private configuration data from the registry. 
As explained earlier, a convention most services follow is to store their parameters under a subkey of 
their service registry key, named Parameters .

While the entry point is initializing the service, it must periodically send status messages, using the 
SetServiceStatus function, to the SCM indicating how the service’s startup is progressing . After the 
entry point finishes initialization, a service thread usually sits in a loop waiting for requests from client 
applications . For example, a Web server would initialize a TCP listen socket and wait for inbound HTTP 
connection requests .

A service process’ main thread, which executes in the StartServiceCtrlDispatcher function, receives 
SCM commands directed at services in the process and invokes the target service’s control han-
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dler function (stored by RegisterServiceCtrlHandler) . SCM commands include stop, pause, resume, 
 interrogate, and shutdown or application-defined commands. Figure 4-6 shows the internal organiza-
tion of a service process . Pictured are the two threads that make up a process hosting one service: the 
main thread and the service thread .

Pipe to
SCM

Main

StartServiceCtrlDispatcher

Service control handler

RegisterServiceCtrlHandler

Initialize

Process client requests

Main thread

Connections to
service clients

Service thread

1.  StartServiceCtrlDispatcher launches service thread.
2.  Service thread registers control handler.
3.  StartServiceCtrlDispatcher calls handlers in response to SCM commands.
4.  Service thread processes client requests.

2
3

3

1

4

FIGURE 4-6 Inside a service process

Service Accounts
The security context of a service is an important consideration for service developers as well as for 
system administrators because it dictates what resources the process can access . Unless a service 
installation program or administrator specifies otherwise, most services run in the security context 
of the local system account (displayed sometimes as SYSTEM and other times as LocalSystem) . Two 
other built-in accounts are the network service and local service accounts . These accounts have fewer 
 capabilities than the local system account from a security standpoint, and any built-in Windows 
service that does not require the power of the local system account runs in the appropriate alternate 
service account . The following subsections describe the special characteristics of these accounts .

The Local System Account
The local system account is the same account in which core Windows user-mode operating system 
components run, including the Session Manager (%SystemRoot%\System32\Smss.exe), the Windows 
subsystem process (Csrss.exe), the Local Security Authority process (%SystemRoot%\System32 
\Lsass.exe), and the Logon process (%SystemRoot%\System32\Winlogon.exe). For more information 
on these latter two processes, see Chapter 6 .



 CHAPTER 4 Management Mechanisms 311

From a security perspective, the local system account is extremely powerful—more powerful than 
any local or domain account when it comes to security ability on a local system . This account has the 
following characteristics:

 ■ It is a member of the local administrators group . Table 4-8 shows the groups to which the local 
system account belongs . (See Chapter 6 for information on how group membership is used in 
object access checks .)

 ■ It has the right to enable virtually every privilege (even privileges not normally granted to the 
local administrator account, such as creating security tokens) . See Table 4-9 for the list of privi-
leges assigned to the local system account . (Chapter 6 describes the use of each privilege .)

 ■ Most files and registry keys grant full access to the local system account. (Even if they don’t 
grant full access, a process running under the local system account can exercise the take- 
ownership privilege to gain access .)

 ■ Processes running under the local system account run with the default user profile  
(HKU\.DEFAULT). Therefore, they can’t access configuration information stored in the user 
profiles of other accounts.

 ■ When a system is a member of a Windows domain, the local system account includes the 
machine security identifier (SID) for the computer on which a service process is running. 
Therefore, a service running in the local system account will be automatically authenticated 
on other machines in the same forest by using its computer account . (A forest is a grouping of 
domains .)

 ■ Unless the machine account is specifically granted access to resources (such as network shares, 
named pipes, and so on), a process can access network resources that allow null sessions—that 
is, connections that require no credentials . You can specify the shares and pipes on a particu-
lar computer that permit null sessions in the NullSessionPipes and NullSessionShares registry 
values under HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters.

TABLE 4-8 Service Account Group Membership

Local System Network Service Local Service 

Everyone
Authenticated Users
Administrators

Everyone
Authenticated Users
Users
Local
Network Service
Service

Everyone
Authenticated Users
Users
Local
Local Service
Service
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TABLE 4-9 Service Account Privileges

Local System Network Service Local Service 

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeBackupPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SeCreatePagefilePrivilege
SeCreatePermanentPrivilege
SeCreateTokenPrivilege
SeDebugPrivilege
SeImpersonatePrivilege
SeIncreaseBasePriorityPrivilege
SeIncreaseQuotaPrivilege
SeLoadDriverPrivilege
SeLockMemoryPrivilege
SeManageVolumePrivilege
SeProfileSingleProcessPrivilege
SeRestorePrivilege
SeSecurityPrivilege
SeShutdownPrivilege
SeSystemEnvironmentPrivilege
SeSystemTimePrivilege
SeTakeOwnershipPrivilege
SeTcbPrivilege
SeUndockPrivilege (client only)

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SeImpersonatePrivilege
SeIncreaseQuotaPrivilege
SeShutdownPrivilege
SeUndockPrivilege (client only)
Privileges assigned to the Everyone, 
Authenticated Users, and Users 
groups

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SeImpersonatePrivilege
SeIncreaseQuotaPrivilege
SeShutdownPrivilege
SeUndockPrivilege (client only)
Privileges assigned to the Everyone, 
Authenticated Users, and Users 
groups

The Network Service Account
The network service account is intended for use by services that want to authenticate to other 
 machines on the network using the computer account, as does the local system account, but do 
not have the need for membership in the Administrators group or the use of many of the privileges 
assigned to the local system account . Because the network service account does not belong to the 
Administrators group, services running in the network service account by default have access to far 
fewer registry keys and file system folders and files than the services running in the local system 
 account . Further, the assignment of few privileges limits the scope of a compromised network service 
process . For example, a process running in the network service account cannot load a device driver or 
open arbitrary processes .

Another difference between the network service and local system accounts is that processes 
 running in the network service account use the network service account’s profile. The registry 
 component of the network service profile loads under HKU\S-1-5-20, and the files and directories that 
make up the component reside in %SystemRoot%\ServiceProfiles\NetworkService.

A service that runs in the network service account is the DNS client, which is responsible for 
 resolving DNS names and for locating domain controllers .

The Local Service Account
The local service account is virtually identical to the network service account with the important 
 difference that it can access only network resources that allow anonymous access . Table 4-9 shows 
that the network service account has the same privileges as the local service account, and Table 4-8 
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shows that it belongs to the same groups with the exception that it belongs to the Network Service 
group instead of the Local Service group. The profile used by processes running in the local service 
loads into HKU\S-1-5-19 and is stored in %SystemRoot%\ServiceProfiles\LocalService.

Examples of services that run in the local service account include the Remote Registry Service, 
which allows remote access to the local system’s registry, and the LmHosts service, which performs 
NetBIOS name resolution .

Running Services in Alternate Accounts
Because of the restrictions just outlined, some services need to run with the security credentials of a 
user account. You can configure a service to run in an alternate account when the service is created or 
by specifying an account and password that the service should run under with the Windows Services 
MMC snap-in . In the Services snap-in, right-click on a service and select Properties, click on the Log 
On tab, and select the This Account option, as shown in Figure 4-7 .

Running with Least Privilege
Services typically are subject to an all-or-nothing model, meaning that all privileges available to the 
account the service process is running under are available to a service running in the process that 
might require only a subset of those privileges . To better conform to the principle of least privilege, in 
which Windows assigns services only the privileges they require, developers can specify the privileges 
their service requires, and the SCM creates a security token that contains only those privileges .

FIGURE 4-7 Service account settings
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Note The privileges a service specifies must be a subset of those that are available to the 
service account in which it runs .

Service developers use the ChangeServiceConfig2 API to indicate the list of privileges they desire . 
The API saves that information in the registry under the Parameters key for the service . When the 
service starts, the SCM reads the key and adds those privileges to the token of the process in which 
the service is running .

If there is a RequiredPrivileges value and the service is a stand-alone service (running as a 
 dedicated process), the SCM creates a token containing only the privileges that the service needs . 
For services running as part of a multiservice service process (as are most services that are part of 
Windows) and specifying required privileges, the SCM computes the union of those privileges and 
combines them for the service-hosting process’ token . In other words, only the privileges not speci-
fied by any of the services that are part of that service group will be removed. In the case in which the 
registry value does not exist, the SCM has no choice but to assume that the service is either incom-
patible with least privileges or requires all privileges in order to function . In this case, the full token is 
created, containing all privileges, and no additional security is offered by this model . To strip almost 
all privileges, services can specify only the Change Notify privilege .

EXPERIMENT: Viewing Privileges Required by Services
You can look at the privileges a service requires with the Service Control utility, Sc .exe, and the 
qprivs option . Additionally, Process Explorer can show you information about the security token 
of any service process on the system, so you can compare the information returned by Sc .exe 
with the privileges part of the token . The following steps show you how to do this for some of 
the best locked-down services on the system .

1. Use Sc.exe to take a look at the required privileges specified by Dhcp by typing the 
following into a command prompt:

sc qprivs dhcp

You should see two privileges being requested: the SeCreateGlobalPrivilege and the 
SeChangeNotifyPrivilege .

2. Run Process Explorer, and take a look at the process list .

You should see a couple of Svchost .exe processes that are hosting the services on your 
machine . Process Explorer highlights these in pink .

3. Now locate the service hosting process in which the Dhcp service is running . It should 
be running alongside other services that are part of the LocalServiceNetworkRestricted 
service group, such as the Audiosrv service and Eventlog service . You can do this by 
hovering the mouse over each Svchost process and reading the tooltip, which contains 
the names of the services running inside the service host .
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4. Once you’ve found the process, double-click to open the Properties dialog box and 
select the Security tab .

Note that although the service is running as part of the local service account, the list of 
 privileges Windows assigned to it is much shorter than the list available to the local service 
 account shown in Table 4-9 .

Because for a service-hosting process the privileges part of the token is the union of the 
privileges requested by all the services running inside it, this must mean that services such as 
Audiosrv and Eventlog have not requested privileges other than the ones shown by Process 
Explorer . You can verify this by running the Sc .exe tool on those other services as well .

Service Isolation
Although restricting the privileges that a service has access to helps lessen the ability of a 
 compromised service process to compromise other processes, it does nothing to isolate the service 
from resources that the account in which it is running has access to under normal conditions . As 
mentioned earlier, the local system account has complete access to critical system files, registry keys, 
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and other securable objects on the system because the access control lists (ACLs) grant permissions to 
that account .

At times, access to some of these resources is indeed critical to a service’s operation, while other 
objects should be secured from the service . Previously, to avoid running in the local system account 
to obtain access to required resources, a service would be run under a standard user account and 
ACLs would be added on the system objects, which greatly increased the risk of malicious code at-
tacking the system. Another solution was to create dedicated service accounts and set specific ACLs 
for each account (associated to a service), but this approach easily became an administrative hassle .

Windows now combines these two approaches into a much more manageable solution: it allows 
services to run in a nonprivileged account but still have access to specific privileged resources without 
lowering the security of those objects . In a manner similar to the second pre–Windows Vista solution, 
the ACLs on an object can now set permissions directly for a service, but not by requiring a dedicated 
account . Instead, the SCM generates a service SID to represent a service, and this SID can be used 
to set permissions on resources such as registry keys and files. Service SIDs are implemented in the 
group SIDs part of the token for any process hosting a service . They are generated by the SCM during 
system startup for each service that has requested one via the ChangeServiceConfig2 API . In the case 
of service-hosting processes (a process that contains more than one service), the process’ token will 
contain the service SIDs of all services that are part of the service group associated with the process, 
including services that are not started because there is no way to add new SIDs after a token has been 
created .

The usefulness of having a SID for each service extends beyond the mere ability to add ACL entries 
and permissions for various objects on the system as a way to have fine-grained control over their 
access . Our discussion initially covered the case in which certain objects on the system, accessible 
by a given account, must be protected from a service running within that same account . As we’ve 
described to this point, service SIDs prevent that problem only by requiring that Deny entries associ-
ated with the service SID be placed on every object that needs to be secured, a clearly unmanageable 
approach .

To avoid requiring Deny access control entries (ACEs) as a way to prevent services from having 
access to resources that the user account in which they run does have access, there are two types of 
service SIDs: the restricted service SID (SERVICE_SID_TYPE_RESTRICTED) and the unrestricted service 
SID (SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and the case we’ve looked at 
until now .

Unrestricted service SIDs are created as enabled-by-default, group owner SIDs, and the process 
token is also given a new ACE providing full permission to the service logon SID, which allows the 
service to continue communicating with the SCM . (A primary use of this would be to enable or disable 
service SIDs inside the process during service startup or shutdown .)

A restricted service SID, on the other hand, turns the service-hosting process’ token into a 
 write-restricted token (see Chapter 6 for more information on tokens), which means that only objects 
granting explicit write access to the service SID will be writable by the service, regardless of the 
 account it’s running as . Because of this, all services running inside that process (part of the same 
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service group) must have the restricted SID type; otherwise, services with the restricted SID type will 
fail to start . Once the token becomes write-restricted, three more SIDs are added for compatibility 
reasons:

 ■ The world SID is added to allow write access to objects that are normally accessible by anyone 
anyway, most importantly certain DLLs in the load path .

 ■ The service logon SID is added to allow the service to communicate with the SCM .

 ■ The write-restricted SID is added to allow objects to explicitly allow any write-restricted  service 
write access to them . For example, Event Tracing for Windows (ETW) uses this SID on its 
 objects to allow any write-restricted service to generate events .

Figure 4-8 shows an example of a service-hosting process containing services that have been 
marked as having restricted service SIDs . For example, the Base Filtering Engine (BFE), which is 
responsible for applying Windows Firewall filtering rules, is part of this service because these rules 
are stored in registry keys that must be protected from malicious write access should a service be 
compromised. (This could allow a service exploit to disable the outgoing traffic firewall rules, enabling 
bidirectional communication with an attacker, for example .)

FIGURE 4-8 Service with restricted service SIDs
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By blocking write access to objects that would otherwise be writable by the service (through 
 inheriting the permissions of the account it is running as), restricted service SIDs solve the other side 
of the problem we initially presented because users do not need to do anything to prevent a service 
running in a privileged account from having write access to critical system files, registry keys, or other 
objects, limiting the attack exposure of any such service that might have been compromised .

Windows also allows for firewall rules that reference service SIDs linked to one of the three 
 behaviors described in Table 4-10 .

TABLE 4-10 Network Restriction Rules

Scenario Example Restrictions

Network access blocked The shell hardware detection service 
(ShellHWDetection) .

All network communications are blocked 
(both incoming and outgoing) .

Network access statically 
port-restricted

The RPC service (Rpcss) operates on port 
135 (TCP and UDP) .

Network communications are restricted to 
specific TCP or UDP ports.

Network access dynamically 
port-restricted

The DNS service (Dns) listens on variable 
ports (UDP) .

Network communications are restricted to 
configurable TCP or UDP ports.

Interactive Services and Session 0 Isolation
One restriction for services running under the local system, local service, and network service 
 accounts that has always been present in Windows is that these services could not display (without 
using a special flag on the MessageBox function, discussed in a moment) dialog boxes or windows on 
the interactive user’s desktop . This limitation wasn’t the direct result of running under these accounts 
but rather a consequence of the way the Windows subsystem assigns service processes to window 
stations . This restriction is further enhanced by the use of sessions, in a model called Session Zero 
Isolation, a result of which is that services cannot directly interact with a user’s desktop .

The Windows subsystem associates every Windows process with a window station . A window 
 station contains desktops, and desktops contain windows . Only one window station can be visible 
on a console and receive user mouse and keyboard input . In a Terminal Services environment, one 
 window station per session is visible, but services all run as part of the console session . Windows 
names the visible window station WinSta0, and all interactive processes access WinSta0 .

Unless otherwise directed, the Windows subsystem associates services running in the local system 
account with a nonvisible window station named Service-0x0-3e7$ that all noninteractive services 
share. The number in the name, 3e7, represents the logon session identifier that the Local Security 
 Authority process (LSASS) assigns to the logon session the SCM uses for noninteractive services 
 running in the local system account .

Services configured to run under a user account (that is, not the local system account) are run in a 
different nonvisible window station named with the LSASS logon identifier assigned for the service’s 
logon session . Figure 4-9 shows a sample display from the Sysinternals WinObj tool, viewing the 
object manager directory in which Windows places window station objects . Visible are the interactive 
window station (WinSta0) and the noninteractive system service window station (Service-0x0-3e7$) .
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FIGURE 4-9 List of window stations

Regardless of whether services are running in a user account, the local system account, or the local 
or network service accounts, services that aren’t running on the visible window station can’t receive 
input from a user or display windows on the console . In fact, if a service were to pop up a normal 
dialog box on the window station, the service would appear hung because no user would be able to 
see the dialog box, which of course would prevent the user from providing keyboard or mouse input 
to dismiss it and allow the service to continue executing .

Note In the past, it was possible to use the special MB_SERVICE_NOTIFICATION or  
MB_DEFAULT_DESKTOP_ONLY flags with the MessageBox API to display messages on the 
interactive window station even if the service was marked as noninteractive . Because of 
session isolation, any service using this flag will receive an immediate IDOK return value, 
and the message box will never be displayed .

In rare cases, a service can have a valid reason to interact with the user via dialog boxes or 
 windows. To configure a service with the right to interact with the user, the SERVICE_INTERACTIVE_
PROCESS modifier must be present in the service’s registry key’s Type parameter. (Note that services 
configured to run under a user account can’t be marked as interactive .) When the SCM starts a service 
marked as interactive, it launches the service’s process in the local system account’s security context 
but connects the service with WinSta0 instead of the noninteractive service window station .

Were user processes to run in the same session as services, this connection to WinSta0 would allow 
the service to display dialog boxes and windows on the console and enable those windows to respond 
to user input because they would share the window station with the interactive services . However, 
only processes owned by the system and Windows services run in session 0; all other logon sessions, 
including those of console users, run in different sessions . Any window displayed by processes in 
 session 0 is therefore not visible to the user .
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This additional boundary helps prevent shatter attacks, whereby a less privileged application sends 
window messages to a window visible on the same window station to exploit a bug in a more privi-
leged process that owns the window, which permits it to execute code in the more privileged process .

To remain compatible with services that depend on user input, Windows includes a service that 
notifies users when a service has displayed a window . The Interactive Services Detection (UI0Detect) 
service looks for visible windows on the main desktop of the WinSta0 window station of session 0 and 
displays a notification dialog box on the console user’s desktop, allowing the user to switch to session 
0 and view the service’s UI . (This is akin to connecting to a local Terminal Services session or switching 
users .)

Note The Interactive Services Detection mechanism is purely for application compatibility, 
and developers are strongly recommended to move away from interactive services and use 
a secondary, nonprivileged helper application to communicate visually with the user . Local 
RPC or COM can be used between this helper application and the service for configuration 
purposes after UI input has been received .

The dialog box, an example of which is shown in Figure 4-10, includes the process name, the time 
when the UI message was displayed, and the title of the window being displayed . Once the user 
 connects to session 0, a similar dialog box provides a portal back to the user’s session. In the figure, 
the service displaying a window is Microsoft Paint, which was explicitly started by the Sysinternals 
PsExec utility with options that caused PsExec to run Paint in session 0 . You can try this yourself with 
the following command:

psexec –s –i 0 –d mspaint.exe

This tells PsExec to run Microsoft Paint as a system process (–s) running on session 0 (–i 0), and to 
return immediately instead of waiting for the process to finish (–d).

FIGURE 4-10 The Interactive Services Detection service at work
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If you click View The Message, you can switch to the console for session 0 (and switch back again 
with a similar window on the console) .

The Service Control Manager
The SCM’s executable file is %SystemRoot%\System32\Services.exe, and like most service processes, it 
runs as a Windows console program . The Wininit process starts the SCM early during the system boot . 
(Refer to Chapter 13 in Part 2 for details on the boot process .) The SCM’s startup function, SvcCtrl-
Main, orchestrates the launching of services that are configured for automatic startup.

SvcCtrlMain first creates a synchronization event named SvcctrlStartEvent_A3752DX that it initial-
izes as nonsignaled . Only after the SCM completes steps necessary to prepare it to receive commands 
from SCPs does the SCM set the event to a signaled state . The function that an SCP uses to establish a 
dialog with the SCM is OpenSCManager . OpenSCManager prevents an SCP from trying to contact the 
SCM before the SCM has initialized by waiting for SvcctrlStartEvent_A3752DX to become signaled .

Next, SvcCtrlMain gets down to business and calls ScGenerateServiceDB, the function that builds 
the SCM’s internal service database . ScGenerateServiceDB reads and stores the contents of  
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a REG_MULTI_SZ value that lists 
the names and order of the defined service groups. A service’s registry key contains an optional 
Group value if that service or device driver needs to control its startup ordering with respect to 
services from other groups . For example, the Windows networking stack is built from the bottom 
up, so networking services must specify Group values that place them later in the startup sequence 
than networking device drivers . The SCM internally creates a group list that preserves the ordering of 
the groups it reads from the registry . Groups include (but are not limited to) NDIS, TDI, Primary Disk, 
Keyboard Port, and Keyboard Class. Add-on and third-party applications can even define their own 
groups and add them to the list . Microsoft Transaction Server, for example, adds a group named MS 
Transactions .

ScGenerateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet\Services, 
creating an entry in the service database for each key it encounters . A database entry includes all the 
service-related parameters defined for a service as well as fields that track the service’s status. The 
SCM adds entries for device drivers as well as for services because the SCM starts services and drivers 
marked as auto-start and detects startup failures for drivers marked boot-start and system-start . It 
also provides a means for applications to query the status of drivers . The I/O manager loads  drivers 
marked boot-start and system-start before any user-mode processes execute, and therefore any 
 drivers having these start types load before the SCM starts .

ScGenerateServiceDB reads a service’s Group value to determine its membership in a group 
and associates this value with the group’s entry in the group list created earlier . The function also 
reads and records in the database the service’s group and service dependencies by querying its 
 DependOnGroup and DependOnService registry values . Figure 4-11 shows how the SCM organizes 
the service entry and group order lists . Notice that the service list is alphabetically sorted . The reason 
this list is sorted alphabetically is that the SCM creates the list from the Services registry key, and 
 Windows stores registry keys alphabetically .
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Service database
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Group2 Group3

FIGURE 4-11 Organization of a service database

During service startup, the SCM calls on LSASS (for example, to log on a service in a non-local 
system account), so the SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE synchronization 
event, which it does when it finishes initializing. Wininit also starts the LSASS process, so the initializa-
tion of LSASS is concurrent with that of the SCM, and the order in which LSASS and the SCM complete 
initialization can vary . Then SvcCtrlMain calls ScGetBootAndSystemDriverState to scan the service 
database looking for boot-start and system-start device driver entries .

ScGetBootAndSystemDriverState determines whether or not a driver successfully started by 
 looking up its name in the object manager namespace directory named \Driver. When a device driver 
 successfully loads, the I/O manager inserts the driver’s object in the namespace under this directory, 
so if its name isn’t present, it hasn’t loaded . Figure 4-12 shows WinObj displaying the contents of the 
Driver directory . SvcCtrlMain notes the names of drivers that haven’t started and that are part of the 
current profile in a list named ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more steps . It creates its remote 
procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then RPC launches a thread to 
listen on the pipe for incoming messages from SCPs . The SCM then signals its initialization-complete 
event, SvcctrlStartEvent_A3752DX . Registering a console application shutdown event handler and 
 registering with the Windows subsystem process via RegisterServiceProcess prepares the SCM for 
system shutdown .
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FIGURE 4-12 List of driver objects

Network Drive Letters
In addition to its role as an interface to services, the SCM has another totally unrelated 
 responsibility: it notifies GUI applications in a system whenever the system creates or deletes a 
network drive-letter connection . The SCM waits for the Multiple Provider Router (MPR) to signal 
a named event, \BaseNamedObjects\ScNetDrvMsg, which MPR signals whenever an application 
assigns a drive letter to a remote network share or deletes a remote-share drive-letter assign-
ment . (See Chapter 7, “Networking,” for more information on MPR .) When MPR signals the 
event, the SCM calls the GetDriveType Windows function to query the list of connected network 
drive letters . If the list changes across the event signal, the SCM sends a Windows broadcast 
message of type WM_DEVICECHANGE . The SCM uses either DBT_DEVICEREMOVECOMPLETE or 
DBT_DEVICEARRIVAL as the message’s subtype . This message is primarily intended for Windows 
Explorer so that it can update any open Computer windows to show the presence or absence of 
a network drive letter .

Service Startup
SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services that have a Start value 
designating auto-start (except delayed auto-start services) . ScAutoStartServices also starts auto-start 
device drivers . To avoid confusion, you should assume that the term services means services and 
drivers unless indicated otherwise . The algorithm in ScAutoStartServices for starting services in the 
correct order proceeds in phases, whereby a phase corresponds to a group and phases proceed in the 
sequence defined by the group ordering stored in the HKLM\SYSTEM\CurrentControlSet\Control 
\ServiceGroupOrder\List registry value. The List value, shown in Figure 4-13, includes the names of 
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groups in the order that the SCM should start them . Thus, assigning a service to a group has no effect 
other than to fine-tune its startup with respect to other services belonging to different groups .

FIGURE 4-13 ServiceGroupOrder registry key

When a phase starts, ScAutoStartServices marks all the service entries belonging to the phase’s 
group for startup . Then ScAutoStartServices loops through the marked services seeing whether 
it can start each one . Part of this check includes seeing whether the service is marked as delayed 
auto-start, which causes the SCM to start it at a later stage . (Delayed auto-start services must also 
be ungrouped .) Another part of the check it makes consists of determining whether the service has 
a dependency on another group, as specified by the existence of the DependOnGroup value in the 
service’s registry key . If a dependency exists, the group on which the service is dependent must 
have already initialized, and at least one service of that group must have successfully started . If the 
service depends on a group that starts later than the service’s group in the group startup sequence, 
the SCM notes a “circular dependency” error for the service . If ScAutoStartServices is considering a 
Windows service or an auto-start device driver, it next checks to see whether the service depends 
on one or more other services, and if so, if those services have already started . Service dependencies 
are indicated with the DependOnService registry value in a service’s registry key . If a service depends 
on other services that belong to groups that come later in the ServiceGroupOrder\List, the SCM also 
generates a “circular dependency” error and doesn’t start the service . If the service depends on any 
services from the same group that haven’t yet started, the service is skipped .

When the dependencies of a service have been satisfied, ScAutoStartServices makes a final check 
to see whether the service is part of the current boot configuration before starting the service. When 
the system is booted in safe mode, the SCM ensures that the service is either identified by name or by 
group in the appropriate safe boot registry key . There are two safe boot keys, Minimal and Network, 
under HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, and the one that the SCM checks de-
pends on what safe mode the user booted . If the user chose Safe Mode or Safe Mode With Command 
Prompt at the special boot menu (which you can access by pressing F8 early in the boot process), 
the SCM references the Minimal key; if the user chose Safe Mode With Networking, the SCM refers 
to Network . The existence of a string value named Option under the SafeBoot key indicates not only 
that the system booted in safe mode but also the type of safe mode the user selected . For more 
information about safe boots, see the section “Safe Mode” in Chapter 13 in Part 2 .
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Once the SCM decides to start a service, it calls ScStartService, which takes different steps for 
services than for device drivers . When ScStartService starts a Windows service, it first determines the 
name of the file that runs the service’s process by reading the ImagePath value from the service’s 
 registry key . It then examines the service’s Type value, and if that value is SERVICE_WINDOWS_SHARE_
PROCESS (0x20), the SCM ensures that the process the service runs in, if already started, is logged on 
using the same account as specified for the service being started. (This is to ensure that the service 
is not configured with the wrong account, such as a LocalService account, but with an image path 
pointing to a running Svchost, such as netsvcs, which runs as LocalSystem .) A service’s ObjectName 
registry value stores the user account in which the service should run . A service with no ObjectName 
or an ObjectName of LocalSystem runs in the local system account .

The SCM verifies that the service’s process hasn’t already been started in a different account by 
checking to see whether the service’s ImagePath value has an entry in an internal SCM database 
called the image database . If the image database doesn’t have an entry for the ImagePath value, 
the SCM creates one . When the SCM creates a new entry, it stores the logon account name used for 
the service and the data from the service’s ImagePath value . The SCM requires services to have an 
ImagePath value . If a service doesn’t have an ImagePath value, the SCM reports an error stating that it 
couldn’t find the service’s path and isn’t able to start the service. If the SCM locates an existing image 
database entry with matching ImagePath data, the SCM ensures that the user account information 
for the service it’s starting is the same as the information stored in the database entry—a process can 
be logged on as only one account, so the SCM reports an error when a service specifies a different 
 account name than another service that has already started in the same process .

The SCM calls ScLogonAndStartImage to log on a service if the service’s configuration specifies and 
to start the service’s process . The SCM logs on services that don’t run in the System account by calling 
the LSASS function LogonUserEx . LogonUserEx normally requires a password, but the SCM indicates to 
LSASS that the password is stored as a service’s LSASS “secret” under the key HKLM\SECURITY\Policy 
\Secrets in the registry. (Keep in mind that the contents of SECURITY aren’t typically visible  because 
its default security settings permit access only from the System account .) When the SCM calls 
 LogonUserEx, it specifies a service logon as the logon type, so LSASS looks up the password in the 
Secrets subkey that has a name in the form _SC_<service name>.

The SCM directs LSASS to store a logon password as a secret using the LsaStorePrivateData 
 function when an SCP configures a service’s logon information . When a logon is successful, 
 LogonUserEx returns a handle to an access token to the caller . Windows uses access tokens to rep-
resent a user’s security context, and the SCM later associates the access token with the process that 
implements the service .

After a successful logon, the SCM loads the account’s profile information, if it’s not already loaded, 
by calling the UserEnv DLL’s (%SystemRoot%\System32\Userenv.dll) LoadUserProfile function . The 
value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\<user profile key>\
ProfileImagePath contains the location on disk of a registry hive that LoadUserProfile loads into the 
registry, making the information in the hive the HKEY_CURRENT_USER key for the service .
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An interactive service must open the WinSta0 window station, but before ScLogonAndStartImage 
allows an interactive service to access WinSta0 it checks to see whether the value HKLM\SYSTEM 
\CurrentControlSet\Control\Windows\NoInteractiveServices is set. Administrators set this value to 
prevent services marked as interactive from displaying windows on the console . This option is desir-
able in unattended server environments in which no user is present to respond to the Session 0 UI 
Discovery notification from interactive services.

As its next step, ScLogonAndStartImage proceeds to launch the service’s process, if the  process 
hasn’t already been started (for another service, for example) . The SCM starts the process in a 
 suspended state with the CreateProcessAsUser Windows function . The SCM next creates a named pipe 
through which it communicates with the service process, and it assigns the pipe the name  
\Pipe\Net\NtControlPipeX, where X is a number that increments each time the SCM creates a pipe. 
The SCM resumes the service process via the ResumeThread function and waits for the service to 
 connect to its SCM pipe. If it exists, the registry value HKLM\SYSTEM\CurrentControlSet\Control 
\ServicesPipeTimeout determines the length of time that the SCM waits for a service to call  
StartServiceCtrlDispatcher and connect before it gives up, terminates the process, and concludes that 
the service failed to start . If ServicesPipeTimeout doesn’t exist, the SCM uses a default timeout of 30 
seconds . The SCM uses the same timeout value for all its service communications .

When a service connects to the SCM through the pipe, the SCM sends the service a start 
 command . If the service fails to respond positively to the start command within the timeout 
 period, the SCM gives up and moves on to start the next service . When a service doesn’t respond 
to a start request, the SCM doesn’t terminate the process, as it does when a service doesn’t call 
 StartServiceCtrlDispatcher within the timeout; instead, it notes an error in the system Event Log that 
indicates the service failed to start in a timely manner .

If the service the SCM starts with a call to ScStartService has a Type registry value of SERVICE_ 
KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is really a device driver, so 
 ScStartService calls ScLoadDeviceDriver to load the driver . ScLoadDeviceDriver enables the load driver 
security privilege for the SCM process and then invokes the kernel service NtLoadDriver, passing in 
the data in the ImagePath value of the driver’s registry key . Unlike services, drivers don’t need to 
specify an ImagePath value, and if the value is absent, the SCM builds an image path by appending 
the driver’s name to the string %SystemRoot%\System32\Drivers\.

ScAutoStartServices continues looping through the services belonging to a group until all the 
 services have either started or generated dependency errors . This looping is the SCM’s way of 
 automatically ordering services within a group according to their DependOnService  dependencies . 
The SCM will start the services that other services depend on in earlier loops, skipping the depen-
dent services until subsequent loops . Note that the SCM ignores Tag values for Windows services, 
which you might come across in subkeys under the HKLM\SYSTEM\CurrentControlSet\Services 
key; the I/O manager honors Tag values to order device driver startup within a group for boot-
start and  system-start drivers . Once the SCM completes phases for all the groups listed in the 
 ServiceGroupOrder\List value, it performs a phase for services belonging to groups not listed in the 
value and then executes a final phase for services without a group.
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After handling auto-start services, the SCM calls ScInitDelayStart, which queues a delayed 
work item associated with a worker thread responsible for processing all the services that 
 ScAutoStartServices skipped because they were marked delayed auto-start . This worker thread will 
execute after the delay . The default delay is 120 seconds, but it can be overridden by the creating 
an AutoStartDelay value in HKLM\SYSTEM\CurrentControlSet\Control. The SCM performs the same 
 actions as those used during startup of nondelayed auto-start services .

Delayed Auto-Start Services
Delayed auto-start services enable Windows to cope with the growing number of services that 
are being started when a user logs on, bogging down the boot-up process and increasing the 
time before a user is able to get responsiveness from the desktop . The design of auto-start 
services was primarily intended for services required early in the boot process because other 
services depend on them, a good example being the RPC service, on which all other services 
depend . The other use was to allow unattended startup of a service, such as the Windows 
Update service . Because many auto-start services fall in this second category, marking them as 
delayed auto-start allows critical services to start faster and for the user’s desktop to be ready 
sooner when a user logs on immediately after booting . Additionally, these services run in back-
ground mode, which lowers their thread, I/O, and memory priority. Configuring a service for 
delayed auto-start requires calling the ChangeServiceConfig2 API. You can check the state of 
the flag for a service by using the qc bits option of sc.exe instead.

Note If a nondelayed auto-start service has a delayed auto-start service as one of its 
 dependencies, the delayed auto-start flag will be ignored and the service will be started 
immediately in order to satisfy the dependency .

When it’s finished starting all auto-start services and drivers, as well as setting up the delayed 
auto-start work item, the SCM signals the event \BaseNamedObjects\SC_AutoStartComplete. This 
event is used by the Windows Setup program to gauge startup progress during installation .

Startup Errors
If a driver or a service reports an error in response to the SCM’s startup command, the  ErrorControl 
value of the service’s registry key determines how the SCM reacts . If the ErrorControl value is 
 SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified, the SCM simply ignores the 
 error and continues processing service startups . If the ErrorControl value is SERVICE_ERROR_NORMAL 
(1), the SCM writes an event to the system Event Log that says, “The <service name> service failed 
to start due to the following error:” . The SCM includes the textual representation of the Windows 
error code that the service returned to the SCM as the reason for the startup failure in the Event Log 
record . Figure 4-14 shows the Event Log entry that reports a service startup error .



328 Windows Internals, Sixth Edition, Part 1

FIGURE 4-14 Service startup failure Event Log entry

If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or SERVICE_ERROR_CRITICAL 
(3) reports a startup error, the SCM logs a record to the Event Log and then calls the internal function 
ScRevertToLastKnownGood. This function switches the system’s registry configuration to a version, 
named last known good, with which the system last booted successfully . Then it restarts the system 
using the NtShutdownSystem system service, which is implemented in the executive . If the system is 
already booting with the last known good configuration, the system just reboots.

Accepting the Boot and Last Known Good
Besides starting services, the system charges the SCM with determining when the system’s registry 
configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the last known good control 
set . The CurrentControlSet key contains the Services key as a subkey, so CurrentControlSet includes 
the registry representation of the SCM database . It also contains the Control key, which stores many 
kernel-mode and user-mode subsystem configuration settings. By default, a successful boot consists 
of a successful startup of auto-start services and a successful user logon . A boot fails if the system 
halts because a device driver crashes the system during the boot or if an auto-start service with an 
ErrorControl value of SERVICE_ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup error .

The SCM obviously knows when it has completed a successful startup of the auto-start 
 services, but Winlogon (%SystemRoot%\System32\Winlogon.exe) must notify it when there is a 
 successful logon . Winlogon invokes the NotifyBootConfigStatus function when a user logs on, and 
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 NotifyBootConfigStatus sends a message to the SCM . Following the successful start of the auto-start 
services or the receipt of the message from NotifyBootConfigStatus (whichever comes last), the SCM 
calls the system function NtInitializeRegistry to save the current registry startup configuration.

Third-party software developers can supersede Winlogon’s definition of a successful logon with 
their own definition. For example, a system running Microsoft SQL Server might not consider a boot 
successful until after SQL Server is able to accept and process transactions . Developers  impose their 
definition of a successful boot by writing a boot-verification program and installing the  program by 
pointing to its location on disk with the value stored in the registry key HKLM\SYSTEM 
\ CurrentControlSet\Control\BootVerificationProgram. In addition, a boot-verification program’s 
 installation must disable Winlogon’s call to NotifyBootConfigStatus by setting HKLM\SOFTWARE 
\Microsoft\Windows NT\CurrentVersion\Winlogon\ReportBootOk to 0. When a boot-verification 
 program is installed, the SCM launches it after finishing auto-start services and waits for the 
 program’s call to NotifyBootConfigStatus before saving the last known good control set .

Windows maintains several copies of CurrentControlSet, and CurrentControlSet is really a  symbolic 
registry link that points to one of the copies. The control sets have names in the form HKLM\SYSTEM 
\ControlSetnnn, where nnn is a number such as 001 or 002. The HKLM\SYSTEM\Select key con-
tains values that identify the role of each control set . For example, if CurrentControlSet points to 
 ControlSet001, the Current value under Select has a value of 1 . The LastKnownGood value under 
Select contains the number of the last known good control set, which is the control set last used to 
boot successfully . Another value that might be on your system under the Select key is Failed, which 
points to the last control set for which the boot was deemed unsuccessful and aborted in favor of an 
attempt at booting with the last known good control set . Figure 4-15 displays a system’s control sets 
and Select values .

NtInitializeRegistry takes the contents of the last known good control set and synchronizes it with 
that of the CurrentControlSet key’s tree. If this was the system’s first successful boot, the last known 
good won’t exist and the system will create a new control set for it . If the last known good tree exists, 
the system simply updates it with differences between it and CurrentControlSet .

Last known good is helpful in situations in which a change to CurrentControlSet, such as the 
 modification of a system performance-tuning value under HKLM\SYSTEM\Control or the addition 
of a service or device driver, causes the subsequent boot to fail . Users can press F8 early in the boot 
 process to bring up a menu that lets them direct the boot to use the last known good control set, 
rolling the system’s registry configuration back to the way it was the last time the system booted 
 successfully . Chapter 13 in Part 2 describes in more detail the use of last known good and other 
 recovery mechanisms for troubleshooting system startup problems .
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FIGURE 4-15 Control set selection key

Service Failures
A service can have optional FailureActions and FailureCommand values in its registry key that the SCM 
records during the service’s startup . The SCM registers with the system so that the system signals the 
SCM when a service process exits . When a service process terminates unexpectedly, the SCM deter-
mines which services ran in the process and takes the recovery steps specified by their failure-related 
registry values . Additionally, services are not only limited to requesting failure actions during crashes 
or unexpected service termination, since other problems, such as a memory leak, could also result in 
service failure .

If a service enters the SERVICE_STOPPED state and the error code returned to the SCM is not 
 ERROR_SUCCESS, the SCM will check whether the service has the FailureActionsOnNonCrashFailures 
flag set and perform the same recovery as if the service had crashed. To use this functionality, the 
service must be configured via the ChangeServiceConfig2 API or the system administrator can use the 
Sc .exe utility with the Failureflag parameter to set FailureActionsOnNonCrashFailures to 1 . The default 
value being 0, the SCM will continue to honor the same behavior as on earlier versions of Windows 
for all other services .

Actions that a service can configure for the SCM include restarting the service, running a program, 
and rebooting the computer . Furthermore, a service can specify the failure actions that take place the 
first time the service process fails, the second time, and subsequent times, and it can indicate a delay 
period that the SCM waits before restarting the service if the service asks to be restarted . The service 
failure action of the IIS Admin Service results in the SCM running the IISReset application, which 
performs cleanup work and then restarts the service . You can easily manage the recovery actions for 
a service using the Recovery tab of the service’s Properties dialog box in the Services MMC snap-in, as 
shown in Figure 4-16 .
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FIGURE 4-16 Service recovery options

Service Shutdown
When Winlogon calls the Windows ExitWindowsEx function, ExitWindowsEx sends a message to Csrss, 
the Windows subsystem process, to invoke Csrss’s shutdown routine . Csrss loops through the active 
processes and notifies them that the system is shutting down. For every system process except the 
SCM, Csrss waits up to the number of seconds specified by HKU\.DEFAULT\Control Panel\Desktop 
\WaitToKillAppTimeout (which defaults to 20 seconds) for the process to exit before moving on to the 
next process . When Csrss encounters the SCM process, it also notifies it that the system is shutting 
down but employs a timeout specific to the SCM. Csrss recognizes the SCM using the process ID Csrss 
saved when the SCM registered with Csrss using the RegisterServicesProcess function during system 
initialization . The SCM’s timeout differs from that of other processes because Csrss knows that the 
SCM communicates with services that need to perform cleanup when they shut down, so an adminis-
trator might need to tune only the SCM’s timeout . The SCM’s timeout value resides in the  
HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout registry value, and it defaults to 
12 seconds .

The SCM’s shutdown handler is responsible for sending shutdown notifications to all the 
 services that requested shutdown notification when they initialized with the SCM. The SCM func-
tion  ScShutdownAllServices loops through the SCM services database searching for services desiring 
shutdown notification and sends each one a shutdown command. For each service to which it sends 
a shutdown command, the SCM records the value of the service’s wait hint, a value that a service also 
specifies when it registers with the SCM. The SCM keeps track of the largest wait hint it receives. After 
sending the shutdown messages, the SCM waits either until one of the services it notified of shutdown 
exits or until the time specified by the largest wait hint passes.
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If the wait hint expires without a service exiting, the SCM determines whether one or more of the 
services it was waiting on to exit have sent a message to the SCM telling the SCM that the service is 
progressing in its shutdown process . If at least one service made progress, the SCM waits again for 
the duration of the wait hint . The SCM continues executing this wait loop until either all the services 
have exited or none of the services upon which it’s waiting has notified it of progress within the wait 
hint timeout period .

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss waits for 
the SCM to exit . If Csrss’s wait ends without the SCM having exited (the WaitToKillServiceTimeout time 
expired), Csrss kills the SCM and continues the shutdown process . Thus, services that fail to shut down 
in a timely manner are killed . This logic lets the system shut down in the face of services that never 
complete a shutdown as a result of flawed design, but it also means that services that require more 
than 20 seconds will not complete their shutdown operations .

Additionally, because the shutdown order is not deterministic, services that might depend on other 
services to shut down first (called shutdown dependencies) have no way to report this to the SCM and 
might never have the chance to clean up either .

To address these needs, Windows implements preshutdown notifications and shutdown ordering 
to combat the problems caused by these two scenarios. Preshutdown notifications are sent, using the 
same mechanism as shutdown notifications, to services that have requested preshutdown notification 
via the SetServiceStatus API, and the SCM will wait for them to be acknowledged .

The idea behind these notifications is to flag services that might take a long time to clean up (such 
as database server services) and give them more time to complete their work . The SCM will send a 
progress query request and wait three minutes for a service to respond to this notification. If the 
service does not respond within this time, it will be killed during the shutdown procedure; otherwise, 
it can keep running as long as it needs, as long as it continues to respond to the SCM .

Services that participate in the preshutdown can also specify a shutdown order with respect to 
other preshutdown services. Services that depend on other services to shut down first (for example, 
the Group Policy service needs to wait for Windows Update to finish) can specify their shutdown 
 dependencies in the HKLM\SYSTEM\CurrentControlSet\Control\PreshutdownOrder registry value.

Shared Service Processes
Running every service in its own process instead of having services share a process whenever possible 
wastes system resources . However, sharing processes means that if any of the services in the process 
has a bug that causes the process to exit, all the services in that process terminate .

Of the Windows built-in services, some run in their own process and some share a process with 
other services . For example, the LSASS process contains security-related services—such as the 
 Security Accounts Manager (SamSs) service, the Net Logon (Netlogon) service, and the Crypto Next 
Generation (CNG) Key Isolation (KeyIso) service .

There is also a generic process named Service Host (SvcHost–%SystemRoot%\System32\Svchost.exe) 
to contain multiple services . Multiple instances of SvcHost can be running in different processes . 
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Services that run in SvcHost processes include Telephony (TapiSrv), Remote Procedure Call (RpcSs), 
and Remote Access Connection Manager (RasMan) . Windows implements services that run in SvcHost 
as DLLs and includes an ImagePath definition of the form “%SystemRoot%\System32\svchost.exe –k 
netsvcs” in the service’s registry key . The service’s registry key must also have a registry value named 
ServiceDll under a Parameters subkey that points to the service’s DLL file.

All services that share a common SvcHost process specify the same parameter (“–k netsvcs” in the 
example in the preceding paragraph) so that they have a single entry in the SCM’s image database . 
When the SCM encounters the first service that has a SvcHost ImagePath with a particular parameter 
during service startup, it creates a new image database entry and launches a SvcHost process with the 
parameter . The new SvcHost process takes the parameter and looks for a value having the same name 
as the parameter under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost. SvcHost 
reads the contents of the value, interpreting it as a list of service names, and notifies the SCM that it’s 
hosting those services when SvcHost registers with the SCM .

When the SCM encounters a SvcHost service (by checking the service type value) during service 
startup with an ImagePath matching an entry it already has in the image database, it doesn’t launch 
a second process but instead just sends a start command for the service to the SvcHost it already 
started for that ImagePath value . The existing SvcHost process reads the ServiceDll parameter in the 
service’s registry key and loads the DLL into its process to start the service .

Table 4-11 lists all the default service groupings on Windows and some of the services that are 
registered for each of them .

TABLE 4-11 Major Service Groupings

Service Group Services Notes

LocalService Network Store Interface, Windows 
Diagnostic Host, Windows Time, 
COM+ Event System, HTTP Auto-Proxy 
Service, Software Protection Platform UI 
Notification, Thread Order Service, LLDT 
Discovery, SSL, FDP Host, WebClient

Services that run in the local 
service account and make use 
of the network on various ports 
or have no network usage at all 
(and hence no restrictions) .

LocalServiceAndNoImpersonation UPnP and SSDP, Smart Card, TPM, Font 
Cache, Function Discovery, AppID, qWAVE, 
Windows Connect Now, Media Center 
Extender, Adaptive Brightness

Services that run in the local 
service account and make use 
of the network on a fixed set of 
ports . Services run with a write-
restricted token .

LocalServiceNetworkRestricted DHCP, Event Logger, Windows Audio, 
NetBIOS, Security Center, Parental Controls, 
HomeGroup Provider

Services that run in the local 
service account and make use 
of the network on a fixed set 
of ports .

LocalServiceNoNetwork Diagnostic Policy Engine, Base Filtering 
Engine, Performance Logging and Alerts, 
Windows Firewall, WWAN AutoConfig

Services that run in the  local 
service account but make 
no use of the network at all . 
Services run with a write- 
restricted token .
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Service Group Services Notes

LocalSystemNetworkRestricted DWM, WDI System Host, Network 
Connections, Distributed Link Tracking, 
Windows Audio Endpoint, Wired/
WLAN AutoConfig, Pnp-X, HID Access, 
User-Mode Driver Framework Service, 
Superfetch, Portable Device Enumerator, 
HomeGroup Listener, Tablet Input, Program 
Compatibility, Offline Files

Services that run in the local 
system account and make use 
of the network on a fixed set 
of ports .

NetworkService Cryptographic Services, DHCP Client, 
Terminal Services, WorkStation, Network 
Access Protection, NLA, DNS Client, 
Telephony, Windows Event Collector, 
WinRM

Services that run in the network 
service  account and make use 
of the network on various ports 
(or have no enforced network 
restrictions) .

NetworkServiceAndNoImpersonation KTM for DTC Services that run in the network 
service account and make use 
of the network on a fixed set of 
ports . Services run with a write-
restricted token .

NetworkServiceNetworkRestricted IPSec Policy Agent Services that run in the network 
service  account and make use 
of the network on a fixed set 
of ports .

EXPERIMENT: Viewing Services Running Inside Processes
The Process Explorer utility shows detailed information about the services running within 
 processes . Run Process Explorer, and view the Services tab in the Process Properties dialog 
box for the following processes: Services .exe, Lsass .exe, and Svchost .exe . Several instances of 
SvcHost will be running on your system, and you can see the account in which each is running 
by adding the Username column to the Process Explorer display or by looking at the Username 
field on the Image tab of a process’ Process Properties dialog box. The following screen shows 
the list of services running within a SvcHost executing in the local service account:
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The information displayed includes the service’s name, display name, and description, if 
it has one, which Process Explorer shows beneath the service list when you select a service . 
 Additionally, the path of the DLL containing the service is shown . This information is useful for 
mapping thread start addresses (shown on the Threads tab) to their respective services, which 
can help in cases of service-related problems such as troubleshooting high CPU usage .

You can also use the tlist .exe tool from the Debugging Tools for Windows or Tasklist, which 
ships with Windows, to view the list of services running within processes from a command 
prompt . The syntax to see services with Tlist is:

tlist /s

The syntax for tasklist is:

tasklist /svc

Note that these utilities do not show service display names or descriptions, only service names .

Service Tags
One of the disadvantages of using service-hosting processes is that accounting for CPU time and 
 usage, as well as for the usage of resources, by a specific service is much harder because each service 
is sharing the memory address space, handle table, and per-process CPU accounting numbers with 
the other services that are part of the same service group . Although there is always a thread inside 
the service-hosting process that belongs to a certain service, this association might not always be 
easy to make . For example, the service might be using worker threads to perform its operation, or 
perhaps the start address and stack of the thread do not reveal the service’s DLL name, making it hard 
to figure out what kind of work a thread might exactly be doing and to which service it might belong.

Windows implements a service attribute called the service tag, which the SCM generates by calling 
ScGenerateServiceTag when a service is created or when the service database is generated during 
system boot . The attribute is simply an index identifying the service . The service tag is stored in the 
SubProcessTag field of the thread environment block (TEB) of each thread (see Chapter 5, “Processes 
and Threads,” for more information on the TEB) and is propagated across all threads that a main 
 service thread creates (except threads created indirectly by thread-pool APIs) .

Although the service tag is kept internal to the SCM, several Windows utilities, like Netstat .exe 
(a utility you can use for displaying which programs have opened which ports on the network), use 
undocumented APIs to query service tags and map them to service names . Because the TCP/IP stack 
saves the service tag of the threads that create TCP/IP end points, when you run Netstat with the 
–b parameter, Netstat can report the service name for end points created by services . Another tool 
you can use to look at service tags is ScTagQuery from Winsider Seminars & Solutions Inc .  
(www.winsiderss.com/tools/sctagquery/sctagquery.htm) . It can query the SCM for the mappings of 
every service tag and display them either systemwide or per-process . It can also show you to which 
services all the threads inside a service-hosting process belong . (This is conditional on those threads 
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having a proper service tag associated with them .) This way, if you have a runaway service consuming 
lots of CPU time, you can identify the culprit service in case the thread start address or stack does not 
have an obvious service DLL associated with it .

Unified Background Process Manager

Various Windows components have traditionally been in charge of managing hosted or background 
tasks as the operating system has increased in complexity in features, from the Service Control 
 Manager described earlier to the Task Scheduler, the DCOM Server Launcher, and the WMI Provider—
all of which are also responsible for the execution of out-of-process, hosted code . Today, Windows 
implements a Unified Background Process Manager (UBPM), which handles (at least, for now) two 
of these mechanisms—the SCM and Task Scheduler—providing the ability for these components to 
 access UBPM functionality .

UBPM is implemented in Services .exe, in the same location as the SCM, but as a separate  library 
providing its own interface over RPC (similarly to how the Plug and Play Manager also runs in 
 Services .exe but is a separate component) . It provides access to that interface through a public export 
DLL, Ubpm .dll, which is exposed to third-party service developers through new Trigger APIs that have 
been added to the SCM . The SCM then loads a custom SCM Extension DLL (Scext .dll), which calls into 
Ubpm .dll . This layer of indirection is needed for MinWin support, where Scext .dll is not loaded and 
the SCM provides only minimal functionality . Figure 4-17 describes this architecture .

SCM
(services.exe)

Task Scheduler
(Schedsvc.dll)

SCM Extension DLL

UBPM API DLL (Ubpm.dll)

Unified Background
Process Manager (UBPM)

(Services.exe)

Services... Tasks...

Public API

FIGURE 4-17 Overall UBPM architecture



 CHAPTER 4 Management Mechanisms 337

Initialization
UBPM is initialized by the SCM when its UbpmInitialize export is called by ScExtInitializeTerminateUbpm 
in the SCM Extension DLL . As such, it is implemented as a DLL running within the context of the SCM, 
not as its own separate process .

UBPM first begins initialization by setting up its internal utility library. By leveraging many of the 
improvements in newer versions of Windows, UBPM uses a thread pool to process the many incoming 
events we will later see, which allows it to scale from having a single worker thread to having up to 
1000 (based on a maximum processing of 10,000 consumers) .

Next, UBPM initializes its internal tracing support, which can be configured in the HKLM\Software 
\Microsoft\Windows NT\CurrentVersion\Tracing\UBPM\Regular key using the Flags value. This is 
useful for debugging and monitoring the behavior of the UBPM using the WPP tracing mechanism 
described in the Windows Driver Kit .

Following that, the event manager is set up, which will be used by later components of UBPM to 
report internal event states . The event manager registers a TASKSCHED GUID on which ETW events 
can be consumed, and it logs its state to a TaskScheduler.log file.

The next step, critical to UBPM, is to initialize its own real-time ETW consumer, which is the central 
mechanism used by UBPM to perform its job, as almost all the data it receives comes over as ETW 
events . UBPM starts an ETW real-time session in secure mode, meaning that it will be the only process 
capable of receiving its events, and it names its session UBPM. It also enables the first built-in provider 
(owned by the kernel) in order to receive notifications related to time changes.

It then associates an event callback—UbpmpEventCallback—with incoming events and creates a 
consumer thread, UbpmpConsumeEvents, that waits for the SCM’s event used to signify that auto-
start events have completed (which was named previously) . Once this happens, the consumer thread 
calls ProcessTrace, which calls into ETW and blocks the thread until the ETW trace is completed 
 (normally, only once UBPM exists) . The event callback, on the other hand, consumes each ETW event 
as it arrives and processes it according to the algorithm we’ll see in the next section .

ETW automatically replays any events that were missed before ProcessTrace was called, which 
means that kernel events during the boot will all be incoming at once and processed appropriately . 
UBPM also waits on the SCM’s auto-start event, which makes sure that when these events do come in, 
there will at least have been a couple of services that registered for them; otherwise, starting the trace 
too early will result in events with no registered consumers, which will cause them to be lost .

Finally, UBPM sets up a local RPC interface to TaskHost—the second component of UBPM, which 
we’ll describe later—and it also sets up its own local RPC interface, which exposes the APIs that al-
lows services to use UBPM functionality (such as registering trigger providers, generating triggers 
and notifications, and so forth). These APIs are implemented in the Ubpm.dll library and use RPC to 
 communicate to the RPC interface in the UBPM code of Services .exe .

When UBPM exits, the opposite actions in the reverse order are performed to reset the system to 
its previous state .
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UBPM API
UBPM enables the following mechanisms to be used by having services use the UBPM API:

 ■ Registering and unregistering a trigger provider, as well as opening and closing a handle to 
one

 ■ Generating a notification or a trigger

 ■ Setting and querying the configuration of a trigger provider

 ■ Sending a control command to a trigger provider

Provider Registration
Providers are registered through the SCM Extension DLL, which uses the ScExtpRegisterProvider 
 function that is used by ScExtGenerateNotification . This opens a handle to UBPM and calls the 
 UbpmRegisterTriggerProvider API. When a service registers a provider, it must define a unique name 
and GUID for the provider, as well as the necessary flags to define the provider (for example, by using 
the ETW provider flag). Additionally, providers can also have a friendly name as well as a description. 
Once registration is completed, the provider is inserted into UBPM’s provider list, the total count of 
providers is incremented, and, if this is an ETW provider that’s not being started with the disabled 
flag, the provider’s GUID is enabled in the real-time ETW trace that UBPM activated upon initializa-
tion . A provider block is created containing all the provider’s information that was captured from the 
registration .

Now that a provider is registered, the open and close API can be used to increment the reference 
count to the provider and return its provider block . Furthermore, if the provider was not registered in 
a disabled state, and this is the first reference to it, its GUID is enabled in the real-time ETW trace.

Similarly, unregistering a provider will disable its GUID and unlink it from the provider list, and as 
soon as all references are closed, the provider block will be deleted .

EXPERIMENT: Viewing UBPM Trigger Providers
You can use the Performance Monitor to see UBPM actively monitoring all the ETW providers 
that have registered with it . Follow these instructions to do so:

1. Open the Performance Monitor by clicking on the Start button, and then choosing 
Run .

2. Type perfmon, and click OK .

3. When Performance Monitor launches, expand Data Collector Sets on the left sidebar 
by clicking the arrow .

4. Choose Event Trace Sessions from the list, and then double click on the UBPM entry .
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The following screen shot displays the UBPM trigger providers on the author’s machine . You 
should see a similar display .

As you can see from the large list, dozens of providers are registered, each of them capable 
of generating individual events . For example, the BfeTriggerProvider handles Firewall events . In 
a later experiment, you will see a consumer of such an event .

Consumer Registration
Service consumer registration is initially exposed by the ScExtRegisterTriggerConsumer callback that 
the SCM Extension DLL provides . Its job is to receive all the SCM-formatted trigger information (which 
service developers provide according to the MSDN API documentation, “Service Trigger Events” avail-
able on MSDN) and convert that information into the raw data structures that UBPM internally uses . 
Once all the processing is finished, the SCM Extension DLL packages the trigger and associates it with 
two actions: UBPM Start Service and UBPM Stop Service .

The Scheduled Tasks service, which also leverages UBPM, provides similar functionality through an 
internal UBPM Singleton Class, which calls into Ubpm .dll . It allows its internal RegisterTask API to also 
register for trigger consumption, and it does similar processing of its input data, with the difference 
being that it uses the UBPM Start EXE action . Next, to actually perform the registration, both open a 
handle to UBPM, check if the consumer is already registered (changes to existing consumers are not 
allowed), and finally register the provider through the UbpmRegisterTriggerConsumer API .
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Trigger consumer registration is done by UbpmTriggerProviderRegister, which validates the request, 
adds the provider’s GUID into the list of providers, and toggles it to enable the ETW trace to now 
receive events about this provider as well .

EXPERIMENT: Viewing Which Services React to Which Triggers
Certain Windows services are already preconfigured to consume the appropriate triggers to 
prevent them from staying resident even when they’re not needed, such as the Windows Time 
Service, the Tablet Input Service, and the Computer Browser service . The sc command lets you 
query information about a service’s triggers with the qtriggerinfo option .

1. Open a command prompt .

2. Type the following to see the triggers for the Windows Time Service:

sc qtriggerinfo w32time 
 
[SC] QueryServiceConfig2 SUCCESS 
SERVICE_NAME: w32time 
 
        START SERVICE 
          DOMAIN JOINED STATUS         : 1ce20aba-9851-4421-9430-1ddeb766e809 
[DOMAIN JOINED] 
        STOP SERVICE 
          DOMAIN JOINED STATUS         : ddaf516e-58c2-4866-9574-c3b615d42ea1 
[NOT DOMAIN JOINED] 

3. Now look at the Tablet Input Service:

sc qtriggerinfo tabletinputservice 
[SC] QueryServiceConfig2 SUCCESS 
SERVICE_NAME: tabletinputservice 
 
        START SERVICE 
          DEVICE INTERFACE ARRIVAL     : 4d1e55b2-f16f-11cf-88cb-001111000030 
[INTERFACE CLASS GUID] 
            DATA                       : HID_DEVICE_UP:000D_U:0001 
            DATA                       : HID_DEVICE_UP:000D_U:0002 
            DATA                       : HID_DEVICE_UP:000D_U:0003 
            DATA                       : HID_DEVICE_UP:000D_U:0004

4. Finally, here is the Computer Browser Service:

sc qtriggerinfo browser 
[SC] QueryServiceConfig2 SUCCESS 
 
SERVICE_NAME: browser 
 
        START SERVICE 
          FIREWALL PORT EVENT          : b7569e07-8421-4ee0-ad10-86915afdad09 
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[PORT OPEN] 
            DATA                       : 139;TCP;System; 
            DATA                       : 137;UDP;System; 
            DATA                       : 138;UDP;System; 
        STOP SERVICE 
          FIREWALL PORT EVENT          : a144ed38-8e12-4de4-9d96-e64740b1a524 
[PORT CLOSE] 
            DATA                       : 139;TCP;System; 
            DATA                       : 137;UDP;System; 
            DATA                       : 138;UDP;System;

In these three cases, note how the Windows Time Service is waiting for domain join/exit 
in order to decide whether or not it should run, while the Tablet Input Service is waiting for a 
device with the HID Class ID matching Tablet Device . Finally, the Computer Browser Service will 
run only if the firewall policy allows access on ports 137, 138, and 139, which are SMB network 
ports that the browser needs .

Task Host
TaskHost receives commands from UBPM living in the SCM . At initialization time, it opens the local 
RPC interface that was created by UBPM during its initialization and loops forever, waiting for com-
mands to come through the channel . Four commands are currently supported, which are sent over 
the TaskHostSendResponseReceiveCommand RPC API:

 ■ Stopping the host

 ■ Starting a task

 ■ Stopping a task

 ■ Terminating a task

Additionally, hosted tasks are supplied with a TaskHostReportTaskStatus RPC API, which enables 
them to notify UBPM of their current execution state whenever they call UbpmReportTaskStatus .

All task-based commands are actually internally implemented by a generic COM Task library, and 
they essentially result in the creation and destruction of COM components .

Service Control Programs
Service control programs are standard Windows applications that use SCM service management 
 functions, including CreateService, OpenService, StartService, ControlService, QueryServiceStatus, 
and DeleteService. To use the SCM functions, an SCP must first open a communications channel to 
the SCM by calling the OpenSCManager function . At the time of the open call, the SCP must specify 
what types of actions it wants to perform . For example, if an SCP simply wants to enumerate and 
display the services present in the SCM’s database, it requests enumerate-service access in its call to 
 OpenSCManager . During its initialization, the SCM creates an internal object that represents the SCM 
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database and uses the Windows security functions to protect the object with a security  descriptor 
that specifies what accounts can open the object with what access permissions. For example, the 
security descriptor indicates that the Authenticated Users group can open the SCM object with 
enumerate-service access . However, only administrators can open the object with the access required 
to create or delete a service .

As it does for the SCM database, the SCM implements security for services themselves . When an 
SCP creates a service by using the CreateService function, it specifies a security descriptor that the 
SCM associates internally with the service’s entry in the service database . The SCM stores the security 
descriptor in the service’s registry key as the Security value, and it reads that value when it scans the 
registry’s Services key during initialization so that the security settings persist across reboots . In the 
same way that an SCP must specify what types of access it wants to the SCM database in its call to 
OpenSCManager, an SCP must tell the SCM what access it wants to a service in a call to OpenService . 
Accesses that an SCP can request include the ability to query a service’s status and to configure, stop, 
and start a service .

The SCP you’re probably most familiar with is the Services MMC snap-in that’s included in 
 Windows, which resides in %SystemRoot%\System32\Filemgmt.dll. Windows also includes Sc.exe 
 (Service Controller tool), a command-line service control program that we’ve mentioned multiple 
times .

SCPs sometimes layer service policy on top of what the SCM implements . A good example is the 
timeout that the Services MMC snap-in implements when a service is started manually . The snap-in 
presents a progress bar that represents the progress of a service’s startup . Services indirectly interact 
with SCPs by setting their configuration status to reflect their progress as they respond to SCM com-
mands such as the start command . SCPs query the status with the QueryServiceStatus function . They 
can tell when a service actively updates the status versus when a service appears to be hung, and the 
SCM can take appropriate actions in notifying a user about what the service is doing .

Windows Management Instrumentation

Windows Management Instrumentation (WMI) is an implementation of Web-Based Enterprise 
Management (WBEM), a standard that the Distributed Management Task Force (DMTF—an industry 
consortium) defines. The WBEM standard encompasses the design of an extensible enterprise data-
collection and data-management facility that has the flexibility and extensibility required to manage 
local and remote systems that comprise arbitrary components .

WMI Architecture
WMI consists of four main components, as shown in Figure 4-18: management applications, WMI 
infrastructure, providers, and managed objects . Management applications are Windows applications 
that access and display or process data about managed objects . A simple example of a management 
application is a performance tool replacement that relies on WMI rather than the Performance API 
to obtain performance information . A more complex example is an enterprise-management tool that 
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lets administrators perform automated inventories of the software and hardware configuration of 
every computer in their enterprise .

 

Database
application Web browser C/C++
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COM/DCOM
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SNMP objects Windows objects Registry
objects Managed objects

FIGURE 4-18 WMI architecture

Developers typically must target management applications to collect data from and manage 
 specific objects . An object might represent one component, such as a network adapter device, or 
a collection of components, such as a computer . (The computer object might contain the network 
adapter object.) Providers need to define and export the representation of the objects that manage-
ment applications are interested in . For example, the vendor of a network adapter might want to add 
adapter-specific properties to the network adapter WMI support that Windows includes, querying 
and setting the adapter’s state and behavior as the management applications direct . In some cases 
(for example, for device drivers), Microsoft supplies a provider that has its own API to help developers 
leverage the provider’s implementation for their own managed objects with minimal coding effort .

The WMI infrastructure, the heart of which is the Common Information Model (CIM) Object 
 Manager (CIMOM), is the glue that binds management applications and providers . (CIM is described 
later in this chapter .) The infrastructure also serves as the object-class store and, in many cases, as 
the storage manager for persistent object properties . WMI implements the store, or repository, as an 
on-disk database named the CIMOM Object Repository . As part of its infrastructure, WMI supports 
several APIs through which management applications access object data and providers supply data 
and class definitions.
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Windows programs and scripts (such as Windows PowerShell) use the WMI COM API, the primary 
management API, to directly interact with WMI . Other APIs layer on top of the COM API and include 
an Open Database Connectivity (ODBC) adapter for the Microsoft Access database application . A 
 database developer uses the WMI ODBC adapter to embed references to object data in the devel-
oper’s database . Then the developer can easily generate reports with database queries that contain 
WMI-based data . WMI ActiveX controls support another layered API . Web developers use the ActiveX 
controls to construct web-based interfaces to WMI data . Another management API is the WMI 
 scripting API, for use in script-based applications and Microsoft Visual Basic programs . WMI scripting 
support exists for all Microsoft programming language technologies .

As they are for management applications, WMI COM interfaces constitute the primary API for 
providers . However, unlike management applications, which are COM clients, providers are COM or 
Distributed COM (DCOM) servers (that is, the providers implement COM objects that WMI interacts 
with) . Possible embodiments of a WMI provider include DLLs that load into WMI’s manager process 
or stand-alone Windows applications or Windows services . Microsoft includes a number of built-in 
providers that present data from well-known sources, such as the Performance API, the registry, the 
Event Manager, Active Directory, SNMP, and modern device drivers . The WMI SDK lets developers 
develop third-party WMI providers .

Providers
At the core of WBEM is the DMTF-designed CIM specification. The CIM specifies how  management 
systems represent, from a systems management perspective, anything from a computer to an 
 application or device on a computer . Provider developers use the CIM to represent the components 
that make up the parts of an application for which the developers want to enable management . 
 Developers use the Managed Object Format (MOF) language to implement a CIM representation .

In addition to defining classes that represent objects, a provider must interface WMI to the objects . 
WMI classifies providers according to the interface features the providers supply . Table 4-12 lists 
WMI provider classifications. Note that a provider can implement one or more features; therefore, a 
provider can be, for example, both a class and an event provider. To clarify the feature definitions in 
Table 4-12, let’s look at a provider that implements several of those features . The Event Log provider 
supports several objects, including an Event Log Computer, an Event Log Record, and an Event Log 
File. The Event Log is an Instance provider because it can define multiple instances for several of its 
classes. One class for which the Event Log provider defines multiple instances is the Event Log File 
class (Win32_NTEventlogFile); the Event Log provider defines an instance of this class for each of the 
system’s event logs (that is, System Event Log, Application Event Log, and Security Event Log) .

TABLE 4-12 Provider Classifications

Classification Description

Class Can supply, modify, delete, and enumerate a provider-specific class. It can also support query 
processing . Active Directory is a rare example of a service that is a class provider .

Instance Can supply, modify, delete, and enumerate instances of system and provider-specific classes. An 
instance represents a managed object . It can also support query processing .
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Classification Description

Property Can supply and modify individual object property values .

Method Supplies methods for a provider-specific class.

Event Generates event notifications.

Event consumer Maps a physical consumer to a logical consumer to support event notification.

The Event Log provider defines the instance data and lets management applications enumerate 
the records. To let management applications use WMI to back up and restore the Event Log files, 
the Event Log provider implements backup and restore methods for Event Log File objects . Doing 
so makes the Event Log provider a Method provider . Finally, a management application can register 
to receive notification whenever a new record writes to one of the Event Logs. Thus, the Event Log 
provider serves as an Event provider when it uses WMI event notification to tell WMI that Event Log 
records have arrived .

The Common Information Model and the Managed Object 
Format Language
The CIM follows in the steps of object-oriented languages such as C++ and C#, in which a modeler 
designs representations as classes . Working with classes lets developers use the powerful modeling 
techniques of inheritance and composition . Subclasses can inherit the attributes of a parent class, and 
they can add their own characteristics and override the characteristics they inherit from the parent 
class . A class that inherits properties from another class derives from that class . Classes also compose: 
a developer can build a class that includes other classes .

The DMTF provides multiple classes as part of the WBEM standard . These classes are CIM’s basic 
language and represent objects that apply to all areas of management . The classes are part of the 
CIM core model . An example of a core class is CIM_ManagedSystemElement . This class contains a 
few basic properties that identify physical components such as hardware devices and logical compo-
nents such as processes and files. The properties include a caption, description, installation date, and 
status . Thus, the CIM_LogicalElement and CIM_PhysicalElement classes inherit the attributes of the 
CIM_ManagedSystemElement class . These two classes are also part of the CIM core model . The WBEM 
standard calls these classes abstract classes because they exist solely as classes that other classes in-
herit (that is, no object instances of an abstract class exist) . You can therefore think of abstract classes 
as templates that define properties for use in other classes.

A second category of classes represents objects that are specific to management areas but 
 independent of a particular implementation . These classes constitute the common model and are 
considered an extension of the core model . An example of a common-model class is the  
CIM_ FileSystem class, which inherits the attributes of CIM_LogicalElement . Because virtually every 
operating system—including Windows, Linux, and other varieties of UNIX—rely on file-system-based 
structured storage, the CIM_FileSystem class is an appropriate constituent of the common model .

The final class category, the extended model, comprises technology-specific additions to the 
 common model. Windows defines a large set of these classes to represent objects specific to the 



346 Windows Internals, Sixth Edition, Part 1

 Windows environment. Because all operating systems store data in files, the CIM common model 
includes the CIM_LogicalFile class . The CIM_DataFile class inherits the CIM_LogicalFile class, and 
 Windows adds the Win32_PageFile and Win32_ShortcutFile file classes for those Windows file types.

The Event Log provider makes extensive use of inheritance . Figure 4-19 shows a view of the WMI 
CIM Studio, a class browser that ships with the WMI Administrative Tools that you can obtain from 
the Microsoft download center at the Microsoft website . You can see where the Event Log provider 
relies on inheritance in the provider’s Win32_NTEventlogFile class, which derives from CIM_DataFile . 
Event Log files are data files that have additional Event Log–specific attributes such as a log file name 
( LogfileName) and a count of the number of records that the file contains (NumberOfRecords). The 
tree that the class browser shows reveals that Win32_NTEventlogFile is based on several levels of 
inheritance, in which CIM_DataFile derives from CIM_LogicalFile, which derives from    
CIM_LogicalElement, and CIM_LogicalElement derives from CIM_ManagedSystemElement .

 
FIGURE 4-19 WMI CIM Studio
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As stated earlier, WMI provider developers write their classes in the MOF language . The  following 
output shows the definition of the Event Log provider’s Win32_NTEventlogFile, which is selected 
in Figure 4-19 . Notice the correlation between the properties that the right panel in Figure 4-19 
lists and those properties’ definitions in the MOF file that follows. CIM Studio uses yellow arrows to 
tag the properties that a class inherits. Thus, you don’t see those properties specified in   
Win32_NTEventlogFile’s definition.

dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"), Locale(1033), UUID("{8502C57B-5FBB-
11D2-AAC1-006008C78BC7}")]  
class Win32_NTEventlogFile : CIM_DataFile  
{  
[read] string LogfileName;  
[read, write] uint32 MaxFileSize;  
[read] uint32 NumberOfRecords;  
[read, volatile, ValueMap{"0", "1..365", "4294967295"}] string OverWritePolicy;  
[read, write, Units("Days"), Range("0-365 | 4294967295")] uint32 OverwriteOutDated;  
[read] string Sources[];  
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 ClearEventlog([in] 
string ArchiveFileName);  
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 BackupEventlog([in] 
string ArchiveFileName);  
};

One term worth reviewing is dynamic, which is a descriptive designator for the  
Win32_NTEventlogFile class that the MOF file in the preceding output shows. “Dynamic” means that 
the WMI infrastructure asks the WMI provider for the values of properties associated with an object 
of that class whenever a management application queries the object’s properties . A static class is one 
in the WMI repository; the WMI infrastructure refers to the repository to obtain the values instead of 
asking a provider for the values . Because updating the repository is a relatively expensive operation, 
dynamic providers are more efficient for objects that have properties that change frequently.

EXPERIMENT: Viewing the MOF Definitions of WMI Classes
You can view the MOF definition for any WMI class by using the WbemTest tool that comes with 
Windows. In this experiment, we’ll look at the MOF definition for the Win32_NTEventLogFile 
class:

1. Run Wbemtest from the Start menu’s Run dialog box .

2. Click the Connect button, change the Namespace to root\cimv2, and connect.

3. Click the Enum Classes button, select the Recursive option button, and then click OK .

4. Find Win32_NTEventLogFile in the list of classes, and then double-click it to see its 
class properties .

5. Click the Show MOF button to open a window that displays the MOF text .
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After constructing classes in MOF, WMI developers can supply the class definitions to WMI in 
several ways. WDM driver developers compile a MOF file into a binary MOF (BMF) file—a more 
compact binary representation than a MOF file—and can choose to dynamically give the BMF files 
to the WDM infrastructure or to statically include it in their binary . Another way is for the provider to 
compile the MOF and use WMI COM APIs to give the definitions to the WMI infrastructure. Finally, 
a provider can use the MOF Compiler (Mofcomp .exe) tool to give the WMI infrastructure a classes-
compiled representation directly .

The WMI Namespace
Classes define the properties of objects, and objects are class instances on a system. WMI uses a 
namespace that contains several subnamespaces that WMI arranges hierarchically to organize objects . 
A management application must connect to a namespace before the application can access objects 
within the namespace .

WMI names the namespace root directory root. All WMI installations have four predefined 
namespaces that reside beneath root: CIMV2, Default, Security, and WMI . Some of these namespaces 
have other namespaces within them . For example, CIMV2 includes the Applications and ms_409 
namespaces as subnamespaces. Providers sometimes define their own namespaces; you can see the 
WMI namespace (which the Windows device driver WMI provider defines) beneath root in Windows.

EXPERIMENT: Viewing WMI Namespaces
You can see what namespaces are defined on a system with WMI CIM Studio. WMI CIM Studio 
presents a connection dialog box when you run it that includes a namespace browsing  button 
to the right of the namespace edit box . Opening the browser and selecting a namespace has 
WMI CIM Studio connect to that namespace. Windows defines over a dozen namespaces 
 beneath root, some of which are visible here:
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Unlike a file system namespace, which comprises a hierarchy of directories and files, a WMI 
namespace is only one level deep. Instead of using names as a file system does, WMI uses object 
properties that it defines as keys to identify the objects. Management applications specify class names 
with key names to locate specific objects within a namespace . Thus, each instance of a class must 
be uniquely identifiable by its key values. For example, the Event Log provider uses the   
Win32_NTLogEvent class to represent records in an Event Log. This class has two keys: Logfile, a string; 
and RecordNumber, an unsigned integer . A management application that queries WMI for instances 
of Event Log records obtains them from the provider key pairs that identify records . The  application 
refers to a record using the syntax that you see in this sample object path name:

\\DARYL\root\CIMV2:Win32_NTLogEvent.Logfile="Application",  
                                         RecordNumber="1"

The first component in the name (\\DARYL) identifies the computer on which the object is  located, 
and the second component (\root\CIMV2) is the namespace in which the object resides. The class 
name follows the colon, and key names and their associated values follow the period . A comma 
 separates the key values .

WMI provides interfaces that let applications enumerate all the objects in a particular class or to 
make queries that return instances of a class that match a query criterion .

Class Association
Many object types are related to one another in some way . For example, a computer object has a 
processor, software, an operating system, active processes, and so on . WMI lets providers construct 
an association class to represent a logical connection between two different classes . Association 
classes associate one class with another, so the classes have only two properties: a class name and 
the Ref modifier. The following output shows an association in which the Event Log provider’s MOF 
file associates the Win32_NTLogEvent class with the Win32_ComputerSystem class. Given an object, a 
management application can query associated objects. In this way, a provider defines a hierarchy of 
objects .

[dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance, EnumPrivileges{"Se 
SecurityPrivilege"}: 
ToSubClass, Locale(1033): ToInstance, UUID("{8502C57F-5FBB-11D2-AAC1-006008C78BC7}"): 
ToInstance, Association: DisableOverride ToInstance ToSubClass]  
class Win32_NTLogEventComputer  
{  
    [key, read: ToSubClass] Win32_ComputerSystem ref Computer;  
    [key, read: ToSubClass] Win32_NTLogEvent ref Record;  
};
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Figure 4-20 shows the WMI Object Browser (another tool that the WMI Administrative Tools 
includes) displaying the contents of the CIMV2 namespace . Windows system components  typically 
place their objects within the CIMV2 namespace. The Object Browser first locates the Win32_ 
ComputerSystem object instance ALEX-LAPTOP, which is the object that represents the computer . 
Then the Object Browser obtains the objects associated with Win32_ComputerSystem and displays 
them beneath ALEX-LAPTOP . The Object Browser user interface displays association objects with a 
double-arrow folder icon . The associated class type’s objects display beneath the folder .

You can see in the Object Browser that the Event Log provider’s association class  
Win32_NTLogEventComputer is beneath ALEX-LAPTOP and that numerous instances of the  
Win32_NTLogEvent class exist. Refer to the preceding output to verify that the MOF file defines 
the Win32_NTLogEventComputer class to associate the Win32_ComputerSystem class with the  
Win32_NTLogEvent class . Selecting an instance of Win32_NTLogEvent in the Object Browser  reveals 
that class’ properties under the Properties tab in the right pane . Microsoft intended the Object 
Browser to help WMI developers examine their objects, but a management application would 
 perform the same operations and display properties or collected information more intelligibly .

 
FIGURE 4-20 WMI Object Browser
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EXPERIMENT: Using WMI Scripts to Manage Systems
A powerful aspect of WMI is its support for scripting languages . Microsoft has generated 
 hundreds of scripts that perform common administrative tasks for managing user accounts, 
files, the registry, processes, and hardware devices. The Microsoft TechNet Scripting Center 
website serves as the central location for Microsoft scripts . Using a script from the scripting 
center is as easy as copying its text from your Internet browser, storing it in a file with a .vbs 
 extension, and running it with the command cscript script .vbs, where script is the name you 
gave the script . Cscript is the command-line interface to Windows Script Host (WSH) .

Here’s a sample TechNet script that registers to receive events when Win32_Process object 
instances are created, which occurs whenever a process starts, and prints a line with the name 
of the process that the object represents:

strComputer = "."  
Set objWMIService = GetObject("winmgmts:" _  
    & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")  
Set colMonitoredProcesses = objWMIService. _          
    ExecNotificationQuery("select * from __instancecreationevent " _   
        & " within 1 where TargetInstance isa ‘Win32_Process’")  
i = 0  
Do While i = 0  
    Set objLatestProcess = colMonitoredProcesses.NextEvent  
    Wscript.Echo objLatestProcess.TargetInstance.Name  
Loop

The line that invokes ExecNotificationQuery does so with a parameter that includes a “select” 
statement, which highlights WMI’s support for a read-only subset of the ANSI standard Struc-
tured Query Language (SQL), known as WQL, to provide a flexible way for WMI consumers to 
specify the information they want to extract from WMI providers . Running the sample script 
with Cscript and then starting Notepad results in the following output:

C:\>cscript monproc.vbs  
Microsoft (R) Windows Script Host Version 5.7 
Copyright (C) Microsoft Corporation. All rights reserved.  
  
NOTEPAD.EXE

WMI Implementation
The WMI service runs in a shared Svchost process that executes in the local system account . It loads 
providers into the Wmiprvse .exe provider-hosting process, which launches as a child of the RPC 
service process . WMI executes Wmiprvse in the local system, local service, or network service account, 
depending on the value of the HostingModel property of the WMI Win32Provider object instance 
that represents the provider implementation . A Wmiprvse process exits after the provider is removed 
from the cache, one minute following the last provider request it receives .
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EXPERIMENT: Viewing Wmiprvse Creation
You can see Wmiprvse being created by running Process Explorer and executing Wmic . A 
Wmiprvse process will appear beneath the Svchost process that hosts the RPC service . If Process 
Explorer job highlighting is enabled, it will appear with the job highlight color because, to pre-
vent a runaway provider from consuming all virtual memory resources on a system, Wmiprvse 
executes in a job object that limits the number of child processes it can create and the amount 
of virtual memory each process and all the processes of the job can allocate . (See Chapter 5 for 
more information on job objects .)

Most WMI components reside by default in %SystemRoot%\System32 and  
%SystemRoot%\System32\Wbem, including Windows MOF files, built-in provider DLLs, and 
 management application WMI DLLs. Look in the %SystemRoot%\System32\Wbem directory, and 
you’ll find Ntevt.mof, the Event Log provider MOF file. You’ll also find Ntevt.dll, the Event Log 
 provider’s DLL, which the WMI service uses .

Directories beneath %SystemRoot%\System32\Wbem store the repository, log files, and third-
party MOF files. WMI implements the repository—named the CIMOM object repository—using a 
proprietary version of the Microsoft JET database engine. The database file, by default, resides in 
%SystemRoot%\System32\Wbem\Repository\.

WMI honors numerous registry settings that the service’s HKLM\SOFTWARE\Microsoft\WBEM 
\CIMOM registry key stores, such as thresholds and maximum values for certain parameters.

Device drivers use special interfaces to provide data to and accept commands—called the WMI 
System Control commands—from WMI . These interfaces are part of the WDM, which is explained in 
Chapter 8, “I/O System,” in Part 2. Because the interfaces are cross-platform, they fall under the \root 
\WMI namespace.
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WMIC
Windows also includes Wmic .exe, a utility that allows you to interact with WMI from a 
 WMI-aware command-line shell . All WMI objects and their properties, including their  methods, 
are accessible through the shell, which makes WMIC an advanced systems management 
 console .

WMI Security
WMI implements security at the namespace level . If a management application successfully  connects 
to a namespace, the application can view and access the properties of all the objects in that 
namespace . An administrator can use the WMI Control application to control which users can access 
a namespace . Internally, this security model is implemented by using ACLs and Security Descriptors, 
part of the standard Windows security model that implements Access Checks . (See Chapter 6 for 
more information on access checks .)

To start the WMI Control application, from the Start menu, select Control Panel . From there, select 
System And Maintenance, Administrative Tools, Computer Management . Next, open the Services 
And Applications branch . Right-click WMI Control, and select Properties to launch the WMI Control 
 Properties dialog box, which Figure 4-21 shows. To configure security for namespaces, click on the 
Security tab, select the namespace, and click Security . The other tabs in the WMI Control Properties 
dialog box let you modify the performance and backup settings that the registry stores .

FIGURE 4-21 WMI security properties
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 Windows Diagnostic Infrastructure

The Windows Diagnostic Infrastructure (WDI) helps to detect, diagnose, and resolve common 
 problem scenarios with minimal user intervention . Windows components implement triggers that 
cause WDI to launch scenario-specific troubleshooting modules to detect the occurrence of a prob-
lem scenario . A trigger can indicate that the system is approaching or has reached a problematic 
state. Once a troubleshooting module has identified a root cause, it can invoke a problem resolver 
to address it . A resolution might be as simple as changing a registry setting or interacting with the 
user to perform recovery steps or configuration changes. Ultimately, WDI’s main role is to provide a 
unified framework for Windows components to perform the tasks involved in automated problem 
detection, diagnosis, and resolution .

WDI Instrumentation
Windows or application components must add instrumentation to notify WDI when a problem 
 scenario is occurring . Components can wait for the results of diagnosis synchronously or can con-
tinue operating and let diagnosis proceed asynchronously . WDI implements two different types of 
 instrumentation APIs to support these models:

 ■ Event-based diagnosis, which can be used for minimally invasive diagnostics  instrumentation, 
can be added to a component without requiring any changes to its implementation . WDI 
supports two kinds of event-based diagnosis: simple scenarios and start-stop scenarios . In a 
simple scenario, a single point in code is responsible for the failure and an event is raised to 
trigger diagnostics . In a start-stop scenario, an entire code path is deemed risky and is instru-
mented for diagnosis . One event is raised at the beginning of the scenario to a real-time Event 
Tracing for Windows (ETW) session named the DiagLog . At the same time, a kernel facility 
called the Scenario Event Mapper (SEM) enables a collection of additional ETW traces to the 
WDI context loggers . A second event is raised to signal the end of the diagnostic scenario, 
at which time the SEM disables the verbose tracing . This “just-in-time tracing” mechanism 
keeps the performance overhead of detailed tracing low while maintaining enough contextual 
information for WDI to find the root cause without a reproduction of the problem, if a failure 
should occur .

 ■ On-demand diagnosis, which allows applications to request diagnoses on their own, interact 
with the diagnostic, receive notifications when the diagnostic has completed, and modify its 
behavior based on the results of the diagnosis . On-demand instrumentation is particularly 
useful when diagnosis needs to be performed in a privileged security context . WDI facilitates 
the transfer of context across trust and process boundaries and also supports impersonation 
of the caller when necessary .

Diagnostic Policy Service
The Diagnostic Policy Service (DPS, %SystemRoot%\System32\Dps.dll) implements most of the 
WDI scenario back end . DPS is a multithreaded service (running in a Svchost) that accepts on- demand 
scenario requests and also monitors and watches for diagnostic events delivered via DiagLog . 
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(See Figure 4-22, which shows the relationship of DPS to the other key WDI components .) In response 
to these requests, DPS launches the appropriate troubleshooting module, which encodes domain-
specific knowledge, such as how to find the root cause of a network problem. In addition, DPS makes 
all the contextual information related to the scenario available to the modules in the form of captured 
traces . Troubleshooting modules perform an automated analysis of the data and can request DPS to 
launch a secondary module called a resolver, which is responsible for fixing the problem, silently if 
possible .

User modeInstrumented
component Kernel mode

Diagnostic Policy Service

Troubleshooting
module

Contact
sessions

Diagnostic
session 

(DiagLog)

Scenario 
Event

Mapper

On-demand request
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FIGURE 4-22 Windows Diagnostic Infrastructure architecture

DPS controls and enforces Group Policy settings for diagnostic scenarios . You can use the Group 
Policy Editor (%SystemRoot%\System32\Gpedit.msc) to configure the settings for the diagnos-
tics and automatic recovery options. You can access these settings from Computer Configuration, 
 Administrative Templates, System, Troubleshooting And Diagnostics, shown in Figure 4-23 .

FIGURE 4-23 Configuring Diagnostic Policy Service settings
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Diagnostic Functionality
Windows implements several built-in diagnostic scenarios and utilities . Some examples include:

 ■ Disk diagnostics, which include the presence of Self-Monitoring Analysis and Reporting 
 Technology (SMART) code inside the storage class driver (%SystemRoot%\System32\Driver 
\Classspnp.sys) to monitor disk health. WDI notifies and guides the user through data back-
up after an impending disk failure is detected . In addition, Windows monitors application 
crashes caused by disk corruptions in critical system files. The diagnostic uses the Windows 
File  Protection mechanism to automatically restore such damaged system files from a backup 
cache when possible . For more information on Windows storage management, see Chapter 9, 
“Storage Management,” in Part 2 .

 ■ Network diagnostics and troubleshooting extends WDI to handle different classes of 
 networking-related problems, such as file sharing, Internet access, wireless networks, third-
party firewalls, and general network connectivity. For more information on networking, see 
Chapter 7, “Networking .”

 ■ Resource exhaustion prevention, which includes Windows memory leak diagnosis and 
 Windows resource exhaustion detection and resolution . These diagnostics can detect when 
the commit limit is approaching its maximum and alert the user of the situation, including the 
top memory and resource consumers . The user can then choose to terminate these applica-
tions to attempt to free some resources . For more information on the commit limit and virtual 
memory, see Chapter 10, “Memory Management,” in Part 2 .

 ■ Windows memory diagnostic tool, which can be manually executed by the user from the Boot 
Manager on startup or automatically recommended by Windows Error Reporting (WER) after 
a system crash that was analyzed as potentially the result of faulty RAM . For more information 
on the boot process, see Chapter 13 in Part 2 .

 ■ Windows startup repair tool, which attempts to automatically fix certain classes of errors 
 commonly responsible for users being unable to boot the system, such as incorrect BCD 
 settings, damaged disk structures such as the MBR or boot sector, and faulty drivers . When 
system boot is unsuccessful, the Boot Manager automatically launches the startup repair 
tool, if it is installed, which also includes manual recovery options and access to a command 
prompt . For more information on the startup repair tool, see Chapter 13 in Part 2 .

 ■ Windows performance diagnostics, which include Windows boot performance  diagnostics, 
Windows shutdown performance diagnostics, Windows standby/resume performance 
 diagnostics, and Windows system responsiveness performance diagnostics . Based on certain 
timing thresholds and the internal behavioral expectations of these mechanisms, Windows 
can detect problems caused by slow performance and log them to the Event Log, which in 
turn is used by WDI to provide resolutions and walkthroughs for the user to attempt to fix 
the  problem .
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 ■ Program Compatibility Assistant (PCA), which enables legacy applications to execute on newer 
Windows versions despite compatibility problems . PCA detects application installation failures 
caused by a mismatch during version checks and run-time failures caused by deprecated 
binaries and User Account Control (UAC) settings . PCA attempts to recover from these failures 
by applying the appropriate compatibility setting for the application, which takes effect during 
the next run . In addition, PCA maintains a database of programs with known compatibility 
 issues and informs the users about potential problems at program startup .

Conclusion

So far, we’ve examined the overall structure of Windows, the core system mechanisms on which 
the structure is built, and core management mechanisms . With this foundation laid, we’re ready to 
 explore the individual executive components in more detail, starting with processes and threads .
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C H A P T E R  5

Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes, threads, and 
jobs in the Microsoft Windows operating system. The first section focuses on the internal structures 

that make up a process . The second section outlines the steps involved in creating a process (and 
its initial thread) . The internals of threads and thread scheduling are then described . The chapter 
 concludes with a description of jobs .

Because processes and threads touch so many components in Windows, a number of terms and 
data structures (such as working sets, objects and handles, system memory heaps, and so on) are 
referred to in this chapter but are explained in detail elsewhere in the book . To fully understand this 
chapter, you need to be familiar with the terms and concepts explained in Chapter 1, “Concepts and 
Tools,” and Chapter 2, “System Architecture,” such as the difference between a process and a thread, 
the Windows virtual address space layout, and the difference between user mode and kernel mode .

Process Internals

This section describes the key Windows process data structures maintained by various parts of the 
system and describes different ways and tools to examine this data .

Data Structures
Each Windows process is represented by an executive process (EPROCESS) structure . Besides 
 containing many attributes relating to a process, an EPROCESS contains and points to a number of 
other related data structures . For example, each process has one or more threads, each represented 
by an executive thread (ETHREAD) structure . (Thread data structures are explained in the section 
“Thread Internals” later in this chapter .) 

The EPROCESS and most of its related data structures exist in system address space . One  exception 
is the process environment block (PEB), which exists in the process address space (because it  contains 
information accessed by user-mode code) . Additionally, some of the process data structures used in 
memory management, such as the working set list, are valid only within the context of the  current 
process, because they are stored in process-specific system space. (See Chapter 10, “Memory 
 Management,” in Part 2 for more information on process address space .)

For each process that is executing a Win32 program, the Win32 subsystem process (Csrss) 
 maintains a parallel structure called the CSR_PROCESS . Finally, the kernel-mode part of the Win32 
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subsystem (Win32k .sys) maintains a per-process data structure, W32PROCESS . The W32PROCESS 
structure is created the first time a thread calls a Windows USER or GDI function that is implemented 
in kernel mode . 

With the exception of the idle process, every EPROCESS structure is encapsulated as a process 
object by the executive object manager (described in Chapter 3, “System Mechanisms”) . Because pro-
cesses are not named objects, they are not visible in the WinObj tool . You can, however, see the Type 
object called “Process” in the \ObjectTypes directory. A handle to a process provides, through use of 
the process-related APIs, access to some of the data in the EPROCESS structure and also in some of its 
associated structures . 

Figure 5-1 is a simplified diagram of the process and thread data structures . Each data structure 
shown in the figure is described in detail in this chapter.

Thread
environment

block

Process
environment

block

Process
object

Win32k process structure

Thread
object

System address space

Process address space

…

FIGURE 5-1 Data structures associated with processes and threads 

Many other drivers and system components, by registering process creation notifications, can 
choose to create their own data structures to track information they store on a per-process basis . 
When one discusses the overhead of a process, the size of such data structures must often be taken 
into consideration, although it is nearly impossible to obtain an accurate number .

First let’s focus on the process object . (The thread object is covered in the section “Thread 
 Internals” later in the chapter.) Figure 5-2 shows the key fields in an EPROCESS structure . 
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FIGURE 5-2 Important fields of the executive process structure and its embedded kernel process structure 
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Similar to the way that the kernel’s APIs and components are divided into isolated and layered 
modules with their own naming conventions, the data structures for a process follow a similar design . 
As shown in Figure 5-2, the first member of the executive process structure is called Pcb, for process 
control block . It is a structure of type KPROCESS, for kernel process . Although routines in the executive 
store information in the EPROCESS, the dispatcher, scheduler, and interrupt/time accounting code—
being part of the operating system kernel—use the KPROCESS instead . This allows a layer of abstrac-
tion to exist between the executive’s high-level functionality and its underlying low-level implementa-
tion of certain functions, and it helps prevent unwanted dependencies between the layers .

EXPERIMENT: Displaying the Format of an EPROCESS Structure and Its 
Fields
For a list of the fields that make up an EPROCESS structure and their offsets in hexadecimal, 
type dt nt!_eprocess in the kernel debugger . (See Chapter 1 for more information on the 
kernel debugger and how to perform kernel debugging on the local system .) The output 
( truncated for the sake of space) on a 32-bit system looks like this:

lkd> dt nt!_eprocess  
   +0x000 Pcb              : _KPROCESS 
   +0x080 ProcessLock      : _EX_PUSH_LOCK 
   +0x088 CreateTime       : _LARGE_INTEGER 
   +0x090 ExitTime         : _LARGE_INTEGER 
   +0x098 RundownProtect   : _EX_RUNDOWN_REF 
   +0x09c UniqueProcessId  : Ptr32 Void 
...    
   +0x0dc ObjectTable      : Ptr32 _HANDLE_TABLE 
   +0x0e0 Token            : _EX_FAST_REF 
... 
   +0x108 Win32Process     : Ptr32 Void 
   +0x10c Job              : Ptr32 _EJOB 
... 
   +0x2a8 TimerResolutionLink : _LIST_ENTRY 
   +0x2b0 RequestedTimerResolution : Uint4B  
   +0x2b4 ActiveThreadsHighWatermark : Uint4B 
   +0x2b8 SmallestTimerResolution : Uint4B 
   +0x2bc TimerResolutionStackRecord : Ptr32 _PO_DIAG_STACK_RECORD

The first member of this structure (Pcb) is an imbedded structure of type KPROCESS . This is 
where scheduling and time-accounting data is stored . You can display the format of the kernel 
process structure in the same way as the EPROCESS: 

lkd> dt _kprocess  
nt!_KPROCESS  
   +0x000 Header           : _DISPATCHER_HEADER 
   +0x010 ProfileListHead  : _LIST_ENTRY 
   +0x018 DirectoryTableBase : Uint4B 
   ... 
   +0x074 StackCount       : _KSTACK_COUNT 
   +0x078 ProcessListEntry : _LIST_ENTRY 
   +0x080 CycleTime        : Uint8B 
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   +0x088 KernelTime       : Uint4B 
   +0x08c UserTime         : Uint4B 
   +0x090 VdmTrapcHandler  : Ptr32 Void

The dt command also enables you to view the specific contents of one field or  multiple 
fields by typing their names following the structure name—such as dt nt!_eprocess 
 UniqueProcessId, which displays the process ID field. In the case of a field that represents a 
structure—such as the Pcb field of EPROCESS, which contains the KPROCESS substructure—
adding a period after the field name will cause the debugger to display the substructure.

For example, an alternative way to see the KPROCESS is to type dt nt!_eprocess Pcb . You 
can continue to recurse this way by adding more field names (within KPROCESS) and so on. 
Finally, to recurse through all the substructures, the –r switch of the dt command allows you to 
do just that . Adding a number after the switch controls the depth of recursion the command 
will follow .

The dt command used as shown earlier shows the format of the selected structure, not the 
contents of any particular instance of that structure type . To show an instance of an actual pro-
cess, you can specify the address of an EPROCESS structure as an argument to the dt command . 
You can get the addresses of almost all of the EPROCESS structures in the system by using the 
!process 0 0 command (the exception being the system idle process) . Because the KPROCESS is 
the first thing in the EPROCESS, the address of an EPROCESS will also work as the address of a 
KPROCESS with dt _kprocess .

Processes and threads are such integral parts of Windows that it’s impossible to talk about them 
without referring to many other parts of the system . To keep the length of this chapter manageable, 
however, those related subjects (such as memory management, security, objects, and handles) are 
covered elsewhere . 

EXPERIMENT: Using the Kernel Debugger !process Command
The kernel debugger !process command displays a subset of the information in a process object 
and its associated structures . This output is arranged in two parts for each process . First you see 
the information about the process, as shown here . (When you don’t specify a process address 
or ID, !process lists information for the process owning the thread currently running on CPU 0, 
which will be WinDbg itself on a single-processor system .)

lkd> !process  
PROCESS 85857160  SessionId: 1  Cid: 0bcc    Peb: 7ffd9000  ParentCid: 090c 
    DirBase: b45b0820  ObjectTable: b94ffda0  HandleCount:  99. 
    Image: windbg.exe 
    VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1. 
    DeviceMap 9d32ee50 
    Token                             ebaa1938 
    ... 
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'    PageFaultCount                    37066 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      6242

After the basic process output comes a list of the threads in the process . That output is 
 explained in the “Experiment: Using the Kernel Debugger !thread Command” section later in 
the chapter . 

Other commands that display process information include !handle, which dumps the process 
handle table (which is described in more detail in the section “Object Handles and the Process 
Handle Table” in Chapter 3) . Process and thread security structures are described in Chapter 6, 
“Security .”

Note that the output gives you the address of the PEB, which you can use with the !peb 
 command shown in the next experiment to see the PEB of an arbitrary process . However, 
because the PEB is in the user-mode address space, it is valid only within the context of its own 
process. To look at the PEB of another process, you must first switch WinDbg to that process. 
You can do this with the  .process command, followed by the EPROCESS pointer .  

The PEB lives in the user-mode address space of the process it describes . It contains information 
needed by the image loader, the heap manager, and other Windows components that need to access 
it from user mode . The EPROCESS and KPROCESS structures are accessible only from kernel mode . 
The important fields of the PEB are illustrated in Figure 5-3 and are explained in more detail later in 
this chapter .

Image base address

Loader database

Thread-local storage data

Code page data

Process flags

Heap flags

Heap size information

Image version information

Image process affinity mask

Process heap

OS version information

GDI shared handle table

Application compatibility data

FLS/TLS data

FIGURE 5-3 Fields of the process environment block  
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EXPERIMENT: Examining the PEB
You can dump the PEB structure with the !peb command in the kernel debugger, which 
 displays the PEB of the process that owns the currently running thread on CPU 0 . By using the 
 information in the previous experiment, you can also use the PEB pointer as an argument to the 
command .

lkd> !peb 7ffd9000 
PEB at 7ffd9000 
    InheritedAddressSpace:    No 
    ReadImageFileExecOptions: No 
    BeingDebugged:            No 
    ImageBaseAddress:         002a0000 
    Ldr                       77895d00 
... 
    WindowTitle:  'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk' 
    ImageFile:    'C:\Program Files\Debugging Tools for Windows\windbg.exe' 
    CommandLine:  '"C:\Program Files\Debugging Tools for Windows\windbg.exe" ' 
    DllPath:      'C:\Program Files\Debugging Tools for Windows;C:\Windows\ 
        system32;C:\Windows\system;C:\Windows 
    Environment:  001850a8 
        ALLUSERSPROFILE=C:\ProgramData 
        APPDATA=C:\Users\Alex Ionescu\AppData\Roaming 
    ...

The CSR_PROCESS structure contains information about processes that is specific to the Windows 
subsystem (Csrss) . As such, only Windows applications have a CSR_PROCESS structure associated with 
them (for example, Smss does not) . Additionally, because each session has its own instance of the 
Windows subsystem, the CSR_PROCESS structures are maintained by the Csrss process within each 
individual session . The basic structure of the CSR_PROCESS is illustrated in Figure 5-4 and is explained 
in more detail later in this chapter .
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EXPERIMENT: Examining the CSR_PROCESS
You can dump the CSR_PROCESS structure with the !dp command in the user-mode debugger 
while attached to the Csrss process of the session you want to inspect . Use the File, Attach To 
A Process option to get a list of processes, and select the Csrss process for the correct session . 
(You can see the session of the process by expanding the tree item for it .) Make sure to select 
the Noninvasive check box to avoid freezing your system .

The !dp command takes as input the PID of the process whose CSR_PROCESS structure 
should be dumped . Alternatively, the structure pointer can be given directly as an argument . 
Because !dp already performs a dt command internally, there is no need to use dt on your own .

0:000> !dp v 0x1c0aa8-8  
PCSR_PROCESS @ 001c0aa0: 
   +0x000 ClientId         : _CLIENT_ID 
   +0x008 ListLink         : _LIST_ENTRY [ 0x1d8618 - 0x1b1b10 ] 
   +0x010 ThreadList       : _LIST_ENTRY [ 0x1c0b80 - 0x1c7638 ] 
   +0x018 NtSession        : 0x001c0bb8 _CSR_NT_SESSION 
... 
   +0x054 Luid             : _LUID 
   +0x05c ServerDllPerProcessData : [1] (null)  
Threads: 
Thread 001c0b78, Process 001c0aa0, ClientId 198.19c, Flags 0, Ref Count 1 
Thread 001c0e78, Process 001c0aa0, ClientId 198.1cc, Flags 0, Ref Count 1 
...
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The W32PROCESS structure is the final system data structure associated with processes that we’ll 
look at . It contains all the information that the Windows graphics and window management code in 
the kernel (Win32k) needs to maintain state information about GUI processes (which were defined 
earlier as processes that have done at least one USER/GDI system call) . The basic structure of the 
W32PROCESS is illustrated in Figure 5-5 and is explained in more detail later in this chapter .

Process

Ref count

Flags

PID

Counts

Handle table

GDI lists

EPROCESS

DirectX process

Next process

W32PROCESS

DXGPROCESS

W32PROCESS

FIGURE 5-5 Fields of the Win32k Process structure  

EXPERIMENT: Examining the W32PROCESS
There is no command provided by the debugger extensions to dump the W32PROCESS 
 structure, but it is present in the symbols of the Win32k driver . As such, by using the dt com-
mand with the appropriate symbol name win32k!_W32PROCESS, it is possible to dump the 
fields as long as the pointer is known. Because the !process command does not actually output 
this pointer (even though it is stored in the EPROCESS object), the field must be inspected 
manually with dt nt!_EPROCESS Win32Process followed by an EPROCESS pointer .

In the following example, the W32PROCESS structure for the shell, Explorer .exe, is shown:

lkd> dt win32k!_W32PROCESS 0xff991490  
   +0x000 Process          : 0x84a2b030 _EPROCESS 
   +0x004 RefCount         : 1 
... 
   +0x020 W32Pid           : 0x590 
   +0x024 GDIHandleCount   : 383 
   +0x028 GDIHandleCountPeak : 0x239 
   +0x02c UserHandleCount  : 228 
   +0x030 UserHandleCountPeak : 0x16c 
... 
   +0x088 hSecureGdiSharedHandleTable : 0x84a24159   
   +0x08c DxProcess        : 0xa2c93980 

The DxProcess field is a pointer to yet another per-process data structure—in this case, 
maintained by the DirectX Video Card Port Driver—but its description is beyond the scope of 
this book .
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Protected Processes

In the Windows security model, any process running with a token containing the debug privilege 
(such as an administrator’s account) can request any access right that it desires to any other pro-
cess running on the machine—for example, it can read and write arbitrary process memory, inject 
code, suspend and resume threads, and query information on other processes . Tools such as Process 
 Explorer and Task Manager need and request these access rights to provide their functionality to 
 users .

This logical behavior (which helps ensure that administrators will always have full control of the 
running code on the system) clashes with the system behavior for digital rights management require-
ments imposed by the media industry on computer operating systems that need to support playback 
of advanced, high-quality digital content such as Blu-ray and HD-DVD media . To support reliable and 
protected playback of such content, Windows uses protected processes . These processes exist along-
side normal Windows processes, but they add significant constraints to the access rights that other 
processes on the system (even when running with administrative privileges) can request .

Protected processes can be created by any application; however, the operating system will allow a 
process to be protected only if the image file has been digitally signed with a special Windows Media 
Certificate. The Protected Media Path (PMP) in Windows makes use of protected processes to provide 
protection for high-value media, and developers of applications such as DVD players can make use of 
protected processes by using the Media Foundation API . 

The Audio Device Graph process (Audiodg .exe) is a protected process because protected  music 
content can be decoded through it . Similarly, the Windows Error Reporting (or WER, discussed in 
Chapter 3) client process (Werfault .exe) can also run protected because it needs to have access 
to protected processes in case one of them crashes . Finally, the System process itself is protected 
because some of the decryption information is generated by the Ksecdd .sys driver and stored in its 
user-mode memory . The System process is also protected to protect the integrity of all kernel handles 
(because the System process’ handle table contains all the kernel handles on the system) . 

At the kernel level, support for protected processes is twofold: first, the bulk of process creation 
occurs in kernel mode to avoid injection attacks. (The flow for both protected and standard process 
creation is described in detail in the next section .) Second, protected processes have a special bit set 
in their EPROCESS structure that modifies the behavior of security-related routines in the process 
manager to deny certain access rights that would normally be granted to administrators . In fact, 
the only access rights that are granted for protected processes are PROCESS_QUERY/SET_LIMITED_ 
INFORMATION, PROCESS_TERMINATE, and PROCESS_SUSPEND_RESUME . Certain access rights are 
also disabled for threads running inside protected processes; we will look at those access rights later 
in this chapter in the section “Thread Internals .” 
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Because Process Explorer uses standard user-mode Windows APIs to query information on 
process internals, it is unable to perform certain operations on such processes . On the other hand, 
a tool like WinDbg in kernel-debugging mode, which uses kernel-mode infrastructure to obtain 
this  information, will be able to display complete information . See the experiment in the “Thread 
 Internals”  section on how Process Explorer behaves when confronted with a protected process such as 
Audiodg .exe .

Note As mentioned in Chapter 1, to perform local kernel debugging, you must boot in 
debugging mode (enabled by using bcdedit /debug on or by using the Msconfig advanced 
boot options) . This protects against debugger-based attacks on protected processes 
and the Protected Media Path (PMP). When booted in debugging mode, high-definition 
 content playback will not work .

Limiting these access rights reliably allows the kernel to sandbox a protected process from user-
mode access. On the other hand, because a protected process is indicated by a flag in the EPROCESS 
structure, an administrator can still load a kernel-mode driver that disables this bit . However, this 
would be a violation of the PMP model and considered malicious, and such a driver would likely 
eventually be blocked from loading on a 64-bit system because the kernel-mode, code-signing policy 
prohibits the digital signing of malicious code . Even on 32-bit systems, the driver has to be recognized 
by PMP policy or else the playback will be halted . This policy is implemented by Microsoft and not by 
any kernel detection . This block would require manual action from Microsoft to identify the signature 
as malicious and update the kernel .

Flow of CreateProcess

So far, this chapter has shown the various data structures involved in process state manipulation and 
management, and how various tools and debugger commands can inspect this information . In this 
section, we’ll see how and when those data structures are created and filled out, as well as the overall 
creation and termination behaviors behind processes .

A Windows subsystem process is created when an application calls (or eventually ends up in) one of 
the process-creation functions, such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, 
or CreateProcessWithLogonW . Creating a Windows process consists of several stages carried out in 
three parts of the operating system: the Windows client-side library Kernel32 .dll (in the case of the 
CreateProcessAsUser, CreateProcessWithTokenW, and CreateProcessWithLogonW routines, part of 
the work is first done in Advapi32 .dll), the Windows executive, and the Windows subsystem process 
(Csrss) . 
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Because of the multiple-environment subsystem architecture of Windows, creating an executive 
process object (which other subsystems can use) is separated from the work involved in creating 
a Windows subsystem process. So, although the following description of the flow of the Windows 
CreateProcess function is complicated, keep in mind that part of the work is specific to the seman-
tics added by the Windows subsystem as opposed to the core work needed to create an executive 
process object .

The following list summarizes the main stages of creating a process with the Windows 
 CreateProcess function . The operations performed in each stage are described in detail in the 
 subsequent sections . Some of these operations might be performed by CreateProcess itself (or other 
helper routines in user mode), while others will be performed by NtCreateUserProcess or one of its 
helper routines in kernel mode . In our detailed analysis to follow, we will differentiate between the 
two at each step required .

Note Many steps of CreateProcess are related to the setup of the process virtual address 
space and therefore refer to many memory management terms and structures that are 
 defined in Chapter 10 in Part 2.

1. Validate parameters; convert Windows subsystem flags and options to their native 
 counterparts; parse, validate, and convert the attribute list to its native counterpart .

2. Open the image file (.exe) to be executed inside the process.

3. Create the Windows executive process object .

4. Create the initial thread (stack, context, and Windows executive thread object) .

5. Perform post-creation, Windows-subsystem-specific process initialization.

6. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was specified).

7.  In the context of the new process and thread, complete the initialization of the address space 
(such as load required DLLs) and begin execution of the program .

Figure 5-6 shows an overview of the stages Windows follows to create a process .
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FIGURE 5-6 The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags
Before opening the executable image to run, CreateProcess performs the following steps .

In CreateProcess, the priority class for the new process is specified as independent bits in the 
CreationFlags parameter . Thus, you can specify more than one priority class for a single CreateProcess 
call . Windows resolves the question of which priority class to assign to the process by choosing the 
lowest-priority class set .

If no priority class is specified for the new process, the priority class defaults to Normal unless the 
priority class of the process that created it is Idle or Below Normal, in which case the priority class of 
the new process will have the same priority as the creating class .
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If a Real-time priority class is specified for the new process and the process’ caller doesn’t have 
the Increase Scheduling Priority privilege, the High priority class is used instead . In other words, 
 CreateProcess doesn’t fail just because the caller has insufficient privileges to create the process in the 
Real-time priority class; the new process just won’t have as high a priority as Real-time .

All windows are associated with desktops, the graphical representation of a workspace . If no 
 desktop is specified in CreateProcess, the process is associated with the caller’s current desktop .

If the process is part of a job object, but the creation flags requested a separate virtual DOS 
 machine (VDM), the flag is ignored.

If the caller is sending a handle to a monitor as an output handle instead of a console handle, 
 standard handle flags are ignored.

If the creation flags specify that the process will be debugged, Kernel32 initiates a connection to 
the native debugging code in Ntdll .dll by calling DbgUiConnectToDbg and gets a handle to the debug 
object from the current thread’s environment block (TEB) .

Kernel32.dll sets the default hard error mode if the creation flags specified one.

The user-specified attribute list is converted from Windows subsystem format to native format and 
internal attributes are added to it . The possible attributes that can be added to the attribute list are 
listed in Table 5-1, including their documented Windows API counterparts, if any .

Note The attribute list passed on a CreateProcess call permits passing back to the caller 
information beyond a simple status code, such as the TEB address of the initial thread or 
information on the image section . This is necessary for protected processes because the 
parent cannot query this information after the child is created .

TABLE 5-1 Process Attributes

Native Attribute Equivalent Windows 
Attribute

Type Description

PS_CP_PARENT_PROCESS PROC_THREAD_ATTRIBUTE_
PARENT_PROCESS . Also used 
when elevating

Input Handle to the parent process .

PS_CP_DEBUG_OBJECT N/A – used when using 
DEBUG_PROCESS as a flag

Input Debug object if process is being started 
debugged .

PS_CP_PRIMARY_TOKEN N/A – used when  using 
CreateProcessAsUser/
WithToken

Input Process token if CreateProcessAsUser was 
used .

PS_CP_CLIENT_ID N/A – returned by Win32 API as 
a parameter

Output Returns the TID and PID of the initial 
thread and the process .

PS_CP_TEB_ADDRESS N/A – internally used and not 
exposed

Output Returns the address of the TEB for the 
initial thread .

PS_CP_FILENAME N/A – used as a parameter in 
CreateProcess API .

Input Name of the process that should be 
 created .
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Native Attribute Equivalent Windows 
Attribute

Type Description

PS_CP_IMAGE_INFO N/A – internally used and not 
exposed

Output Returns SECTION_IMAGE_INFORMATION, 
which contains information on the version, 
flags, and subsystem of the executable, as 
well as the stack size and entry point .

PS_CP_MEM_RESERVE N/A – internally used by SMSS 
and CSRSS .

Input Array of virtual memory reservations that 
should be made during initial process ad-
dress space creation, allowing guaranteed 
availability because no other allocations 
have taken place yet .

PS_CP_PRIORITY_CLASS N/A – passed in as a parameter 
to the CreateProcess API .

Input Priority class that the process should be 
given .

PS_CP_ERROR_MODE N/A – passed in through 
CREATE_DEFAULT_ERROR_
MODE flag

Input Hard error-processing mode for the 
 process .

PS_CP_STD_HANDLE_INFO Input Specifies if standard handles should be 
duplicated, or if new handles should be 
created .

PS_CP_HANDLE_LIST PROC_THREAD_ATTRIBUTE_
HANDLE_LIST

Input List of handles belonging to the parent 
process that should be inherited by the 
new process .

PS_CP_GROUP_AFFINITY PROC_THREAD_ATTRIBUTE_
GROUP_AFFINITY

Input Processor group(s) the thread should be 
allowed to run on .

PS_CP_PREFERRED_NODE PROC_THREAD_ATTRIBUTES_
PRFERRED_NODE

Input Preferred (ideal) node that should be 
 associated with the process . It affects the 
node on which the initial process heap 
and thread stack will be created .

PS_CP_IDEAL_PROCESSOR PROC_THREAD_ATTTRIBUTE_
IDEAL_PROCESSOR

Input Preferred (ideal) processor that the thread 
should be scheduled on .

PS_CP_UMS_THREAD PROC_THREAD_ATTRIBUTE_
UMS_THREAD

Input Contains the UMS attributes, completion 
list, and context .

PS_CP_EXECUTE_OPTIONS PROC_THREAD_MITIGATION_
POLICY

Input Contains information on which mitigations 
(SEHOP, ATL Emulation, NX) should be 
enabled/disabled for the process .

Once these steps are completed, CreateProcess performs the initial call to NtCreateUserProcess to 
attempt creation of the process . Because Kernel32 .dll has no idea at this point whether the applica-
tion image name is a real Windows application or a POSIX, 16-bit, or DOS application, the call might 
fail—at which point, CreateProcess looks at the error reason and attempts to correct the situation .

Stage 2: Opening the Image to Be Executed
As illustrated in Figure 5-7, the first stage in NtCreateUserProcess is to find the appropriate  Windows 
image that will run the executable file specified by the caller and to create a section object to later map 
it into the address space of the new process . If the call failed for any reason, it returns to  CreateProcess 
with a failure state (see Table 5-2) that causes CreateProcess to attempt execution again .

If the executable file specified is a Windows .exe, NtCreateUserProcess tries to open the file and 
create a section object for it . The object isn’t mapped into memory yet, but it is opened . Just because 
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a section object has been successfully created doesn’t mean that the file is a valid Windows image, 
however; it could be a DLL or a POSIX executable. If the file is a POSIX executable, the image to be 
run changes to Posix .exe, and CreateProcess restarts from the beginning of Stage 1. If the file is a DLL, 
CreateProcess fails .

Now that NtCreateUserProcess has found a valid Windows executable image, as part of the process 
creation code described in Stage 3 it looks in the registry under HKLM\SOFTWARE\Microsoft 
\Windows NT\CurrentVersion\Image File Execution Options to see whether a subkey with the file 
name and extension of the executable image (but without the directory and path information—for 
example, Image .exe) exists there . If it does, PspAllocateProcess looks for a value named  Debugger 
for that key . If this value is present, the image to be run becomes the string in that value and 
 CreateProcess restarts at Stage 1 .

Tip You can take advantage of this process creation behavior and debug the startup code 
of Windows services processes before they start rather than attach the debugger after 
starting a service, which doesn’t allow you to debug the startup code .

On the other hand, if the image is not a Windows  .exe (for example, if it’s an MS-DOS, a Win16, or 
a POSIX application), CreateProcess goes through a series of steps to find a Windows support image 
to run it . This process is necessary because non-Windows applications aren’t run directly—Windows 
instead uses one of a few special support images that, in turn, are responsible for actually running 
the non-Windows program . For example, if you attempt to run a POSIX application, CreateProcess 
identifies it as such and changes the image to be run to the Windows executable file Posix.exe. If 
you attempt to run an MS-DOS or a Win16 executable, the image to be run becomes the Windows 
executable Ntvdm .exe . In short, you can’t directly create a process that is not a Windows process . 
If Windows can’t find a way to resolve the activated image as a Windows process (as shown in 
 Table 5-2), CreateProcess fails .

Run Cmd.exe Run Ntvdm.exe Use .exe directly

What kind of
application is it?

Win16 WindowsMS-DOS .bat
or .cmd

POSIX MS-DOS .exe,
.com, or .pif

Run Posix.exe Run Ntvdm.exe

FIGURE 5-7 Choosing a Windows image to activate 
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TABLE 5-2 Decision Tree for Stage 1 of CreateProcess

If the Image  .  .  . Create State Code This Image Will 
Run  .  .  .

 .  .  . and This Will Happen

Is a POSIX executable file PsCreateSuccess Posix .exe CreateProcess restarts 
Stage 1 .

Is an MS-DOS application with 
an  .exe,  .com, or  .pif extension

PsCreateFailOnSectionCreate Ntvdm .exe CreateProcess restarts 
Stage 1 .

Is a Win16 application PsCreateFailOnSectionCreate Ntvdm .exe CreateProcess restarts 
Stage 1 .

Is a Win64 application on a 
32-bit system (or a PPC, MIPS, 
or Alpha Binary)

PsCreateFailMachineMismatch N/A CreateProcess will fail .

Has a Debugger key with 
 another image name

PsCreateFailExeName Name specified in 
the Debugger key

CreateProcess restarts 
Stage 1 .

Is an invalid or damaged 
Windows EXE

PsCreateFailExeFormat N/A CreateProcess will fail .

Cannot be opened PsCreateFailOnFileOpen N/A CreateProcess will fail .

Is a command procedure 
( application with a  .bat or  .cmd 
extension)

PsCreateFailOnSectionCreate Cmd .exe CreateProcess restarts 
Stage 1 .

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

 ■ If the image is an MS-DOS application with an  .exe,  .com, or  .pif extension, a message is 
sent to the Windows subsystem to check whether an MS-DOS support process (Ntvdm .exe, 
specified in the registry value HKLM\SYSTEM\CurrentControlSet\Control\WOW\cmdline) has 
already been created for this session . If a support process has been created, it is used to run 
the MS-DOS application . (The Windows subsystem sends the message to the VDM [Virtual 
DOS Machine] process to run the new image .) Then CreateProcess returns . If a support process 
hasn’t been created, the image to be run changes to Ntvdm .exe and CreateProcess restarts at 
Stage 1 .

 ■ If the file to run has a .bat or .cmd extension, the image to be run becomes Cmd.exe, the 
 Windows command prompt, and CreateProcess restarts at Stage 1. (The name of the batch file 
is passed as the first parameter to Cmd.exe.)

 ■ If the image is a Win16 (Windows 3 .1) executable, CreateProcess must decide whether a 
new VDM process must be created to run it or whether it should use the default session-
wide shared VDM process (which might not yet have been created) . The CreateProcess flags 
 CREATE_ SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control this decision . If 
these flags aren’t specified, the registry value HKLM\SYSTEM\CurrentControlSet\Control 
\WOW\DefaultSeparateVDM dictates the default behavior. If the application is to be run in 
a separate VDM, the image to be run changes to ntvdm.exe followed by some configuration 
parameters and the 16-bit process’ name and CreateProcess restarts at Stage 1 . Otherwise, the 
Windows subsystem sends a message to see whether the shared VDM process exists and can 
be used . (If the VDM process is running on a different desktop or isn’t running under the same 
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security as the caller, it can’t be used and a new VDM process must be created .) If a shared 
VDM process can be used, the Windows subsystem sends a message to it to run the new im-
age and CreateProcess returns . If the VDM process hasn’t yet been created (or if it exists but 
can’t be used), the image to be run changes to the VDM support image and CreateProcess 
restarts at Stage 1 .

Stage 3: Creating the Windows Executive Process Object 
(PspAllocateProcess)
At this point, NtCreateUserProcess has opened a valid Windows executable file and created a section 
object to map it into the new process address space . Next it creates a Windows executive process 
 object to run the image by calling the internal system function PspAllocateProcess . Creating the 
 executive process object (which is done by the creating thread) involves the following substages:

 ■ Setting up the EPROCESS object

 ■ Creating the initial process address space

 ■ Initializing the kernel process structure(KPROCESS)

 ■ Setting up the PEB

 ■ Concluding the setup of the process address space (which includes initializing the working set 
list and virtual address space descriptors and mapping the image into address space)

Note The only time there won’t be a parent process is during system initialization . After 
that point, a parent process is always required to provide a security context for the new 
process .

Stage 3A: Setting Up the EPROCESS Object
This substage involves the following steps:

1. Inherit the affinity of the parent process, unless it was explicitly set during process creation 
(through the attribute list) .

2. Choose the ideal node that was specified in the attribute list, if any.

3. Inherit the I/O and page priority from the parent process . If there is no parent process, the 
default page priority (5) and I/O priority (Normal) are used . 

4. Set the new process’ exit status to STATUS_PENDING .

5. Choose the hard error processing mode selected by the attribute list; otherwise, inherit the 
parent’s processing mode if none was given . If no parent exists, use the default processing 
mode which is to display all errors .
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6. Store the parent process’ process ID in the InheritedFromUniqueProcessId field in the new 
process object .

7.  Query the Image File Execution Options key to check if the process should be mapped with 
large pages . Also, query the key to check if NTDLL has been listed as a DLL that should be 
mapped with large pages within this process .

8. Query the Image File Execution Options key for a specific NUMA node assignment associated 
with the process . The assignment can be either based on inheritance (in which the NUMA 
node will be propagated from the parent) or an explicit NUMA assignment, as long as this 
 assignment does not override the initial NUMA node specified in the attribute list.

9. Disable stack randomization if ASLR was disabled on the executable containing the process .

10. Attempt to acquire all the privileges required for creating the process . Choosing the  Real-time 
process priority class, assigning a token to the new process, mapping the process with large 
pages, and creating the process within a new session are all operations that require the 
 appropriate privilege .

11. Create the process’ primary access token (a duplicate of its parent’s primary token) . New 
processes inherit the security profile of their parents. If the CreateProcessAsUser function is 
being used to specify a different access token for the new process, the token is then changed 
appropriately . This change might happen only if the parent token’s integrity level dominates 
the integrity level of the access token, and if the access token is a true child or sibling of the 
parent token . Note that if the parent has the SeAssignPrimaryToken privilege, this will bypass 
these checks .

12. The session ID of the new process token is now checked to determine if this is a cross-session 
create—in which case, the parent process temporarily attaches to the target session to 
 correctly process quotas and address space creation .

13. Set the new process’ quota block to the address of its parent process’ quota block, and 
 increment the reference count for the parent’s quota block . If the process was created through 
CreateProcessAsUser, this step won’t occur . Instead, the default quota is created, or a quota 
matching the user’s profile is selected.

14. The process minimum and maximum working set sizes are set to the values of 
 PspMinimumWorkingSet and PspMaximumWorkingSet, respectively . These values can be 
overridden if performance options were specified in the PerfOptions key part of Image File 
Execution Options—in which case, the maximum working set is taken from there . Note that 
the default working set limits are soft limits and are essentially hints, while the PerfOptions 
working set maximum is a hard limit (that is, the working set will not be allowed to grow past 
that number) .

15. Initialize the address space of the process . (See Stage 3B .) Then detach from the target session 
if it was different .
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16. The group affinity for the process is now chosen if group-affinity inheritance was not used. 
The default group affinity either will inherit from the parent, if NUMA node propagation was 
set earlier (the group owning the NUMA node will be used) or be assigned round-robin based 
on the PspProcessGroupAssignment seed . If the system is in forced group-awareness mode 
and group 0 was chosen by the selection algorithm, group 1 is chosen instead, as long as it 
exists .

17. Initialize the KPROCESS part of the process object . (See Stage 3C .)

18. The token for the process is now set .

19. The process’ priority class is set to normal, unless the parent was using idle or the Below 
 Normal process priority class—in which case, the parent’s priority is inherited . If a process 
priority class was set manually through the attribute lists, it is now set .

20. The process handle table is initialized. If the inherit handles flag is set for the parent  process, 
any inheritable handles are copied from the parent’s object handle table into the new pro-
cess . (For more information about object handle tables, see Chapter 3 .) A process attribute 
can also be used to specify only a subset of handles, which is useful when you are using 
 CreateProcessAsUser to restrict which objects should be inherited by the child process .

21. If performance options were specified through the PerfOptions key, these are now applied . 
The PerfOptions key includes overrides for the working set limit, I/O priority, page priority, and 
CPU priority class of the process .

22. The final process priority class and the default quantum for its threads are computed and set.

23. The second stage of address space setup is completed, including the initialization of the PEB 
(Stage 3D/3E) .

24. Mitigation options for No-Execute support are now set .

25. The process PID and creation time is set, although the PID is not yet inserted in the PID handle 
table, nor is the process inserted in the process lists (that is the job of the insertion stage) .

Stage 3B: Creating the Initial Process Address Space
The initial process address space consists of the following pages:

 ■ Page directory (and it’s possible there’ll be more than one for systems with page tables more 
than two levels, such as x86 systems in PAE mode or 64-bit systems)

 ■ Hyperspace page

 ■ VAD bitmap page

 ■ Working set list
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To create these three pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map the initial pages .

2. The number of pages is deducted from the kernel variable MmTotalCommittedPages and 
added to MmProcessCommit .

3. The systemwide default process minimum working set size (PsMinimumWorkingSet) is 
 deducted from MmResidentAvailablePages .

4. The page table pages for the global system space (that is, other than the process-specific 
pages we just described, and except session-specific memory).

Stage 3C: Creating the Kernel Process Structure
The next stage of PspAllocateProcess is the initialization of the KPROCESS structure (the Pcb member 
of the EPROCESS) . This work is performed by KeInitializeProcess, which initializes the following:

 ■ The doubly-linked list which connects all threads part of the process (initially empty) .

 ■ The initial value (or reset value) of the process default quantum (which is described in more 
detail in the “Thread Scheduling” section later in the chapter), which is hard-coded to 6 until it 
is initialized later (by PspComputeQuantumAndPriority) .

Note The default initial quantum differs between Windows client and server 
 systems . For more information on thread quantums, turn to their discussion in 
the section “Thread Scheduling .”

 ■ The process’ base priority is set based on what was computed in Stage 3A .

 ■ The default processor affinity for the threads in the process is set, as is the group affinity. The 
group affinity was calculated earlier in Stage 3A or inherited from the parent.

 ■ The process swapping state is set to resident .

 ■ The thread seed is based on the ideal processor that the kernel has chosen for this process 
(which is based on the previously created process’ ideal processor, effectively randomizing 
this in a round-robin manner) . Creating a new process will update the seed in KeNodeBlock 
(the initial NUMA node block) so that the next new process will get a different ideal processor 
seed .

Stage 3D: Concluding the Setup of the Process Address Space
Setting up the address space for a new process is somewhat complicated, so let’s look at what’s 
involved one step at a time . To get the most out of this section, you should have some familiarity with 
the internals of the Windows memory manager, which are described in Chapter 10 in Part 2 .
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1. The virtual memory manager sets the value of the process’ last trim time to the current time . 
The working set manager (which runs in the context of the balance set manager system 
thread) uses this value to determine when to initiate working set trimming .

2. The memory manager initializes the process’ working set list—page faults can now be taken .

3. The section (created when the image file was opened) is now mapped into the new process’ 
address space, and the process section base address is set to the base address of the image .

4. Ntdll .dll is mapped into the process; if this is a Wow64 process, the 32-bit Ntdll .dll is also 
mapped .

5. A new session, if requested, is now created for the process . This special step is mostly 
 implemented for the benefit of the Session Manager (SMSS) when initializing a new session.

6. The standard handles are duplicated, and the new values are written in the process 
 parameters structure .

7.  Any memory reservations listed in the attribute list are now processed. Additionally, two flags 
allow the bulk reservation of the first 1 or 16 MB of the address space. These flags are used in-
ternally for mapping real-mode vectors and ROM code, for example (which must be in the low 
ranges of virtual address space, where normally the heap or other process structures could be 
located) .

8. The user process parameters are written into the process, copied, and fixed up (meaning 
 converted from absolute form to a relative form so that a single memory block is needed) .

9. The affinity information is written into the PEB.

10. The MinWin API redirection set is mapped into the process .

Note POSIX processes clone the address space of their parents, so they don’t have to go 
through these steps to create a new address space . In the case of POSIX applications, the 
new process’ section base address is set to that of its parent process and the parent’s PEB is 
cloned for the new process .

Stage 3E: Setting Up the PEB
NtCreateUserProcess calls MmCreatePeb, which first maps the systemwide national language 
 support (NLS) tables into the process’ address space . It next calls MiCreatePebOrTeb to allocate a 
page for the PEB and then initializes a number of fields, most of them based on internal variables 
that were configured through the registry, such as MmHeap* values, MmCriticalSectionTimeout, and 
 MmMinimumStackCommitInBytes. Some of these fields can be overridden by settings in the linked 
executable image, such as the Windows version in the PE header or the affinity mask in the load 
 configuration directory of the PE header. 
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If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY flag is set (indicating that the 
image can run only on a uniprocessor system), a single CPU (MmRotatingUniprocessorNumber) is 
chosen for all the threads in this new process to run on . The selection process is performed by simply 
cycling through the available processors—each time this type of image is run, the next processor is 
used . In this way, these types of images are spread evenly across the processors .

Stage 3F: Completing the Setup of the Executive Process Object 
(PspInsertProcess)
Before the handle to the new process can be returned, a few final setup steps must be completed, 
which are performed by PspInsertProcess and its helper functions:

1. If systemwide auditing of processes is enabled (either as a result of local policy settings or 
group policy settings from a domain controller), the process’ creation is written to the Security 
event log .

2. If the parent process was contained in a job, the job is recovered from the job level set of the 
parent and then bound to the session of the newly created process . Finally, the new process is 
added to the job .

3. PspInsertProcess inserts the new process object at the end of the Windows list of active 
 processes (PsActiveProcessHead) . 

4. The process debug port of the parent process is copied to the new child process, unless the 
NoDebugInherit flag is set (which can be requested when creating the process). If a debug 
port was specified, it is attached to the new process at this time.

5. Because job objects can now specify restrictions on which group or groups the threads within 
the processes part of a job can run on, PspInsertProcess must make sure that the group affinity 
associated with the process would not violate the group affinity associated with the job. An 
interesting secondary issue to consider is if the job’s permissions grant access to modify the 
process’ affinity permissions, because a lesser-privileged job object might interfere with the 
affinity requirements of a more privileged process.

6. Finally, PspInsertProcess creates a handle for the new process by calling 
 ObOpenObjectByPointer, and then returns this handle to the caller . Note that no process 
creation callback is sent until the first thread within the process is created, and the code always 
sends process callbacks before sending object-managed based callbacks .

Stage 4: Creating the Initial Thread and Its Stack and Context
At this point, the Windows executive process object is completely set up . It still has no thread, 
however, so it can’t do anything yet . It’s now time to start that work . Normally, the PspCreateThread 
routine is responsible for all aspects of thread creation and is called by NtCreateThread when a 
new thread is being created . However, because the initial thread is created internally by the kernel 
without user-mode input, the two helper routines that PspCreateThread relies on are used instead: 
 PspAllocateThread and PspInsertThread . 
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PspAllocateThread handles the actual creation and initialization of the executive thread object 
itself, while PspInsertThread handles the creation of the thread handle and security attributes and the 
call to KeStartThread to turn the executive object into a schedulable thread on the system . However, 
the thread won’t do anything yet—it is created in a suspended state and isn’t resumed until the 
 process is completely initialized (as described in Stage 5) . 

Note The thread parameter (which can’t be specified in CreateProcess but can be specified 
in CreateThread) is the address of the PEB . This parameter will be used by the initialization 
code that runs in the context of this new thread (as described in Stage 6) .

PspAllocateThread performs the following steps:

1. It prevents user-mode scheduling (UMS) threads from being created in Wow64 processes, as 
well as preventing user-mode callers from creating threads in the system process .

2. An executive thread object is created and initialized .

3. If CPU rate limiting is enabled, the CPU quota block is initialized .

4. The various lists used by LPC, I/O Management, and the Executive are initialized . 

5. The thread’s create time is set, and its thread ID (TID) is created .

6. Before the thread can execute, it needs a stack and a context in which to run, so these are 
set up . The stack size for the initial thread is taken from the image—there’s no way to specify 
another size . If this is a Wow64 process, the Wow64 thread context will also be initialized .

7.  The thread environment block (TEB) is allocated for the new thread .

8. The user-mode thread start address is stored in the ETHREAD . This is the system-supplied 
thread startup function in Ntdll .dll (RtlUserThreadStart). The user’s specified Windows start ad-
dress is stored in the ETHREAD in a different location so that debugging tools such as Process 
Explorer can query the information .

9. KeInitThread is called to set up the KTHREAD structure . The thread’s initial and current base 
priorities are set to the process’ base priority, and its affinity and quantum are set to that of 
the process . This function also sets the initial thread ideal processor . (See the section “Ideal 
and Last Processor” for a description of how this is chosen .) KeInitThread next allocates a 
kernel stack for the thread and initializes the machine-dependent hardware context for the 
thread, including the context, trap, and exception frames . The thread’s context is set up so that 
the thread will start in kernel mode in KiThreadStartup . Finally, KeInitThread sets the thread’s 
state to Initialized and returns to PspAllocateThread .

10. If this is a UMS thread, PspUmsInitThread is called to initialize the UMS state .



 CHAPTER 5 Processes, Threads, and Jobs 383

Once that work is finished, NtCreateUserProcess calls PspInsertThread to perform the following 
steps:

1. A check is made to ensure that the thread’s group affinity does not violate job limitations 
(which we already described earlier) . In the process create path, this check is skipped because 
it was already done at the earlier stage .

2. Checks are made to ensure that the process hasn’t already been terminated, that the thread 
hasn’t already been terminated, or that the thread hasn’t even been able to start running . If 
any of these cases are true, thread creation will fail .

3. The KTHREAD part of the thread object is initialized by calling KeStartThread . This involves 
 inheriting scheduler settings from the owner process, setting the ideal node and proces-
sor, updating the group affinity, and inserting the thread in the process list maintained by 
 KPROCESS (a separate list from the one in EPROCESS) . Additionally, on x64 systems, another 
systemwide list of processes, KiProcessListHead, is used by PatchGuard to maintain the 
 integrity of the executive’s PsActiveProcessHead . Finally, the stack count of the process is 
 incremented .

4. The thread count in the process object is incremented, and the owner process’ I/O priority 
and page priority are inherited . If this is the highest number of threads the process has ever 
had, the thread count high watermark is updated as well . If this was the second thread in the 
process, the primary token is frozen (that is, it can no longer be changed, unless the process is 
a POSIX subsystem process) .

5. If the thread is a UMS thread, the count of UMS threads is incremented .

6. The thread is inserted in the process’ thread list, and the thread is suspended if the creating 
process requested it .

7.  If CPU rate limiting is enabled, the rate control APC is initialized and the CpuThrottled bit is set 
in the KTHREAD .

8. The object is inserted, and any registered thread callbacks are called. If this was the first 
thread in the process (and therefore, the operation happened as part of the CreateProcess 
path), the registered kernel process callbacks are also called .

9. The handle is created with ObOpenObjectByPointer .

10. The thread is readied for execution by calling KeReadyThread . It enters the deferred ready 
queue, the process is paged out, and a page in is requested .

Stage 5: Performing Windows Subsystem–Specific  Post-
Initialization
Once NtCreateUserProcess returns with a success code, all the necessary executive process and 
thread objects have been created . Kernel32 .dll then performs various operations related to Windows 
subsystem–specific operations to finish initializing the process. 
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First of all, various checks are made for whether Windows should allow the executable to run . 
These checks include validating the image version in the header and checking whether Windows 
application certification has blocked the process (through a group policy). On specialized editions of 
Windows Server 2008 R2, such as Windows Web Server 2008 R2 and Windows HPC Server 2008 R2, 
additional checks are made to see whether the application imports any disallowed APIs .

If software restriction policies dictate, a restricted token is created for the new process . Afterward, 
the application-compatibility database is queried to see whether an entry exists in either the registry 
or system application database for the process . Compatibility shims will not be applied at this point—
the information will be stored in the PEB once the initial thread starts executing (Stage 6) .

At this point, Kernel32 .dll sends a message to the Windows subsystem so that it can set up SxS 
information (see the end of this section for more information on side-by-side assemblies) such as 
manifest files, DLL redirection paths, and out-of-process execution for the new process. It also initial-
izes the Windows subsystem structures for the process and initial thread . The message includes the 
following information:

 ■ Process and thread handles

 ■ Entries in the creation flags

 ■ ID of the process’ creator

 ■ Flag indicating whether the process belongs to a Windows application (so that Csrss can 
 determine whether or not to show the startup cursor)

 ■ UI language information

 ■ DLL redirection and .local flags

 ■ Manifest file information

The Windows subsystem performs the following steps when it receives this message:

1. CsrCreateProcess duplicates a handle for the process and thread . In this step, the usage count 
of the process and the thread is incremented from 1 (which was set at creation time) to 2 .

2. If a process priority class isn’t specified, CsrCreateProcess sets it according to the algorithm 
described earlier in this section .

3. The Csrss process structure (CSR_PROCESS) is allocated .

4. The new process’ exception port is set to be the general function port for the Windows 
 subsystem so that the Windows subsystem will receive a message when a second-chance 
 exception occurs in the process . (For further information on exception handling, see 
 Chapter 3 .)

5. The Csrss thread structure (CSR_THREAD) is allocated and initialized .

6. CsrCreateThread inserts the thread in the list of threads for the process .
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7.  The count of processes in this session is incremented .

8. The process shutdown level is set to 0x280 (the default process shutdown level—see 
 SetProcessShutdownParameters in the MSDN Library documentation for more information) .

9. The new Csrss process structure is inserted into the list of Windows subsystem-wide processes .

10. The per-process data structure used by the kernel-mode part of the Windows subsystem 
(W32PROCESS) is allocated and initialized .

11. The application start cursor is displayed . This cursor is the familiar rolling doughnut shape—
the way that Windows says to the user, “I’m starting something, but you can use the cursor in 
the meantime .” If the process doesn’t make a GUI call after two seconds, the cursor reverts to 
the standard pointer . If the process does make a GUI call in the allotted time, CsrCreateProcess 
waits five seconds for the application to show a window. After that time, CsrCreateProcess 
resets the cursor again .

After Csrss has performed these steps, CreateProcess checks whether the process was run  elevated 
(which means it was executed through ShellExecute and elevated by the AppInfo service after the 
consent dialog box was shown to the user) . This includes checking whether the process was a setup 
program. If it was, the process’ token is opened, and the virtualization flag is turned on so that 
the  application is virtualized . (See the information on UAC and virtualization in Chapter 6 .) If the 
 application contained elevation shims or had a requested elevation level in its manifest, the pro-
cess is destroyed and an elevation request is sent to the AppInfo service . (See Chapter 6 for more 
 information on elevation .)

Note that most of these checks are not performed for protected processes; because these 
 processes must have been designed for Windows Vista or later, there’s no reason why they should 
require elevation, virtualization, or application-compatibility checks and processing . Additionally, 
 allowing mechanisms such as the shim engine to use its usual hooking and memory-patching tech-
niques on a protected process would result in a security hole if someone could figure how to insert 
arbitrary shims that modify the behavior of the protected process . Additionally, because the Shim 
Engine is installed by the parent process, which might not have access to its child protected process, 
even legitimate shimming cannot work .

Stage 6: Starting Execution of the Initial Thread
At this point, the process environment has been determined, resources for its threads to use have 
been allocated, the process has a thread, and the Windows subsystem knows about the new process . 
Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is now resumed so that 
it can start running and perform the remainder of the process initialization work that occurs in the 
context of the new process (Stage 7) .
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Stage 7: Performing Process Initialization in the Context of the 
New Process
The new thread begins life running the kernel-mode thread startup routine KiThreadStartup . 
KiThreadStartup lowers the thread’s IRQL level from deferred procedure call (DPC)/dispatch level to 
APC level and then calls the system initial thread routine, PspUserThreadStartup. The user-specified 
thread start address is passed as a parameter to this routine .

First, this function disables the ability to swap the primary process token at runtime, which is 
reserved for POSIX support only (to emulate setuid behavior) . It then sets the Locale ID and the ideal 
processor in the TEB, based on the information present in kernel-mode data structures, and then it 
checks whether thread creation actually failed . Next it calls DbgkCreateThread, which checks whether 
image notifications were sent for the new process. If they weren’t, and notifications are enabled, an 
image notification is sent first for the process and then for the image load of Ntdll.dll. Note that this 
is done in this stage rather than when the images were first mapped because the process ID (which is 
required for the kernel callouts) is not yet allocated at that time .

Once those checks are completed, another check is performed to see whether the process is a 
debuggee . If it is, PspUserThreadStartup checks whether the debugger notifications have already 
been sent for this process . If not, a create process message is sent through the debug object (if one 
is present) so that the process startup debug event (CREATE_PROCESS_DEBUG_INFO) can be sent to 
the appropriate debugger process . This is followed by a similar thread startup debug event and by 
another debug event for the image load of Ntdll .dll . DbgkCreateThread then waits for a reply from the 
debugger (via the ContinueDebugEvent function) . 

Now that the debugger has been notified, PspUserThreadStartup looks at the result of the initial 
check on the thread’s life . If it was killed on startup, the thread is terminated . This check is done after 
the debugger and image notifications to be sure that the kernel-mode and user-mode debuggers 
don’t miss information on the thread, even if the thread never got a chance to run .

Otherwise, the routine checks whether application prefetching is enabled on the system and, 
if so, calls the prefetcher (and Superfetch) to process the prefetch instruction file (if it exists) and 
prefetch pages referenced during the first 10 seconds the last time the process ran. (For details on the 
prefetcher and Superfetch, see Chapter 10 in Part 2 .)

PspUserThreadStartup then checks whether the systemwide cookie in the SharedUserData  structure 
has been set up yet . If it hasn’t, it generates it based on a hash of system information such as the 
number of interrupts processed, DPC deliveries, and page faults . This systemwide cookie is used in the 
internal decoding and encoding of pointers, such as in the heap manager to protect against certain 
classes of exploitation . (For more information on heap manager security, see Chapter 10 in Part 2 .) 

Finally, PspUserThreadStartup sets up the initial thunk context to run the image-loader 
 initialization routine (LdrInitializeThunk in Ntdll .dll), as well as the systemwide thread startup stub 
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(RtlUserThreadStart in Ntdll .dll) . These steps are done by editing the context of the thread in place and 
then issuing an exit from system service operation, which loads the specially crafted user context . The 
LdrInitializeThunk routine initializes the loader, the heap manager, NLS tables, thread-local storage 
(TLS) and fiber-local storage (FLS) arrays, and critical section structures. It then loads any required 
DLLs and calls the DLL entry points with the DLL_PROCESS_ ATTACH function code . 

Once the function returns, NtContinue restores the new user context and returns to user mode—
thread execution now truly starts .

RtlUserThreadStart uses the address of the actual image entry point and the start parameter and 
calls the application’s entrypoint . These two parameters have also already been pushed onto the stack 
by the kernel . This complicated series of events has two purposes . First, it allows the image loader 
inside Ntdll .dll to set up the process internally and behind the scenes so that other user-mode code 
can run properly . (Otherwise, it would have no heap, no thread-local storage, and so on .) 

Second, having all threads begin in a common routine allows them to be wrapped in exception 
handling so that when they crash, Ntdll.dll is aware of that and can call the unhandled exception filter 
inside Kernel32 .dll . It is also able to coordinate thread exit on return from the thread’s start routine 
and to perform various cleanup work . Application developers can also call SetUnhandledExceptionFilter 
to add their own unhandled exception-handling code .

EXPERIMENT: Tracing Process Startup
Now that we’ve looked in detail at how a process starts up and the different operations 
 required to begin executing an application, we’re going to use Process Monitor to look at some 
of the file I/O and registry keys that are accessed during this process. 

Although this experiment will not provide a complete picture of all the internal steps we’ve 
described, you’ll be able to see several parts of the system in action, notably prefetch and 
Superfetch, image-file execution options and other compatibility checks, and the image loader’s 
DLL mapping .

We’ll look at a very simple executable—Notepad .exe—and launch it from a Command 
Prompt window (Cmd .exe) . It’s important that we look both at the operations inside Cmd .
exe and those inside Notepad .exe . Recall that a lot of the user-mode work is performed by 
 CreateProcess, which is called by the parent process before the kernel has created a new 
 process object .

To set things up correctly, add two filters to Process Monitor: one for Cmd.exe, and one for 
Notepad .exe—these are the only two processes you should include . Be sure that you don’t have 
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any currently running instances of these two processes so that you know you’re looking at the 
right events. The filter window should look like this:

 

Next, make sure that event logging is currently disabled (clear File, Capture Events), and 
then start up the command prompt . Enable event logging (using the File menu again, or simply 
press CTRL+E or click the magnifying glass icon on the toolbar), and then type Notepad .exe 
and press Enter . On a typical Windows system, you should see anywhere between 500 and 
1500 events appear . Hide the Sequence and Time Of Day columns so that you can focus your 
 attention on the columns of interest . Your window should look similar to the one shown next .

 

Just as described in Stage 1 of the CreateProcess flow, one of the first things to notice is that 
just before the process is started and the first thread is created, Cmd.exe does a registry read 
at HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options. 
Because there were no image-execution options associated with Notepad .exe, the process was 
created as is .

As with this and any other event in Process Monitor’s log, you have the ability to see whether 
each part of the process creation flow was performed in user mode or kernel mode, and by 
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which routines, by looking at the stack of the event . To do this, double-click on the RegOpenKey 
event and switch to the Stack tab . The following screen shows the standard stack on a 32-bit 
Windows machine .

This stack shows that you already reached the part of process creation performed in 
 kernel mode (through NtCreateUserProcess) and that the helper routine PspAllocateProcess is 
 responsible for this check .

Going down the list of events after the thread and process have been created, you will notice 
three groups of events. The first is a simple check for application-compatibility flags, which will 
let the user-mode process creation code know if checks inside the application-compatibility 
database are required through the shim engine .

This check is followed by multiple reads to Side-By-Side, Manifest, and MUI/Language keys, 
which are part of the assembly framework mentioned earlier. Finally, you might see file I/O to 
one or more .sdb files, which are the application-compatibility databases on the system. This 
I/O is where additional checks are done to see if the shim engine needs to be invoked for this 
application . Because Notepad is a well-behaved Microsoft program, it doesn’t require any 
shims .

The following screen shows the next series of events, which happen inside the Notepad 
 process itself . These are actions initiated by the user-mode thread startup wrapper in kernel 
mode, which performs the actions described earlier. The first two are the Notepad.exe and 
Ntdll.dll image load debug notification messages, which can be generated only now that code 
is running inside Notepad’s process context and not the context for the command prompt . 
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Next, the prefetcher kicks in, looking for a prefetch database file that has already been 
generated for Notepad . (For more information on the prefetcher, see Chapter 10 in Part 2 .) On 
a system where Notepad has already been run at least once, this database will exist, and the 
prefetcher will begin executing the commands specified inside it. If this is the case, scrolling 
down you will see multiple DLLs being read and queried . Unlike typical DLL loading, which is 
done by the user-mode image loader by looking at the import tables or when an application 
manually loads a DLL, these events are being generated by the prefetcher, which is already 
aware of the libraries that Notepad will require . Typical image loading of the DLLs required 
 happens next, and you will see events similar to the ones shown here:

These events are now being generated from code running inside user mode, which was 
called once the kernel-mode wrapper function finished its work. Therefore, these are the first 
events coming from LdrpInitializeProcess, which we mentioned is the internal system wrapper 
function for any new process, before the start address wrapper is called. You can confirm this 
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on your own by looking at the stack of these events—for example, the kernel32 .dll image load 
event, which is shown in the next screen:

Further events are generated by this routine and its associated helper functions until you 
finally reach events generated by the WinMain function inside Notepad, which is where code 
under the developer’s control is now being executed . Describing in detail all the events and 
user-mode components that come into play during process execution would fill up this entire 
chapter, so exploration of any further events is left as an exercise for the reader .

Thread Internals

Now that we’ve dissected processes, let’s turn our attention to the structure of a thread . Unless 
 explicitly stated otherwise, you can assume that anything in this section applies to both user-mode 
threads and kernel-mode system threads (which are described in Chapter 2) .

Data Structures
At the operating-system level, a Windows thread is represented by an executive thread object . The 
executive thread object encapsulates an ETHREAD structure, which in turn contains a KTHREAD 
structure as its first member. These are illustrated in Figure 5-8. The ETHREAD structure and the other 
structures it points to exist in the system address space, with the exception of the thread environment 
block (TEB), which exists in the process address space (again, because user-mode components need 
to access it) .
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The Windows subsystem process (Csrss) maintains a parallel structure for each thread created in 
a Windows subsystem application, called the CSR_THREAD . For threads that have called a Windows 
subsystem USER or GDI function, the kernel-mode portion of the Windows subsystem (Win32k .sys) 
maintains a per-thread data structure (called the W32THREAD) that the KTHREAD structure points to .

Note The fact that the executive, high-level, graphics-related, Win32k thread structure 
is pointed to by the KTHREAD, instead of the ETHREAD, appears to be a layer violation 
or oversight in the standard kernel’s abstraction architecture—the scheduler and other 
 low-level components do not use this field.

 

Thread control block (KTHREAD)
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List of pending APCs
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FIGURE 5-8 Important fields of the executive thread structure and its embedded kernel thread structure  
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Most of the fields illustrated in Figure 5-8 are self-explanatory. The first member of the ETHREAD 
is called the Tcb, for “Thread control block”; this is a structure of type KTHREAD . Following that are 
the thread identification information, the process identification information (including a pointer to 
the owning process so that its environment information can be accessed), security information in the 
form of a pointer to the access token and impersonation information, and finally, fields relating to 
Asynchronous Local Procedure Call (ALPC) messages and pending I/O requests . Some of these key 
fields are covered in more detail elsewhere in this book. For more details on the internal structure of 
an ETHREAD structure, you can use the kernel debugger dt command to display its format .

Let’s take a closer look at two of the key thread data structures referred to in the preceding text: 
the KTHREAD and the TEB . The KTHREAD structure (which is the Tcb member of the ETHREAD) con-
tains information that the Windows kernel needs to perform thread scheduling, synchronization, and 
timekeeping functions . 

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures
The ETHREAD and KTHREAD structures can be displayed with the dt command in the kernel 
debugger . The following output shows the format of an ETHREAD on a 32-bit system:

lkd> dt nt!_ethread  
nt!_ETHREAD  
   +0x000 Tcb              : _KTHREAD 
   +0x1e0 CreateTime       : _LARGE_INTEGER 
   +0x1e8 ExitTime         : _LARGE_INTEGER 
   +0x1e8 KeyedWaitChain   : _LIST_ENTRY 
   +0x1f0 ExitStatus       : Int4B 
... 
   +0x270 AlpcMessageId    : Uint4B 
   +0x274 AlpcMessage      : Ptr32 Void 
   +0x274 AlpcReceiveAttributeSet : Uint4B 
   +0x278 AlpcWaitListEntry : _LIST_ENTRY 
   +0x280 CacheManagerCount : Uint4B

The KTHREAD can be displayed with a similar command or by typing dt nt!_ETHREAD Tcb, 
as was shown in the EPROCESS/KPROCESS experiment earlier:

lkd> dt nt!_kthread  
nt!_KTHREAD  
   +0x000 Header           : _DISPATCHER_HEADER 
   +0x010 CycleTime        : Uint8B 
   +0x018 HighCycleTime    : Uint4B 
   +0x020 QuantumTarget    : Uint8B 
... 
   +0x05e WaitIrql         : UChar 
   +0x05f WaitMode         : Char 
   +0x060 WaitStatus       : Int4B
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EXPERIMENT: Using the Kernel Debugger !thread Command
The kernel debugger !thread command dumps a subset of the information in the thread data 
structures . Some key elements of the information the kernel debugger displays can’t be dis-
played by any utility, including the following information: internal structure addresses; priority 
details; stack information; the pending I/O request list; and, for threads in a wait state, the list of 
objects the thread is waiting for .

To display thread information, use either the !process command (which displays all the 
threads of a process after displaying the process information) or the !thread command with the 
address of a thread object to display a specific thread. 

EXPERIMENT: Viewing Thread Information
The following output is the detailed display of a process produced by using the Tlist utility in 
the Debugging Tools for Windows . Notice that the thread list shows Win32StartAddr . This is the 
address passed to the CreateThread function by the application . All the other utilities, except 
Process Explorer, that show the thread start address show the actual start address (a function in 
Ntdll.dll), not the application-specified start address.

C:\Program Files\Windows Kits\8.0\Debuggers\x86>tlist winword 
3232 WINWORD.EXE       648739_Chap05.docx - Microsoft Word 
   CWD:     C:\Users\Alex Ionescu\Documents\ 
   CmdLine: "C:\Program Files\Microsoft Office\Office14\WINWORD.EXE" /n "C:\Users\Alex 
Ionescu\Documents\Chapter5.docx 
   VirtualSize:   531024 KB   PeakVirtualSize:   585248 KB 
   WorkingSetSize:122484 KB   PeakWorkingSetSize:181532 KB 
   NumberOfThreads: 12 
   2104 Win32StartAddr:0x2fde10ec LastErr:0x00000000 State:Waiting 
   2992 Win32StartAddr:0x7778fd0d LastErr:0x00000000 State:Waiting 
   3556 Win32StartAddr:0x3877e970 LastErr:0x00000000 State:Waiting 
   2436 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
   3136 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
   3412 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
   1096 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
    912 Win32StartAddr:0x74497832 LastErr:0x00000000 State:Waiting 
   1044 Win32StartAddr:0x389b0926 LastErr:0x00000583 State:Waiting 
   1972 Win32StartAddr:0x694532fb LastErr:0x00000000 State:Waiting 
   4056 Win32StartAddr:0x75f9c83e LastErr:0x00000000 State:Waiting 
   1124 Win32StartAddr:0x777903e9 LastErr:0x00000000 State:Waiting 
 14.0.5123.5000 shp  0x2FDE0000  C:\Program Files\Microsoft Office\Office14\WINWORD.EXE 
 6.1.7601.17725 shp  0x77760000  C:\Windows\SYSTEM32\ntdll.dll 
 6.1.7601.17651 shp  0x75CE0000  C:\Windows\system32\kernel32.dll

The TEB, illustrated in Figure 5-9, is one of the data structures explained in this section that exists 
in the process address space (as opposed to the system space) . Internally, it is made up of a header 
called the TIB (Thread Information Block), which mainly existed for compatibility with OS/2 and Win9x 
applications . It also allows exception and stack information to be kept into a smaller structure when 
creating new threads by using an Initial TIB .
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The TEB stores context information for the image loader and various Windows DLLs . Because these 
components run in user mode, they need a data structure writable from user mode . That’s why this 
structure exists in the process address space instead of in the system space, where it would be writ-
able only from kernel mode. You can find the address of the TEB with the kernel debugger !thread 
command .
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FIGURE 5-9 Fields of the thread environment block 

EXPERIMENT: Examining the TEB
You can dump the TEB structure with the !teb command in the kernel debugger . The output 
looks like this:

kd> !teb  
TEB at 7ffde000 
    ExceptionList:        019e8e44 
    StackBase:            019f0000 
    StackLimit:           019db000 
    SubSystemTib:         00000000 
    FiberData:            00001e00 
... 
    PEB Address:          7ffd9000 
    LastErrorValue:       0 
    LastStatusValue:      c0000139 
    Count Owned Locks:    0 
    HardErrorMode:        0
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The CSR_THREAD, illustrated in Figure 5-10 is analogous to the data structure of CSR_PROCESS, but 
it’s applied to threads . As you might recall, this is maintained by each Csrss process within a session 
and identifies the Windows subsystem threads running within it. The CSR_THREAD stores a handle 
that Csrss keeps for the thread, various flags, and a pointer to the CSR_PROCESS for the thread . It also 
stores another copy of the thread’s creation time .

Reference count

Create time

Thread links

Hash links

Client ID

Wait block

Thread handle

CSR_WAITBLOCK

Flags

Impersonation count

CSR_THREAD

CSR_THREAD

FIGURE 5-10 Fields of the CSR thread

EXPERIMENT: Examining the CSR_THREAD
You can dump the CSR_THREAD structure with the !dt command in the user-mode debugger 
while attached to a Csrss process . Follow the instructions in the CSR_PROCESS experiment from 
earlier to safely perform this operation . The output looks like this:

0:000> !dt v 001c7630 
PCSR_THREAD @ 001c7630: 
   +0x000 CreateTime       : _LARGE_INTEGER 0x1cb9fb6'00f90498 
   +0x008 Link             : _LIST_ENTRY [ 0x1c0ab0 - 0x1c0f00 ] 
   +0x010 HashLinks        : _LIST_ENTRY [ 0x75f19b38 - 0x75f19b38 ] 
   +0x018 ClientId         : _CLIENT_ID 
   +0x020 Process          : 0x001c0aa0 _CSR_PROCESS 
   +0x024 ThreadHandle     : 0x000005c4  
   +0x028 Flags            : 0 
   +0x02c ReferenceCount   : 1 
   +0x030 ImpersonateCount : 0

Finally, the W32THREAD structure, illustrated in Figure 5-11, is analogous to the data structure 
of WIN32PROCESS, but it’s applied to threads This structure mainly contains information useful for 
the GDI subsystem (brushes and DC attributes) as well as for the User Mode Print Driver framework 
(UMPD) that vendors use to write user-mode printer drivers . Finally, it contains a rendering state 
 useful for desktop compositing and anti-aliasing .
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FIGURE 5-11 Fields of the Win32k thread 

EXPERIMENT: Examining the W32THREAD
You can dump the W32THREAD structure by looking at the output of the !thread command, 
which gives a pointer to it in the Win32Thread output field. Alternatively, if you use the dt 
command, the KTHREAD block has a field called Win32Thread that contains the pointer to 
this structure . Recall that only a GUI thread will have a W32THREAD structure, so it’s pos-
sible that certain threads, such as background or worker threads, will not have an associated 
W32THREAD . Because there is no extension to view a W32THREAD, you need to use the dt 
command, as shown here:

dt win32k!_w32thread ffb79dd8 
   +0x000 pEThread         : 0x83ad4b60 _ETHREAD 
   +0x004 RefCount         : 1 
   +0x008 ptlW32           : (null)  
   +0x00c pgdiDcattr       : 0x00130740  
   +0x010 pgdiBrushAttr    : (null)  
   +0x014 pUMPDObjs        : (null)  
   +0x018 pUMPDHeap        : (null)  
   +0x01c pUMPDObj         : (null)  
... 
   +0x0a8 bEnableEngUpdateDeviceSurface : 0 '' 
   +0x0a9 bIncludeSprites  : 0 '' 
   +0x0ac ulWindowSystemRendering : 0
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Birth of a Thread
A thread’s life cycle starts when a program creates a new thread. The request filters down to the 
 Windows executive, where the process manager allocates space for a thread object and calls the 
 kernel to initialize the thread control block (KTHREAD) . The steps in the following list are taken inside 
the Windows CreateThread function in Kernel32 .dll to create a Windows thread:

1. CreateThread converts the Windows API parameters to native flags and builds a native 
structure describing object parameters (OBJECT_ATTRIBUTES) . See Chapter 3 for more 
information .

2. CreateThread builds an attribute list with two entries: client ID and TEB address . This 
allows CreateThread to receive those values once the thread has been created . (For 
more information on attribute lists, see the section “Flow of CreateProcess” earlier in 
this chapter .)

3. NtCreateThreadEx is called to create the user-mode context and probe and capture 
the attribute list . It then calls PspCreateThread to create a suspended executive thread 
object . For a description of the steps performed by this function, see the descriptions 
of Stage 3 and Stage 5 in the section “Flow of CreateProcess .”

4. CreateThread allocates an activation context for the thread used by side-by-side 
 assembly support . It then queries the activation stack to see if it requires activation, 
and it does so if needed . The activation stack pointer is saved in the new thread’s TEB .

5. CreateThread notifies the Windows subsystem about the new thread, and the 
 subsystem does some setup work for the new thread .

6. The thread handle and the thread ID (generated during step 3) are returned to the 
caller .

7. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread 
is now resumed so that it can be scheduled for execution . When the thread starts 
 running, it executes the steps described in the earlier section “Stage 7: Performing 
Process Initialization in the Context of the New Process” before calling the actual user’s 
specified start address.

Examining Thread Activity

Examining thread activity is especially important if you are trying to determine why a process that is 
hosting multiple services is running (such as Svchost .exe, Dllhost .exe, or Lsass .exe) or why a process 
is hung .
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There are several tools that expose various elements of the state of Windows threads: WinDbg (in 
user-process attach and kernel-debugging mode), Performance Monitor, and Process Explorer . (The 
tools that show thread-scheduling information are listed in the section “Thread Scheduling .”) 

To view the threads in a process with Process Explorer, select a process and open the process 
 properties (by double-clicking on the process or clicking on the Process, Properties menu item) . 
Then click on the Threads tab . This tab shows a list of the threads in the process and four columns of 
information . For each thread, it shows its ID, the percentage of CPU consumed (based on the refresh 
interval configured), the number of cycles charged to the thread, and the thread start address. You 
can sort by any of these four columns .

New threads that are created are highlighted in green, and threads that exit are highlighted in 
red. (The highlight duration can be configured with the Options, Difference Highlight Duration 
menu item .) This might be helpful to discover unnecessary thread creation occurring in a process . (In 
general, threads should be created at process startup, not every time a request is processed inside a 
process .)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state, CPU 
time counters, number of cycles charged, number of context switches, the ideal processor and its 
group, and the base and current priority . There is a Kill button, which will terminate an individual 
thread, but this should be used with extreme care . Another option is the Suspend button, which will 
prevent the thread from forward execution and thus prevent a runaway thread from consuming 
CPU time . However, this can also lead to deadlocks and should be used with the same care as the 
Kill  button . Finally, the Permissions button allows you to view the security descriptor . (See Chapter 6, 
“Security,” for more information on security descriptors) of the thread .

Unlike Task Manager and all other process/processor monitoring tools, Process Explorer uses 
the clock cycle counter designed for thread run-time accounting (as described later in this chapter), 
instead of the clock interval timer, so you will see a significantly different view of CPU consumption 
using Process Explorer . This is because many threads run for such a short amount of time that they are 
seldom (if ever) the currently running thread when the clock interval timer interrupt occurs, so they 
are not charged for much of their CPU time, leading clock-based tools to perceive a CPU usage of 0% . 
On the other hand, the total number of clock cycles represents the actual number of processor cycles 
that each thread in the process accrued . It is independent of the clock interval timer’s resolution 
because the count is maintained internally by the processor at each cycle and updated by Windows at 
each interrupt entry. (A final accumulation is done before a context switch.)

The thread start address is displayed in the form “module!function”, where module is the name of 
the .exe or .dll. The function name relies on access to symbol files for the module. (See “Experiment: 
Viewing Process Details with Process Explorer” in Chapter 1 .) If you are unsure what the module is, 
click the Module button. This opens an Explorer file properties window for the module containing the 
thread’s start address (for example, the  .exe or  .dll) .
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Note For threads created by the Windows CreateThread function, Process Explorer 
 displays the function passed to CreateThread, not the actual thread start function . That 
is because all Windows threads start at a common thread startup wrapper function 
(RtlUserThreadStart in Ntdll .dll) . If Process Explorer showed the actual start address, most 
threads in processes would appear to have started at the same address, which would 
not be helpful in trying to understand what code the thread was executing . However, if 
Process Explorer can’t query the user-defined startup address (such as in the case of a 
protected process), it will show the wrapper function, so you will see all threads starting at 
RtlUserThreadStart .

However, the thread start address displayed might not be enough information to pinpoint what 
the thread is doing and which component within the process is responsible for the CPU consumed by 
the thread . This is especially true if the thread start address is a generic startup function (for example, 
if the function name does not indicate what the thread is actually doing) . In this case, examining the 
thread stack might answer the question . To view the stack for a thread, double-click on the thread of 
interest (or select it and click the Stack button) . Process Explorer displays the thread’s stack (both user 
and kernel, if the thread was in kernel mode) .

Note While the user mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a 
process and display the user stack for a thread, Process Explorer shows both the user and 
kernel stack in one easy click of a button . You can also examine user and kernel thread 
stacks using WinDbg in local kernel debugging mode .

Viewing the thread stack can also help you determine why a process is hung . As an example, on 
one system, Microsoft Office PowerPoint was hanging for one minute on startup. To determine why it 
was hung, after PowerPoint was started, Process Explorer was used to examine the thread stack of the 
one thread in the process . The result is shown in Figure 5-12 .

FIGURE 5-12 Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso .dll (the central  Microsoft 
Office DLL), which called the OpenPrinterW function in Winspool .drv (a DLL used to connect to 
 printers) . Winspool .drv then dispatched to a function OpenPrinterRPC, which then called a function 
in the RPC runtime DLL, indicating it was sending the request to a remote printer . So, without having 
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to understand the internals of PowerPoint, the module and function names displayed on the thread 
stack indicate that the thread was waiting to connect to a network printer . On this particular system, 
there was a network printer that was not responding, which explained the delay starting PowerPoint . 
(Microsoft Office applications connect to all configured printers at process startup.) The connection to 
that printer was deleted from the user’s system, and the problem went away .

Finally, when looking at 32-bit applications running on 64-bit systems as a Wow64 process (see 
Chapter 3 for more information on Wow64), Process Explorer shows both the 32-bit and 64-bit stack 
for threads . Because at the time of the system call proper, the thread has been switched to a 64-bit 
stack and context, simply looking at the thread’s 64-bit stack would reveal only half the story—the 
64-bit part of the thread, with Wow64’s thunking code . So, when examining Wow64 processes, be 
sure to take into account both the 32-bit and 64-bit stacks . An example of a Wow64 thread inside 
Microsoft Office Word 2007 is shown in Figure 5-13. The highlighted stack frame and all stack frames 
below it are the 32-bit stack frames from the 32-bit stack . The stack frames above the highlighted 
frame are on the 64-bit stack .

FIGURE 5-13 Example Wow64 stack

Limitations on Protected Process Threads
As we discussed in the process internals section, protected processes have several limitations in terms 
of which access rights will be granted, even to the users with the highest privileges on the system . 
These limitations also apply to threads inside such a process . This ensures that the actual code 
 running inside the protected process cannot be hijacked or otherwise affected through standard 
 Windows functions, which require access rights that are not granted for protected process threads . 
In fact, the only permissions granted are THREAD_SUSPEND_RESUME and THREAD_SET/QUERY_ 
LIMITED_ INFORMATION .
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EXPERIMENT: Viewing Protected Process Thread Information
In the previous section, we took a look at how Process Explorer can be helpful in examining 
thread activity to determine the cause of potential system or application issues . This time, we’ll 
use Process Explorer to look at a protected process and see how the different access rights 
 being denied affect its ability and usefulness on such a process .

Find the Audiodg .exe service inside the process list . This is a process responsible for much 
of the core work behind the user-mode audio stack in Windows, and it requires protection to 
ensure that high-definition decrypted audio content does not leak out to untrusted sources. 
Bring up the process properties view, and take a look at the Performance tab . Notice how the 
numbers for WS Private, WS Shareable, and WS Shared are 0, although the total Working Set is 
still displayed . This is an example of the THREAD_QUERY_INFORMATION versus    
THREAD_QUERY_LIMITED_INFORMATION rights .

More importantly, take a look at the Threads tab . As you can see here, Process Explorer is 
unable to show the Win32 thread start address and instead displays the standard thread start 
wrapper inside Ntdll .dll . If you try clicking the Stack button, you’ll get an error, because Process 
Explorer needs to read the virtual memory inside the protected process, which it can’t do . 

Finally, note that although the Base and Dynamic priorities are shown, the I/O and Memory 
priorities are not, which is another example of the limited versus full query information access 
right . As you try to kill a thread inside Audiodg .exe, notice yet another access denied error: 
recall the lack of THREAD_TERMINATE access .
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Worker Factories (Thread Pools)

Worker factories refer to the internal mechanism used to implement user-mode thread pools . The 
legacy thread pool routines were completely implemented in user mode inside the Ntdll .dll library, 
and the Windows API provided various routines to call into the relevant routines, which provided 
waitable timers, wait callbacks, and automatic thread creation and deletion, depending on the 
amount of work being done .

Because the kernel can have direct control over thread scheduling, creation, and termination 
 without the typical costs associated with doing these operations from user mode, most of the func-
tionality required to support the user-mode thread pool implementation in Windows is now located 
in the kernel instead, which also simplifies the code that developers need to write. For example, 
creating a worker pool in a remote process can be done with a single API call, instead of the complex 
series of virtual memory calls this normally requires . Under this model, Ntdll .dll merely provides the 
interfaces and high-level APIs required for interfacing with the worker factory code .

This kernel-managed thread pool functionality in Windows is managed by an object manager 
type called TpWorkerFactory, as well as four native system calls for managing the factory and its 
workers (NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorkerFactoryWorker, 
 NtShutdownWorkerFactory), two query/set native calls (NtQueryInformationWorkerFactory and 
 NtSetInformationWorkerFactory), and a wait call (NtWaitForWorkViaWorkerFactory) . 

Just like other native system calls, these calls provide user mode with a handle to the 
 TpWorkerFactory object, which contains information such as the name and object attributes, the 
 desired access mask, and a security descriptor . Unlike other system calls wrapped by the Windows API, 
however, thread-pool management is handled by Ntdll .dll’s native code, which means that developers 
work with an opaque descriptor (a TP_WORK pointer) owned by Ntdll .dll, in which the actual handle is 
stored .

As its name suggests, the worker factory implementation is responsible for allocating worker 
threads (and calling the given user-mode worker thread entry point), maintaining a minimum and 
maximum thread count (allowing for either permanent worker pools or totally dynamic pools), as 
well as other accounting information . This enables operations such as shutting down the thread pool 
to be performed with a single call to the kernel, because the kernel has been the only component 
 responsible for thread creation and termination . 

Because the kernel dynamically creates new threads as needed, based on minimum and maximum 
numbers provided, this also increases the scalability of applications using the new thread-pool imple-
mentation . A worker factory will create a new thread whenever all of the following conditions are met:

 ■ The number of available workers is lower than the maximum number of workers configured 
for the factory (default of 500) .

 ■ The worker factory has bound objects (a bound object can be, for example, an ALPC port that 
this worker thread is waiting on) or a thread has been activated into the pool .
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 ■ There are pending I/O request packets (IRPs; see Chapter 8, “I/O System,” in Part 2, for more 
information) associated with a worker thread .

 ■ Dynamic thread creation is enabled .

And it will terminate threads whenever they’ve become idle for more than 10 seconds (by default) .

Furthermore, while developers have always been able to take advantage of as many threads as 
possible (based on the number of processors on the system) through the old implementation, but 
through support for dynamic processors in Windows Server (see the section on this topic later in this 
chapter), it’s now possible for applications using thread pools to automatically take advantage of new 
processors added at run time .

Note that the worker factory support is merely a wrapper to manage mundane tasks that would 
otherwise have to be performed in user mode (at a loss of performance), and much of the logic of 
the new thread-pool code remains in the Ntdll .dll side of this architecture . (Theoretically, by using 
undocumented functions, a different thread-pool implementation can be built around worker facto-
ries .) Also, it is not the worker factory code that provides the scalability, wait internals, and efficiency 
of work processing . Instead, it is a much older component of Windows that we already discussed—
I/O completion ports, or more correctly, kernel queues (KQUEUE; see Chapter 8 in Part 2 for more 
information) .

In fact, when creating a worker factory, an I/O completion port must have already been created 
by user mode, and the handle needs to be passed on . It is through this I/O completion port that the 
user-mode implementation will queue work and also wait for work—but by calling the worker factory 
system calls instead of the I/O completion port APIs . Internally, however, the “release” worker factory 
call (which queues work) is a wrapper around IoSetIoCompletionEx, which increases pending work, 
while the “wait” call is a wrapper around IoRemoveIoCompletion . Both these routines call into the 
kernel queue implementation .

Therefore, the job of the worker factory code is to manage either a persistent, static, or dynamic 
thread pool; wrap the I/O completion port model into interfaces that try to prevent stalled worker 
queues by automatically creating dynamic threads; and to simplify global cleanup and termination 
operations during a factory shutdown request (as well as to easily block new requests against the 
 factory in such a scenario) .

Unfortunately, the data structures used by the worker factory implementation are not in the 
public symbols, but it is still possible to look at some worker pools, as we’ll show in the next experi-
ment .  Additionally, the NtQueryInformationWorkerFactory API dumps almost every field in the worker 
 factory structure . 
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EXPERIMENT: Looking at Thread Pools
Because of the advantages of using the thread-pool mechanism, many core system  components 
and applications make use of it, especially when dealing with resources such as ALPC ports (to 
dynamically process incoming requests at an appropriate and scalable level) . One of the ways 
to identify which processes are using a worker factory is to look at the handle list in Process 
Explorer . Follow these steps to look at some details behind them:

1. Run Process Explorer, and select Show Unnamed Handles And Mappings from the 
View menu . Unfortunately, worker factories aren’t named by Ntdll .dll, so you need to 
take this step in order to see the handles .

2. Select Lsm .exe from the list of processes, and look at the handle table . Make sure that 
the lower pane is shown (View, Show Lower Pane) and is displaying handle table mode 
(View, Lower Pane View, Handles) .

3. Right-click on the lower pane columns, and then click on Select Columns . Make sure 
that the Type column is selected to be shown, and click it to sort by type . 

4. Now scroll down the handles, looking at the Type column, until you find a handle of 
type TpWorkerFactory . You should see something like this: 

Notice how the TpWorkerFactory handle is immediately preceded by an IoCompletion 
handle (numerically; sort by “Handle” to see this) . As was described previously, this oc-
curs because before creating a worker factory, a handle to an I/O completion port on 
which work will be sent must be created .
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5. Now double-click Lsm .exe in the list of processes, and click on the Threads tab . You 
should see something similar to the image here:

On this system (with two processors), the worker factory has created six worker 
threads at the request of Lsm.exe (processes can define a minimum and maximum 
number of threads) and based on its usage and the count of processors on the 
machine. These threads are identified as TppWorkerThread, which is Ntdll .dll’s worker 
entry point when calling the worker factory system calls . 

6. Ntdll .dll is responsible for its own internal accounting inside the worker thread 
 wrapper (TppWorkerThread) before calling the worker callback that the application has 
registered . By looking at the Wait reason in the State information for each thread, you 
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can get a rough idea of what each worker thread might be doing . Double-click on one 
of the threads inside an LPC wait to look at its stack . Here’s an example:

This specific worker thread is being used by Lsm.exe for LPC communication.  Because 
the local session manager needs to communicate with other components such 
as Smss and Csrss through LPC, it makes sense that it would want a number of its 
threads to be busy replying and waiting for LPC messages . (The more threads doing 
this, the less stalling there is on the LPC pipeline .)

If you look at other worker threads, you’ll see some are waiting for objects such as events . 
A process can have multiple thread pools, and each thread pool can have a variety of threads 
doing completely unrelated tasks . It’s up to the developer to assign work and to call the thread 
pool APIs to register this work through Ntdll .dll .
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Thread Scheduling

This section describes the Windows scheduling policies and algorithms . The first subsection provides 
a condensed description of how scheduling works on Windows and a definition of key terms. Then 
Windows priority levels are described from both the Windows API and the Windows kernel points of 
view . After a review of the relevant Windows utilities and tools that relate to scheduling, the detailed 
data structures and algorithms that make up the Windows scheduling system are presented, includ-
ing a description of common scheduling scenarios and how thread selection, as well as processor 
 selection, occurs .

Overview of Windows Scheduling
Windows implements a priority-driven, preemptive scheduling system—at least one of the highest-
priority runnable (ready) threads always runs, with the caveat that certain high-priority threads ready 
to run might be limited by the processors on which they might be allowed or preferred to run on, a 
phenomenon called processor affinity. Processor affinity is defined based on a given processor group, 
which collects up to 64 processors . By default, threads can run only on any available processors within 
the processor group associated with the process (to maintain compatibility with older versions of 
Windows which supported only 64 processors), but developers can alter processor affinity by using 
the appropriate APIs or by setting an affinity mask in the image header, while users can use tools to 
change affinity at runtime or at process creation. However, although multiple threads in a process 
can be associated with different groups, a thread on its own can run only on the processors available 
within its assigned group . Additionally, developers can choose to create group-aware applications, 
which use extended scheduling APIs to associate logical processors on different groups with the affin-
ity of their threads . Doing so converts the process into a multigroup process that can theoretically run 
its threads on any available processor within the machine .

EXPERIMENT: Viewing Ready Threads
You can view the list of ready threads with the kernel debugger !ready command . This com-
mand displays the thread or list of threads that are ready to run at each priority level . In the 
following example, generated on a 32-bit machine with a dual-core processor, two threads 
are ready to run at priority 8 on the first logical processor, and one thread at priority 10, two 
threads at priority 9, and three threads at priority 8 are ready to run on the second logical pro-
cessor . Determining which of these threads get to run on their respective processor is a simple 
matter of picking the first thread on top of the highest priority queue (thread 857d9030 for 
logical processor 0, and thread 857c0030 for logical processor 1), but why the queues contain 
the threads they do is a complex result at the end of several algorithms that the scheduler uses . 
We will cover this topic later in this section .
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kd> !ready 
Processor 0: Ready Threads at priority 8 
    THREAD 857d9030  Cid 0ec8.0e30  Teb: 7ffdd000 Win32Thread: 00000000 READY 
    THREAD 855c8300  Cid 0ec8.0eb0  Teb: 7ff9c000 Win32Thread: 00000000 READY  
Processor 1: Ready Threads at priority 10 
    THREAD 857c0030  Cid 04c8.0378  Teb: 7ffdf000 Win32Thread: fef7f8c0 READY  
Processor 1: Ready Threads at priority 9 
    THREAD 87fc86f0  Cid 0ec8.04c0  Teb: 7ffd3000 Win32Thread: 00000000 READY 
    THREAD 88696700  Cid 0ec8.0ce8  Teb: 7ffa0000 Win32Thread: 00000000 READY 
Processor 1: Ready Threads at priority 8 
    THREAD 856e5520  Cid 0ec8.0228  Teb: 7ff98000 Win32Thread: 00000000 READY 
    THREAD 85609d78  Cid 0ec8.09b0  Teb: 7ffd9000 Win32Thread: 00000000 READY 
    THREAD 85fdeb78  Cid 0ec8.0218  Teb: 7ff72000 Win32Thread: 00000000 READY

After a thread is selected to run, it runs for an amount of time called a quantum . A quantum is the 
length of time a thread is allowed to run before another thread at the same priority level is given a 
turn to run . Quantum values can vary from system to system and process to process for any of three 
reasons: 

 ■ System configuration settings (long or short quantums, variable or fixed quantums, and 
 priority separation)

 ■ Foreground or background status of the process

 ■ Use of the job object to alter the quantum

These details are explained in more details in the “Quantum” section later in the chapter, as well as 
in the “Job Objects” section) .

A thread might not get to complete its quantum, however, because Windows implements a 
preemptive scheduler: if another thread with a higher priority becomes ready to run, the currently 
running thread might be preempted before finishing its time slice. In fact, a thread can be selected to 
run next and be preempted before even beginning its quantum!

The Windows scheduling code is implemented in the kernel . There’s no single “scheduler” module 
or routine, however—the code is spread throughout the kernel in which scheduling-related events 
occur . The routines that perform these duties are collectively called the kernel’s dispatcher . The 
 following events might require thread dispatching:

 ■ A thread becomes ready to execute—for example, a thread has been newly created or has just 
been released from the wait state .

 ■ A thread leaves the running state because its time quantum ends, it terminates, it yields 
 execution, or it enters a wait state .

 ■ A thread’s priority changes, either because of a system service call or because Windows itself 
changes the priority value .

 ■ A thread’s processor affinity changes so that it will no longer run on the processor on which it 
was running .
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At each of these junctions, Windows must determine which thread should run next on the logical 
processor that was running the thread, if applicable, or on which logical processor the thread should 
now run on . After a logical processor has selected a new thread to run, it eventually performs a 
context switch to it . A context switch is the procedure of saving the volatile processor state associated 
with a running thread, loading another thread’s volatile state, and starting the new thread’s execution .

As already noted, Windows schedules at the thread granularity . This approach makes sense when 
you consider that processes don’t run but only provide resources and a context in which their threads 
run . Because scheduling decisions are made strictly on a thread basis, no consideration is given to 
what process the thread belongs to . For example, if process A has 10 runnable threads, process B 
has 2 runnable threads, and all 12 threads are at the same priority, each thread would theoretically 
receive one-twelfth of the CPU time—Windows wouldn’t give 50 percent of the CPU to process A and 
50 percent to process B .

Priority Levels
To understand the thread-scheduling algorithms, one must first understand the priority levels that 
Windows uses . As illustrated in Figure 5-14, internally Windows uses 32 priority levels, ranging from 0 
through 31 . These values divide up as follows:

 ■ Sixteen real-time levels (16 through 31)

 ■ Sixteen variable levels (0 through 15), out of which level 0 is reserved for the zero page thread

16 real-time levels

16 variable levels

System level
(Zero page thread, one per system)

31

16
15

1
0

FIGURE 5-14 Thread priority levels 

Thread priority levels are assigned from two different perspectives: those of the Windows API and 
those of the Windows kernel . The Windows API first organizes processes by the priority class to which 
they are assigned at creation (the numbers represent the internal PROCESS_PRIORITY_CLASS_ index 
recognized by the kernel): Real-time (4), High (3), Above Normal (7), Normal (2), Below Normal (5), 
and Idle (1) .
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It then assigns a relative priority of the individual threads within those processes . Here, the 
 numbers represent a priority delta that is applied to the process base priority: Time-critical (15), 
 Highest (2), Above-normal (1), Normal (0), Below-normal (–1), Lowest (–2), and Idle (–15) .

Therefore, in the Windows API, each thread has a base priority that is a function of its process 
 priority class and its relative thread priority . In the kernel, the process priority class is converted to a 
base priority by using the PspPriorityTable and the PROCESS_PRIORITY_CLASS indices shown earlier, 
which sets priorities of 4, 8, 13, 14, 6, and 10, respectively. (This is a fixed mapping that cannot be 
changed .) The relative thread priority is then applied as a differential to this base priority . For ex-
ample, a “Highest” thread will receive a thread base priority of two levels higher than the base priority 
of its process .

This mapping from Windows priority to internal Windows numeric priority is shown in Table 5-3 .

TABLE 5-3 Mapping of Windows Kernel Priorities to the Windows API

Priority Class Relative Priority Realtime High Above Normal Normal Below Normal Idle

Time Critical (+ SATURATION) 31 15 15 15 15 15

Highest (+2) 26 15 12 10 8 6

Above Normal (+1) 25 14 11 9 7 5

Normal (0) 24 13 10 8 6 4

Below Normal (-1) 23 12 9 7 5 3

Lowest (-2) 22 11 8 6 4 2

Idle (- SATURATION) 16 1 1 1 1 1

You’ll note that the Time-Critical and Idle relative thread priorities maintain their respective values 
regardless of the process priority class (unless it is Realtime) . This is because the Windows API requests 
saturation of the priority from the kernel, by actually passing in 16 or -16 as the requested relative 
priority (instead of 15 or -15) . This is then recognized by the kernel as a request for saturation, and 
the Saturation field in KTHREAD is set. This causes, for positive saturation, the thread to receive the 
highest possible priority within its priority class (dynamic or real-time), or for negative saturation, 
the lowest possible one . Additionally, future requests to change the base priority of the process will 
no longer affect the base priority of these threads, because saturated threads are skipped in the 
 processing code .

Whereas a process has only a single base priority value, each thread has two priority values: 
current and base . Scheduling decisions are made based on the current priority . As explained in the 
following section on priority boosting, the system under certain circumstances increases the priority 
of threads in the dynamic range (0 through 15) for brief periods . Windows never adjusts the prior-
ity of threads in the real-time range (16 through 31), so they always have the same base and current 
priority .



412 Windows Internals, Sixth Edition, Part 1

A thread’s initial base priority is inherited from the process base priority . A process, by default, 
inherits its base priority from the process that created it . This behavior can be overridden on the 
CreateProcess function or by using the command-line start command . A process priority can also be 
changed after being created by using the SetPriorityClass function or various tools that expose that 
function, such as Task Manager and Process Explorer (by right-clicking on the process and choosing a 
new priority class) . For example, you can lower the priority of a CPU-intensive process so that it does 
not interfere with normal system activities . Changing the priority of a process changes the thread 
priorities up or down, but their relative settings remain the same .

Normally, user applications and services start with a normal base priority, so their initial thread 
typically executes at priority level 8 . However, some Windows system processes (such as the session 
manager, service control manager, and local security authentication process) have a base process 
priority slightly higher than the default for the Normal class (8) . This higher default value ensures that 
the threads in these processes will all start at a higher priority than the default value of 8 . 

Real-Time Priorities
You can raise or lower thread priorities within the dynamic range in any application; however, you 
must have the increase scheduling priority privilege to enter the real-time range . Be aware that many 
important Windows kernel-mode system threads run in the real-time priority range, so if threads 
spend excessive time running in this range, they might block critical system functions (such as in the 
memory manager, cache manager, or other device drivers) .

Using the standard Windows APIs, once a process has entered the real-time range, all of its threads 
(even Idle ones) must run at one of the real-time priority levels . It is thus impossible to mix real-
time and dynamic threads within the same process through standard interfaces . This is because the 
SetThreadPriority API calls the native NtSetInformationThread API with the ThreadBasePriority infor-
mation class, which allows priorities to remain only in the same range . Furthermore, this information 
class allows priority changes only in the recognized Windows API deltas of –2 to 2 (or real-time/idle), 
unless the request comes from CSRSS or a real-time process . In other words, this means that a real-
time process does have the ability to pick thread priorities anywhere between 16 and 31, even though 
the standard Windows API relative thread priorities would seem to limit its choices based on the table 
that was shown earlier .

However, by calling this API with the ThreadActualBasePriority information class, the kernel base 
priority for the thread can be directly set, including in the dynamic range for a real-time process .

Note As illustrated in Figure 5-15, which shows the interrupt request levels (IRQLs), 
 although Windows has a set of priorities called real-time, they are not real-time in the 
common definition of the term. This is because Windows doesn’t provide true, real-time 
operating system facilities, such as guaranteed interrupt latency or a way for threads to 
 obtain a guaranteed execution time . 
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Interrupt Levels vs. Priority Levels
As illustrated in Figure 5-15 of the interrupt request levels (IRQLs) for a 32-bit system, threads 
normally run at IRQL 0 (called passive level, because no interrupts are in process and none are 
blocked) or IRQL 1 (APC level) . (For a description of how Windows uses interrupt levels, see 
Chapter 3 .) User-mode code always runs at passive level . Because of this, no user-mode thread, 
regardless of its priority, can ever block hardware interrupts (although high-priority, real-time 
threads can block the execution of important system threads) . 

Threads running in kernel mode, although initially scheduled at passive level or APC level, 
can raise IRQL to higher levels—for example, while executing a system call that involves thread 
dispatching, memory management, or input/output . If a thread does raise IRQL to dispatch 
level or above, no further thread-scheduling behavior will occur on its processor until it lowers 
IRQL below dispatch level . A thread executing at dispatch level or above blocks the activity of 
the thread scheduler and prevents thread context switches on its processor . 

A thread running in kernel mode can be running at APC level if it is running a special kernel 
APC; or it can temporarily raise IRQL to APC level to block the delivery of special kernel APCs . 
(For more information on APCs, see Chapter 3 .) However, executing at APC level does not alter 
the scheduling behavior of the thread vs . other threads; it affects only the delivery of kernel 
APCs to that thread . In fact, a thread executing in kernel mode at APC level can be preempted 
in favor of a higher priority thread running in user mode at passive level . 
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FIGURE 5-15 Thread priorities vs . IRQLs on an x86 system
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Using Tools to Interact with Priority
You can change (and view) the base-process priority with Task Manager and Process Explorer . You 
can kill individual threads in a process with Process Explorer (which should be done, of course, with 
extreme care) .

You can view individual thread priorities with the Performance Monitor, Process Explorer, or 
WinDbg . Although it might be useful to increase or lower the priority of a process, it typically does 
not make sense to adjust individual thread priorities within a process, because only a person who 
thoroughly understands the program (in other words, typically only the developer himself) would 
understand the relative importance of the threads within the process .

The only way to specify a starting priority class for a process is with the start command in the 
 Windows command prompt. If you want to have a program start every time with a specific  priority, 
you can define a shortcut to use the start command by beginning the command with cmd /c . 
This runs the command prompt, executes the command on the command line, and terminates the 
 command prompt . For example, to run Notepad in the low-process priority, the shortcut is  
cmd /c start /low Notepad .exe .

EXPERIMENT: Examining and Specifying Process and Thread Priorities
Try the following experiment:

1. From an elevated command prompt, type start /realtime notepad . Notepad should 
open .

2. Run Process Explorer, and select Notepad .exe from the list of processes . Double-click 
on Notepad .exe to show the process properties window, and then click on the Threads 
tab, as shown here . Notice that the dynamic priority of the thread in Notepad is 24 . 
This matches the real-time value shown in the following image .
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3. Task Manager can show you similar information . Press Ctrl+Shift+Esc to start Task 
Manager, and click on the Processes tab . Right-click on the Notepad .exe process, 
and select the Set Priority option . You can see that Notepad’s process priority class is 
 Realtime, as shown in the following dialog box:
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Windows System Resource Manager
Windows Server 2008 R2 Enterprise Edition and Windows Server 2008 R2 Datacenter  Edition 
 include an optionally installable component called Windows System Resource Manager 
(WSRM). It permits the administrator to configure policies that specify CPU utilization, affin-
ity settings, and memory limits (both physical and virtual) for processes . In addition, WSRM 
can generate resource utilization reports that can be used for accounting and verification of 
service-level agreements with users .

Policies can be applied for specific applications (by matching the name of the image with or 
without specific command-line arguments), users, or groups. The policies can be scheduled to 
take effect at certain periods or can be enabled all the time .

After you set a resource-allocation policy to manage specific processes, the WSRM service 
monitors CPU consumption of managed processes and adjusts process base priorities when 
those processes do not meet their target CPU allocations .

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a 
 hard-working set maximum . The virtual memory limit is implemented by the service checking 
the private virtual memory consumed by the processes . (See Chapter 10 in Part 2 for an expla-
nation of these memory limits.) If this limit is exceeded, WSRM can be configured to either kill 
the processes or write an entry to the Event Log . This behavior can be used to detect a process 
with a memory leak before it consumes all the available committed memory on the system . 
Note that WSRM memory limits do not apply to Address Windowing Extensions (AWE) memory, 
large page memory, or kernel memory (nonpaged or paged pool) .

Thread States
Before you can comprehend the thread-scheduling algorithms, you need to understand the various 
execution states that a thread can be in . The thread states are as follows:

 ■ Ready A thread in the ready state is waiting to execute (or ready to be in-swapped after 
completing a wait) . When looking for a thread to execute, the dispatcher considers only the 
pool of threads in the ready state .

 ■ Deferred ready This state is used for threads that have been selected to run on a specific 
processor but have not actually started running there . This state exists so that the kernel can 
minimize the amount of time the per-processor lock on the scheduling database is held .

 ■ Standby A thread in the standby state has been selected to run next on a particular proces-
sor . When the correct conditions exist, the dispatcher performs a context switch to this thread . 
Only one thread can be in the standby state for each processor on the system . Note that a 
thread can be preempted out of the standby state before it ever executes (if, for example, a 
higher priority thread becomes runnable before the standby thread begins execution) .
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 ■ Running Once the dispatcher performs a context switch to a thread, the thread enters the 
running state and executes . The thread’s execution continues until its quantum ends (and 
 another thread at the same priority is ready to run), it is preempted by a higher priority thread, 
it terminates, it yields execution, or it voluntarily enters the waiting state .

 ■ Waiting A thread can enter the waiting state in several ways: a thread can voluntarily wait 
for an object to synchronize its execution, the operating system can wait on the thread’s 
behalf (such as to resolve a paging I/O), or an environment subsystem can direct the thread 
to suspend itself . When the thread’s wait ends, depending on the priority, the thread either 
begins running immediately or is moved back to the ready state .

 ■ Transition A thread enters the transition state if it is ready for execution but its kernel stack 
is paged out of memory . Once its kernel stack is brought back into memory, the thread enters 
the ready state .

 ■ Terminated When a thread finishes executing, it enters the terminated state . Once the 
thread is terminated, the executive thread object (the data structure in a nonpaged pool that 
describes the thread) might or might not be deallocated . (The object manager sets the policy 
regarding when to delete the object .)

 ■ Initialized This state is used internally while a thread is being created .

Table 5-4 describes the state transitions for threads, and Figure 5-16 illustrates a simplified  version. 
(The numeric values shown represent the value of the thread-state performance counter .) In the 
simplified version, the Ready, Standby, and Deferred Ready states are represented as one. This reflects 
the fact that the Standby and Deferred Ready states act as temporary placeholders for the schedul-
ing routines . These states are almost always very short-lived; threads in these states always transition 
quickly to Ready, Running, or Waiting . More details on what happens at each transition are included 
later in this section . 

TABLE 5-4 Thread States and Transitions

 Init Ready Running Standby Terminated Waiting Transition Deferred 
Ready

 

Init         A thread becomes 
Initialized during the 
first few moments of its 
 creation (KeStartThread).

Ready        A thread is 
added in the 
dispatcher-
ready 
database 
of its ideal 
processor.

 

Running  Selected by 
KiSearch-
ForNew-
Thread

 Picked up 
for  
execution 
by local 
CPU

 Preemption 
after wait 
satisfaction
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 Init Ready Running Standby Terminated Waiting Transition Deferred 
Ready

 

Standby  Selected by 
KiSelect-
NextThread

     Selected by 
KiDeferred-
ReadyThread 
for remote 
CPU

 

Terminated Killed 
before 
PspInsert-
Thread 
finished

 Killed      A thread can kill 
only itself. It must 
be in the Running 
state before  entering 
KeTerminateThread.

Waiting   Thread 
enters a 
wait

     Only running threads 
can wait.

Transition      Kernel stack 
no longer 
resident

  Only waiting threads can 
transition.

Deferred 
Ready

Last 
step in 
PspInsert-
Thread

Affinity 
change

Thread 
becomes 
preempted 
(if old 
processor 
is no longer 
available)

Affinity 
change

 Wait 
 satisfaction 
(but no 
preemp-
tion)

Kernel stack 
swap-in 
completed

  

Ready (1),
Standby (3),

Deferred ready
(7)

Running (2)

voluntary
switch

preemption or
quantum end

Init (0)

Terminate (4)

Transition (6)

Waiting (5)

dispatched

kernel stack
outswapped wait

resolved

kernel stack
inswapped

FIGURE 5-16 Simplified version of thread states and transitions
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EXPERIMENT: Thread-Scheduling State Changes
You can watch thread-scheduling state changes with the Performance tool in Windows . This 
utility can be useful when you’re debugging a multithreaded application and you’re unsure 
about the state of the threads running in the process . To watch thread-scheduling state changes 
by using the Performance tool, follow these steps:

1. Run Notepad (Notepad .exe) .

2. Start the Performance tool by selecting All Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

3. Select the chart view if you’re in some other view .

4. Right-click on the graph, and choose Properties .

5. Click on the Graph tab, and change the chart vertical scale maximum to 7 . (As 
you’ll see from the explanation text for the performance counter, thread states are 
 numbered from 0 through 7 .) Click OK .

6. Click the Add button on the toolbar to bring up the Add Counters dialog box .

7. Select the Thread performance object, and then select the Thread State counter . Select 
the Show Description check box to see the definition of the values:

8. In the Instances box, select <All instances> and type Notepad before clicking Search. 
Scroll down until you see the Notepad process (notepad/0); select it, and click the Add 
button .

9. Scroll back up in the Instances box to the Mmc process (the Microsoft Management 
Console process running the System Monitor), select all the threads (mmc/0, mmc/1, 
and so on), and add them to the chart by clicking the Add button . Before you click 
Add, you should see something like the dialog box that follows .
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10. Now close the Add Counters dialog box by clicking OK .

11. You should see the state of the Notepad thread (the very top line in the following 
figure) as a 5. As shown in the explanation text you saw under step 7, this number 
 represents the waiting state (because the thread is waiting for GUI input):
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12. Notice that one thread in the Mmc process (running the Performance tool snap-in) is 
in the running state (number 2) . This is the thread that’s querying the thread states, so 
it’s always displayed in the running state .

13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor 
system) because Mmc is always in the running state when it gathers the state of the 
threads you’re monitoring .

Dispatcher Database
To make thread-scheduling decisions, the kernel maintains a set of data structures known collectively 
as the dispatcher database, illustrated in Figure 5-17 . The dispatcher database keeps track of which 
threads are waiting to execute and which processors are executing which threads .

To improve scalability, including thread-dispatching concurrency, Windows multiprocessor systems 
have per-processor dispatcher ready queues, as illustrated in Figure 5-17 . In this way, each CPU can 
check its own ready queues for the next thread to run without having to lock the systemwide ready 
queues .

The per-processor ready queues, as well as the per-processor ready summary, are part of the 
 processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_kprcb in the 
kernel debugger.) The names of each component that we will talk about (in italics) are field members 
of the PRCB structure .

The dispatcher ready queues (DispatcherReadyListHead) contain the threads that are in the ready 
state, waiting to be scheduled for execution . There is one queue for each of the 32 priority levels . To 
speed up the selection of which thread to run or preempt, Windows maintains a 32-bit bit mask called 
the ready summary (ReadySummary) . Each bit set indicates one or more threads in the ready queue 
for that priority level . (Bit 0 represents priority 0, and so on .) 

Instead of scanning each ready list to see whether it is empty or not (which would make  scheduling 
decisions dependent on the number of different priority threads), a single bit scan is performed as 
a native processor command to find the highest bit set. Regardless of the number of threads in the 
ready queue, this operation takes a constant amount of time, which is why you might sometimes see 
the Windows scheduling algorithm referred to as an O(1), or constant time, algorithm .



422 Windows Internals, Sixth Edition, Part 1

Process

Thread 1 Thread 2

Ready summary

Deferred
ready queue

CPU 0
ready queues

31

0

31 0

Process

Thread 3 Thread 4

Ready summary

31 0
Deferred

ready queue

CPU 1
ready queues

31

0

FIGURE 5-17 Windows multiprocessor dispatcher database

The dispatcher database is synchronized by raising IRQL to DISPATCH_LEVEL . (For an explanation 
of interrupt priority levels, see the “Trap Dispatching” section in Chapter 3 .) Raising IRQL in this way 
prevents other threads from interrupting thread dispatching on the processor because threads nor-
mally run at IRQL 0 or 1 . However, more is required than just raising IRQL, because other processors 
can simultaneously raise to the same IRQL and attempt to operate on their dispatcher database . How 
Windows synchronizes access to the dispatcher database is explained in the “Multiprocessor Systems” 
section later in the chapter .

Quantum
As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run before 
Windows checks to see whether another thread at the same priority is waiting to run . If a thread 
completes its quantum and there are no other threads at its priority, Windows permits the thread to 
run for another quantum .

On client versions of Windows, threads run by default for 2 clock intervals; on server systems, by 
default, a thread runs for 12 clock intervals . (We’ll explain how you can change these values later .) The 
rationale for the longer default value on server systems is to minimize context switching . By having 
a longer quantum, server applications that wake up as the result of a client request have a better 
chance of completing the request and going back into a wait state before their quantum ends .
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The length of the clock interval varies according to the hardware platform . The frequency of the 
clock interrupts is up to the HAL, not the kernel . For example, the clock interval for most x86 unipro-
cessors is about 10 milliseconds (note that these machines are no longer supported by Windows and 
are only used here for example purposes), and for most x86 and x64 multiprocessors it is about 15 
milliseconds . This clock interval is stored in the kernel variable KeMaximumIncrement as hundreds of 
nanoseconds .

Because thread run-time accounting is based on processor cycles, although threads still run in 
units of clock intervals, the system does not use the count of clock ticks as the deciding factor for 
how long a thread has run and whether its quantum has expired . Instead, when the system starts up, 
a  calculation is made whose result is the number of clock cycles that each quantum is equivalent to . 
(This value is stored in the kernel variable KiCyclesPerClockQuantum .) This calculation is made by mul-
tiplying the processor speed in Hz (CPU clock cycles per second) with the number of seconds it takes 
for one clock tick to fire (based on the KeMaximumIncrement value described earlier) .

The result of this accounting method is that threads do not actually run for a quantum number 
based on clock ticks; they instead run for a quantum target, which represents an estimate of what the 
number of CPU clock cycles the thread has consumed should be when its turn would be given up . 
This target should be equal to an equivalent number of clock interval timer ticks because, as you just 
saw, the calculation of clock cycles per quantum is based on the clock interval timer frequency, which 
you can check using the following experiment . On the other hand, because interrupt cycles are not 
charged to the thread, the actual clock time might be longer .

EXPERIMENT: Determining the Clock Interval Frequency
The Windows GetSystemTimeAdjustment function returns the clock interval . To determine the 
clock interval, download and run the Clockres program from Windows Sysinternals  
(www .microsoft .com/technet/sysinternals) . Here’s the output from a dual-core 64-bit 
 Windows 7 system:

C:\>clockres 
 
ClockRes v2.0 - View the system clock resolution 
Copyright (C) 2009 Mark Russinovich 
SysInternals - www.sysinternals.com 
 
Maximum timer interval: 15.600 ms 
Minimum timer interval: 0.500 ms 
Current timer interval: 15.600 ms

Quantum Accounting
Each process has a quantum reset value in the process control block (KPROCESS) . This value is 
used when creating new threads inside the process and is duplicated in the thread control block 
(KTHREAD), which is then used when giving a thread a new quantum target . The quantum reset 
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value is stored in terms of actual quantum units (we’ll discuss what these mean soon), which are then 
 multiplied by the number of clock cycles per quantum, resulting in the quantum target .

As a thread runs, CPU clock cycles are charged at different events (context switches, interrupts, 
and certain scheduling decisions) . If at a clock interval timer interrupt, the number of CPU clock cycles 
charged has reached (or passed) the quantum target, quantum end processing is triggered . If there is 
another thread at the same priority waiting to run, a context switch occurs to the next thread in the 
ready queue . 

Internally, a quantum unit is represented as one third of a clock tick . (So one clock tick equals three 
quantums .) This means that on client Windows systems, threads, by default, have a quantum reset 
 value of 6 (2 * 3), and that server systems have a quantum reset value of 36 (12 * 3) . For this reason, 
the KiCyclesPerClockQuantum value is divided by three at the end of the calculation previously de-
scribed, because the original value describes only CPU clock cycles per clock interval timer tick .

The reason a quantum was stored internally as a fraction of a clock tick rather than as an entire tick 
was to allow for partial quantum decay-on-wait completion on versions of Windows prior to Windows 
Vista . Prior versions used the clock interval timer for quantum expiration . If this adjustment were not 
made, it would have been possible for threads never to have their quantums reduced . For example, 
if a thread ran, entered a wait state, ran again, and entered another wait state but was never the cur-
rently running thread when the clock interval timer fired, it would never have its quantum charged 
for the time it was running . Because threads now have CPU clock cycles charged instead of quantums, 
and because this no longer depends on the clock interval timer, these adjustments are not required .

EXPERIMENT: Determining the Clock Cycles per Quantum
Windows doesn’t expose the number of clock cycles per quantum through any function, but 
with the calculation and description we’ve given, you should be able to determine this on your 
own using the following steps and a kernel debugger such as WinDbg in local debugging 
mode:

1. Obtain your processor frequency as Windows has detected it . You can use the value 
stored in the PRCB’s MHz field, which can be displayed with the !cpuinfo command . 
Here is a sample output of a dual-core Intel system running at 2829 MHz:

lkd> !cpuinfo 
CP  F/M/S Manufacturer  MHz PRCB Signature    MSR 8B Signature Features 
 0  6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff 
 1  6,15,6 GenuineIntel 2829 000000c700000000                   a00f3fff 
                      Cached Update Signature 000000c700000000 
                     Initial Update Signature 000000c700000000

2. Convert the number to Hertz (Hz) . This is the number of CPU clock cycles that occur 
each second on your system . In this case, 2,829,000,000 cycles per second .
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3. Obtain the clock interval on your system by using clockres . This measures how long 
it takes before the clock fires. On the sample system used here, this interval was 
15 .600100 ms .

4. Convert this number to the number of times the clock interval timer fires each second. 
One second is 1000 ms, so divide the number derived in step 3 by 1000 . In this case, 
the timer fires every 0.0156001 seconds.

5. Multiply this count by the number of cycles each second that you obtained in step 2 . 
In our case, 44,132,682 .9 cycles have elapsed after each clock interval .

6. Remember that each quantum unit is one-third of a clock interval, so divide the 
 number of cycles by three . In our example, this gives us 14,710,894, or 0xE0786E in 
hexadecimal . This is the number of clock cycles each quantum unit should take on a 
system running at 2829 MHz with a clock interval of around 15 ms .

7. To verify your calculation, dump the value of KiCyclesPerClockQuantum on your 
 system—it should match .

lkd> dd nt!KiCyclesPerClockQuantum L1 
81d31ae8  00e0786e

Controlling the Quantum
You can change the thread quantum for all processes, but you can choose only one of two settings: 
short (2 clock ticks, which is the default for client machines) or long (12 clock ticks, which is the default 
for server systems) .

Note By using the job object on a system running with long quantums, you can select 
other quantum values for the processes in the job . For more information on the job object, 
see the “Job Objects” section later in the chapter .

To change this setting, right-click on your Computer icon on the desktop, or in Windows Explorer, 
choose Properties, click the Advanced System Settings label, click on the Advanced tab, click the 
Settings button in the Performance section, and finally click on the Advanced tab. The dialog box 
displayed is shown in Figure 5-18 .
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FIGURE 5-18 Quantum configuration in the Performance Options dialog box

The Programs setting designates the use of short, variable quantums—the default for client 
 versions of Windows. If you install Terminal Services on a server system and configure the server as 
an application server, this setting is selected so that the users on the terminal server have the same 
quantum settings that would normally be set on a desktop or client system . You might also select this 
manually if you were running Windows Server as your desktop operating system .

The Background Services option designates the use of long, fixed quantums—the default for  server 
systems . The only reason you might select this option on a workstation system is if you were using 
the workstation as a server system . However, because changes in this option take effect immediately, 
it might make sense to use it if the machine is about to run a background/server-style workload . For 
example, if a long-running computation, encoding or modeling simulation needs to run overnight, 
Background Services mode could be selected at night, and the system put back in Programs mode in 
the morning .

Finally, because Programs mode enables variable quantums, let us now explain what controls their 
variability .
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Variable Quantums
When variable quantums are enabled, the variable quantum table (PspVariableQuantums) is loaded 
into the PspForegroundQuantum table that is used by the PspComputeQuantum function . Its algo-
rithm will pick the appropriate quantum index based on whether or not the process is a foreground 
process (that is, whether it contains the thread that owns the foreground window on the desktop) . If 
this is not the case, an index of zero is chosen, which corresponds to the default thread quantum de-
scribed earlier . If it is a foreground process, the quantum index corresponds to the priority separation . 

This priority separation value determines the priority boost (described in a later section of this 
chapter) that the scheduler will apply to foreground threads, and it is thus paired with an appropri-
ate extension of the quantum: for each extra priority level (up to 2), another quantum is given to the 
thread . For example, if the thread receives a boost of one priority level, it receives an extra quantum 
as well . By default, Windows sets the maximum possible priority boost to foreground threads, mean-
ing that the priority separation will be 2, therefore selecting quantum index 2 in the variable quantum 
table, leading to the thread receiving two extra quantums, for a total of 3 quantums .

Table 5-5 describes the exact quantum value (recall that this is stored in a unit representing 1/3rd 
of a clock tick) that will be selected based on the quantum index and which quantum configuration is 
in use .

TABLE 5-5 Quantum Values

Short Quantum Index Long Quantum Index

Variable  6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Thus, when a window is brought into the foreground on a client system, all the threads in the 
 process containing the thread that owns the foreground window have their quantums tripled: threads 
in the foreground process run with a quantum of 6 clock ticks, whereas threads in other processes 
have the default client quantum of 2 clock ticks . In this way, when you switch away from a CPU- 
intensive process, the new foreground process will get proportionally more of the CPU, because when 
its threads run they will have a longer turn than background threads (again, assuming the thread 
priorities are the same in both the foreground and background processes) .

Quantum Settings Registry Value
The user interface to control quantum settings described earlier modifies the registry value  
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In addition to 
specifying the relative length of thread quantums (short or long), this registry value also defines 
whether or not variable quantums should be used, as well as the priority separation (which, as you’ve 
seen, will determine the quantum index used when variable quantums are enabled) . This value 
 consists of 6 bits divided into the three 2-bit fields shown in Figure 5-19.
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FIGURE 5-19 Fields of the Win32PrioritySeparation registry value 

The fields shown in Figure 5-19 can be defined as follows:

 ■ Short vs . Long A value of 1 specifies long quantums, and 2 specifies short ones. A setting 
of 0 or 3 indicates that the default appropriate for the system will be used (short for client 
systems, long for server systems) .

 ■ Variable vs . Fixed A setting of 1 means to enable the variable quantum table based on 
the algorithm shown in the “Variable Quantums” section . A setting of 0 or 3 means that the 
default appropriate for the system will be used (variable for client systems, fixed for server 
systems) .

 ■ Priority Separation This field (stored in the kernel variable PsPrioritySeparation) defines the 
priority separation (up to 2) as explained in the “Variable Quantums” section .  

Note that when you’re using the Performance Options dialog box (which was shown in 
 Figure 5-18), you can choose from only two combinations: short quantums with foreground quantums 
tripled, or long quantums with no quantum changes for foreground threads . However, you can select 
other combinations by modifying the Win32PrioritySeparation registry value directly . 

Note that the threads part of a process running in the idle process priority class always receive a 
single thread quantum (2 clock ticks), ignoring any sort of quantum configuration settings, whether 
set by default or set through the registry .

On Windows Server systems configured as applications servers, the initial value of the 
 Win32PrioritySeparation registry value will be hex 26, which is identical to the value set by the 
 Optimize Performance For Programs option in the Performance Options dialog box . This selects 
quantum and priority boost behavior like that on Windows client systems, which is appropriate for a 
server primarily used to host users’ applications . 

On Windows client systems and on servers not configured as application servers, the initial value 
of the Win32PrioritySeparation registry value will be 2 . This provides values of 0 for the Short vs . Long 
and Variable vs. Fixed bit fields, relying on the default behavior of the system (depending on whether 
it is a client system or a server system) for these options, but it provides a value of 2 for the Priority 
Separation field. Once the registry value has been changed by use of the Performance Options dialog 
box, it cannot be restored to this original value other than by modifying the registry directly .  
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EXPERIMENT: Effects of Changing the Quantum Configuration
Using a local debugger (Kd or WinDbg), you can see how the two quantum  configuration 
settings, Programs and Background Services, affect the PsPrioritySeparation and 
 PspForegroundQuantum tables, as well as modify the QuantumReset value of threads on the 
system . Take the following steps:

1. Open the System utility in Control Panel (or right-click on your computer name’s icon 
on the desktop, and choose Properties) . Click the Advanced System Settings label, click 
on the Advanced tab, click the Settings button in the Performance section, and finally 
click on the Advanced tab . Select the Programs option, and click Apply . Keep this 
 window open for the duration of the experiment .

2. Dump the values of PsPrioritySeparation and PspForegroundQuantum, as shown here . 
The values shown are what you should see on a Windows system after making the 
change in step 1 . Notice how the variable, short quantum table is being used, and that 
a priority boost of 2 will apply to foreground applications:

lkd> dd PsPrioritySeparation L1 
81d3101c  00000002 
lkd> db PspForegroundQuantum L3 
81d0946c  06 0c 12 
...

3. Now take a look at the QuantumReset value of any process on the system . As 
 described earlier, this is the default, full quantum of each thread on the system when it 
is replenished . This value is cached into each thread of the process, but the  KPROCESS 
structure is easier to look at . Notice in this case it is 6, because WinDbg, like most 
other applications, gets the quantum set in the first entry of the PspForegroundQuantum 
table:

lkd> .process 
Implicit process is now 85b32d90 
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset 
nt!_KPROCESS 
   +0x061 QuantumReset     : 6 ''

4. Now change the Performance option to Background Services in the dialog box you 
opened in step 1 .

5. Repeat the commands shown in steps 2 and 3 . You should see the values change in a 
manner consistent with our discussion in this section:

lkd> dd nt!PsPrioritySeparation L1 
81d3101c  00000000 
lkd> db nt!PspForegroundQuantum L3 
81d0946c  24 24 24                                         $$$ 
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset 
nt!_KPROCESS 
   +0x061 QuantumReset     : 36 '$'
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Priority Boosts
The Windows scheduler periodically adjusts the current priority of threads through an internal 
 priority-boosting mechanism . In many cases, it does so for decreasing various latencies (that is, to 
make threads respond faster to the events they are waiting on) and increasing responsiveness . In 
 others, it applies these boosts to prevent inversion and starvation scenarios . Here are some of the 
boost scenarios that will be described in this section (and their purpose):

 ■ Boosts due to scheduler/dispatcher events (latency reduction)

 ■ Boosts due to I/O completion (latency reduction)

 ■ Boosts due to UI input (latency reduction/responsiveness)

 ■ Boosts due to a thread waiting on an executive resource for too long (starvation avoidance)

 ■ Boosts when a thread that’s ready to run hasn’t been running for some time (starvation and 
priority-inversion avoidance)

Like any scheduling algorithms, however, these adjustments aren’t perfect, and they might not 
benefit all applications.

Note Windows never boosts the priority of threads in the real-time range (16 through 31) . 
Therefore, scheduling is always predictable with respect to other threads in the real-time 
range . Windows assumes that if you’re using the real-time thread priorities, you know what 
you’re doing .

Client versions of Windows also include another pseudo-boosting mechanism that occurs  during 
multimedia playback . Unlike the other priority boosts, which are applied directly by kernel code, 
multimedia playback boosts are actually managed by a user-mode service called the MultiMedia 
Class Scheduler Service (MMCSS), but they are not really boosts—the service merely sets new base 
priorities for the threads as needed (by calling the user-mode native API to change thread priorities) . 
Therefore, none of the rules regarding boosts apply. We’ll first cover the typical kernel-managed 
priority boosts and then talk about MMCSS and the kind of “boosting” it performs .

Boosts Due to Scheduler/Dispatcher Events
Whenever a dispatch event occurs, the KiExitDispatcher routine is called, whose job it is to process 
the deferred ready list by calling KiProcessThreadWaitList and then call KiCheckForThreadDispatch to 
check whether any threads on the local processor should not be scheduled . Whenever such an event 
occurs, the caller can also specify which type of boost should be applied to the thread, as well as what 
priority increment the boost should be associated with . The following scenarios are considered as 
 AdjustUnwait dispatch events because they deal with a dispatcher object entering a signaled state, 
which might cause one or more threads to wake up:

 ■ An APC is queued to a thread .

 ■ An event is set or pulsed .
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 ■ A timer was set, or the system time was changed, and timers had to be reset .

 ■ A mutex was released or abandoned .

 ■ A process exited .

 ■ An entry was inserted in a queue, or the queue was flushed.

 ■ A semaphore was released .

 ■ A thread was alerted, suspended, resumed, frozen, or thawed .

 ■ A primary UMS thread is waiting to switch to a scheduled UMS thread .

For scheduling events associated with a public API (such as SetEvent), the boost increment applied 
is specified by the caller. Windows recommends certain values to be used by developers, which will 
be described later . For alerts, a boost of 2 is applied, because the alert API does not have a parameter 
allowing a caller to set a custom increment .

The scheduler also has two special AdjustBoost dispatch events, which are part of the lock 
 ownership priority mechanism. These boosts attempt to fix situations in which a caller that owns the 
lock at priority X ends up releasing the lock to a waiting thread at priority <= X. In this situation, the 
new owner thread must wait for its turn (if running at priority X), or worse, it might not even get to 
run at all if its priority is lower than X . This entails the releasing thread continuing its execution, even 
though it should have caused the new owner thread to wake up and take control of the processor . 
The following two dispatcher events cause an AdjustBoost dispatcher exit:

 ■ An event is set through the KeSetEventBoostPriority interface, which is used by the ERESOURCE 
reader-writer kernel lock

 ■ A gate is set through the KeSignalGateBoostPriority interface, which is used by various internal 
mechanisms when releasing a gate lock .

Unwait Boosts
Unwait boosts attempt to decrease the latency between a thread waking up due to an object being 
signaled (thus entering the Ready state) and the thread actually beginning its execution to process 
the unwait (thus entering the Running state) . Because the event that the thread is waiting on could 
give some sort of information about, say, the state of available memory at the moment, it is impor-
tant for this state not to change behind the scenes while the thread is still stuck in the Ready state—
otherwise, it might become irrelevant or incorrect once the thread does start running .

The various Windows header files specify recommended values that kernel-mode callers of APIs 
such as KeSetEvent and KeReleaseSemaphore should use, which correspond to definitions such as MU-
TANT_INCREMENT and EVENT_INCREMENT. These definitions have always been set to 1 in the head-
ers, so it is safe to assume that most unwaits on these objects result in a boost of 1 . In the  user-mode 
API, an increment cannot be specified, nor do the native system calls such as NtSetEvent have 
parameters to specify such a boost . Instead, when these APIs call the underlying Ke interface, they use 
the default _INCREMENT definition automatically. This is also the case when mutexes are abandoned 
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or timers are reset due to a system time change: the system uses the default boost that normally 
would’ve been applied when the mutex would have been released . Finally, the APC boost is com-
pletely up to the caller. Soon, you’ll see a specific usage of the APC boost related to I/O  completion . 

Note Some dispatcher objects don’t have boosts associated with them . For example, when 
a timer is set or expires, or when a process is signaled, no boost is applied .

All these boosts of +1 attempt to solve the initial problem by making the assumption that both 
the releasing and waiting threads are running at the same priority . By boosting the waiting thread by 
one priority level, the waiting thread should preempt the releasing thread as soon as the operation 
completes . Unfortunately on uniprocessor systems, if this assumption does not hold, the boost might 
not do much: if the waiting thread is waiting at priority 4 vs . the releasing thread at priority 8, wait-
ing at priority 5 won’t do much to reduce latency and force preemption . On multiprocessor systems, 
however, due to the stealing and balancing algorithms, this higher priority thread may have a higher 
chance to get picked up by another logical processor . This reality is due to a design choice made in 
the initial NT architecture, which is not to track lock ownership (except a few locks) . That means the 
scheduler can’t be sure who really owns an event, and if it’s really being used as a lock . Even with lock 
ownership tracking, ownership is not usually passed in order to avoid convoy issues, other than in the 
ERESOURCE case which we’ll explain below .

However, for certain kinds of lock objects using events or gates as their underlying  synchronization 
object, the lock ownership boost resolves the dilemma . Also, due to the processor-distribution and 
load-balancing schemes you’ll see later, on a multiprocessor machine, the ready thread might get 
picked up on another processor, and its high priority might increase the chances of it running on that 
secondary processor instead .

Lock Ownership Boosts
Because the executive-resource (ERESOURCE) and critical-section locks use underlying dispatcher 
 objects, releasing these locks results in an unwait boost as described earlier . On the other hand, 
 because the high-level implementation of these objects does track the owner of the lock, the 
kernel can make a more informed decision as to what kind of boost should be applied, by  using 
the  AdjustBoost reason . In these kinds of boosts, AdjustIncrement is set to the current priority of 
the releasing (or  setting) thread, minus any GUI foreground separation boost, and before the 
 KiExitDispatcher function is called, KiRemoveBoostThread is called by the event and gate code to 
return the releasing thread back to its regular priority (through the KiComputeNewPriority function) . 
This step is needed to avoid a lock convoy situation, in which two threads repeatedly passing the lock 
between one another get ever-increasing boosts .

Note that pushlocks, which are unfair locks because ownership of the lock in a contended 
 acquisition path is not predictable (rather, it’s random, just like a spinlock), do not apply priority 
boosts due to lock ownership . This is because doing so only contributes to preemption and priority 
proliferation, which isn’t required because the lock becomes immediately free as soon as it is released 
(bypassing the normal wait/unwait path) .
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Other differences between the lock ownership boost and the unwait boost will be exposed in the 
way that the scheduler actually applies boosting, which is the upcoming topic after this section .

Priority Boosting After I/O Completion
Windows gives temporary priority boosts upon completion of certain I/O operations so that threads 
that were waiting for an I/O have more of a chance to run right away and process whatever was being 
waited for. Although you’ll find recommended boost values in the Windows Driver Kit (WDK) header 
files (by searching for “#define IO” in Wdm.h or Ntddk.h), the actual value for the boost is up to the 
device driver. (These values are listed in Table 5-6.) It is the device driver that specifies the boost when 
it completes an I/O request on its call to the kernel function, IoCompleteRequest . In Table 5-6, notice 
that I/O requests to devices that warrant better responsiveness have higher boost values .

TABLE 5-6 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

Note You might intuitively expect “better responsiveness” from your video card or disk 
than a boost of 1, but in fact, the kernel is trying to optimize for latency, which some 
 devices (as well as human sensory inputs) are more sensitive to than others . To give you an 
idea, a sound card expects data around every 1 ms to play back music without perceptible 
glitches, while a video card needs to output at only 24 frames per second, or once every 
40 ms, before the human eye can notice glitches .

As hinted earlier, these I/O completion boosts rely on the unwait boosts seen in the previous 
 section . In Chapter 8 of Part 2, the mechanism of I/O completion will be shown in depth . For now, 
the important detail is that the kernel implements the signaling code in the IoCompleteRequest 
API through the use of either an APC (for asynchronous I/O) or through an event (for synchro-
nous I/O) . When a driver passes in, for example, IO_DISK_INCREMENT to IoCompleteRequest for an 
 asynchronous disk read, the kernel calls KeInsertQueueApc with the boost parameter set to IO_DISK_
INCREMENT . In turn, when the thread’s wait is broken due to the APC, it receives a boost of 1 .

Be aware that the boost values given in the previous table are merely recommendations by 
 Microsoft—driver developers are free to ignore them if they choose to do so, and certain special-
ized drivers can use their own values . For example, a driver handling ultrasound data from a medical 
device, which must notify a user-mode visualization application of new data, would probably use a 
boost value of 8 as well, to satisfy the same latency as a sound card .
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In most cases, however, due to the way Windows driver stacks are built (again, see Chapter 8, “I/O 
System,” in Part 2 for more information), driver developers often write minidrivers, which call into a 
Microsoft-owned driver that supplies its own boost to IoCompleteRequest . For example, RAID or SATA 
controller card developers would typically call StorPortCompleteRequest to complete processing their 
requests. This call does not have any parameter for a boost value, because the Storport.sys driver fills 
in the right value when calling the kernel .

Additionally, in newer versions of Windows, whenever any file system driver (identified by set-
ting its device type to FILE_DEVICE_DISK_FILE_SYSTEM or FILE_DEVICE_NETWORK_FILE_SYSTEM) 
 completes its request, a boost of IO_DISK_INCREMENT is always applied if the driver passed in 
IO_NO_INCREMENT instead . So this boost value has become less of a recommendation and more of a 
requirement enforced by the kernel .

Boosts During Waiting on Executive Resources
When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 3 for more 
information on kernel-synchronization objects) that is already owned exclusively by another thread, it 
must enter a wait state until the other thread has released the resource . To limit the risk of deadlocks, 
the executive performs this wait in intervals of five seconds instead of doing an infinite wait on the 
resource . 

At the end of these five seconds, if the resource is still owned, the executive attempts to prevent 
CPU starvation by acquiring the dispatcher lock, boosting the owning thread or threads to 14 (only if 
the original owner priority is less than the waiter’s and not already 14), resetting their quantums, and 
performing another wait . 

Because executive resources can be either shared or exclusive, the kernel first boosts the exclusive 
owner and then checks for shared owners and boosts all of them . When the waiting thread enters 
the wait state again, the hope is that the scheduler will schedule one of the owner threads, which will 
have enough time to complete its work and release the resource . Note that this boosting mechanism 
is used only if the resource doesn’t have the Disable Boost flag set, which developers can choose to 
set if the priority-inversion mechanism described here works well with their usage of the resource . 

Additionally, this mechanism isn’t perfect . For example, if the resource has multiple shared  owners, 
the executive boosts all those threads to priority 14, resulting in a sudden surge of high-priority 
threads on the system, all with full quantums. Although the initial owner thread will run first (because 
it was the first to be boosted and therefore is first on the ready list), the other shared owners will run 
next, because the waiting thread’s priority was not boosted . Only after all the shared owners have 
had a chance to run and their priority has been decreased below the waiting thread will the waiting 
thread finally get its chance to acquire the resource. Because shared owners can promote or convert 
their ownership from shared to exclusive as soon as the exclusive owner releases the resource, it’s 
possible for this mechanism not to work as intended .
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Priority Boosts for Foreground Threads After Waits
As will be shortly described, whenever a thread in the foreground process completes a wait 
 operation on a kernel object, the kernel boosts its current (not base) priority by the current 
value of  PsPrioritySeparation . (The windowing system is responsible for determining which pro-
cess is  considered to be in the foreground .) As described in the section on quantum controls, 
 PsPrioritySeparation reflects the quantum-table index used to select quantums for the threads of 
foreground applications . However, in this case, it is being used as a priority boost value .

The reason for this boost is to improve the responsiveness of interactive applications—by giving 
the foreground application a small boost when it completes a wait, it has a better chance of run-
ning right away, especially when other processes at the same base priority might be running in the 
 background .

EXPERIMENT: Watching Foreground Priority Boosts and Decays
Using the CPU Stress tool (downloadable from http://live.sysinternals.com/WindowsInternals), 
you can watch priority boosts in action . Take the following steps:

1. Open the System utility in Control Panel (or right-click on your computer name’s 
icon on the desktop, and choose Properties) . Click the Advanced System Settings 
label, click on the Advanced tab, click the Settings button in the Performance sec-
tion, and finally click on the Advanced tab. Select the Programs option. This causes 
 PsPrioritySeparation to get a value of 2 .

2. Run Cpustres .exe, and change the activity of thread 1 from Low to Busy .

3. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add Counters 
dialog box .

5. Select the Thread object, and then select the % Processor Time counter .
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6. In the Instances box, select <All Instances> and click Search. Scroll down until you see 
the CPUSTRES process. Select the second thread (thread 1). (The first thread is the GUI 
thread .) You should see something like this:

7. Click the Add button, and then click OK .

8. Select Properties from the Action menu . Change the Vertical Scale Maximum to 16 on 
the Graph tab, and set the interval to 1 in Sample Every box of the Graph Elements 
area on the General tab .
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9. Now bring the CPUSTRES process to the foreground . You should see the priority of the 
CPUSTRES thread being boosted by 2 and then decaying back to the base priority as 
follows:

10. The reason CPUSTRES receives a boost of 2 periodically is because the thread you’re 
monitoring is sleeping about 25 percent of the time and then waking up . (This is the 
Busy Activity level) . The boost is applied when the thread wakes up . If you set the 
Activity level to Maximum, you won’t see any boosts because Maximum in CPUSTRES 
puts the thread into an infinite loop. Therefore, the thread doesn’t invoke any wait 
functions and, as a result, doesn’t receive any boosts .

11. When you’ve finished, exit Performance Monitor and CPU Stress.

Priority Boosts After GUI Threads Wake Up
Threads that own windows receive an additional boost of 2 when they wake up because of  windowing 
activity such as the arrival of window messages . The windowing system (Win32k .sys) applies this 
boost when it calls KeSetEvent to set an event used to wake up a GUI thread . The reason for this boost 
is similar to the previous one—to favor interactive applications .
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EXPERIMENT: Watching Priority Boosts on GUI Threads
You can also see the windowing system apply its boost of 2 for GUI threads that wake up to 
process window messages by monitoring the current priority of a GUI application and moving 
the mouse across the window . Just follow these steps:

1. Open the System utility in Control Panel (or right-click on your computer name’s icon 
on the desktop, and choose Properties) . Click the Advanced System Settings label, click 
on the Advanced tab, click the Settings button in the Performance section, and finally 
click on the Advanced tab . Be sure that the Programs option is selected . This causes 
PsPrioritySeparation to get a value of 2 .

2. Run Notepad from the Start menu by selecting All Programs/Accessories/Notepad .

3. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

4. Click the Add Counter toolbar button (or press Ctrl+N) to bring up the Add Counters 
dialog box .

5. Select the Thread object, and then select the Priority Current counter .

6. In the Instances box, type Notepad, and then click Search . Scroll down until you see 
Notepad/0 . Click it, click the Add button, and then click OK .

7. As in the previous experiment, select Properties from the Action menu . Change the 
Vertical Scale Maximum to 16 on the Graph tab, set the interval to 1 in Sample Every 
box of the Graph Elements area of the General tab, and click OK .

8. You should see the priority of thread 0 in Notepad at 8 or 10 . Because Notepad 
 entered a wait state shortly after it received the boost of 2 that threads in the 
 foreground process receive, it might not yet have decayed from 10 to 8 .

9. With Performance Monitor in the foreground, move the mouse across the Notepad 
window . (Make both windows visible on the desktop .) You’ll see that the priority 
sometimes remains at 10 and sometimes at 9, for the reasons just explained . (The 
reason you won’t likely catch Notepad at 8 is that it runs so little after receiving the 
GUI thread boost of 2 that it never experiences more than one priority level of decay 
before waking up again because of additional windowing activity and receiving the 
boost of 2 again .)

10. Now bring Notepad to the foreground . You should see the priority rise to 12 and 
 remain there (or drop to 11, because it might experience the normal priority decay 
that occurs for boosted threads on the quantum end) because the thread is  receiving 
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two boosts: the boost of 2 applied to GUI threads when they wake up to process 
 windowing input, and an additional boost of 2 because Notepad is in the foreground .

11. If you then move the mouse over Notepad (while it’s still in the foreground), you might 
see the priority drop to 11 (or maybe even 10) as it experiences the priority decay that 
normally occurs on boosted threads as they complete their turn . However, the boost 
of 2 that is applied because it’s the foreground process remains as long as Notepad 
remains in the foreground .

12. When you’ve finished, exit Performance Monitor and Notepad.

Priority Boosts for CPU Starvation
Imagine the following situation: you have a priority 7 thread that’s running, preventing a priority 4 
thread from ever receiving CPU time; however, a priority 11 thread is waiting for some resource that 
the priority 4 thread has locked . But because the priority 7 thread in the middle is eating up all the 
CPU time, the priority 4 thread will never run long enough to finish whatever it’s doing and release 
the resource blocking the priority 11 thread . What does Windows do to address this situation? 

You previously saw how the executive code responsible for executive resources manages this 
 scenario by boosting the owner threads so that they can have a chance to run and release the re-
source . However, executive resources are only one of the many synchronization constructs available 
to developers, and the boosting technique will not apply to any other primitive . Therefore, Windows 
also includes a generic CPU starvation-relief mechanism as part of a thread called the balance set 
manager (a system thread that exists primarily to perform memory-management functions and is 
described in more detail in Chapter 10 of Part 2) .

Once per second, this thread scans the ready queues for any threads that have been in the ready 
state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the balance-set 
manager boosts the thread’s priority to 15 and sets the quantum target to an equivalent CPU clock 
cycle count of 3 quantum units . Once the quantum expires, the thread’s priority decays immediately 
to its original base priority. If the thread wasn’t finished and a higher priority thread is ready to run, 
the decayed thread returns to the ready queue, where it again becomes eligible for another boost if it 
remains there for another 4 seconds .

The balance-set manager doesn’t actually scan all of the ready threads every time it runs . To 
minimize the CPU time it uses, it scans only 16 ready threads; if there are more threads at that priority 
level, it remembers where it left off and picks up again on the next pass . Also, it will boost only 10 
threads per pass—if it finds 10 threads meriting this particular boost (which indicates an unusually 
busy system), it stops the scan at that point and picks up again on the next pass .
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Note We mentioned earlier that scheduling decisions in Windows are not affected by the 
number of threads and that they are made in constant time, or O(1) . Because the balance-
set manager needs to scan ready queues manually, this operation depends on the number 
of threads on the system, and more threads will require more scanning time . However, the 
balance-set manager is not considered part of the scheduler or its algorithms and is simply 
an extended mechanism to increase reliability . Additionally, because of the cap on threads 
and queues to scan, the performance impact is minimized and predictable in a worst-case 
scenario .

Will this algorithm always solve the priority-inversion issue? No—it’s not perfect by any means . But 
over time, CPU-starved threads should get enough CPU time to finish whatever processing they were 
doing and re-enter a wait state .

EXPERIMENT: Watching Priority Boosts for CPU Starvation
Using the CPU Stress tool, you can watch priority boosts in action . In this experiment, you’ll see 
CPU usage change when a thread’s priority is boosted . Take the following steps:

1. Run Cpustres .exe . Change the activity level of the active thread (by default, Thread 1) 
from Low to Maximum . Change the thread priority from Normal to Below Normal . The 
screen should look like this:

2. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .
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3. Click the Add Counter toolbar button (or press Ctrl+N) to bring up the Add Counters 
dialog box .

4. Select the Thread object, and then select the Priority Current counter .

5. In the Instances box, type CPUSTRES, and then click Search . Scroll down until you see 
the second thread (thread 1). (The first thread is the GUI thread.) You should see some-
thing like this:

6. Click the Add button, and then click OK .

7. Raise the priority of Performance Monitor to real time by running Task Manager, 
 clicking on the Processes tab, and selecting the Mmc .exe process . Right-click the 
 process, select Set Priority, and then select Realtime . (If you receive a Task Manager 
Warning message box warning you of system instability, click the Yes button .) If you 
have a multiprocessor system, you also need to change the affinity of the process: 
right-click and select Set Affinity. Then clear all other CPUs except for CPU 0.

8. Run another copy of CPU Stress . In this copy, change the activity level of Thread 1 from 
Low to Maximum .

9. Now switch back to Performance Monitor . You should see CPU activity every six or so 
seconds because the thread is boosted to priority 15 . You can force updates to occur 
more frequently than every second by pausing the display with Ctrl+F, and then press-
ing Ctrl+U, which forces a manual update of the counters . Keep Ctrl+U pressed for 
continual refreshes .

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.
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EXPERIMENT: “Listening” to Priority Boosting
To “hear” the effect of priority boosting for CPU starvation, perform the following steps on a 
system with a sound card:

1. Because of MMCSS’ priority boosts (which we will describe in the next subsection), 
you need to stop the MultiMedia Class Scheduler Service by opening the Services 
 management interface (Start, Programs, Administrative Tools, Services) .

2. Run Windows Media Player (or some other audio-playback program), and begin 
 playing some audio content .

3. Run Cpustres, and set the activity level of Thread 1 to Maximum .

4. Use Task Manager to set the affinities of both Windows Media Player and Cpustres to a 
single CPU . 

5. Raise the priority of Thread 1 of Cpustres from Normal to Time Critical .

6. You should hear the music playback stop as the computer-bound thread begins 
 consuming all available CPU time .

7. Every so often, you should hear bits of sound as the starved thread in the audio 
playback process gets boosted to 15 and runs enough to send more data to the sound 
card .

8. Stop Cpustres and Windows Media Player, and start the MMCSS service again .

Applying Boosts
Back in KiExitDispatcher, you saw that KiProcessThreadWaitList is called to process any threads in 
the deferred ready list . It is here that the boost information passed by the caller is processed . This 
is done by looping through each DeferredReady thread, unlinking its wait blocks (only Active and 
Bypassed blocks are unlinked), and then setting two key values in the kernel’s thread control block: 
 AdjustReason and AdjustIncrement . The reason is one of the two Adjust possibilities seen earlier, and 
the increment corresponds to the boost value . KiDeferredReadyThread is then called, which makes the 
thread ready for execution, by running two algorithms: the quantum and priority selection algorithm, 
which you are about to see in two parts, and the processor selection algorithm, which is shown in its 
respective section later in this topic . 

Let’s first look at when the algorithm applies boosts, which happens only in the cases where a 
thread is not in the real-time priority range . 

For an AdjustUnwait boost, it will be applied only if the thread is not already experiencing an 
 unusual boost and only if the thread has not disabled boosting by calling SetThreadPriorityBoost, 
which sets the DisableBoost flag in the KTHREAD. Another situation that can disable boosting in 
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this case is if the kernel has realized that the thread actually exhausted its quantum (but the clock 
 interrupt did not fire to consume it) and the thread came out of a wait that lasted less than two clock 
ticks .

If these situations are not currently true, the new priority of the thread will be computed by 
 adding the AdjustIncrement to the thread’s current base priority . Additionally, if the thread is known 
to be part of a foreground process (meaning that the memory priority is set to MEMORY_PRIORITY_ 
FOREGROUND, which is configured by Win32k.sys when focus changes), this is where the priority-
separation boost (PsPrioritySeparation) is applied by adding its value on top of the new priority . This is 
also known as the Foreground Priority boost, which was explained earlier .

Finally, the kernel checks whether this newly computed priority is higher than the current  priority 
of the thread, and it limits this value to an upper bound of 15 to avoid crossing into the real-time 
range . It then sets this value as the thread’s new current priority . If any foreground separation 
boost was applied, it sets this value in the ForegroundBoost field of the KTHREAD, which results in a 
 PriorityDecrement equal to the separation boost .

For AdjustBoost boosts, the kernel checks whether the thread’s current priority is lower than the 
AdjustIncrement (recall this is the priority of the setting thread) and whether the thread’s current pri-
ority is below 13 . If so, and priority boosts have not been disabled for the thread, the AdjustIncrement 
priority is used as the new current priority, limited to a maximum of 13 . Meanwhile, the UnusualBoost 
field of the KTHREAD contains the boost value, which results in a PriorityDecrement equal to the lock 
ownership boost .

In all cases where a PriorityDecrement is present, the quantum of the thread is also recomputed 
to be the equivalent of only one clock tick, based on the value of KiLockQuantumTarget . This ensures 
that foreground and unusual boosts will be lost after one clock tick instead of the usual two (or other 
configured value), as will be shown in the next section. This also happens when an AdjustBoost is 
requested but the thread is running at priority 13 or 14 or with boosts disabled .

After this work is complete, AdjustReason is now set to AdjustNone .

Removing Boosts
Removing boosts is done in KiDeferredReadyThread just as boosts and quantum recomputations are 
being applied (as shown in the previous section). The algorithm first begins by checking the type of 
adjustment being done . 

For an AdjustNone scenario, which means the thread became ready due to perhaps a preemption, 
the thread’s quantum will be recomputed if it already hit its target but the clock interrupt has not 
yet noticed, as long as the thread was running at a dynamic priority level . Additionally, the thread’s 
priority will be recomputed . For an AdjustUnwait or AdjustBoost scenario on a non-real-time thread, 
the kernel checks whether the thread silently exhausted its quantum ( just as in the prior section) . If 
it did, or if the thread was running with a base priority of 14 or higher, or if no PriorityDecrement is 
 present and the thread has completed a wait that lasted longer than two clock ticks, the quantum of 
the thread is recomputed, as is its priority .
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Priority recomputation happens on non-real-time threads, and it’s done by taking the thread’s 
current priority, subtracting its foreground boost, subtracting is unusual boost (the combination of 
these last two items is the PriorityDecrement), and finally subtracting one. Finally, this new priority is 
bounded with the base priority as the lowest bound, and any existing priority decrement is zeroed 
out (clearing unusual and foreground boosts) . This means that in the case of a lock ownership boost, 
or any of the unusual boosts explained, the entire boost value is now lost . On the other hand, for a 
regular AdjustUnwait boost, the priority naturally trickles down by one due to the subtraction by one . 
This lowering eventually stops when the base priority is hit due to the lower bound check .

There is another instance where boosts must be removed, which goes through the 
 KiRemoveBoostThread function . This is a special-case boost removal, which occurs due to the lock-
ownership boost rule, which specifies that the setting thread must lose its boost when donating its 
current priority to the waking thread (to avoid a lock convoy) . It is also used to undo the boost due 
to targeted DPC-calls as well as the boost against ERESOURCE lock-starvation boost . The only special 
detail about this routine is that when computing the new priority, it takes special care to separate the 
ForegroundBoost vs . UnusualBoost components of the PriorityDecrement in order to maintain any GUI 
foreground-separation boost that the thread accumulated . This behavior, new to Windows 7,  ensures 
that threads relying on the lock-ownership boost do not behave erratically when running in the 
 foreground, or vice-versa .

Figure 5-20 displays an example of how normal boosts are removed from a thread as it 
 experiences quantum end .
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FIGURE 5-20 Priority boosting and decay

Priority Boosts for Multimedia Applications and Games
As you just saw in the last experiment, although Windows’ CPU-starvation priority boosts might be 
enough to get a thread out of an abnormally long wait state or potential deadlock, they simply can-
not deal with the resource requirements imposed by a CPU-intensive application such as Windows 
Media Player or a 3D computer game .
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Skipping and other audio glitches have been a common source of irritation among Windows users 
in the past, and the user-mode audio stack in Windows makes the situation worse because it offers 
even more chances for preemption . To address this, client versions of Windows incorporate a service 
(called MMCSS, described earlier in this chapter) whose purpose is to ensure glitch-free multimedia 
playback for applications that register with it .

MMCSS works by defining several tasks, including the following:

 ■ Audio

 ■ Capture

 ■ Distribution

 ■ Games

 ■ Playback

 ■ Pro Audio

 ■ Window Manager

Note You can find the settings for MMCSS, including a lists of tasks (which can be 
 modified by OEMs to include other specific tasks as appropriate) in the registry keys un-
der HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile. 
Additionally, the SystemResponsiveness value allows you to fine-tune how much CPU usage 
MMCSS guarantees to low-priority threads .

In turn, each of these tasks includes information about the various properties that differentiate 
them . The most important one for scheduling is called the Scheduling Category, which is the pri-
mary factor determining the priority of threads registered with MMCSS . Table 5-7 shows the various 
 scheduling categories .

TABLE 5-7 Scheduling Categories

Category Priority Description

High 23-26 Pro Audio threads running at a higher priority than any other thread on the 
system except for critical system threads

Medium 16-22 The threads part of a foreground application such as Windows Media Player

Low 8-15 All other threads that are not part of the previous categories

Exhausted 1-7 Threads that have exhausted their share of the CPU and will continue running 
only if no other higher priority threads are ready to run

The main mechanism behind MMCSS boosts the priority of threads inside a registered process 
to the priority level matching their scheduling category and relative priority within this category for 
a guaranteed period of time . It then lowers those threads to the Exhausted category so that other, 
nonmultimedia threads on the system can also get a chance to execute . 
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By default, multimedia threads get 80 percent of the CPU time available, while other threads 
receive 20 percent (based on a sample of 10 ms; in other words, 8 ms and 2 ms, respectively) . MMCSS 
itself runs at priority 27 because it needs to preempt any Pro Audio threads in order to lower their 
priority to the Exhausted category .

Keep in mind that the kernel still does the actual boosting of the values inside the KTHREAD 
(MMCSS simply makes the same kind of system call any other application would), and the scheduler 
is still in control of these threads . It is simply their high priority that makes them run almost uninter-
rupted on a machine, because they are in the real-time range and well above threads that most user 
applications run in .

As was discussed earlier, changing the relative thread priorities within a process does not  usually 
make sense, and no tool allows this because only developers understand the importance of the vari-
ous threads in their programs . On the other hand, because applications must manually register with 
MMCSS and provide it with information about what kind of thread this is, MMCSS does have the 
necessary data to change these relative thread priorities (and developers are well aware that this will 
be happening) .

EXPERIMENT: “Listening” to MMCSS Priority Boosting
You’ll now perform the same experiment as the prior one but without disabling the MMCSS 
 service . In addition, you’ll look at the Performance tool to check the priority of the Windows 
Media Player threads .

1. Run Windows Media Player (because other playback programs might not yet take 
advantage of the API calls required to register with MMCSS), and begin playing some 
audio content .

2. If you have a multiprocessor machine, be sure to set the affinity of the Wmplayer.exe 
process so that it runs on only one CPU (because you’ll use only one CPUSTRES worker 
thread) .

3. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

4. Click the Add Counter toolbar button (or press Ctrl+N) to bring up the Add Counters 
dialog box .

5. Select the Thread object, and then select the Priority Current .

6. In the Instances box, type Wmplayer, click Search, and then select all its threads . Click 
the Add button, and then click OK .
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7. As in the previous experiment, select Properties from the Action menu . Change the 
Vertical Scale Maximum to 31 on the Graph tab, set the interval to 1 in Sample Every 
Seconds of the Graph Elements area on the General tab, and click OK .

You should see one or more priority 21 threads inside Wmplayer, which will be con-
stantly running unless there is a higher-priority thread requiring the CPU after they 
are dropped to the Exhausted category .

8. Run Cpustres, and set the activity level of Thread 1 to Maximum .

9. Raise the priority of Thread 1 from Normal to Time Critical .

10. You should notice the system slowing down considerably, but the music playback will 
continue . Every so often, you’ll be able to get back some responsiveness from the rest 
of the system . Use this time to stop Cpustres .

11. If the Performance tool was unable to capture data during the time Cpustres ran, 
run it again, but use Highest instead of Time Critical . This change will slow down the 
system less, but it still requires boosting from MMCSS . Because once the multimedia 
thread is put in the Exhausted category there will always be a higher priority thread 
requesting the CPU (CPUSTRES), you should notice Wmplayer’s priority 21 thread drop 
every so often, as shown here:
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MMCSS’ functionality does not stop at simple priority boosting, however . Because of the nature of 
network drivers on Windows and the NDIS stack, deferred procedure calls (DPCs) are quite common 
mechanisms for delaying work after an interrupt has been received from the network card . Because 
DPCs run at an IRQL level higher than user-mode code (see Chapter 3 for more information on DPCs 
and IRQLs), long-running network card driver code can still interrupt media playback during network 
transfers or when playing a game, for example .

Therefore, MMCSS also sends a special command to the network stack, telling it to throttle 
network packets during the duration of the media playback . This throttling is designed to maximize 
playback performance, at the cost of some small loss in network throughput (which would not be 
 noticeable for network operations usually performed during playback, such as playing an online 
game) . The exact mechanisms behind it do not belong to any area of the scheduler, so we’ll leave 
them out of this description .

Note The original implementation of the network throttling code had some design  issues 
that caused significant network throughput loss on machines with 1000 Mbit network 
adapters, especially if multiple adapters were present on the system (a common feature of 
midrange motherboards) . This issue was analyzed by the MMCSS and networking teams at 
Microsoft and later fixed.

Context Switching
A thread’s context and the procedure for context switching vary depending on the processor’s 
 architecture . A typical context switch requires saving and reloading the following data:

 ■ Instruction pointer

 ■ Kernel stack pointer

 ■ A pointer to the address space in which the thread runs (the process’ page table directory)

The kernel saves this information from the old thread by pushing it onto the current (old thread’s) 
kernel-mode stack, updating the stack pointer, and saving the stack pointer in the old thread’s 
KTHREAD structure . The kernel stack pointer is then set to the new thread’s kernel stack, and the 
new thread’s context is loaded . If the new thread is in a different process, it loads the address of its 
page table directory into a special processor register so that its address space is available . (See the 
 description of address translation in Chapter 10 in Part 2 .) If a kernel APC that needs to be  delivered 
is pending, an interrupt at IRQL 1 is requested . (For more information on APCs, see Chapter 3 .) 
 Otherwise, control passes to the new thread’s restored instruction pointer and the new thread 
 resumes execution .
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Scheduling Scenarios
Windows bases the question of “Who gets the CPU?” on thread priority, but how does this approach 
work in practice? The following sections illustrate just how priority-driven preemptive multitasking 
works on the thread level .

Voluntary Switch
First a thread might voluntarily relinquish use of the processor by entering a wait state on some 
 object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a thread, a win-
dow message, and so on) by calling one of the Windows wait functions (such as WaitForSingleObject 
or WaitForMultipleObjects) . Waiting for objects is described in more detail in Chapter 3 .

Figure 5-21 illustrates a thread entering a wait state and Windows selecting a new thread to run . 
In Figure 5-21, the top block (thread) is voluntarily relinquishing the processor so that the next thread 
in the ready queue can run (as represented by the halo it has when in the Running column) . Although 
it might appear from this figure that the relinquishing thread’s priority is being reduced, it’s not—it’s 
just being moved to the wait queue of the objects the thread is waiting for . 

Priority
20

19

18

17

16

15

14

Running Ready

To wait state

FIGURE 5-21 Voluntary switching

Preemption
In this scheduling scenario, a lower-priority thread is preempted when a higher-priority thread 
 becomes ready to run . This situation might occur for a couple of reasons:

 ■ A higher-priority thread’s wait completes . (The event that the other thread was waiting for has 
occurred .)

 ■ A thread priority is increased or decreased .
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In either of these cases, Windows must determine whether the currently running thread should still 
continue to run or whether it should be preempted to allow a higher-priority thread to run .

Note Threads running in user mode can preempt threads running in kernel mode—the 
mode in which the thread is running doesn’t matter . The thread priority is the determining 
factor .

When a thread is preempted, it is put at the head of the ready queue for the priority it was running 
at . Figure 5-22 illustrates this situation .

Priority

18

17

16

15

14

13

Running Ready

From wait state

FIGURE 5-22 Preemptive thread scheduling

In Figure 5-22, a thread with priority 18 emerges from a wait state and repossesses the CPU, 
 causing the thread that had been running (at priority 16) to be bumped to the head of the ready 
queue . Notice that the bumped thread isn’t going to the end of the queue but to the beginning; 
when the preempting thread has finished running, the bumped thread can complete its quantum.

Quantum End
When the running thread exhausts its CPU quantum, Windows must determine whether the thread’s 
priority should be decremented and then whether another thread should be scheduled on the pro-
cessor .

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule . (For 
example, a more appropriate thread would be a thread in a ready queue with a higher priority than 
the new priority for the currently running thread .) If the thread priority isn’t reduced and there are 
other threads in the ready queue at the same priority level, Windows selects the next thread in the 
ready queue at that same priority level and moves the previously running thread to the tail of that 
queue (giving it a new quantum value and changing its state from running to ready) . This case is 
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 illustrated in Figure 5-23 . If no other thread of the same priority is ready to run, the thread gets to run 
for another quantum .

Priority

14

13

15

12

11

Running Ready

FIGURE 5-23 Quantum end thread scheduling

As you saw, instead of simply relying on a clock interval timer–based quantum to schedule threads, 
Windows uses an accurate CPU clock cycle count to maintain quantum targets . One factor we haven’t 
yet mentioned is that Windows also uses this count to determine whether quantum end is currently 
appropriate for the thread—something that might have happened previously and is important to 
discuss .

Using a scheduling model that relies only on the clock interval timer, the following situation can 
occur:

 ■ Threads A and B become ready to run during the middle of an interval . (Scheduling code runs 
not just at each clock interval, so this is often the case .)

 ■ Thread A starts running but is interrupted for a while . The time spent handling the interrupt is 
charged to the thread .

 ■ Interrupt processing finishes and thread A starts running again, but it quickly hits the next 
clock interval . The scheduler can assume only that thread A had been running all this time and 
now switches to thread B .

 ■ Thread B starts running and has a chance to run for a full clock interval (barring pre-emption 
or interrupt handling) .

In this scenario, thread A was unfairly penalized in two different ways . First, the time it spent 
handling a device interrupt was accounted to its own CPU time, even though the thread probably 
had nothing to do with the interrupt . (Recall that interrupts are handled in the context of whichever 
thread was running at the time .) It was also unfairly penalized for the time the system was idling inside 
that clock interval before it was scheduled .

Figure 5-24 represents this scenario .
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Threads A and B
become ready to run

Interval 2Interval 1

Thread A

Idle Thread B

Interrupt

FIGURE 5-24 Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of CPU clock cycles spent doing 
work that the thread was scheduled to do (which means excluding interrupts), and because it keeps a 
quantum target of clock cycles that should have been spent by the thread at the end of its quantum, 
both of the unfair decisions that would have been made against thread A will not happen in Windows .

Instead, the following situation occurs:

 ■ Threads A and B become ready to run during the middle of an interval .

 ■ Thread A starts running but is interrupted for a while . The CPU clock cycles spent handling the 
interrupt are not charged to the thread .

 ■ Interrupt processing finishes and thread A starts running again, but it quickly hits the next 
clock interval . The scheduler looks at the number of CPU clock cycles charged to the thread 
and compares them to the expected CPU clock cycles that should have been charged at 
 quantum end . 

 ■ Because the former number is much smaller than it should be, the scheduler assumes that 
thread A started running in the middle of a clock interval and might have been additionally 
interrupted .

 ■ Thread A gets its quantum increased by another clock interval, and the quantum target is 
recalculated . Thread A now has its chance to run for a full clock interval .

 ■ At the next clock interval, thread A has finished its quantum, and thread B now gets a chance 
to run .

Figure 5-25 represents this scenario .

Threads A and B
become ready to run

Interval 2Interval 1 Interval 3

Interrupt

Idle Thread A Thread B

FIGURE 5-25 Fair time slicing in current versions of Windows
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Termination
When a thread finishes running (either because it returned from its main routine, called ExitThread, 
or was killed with TerminateThread), it moves from the running state to the terminated state . If there 
are no handles open on the thread object, the thread is removed from the process thread list and the 
associated data structures are deallocated and released .

Idle Threads
When no runnable thread exists on a CPU, Windows dispatches that CPU’s idle thread . Each CPU 
has its own dedicated idle thread, because on a multiprocessor system one CPU can be executing 
a thread while other CPUs might have no threads to execute . Each CPU’s idle thread is found via a 
pointer in that CPU’s PRCB . 

All of the idle threads belong to the idle process . The idle process and idle threads are special cases 
in many ways . They are, of course, represented by EPROCESS/KPROCESS and ETHREAD/KTHREAD 
structures, but they are not executive manager processes and thread objects . Nor is the idle process 
on the system process list . (This is why it does not appear in the output of the kernel debugger’s 
 !process 0 0 command .) However, the idle thread or threads and their process can be found in other 
ways . 

EXPERIMENT: Displaying the Structures of the Idle Threads and Idle 
Process 
The idle thread and process structures can be found in the kernel debugger via the !pcr 
 command . “PCR” is short for “processor control region .” This command displays a subset of 
 information from the PCR and also from the associated PRCB (processor control block) . !pcr 
takes a single numeric argument, which is the number of the CPU whose PCR is to be displayed . 
The boot processor is processor number 0, and it is always present, so !pcr 0 should always 
work . The following output shows the results of this command from a memory dump taken 
from a 64-bit, four-processor system:

3: kd> !pcr 0 
KPCR for Processor 0 at fffff800039fdd00: 
    Major 1 Minor 1 
        NtTib.ExceptionList: fffff80000b95000 
            NtTib.StackBase: fffff80000b96080 
           NtTib.StackLimit: 000000000008e2d8 
         NtTib.SubSystemTib: fffff800039fdd00 
              NtTib.Version: 00000000039fde80 
          NtTib.UserPointer: fffff800039fe4f0 
              NtTib.SelfTib: 000000007efdb000 
 
                    SelfPcr: 0000000000000000 
                       Prcb: fffff800039fde80 
                       Irql: 0000000000000000 
                        IRR: 0000000000000000 
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                        IDR: 0000000000000000 
              InterruptMode: 0000000000000000 
                        IDT: 0000000000000000 
                        GDT: 0000000000000000 
                        TSS: 0000000000000000 
 
              CurrentThread: fffffa8007aa8060 
                 NextThread: 0000000000000000 
                 IdleThread: fffff80003a0bcc0 
 
                  DpcQueue:

This output shows that CPU 0 was executing a thread other than its idle thread at the time 
the memory dump was obtained, because the CurrentThread and IdleThread pointers are dif-
ferent . (If you have a multi-CPU system you can try !pcr 1, !pcr 2, and so on, until you run out; 
observe that each IdleThread pointer is different .) 

Now use the !thread command on the indicated idle thread address:

3: kd> !thread fffff80003a0bcc0  
THREAD fffff80003a0bcc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 0 
Not impersonating 
DeviceMap                 fffff8a000008aa0 
Owning Process            fffff80003a0c1c0       Image:         Idle 
Attached Process          fffffa800792a040       Image:         System 
Wait Start TickCount      50774016       Ticks: 12213 (0:00:03:10.828) 
Context Switch Count      1147613282              
UserTime                  00:00:00.000 
KernelTime                8 Days 07:21:56.656 
Win32 Start Address nt!KiIdleLoop (0xfffff8000387f910) 
Stack Init fffff80000b9cdb0 Current fffff80000b9cd40 
Base fffff80000b9d000 Limit fffff80000b97000 Call 0 
Priority 16 BasePriority 0 UnusualBoost 0 ForegroundBoost 0 IoPriority 0 PagePriority 0 
Child-SP          RetAddr           : Args to Child     [...]: Call Site 
fffff800'00b9cd80 00000000'00000000 : fffff800'00b9d000 [...]: nt!KiIdleLoop+0x10d

Finally, use the !process command on the “Owning Process” shown in the preceding output . 
For brevity, we’ll add a second parameter value of 3, which causes !process to emit only minimal 
information for each thread:

3: kd> !process fffff80003a0c1c0 3 
PROCESS fffff80003a0c1c0 
    SessionId: none  Cid: 0000    Peb: 00000000  ParentCid: 0000 
    DirBase: 00187000  ObjectTable: fffff8a000001630  HandleCount: 1338. 
    Image: Idle 
    VadRoot fffffa8007846c00 Vads 1 Clone 0 Private 1. Modified 0. Locked 0. 
    DeviceMap 0000000000000000 
    Token                             fffff8a000004a40 
    ElapsedTime                       00:00:00.000 
    UserTime                          00:00:00.000 
    KernelTime                        00:00:00.000 
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    QuotaPoolUsage[PagedPool]         0 
    QuotaPoolUsage[NonPagedPool]      0 
    Working Set Sizes (now,min,max)  (6, 50, 450) (24KB, 200KB, 1800KB) 
    PeakWorkingSetSize                6 
    VirtualSize                       0 Mb 
    PeakVirtualSize                   0 Mb 
    PageFaultCount                    1 
    MemoryPriority                    BACKGROUND 
    BasePriority                      0 
    CommitCharge                      0 
 
THREAD fffff80003a0bcc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 0 
THREAD fffff8800310afc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000  
  RUNNING on processor 1 
THREAD fffff8800317bfc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 2 
THREAD fffff880031ecfc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 3

These process and thread addresses can be used with dt nt!_EPROCESS, dt nt!_KTHREAD, 
and other such commands as well . 

The preceding experiment shows some of the anomalies associated with the idle process and its 
threads . The debugger indicates an “Image” name of “Idle” (which comes from the EPROCESS struc-
ture’s ImageFileName member), but various Windows utilities report the idle process using different 
names . Task Manager and Process Explorer call it “System Idle Process,” while Tlist calls it “System 
Process .” The process ID and thread IDs (the “client IDs”, or “Cid” in the debugger’s output) are zero, 
as are the PEB and TEB pointers, and there are many other fields in the idle process or its threads that 
might be reported as 0 . This occurs because the idle process has no user-mode address space and its 
threads execute no user-mode code, so they have no need of the various data needed to manage a 
user-mode environment . Also, the idle process is not an object-manager process object, and its idle 
threads are not object-manager thread objects . Instead, the initial idle thread and idle process struc-
tures are statically allocated and used to bootstrap the system before the process manager and the 
object manager are initialized . Subsequent idle thread structures are allocated dynamically (as simple 
allocations from nonpaged pool, bypassing the object manager) as additional processors are brought 
online . Once process management initializes, it uses the special variable PsIdleProcess to refer to the 
idle process . 

Perhaps the most interesting anomaly regarding the idle process is that Windows reports the 
priority of the idle threads as 0 (16 on x64 systems, as shown earlier) . In reality, however, the values of 
the idle threads’ priority members are irrelevant, because these threads are selected for dispatching 
only when there are no other threads to run . Their priority is never compared with that of any other 
thread, nor are they used to put an idle thread on a ready queue; idle threads are never part of any 
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ready queues . (Remember, only one thread per Windows system is actually running at priority 0—the 
zero page thread, explained in Chapter 10 in Part 2 .) 

Just as the idle threads are special cases in terms of selection for execution, they are also special 
cases for preemption . The idle thread’s routine, KiIdleLoop, performs a number of operations that 
preclude its being preempted by another thread in the usual fashion . When no non-idle threads are 
available to run on a processor, that processor is marked as idle in its PRCB . After that, if a thread is 
selected for execution on the idle processor, the thread’s address is stored in the NextThread pointer 
of the idle processor’s PRCB . The idle thread checks this pointer on each pass through its loop . 

Although some details of the flow vary between architectures, the basic sequence of operations of 
the idle thread is as follows:

1. Enables interrupts briefly, allowing any pending interrupts to be delivered, and then disables 
them again (using the STI and CLI instructions on x86 and x64 processors) . This is desirable 
because significant parts of the idle thread execute with interrupts disabled. 

2. On the debug build on some architectures, checks whether there is a kernel debugger trying 
to break into the system and, if so, gives it access . 

3. Checks whether any DPCs (described in Chapter 3) are pending on the processor . DPCs could 
be pending if a DPC interrupt was not generated when they were queued . If DPCs are pend-
ing, the idle loop calls KiRetireDpcList to deliver them . This will also perform timer expiration, 
as well as deferred ready processing; the latter is explained in the upcoming multiprocessor 
scheduling section . KiRetireDpcList must be entered with interrupts disabled, which is why 
interrupts are left disabled at the end of step 1 . KiRetireDpcList exits with interrupts disabled 
as well . 

4. Checks whether a thread has been selected to run next on the processor and, if so, dispatches 
that thread . This could be the case if, for example, a DPC or timer expiration processed in 
step 3 resolved the wait of a waiting thread, or if another processor selected a thread for this 
processor to run while it was already in the idle loop . 

5. If requested, checks for threads ready to run on other processors and, if possible, schedules 
one of them locally . (This operation is explained in the upcoming “Idle Scheduler” section .)

6. Calls the registered power management processor idle routine (in case any power manage-
ment functions need to be performed), which is either in the processor power driver (such as 
intelppm .sys) or in the HAL if such a driver is unavailable .

Thread Selection
Whenever a logical processor needs to pick the next thread to run, it calls the KiSelectNextThread 
scheduler function . This can happen in a variety of scenarios:

 ■ A hard affinity change has occurred, making the currently running or standby thread ineligible 
for execution on its selected logical processor, so another must be chosen .
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 ■ The currently running thread reached its quantum end, and the SMT set it was currently 
 running on has now become busy, while other SMT sets within the ideal node are fully 
idle . (SMT is the abbreviation for Symmetric Multi-Threading, the technical name for the 
 Hyperthreading technology described in Chapter 2 .) The scheduler performs a quantum end 
 migration of the current thread, so another must be chosen .

 ■ A wait operation has completed, and there were pending scheduling operations in the wait 
status register (in other words, the Priority and/or Affinity bits were set).

In these scenarios, the behavior of the scheduler is as follows:

 ■ Call KiSelectReadyThread to find the next ready thread that the processor should run, and 
check whether one was found .

 ■ If a ready thread was not found, the idle scheduler is enabled, and the idle thread is selected 
for execution .

 ■ Or, if a ready thread was found, it is put in the Standby state and set as the NextThread in the 
KPRCB of the logical processor .

The KiSelectNextThread operation is performed only when the logical processor needs to pick, but 
not yet run, the next schedulable thread (which is why the thread will enter Standby) . Other times, 
however, the logical processor is interested in immediately running the next ready thread or perform-
ing another action if one is not available (instead of going idle), such as when the following occurs:

 ■ A priority change has occurred, making the current standby or running thread no longer 
the highest priority ready thread on its selected logical processor, so a higher priority ready 
thread must now run .

 ■ The thread has explicitly yielded with YieldProcessor or NtYieldExecution, and another thread 
might be ready for execution .

 ■ The quantum of the current thread has expired, and other threads at the same priority level 
need their chance to run as well

 ■ A thread has lost its priority boost, causing a similar priority change to the scenario just 
 described .

 ■ The idle scheduler is running and needs to check whether a ready thread has not appeared in 
the interval between which idle scheduling was requested and the idle scheduler ran .

A simple way to remember the difference between which routine runs is to check whether or not 
the logical processor must run a different thread (in which case KiSelectNextThread is called) or if it 
should, if possible, run a different thread (in which case KiSelectReadyThread is called) . 

In either case, because each processor has its own database of threads that are ready to run (the 
dispatcher database’s ready queues in the KPRCB), KiSelectReadyThread can simply check the current 
LP’s queues, removing the first highest priority thread that it finds, unless this priority is lower than 
the one of the currently running thread (depending on whether the current thread is still allowed to 
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run, which would not be the case in the KiSelectNextThread scenario) . If there is no higher priority 
thread (or no threads are ready at all), no thread is returned .

Idle Scheduler
Whenever the idle thread runs, it checks whether idle scheduling has been enabled, such as in one of 
the scenarios described in the previous section . If so, the idle thread then begins scanning other pro-
cessor’s ready queues for threads it can run by calling KiSearchForNewThread . Note that the runtime 
costs associated with this operation are not charged as idle thread time, but are instead charged as 
interrupt and DPC time (charged to the processor), so idle scheduling time is considered system time . 
The KiSearchForNewThread algorithm, which is based on the functions seen in the “Thread Selection” 
section earlier, will be explained in the upcoming section .

Multiprocessor Systems
On a uniprocessor system, scheduling is relatively simple: the highest-priority thread that wants to 
run is always running . On a multiprocessor system, it is more complex, because Windows attempts to 
schedule threads on the most optimal processor for the thread, taking into account the thread’s pre-
ferred and previous processors, as well as the configuration of the multiprocessor system. Therefore, 
although Windows attempts to schedule the highest-priority runnable threads on all available CPUs, it 
guarantees only to be running one of the highest-priority threads somewhere .

Before we describe the specific algorithms used to choose which threads run where and when, let’s 
examine the additional information Windows maintains to track thread and processor state on mul-
tiprocessor systems and the three different types of multiprocessor systems supported by Windows 
(SMT, multicore, and NUMA) .

Package Sets and SMT Sets
Windows uses five fields in the KPRCB to determine correct scheduling decisions when dealing with 
logical processor topologies. The first field, CoresPerPhysicalProcessor, determines whether this 
logical processor is part of a multicore package, and it’s computed from the CPUID returned by the 
processor and rounded to a power of two. The second field, LogicalProcessorsPerCore determines 
whether the logical processor is part of an SMT set, such as on an Intel processor with HyperThreading 
enabled, and is also queried through CPUID and rounded . Multiplying these two numbers yields the 
number of logical processors per package, or an actual physical processor that fits into a socket. With 
these numbers, each PRCB can then populate its PackageProcessorSet value, which is the affinity mask 
describing which other logical processors within this group (because packages are constrained to a 
group) belong to the same physical processor . Similarly, the CoreProcessorSet value connects other 
logical processors to the same core, also called an SMT set . Finally, the GroupSetMember value defines 
which bit mask, within the current processor group, identifies this very logical processor. For example, 
the logical processor 3 normally has a GroupSetMember of 8 (2^3) .
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EXPERIMENT: Viewing Logical Processor Information
You can examine the information Windows maintains for SMT processors using the !smt com-
mand in the kernel debugger . The following output is from a dual-core Intel Core i5 system 
with SMT (four logical processors):

SMT Summary: 
KeActiveProcessors: 
****------------------------------------------------------------ (000000000000000f) 
KiIdleSummary: 
-*-*------------------------------------------------------------ (000000000000000a) 
---------------------------------------------------------------- (0000000000000000) 
---------------------------------------------------------------- (0000000000000000) 
---------------------------------------------------------------- (0000000000000000) 
 
No PRCB             SMT Set                              APIC Id 
  0 fffff8000324ae80 **-------------------------------------------------------------- 
(0000000000000003) 0x00000000 
  1 fffff880009e5180 **-------------------------------------------------------------- 
(0000000000000003) 0x00000001 
  2 fffff88002f65180 --**------------------------------------------------------------ 
(000000000000000c) 0x00000002 
  3 fffff88002fd7180 --**------------------------------------------------------------ 
(000000000000000c) 0x00000003 
Maximum cores per physical processor:   8 
Maximum logical processors per core:    2 

NUMA Systems
Another type of multiprocessor system supported by Windows is one with a nonuniform memory 
 access (NUMA) architecture . In a NUMA system, processors are grouped together in smaller units 
called nodes . Each node has its own processors and memory and is connected to the larger system 
through a cache-coherent interconnect bus . These systems are called “nonuniform” because each 
node has its own local high-speed memory . Although any processor in any node can access all of 
memory, node-local memory is much faster to access .

The kernel maintains information about each node in a NUMA system in a data structure called 
KNODE . The kernel variable KeNodeBlock is an array of pointers to the KNODE structures for each 
node . The format of the KNODE structure can be shown using the dt command in the kernel 
 debugger, as shown here:

lkd> dt nt!_KNODE 
   +0x000 PagedPoolSListHead : _SLIST_HEADER 
   +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER 
   +0x020 Affinity         : _GROUP_AFFINITY 
   +0x02c ProximityId      : Uint4B 
   +0x030 NodeNumber       : Uint2B 
... 
   +0x060 ParkLock         : Int4B 
   +0x064 NodePad1         : Uint4B
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EXPERIMENT: Viewing NUMA Information
You can examine the information Windows maintains for each node in a NUMA system 
 using the !numa command in the kernel debugger . The following partial output is from a 
64- processor NUMA system from Hewlett-Packard with four processors per node:

26: kd> !numa  
NUMA Summary:  
------------  
Number of NUMA nodes : 16  
Number of Processors : 64  
MmAvailablePages     : 0x03F55E67  
 
KeActiveProcessors   : **************************************************************** 
                       (ffffffffffffffff)  
   
NODE 0 (E000000084261900):  
    ProcessorMask    : ****------------------------------------------------------------ 
...  
NODE 1 (E0000145FF992200):  
    ProcessorMask    : ----****-------------------------------------------------------- 
...

Applications that want to gain the most performance out of NUMA systems can set the affinity 
mask to restrict a process to the processors in a specific node, although Windows already restricts 
nearly all threads to a single NUMA node due to its NUMA-aware scheduling algorithms .

How the scheduling algorithms take into account NUMA systems will be covered in the upcoming 
section “Processor Selection” (and the optimizations in the memory manager to take advantage of 
node-local memory are covered in Chapter 10 in Part 2) .

Processor Group Assignment
While querying the topology of the system to build the various relationships between logical 
 processors, SMT sets, multicore packages and physical sockets, Windows assigns processors to an 
 appropriate group that will describe their affinity (through the extended affinity mask seen earlier). 
This work is done by the KePerformGroupConfiguration routine, which is called during initialization 
before any other Phase 1 work is done . Note that regardless of the group assignment steps below, 
NUMA node 0 is always assigned to group 0, no matter what .

First, the function queries all detected nodes (KeNumberNodes) and computes the capacity of 
each node (that is, how many logical processors can be part of the node) . This value is stored as 
the MaximumProcessors in the KeNodeBlock, which identifies all NUMA nodes on the system . If the 
system supports NUMA Proximity IDs, the proximity ID is queried for each node as well and saved 
in the node block . Second, the NUMA distance array is allocated (KeNodeDistance), and the distance 
between each NUMA node is computed as was described in Chapter 3 .
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The next series of steps deal with specific user-configuration options that override default NUMA 
assignments. For example, on a system with Hyper-V installed (and the hypervisor configured to auto-
start), only one processor group will be enabled, and all NUMA nodes (that can fit) will be associated 
with group 0 . This means that Hyper-V scenarios cannot take advantage of machines with over 64 
processors at the moment .

Next, the function checks whether any static group assignment data was passed by the loader (and 
thus configured by the user). This data specifies the proximity information and group assignment for 
each NUMA node . 

Note Users dealing with large NUMA servers that might need custom control of proximity 
information and group assignments for testing or validation purposes can input this data 
through the Group Assignment and Node Distance registry values in the HKLM\SYSTEM 
\CurrentControlSet\Control\NUMA registry key. The exact format of this data includes a 
count, followed by an array of proximity IDs and group assignments, which are all 32-bit 
values .

Before treating this data as valid, the kernel queries the proximity ID to match the node number 
and then associates group numbers as requested . It then makes sure that NUMA node 0 is associated 
with group 0, and that the capacity for all NUMA nodes is consistent with the group size . Finally, the 
function checks how many groups still have remaining capacity .

Next, the kernel dynamically attempts to assign NUMA nodes to groups, while respecting any 
statically configured nodes if passed-in as we just described. Normally, the kernel tries to minimize 
the number of groups created, combining as many NUMA nodes as possible per group . However, if 
this behavior is not desired, it can be configured differently with the /MAXGROUP loader parameter, 
which is configured through the maxgroup BCD option . Turning this value on overrides the default 
behavior and causes the algorithm to spread as many NUMA nodes as possible into as many groups 
as possible (while respecting that the currently implemented group limit is 4) . If there is only one 
node, or if all nodes can fit into a single group (and maxgroup is off), the system performs the default 
setting of assigning all nodes to group 0 .

If there is more than one node, Windows checks the static NUMA node distances (if any), and then 
sorts all the nodes by their capacity so that the largest nodes come first. In the group-minimization 
mode, by adding up all the capacities, the kernel figures out how many maximum processors there 
can be . By dividing that by the number of processors per group, the kernel assumes there will be this 
many total groups on the machine (limited to a maximum of 4) . In the group-maximization mode, the 
initial estimate is that there will be as many groups as nodes (limited again to 4) . 

Now the kernel begins the final assignment process. All fixed assignments from earlier are now 
committed, and groups are created for those assignments. Next, all the NUMA nodes are reshuffled 
to minimize the distance between the different nodes within a group . In other words, closer nodes 
are put in the same group and sorted by distance . Next, the same process is performed for any 
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 dynamically configured node to group assignments. Finally, any remaining empty nodes are assigned 
to group 0 .

Logical Processors per Group
Generally, Windows assigns 64 processors per group as explained earlier, but this configuration can 
also be customized by using different load options, such as the /GROUPSIZE option, which is config-
ured through the groupsize BCD element . By specifying a number that is a power of two, groups can 
be forced to contain fewer processors than normal, for purposes such as testing group awareness in 
the system (for example, a system with 8 logical processors can be made to appear to have 1, 2, or 4 
groups) . To force the issue, the /FORCEGROUPAWARE option (BCD element groupaware) furthermore 
makes the kernel avoid group 0 whenever possible, assigning the highest group number available 
in actions such as thread and DPC affinity selection and process group assignment. Avoid setting a 
group size of 1, because this will force almost all applications on the system to behave as if they’re 
running on a uniprocessor machine, because the kernel sets the affinity mask of a given process to 
span only one group until the application requests otherwise (which most applications today will not 
do) .

Note that in the edge case where the number of logical processors in a package cannot fit into a 
single group, Windows adjusts these numbers so that a package can fit into a single group, shrink-
ing the CoresPerPhysicalProcessor number, and if the SMT cannot fit either, doing this as well for 
 LogicalProcessorsPerCore . The exception to this rule is if the system actually contains multiple NUMA 
nodes within a single package . Although this is not a possibility as of this writing, future Multiple-Chip 
Modules (MCMs, an extension of multicore packages) are due to ship from processor manufacturers 
in the future . In these modules, two sets of cores as well as two memory controllers are on the same 
die/package. If the ACPI SRAT table defines the MCM as having two NUMA nodes, depending on 
group configuration algorithms, Windows might associate the two nodes with two different groups. 
In this scenario, the MCM package would span more than one group .

Other than causing significant driver and application compatibility problems (which they are 
 designed to identify and root out, when used by developers), these options have an even greater 
 impact on the machine: they will force NUMA behaviors even on a non-NUMA machine . This is 
because Windows will never allow a NUMA node to span multiple groups, as was shown in the 
 assignment algorithms. So, if the kernel is creating artificially small groups, those two groups must 
each have their own NUMA node . For example, on a quad-core processor with a group size of two, 
this will create two groups, and thus two NUMA nodes, which will be subnodes of the main node . 
This will affect scheduling and memory-management policies in the same way a true NUMA system 
would, which can be useful for testing .

Logical Processor State
In addition to the ready queues and the ready summary, Windows maintains two bitmasks that track 
the state of the processors on the system . (How these bitmasks are used is explained in the upcoming 
section “Processor Selection .”) Following are the bitmasks that Windows maintains .
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The first one is the active processor mask (KeActiveProcessors), which has a bit set for each usable 
processor on the system . This might be fewer than the number of actual processors if the  licensing 
limits of the version of Windows running supports fewer than the number of available physical 
processors . To check this, use the variable KeRegisteredProcessors to see how many processors are 
 actually licensed on the machine . In this instance, “processors” refers to physical packages . The 
KeMaximumProcessors variable, on the other hand, is the maximum number of logical processors, 
including all future possible dynamic processor additions, bounded within the licensing limit, and any 
platform limitations that are queried by calling the HAL and checking with the ACPI SRAT table, if any .

The idle summary (KiIdleSummary) is actually an array of two extended bitmasks. In the first entry, 
called CpuSet, each set bit represents an idle processor, while in the second entry, SMTSet, each bit 
describes an idle SMT set .

The nonparked summary (KiNonParkedSummary) defines each nonparked logical processor 
through a bit .

Scheduler Scalability
Because on a multiprocessor system one processor might need to modify another processor’s 
 per-CPU scheduling data structures (such as inserting a thread that would like to run on a certain 
 processor), these structures are synchronized by using a per-PRCB queued spinlock, which is held 
at DISPATCH_LEVEL . Thus, thread selection can occur while locking only an individual processor’s 
PRCB . If needed, up to one more processor’s PRCB can also be locked, such as in scenarios of thread 
stealing, which will be described later . Thread context switching is also synchronized by using a 
 finer-grained per-thread spinlock.

There is also a per-CPU list of threads in the deferred ready state . These represent threads that 
are ready to run but have not yet been readied for execution; the actual ready operation has been 
deferred to a more appropriate time . Because each processor manipulates only its own per-processor 
deferred ready list, this list is not synchronized by the PRCB spinlock . The deferred ready thread list is 
processed by KiProcessDeferredReadyList after a function has already done modifications to process 
or thread affinity, priority (including due to priority boosting), or quantum values.

This function calls KiDeferredReadyThread for each thread on the list, which performs the 
 algorithm shown later in the “Processor Selection” section, which could either cause the thread to 
run immediately; to be put on the ready list of the processor; or if the processor is unavailable, to be 
 potentially put on a different processor’s deferred ready list, in a standby state, or immediately ex-
ecuted . This property is used by the Core Parking engine when parking a core: all threads are put into 
the deferred ready list, and it is then processed . Because KiDeferredReadyThread skips parked cores 
(as will be shown), it causes all of this processor’s threads to wind up on other processors .

Affinity
Each thread has an affinity mask that specifies the processors on which the thread is allowed to run. 
The thread affinity mask is inherited from the process affinity mask. By default, all processes (and 
therefore all threads) begin with an affinity mask that is equal to the set of all active processors on 
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their assigned group—in other words, the system is free to schedule all threads on any available 
 processor within the group associated with the process .

However, to optimize throughput, partition workloads to a specific set of processors, or both, 
 applications can choose to change the affinity mask for a thread. This can be done at several levels:

 ■ Calling the SetThreadAffinityMask function to set the affinity for an individual thread.

 ■ Calling the SetProcessAffinityMask function to set the affinity for all the threads in a process. 
Task Manager and Process Explorer provide a GUI to this function if you right-click a process 
and choose Set Affinity. The Psexec tool (from Sysinternals) provides a command-line interface 
to this function . (See the –a switch in its help output .)

 ■ By making a process a member of a job that has a jobwide affinity mask set using the 
 SetInformationJobObject function . (Jobs are described in the upcoming “Job Objects” section .)

 ■ By specifying an affinity mask in the image header when compiling the application. (For more 
information on the detailed format of Windows images, search for “Portable Executable and 
Common Object File Format Specification” on www.microsoft.com .)

An image can also have the “uniprocessor” flag set at link time. If this flag is set, the system 
 chooses a single processor at process creation time (MmRotatingProcessorNumber) and assigns that 
as the process affinity mask, starting with the first processor and then going round-robin across all 
the processors within the group. For example, on a dual-processor system, the first time an image 
marked as uniprocessor is launched, it is assigned to CPU 0; the second time, CPU 1; the third time, 
CPU 0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for pro-
grams that have multithreaded synchronization bugs that, as a result of race conditions, surface on 
multiprocessor systems but that don’t occur on uniprocessor systems . If an image exhibits such symp-
toms and is unsigned, the flag can be manually added by editing the image header with a tool such 
as Imagecfg .exe . A better solution, also compatible with signed executables, is to use the  Microsoft 
Application Compatibility Toolkit and add a shim to force the compatibility database to mark the 
 image as uniprocessor-only at launch time .

EXPERIMENT: Viewing and Changing Process Affinity
In this experiment, you will modify the affinity settings for a process and see that process 
 affinity is inherited by new processes:

1. Run the command prompt (Cmd .exe) .

2. Run Task Manager or Process Explorer, and find the Cmd.exe process in the 
 process list .
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3. Right-click the process, and select Set Affinity. A list of processors should be displayed. 
For example, on a dual-processor system you will see this:

4. Select a subset of the available processors on the system, and click OK . The process’ 
threads are now restricted to run on the processors you just selected .

5. Now run Notepad .exe from the command prompt (by typing Notepad .exe) .

6. Go back to Task Manager or Process Explorer and find the new Notepad process. 
Right-click it, and choose Affinity. You should see the same list of processors you 
chose for the command-prompt process. This is because processes inherit their affinity 
 settings from their parent .

Windows won’t move a running thread that could run on a different processor from one CPU 
to a second processor to permit a thread with an affinity for the first processor to run on the first 
processor . For example, consider this scenario: CPU 0 is running a priority 8 thread that can run on 
any processor, and CPU 1 is running a priority 4 thread that can run on any processor . A priority 6 
thread that can run on only CPU 0 becomes ready . What happens? Windows won’t move the priority 
8 thread from CPU 0 to CPU 1 (preempting the priority 4 thread) so that the priority 6 thread can run; 
the priority 6 thread has to stay in the ready state .

Therefore, changing the affinity mask for a process or a thread can result in threads getting less 
CPU time than they normally would, because Windows is restricted from running the thread on 
certain processors. Therefore, setting affinity should be done with extreme care—in most cases, it is 
optimal to let Windows decide which threads run where .

Extended Affinity Mask
To support more than 64 processors, which is the limit enforced by the affinity mask structure 
( composed of 64 bits on a 64-bit system), Windows uses an extended affinity mask (KAFFINITY_EX) 
that is an array of affinity masks, one for each supported processor group (currently defined to 4). 
When the scheduler needs to refer to a processor in the extended affinity masks, it first de-references 
the correct bitmask by using its group number and then accesses the resulting affinity directly. In the 
kernel API, extended affinity masks are not exposed; instead, the caller of the API inputs the group 
number as a parameter, and receives the legacy affinity mask for that group. In the Windows API, on 
the other hand, only information about a single group can usually be queried, which is the group of 
the currently running thread (which is fixed).
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The extended affinity mask and its underlying functionality are also how a process can escape the 
boundaries of its original assigned processor group. By using the extended affinity APIs, threads in a 
process can choose affinity masks on other processor groups. For example, if a process has 4 threads 
and the machine has 256 processors, thread 1 can run on processor 4, thread 2 can run on processor 
68, thread 3 on processor 132, and thread 4 on processor 196, if each thread set an affinity mask of 
0x10 (0b10000 in binary) on groups 0, 1, 2, and 3. Alternatively, the threads can each set an affinity 
of 0xFFFFFFFF for their given group, and the process then can execute its threads on any available 
processor on the system (with the limitation, that each thread is restricted to running within its own 
group only) .

Taking advantage of extended affinity must be done at creation time, by specifying a group 
 number in the thread attribute list when creating a new thread . (See the previous topic on thread 
creation for more information on attribute lists .)

System Affinity Mask
Because Windows drivers usually execute in the context of the calling thread or in the context of an 
arbitrary thread (that is, not in the safe confines of the System process), currently running driver code 
might be subject to affinity rules set by the application developer, which are not currently relevant 
to the driver code and might even prevent correct processing of interrupts and other queued work . 
Driver developers therefore have a mechanism to temporarily bypass user thread affinity settings, by 
using the APIs KeSetSystemAffinityThread(Ex)/KeSetSystemGroupAffinityThread and  
KeRevertToUserAffinityThread(Ex)/KeRevertToUserGroupAffinityThread .

Ideal and Last Processor
Each thread has three CPU numbers stored in the kernel thread control block:

 ■ Ideal processor, or the preferred processor that this thread should run on

 ■ Last processor, or the processor on which the thread last ran

 ■ Next processor, or the processor that the thread will be, or is already, running on

The ideal processor for a thread is chosen when a thread is created using a seed in the process 
control block . The seed is incremented each time a thread is created so that the ideal processor for 
each new thread in the process rotates through the available processors on the system . For example, 
the first thread in the first process on the system is assigned an ideal processor of 0. The second 
thread in that process is assigned an ideal processor of 1 . However, the next process in the system has 
its first thread’s ideal processor set to 1, the second to 2, and so on. In that way, the threads within 
each process are spread across the processors .

Note that this assumes the threads within a process are doing an equal amount of work . This is 
typically not the case in a multithreaded process, which normally has one or more housekeeping 
threads and then a number of worker threads . Therefore, a multithreaded application that wants to 
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take full advantage of the platform might find it advantageous to specify the ideal processor numbers 
for its threads by using the SetThreadIdealProcessor function . To take advantage of processor groups, 
developers should call SetThreadIdealProcessorEx instead, which allows selection of a group number 
for the affinity.

64-bit Windows uses the Stride field in the KPRCB to balance the assignment of newly created 
threads within a process . The stride is a scalar number that represents the number of affinity bits 
within a given NUMA node that must be skipped to attain a new independent logical processor slice, 
where “independent” means on another core (if dealing with an SMT system) or another package (if 
dealing with a non-SMT but multicore system) . Because 32-bit Windows doesn’t support large proces-
sor configuration systems, it doesn’t use a stride, and it simply selects the next processor number, 
trying to avoid sharing the same SMT set if possible . For example, on a dual-processor SMT system 
with four logical processors, if the ideal processor for the first thread is assigned to logical processor 
0, the second thread would be assigned to logical processor 2, the third thread to logical processor 1, 
the fourth thread to logical process 3, and so forth . In this way, the threads are spread evenly across 
the physical processors .

Ideal Node
On NUMA systems, when a process is created, an ideal node for the process is selected. The first 
process is assigned to node 0, the second process to node 1, and so on . Then the ideal processors for 
the threads in the process are chosen from the process’ ideal node. The ideal processor for the first 
thread in a process is assigned to the first processor in the node. As additional threads are created in 
processes with the same ideal node, the next processor is used for the next thread’s ideal processor, 
and so on .

Thread Selection on Multiprocessor Systems
Before covering multiprocessor systems in more detail, I should summarize the algorithms discussed 
in the “Thread Selection” section . They either continued executing the current thread (if no new 
candidate was found) or started running the idle thread (if the current thread had to block) . However, 
there is a third algorithm for thread selection, which was hinted at in the “Idle Scheduler” section ear-
lier, called KiSearchForNewThread. This algorithm is called in one specific instance: when the current 
thread is about to block due to a wait on an object, including when doing an NtDelayExecutionThread 
call, also known as the Sleep API in Windows .

Note This shows a subtle difference between the commonly used Sleep(1) call, which 
makes the current thread block until the next timer tick, and the SwitchToThread() call, 
which was shown earlier . The “sleep” will use the algorithm about to be described, while 
the “yield” uses the previously shown logic .
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KiSearchForNewThread initially checks whether there is already a thread that was selected for this 
processor (by reading the NextThread field); if so, it dispatches this thread immediately in the Running 
state . Otherwise, it calls the KiSelectReadyThread routine and, if a thread was found, performs the 
same steps . 

If a thread was not found, however, the processor is marked as idle (even though the idle thread is 
not yet executing) and a scan of other logical processors queues is initiated (unlike the other stan-
dard algorithms, which would now give up) . Also, because the processor is now considered idle, if the 
 Distributed Fair Share Scheduling mode (described in the next topic) is enabled, a thread will be re-
leased from the idle-only queue if possible and scheduled instead . On the other hand, if the processor 
core is now parked, the algorithm will not attempt to check other logical processors, as it is preferable 
to allow the core to enter the parking state instead keeping it busy with new work .

Barring these two scenarios, the work-stealing loop now runs . This code looks at the current 
NUMA node and removes any idle processors (because they shouldn’t have threads that need 
 stealing) . Then, starting from the highest numbered processor, the loop calls KiFindReadyThread but 
points it to the remote KPRCB instead of the current one, causing this processor to find the best ready 
thread from the other processor’s queue . If this is unsuccessful and Distributed Fair Share Scheduler is 
enabled, a thread from the idle-only queue of the remote logical processor is released on the current 
processor instead, if possible .

If no candidate ready thread is found, the next lower numbered logical processor is attempted, 
and so on, until all logical processors have been exhausted on the current NUMA node . In this case, 
the algorithm keeps searching for the next closest node, and so on, until all nodes in the current 
group have been exhausted. (Recall that Windows allows a given thread to have affinity only on a 
single group.) If this process fails to find any candidates, the function returns NULL and the processor 
enters the idle thread in the case of a wait (which will skip idle scheduling) . If this work was already 
being done from the idle scheduler, the processor enters a sleep state .

Processor Selection
Up until now, we’ve described how Windows picks a thread when a logical processor needs to make 
a selection (or when a selection must be made for a given logical processor) and assumed the various 
scheduling routines have an existing database of ready threads to choose from . Now we’ll see how 
this database gets populated in the first place—in other words, how Windows chooses which LP’s 
ready queues a given ready thread will be associated with . Having described the types of multipro-
cessor systems supported by Windows as well as the thread affinity and ideal processor settings, we’re 
now ready to examine how this information is used for this purpose .

Choosing a Processor for a Thread When There Are Idle Processors
When a thread becomes ready to run, the KiDeferredReadyThread scheduler function is called, 
causing Windows to perform two tasks: adjust priorities and refresh quantums as needed, as was 
explained in the “Priority Boosts” section, and then pick the best logical processor for the thread . 
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Windows first looks up the thread’s ideal processor, and then it computes the set of idle processors 
within the thread’s hard affinity mask. This set is then pruned as follows:

 ■ Any idle logical processors that have been parked by the Core Parking mechanism are 
 removed . (See Chapter 9, “Storage Management,” in Part 2 for more information on Core 
Parking .) If this causes no idle processors to remain, idle processor selection is aborted, 
and the scheduler behaves as if no idle processors were available (which is described in the 
 upcoming section)

 ■ Any idle logical processors that are not on the ideal node (defined as the node containing the 
ideal processor) are removed, unless this would cause all idle processors to be eliminated .

 ■ On an SMT system, any non-idle SMT sets are removed, even if this might cause the 
 elimination of the ideal processor itself . In other words, Windows prioritizes a non-ideal, idle 
SMT set over an ideal processor .

 ■ Windows then checks whether the ideal processor is among the remaining set of idle 
 processors. If it isn’t, it must then find the most appropriate idle processor. It does so by first 
checking whether the processor that the thread last ran on is part of the remaining idle set . If 
so, this processor is considered to be a temporary ideal processor and chosen . (Recall that the 
ideal processor attempts to maximize processor cache hits, and picking the last processor a 
thread ran on is a good way of doing so .)

 ■ If the last processor is not part of the remaining idle set, Windows next checks whether the 
current processor (that is, the processor currently executing this scheduling code) is part of this 
set; if so, it applies the same logic as in the prior step .

 ■ If neither the last nor the current processor is idle, Windows performs one more pruning 
 operation, by removing any idle logical processors that are not on the same SMT set as the 
ideal processor . If there are none left, Windows instead removes any processors not on the 
SMT set of the current processor, unless this, too, eliminates all idle processors . In other words, 
Windows prefers idle processors that share the same SMT set as the unavailable ideal proces-
sor and/or last processor it would’ve liked to pick in the first place. Because SMT implementa-
tions share the cache on the core, this has nearly the same effect as picking the ideal or last 
processor from the caching perspective .

 ■ Finally, if this last step results in more than one processor remaining in the idle set, Windows 
picks the lowest numbered processor as the thread’s current processor .

Once a processor has been selected for the thread to run on, that thread is put in the standby 
state and the idle processor’s PRCB is updated to point to this thread . If the processor is idle, but not 
halted, a DPC interrupt is sent so that the processor handles the scheduling operation immediately .

Whenever such a scheduling operation is initiated, KiCheckForThreadDispatch is called, which 
will realize that a new thread has been scheduled on the processor and cause an immediate context 
switch if possible (as well as pending APC deliveries), or it will cause a DPC interrupt to be sent .
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Choosing a Processor for a Thread When There Are No Idle Processors
If there are no idle processors when a thread wants to run, or if the only idle processors were 
 eliminated by the first pruning (which got rid of parked idle processors), Windows first checks whether 
the latter situation has occurred . In this scenario, the scheduler calls KiSelectCandidateProcessor to 
ask the Core Parking engine for the best candidate processor . The Core Parking engine selects the 
highest-numbered processor that is unparked within the ideal node . If there are no such processors, 
the engine forcefully overrides the park state of the ideal processor and causes it to be unparked . 
Upon returning to the scheduler, it will check whether the candidate it received is idle; if so, it will pick 
this processor for the thread, following the same last steps as in the previous scenario .

If this fails, Windows compares the priority of the thread running (or the one in the standby state) 
on the thread’s ideal processor to determine whether it should preempt that thread . 

If the thread’s ideal processor already has a thread selected to run next (waiting in the standby 
state to be scheduled) and that thread’s priority is less than the priority of the thread being readied 
for execution, the new thread preempts that first thread out of the standby state and becomes the 
next thread for that CPU . If there is already a thread running on that CPU, Windows checks whether 
the priority of the currently running thread is less than the thread being readied for execution . If so, 
the currently running thread is marked to be preempted, and Windows queues a DPC interrupt to the 
target processor to preempt the currently running thread in favor of this new thread .

If the ready thread cannot be run right away, it is moved into the ready state on the priority queue 
appropriate to its thread priority, where it will await its turn to run . As seen in the scheduling sce-
narios earlier, the thread will be inserted either at the head or the tail of the queue, based on whether 
it entered the ready state due to preemption . 

As such, regardless of the underlying scenario and various possibilities, note that threads are 
always put on their ideal processor’s per-processor ready queues, guaranteeing the consistency of the 
algorithms that determine how a logical processor picks a thread to run .

Processor Share-Based Scheduling

In the previous section, the standard thread-based scheduling implementation of Windows was 
described, which has served general user and server scenarios reliably since its appearance in the first 
Windows NT release (with scalability improvements done throughout each release) . However, because 
thread-based scheduling attempts to fairly share the processor or processors only among competing 
threads of same priority, it does not take into account higher-level requirements such as the distribu-
tion of threads to users and the potential for certain users to benefit from more overall CPU time at 
the expense of other users . This kind of behavior, as it turns out, is highly sought after in terminal- 
services environments, where dozens of users can be competing for CPU time and a single high- 
priority thread from a given user has the potential to starve threads from all users on the machine if 
only thread-based scheduling is used .
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Distributed Fair Share Scheduling
In this section, two alternative scheduling modes implemented by recent versions of Windows will be 
described: the session-based Distributed Fair Share Scheduler (DFSS) and an older, legacy SID-based 
CPU Rate Limit implementation .

DFSS Initialization
During the very last parts of system initialization, as the SOFTWARE hive is initialized by Smss, the 
process manager initiates the final post-boot initialization in PsBootPhaseComplete, which calls 
 PsInitializeCpuQuota . It is here that the system decides which of the two CPU quota mechanisms 
(DFSS or legacy) will be employed . For DFSS to be enabled, the EnableCpuQuota registry value must 
be set to 1 in both of the two quota keys: HKLM\SOFTWARE\Policies\Microsoft\Windows\Session 
Manager\Quota System for the policy-based setting (that can be configured through the Group 
 Policy Editor under Computer Configuration\Administrative Templates\Windows Components 
\Remote Desktop Services\Remote Desktop Session Host\Connections - Turn off Fair Share CPU 
Scheduling), as well as under the system key HKLM\SYSTEM\CurrentControlSet\Control\Session 
 Manager\Quota System, which determines if the system supports the functionality (which, by default, 
is set to TRUE on Windows Server with the Remote Desktop role) .

Note Due to a bug (which you can learn more about at http://technet.microsoft.com 
/en-us/library/ee808941(WS.10).aspx), the group policy setting to turn off DFSS is not 
 honored . The system setting must be manually turned off .

If DFSS is enabled, the PsCpuFairShareEnabled variable is set to true, which will instruct the kernel, 
through various scheduling code paths, to behave differently and/or to call into the DFSS engine . 
 Additionally, the default quota is set up to 150 milliseconds for each DFSS cycle, a number called 
credit that will be explained in more detail shortly .

Once DFSS is enabled, the global PspCpuQuotaControl data structure is used to maintain DFSS 
information, such as the list of per-session CPU quota blocks (as well as a spinlock and count) and the 
total weight of all sessions on the system . It also stores an array of per-processor DFSS data structures, 
which you’ll see next .

Per-Session CPU Quota Blocks
After DFSS is enabled, whenever a new session is created (other than Session 0), MiSessionCreate calls 
PsAllocateCpuQuotaBlock to set up the per-session CPU quota block. The first time this happens on 
the system (for example, for Session 1), this calls PspLazyInitializeCpuQuota to finalize the initialization 
of DFSS . 

This results in the allocation of per-CPU DFSS data structures mentioned in the previous sections, 
which contain the DPC used for managing the quota (PspCpuQuotaDpcRoutine, seen later) and the 
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total number of cycles credited as well as accumulated . This structure also keeps the block generation 
a monotonically increasing sequence to guarantee atomicity, as well as keeping the idle-only queue 
lock protecting the list of the same name, which is a central element of the DFSS mechanism yet to be 
described . Each per-CPU DFSS data structure, in turn, is connected through a sorted doubly-linked list 
to the various per-session CPU quota blocks that were mentioned at the beginning of this discussion .

When the first-time initialization of DFSS is complete, PsAllocateCpuQuotaBlock can continue, first 
by allocating the actual CPU quota block for this session . This structure maintains overall accounting 
information on the session, as well as per-CPU tracking—including the cycles remaining and initially 
allocated, as well as the idle-only queue itself, in a per-CPU quota entry structure .

To begin with, the session ID is stored, and the CPU share weight is set to its default of 5 . 
You’ll see shortly what a weight is, how it can be computed, and its effects on the DFSS engine . 
 Because the quota block has just been created, the initial cycle values are all set to their maximum 
value for now . Next, this new per-session CPU block must be visible to the system . Therefore, the 
 PspCpuQuotaControl data structure is updated with the new total weight of all sessions (by add-
ing this weight), and the quota block is inserted into the block list (sorted by session ID) . Finally, 
 PspCalculateCpuQuotaBlockCycleCredits enumerates every other session’s quota block and captures 
the new total weight of the system .

Once this is done, the per-session CPU quota block is finalized, and the memory manager sets it in 
the CpuQuotaBlock field of the MM_SESSION_SPACE structure for this session. Likewise, the current 
EPROCESS (part of this new session’s CpuQuotaBlock field) is also updated to point to this session’s 
CPU quota block . Now that the process has received a CPU quota block as soon as it became part of 
the session, future threads created by this process (including the first thread itself) will be allocated 
with an extra structure after their typical ETHREAD—a per-process CPU Quota APC structure . Addi-
tionally, the ETHREAD’s RateApcState field will be set to PsRateApcContained, indicating that this is an 
embedded Quota APC, as used by the DFSS mechanism (rather than the pool-allocated legacy APC) . 
Finally, the CpuThrottled bit is set in the KTHREAD’s ThreadControlFlags .

At this point, the global quota-control structure contains a pointer to the DFSS per-CPU data 
structure array, which itself is linked to all the per-session CPU blocks that have been created for each 
session and associated with the EPROCESS structure of the member processes . In turn, each thread 
part of such a process has CPU throttling turned on . There is a per-CPU DPC ready to execute, as well 
as per-thread APCs for each throttled thread .

When the last process in the session loses all its references,  PsDeleteCpuQuotaBlock 
is called . It removes the block from the list, refreshes the total weights, and calls 
 PspCalculateCpuQuotaBlockCycleCredits to update all other per-session CPU quota blocks .

Charging of Cycles to Throttled Threads
After everything is set up, the entire DFSS mechanism is triggered by the consumption of CPU 
cycles—something that was already explained in the earlier sections . In other words, not only are 
consumed cycles used for quantum accounting and providing finer-grained information to thread 
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APIs, but they also can be “charged” against the thread (and thus against its quota) . This operation is 
done by the PsChargeProcessCpuCycles function that is called whenever a thread has completed the 
accumulation of cycles in its current execution timeline . 

The first operation involves accumulating the additional cycles to the per-CPU DFSS data  structure 
for this processor, increasing the TotalCyclesAccumulated value . If this accumulation has reached 
the total credit, the quota DPC is immediately queued . Once the DPC ultimately executes, it calls 
 PspStartNewFairShareInterval, which updates the generation, resets the cycles accumulated, and 
resets the credit to 150 ms . Finally, the idle-only queue is flushed on each processor associated with 
a given session. (You’ll see what this queue is and what flushing it entails, later.) This part of the 
 algorithm manages the 150-ms interval that controls DFSS .

A second possibility is that the generation of the per-CPU quota entry contained in the  current 
process’ CPU quota block (owned by the session) does not manage the generation of the cur-
rent per-CPU DFSS data structure . This generation mismatch suggests that a new interval has 
been reached and no cycle limits have yet been set, so PspReplenishCycleCredit is called to do 
the work . This reads the per-CPU weight and the total weight that were captured earlier in 
 PspCalculateCpuQuotaBlockCycleCredits, and it uses them to set the base cycle allowance for the 
current per-CPU data inside the process’ CPU quota block . To do this, it uses a simple formula: the 
process receives the equivalent of its cycle credit (150 ms) divided by the total weight of all sessions 
on the system . Then the amount of cycles it will be permitted to run for (CyclesRemaining) is set to the 
base cycle allowance multiplied by the weight of this particular session . In other words, the process 
runs for a fairly-divided chunk of time based on the number of other sessions on the system, calcu-
lated as a percentage based on its relative weight compared to the overall system weight . When the 
computation is completed, the generation is set to match .

In all other cases, PsChargeProcessCpuCycles merely subtracts the amount of cycles from 
 CyclesRemaining and then calls PsCheckThreadCpuQuota to see whether these cycles have been 
exhausted (reaching zero) . Note that this function can sometimes also be called directly from the 
 context switch code when control is about to pass to a thread that has CPU throttling enabled .

PsCheckThreadCpuQuota recovers the CPU quota block for this process (that is, for the session), 
and then further extracts the precise per-CPU information out of it . Once again, it checks whether the 
generation does not match, which would indicate this is the first charge for this 150-ms credit cycle, 
and then it calls PspReplenishCycleCredit . Next, it checks whether the CPU quota block for the process 
indicates there are no more cycles remaining . If cycles still remain, the function returns; otherwise, it 
prepares to suspend the thread’s execution .

Before stopping execution, the function extracts the per-CPU DPC, making sure that it (or the 
associated per-thread APC) is not already running . If this operation is happening due to the context-
switch scenario brought up earlier, the per-thread APC is queued, which will preempt the thread’s 
execution as soon as the context switch completes . Otherwise, if this is occurring as result of cycle 
charging (which happens at DISPATCH_LEVEL or higher), the per-CPU DPC is queued instead, which 
will later queue the per-thread APC . (This forces a near-immediate response to the CPU quota 
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 restriction .) In case further cycle accumulation has occurred past the 150-ms cycle credit, the DPC also 
calls PspStartNewFairShareInterval, which was explained earlier .

CPU Throttling and Quota Enforcement
So far, you’ve seen how DFSS initializes, how CPU quota blocks are created for each session (and then 
associated with member processes), and how threads running with the CPU throttling bit (implying 
they are part of processes that are members of a session with DFSS enabled) will consume cycles out 
of their total weight-relative allowance, resetting every 150 ms . You also saw how, eventually, an APC 
is queued in all cases where a thread has exhausted its allowed cycles . You’ll now see how the APC 
enforces the CPU quota restriction .

The APC first enters an infinite loop, creating a stack-allocated Quota Wait Block that contains the 
current thread being restricted, as well as a resume event . It is this event that ultimately allows the 
thread to continue its execution . Next, the APC gets the per-CPU DFSS data structure pointer and 
 acquires the idle-only queue lock referenced earlier . It then checks whether the idle-only queue on 
the current processor (which comes from the per-CPU quota entry contained in the process’ CPU 
quota block) is empty . If the list is empty, it implies that this CPU has never been inserted in the sorted 
block list that is contained in the per-CPU DFSS data structure (part of the PspCpuQuotaControl 
global array) . The PspInsertQuotaBlockCpuEntry function is thus called to rectify the situation .

Because the DFSS scheduler itself (which has yet to be described) uses this data structure, it must 
be inserted in the most optimal way—in this case, sorted by the base cycle allowance of each per-
CPU data contained within the per-process CPU quota block . Recall that the base cycle allowance is 
initially the 150-ms credit cycle divided by the total weight of the system (that is, a full allowance), but 
you’ll see how the allowance can be later modified by the DFSS scheduler.

Next, now that the per-CPU Quota Entry is in the sorted block list (or it might already have been 
if the idle-only queue was not empty), this thread is inserted at the end of the idle-only queue, and 
it’s connected by a linked list entry that’s present in the Quota Wait Block . Because this wait block 
contains the resume event initialized earlier, the DFSS scheduler is able to control the thread when 
needed .

Finally, the APC enters a wait on this resume event, with the wait reason WrCpuRateControl . By 
 using a tool such as Sysinternals PsList, or Process Explorer—all of which display wait reasons (as well 
as a kernel debugger)—you can see such threads intermittently blocked on a DFSS system .
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Resuming Execution
With more and more threads possibly hitting their CPU quota restrictions and block on their 
 respective idle-queues, how will they eventually resume execution? One of the possibilities is that a 
new 150-ms interval has started . Recall from the earlier discussion that PspStartNewFairShareInterval 
was said to “flush the idle-only queue.” This operation, performed by PspFlushProcessorIdleOnlyQueue, 
essentially scans every per-CPU quota entry for this processor (which is located in the sorted block 
list), and then scans the idle-only queue of each such processor . Picking every thread in the list, the 
function removes the thread and manually sets the resume event . Thus, any blocked thread on the 
current CPU gets to resume execution after 150 ms .

Obviously, flushing is not the usual mechanism through which the idle-only queue threads 
are managed . This work typically is done by the DFSS scheduler itself, which provides the 
 PsReleaseThreadFromIdleOnlyQueue routine as a callback that the regular thread scheduler, when 
the system is about to go idle, can use whenever DFSS-related work is required. Specifically, it is the 
KiSearchForNewThread function, thoroughly described earlier, that calls DFSS in the following two 
scenarios:

 ■ If KiSelectReadyThread, which is called initially, has not found a new thread for the current 
processor, before it checks other processors’ dispatcher ready queues, KiSearchForNewThread 
will ask DFSS to release a thread from the idle-only queue .
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 ■ Otherwise, as each CPU’s dispatcher ready queues are scanned (by looping 
 KiSelectReadyThread calls on each PRCB), if once again no thread is found, the DFSS scheduler 
is called to release a thread from the idle-only queue on the target processor as well .

Finally, you’ll see what work PsReleaseThreadFromIdleOnlyQueue actually does and how the DFSS 
scheduler is implemented .

DFSS Idle-Only Queue Scheduling
PsReleaseThreadFromIdleOnlyQueue initially checks whether the sorted block list is empty (which 
would imply there aren’t even any valid per-CPU quota entries), and it exits if this is the case . 
 Otherwise, it acquires the idle-only queue spinlock from the per-CPU DFSS data structure and calls 
PspFindHighestPriorityThreadToRun . This function scans the sorted block list, recovering every per-
CPU quota entry, and then scans every entry (which, if you recall, points to the Quota Wait Block for 
the thread) . Unfortunately, because threads are not inserted by priority (such as real dispatcher ready 
queues), the entire idle-only queue must be scanned, and the highest priority found to this point is 
recorded in each iteration . (Because the lock is acquired, no new per-CPU quota entries or idle-only 
queue threads can be inserted during the scan .) 

Note Because DFSS is not truly integrated with the regular thread scheduler, the reason 
the threads are not sorted by priority is obvious: DFSS is not aware of priority changes after 
idle-only queue threads have been inserted in its lists . A user could still modify the priority, 
and because the thread scheduler does not notify DFSS of this, an incorrect thread would 
be picked .

Additionally, affinity is carefully checked to ensure only correctly affinitized threads are scanned. 
Although each idle-only queue contains only threads for the current processor, scenario #2 in the 
preceding section showed how remote processor idle-only queues can also be scanned . DFSS must 
ensure that the current CPU will run an appropriate remote-CPU, idle-only thread .

Once the highest priority thread has been found on the current per-CPU quota entry, it is removed 
from the idle-only queue and returned to the caller . Additionally, if this was the last thread on the 
idle-only queue, the per-CPU entry is removed from the sorted block list . Therefore, note that the 
other per-CPU quota entries are not checked unless a runnable highest-priority thread was not found 
on the first per-CPU quota entry (that is, the one with the highest base cycle allowance).

Once the thread is found, PsReleaseThreadFromIdleOnlyQueue resumes its execution and once 
more queues the DPC responsible for eventually launching the per-thread APC from earlier (after 
making sure the DPC is not already running) . Thus, the APC is never directly queued in this case, 
because this function runs as part of the thread scheduler, already at DISPATCH_LEVEL . Additionally, 
it wouldn’t make sense to queue another per-thread APC just to notify the original APC; instead, the 
DPC itself will wake up the thread .
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This is done by a special check in the DPC routine that checks whether the 
 ThreadWaitBlockForRelease field in the per-CPU DFSS data structure is set. If so, the DPC knows that 
this is a wake-up, not a stop, request, and it sets the resume event associated with the Quota Wait 
Block . Additionally, it forces the Idle Scheduler on the current CPU to run, by setting the IdleSchedule 
field in the KPRCB that was brought up in the earlier idle scheduler section.

One detail has been glossed over, however: once the idle-only thread is picked, as soon 
as a context switch is initiated, the cycle accumulation once again detects that the thread 
has exhausted its cycles, and it re-inserts the thread in the idle-only queue . Therefore, 
 PsReleaseThreadFromIdleOnlyQueue must update the cycles remaining for the current per-CPU quota 
entry, allowing this CPU to run the thread for a little bit longer . How much longer exactly is deter-
mined by the value of KiCyclesPerClockQuantum, which was shown in the earlier “Quantum” section . 
Therefore, this CPU is allowed to run the current thread for an entire quantum, at most . 

Additionally, the base cycle allowance for this entry must be updated, because the quota for the 
CPU is actually exhausted and no longer working on a 150-ms cycle credit . Therefore, the allowance 
is now updated to include an extra KiCyclesPerClockQuantum divided by the weight of the session” 
cycle . Because the base cycle allowance has changed, the sorted block list is reparsed, and the entries 
are re-sorted correctly to account for this change . Thus, this block will now migrate to the front of the 
list and have a higher chance to be picked once a future idle-only thread (within this interval) needs 
to be picked .

Session Weight Configuration
So far, the weight associated to sessions has been described as its default value of 5 . However, this 
weight can be set to anywhere between 1 and 9, and DFSS provides two internal APIs for managing 
weight information: PsQueryCpuInformation and its Set equivalent .

Given an array of session handles (to session objects) and associated weights, the Set API sets the 
new weight for each session, as well as updating the total weight stored in the PspCpuQuotaControl 
global . By calling PspCalculateCpuQuotaBlockCycleCredits again, the new settings will be propagated . 
Likewise, the Query API returns an array of weights and session IDs . The SeIncreaseQuotaPrivilege is 
required in both cases, as well as SESSION_MODIFY_ACCESS for each session whose weight is being 
modified. Accessing these APIs is done through the native API function NtQuerySystemInformation, 
with the SystemCpuQuotaInformation call .

This API, although not provided by the Windows API directly, is what the Windows System 
 Resource Manager uses when the administrator assigns different priorities to different users when the 
Weighted_Remote_Sessions policy is enabled . The three priorities—Premium, Standard, and Basic—
map to the 1, 5, and 9 weights in the internal DFSS scheduler mechanism, respectively .
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CPU Rate Limits
As part of the hard quota management system in Windows (based on the original soft-limit quota 
support present since the first version of Windows NT), support for limiting CPU usage exists in the 
system in three different ways: per-session, per-user, or per-system . Unfortunately, there is no tool 
that is part of the operating system that allows you to set these limits—you must modify the regis-
try settings manually . Because all the quotas—save one—are memory quotas, we will cover those in 
Chapter 10 in Part 2, which deals with the memory manager, and instead focus our attention here on 
the CPU rate limit .

Note See the topic “CPU rate limits in Windows Server 2008 R2 and Windows 7” in the 
Microsoft Technet Knowledge Articles at http://technet.microsoft.com/en-us/library 
/ff384148(WS.10).aspx for further documentation and examples on when to use CPU rate 
limits .

The new quota system can be accessed through the registry key HKLM\SYSTEM 
\ CurrentControlSet\Control\Session Manager\QuotaSystem, as well as through the standard 
 NtSetInformationProcess system call . CPU rate limits can therefore be set in one of three ways:

 ■ By creating a new DWORD value called CpuRateLimit and entering the rate information .

 ■ By creating a new key with the security ID (SID) of the account you want to limit, and creating 
a CpuRateLimit DWORD value inside that key .

 ■ By calling NtSetInformationProcess and giving it the process handle of the process to limit and 
the CPU rate limiting information, if the process is tied to the system quota block .

In all three cases, the CPU rate limit data is a straightforward value; it is simply a rate limit 
 expressed as a percentage . For example, to limit a user’s applications to consume at most 10% of CPU 
time, you set CpuRateLimit to 10 . The process manager, which is responsible for enforcing the CPU 
rate limit, uses various system mechanisms to do its job . First, rate limiting works reliably because of 
the CPU cycle count improvements discussed earlier, which allow the process manager to accurately 
determine how much CPU time a process has taken and know whether the limit should be enforced . 
It then uses a combination of DPC and APC routines to throttle down DPC and APC CPU usage, which 
are outside the direct control of user-mode developers but still result in CPU usage in the system (in 
the case of a systemwide CPU rate limit) .

Finally, the main mechanism through which rate limiting works is by creating an artificial wait on 
an event object (making the thread uniquely bound to this object and putting it in a wait state, which 
does not consume CPU cycles) . Threads that are artificially waiting because of CPU rate limits can 
be observed because their wait reason code is set to WrCpuRateControl . This mechanism operates 
through the normal routine of an APC object queued to the thread or threads inside the process cur-
rently responsible for the work . The event is eventually signaled by the DPC routine associated with a 
timer (firing every half a second) responsible for replenishing systemwide CPU usage requests.
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Dynamic Processor Addition and Replacement

As you’ve seen, developers can fine-tune which threads are allowed to (and in the case of the ideal 
processor, should) run on which processor. This works fine on systems that have a constant num-
ber of processors during their run time . (For example, desktop machines require shutting down the 
 computer to make any sort of hardware changes to the processor or their count .)

Today’s server systems, however, cannot afford the downtime that CPU replacement or addition 
normally requires . In fact, one example of when adding a CPU is required for a server is at times of 
high load that is above what the machine can support at its current level of performance . Having to 
shut down the server during a period of peak usage would defeat the purpose . To meet this require-
ment, the latest generation of server motherboards and systems support the addition of processors 
(as well as their replacement) while the machine is still running . The ACPI BIOS and related hardware 
on the machine have been specifically built to allow and be aware of this need, but operating system 
participation is required for full support .

Dynamic processor support is provided through the HAL, which notifies the kernel of a new 
 processor on the system through the function KeStartDynamicProcessor . This routine does similar 
work to that performed when the system detects more than one processor at startup and needs to 
initialize the structures related to them . When a dynamic processor is added, various system compo-
nents perform some additional work . For example, the memory manager allocates new pages and 
memory structures optimized for the CPU . It also initializes a new DPC kernel stack while the kernel 
initializes the global descriptor table (GDT), the interrupt Dispatch table (IDT), the processor control 
region (PCR), the process control block (PRCB), and other related structures for the processor .

Other executive parts of the kernel are also called, mostly to initialize the per-processor look-
aside lists for the processor that was added . For example, the I/O manager, executive look-aside list 
code, cache manager, and object manager all use per-processor look-aside lists for their frequently 
 allocated structures .

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported kernel 
variables to report the new processor . Different memory-manager masks and process seeds based on 
processor counts are also updated, and processor features need to be updated for the new proces-
sor to match the rest of the system (for example, enabling virtualization support on the newly added 
processor). The initialization sequence completes with the notification to the Windows Hardware Error 
Architecture (WHEA) component that a new processor is online .

The HAL is also involved in this process . It is called once to start the dynamic processor after the 
kernel is aware of it, and it is called again after the kernel has finished initialization of the processor. 
However, these notifications and callbacks only make the kernel aware and respond to processor 
changes . Although an additional processor increases the throughput of the kernel, it does nothing to 
help drivers .

To handle drivers, the system has a new default executive callback object, the ProcessorAdd 
callback, that drivers can register with for notifications. Similar to the callbacks that notify drivers of 
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power state or system time changes, this callback allows driver code to, for example, create a new 
worker thread if desirable so that it can handle more work at the same time .

Once drivers are notified, the final kernel component called is the Plug and Play manager, which 
adds the processor to the system’s device node and rebalances interrupts so that the new processor 
can handle interrupts that were already registered for other processors . CPU-hungry applications are 
also able to take advantage of newer processors as well .

However, a sudden change of affinity can have potentially breaking changes for a running 
 application (especially when going from a single-processor to a multiprocessor environment) through 
the appearance of potential race conditions or simply misdistribution of work (because the process 
might have calculated the perfect ratios at startup, based on the number of CPUs it was aware of) . As 
a result, applications do not take advantage of a dynamically added processor by default—they must 
request it .

The Windows APIs SetProcessAffinityUpdateMode and QueryProcessAffinityMode (which use 
the undocumented NtSet/QueryInformationProcess system call) tell the process manager that 
these  applications should have their affinity updated (by setting the AffinityUpdateEnable flag in 
 EPROCESS), or that they do not want to deal with affinity updates (by setting the AffinityPermanent 
flag in EPROCESS). Once an application has told the system that its affinity is permanent, it cannot 
later change its mind and request affinity updates, so this is a one-time change.

As part of KeStartDynamicProcessor, a new step has been added after interrupts are 
 rebalanced, which is to call the process manager to perform affinity updates through 
 PsUpdateActiveProcessAffinity. Some Windows core processes and services already have affinity 
updates enabled, while third-party software will need to be recompiled to take advantage of the new 
API call . The System process, Svchost processes, and Smss are all compatible with dynamic processor 
addition .

Job Objects

A job object is a nameable, securable, shareable kernel object that allows control of one or more 
processes as a group . A job object’s basic function is to allow groups of processes to be managed and 
manipulated as a unit . A process can be a member of only one job object . By default, its association 
with the job object can’t be broken and all processes created by the process and its descendants are 
associated with the same job object as well . The job object also records basic accounting information 
for all processes associated with the job and for all processes that were associated with the job but 
have since terminated . 

Jobs can also be associated with an I/O completion port object, which other threads might be 
waiting for, with the Windows GetQueuedCompletionStatus function . This allows interested parties 
(typically, the job creator) to monitor for limit violation and events that could affect the job’s security 
(such as a new process being created or a process abnormally exiting) .
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Job Limits
The following are some of the CPU-related and memory-related limits you can specify for a job:

 ■ Maximum number of active processes Limits the number of concurrently existing 
 processes in the job .

 ■ Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU time 
that the processes in the job can consume (including processes that have run and exited) . 
Once this limit is reached, by default all the processes in the job are terminated with an error 
code and no new processes can be created in the job (unless the limit is reset) . The job object 
is signaled, so any threads waiting for the job will be released . You can change this default 
 behavior with a call to SetInformationJobObject to set the EndOfJobTimeAction information 
class and request a notification to be sent through the job’s completion port instead.

 ■ Per-process user-mode CPU time limit Allows each process in the job to accumulate only 
a fixed maximum amount of user-mode CPU time. When the maximum is reached, the process 
terminates (with no chance to clean up) .

 ■ Job processor affinity Sets the processor affinity mask for each process in the job. 
( Individual threads can alter their affinity to any subset of the job affinity, but processes can’t 
alter their process affinity setting.)

 ■ Job group affinity Sets a list of groups to which the processes in the job can be assigned 
to. Any affinity changes are then subject to the group selection imposed by the limit. This is 
treated as a group-aware version of the job processor affinity limit (legacy), and prevents that 
limit from being used .

 ■ Job process priority class Sets the priority class for each process in the job . Threads can’t 
increase their priority relative to the class (as they normally can) . Attempts to increase thread 
priority are ignored . (No error is returned on calls to SetThreadPriority, but the increase 
doesn’t occur .)

 ■ Default working set minimum and maximum Defines the specified working set minimum 
and maximum for each process in the job . (This setting isn’t jobwide—each process has its 
own working set with the same minimum and maximum values .)

 ■ Process and job committed virtual memory limit Defines the maximum amount of virtual 
 address space that can be committed by either a single process or the entire job .

You can also place security limits on processes in a job . You can set a job so that each process 
runs under the same jobwide access token . You can then create a job to restrict processes from 
 impersonating or creating processes that have access tokens that contain the local administrator’s 
group. In addition, you can apply security filters so that when threads in processes contained in a 
job impersonate client threads, certain privileges and security IDs (SIDs) can be eliminated from the 
impersonation token .
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Finally, you can also place user-interface limits on processes in a job . Such limits include being able 
to restrict processes from opening handles to windows owned by threads outside the job, reading 
and/or writing to the clipboard, and changing the many user-interface system parameters via the 
Windows SystemParametersInfo function . These user-interface limits are managed by the Windows 
subsystem GDI/USER driver, Win32k .sys, and are enforced through one of the special callouts that it 
registers with the process manager, the job callout .

Job Sets
The job implementation also allows for finer grained control of which job object a given process 
will be associated with by enabling the creation of job sets . A job set is an array that associates a job 
member level with each job object that was created by the caller . Later, when the process manager 
attempts to associate a process with a job, it picks the correct job object from the set based on the 
job member level that was associated with the newly created process (which must be higher than or 
equal to the parent’s job member level . This allows the parent process to have created multiple job 
objects, and for its children to pick the appropriate one depending on which limits the parent might 
want to enforce .

EXPERIMENT: Viewing the Job Object
You can view named job objects with the Performance tool . (See the Job Object and Job Object 
Details performance objects .) You can view unnamed jobs with the kernel debugger !job or dt 
nt!_ejob command .

To see whether a process is associated with a job, you can use the kernel debugger !process 
command or Process Explorer . Follow these steps to create and view an unnamed job object:

1. From the command prompt, use the runas command to create a process running the 
command prompt (Cmd .exe) . For example, type runas /user:<domain> 
\< username> cmd . You’ll be prompted for your password . Enter your password, and 
a Command Prompt window will appear . The Windows service that executes runas 
commands creates an unnamed job to contain all processes (so that it can terminate 
these processes at logoff time) .

2. From the command prompt, run Notepad .exe .

3. Then run Process Explorer, and notice that the Cmd .exe and Notepad .exe processes 
are highlighted as part of a job. (You can configure the colors used to highlight 
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processes that are members of a job by clicking Options, Configure Colors.) Here is a 
screen shot showing these two processes:

4. Double-click either the Cmd .exe or Notepad .exe process to bring up the process 
 properties . You will see a Job tab in the process properties dialog box .

5. Click the Job tab to view the details about the job . In this case, there are no quotas 
associated with the job, but there are two member processes:

6. Now run the kernel debugger on the live system, display the process list with  !process, 
and find the recently created process running Cmd.exe. Then display the process by 
using !process <process ID>, find the address of the job object, and finally display 
the job object with the !job command . Here’s some partial debugger output of these 
 commands on a live system:

lkd> !process 0 1 cmd.exe 
PROCESS 8567b758  SessionId: 1  Cid: 0fc4    Peb: 7ffdf000  ParentCid: 00b0  
    DirBase: 1b3fb000  ObjectTable: e18dd7d0  HandleCount:  19.  
    Image: Cmd.exe  
...  
    BasePriority                      8  
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    CommitCharge                      636 
...    Job                               85557988  
  
lkd> !job 85557988  
Job at 85557988  
  TotalPageFaultCount      0  
  TotalProcesses           2 
  ActiveProcesses          2  
  TotalTerminatedProcesses 0  
  LimitFlags               0  
...

7. You can also use the dt command to display the job object and see the additional 
fields shown about the job, such as its member level, if it is part of a job set:

lkd> dt nt!_ejob 85557988  
nt!_EJOB  
   +0x000 Event            : _KEVENT 
... 
   +0x0b8 EndOfJobTimeAction : 0 
   +0x0bc CompletionPort   : 0x87e3d2e8  
   +0x0c0 CompletionKey    : 0x07a89508  
   +0x0c4 SessionId        : 1 
   +0x0c8 SchedulingClass  : 5 
... 
   +0x120 MemberLevel      : 0 
   +0x124 JobFlags         : 0

8. Finally, if the job has UI limits, you can use the dt command to display the Win32k job 
structure (tagW32JOB). To do this, you must first obtain the W32PROCESS structure 
pointer as shown in the experiment at the beginning of this chapter, and then display 
the pW32Job field within it. 

For example, here is the Win32k job structure for a process using the Block Access To Global 
Atom Table UI limitation . The structure shows the local atom table this process is using in 
pAtomTable . You can further explore this structure with the dt nt!_RTL_ATOM_TABLE command 
and see which atoms are defined:

lkd> ?? ((win32k!tagPROCESSINFO*)(((nt!_EPROCESS*)0x847c4740)->Win32Process))-
>pW32Job 
struct tagW32JOB * 0xfd573300 
   +0x000 pNext            : 0xff87c5d8 tagW32JOB 
   +0x004 Job              : 0x8356ab90 _EJOB 
   +0x008 pAtomTable       : 0x8e03eb18  
   +0x00c restrictions     : 0xff 
   +0x010 uProcessCount    : 1 
   +0x014 uMaxProcesses    : 4 
   +0x018 ppiTable         : 0xfe5072c0  -> 0xff97db18 tagPROCESSINFO 
   +0x01c ughCrt           : 0 
   +0x020 ughMax           : 0 
   +0x024 pgh              : (null)
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Conclusion

In this chapter, we examined the structure of processes and threads and jobs, saw how they are 
 created, and looked at how Windows decides which threads should run and for how long, and on 
which processor or processors .

In the next chapter, we’ll look at a part of the system that sometimes receives more attention than 
anything else: the Windows security reference monitor .
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C H A P T E R  6

Security

Preventing unauthorized access to sensitive data is essential in any environment in which  multiple 
users have access to the same physical or network resources . An operating system, as well as 

 individual users, must be able to protect files, memory, and configuration settings from  unwanted 
viewing and modification. Operating system security includes obvious mechanisms such as  accounts, 
passwords, and file protection. It also includes less obvious mechanisms, such as  protecting the 
 operating system from corruption, preventing less privileged users from performing actions 
( rebooting the computer, for example), and not allowing user programs to adversely affect the 
 programs of other users or the operating system .

In this chapter, we explain how every aspect of the design and implementation of Microsoft 
 Windows was influenced in some way by the stringent requirements of providing robust security .

Security Ratings

Having software, including operating systems, rated against well-defined standards helps the 
 government, corporations, and home users protect proprietary and personal data stored in computer 
systems . The current security rating standard used by the United States and many other countries is 
the Common Criteria (CC) . To understand the security capabilities designed into Windows, however, 
it’s useful to know the history of the security ratings system that influenced the design of Windows, 
the Trusted Computer System Evaluation Criteria (TCSEC) .

Trusted Computer System Evaluation Criteria
The National Computer Security Center (NCSC) was established in 1981 as part of the U .S . 
 Department of Defense’s (DoD) National Security Agency (NSA) . One goal of the NCSC was to 
 create a range of security ratings, listed in Table 6-1, to be used to indicate the degree of protection 
commercial operating systems, network components, and trusted applications offer . These security 
 ratings, which can be found at http://csrc.nist.gov/publications/history/dod85.pdf, were defined in 1983 
and are commonly referred to as “the Orange Book .”

The TCSEC standard consists of “levels of trust” ratings, where higher levels build on lower levels by 
adding more rigorous protection and validation requirements . No operating system meets the A1, or 
“Verified Design,” rating. Although a few operating systems have earned one of the B-level ratings, C2 
is considered sufficient and the highest rating practical for a general-purpose operating system.
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TABLE 6-1 TCSEC Rating Levels

Rating Description

A1 Verified Design

B3 Security Domains

B2 Structured Protection

B1 Labeled Security Protection

C2 Controlled Access Protection 

C1 Discretionary Access Protection (obsolete)

D Minimal Protection

In July 1995, Windows NT 3.5 (Workstation and Server) with Service Pack 3 was the first version 
of Windows NT to earn the C2 rating . In March 1999, Windows NT 4 with Service Pack 3 achieved an 
E3 rating from the U .K . government’s Information Technology Security (ITSEC) organization, a rating 
equivalent to a U .S . C2 rating . In November 1999, Windows NT 4 with Service Pack 6a earned a C2 
rating in both stand-alone and networked configurations.

The following were the key requirements for a C2 security rating, and they are still considered the 
core requirements for any secure operating system:

 ■ A secure logon facility, which requires that users can be uniquely identified and that they must 
be granted access to the computer only after they have been authenticated in some way .

 ■ Discretionary access control, which allows the owner of a resource (such as a file) to determine 
who can access the resource and what they can do with it . The owner grants rights that permit 
various kinds of access to a user or to a group of users .

 ■ Security auditing, which affords the ability to detect and record security-related events or any 
attempts to create, access, or delete system resources. Logon identifiers record the identities 
of all users, making it easy to trace anyone who performs an unauthorized action .

 ■ Object reuse protection, which prevents users from seeing data that another user has deleted 
or from accessing memory that another user previously used and then released . For example, 
in some operating systems, it’s possible to create a new file of a certain length and then exam-
ine the contents of the file to see data that happens to have occupied the location on the disk 
where the file is allocated. This data might be sensitive information that was stored in another 
user’s file but had been deleted. Object reuse protection prevents this potential security hole 
by initializing all objects, including files and memory, before they are allocated to a user.

Windows also meets two requirements of B-level security:

 ■ Trusted path functionality, which prevents Trojan horse programs from being able to 
 intercept users’ names and passwords as they try to log on . The trusted path functionality in 
 Windows comes in the form of its Ctrl+Alt+Delete logon-attention sequence, which cannot be 
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 intercepted by nonprivileged applications . This sequence of keystrokes, which is also known 
as the secure attention sequence (SAS), always displays a system-controlled Windows security 
screen (if a user is already logged on) or the logon screen so that would-be Trojan horses can 
easily be recognized . (The secure attention sequence can also be sent programmatically via 
the SendSAS API, if group policy allows it .) A Trojan horse presenting a fake logon dialog box 
will be bypassed when the SAS is entered . 

 ■ Trusted facility management, which requires support for separate account roles for 
 administrative functions . For example, separate accounts are provided for administration 
( Administrators), user accounts charged with backing up the computer, and standard users .

Windows meets all of these requirements through its security subsystem and related components .

The Common Criteria
In January 1996, the United States, United Kingdom, Germany, France, Canada, and the Netherlands 
released the jointly developed Common Criteria for Information Technology Security Evaluation 
(CCITSE) security evaluation specification. CCITSE, which is usually referred to as the Common Criteria 
(CC), is the recognized multinational standard for product security evaluation . The CC home page is at 
www .niap-ccevs .org/cc-scheme/ .

The CC is more flexible than the TCSEC trust ratings and has a structure closer to the ITSEC 
 standard than to the TCSEC standard . The CC includes the concept of a Protection Profile (PP), used 
to collect security requirements into easily specified and compared sets, and the concept of a Security 
Target (ST), which contains a set of security requirements that can be made by reference to a PP . 
The CC also defines a range of seven Evaluation Assurance Levels (EALs), which indicate a level of 
confidence in the certification. In this way, the CC (like the ITSEC standard before it) removes the link 
between functionality and assurance level that was present in TCSEC and earlier certification schemes. 

Windows 2000, Windows XP, Windows Server 2003, and Windows Vista Enterprise all achieved 
Common Criteria certification under the Controlled Access Protection Profile (CAPP). This is 
roughly equivalent to a TCSEC C2 rating. All received a rating of EAL 4+, the “plus” denoting “flaw 
 remediation .” EAL 4 is the highest level recognized across national boundaries . 

In March 2011, Windows 7 and Windows Server 2008 R2 were evaluated as meeting the 
 requirements of the US Government Protection Profile for General-Purpose Operating Systems in a 
Networked Environment, version 1 .0, 30 August 2010 (GPOSPP) (http://www.commoncriteriaportal.org 
/files/ppfiles/pp_gpospp_v1.0.pdf ). The certification includes the Hyper-V hypervisor, and again 
 Windows achieved Evaluation Assurance Level 4 with flaw remediation (EAL-4+). The validation 
report can be found at http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-vr.pdf, and the 
 description of the security target, giving details of the requirements satisfied, can be found at  
http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-st.pdf . 
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Security System Components

These are the core components and databases that implement Windows security:

 ■ Security reference monitor (SRM) A component in the Windows executive 
( %SystemRoot%\System32\Ntoskrnl.exe) that is responsible for defining the access token 
data structure to represent a security context, performing security access checks on objects, 
 manipulating privileges (user rights), and generating any resulting security audit messages .

 ■ Local Security Authority subsystem (LSASS) A user-mode process running the image 
%SystemRoot%\System32\Lsass.exe that is responsible for the local system security policy 
(such as which users are allowed to log on to the machine, password policies, privileges 
granted to users and groups, and the system security auditing settings), user authentication, 
and sending security audit messages to the Event Log . The Local Security Authority service 
(Lsasrv—%SystemRoot%\System32\Lsasrv.dll), a library that LSASS loads, implements most of 
this functionality .

 ■ LSASS policy database A database that contains the local system security policy settings . 
This database is stored in the registry in an ACL-protected area under HKLM\SECURITY. It 
includes such information as what domains are entrusted to authenticate logon attempts, 
who has permission to access the system and how (interactive, network, and service logons), 
who is assigned which privileges, and what kind of security auditing is to be performed . The 
LSASS policy database also stores “secrets” that include logon information used for cached 
domain logons and Windows service user-account logons . (See Chapter 4, “Management 
 Mechanisms,” for more information on Windows services .)

 ■ Security Accounts Manager (SAM) A service responsible for managing the database that 
contains the user names and groups defined on the local machine. The SAM service, which is 
implemented as %SystemRoot%\System32\Samsrv.dll, is loaded into the LSASS process.

 ■ SAM database A database that contains the defined local users and groups, along with their 
passwords and other attributes . On domain controllers, the SAM does not store the domain-
defined users, but stores the system’s administrator recovery account definition and password. 
This database is stored in the registry under HKLM\SAM.

 ■ Active Directory A directory service that contains a database that stores information about 
objects in a domain . A domain is a collection of computers and their associated security 
groups that are managed as a single entity . Active Directory stores information about the 
 objects in the domain, including users, groups, and computers . Password information and 
privileges for domain users and groups are stored in Active Directory, which is replicated 
across the computers that are designated as domain controllers of the domain . The Active 
 Directory server, implemented as %SystemRoot%\System32\Ntdsa.dll, runs in the LSASS 
 process . For more information on Active Directory, see Chapter 7, “Networking .”
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 ■ Authentication packages These include dynamic-link libraries (DLLs) that run both in the 
context of the LSASS process and client processes, and implement Windows authentication 
policy . An authentication DLL is responsible for authenticating a user, by checking whether a 
given user name and password match, and if so, returning to the LSASS information detailing 
the user’s security identity, which LSASS uses to generate a token .

 ■ Interactive logon manager (Winlogon) A user-mode process running %SystemRoot% 
\System32\Winlogon.exe that is responsible for responding to the SAS and for managing 
interactive logon sessions. Winlogon creates a user’s first process when the user logs on, for 
example .

 ■ Logon user interface (LogonUI) A user-mode process running %SystemRoot%\System32 
\LogonUI.exe that presents users with the user interface they can use to authenticate them-
selves on the system . LogonUI uses credential providers to query user credentials through 
various methods .

 ■ Credential providers (CPs) In-process COM objects that run in the LogonUI  process 
( started on demand by Winlogon when the SAS is performed) and used to obtain a 
 user’s name and password, smartcard PIN, or biometric data (such as a fingerprint). The 
 standard CPs are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32 
\SmartcardCredentialProvider.dll.

 ■ Network logon service (Netlogon) A Windows service (%SystemRoot%\System32 
\Netlogon.dll) that sets up the secure channel to a domain controller, over which security 
requests—such as an interactive logon (if the domain controller is running Windows NT 4) or 
LAN Manager and NT LAN Manager (v1 and v2) authentication validation—are sent . Netlogon 
is also used for Active Directory logons . 

 ■ Kernel Security Device Driver (KSecDD) A kernel-mode library of functions that 
 implement the advanced local procedure call (ALPC) interfaces that other kernel mode 
 security components, including the Encrypting File System (EFS), use to communicate with 
LSASS in user mode. KSecDD is located in %SystemRoot%\System32\Drivers\Ksecdd.sys.

 ■ AppLocker A mechanism that allows administrators to specify which executable files, 
DLLs, and scripts can be used by specified users and groups. AppLocker consists of a driver 
(%SystemRoot%\System32\Drivers\AppId.sys) and a service (%SystemRoot%\System32 
\AppIdSvc.dll) running in a SvcHost process.

Figure 6-1 shows the relationships among some of these components and the databases they 
manage .
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FIGURE 6-1 Windows security components

EXPERIMENT: Looking Inside HKLM\SAM and HKLM\Security
The security descriptors associated with the SAM and Security keys in the registry prevent 
 access by any account other than the local system account . One way to gain access to these 
keys for exploration is to reset their security, but that can weaken the system’s security . Another 
way is to execute Regedit .exe while running as the local system account . This can be done using 
the PsExec tool from Windows Sysinternals with the –s option, as shown here: 

C:\>psexec –s –i –d c:\windows\regedit.exe
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The SRM, which runs in kernel mode, and LSASS, which runs in user mode, communicate using 
the ALPC facility described in Chapter 3, “System Mechanisms .” During system initialization, the SRM 
creates a port, named SeRmCommandPort, to which LSASS connects . When the LSASS process starts, 
it creates an ALPC port named SeLsaCommandPort . The SRM connects to this port, resulting in the 
creation of private communication ports . The SRM creates a shared memory section for messages 
longer than 256 bytes, passing a handle in the connect call . Once the SRM and LSASS connect to each 
other during system initialization, they no longer listen on their respective connect ports . Therefore, a 
later user process has no way to connect successfully to either of these ports for malicious purposes—
the connect request will never complete .

Figure 6-2 shows the communication paths as they exist after system initialization .
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FIGURE 6-2 Communication between the SRM and LSASS
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Protecting Objects

Object protection and access logging is the essence of discretionary access control and auditing . 
The objects that can be protected on Windows include files, devices, mailslots, pipes (named and 
anonymous), jobs, processes, threads, events, keyed events, event pairs, mutexes, semaphores, shared 
memory sections, I/O completion ports, LPC ports, waitable timers, access tokens, volumes, window 
stations, desktops, network shares, services, registry keys, printers, Active Directory objects, and 
so on—theoretically, anything managed by the executive object manager . In practice, objects that 
are not exposed to user mode (such as driver objects) are usually not protected . Kernel-mode code 
is trusted and usually uses interfaces to the object manager that do not perform access checking . 
Because system resources that are exported to user mode (and hence require security validation) are 
implemented as objects in kernel mode, the Windows object manager plays a key role in enforcing 
object security . 

We described the object manager in Chapter 3, showing how the object manager maintains the 
security descriptor for objects . This is illustrated in Figure 6-3 using the Sysinternals Winobj tool, 
showing the security descriptor for a section object in the user’s session. Although files are the 
 resources most commonly associated with object protection, Windows uses the same security model 
and mechanism for executive objects as it does for files in the file system. As far as access controls are 
concerned, executive objects differ from files only in the access methods supported by each type of 
object . 

As you will see later, what is shown in Figure 6-3 is actually the object’s discretionary access control 
list, or DACL . We will describe DACLs in detail in a later section . 

To control who can manipulate an object, the security system must first be sure of each user’s 
identity . This need to guarantee the user’s identity is the reason that Windows requires authenticated 
logon before accessing any system resources . When a process requests a handle to an object, the ob-
ject manager and the security system use the caller’s security identification and the object’s security 
descriptor to determine whether the caller should be assigned a handle that grants the process access 
to the object it desires .
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FIGURE 6-3 An executive object and its security descriptor, viewed by Winobj 

As discussed later in this chapter, a thread can assume a different security context than that of 
its process . This mechanism is called impersonation, and when a thread is impersonating, security 
validation mechanisms use the thread’s security context instead of that of the thread’s process . When 
a thread isn’t impersonating, security validation falls back on using the security context of the thread’s 
owning process . It’s important to keep in mind that all the threads in a process share the same handle 
table, so when a thread opens an object—even if it’s impersonating—all the threads of the process 
have access to the object .

Sometimes, validating the identity of a user isn’t enough for the system to grant access to 
a  resource that should be accessible by the account . Logically, one can think of a clear distinc-
tion  between a service running under the Alice account and an unknown application that Alice 
 downloaded while browsing the Internet . Windows achieves this kind of intra-user isolation with the 
Windows integrity mechanism, which implements integrity levels . The Windows integrity mechanism 
is used by User Account Control (UAC) elevations, Protected Mode Internet Explorer (PMIE), and User 
Interface Privilege Isolation (UIPI) .

Access Checks
The Windows security model requires that a thread specify up front, at the time that it opens an 
object, what types of actions it wants to perform on the object . The object manager calls the SRM 
to perform access checks based on a thread’s desired access, and if the access is granted, a handle is 
assigned to the thread’s process with which the thread (or other threads in the process) can perform 
further operations on the object . As explained in Chapter 3, the object manager records the access 
permissions granted for a handle in the process’ handle table .
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One event that causes the object manager to perform security access validation is when a  process 
opens an existing object using a name . When an object is opened by name, the object manager 
performs a lookup of the specified object in the object manager namespace. If the object isn’t located 
in a secondary namespace, such as the configuration manager’s registry namespace or a file system 
driver’s file system namespace, the object manager calls the internal function ObpCreateHandle once 
it locates the object . As its name implies, ObpCreateHandle creates an entry in the process’ handle 
table that becomes associated with the object . ObpCreateHandle first calls ObpGrantAccess to see if 
the thread has permission to access the object; if the thread does, ObpCreateHandle calls the execu-
tive function ExCreateHandle to create the entry in the process handle table . ObpGrantAccess calls 
ObCheckObjectAccess to initiate the security access check .

ObpGrantAccess passes to ObCheckObjectAccess the security credentials of the thread opening 
the object, the types of access to the object that the thread is requesting (read, write, delete, and so 
forth), and a pointer to the object . ObCheckObjectAccess first locks the object’s security descriptor 
and the security context of the thread . The object security lock prevents another thread in the system 
from changing the object’s security while the access check is in progress . The lock on the thread’s 
security context prevents another thread (from that process or a different process) from altering the 
security identity of the thread while security validation is in progress . ObCheckObjectAccess then calls 
the object’s security method to obtain the security settings of the object . (See Chapter 3 for a descrip-
tion of object methods .) The call to the security method might invoke a function in a different execu-
tive component . However, many executive objects rely on the system’s default security  management 
support .

When an executive component defining an object doesn’t want to override the SRM’s  default 
 security policy, it marks the object type as having default security . Whenever the SRM calls an 
object’s security method, it first checks to see whether the object has default security . An  object 
with default security stores its security information in its header, and its security method is 
 SeDefaultObjectMethod . An object that doesn’t rely on default security must manage its own secu-
rity information and supply a specific security method. Objects that rely on default security include 
 mutexes, events, and semaphores . A file object is an example of an object that overrides default 
security. The I/O manager, which defines the file object type, has the file system driver on which a 
file resides manage (or choose not to implement) the security for its files. Thus, when the system 
queries the security on a file object that represents a file on an NTFS volume, the I/O manager file 
object security method retrieves the file’s security using the NTFS file system driver. Note, however, 
that  ObCheckObjectAccess isn’t executed when files are opened, because they reside in  secondary 
namespaces; the system invokes a file object’s security method only when a thread explicitly  queries 
or sets the security on a file (with the Windows SetFileSecurity or GetFileSecurity functions, for 
 example) .

After obtaining an object’s security information, ObCheckObjectAccess invokes the SRM  function 
SeAccessCheck . SeAccessCheck is one of the functions at the heart of the Windows security model . 
Among the input parameters SeAccessCheck accepts are the object’s security information, the 
security identity of the thread as captured by ObCheckObjectAccess, and the access that the thread 
is  requesting . SeAccessCheck returnsTrue or False, depending on whether the thread is granted the 
access it requested to the object .
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Another event that causes the object manager to execute access validation is when a process 
 references an object using an existing handle . Such references often occur indirectly, as when a 
process calls on a Windows API to manipulate an object and passes an object handle . For example, a 
thread opening a file can request read permission to the file. If the thread has permission to  access 
the object in this way, as dictated by its security context and the security settings of the file, the 
 object manager creates a handle—representing the file—in the handle table of the thread’s process. 
The types of accesses the process is granted through the handle are stored with the handle by the 
object manager .

Subsequently, the thread could attempt to write to the file using the WriteFile Windows function, 
passing the file’s handle as a parameter. The system service NtWriteFile, which WriteFile calls via  
Ntdll .dll, uses the object manager function ObReferenceObjectByHandle to obtain a pointer to 
the file object from the handle. ObReferenceObjectByHandle accepts the access that the caller 
wants from the object as a parameter. After finding the handle entry in the process’ handle table, 
 ObReferenceObjectByHandle compares the access being requested with the access granted at the 
time the file was opened. In this example, ObReferenceObjectByHandle will indicate that the write 
operation should fail because the caller didn’t obtain write access when the file was opened.

The Windows security functions also enable Windows applications to define their own private 
objects and to call on the services of the SRM (through the AuthZ user-mode APIs, described later) to 
enforce the Windows security model on those objects . Many kernel-mode functions that the object 
manager and other executive components use to protect their own objects are exported as Windows 
user-mode APIs . The user-mode equivalent of SeAccessCheck is the AuthZ API AccessCheck . Windows 
applications can therefore leverage the flexibility of the security model and transparently integrate 
with the authentication and administrative interfaces that are present in Windows .

The essence of the SRM’s security model is an equation that takes three inputs: the security iden-
tity of a thread, the access that the thread wants to an object, and the security settings of the object . 
The output is either “yes” or “no” and indicates whether or not the security model grants the thread 
the access it desires . The following sections describe the inputs in more detail and then document the 
model’s access-validation algorithm .

Security Identifiers
Instead of using names (which might or might not be unique) to identify entities that perform actions 
in a system, Windows uses security identifiers (SIDs). Users have SIDs, and so do local and domain 
groups, local computers, domains, domain members, and services . A SID is a variable-length  numeric 
value that consists of a SID structure revision number, a 48-bit identifier authority value, and a 
 variable number of 32-bit subauthority or relative identifier (RID) values. The authority value identi-
fies the agent that issued the SID, and this agent is typically a Windows local system or a domain. 
 Subauthority values identify trustees relative to the issuing authority, and RIDs are simply a way for 
Windows to create unique SIDs based on a common base SID . Because SIDs are long and Windows 
takes care to generate truly random values within each SID, it is virtually impossible for Windows to 
issue the same SID twice on machines or domains anywhere in the world . 
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When displayed textually, each SID carries an S prefix, and its various components are separated 
with hyphens:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows security 
authority), and four subauthority values plus one RID (1128) make up the remainder of the SID . This 
SID is a domain SID, but a local computer on the domain would have a SID with the same revision 
number, identifier authority value, and number of subauthority values.

When you install Windows, the Windows Setup program issues the computer a machine SID . 
 Windows assigns SIDs to local accounts on the computer . Each local-account SID is based on the 
source computer’s SID and has a RID at the end . RIDs for user accounts and groups start at 1000 and 
increase in increments of 1 for each new user or group . Similarly, Dcpromo .exe (Domain Controller 
Promote), the utility used to create a new Windows domain, reuses the computer SID of the computer 
being promoted to domain controller as the domain SID, and it re-creates a new SID for the computer 
if it is ever demoted . Windows issues to new domain accounts SIDs that are based on the domain SID 
and have an appended RID (again starting at 1000 and increasing in increments of 1 for each new 
user or group) . A RID of 1028 indicates that the SID is the twenty-ninth SID the domain issued .

Windows issues SIDs that consist of a computer or domain SID with a predefined RID to many 
 predefined accounts and groups. For example, the RID for the administrator account is 500, and 
the RID for the guest account is 501 . A computer’s local administrator account, for example, has the 
 computer SID as its base with the RID of 500 appended to it:

S-1-5-21-13124455-12541255-61235125-500

Windows also defines a number of built-in local and domain SIDs to represent well-known groups. 
For example, a SID that identifies any and all accounts (except anonymous users) is the Everyone 
SID: S-1-1-0 . Another example of a group that a SID can represent is the network group, which is the 
group that represents users who have logged on to a machine from the network . The network-group 
SID is S-1-5-2 . Table 6-2, reproduced here from the Windows SDK documentation, shows some basic 
well-known SIDs, their numeric values, and their use. Unlike users’ SIDs, these SIDs are predefined 
constants, and have the same values on every Windows system and domain in the world. Thus, a file 
that is accessible by members of the Everyone group on the system where it was created is also ac-
cessible to Everyone on any other system or domain to which the hard drive where it resides happens 
to be moved . Users on those systems must, of course, authenticate to an account on those systems 
before becoming members of the Everyone group . 

Note See Microsoft Knowledge Base article 243330 for a list of defined SIDs at  
http://support.microsoft.com/kb/243330 .

Finally, Winlogon creates a unique logon SID for each interactive logon session . A typical use of 
a logon SID is in an access control entry (ACE) that allows access for the duration of a client’s logon 
session . For example, a Windows service can use the LogonUser function to start a new logon session . 
The LogonUser function returns an access token from which the service can extract the logon SID . The 
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service can then use the SID in an ACE that allows the client’s logon session to access the  interactive 
window station and desktop . The SID for a logon session is S-1-5-5-0, and the RID is randomly 
 generated .

TABLE 6-2 A Few Well-Known SIDs

SID Group Use

S-1-0-0 Nobody Used when the SID is unknown .

S-1-1-0 Everyone A group that includes all users except anonymous users .

S-1-2-0 Local Users who log on to terminals locally (physically) connected to the system .

S-1-3-0 Creator Owner ID A security identifier to be replaced by the security identifier of the user 
who created a new object . This SID is used in inheritable ACEs .

S-1-3-1 Creator Group ID Identifies a security identifier to be replaced by the primary-group SID of 
the user who created a new object . Use this SID in inheritable ACEs .

S-1-9-0 Resource Manager Used by third-party applications performing their own security on internal 
data (such as Microsoft Exchange) . 

EXPERIMENT: Using PsGetSid and Process Explorer to View SIDs
You can easily see the SID representation for any account you’re using by running the PsGetSid 
utility from Sysinternals . 

PsGetSid’s options allow you to translate machine and user account names to their 
 corresponding SIDs and vice versa .

If you run PsGetSid with no options, it prints the SID assigned to the local computer . By 
using the fact that the Administrator account always has a RID of 500, you can determine the 
name assigned to the account (in cases where a system administrator has renamed the account 
for  security reasons) simply by passing the machine SID appended with -500 as PsGetSid’s 
 command-line argument .

To obtain the SID of a domain account, enter the user name with the domain as a prefix:

c:\>psgetsid redmond\daryl

You can determine the SID of a domain by specifying the domain’s name as the argument to 
PsGetSid:

c:\>psgetsid Redmond

Finally, by examining the RID of your own account, you know at least a number of security 
accounts (equal to the number resulting from subtracting 999 from your RID) have been creat-
ed in your domain or on your local machine (depending on whether you are using a domain or 
local machine account) . You can determine what accounts have been assigned RIDs by passing 
a SID with the RID you want to query to PsGetSid . If PsGetSid reports that no mapping between 
the SID and an account name was possible and the RID is lower than that of your account, you 
know that the account assigned the RID has been deleted .
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For example, to find out the name of the account assigned the twenty-eighth RID, pass the 
domain SID appended with -1027 to PsGetSid:

c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027  
Account for S-1-5-21-1787744166-3910675280-2727264193-1027:  
User: redmond\daryl

Process Explorer can also show you information on account and group SIDs on your system 
through its Security tab . This tab shows you information such as who owns this process and 
which groups the account is a member of . To view this information, simply double-click on any 
process (for example, Explorer .exe) in the Process list, and then click on the Security tab . You 
should see something similar to the following:

The information displayed in the User field contains the friendly name of the account owning 
this process, while the SID field contains the actual SID value. The Group list includes infor-
mation on all the groups that this account is a member of . (Groups are described later in this 
chapter .)

Integrity Levels
As mentioned earlier, integrity levels can override discretionary access to differentiate a process and 
objects running as and owned by the same user, offering the ability to isolate code and data within 
a user account . The mechanism of mandatory integrity control (MIC) allows the SRM to have more 
detailed information about the nature of the caller by associating it with an integrity level . It also 
 provides information on the trust required to access the object by defining an integrity level for it.  
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These integrity levels are specified by a SID . Though integrity levels can be arbitrary values, the 
 system uses five primary levels to separate privilege levels, as described in Table 6-3 .

TABLE 6-3 Integrity Level SIDs

SID Name (Level) Use

S-1-16-0x0 Untrusted (0) Used by processes started by the Anonymous group . It blocks most write 
 access .

S-1-16-0x1000 Low (1) Used by Protected Mode Internet Explorer . It blocks write access to most 
 objects (such as files and registry keys) on the system.

S-1-16-0x2000 Medium (2) Used by normal applications being launched while UAC is enabled .

S-1-16-0x3000 High (3) Used by administrative applications launched through elevation when UAC 
is enabled, or normal applications if UAC is disabled and the user is an 
 administrator .

S-1-16-0x4000 System (4) Used by services and other system-level applications (such as Wininit, 
Winlogon, Smss, and so forth) .

EXPERIMENT: Looking at the Integrity Level of Processes
You can use Process Explorer from Sysinternals to quickly display the integrity level for the 
 processes on your system . The following steps demonstrate this functionality .

1. Launch Internet Explorer in Protected Mode .

2. Open an elevated Command Prompt window .

3. Open Microsoft Paint normally (without elevating it) .

4. Now open Process Explorer, right-click on any of the columns in the Process list, and 
then click Select Columns . You should see a dialog box similar to the one shown here:
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5. Select the Integrity Level check box, and click OK to close the dialog box and save the 
change .

6. Process Explorer will now show you the integrity level of the processes on your system . 
You should see the Protected Mode Internet Explorer process at Low, Microsoft Paint 
at Medium, and the elevated command prompt at High . Also note that the services 
and system processes are running at an even higher integrity level, System .

Every process has an integrity level that is represented in the process’ token and propagated 
 according to the following rules:

 ■ A process normally inherits the integrity level of its parent (which means an elevated 
 command prompt will spawn other elevated processes) .

 ■ If the file object for the executable image to which the child process belongs has an integrity 
level and the parent process’ integrity level is medium or higher, the child process will inherit 
the lower of the two .

 ■ A parent process can create a child process with an explicit integrity level lower than its own 
(for example, when launching Protected Mode Internet Explorer from an elevated  command 
prompt) . To do this, it uses DuplicateTokenEx to duplicate its own access token, it uses 
 SetTokenInformation to change the integrity level in the new token to the desired level, and 
then it calls CreateProcessAsUser with that new token . 
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EXPERIMENT: Understanding Protected Mode Internet Explorer
As mentioned earlier, one of the users of the Windows integrity mechanism is Internet 
 Explorer’s Protected Mode, also called Protected Mode Internet Explorer (PMIE) . This feature 
was added in Internet Explorer 7 to take advantage of the Windows integrity levels . This experi-
ment will show you how PMIE utilizes integrity levels to provide a safer Internet experience . To 
do this, we’ll use Process Monitor to trace Internet Explorer’s behavior .

1. Make sure that you haven’t disabled UAC and PMIE on your systems (they are both on 
by default), and close any running instances of Internet Explorer .

2. Run Process Monitor, and select Filter, Filter to display the filtering dialog box. Add an 
include filter for the process name Iexplore.exe, as shown next:

3. Run Process Explorer, and repeat the previous experiment to display the Integrity Level 
column .

4. Now launch Internet Explorer. You should see a flurry of events appear in the Process 
Monitor window and a quick succession of events in Process Explorer, showing some 
processes starting and some exiting .

Once Internet Explorer is running, Process Explorer will show you two new Iexplore .exe 
processes, the parent Iexplore .exe running at medium integrity level and its child running at low 
integrity level . 

Part of the added protection offered by PMIE is that Iexplore .exe processes that access 
websites run at low integrity . Because Internet Explorer hosts tabs in multiple processes, if you 
create additional tabs you might see additional instances of Iexplore .exe . There is one parent 
Iexplore .exe process that acts as a broker, providing access to parts of the system not accessible 
by those running at low integrity—for example, to save or open files from other parts of the 
file system. 
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Table 6-3 lists the integrity level associated with processes, but what about objects? Objects also 
have an integrity level stored as part of their security descriptor, in a structure that is called the 
 mandatory label .

To support migrating from previous versions of Windows (whose registry keys and files would 
not include integrity-level information), as well as to make it simpler for application developers, all 
objects have an implicit integrity level to avoid having to manually specify one . This implicit integrity 
level is the medium level, meaning that the mandatory policy (described shortly) on the object will be 
 performed on tokens accessing this object with an integrity level lower than medium .

When a process creates an object without specifying an integrity level, the system checks the 
integrity level in the token . For tokens with a level of medium or higher, the implicit integrity level of 
the object remains medium . However, when a token contains an integrity level lower than medium, 
the object is created with an explicit integrity level that matches the level in the token .

The reason that objects that are created by high or system integrity-level processes have a 
 medium integrity level themselves is so that users can disable and enable UAC: if object integrity 
levels always inherited their creator’s integrity level, the applications of an administrator who disables 
UAC and subsequently re-enables it would potentially fail because the administrator would not be 
able to modify any registry settings or files created when running at the high integrity level. Objects 
can also have an explicit integrity level that is set by the system or by the creator of the object . For 
example, the following objects are given an explicit integrity level by the kernel when it creates them:

 ■ Processes

 ■ Threads

 ■ Tokens

 ■ Jobs

The reason for assigning an integrity level to these objects is to prevent a process for the same 
user, but one running at a lower integrity level, from accessing these objects and modifying their 
content or behavior (for example, DLL injection or code modification).

EXPERIMENT: Looking at the Integrity Level of Objects
You can use the Accesschk tool from Sysinternals to display the integrity level of objects on the 
system, such as files, processes, and registry keys. Here’s an experiment showing the purpose of 
the LocalLow directory in Windows .

1. Browse to C:\Users\UserName\ in a command prompt.
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2. Try running Accesschk on the AppData folder, as follows: 

C:\Users\UserName> accesschk –v appdata

3. Note the differences between Local and LocalLow in your output, similar to the one 
shown here:

C:\Users\UserName\AppData\Local 
  Medium Mandatory Level (Default) [No-Write-Up] 
  [...]C:\Users\UserName\AppData\LocalLow 
  Low Mandatory Level [No-Write-Up] 
  [...] 
C:\Users\UserName\AppData\Roaming 
  Medium Mandatory Level (Default) [No-Write-Up] 
  [...]

4. Notice that the LocalLow directory has an integrity level that is set to Low, while the 
Local and Roaming directories have an integrity level of Medium (Default) . The default 
means the system is using an implicit integrity level .

5. You can pass the –e flag to Accesschk so that it displays only explicit integrity  levels. 
If you run the tool on the AppData folder again, you’ll notice only the LocalLow 
 information is displayed .

The –o (Object), –k (Registry Key), and –p (Process) flags allow you to specify something 
other than a file or directory.

Apart from an integrity level, objects also have a mandatory policy, which defines the actual level 
of protection that’s applied based on the integrity-level check . Three types are possible, shown in 
Table 6-4 . The integrity level and the mandatory policy are stored together in the same ACE .

TABLE 6-4 Object Mandatory Policies

Policy Present on, by Default Description

No-Write-Up Implicit on all objects Used to restrict write access coming from a lower integrity 
level process to the object .

No-Read-Up Only on process objects Used to restrict read access coming from a lower integrity 
level process to the object. Specific use on process objects 
protects against information leakage by blocking address 
space reads from an external process .

No-Execute-Up Only on binaries  implementing 
COM classes

Used to restrict execute access coming from a lower integ-
rity level process to the object. Specific use on COM classes 
is to restrict launch-activation permissions on a COM class .
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Tokens
The SRM uses an object called a token (or access token) to identify the security context of a process or 
thread . A security context consists of information that describes the account, groups, and privileges 
associated with the process or thread . Tokens also include information such as the session ID, the 
integrity level, and UAC virtualization state . (We’ll describe both privileges and UAC’s virtualization 
mechanism later in this chapter .)

During the logon process (described at the end of this chapter), LSASS creates an initial token 
to represent the user logging on . It then determines whether the user logging on is a member of a 
 powerful group or possesses a powerful privilege . The groups checked for in this step are as follows: 

 ■ Built-In Administrators

 ■ Certificate Administrators

 ■ Domain Administrators

 ■ Enterprise Administrators

 ■ Policy Administrators

 ■ Schema Administrators

 ■ Domain Controllers

 ■ Enterprise Read-Only Domain Controllers

 ■ Read-Only Domain Controllers

 ■ Account Operators

 ■ Backup Operators

 ■ Cryptographic Operators

 ■ Network Configuration Operators

 ■ Print Operators

 ■ System Operators

 ■ RAS Servers

 ■ Power Users

 ■ Pre-Windows 2000 Compatible Access
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Many of the groups listed are used only on domain-joined systems and don’t give users local 
 administrative rights directly . Instead, they allow users to modify domainwide settings . 

The privileges checked for are

 ■ SeBackupPrivilege

 ■ SeCreateTokenPrivilege

 ■ SeDebugPrivilege

 ■ SeImpersonatePrivilege

 ■ SeLabelPrivilege

 ■ SeLoadDriverPrivilege

 ■ SeRestorePrivilege

 ■ SeTakeOwnershipPrivilege

 ■ SeTcbPrivilege 

These privileges are described in detail in a later section . 

If one or more of these groups or privileges are present, LSASS creates a restricted token for the 
user (also called a filtered admin token), and it creates a logon session for both. The standard user 
token is attached to the initial process or processes that Winlogon starts (by default, Userinit .exe) .

Note If UAC has been disabled, administrators run with a token that includes their 
 administrator group memberships and privileges .

Because child processes by default inherit a copy of the token of their creators, all processes in 
the user’s session run under the same token . You can also generate a token by using the Windows 
 LogonUser function . You can then use this token to create a process that runs within the security 
context of the user logged on through the LogonUser function by passing the token to the Windows 
CreateProcessAsUser function . The CreateProcessWithLogon function combines these into a single call, 
which is how the Runas command launches processes under alternative tokens .

Tokens vary in size because different user accounts have different sets of privileges and  associated 
group accounts . However, all tokens contain the same types of information . The most important 
 contents of a token are represented in Figure 6-4 .
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Token source

Impersonation type

Token ID

Authentication ID

Modified ID

Expiration time

Default primary group

Default DACL

User account SID

Group 1 SID

Group n SID

Restricted SID 1

Restricted SID n

Privilege 1

Privilege n

Session ID

Flags

Logon session

Mandatory policy

FIGURE 6-4 Access tokens

The security mechanisms in Windows use two components to determine what objects can be 
 accessed and what secure operations can be performed . One component comprises the token’s 
user account SID and group SID fields. The security reference monitor (SRM) uses SIDs to determine 
whether a process or thread can obtain requested access to a securable object, such as an NTFS file.

The group SIDs in a token indicate which groups a user’s account is a member of . For example, a 
server application can disable specific groups to restrict a token’s credentials when the server applica-
tion is performing actions requested by a client . Disabling a group produces nearly the same effect as 
if the group wasn’t present in the token . (It results in a deny-only group, described later . Disabled SIDs 
are used as part of security access checks, described later in the chapter .) Group SIDs can also include 
a special SID that contains the integrity level of the process or thread. The SRM uses another field in 
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the token, which describes the mandatory integrity policy, to perform the mandatory integrity check 
described later in the chapter .

The second component in a token that determines what the token’s thread or process can do is 
the privilege array . A token’s privilege array is a list of rights associated with the token . An example 
privilege is the right for the process or thread associated with the token to shut down the computer . 
Privileges are described in more detail later in this chapter .

A token’s default primary group field and default discretionary access control list (DACL) field are 
security attributes that Windows applies to objects that a process or thread creates when it uses the 
token . By including security information in tokens, Windows makes it convenient for a process or 
thread to create objects with standard security attributes, because the process or thread doesn’t need 
to request discrete security information for every object it creates .

Each token’s type distinguishes a primary token (a token that identifies the security context of a 
process) from an impersonation token (a type of token that threads use to temporarily adopt a differ-
ent security context, usually of another user) . Impersonation tokens carry an impersonation level that 
signifies what type of impersonation is active in the token. (Impersonation is described later in this 
chapter .)

A token also includes the mandatory policy for the process or thread, which defines how MIC will 
behave when processing this token . There are two policies:

 ■ TOKEN_MANDATORY_NO_WRITE_UP, which is enabled by default, sets the No-Write-Up policy 
on this token, specifying that the process or thread will not be able to access objects with a 
higher integrity level for write access .

 ■ TOKEN_MANDATORY_NEW_PROCESS_MIN, which is also enabled by default, specifies that the 
SRM should look at the integrity level of the executable image when launching a child process 
and compute the minimum integrity level of the parent process and the file object’s integrity 
level as the child’s integrity level .

Token flags include parameters that determine the behavior of certain UAC and UIPI mechanisms, 
such as virtualization and user interface access . Those mechanisms will be described later in this 
 chapter .

Each token can also contain attributes that are assigned by the Application Identification service 
(part of AppLocker) when AppLocker rules have been defined. AppLocker and its use of attributes in 
the access token are described later in this chapter . 

The remaining fields in a token serve informational purposes. The token source field contains a 
short textual description of the entity that created the token . Programs that want to know where a 
token originated use the token source to distinguish among sources such as the Windows  Session 
Manager, a network file server, or the remote procedure call (RPC) server. The token identifier is 
a locally unique identifier (LUID) that the SRM assigns to the token when it creates the token. The 
Windows executive maintains the executive LUID, a monotonically increasing counter it uses to assign 
a unique numeric identifier to each token. A LUID is guaranteed to be unique only until the system is 
shut down .
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The token authentication ID is another kind of LUID . A token’s creator assigns the token’s 
 authentication ID when calling the LsaLogonUser function . If the creator doesn’t specify a LUID, 
LSASS obtains the LUID from the executive LUID . LSASS copies the authentication ID for all tokens 
 descended from an initial logon token . A program can obtain a token’s authentication ID to see 
whether the token belongs to the same logon session as other tokens the program has examined .

The executive LUID refreshes the modified ID every time a token’s characteristics are modified. An 
application can test the modified ID to discover changes in a security context since the context’s last 
use .

Tokens contain an expiration time field that can be used by applications performing their own 
security to reject a token after a specified amount of time. However, Windows itself does not enforce 
the expiration time of tokens . 

Note To guarantee system security, the fields in a token are immutable (because they are 
located in kernel memory). Except for fields that can be modified through a specific system 
call designed to modify certain token attributes (assuming the caller has the appropriate 
access rights to the token object), data such as the privileges and SIDs in a token can never 
be modified from user mode.

EXPERIMENT: Viewing Access Tokens
The kernel debugger dt _TOKEN command displays the format of an internal token object . 
Although this structure differs from the user-mode token structure returned by Windows API 
security functions, the fields are similar. For further information on tokens, see the description in 
the Windows SDK documentation .

The following output is from the kernel debugger’s dt nt!_TOKEN command:

kd> dt nt!_TOKEN  
   +0x000 TokenSource      : _TOKEN_SOURCE 
   +0x010 TokenId          : _LUID 
   +0x018 AuthenticationId : _LUID 
   +0x020 ParentTokenId    : _LUID 
   +0x028 ExpirationTime   : _LARGE_INTEGER 
   +0x030 TokenLock        : Ptr32 _ERESOURCE 
   +0x034 ModifiedId       : _LUID 
   +0x040 Privileges       : _SEP_TOKEN_PRIVILEGES 
   +0x058 AuditPolicy      : _SEP_AUDIT_POLICY 
   +0x074 SessionId        : Uint4B 
   +0x078 UserAndGroupCount : Uint4B 
   +0x07c RestrictedSidCount : Uint4B 
   +0x080 VariableLength   : Uint4B 
   +0x084 DynamicCharged   : Uint4B 
   +0x088 DynamicAvailable : Uint4B 
   +0x08c DefaultOwnerIndex : Uint4B 
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   +0x090 UserAndGroups    : Ptr32 _SID_AND_ATTRIBUTES 
   +0x094 RestrictedSids   : Ptr32 _SID_AND_ATTRIBUTES 
   +0x098 PrimaryGroup     : Ptr32 Void 
   +0x09c DynamicPart      : Ptr32 Uint4B 
   +0x0a0 DefaultDacl      : Ptr32 _ACL 
   +0x0a4 TokenType        : _TOKEN_TYPE 
   +0x0a8 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL 
   +0x0ac TokenFlags       : Uint4B 
   +0x0b0 TokenInUse       : UChar 
   +0x0b4 IntegrityLevelIndex : Uint4B 
   +0x0b8 MandatoryPolicy  : Uint4B 
   +0x0bc ProxyData        : Ptr32 _SECURITY_TOKEN_PROXY_DATA 
   +0x0c0 AuditData        : Ptr32 _SECURITY_TOKEN_AUDIT_DATA 
   +0x0c4 LogonSession     : Ptr32 _SEP_LOGON_SESSION_REFERENCES 
   +0x0c8 OriginatingLogonSession : _LUID 
   +0x0d0 SidHash          : _SID_AND_ATTRIBUTES_HASH 
   +0x158 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH 
   +0x1e0 VariablePart     : Uint4B

You can examine the token for a process with the !token command. You’ll find the address of 
the token in the output of the !process command, as shown here:

lkd> !process d6c 1 
Searching for Process with Cid == d6c 
PROCESS 85450508  SessionId: 1  Cid: 0d6c    Peb: 7ffda000  ParentCid: 0ecc 
    DirBase: cc9525e0  ObjectTable: afd75518  HandleCount:  18. 
    Image: cmd.exe 
    VadRoot 85328e78 Vads 24 Clone 0 Private 148. Modified 0. Locked 0. 
    DeviceMap a0688138 
    Token                             afd48470 
    ElapsedTime                       01:10:14.379 
    UserTime                          00:00:00.000 
    KernelTime                        00:00:00.000 
    QuotaPoolUsage[PagedPool]         42864 
    QuotaPoolUsage[NonPagedPool]      1152 
    Working Set Sizes (now,min,max)  (566, 50, 345) (2264KB, 200KB, 1380KB) 
    PeakWorkingSetSize                582 
    VirtualSize                       22 Mb 
    PeakVirtualSize                   25 Mb 
    PageFaultCount                    680 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      437 
  
lkd> !token afd48470 
_TOKEN afd48470 
TS Session ID: 0x1 
User: S-1-5-21-2778343003-3541292008-524615573-500 (User: ALEX-LAPTOP\Administrator) 
Groups:  
 00 S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None) 
    Attributes - Mandatory Default Enabled  
 01 S-1-1-0 (Well Known Group: localhost\Everyone) 
    Attributes - Mandatory Default Enabled  
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 02 S-1-5-21-2778343003-3541292008-524615573-1000 (Alias: ALEX-LAPTOP\Debugger Users) 
    Attributes - Mandatory Default Enabled  
 03 S-1-5-32-544 (Alias: BUILTIN\Administrators) 
    Attributes - Mandatory Default Enabled Owner  
 04 S-1-5-32-545 (Alias: BUILTIN\Users) 
    Attributes - Mandatory Default Enabled  
 05 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE) 
    Attributes - Mandatory Default Enabled  
 06 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users) 
    Attributes - Mandatory Default Enabled  
 07 S-1-5-15 (Well Known Group: NT AUTHORITY\This Organization) 
    Attributes - Mandatory Default Enabled  
 08 S-1-5-5-0-89263 (no name mapped) 
    Attributes - Mandatory Default Enabled LogonId  
 09 S-1-2-0 (Well Known Group: localhost\LOCAL) 
    Attributes - Mandatory Default Enabled  
 10 S-1-5-64-10 (Well Known Group: NT AUTHORITY\NTLM Authentication) 
    Attributes - Mandatory Default Enabled  
 11 S-1-16-12288 Unrecognized SID 
    Attributes - GroupIntegrity GroupIntegrityEnabled  
Primary Group: S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None) 
Privs:  
 05 0x000000005 SeIncreaseQuotaPrivilege          Attributes -  
 08 0x000000008 SeSecurityPrivilege               Attributes -  
 09 0x000000009 SeTakeOwnershipPrivilege          Attributes -  
 10 0x00000000a SeLoadDriverPrivilege             Attributes -  
 11 0x00000000b SeSystemProfilePrivilege          Attributes -  
 12 0x00000000c SeSystemtimePrivilege             Attributes -  
 13 0x00000000d SeProfileSingleProcessPrivilege   Attributes -  
 14 0x00000000e SeIncreaseBasePriorityPrivilege   Attributes -  
 15 0x00000000f SeCreatePagefilePrivilege         Attributes -  
 17 0x000000011 SeBackupPrivilege                 Attributes -  
 18 0x000000012 SeRestorePrivilege                Attributes -  
 19 0x000000013 SeShutdownPrivilege               Attributes -  
 20 0x000000014 SeDebugPrivilege                  Attributes -  
 22 0x000000016 SeSystemEnvironmentPrivilege      Attributes -  
 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default  
 24 0x000000018 SeRemoteShutdownPrivilege         Attributes -  
 25 0x000000019 SeUndockPrivilege                 Attributes -  
 28 0x00000001c SeManageVolumePrivilege           Attributes -  
 29 0x00000001d SeImpersonatePrivilege            Attributes - Enabled Default  
 30 0x00000001e SeCreateGlobalPrivilege           Attributes - Enabled Default  
 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -  
 34 0x000000022 SeTimeZonePrivilege               Attributes -  
 35 0x000000023 SeCreateSymbolicLinkPrivilege     Attributes -  
Authentication ID:         (0,be1a2) 
Impersonation Level:       Identification 
TokenType:                 Primary 
Source: User32             TokenFlags: 0x0 ( Token in use ) 
Token ID: 711076           ParentToken ID: 0 
Modified ID:               (0, 711081) 
RestrictedSidCount: 0      RestrictedSids: 00000000 
OriginatingLogonSession: 3e7
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You can indirectly view token contents with Process Explorer’s Security tab in its process 
Properties dialog box . The dialog box shows the groups and privileges included in the token of 
the process you examine .

EXPERIMENT: Launching a Program at Low Integrity Level
When you elevate a program, either by using the Run As Administrator option or because the 
program is requesting it, the program is explicitly launched at high integrity level; however, it is 
also possible to launch a program (other than PMIE) at low integrity level by using Psexec from 
Sysinternals:

1. Launch Notepad at low integrity level by using the following command:

c:\psexec –l notepad.exe

2. Try opening a file (such as one of the .XML files) in the %SystemRoot%\System32 
 directory. Notice that you can browse the directory and open any file contained 
within it .

3. Now use Notepad’s File | New command, enter some text in the window, and try 
 saving it in the %SystemRoot%\System32 directory. Notepad should present a 
 message box indicating a lack of permissions and recommend saving the file in the 
Documents folder .

4. Accept Notepad’s suggestion . You will get the same message box again, and 
 repeatedly for each attempt .

5. Now try saving the file in the LocalLow directory of your user profile, shown in an 
experiment earlier in the chapter .

In the previous experiment, saving a file in the LocalLow directory worked because Notepad 
was running with low integrity level, and only the LocalLow directory also had low integrity 
level. All the other locations where you tried to write the file had an implicit medium integrity 
level. (You can verify this with Accesschk.) However, reading from the %SystemRoot%\System32 
directory, as well as opening files within it, did work, even though the directory and its file also 
have an implicit medium integrity level .
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Impersonation
Impersonation is a powerful feature Windows uses frequently in its security model . Windows also uses 
impersonation in its client/server programming model . For example, a server application can provide 
access to resources such as files, printers, or databases. Clients wanting to access a resource send a 
request to the server . When the server receives the request, it must ensure that the client has permis-
sion to perform the desired operations on the resource . For example, if a user on a remote machine 
tries to delete a file on an NTFS share, the server exporting the share must determine whether the 
user is allowed to delete the file. The obvious way to determine whether a user has permission is for 
the server to query the user’s account and group SIDs and scan the security attributes on the file. This 
approach is tedious to program, prone to errors, and wouldn’t permit new security features to be 
supported transparently . Thus, Windows provides impersonation services to simplify the server’s job .

Impersonation lets a server notify the SRM that the server is temporarily adopting the security 
profile of a client making a resource request. The server can then access resources on behalf of the 
client, and the SRM carries out the access validations, but it does so based on the impersonated client 
security context . Usually, a server has access to more resources than a client does and loses some of 
its security credentials during impersonation . However, the reverse can be true: the server can gain 
security credentials during impersonation .

A server impersonates a client only within the thread that makes the impersonation request . 
Thread-control data structures contain an optional entry for an impersonation token . However, a 
thread’s primary token, which represents the thread’s real security credentials, is always accessible in 
the process’ control structure .

Windows makes impersonation available through several mechanisms . For  example, 
if a  server communicates with a client through a named pipe, the server can use the 
 ImpersonateNamedPipeClient Windows API function to tell the SRM that it wants to imper-
sonate the user on the other end of the pipe . If the server is communicating with the client 
through  Dynamic Data Exchange (DDE) or RPC, it can make similar impersonation requests using 
 DdeImpersonateClient and RpcImpersonateClient . A thread can create an impersonation token that’s 
simply a copy of its process token with the ImpersonateSelf function . The thread can then alter its 
 impersonation token, perhaps to disable SIDs or privileges . A Security Support Provider Interface 
(SSPI) package can impersonate its clients with ImpersonateSecurityContext . SSPIs implement a net-
work authentication protocol such as LAN Manager version 2 or Kerberos . Other interfaces such as 
COM expose impersonation through APIs of their own, such as CoImpersonateClient .

After the server thread finishes its task, it reverts to its primary security context. These forms of 
impersonation are convenient for carrying out specific actions at the request of a client and for en-
suring that object accesses are audited correctly . (For example, the audit that is generated gives the 
identity of the impersonated client rather than that of the server process .) The disadvantage to these 
forms of impersonation is that they can’t execute an entire program in the context of a client . In addi-
tion, an impersonation token can’t access files or printers on network shares unless it is a delegation-
level impersonation (described shortly) and has sufficient credentials to authenticate to the remote 
machine, or the file or printer share supports null sessions . (A null session is one that results from an 
anonymous logon .)
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If an entire application must execute in a client’s security context or must access network  resources 
without using impersonation, the client must be logged on to the system . The LogonUser Windows 
API function enables this action . LogonUser takes an account name, a password, a domain or com-
puter name, a logon type (such as interactive, batch, or service), and a logon provider as input, 
and it returns a primary token . A server thread can adopt the token as an impersonation token, or 
the server can start a program that has the client’s credentials as its primary token . From a security 
standpoint, a process created using the token returned from an interactive logon via LogonUser, such 
as with the CreateProcessAsUser API, looks like a program a user starts by logging on to the machine 
interactively . The disadvantage to this approach is that a server must obtain the user’s account name 
and password . If the server transmits this information across the network, the server must encrypt it 
securely so that a malicious user snooping network traffic can’t capture it.

To prevent the misuse of impersonation, Windows doesn’t let servers perform impersonation 
without a client’s consent . A client process can limit the level of impersonation that a server process 
can perform by specifying a security quality of service (SQOS) when connecting to the server . For 
instance, when opening a named pipe, a process can specify SECURITY_ANONYMOUS, SECURITY_
IDENTIFICATION, SECURITY_IMPERSONATION, or SECURITY_DELEGATION as flags for the Windows 
CreateFile function . Each level lets a server perform different types of operations with respect to the 
client’s security context:

 ■ SecurityAnonymous is the most restrictive level of impersonation—the server can’t 
 impersonate or identify the client .

 ■ SecurityIdentification lets the server obtain the identity (the SIDs) of the client and the client’s 
privileges, but the server can’t impersonate the client .

 ■ SecurityImpersonation lets the server identify and impersonate the client on the local system .

 ■ SecurityDelegation is the most permissive level of impersonation . It lets the server 
 impersonate the client on local and remote systems .

Other interfaces such as RPC use different constants with similar meanings (for example,  
RPC_C_IMP_LEVEL_IMPERSONATE) .

If the client doesn’t set an impersonation level, Windows chooses the SecurityImpersonation level 
by default . The CreateFile function also accepts SECURITY_EFFECTIVE_ONLY and SECURITY_CONTEXT_
TRACKING as modifiers for the impersonation setting:

 ■ SECURITY_EFFECTIVE_ONLY prevents a server from enabling or disabling a client’s privileges or 
groups while the server is impersonating .

 ■ SECURITY_CONTEXT_TRACKING specifies that any changes a client makes to its security 
 context are reflected in a server that is impersonating it. If this option isn’t specified, the server 
adopts the context of the client at the time of the impersonation and doesn’t receive any 
changes . This option is honored only when the client and server processes are on the same 
system .
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To prevent spoofing scenarios in which a low integrity process could create a user interface that 
captured user credentials and then used LogonUser to obtain that user’s token, a special integrity pol-
icy applies to impersonation scenarios: a thread cannot impersonate a token of higher integrity than 
its own . For example, a low-integrity application cannot spoof a dialog box that queries administrative 
credentials and then attempt to launch a process at a higher privilege level . The integrity-mechanism 
policy for impersonation access tokens is that the integrity level of the access token that is returned 
by LsaLogonUser must be no higher than the integrity level of the calling process .

Restricted Tokens
A restricted token is created from a primary or impersonation token using the CreateRestrictedToken 
function . The restricted token is a copy of the token it’s derived from, with the following possible 
modifications:

 ■ Privileges can be removed from the token’s privilege array .

 ■ SIDs in the token can be marked as deny-only . These SIDs remove access to any resources for 
which the SID’s access is denied by using a matching access-denied ACE that would otherwise 
be overridden by an ACE granting access to a group containing the SID earlier in the security 
descriptor .

 ■ SIDs in the token can be marked as restricted . These SIDs are subject to a second pass of the 
access-check algorithm, which will parse only the restricted SIDs in the token . The results 
of both the first pass and the second pass must grant access to the resource or no access is 
granted to the object .

Restricted tokens are useful when an application wants to impersonate a client at a reduced 
 security level, primarily for safety reasons when running untrusted code . For example, the restricted 
token can have the shutdown-system privilege removed from it to prevent code executed in the 
restricted token’s security context from rebooting the system .

Filtered Admin Token
As you saw earlier, restricted tokens are also used by UAC to create the filtered admin token that all 
user applications will inherit . A filtered admin token has the following characteristics:

 ■ The integrity level is set to medium .

 ■ The administrator and administrator-like SIDs mentioned previously are marked as deny-
only to prevent a security hole if the group was removed altogether. For example, if a file 
had an access control list (ACL) that denied the Administrators group all access but granted 
some access to another group the user belongs to, the user would be granted access if the 
 Administrators group was absent from the token, which would give the standard user version 
of the user’s identity more access than the user’s administrator identity .

 ■ All privileges are stripped except Change Notify, Shutdown, Undock, Increase Working Set, 
and Time Zone .
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EXPERIMENT: Looking at Filtered Admin Tokens
You can make Explorer launch a process with either the standard user token or the 
 administrator token by following these steps on a Windows machine with UAC enabled:

1. Log on to an account that’s a member of the Administrators group .

2. Click Start, Programs, Accessories, Command Prompt, right-click on the shortcut, 
and then select Run As Administrator . You will see a command prompt with the word 
 Administrator in the title bar .

3. Now repeat the process, but simply click on the shortcut—this will launch a second 
command prompt without administrative privileges .

4. Run Process Explorer, and view the Security tab in the Properties dialog boxes for the 
two command prompt processes you launched . Note that the standard user token 
contains a deny-only SID and a Medium Mandatory Label, and that it has only a 
couple of privileges . The properties on the right in the following screen shot are from 
a command prompt running with an administrator token, and the properties on the 
left are from one running with the filtered administrative token:
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Virtual Service Accounts
Windows provides a specialized type of account known as a virtual service account (or simply virtual 
account) to improve the security isolation and access control of Windows services with minimal 
 administrative effort . (See Chapter 4 for more information on Windows services .) Without this mecha-
nism, Windows services must run either under one of the accounts defined by Windows for its built-in 
services (such as Local Service or Network Service) or under a regular domain account . The accounts 
such as Local Service are shared by many existing services and so offer limited granularity for privi-
lege and access control; furthermore, they cannot be managed across the domain . Domain accounts 
require periodic password changes for security, and the availability of services during a password 
change cycle might be affected . Furthermore, for best isolation, each service should run under its own 
account, but with ordinary accounts this multiplies the management effort . 

With virtual service accounts, each service runs under its own account with its own security ID . The 
name of the account is always “NT SERVICE\” followed by the internal name of the service. Virtual ser-
vice accounts can appear in access control lists and can be associated with privileges via Group Policy 
like any other account name . They cannot, however, be created or deleted through the usual account 
management tools, nor assigned to groups . 

Windows automatically sets and periodically changes the password of the virtual service  account . 
Similar to the “Local System and other service accounts” account, there is a password, but the 
 password is unknown to the system administrators 

EXPERIMENT: Using Virtual Service Accounts
You can create a service that runs under a virtual service account by using the Sc (service 
 control) tool by following these steps:

1. In an Administrator command prompt, use the create command of the command-line 
tool Sc (service control) to create a service and a virtual account in which it will run . 
This example uses the “srvany” service from an earlier Windows Resource Kit: 

C:\Windows\system32>sc create srvany obj= "NT SERVICE\srvany"  binPath= "d:\a\
test\srvany.exe" 
[SC] CreateService SUCCESS

2. The previous command created the service (in the registry and also in the service 
 controller manager’s internal list) and also created the virtual service account . Now 
Run the Services MMC snap-in (services .msc), select the new service, and look at the 
Log On tab in the Properties dialog . 
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3. You can also use the service properties dialog to create a virtual service account for an 
existing service. To do so, change the account name to “NT SERVICE\servicename and 
clear both password fields. Note, however, that existing services might not run cor-
rectly under a virtual service account, because that account might not have access to 
files or other resources needed by the service. 

4. If you run Process Explorer and view the Security tab in the Properties dialog boxes for 
a service that uses a virtual account, you can observe the virtual account name and its 
security ID (SID) . 
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5. The virtual service account can appear in an access control entry for any object (such 
as a file) the service needs to access. If you open the Properties dialog’s Security tab 
for a file and create an ACL that references the virtual service account, you will find 
that the account name you typed (for example, NT SERVICE\srvany) is changed to 
simply the service name (srvany) by the Check Names function, and it appears in the 
access control list in this shortened form . 
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6. The virtual service account can be granted permissions (or user rights) via Group 
Policy . In this example, the virtual account for the srvany service has been granted the 
right to create a pagefile. 

 

7. You won’t see the virtual service account in user administration tools like lusrmgr .msc 
because it is not stored in the SAM registry hive . However, if you examine the registry 
within the context of the built-in System account (as described previously), you will see 
evidence of the account in the HKLM\Security\Policy\Secrets key: 

C:\>psexec –s –i –d c:\windows\regedit.exe
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Security Descriptors and Access Control
Tokens, which identify a user’s credentials, are only part of the object security equation . Another part 
of the equation is the security information associated with an object, which specifies who can perform 
what actions on the object . The data structure for this information is called a security descriptor . A 
security descriptor consists of the following attributes:

 ■ Revision number The version of the SRM security model used to create the descriptor .

 ■ Flags Optional modifiers that define the behavior or characteristics of the descriptor. These 
flags are listed in Table 6-5.

 ■ Owner SID The owner’s security ID .

 ■ Group SID The security ID of the primary group for the object (used only by POSIX) .

 ■ Discretionary access control list (DACL) Specifies who has what access to the object.

 ■ System access control list (SACL) Specifies which operations by which users should be 
logged in the security audit log and the explicit integrity level of an object .

TABLE 6-5 Security Descriptor Flags

Flag Meaning

SE_OWNER_DEFAULTED Indicates a security descriptor with a default owner security identifier (SID). Use 
this bit to find all the objects that have default owner permissions set.

SE_GROUP_DEFAULTED Indicates a security descriptor with a default group SID. Use this bit to find all the 
objects that have default group permissions set .

SE_DACL_PRESENT Indicates a security descriptor that has a DACL. If this flag is not set, or if this flag 
is set and the DACL is NULL, the security descriptor allows full access to everyone .

SE_DACL_DEFAULTED Indicates a security descriptor with a default DACL . For example, if an object 
creator does not specify a DACL, the object receives the default DACL from the 
access token of the creator. This flag can affect how the system treats the DACL, 
with respect to access control entry (ACE) inheritance . The system ignores this 
flag if the SE_DACL_PRESENT flag is not set.

SE_SACL_PRESENT Indicates a security descriptor that has a system access control list (SACL) .

SE_SACL_DEFAULTED Indicates a security descriptor with a default SACL . For example, if an object 
 creator does not specify an SACL, the object receives the default SACL from the 
access token of the creator. This flag can affect how the system treats the SACL 
with respect to ACE inheritance. The system ignores this flag if the SE_SACL_
PRESENT flag is not set.

SE_DACL_UNTRUSTED Indicates that the ACL pointed to by the DACL of the security descriptor was 
 provided by an untrusted source. If this flag is set and a compound ACE is 
 encountered, the system will substitute known valid SIDs for the server SIDs in the 
ACEs .

SE_SERVER_SECURITY Requests that the provider for the object protected by the security descriptor 
should be a server ACL based on the input ACL, regardless of its source (explicit 
or defaulting) . This is done by replacing all the GRANT ACEs with compound ACEs 
granting the current server access. This flag is meaningful only if the subject is 
impersonating .
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Flag Meaning

SE_DACL_AUTO_INHERIT_
REQ

Requests that the provider for the object protected by the security descriptor 
automatically propagate the DACL to existing child objects . If the provider sup-
ports automatic inheritance, the DACL is propagated to any existing child objects, 
and the SE_DACL_AUTO_INHERITED bit in the security descriptor of the parent 
and child objects is set .

SE_SACL_AUTO_INHERIT_
REQ

Requests that the provider for the object protected by the security descriptor 
automatically propagate the SACL to existing child objects . If the provider sup-
ports automatic inheritance, the SACL is propagated to any existing child objects, 
and the SE_SACL_AUTO_INHERITED bit in the security descriptors of the parent 
object and child objects is set .

SE_DACL_AUTO_
INHERITED

Indicates a security descriptor in which the DACL is set up to support automatic 
propagation of inheritable ACEs to existing child objects . The system sets this 
bit when it performs the automatic inheritance algorithm for the object and its 
 existing child objects . 

SE_SACL_AUTO_
INHERITED

Indicates a security descriptor in which the SACL is set up to support automatic 
propagation of inheritable ACEs to existing child objects . The system sets this 
bit when it performs the automatic inheritance algorithm for the object and its 
 existing child objects . 

SE_DACL_PROTECTED Prevents the DACL of a security descriptor from being modified by inheritable 
ACEs .

SE_SACL_PROTECTED Prevents the SACL of a security descriptor from being modified by inheritable 
ACEs .

SE_RM_CONTROL_VALID Indicates that the resource control manager bits in the security descriptor are 
valid . The resource control manager bits are 8 bits in the security descriptor 
 structure that contains information specific to the resource manager accessing 
the structure .

SE_SELF_RELATIVE Indicates a security descriptor in self-relative format, with all the security 
 information in a contiguous block of memory. If this flag is not set, the security 
descriptor is in absolute format .

An access control list (ACL) is made up of a header and zero or more access control entry (ACE) 
structures . There are two types of ACLs: DACLs and SACLs . In a DACL, each ACE contains a SID and an 
access mask (and a set of flags, explained shortly), which typically specifies the access rights (Read, 
Write, Delete, and so forth) that are granted or denied to the holder of the SID . There are nine types 
of ACEs that can appear in a DACL: access allowed, access denied, allowed object, denied object, 
allowed callback, denied callback, allowed object callback, denied-object callback, and conditional 
claims . As you would expect, the access-allowed ACE grants access to a user, and the access-denied 
ACE denies the access rights specified in the access mask. The callback ACEs are used by applications 
that make use of the AuthZ API (described later) to register a callback that AuthZ will call when it 
performs an access check involving this ACE .

The difference between allowed object and access allowed, and between denied object and  access 
denied, is that the object types are used only within Active Directory . ACEs of these types have a 
GUID (globally unique identifier) field that indicates that the ACE applies only to particular objects or 
subobjects (those that have GUID identifiers). In addition, another optional GUID indicates what type 
of child object will inherit the ACE when a child is created within an Active Directory container that 
has the ACE applied to it. (A GUID is a 128-bit identifier guaranteed to be universally unique.) The 
conditional claims ACE is stored in a *-callback type ACE structure and is described in the section on 
the AuthZ APIs . 
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The accumulation of access rights granted by individual ACEs forms the set of access rights granted 
by an ACL . If no DACL is present (a null DACL) in a security descriptor, everyone has full access to the 
object . If the DACL is empty (that is, it has zero ACEs), no user has access to the object .

The ACEs used in DACLs also have a set of flags that control and specify characteristics of the 
ACE related to inheritance . Some object namespaces have containers and objects . A container can 
hold other container objects and leaf objects, which are its child objects . Examples of containers are 
directories in the file system namespace and keys in the registry namespace. Certain flags in an ACE 
control how the ACE propagates to child objects of the container associated with the ACE . Table 6-6, 
reproduced in part from the Windows SDK, lists the inheritance rules for ACE flags.

TABLE 6-6 Inheritance Rules for ACE Flags

Flag Inheritance Rule

CONTAINER_INHERIT_ACE Child objects that are containers, such as directories, inherit the ACE as an 
 effective ACE . The inherited ACE is inheritable unless the NO_PROPAGATE_
INHERIT_ACE bit flag is also set.

INHERIT_ONLY_ACE This flag indicates an inherit-only ACE that doesn’t control access to the object it’s 
attached to. If this flag is not set, the ACE controls access to the object to which it 
is attached .

INHERITED_ACE This flag indicates that the ACE was inherited. The system sets this bit when it 
propagates an inheritable ACE to a child object .

NO_PROPAGATE_INHERIT_ACE If the ACE is inherited by a child object, the system clears the OBJECT_INHERIT_
ACE and CONTAINER_INHERIT_ACE flags in the inherited ACE. This action prevents 
the ACE from being inherited by subsequent generations of objects .

OBJECT_INHERIT_ACE Noncontainer child objects inherit the ACE as an effective ACE . For child objects 
that are containers, the ACE is inherited as an inherit-only ACE unless the  
NO_PROPAGATE_INHERIT_ACE bit flag is also set.

A SACL contains two types of ACEs, system audit ACEs and system audit-object ACEs . These ACEs 
specify which operations performed on the object by specific users or groups should be audited. 
Audit information is stored in the system Audit Log . Both successful and unsuccessful attempts can be 
audited. Like their DACL object-specific ACE cousins, system audit-object ACEs specify a GUID indicat-
ing the types of objects or subobjects that the ACE applies to and an optional GUID that controls 
propagation of the ACE to particular child object types . If a SACL is null, no auditing takes place on 
the object. (Security auditing is described later in this chapter.) The inheritance flags that apply to 
DACL ACEs also apply to system audit and system audit-object ACEs .

Figure 6-5 is a simplified picture of a file object and its DACL.
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FIGURE 6-5 Discretionary access control list (DACL)
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As shown in Figure 6-5, the first ACE allows USER1 to query the file. The second ACE allows 
 members of the group TEAM1 to have read and write access to the file, and the third ACE grants all 
other users (Everyone) execute access .

EXPERIMENT: Viewing a Security Descriptor
Most executive subsystems rely on the object manager’s default security functionality to 
 manage security descriptors for their objects . The object manager’s default security functions 
use the security descriptor pointer to store security descriptors for such objects . For example, 
the process manager uses default security, so the object manager stores process and thread 
 security descriptors in the object headers of process and thread objects, respectively . The secu-
rity descriptor pointer of events, mutexes, and semaphores also store their security descriptors . 
You can use live kernel debugging to view the security descriptors of these objects once you 
locate their object header, as outlined in the following steps . (Note that both Process Explorer 
and AccessChk can also show security descriptors for processes .)

1. Start the kernel debugger .

2. Type !process 0 0 explorer .exe to obtain process information about Explorer:

lkd> !process 0 0 explorer.exe 
PROCESS 85a3e030  SessionId: 1  Cid: 0aa4    Peb: 7ffd4000  ParentCid: 0a84 
    DirBase: 0f419000  ObjectTable: 952cdd18  HandleCount: 1046. 
    Image: explorer.exe

3. Type !object with the address following the word PROCESS in the output of the 
 previous command as the argument to show the object data structure:

lkd> !object 85a3e030   
Object: 85a3e030  Type: (842339e0) Process 
    ObjectHeader: 85a3e018 (new version) 
    HandleCount: 8  PointerCount: 497

4. Type dt _OBJECT_HEADER and the address of the object header field from the 
previous command’s output to show the object header data structure, including the 
security descriptor pointer value:

lkd> dt _OBJECT_HEADER 85a3e018  
nt!_OBJECT_HEADER 
   +0x000 PointerCount     : 0n497 
   +0x004 HandleCount      : 0n8 
   +0x004 NextToFree       : 0x00000008 Void 
   +0x008 Lock             : _EX_PUSH_LOCK 
   +0x00c TypeIndex        : 0x7 '' 
   +0x00d TraceFlags       : 0 '' 
   +0x00e InfoMask         : 0x8 '' 
   +0x00f Flags            : 0 '' 
   +0x010 ObjectCreateInfo : 0x8577e940 _OBJECT_CREATE_INFORMATION 
   +0x010 QuotaBlockCharged : 0x8577e940 Void 
   +0x014 SecurityDescriptor : 0x97ed0b94 Void 
   +0x018 Body             : _QUAD
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5. Finally, use the debugger’s !sd command to dump the security descriptor . The  security 
descriptor pointer in the object header uses some of the low-order bits as flags, and 
these must be zeroed before following the pointer . On 32-bit systems there are three 
flag bits, so use & –8 with the security descriptor address displayed in the object 
header structure, as follows. On 64-bit systems there are four flag bits, so you use & 
–10 instead . 

lkd> !sd 0x97ed0b94 & -8 
->Revision: 0x1 
->Sbz1    : 0x0 
->Control : 0x8814 
            SE_DACL_PRESENT 
            SE_SACL_PRESENT 
            SE_SACL_AUTO_INHERITED 
            SE_SELF_RELATIVE 
->Owner   : S-1-5-21-1488595123-1430011218-1163345924-1000 
->Group   : S-1-5-21-1488595123-1430011218-1163345924-513 
->Dacl    :  
->Dacl    : ->AclRevision: 0x2 
->Dacl    : ->Sbz1       : 0x0 
->Dacl    : ->AclSize    : 0x5c 
->Dacl    : ->AceCount   : 0x3 
->Dacl    : ->Sbz2       : 0x0 
->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[0]: ->AceFlags: 0x0 
->Dacl    : ->Ace[0]: ->AceSize: 0x24 
->Dacl    : ->Ace[0]: ->Mask : 0x001fffff 
->Dacl    : ->Ace[0]: ->SID: S-1-5-21-1488595123-1430011218-1163345924-1000 
 
->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[1]: ->AceFlags: 0x0 
->Dacl    : ->Ace[1]: ->AceSize: 0x14 
->Dacl    : ->Ace[1]: ->Mask : 0x001fffff 
->Dacl    : ->Ace[1]: ->SID: S-1-5-18 
 
->Dacl    : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[2]: ->AceFlags: 0x0 
->Dacl    : ->Ace[2]: ->AceSize: 0x1c 
->Dacl    : ->Ace[2]: ->Mask : 0x00121411 
->Dacl    : ->Ace[2]: ->SID: S-1-5-5-0-178173 
 
->Sacl    :  
->Sacl    : ->AclRevision: 0x2 
->Sacl    : ->Sbz1       : 0x0 
->Sacl    : ->AclSize    : 0x1c 
->Sacl    : ->AceCount   : 0x1 
->Sacl    : ->Sbz2       : 0x0 
->Sacl    : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE 
->Sacl    : ->Ace[0]: ->AceFlags: 0x0 
->Sacl    : ->Ace[0]: ->AceSize: 0x14 
->Sacl    : ->Ace[0]: ->Mask : 0x00000003 
->Sacl    : ->Ace[0]: ->SID: S-1-16-8192
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The security descriptor contains three access-allowed ACEs: one for the current user (S-1-5-
21-1488595123-1430011218-1163345924-1000), one for the System account (S-1-5-18), and the 
last for the Logon SID (S-1-5-5-0-178173) . The system access control list has one entry (S-1-16-
8192) labeling the process as medium integrity level . 

ACL Assignment
To determine which DACL to assign to a new object, the security system uses the first applicable rule 
of the following four assignment rules:

1. If a caller explicitly provides a security descriptor when creating the object, the security system 
applies it to the object . If the object has a name and resides in a container object (for example, 
a named event object in the \BaseNamedObjects object manager namespace directory), the 
system merges any inheritable ACEs (ACEs that might propagate from the object’s container) 
into the DACL unless the security descriptor has the SE_DACL_PROTECTED flag set, which 
prevents inheritance .

2. If a caller doesn’t supply a security descriptor and the object has a name, the security system 
looks at the security descriptor in the container in which the new object name is stored . Some 
of the object directory’s ACEs might be marked as inheritable, meaning that they should be 
applied to new objects created in the object directory . If any of these inheritable ACEs are 
present, the security system forms them into an ACL, which it attaches to the new object . 
(Separate flags indicate ACEs that should be inherited only by container objects rather than by 
objects that aren’t containers .)

3. If no security descriptor is specified and the object doesn’t inherit any ACEs, the security 
 system retrieves the default DACL from the caller’s access token and applies it to the new 
object . Several subsystems on Windows have hard-coded DACLs that they assign on object 
creation (for example, services, LSA, and SAM objects) .

4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the system creates 
the object with no DACL, which allows everyone (all users and groups) full access to the object . 
This rule is the same as the third rule, in which a token contains a null default DACL .

The rules the system uses when assigning a SACL to a new object are similar to those used for 
DACL assignment, with some exceptions. The first is that inherited system audit ACEs don’t propa-
gate to objects with security descriptors marked with the SE_SACL_PROTECTED flag (similar to the 
SE_DACL_PROTECTED flag, which protects DACLs). Second, if there are no specified security audit 
ACEs and there is no inherited SACL, no SACL is applied to the object . This behavior is different from 
that used to apply default DACLs because tokens don’t have a default SACL .

When a new security descriptor containing inheritable ACEs is applied to a container, the system 
automatically propagates the inheritable ACEs to the security descriptors of child objects . (Note that 
a security descriptor’s DACL doesn’t accept inherited DACL ACEs if its SE_DACL_PROTECTED flag is 
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enabled, and its SACL doesn’t inherit SACL ACEs if the descriptor has the SE_SACL_PROTECTED flag 
set .) The order in which inheritable ACEs are merged with an existing child object’s security descriptor 
is such that any ACEs that were explicitly applied to the ACL are kept ahead of ACEs that the object 
inherits . The system uses the following rules for propagating inheritable ACEs:

 ■ If a child object with no DACL inherits an ACE, the result is a child object with a DACL 
 containing only the inherited ACE .

 ■ If a child object with an empty DACL inherits an ACE, the result is a child object with a DACL 
containing only the inherited ACE .

 ■ For objects in Active Directory only, if an inheritable ACE is removed from a parent object, 
automatic inheritance removes any copies of the ACE inherited by child objects .

 ■ For objects in Active Directory only, if automatic inheritance results in the removal of all ACEs 
from a child object’s DACL, the child object has an empty DACL rather than no DACL .

As you’ll soon discover, the order of ACEs in an ACL is an important aspect of the Windows security 
model .

Note Inheritance is generally not directly supported by the object stores, such as file 
 systems, the registry, or Active Directory . Windows APIs that support inheritance,  including 
SetEntriesInAcl, do so by invoking appropriate functions within the security inheritance 
support DLL (%SystemRoot%\System32\Ntmarta.dll) that know how to traverse those 
 object stores .

Determining Access
Two methods are used for determining access to an object:

 ■ The mandatory integrity check, which determines whether the integrity level of the caller 
is high enough to access the resource, based on the resource’s own integrity level and its 
 mandatory policy .

 ■ The discretionary access check, which determines the access that a specific user account has to 
an object .

When a process tries to open an object, the integrity check takes place before the standard 
Windows DACL check in the kernel’s SeAccessCheck function because it is faster to execute and can 
quickly eliminate the need to perform the full discretionary access check . Given the default integrity 
policies in its access token (TOKEN_MANDATORY_NO_WRITE_UP and TOKEN_MANDATORY_NEW_
PROCESS_MIN, described previously), a process can open an object for write access if its integrity 
level is equal to or higher than the object’s integrity level and the DACL also grants the process the 
accesses it desires . For example, a low-integrity-level process cannot open a medium-integrity-level 
process for write access, even if the DACL grants the process write access .
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With the default integrity policies, processes can open any object—with the exception of process, 
thread, and token objects—for read access as long as the object’s DACL grants them read access . 
That means a process running at low integrity level can open any files accessible to the user account 
in which it’s running . Protected Mode Internet Explorer uses integrity levels to help prevent malware 
that infects it from modifying user account settings, but it does not stop malware from reading the 
user’s documents .

Recall that process and thread objects are exceptions because their integrity policy also includes 
No-Read-Up . That means a process integrity level must be equal to or higher than the integrity level 
of the process or thread it wants to open, and the DACL must grant it the accesses it wants for an 
attempt to open it to succeed . Assuming the DACLs allow the desired access, Figure 6-6 shows the 
types of access that the processes running at medium or low have to other processes and objects .

Read
Write

Medium

High

Low

Medium integrity
level process

Low integrity
level process

Medium

High

Low

Processes Objects

FIGURE 6-6 Access to processes versus objects for medium and low integrity level processes

User Interface Privilege Isolation
The Windows messaging subsystem also honors integrity levels to implement User Interface 
Privilege Isolation (UIPI) . The subsystem does this by preventing a process from sending window 
messages to the windows owned by a process having a higher integrity level, with the following 
informational messages being exceptions:

 ■ WM_NULL

 ■ WM_MOVE

 ■ WM_SIZE

 ■ WM_GETTEXT

 ■ WM_GETTEXTLENGTH
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 ■ WM_GETHOTKEY

 ■ WM_GETICON

 ■ WM_RENDERFORMAT

 ■ WM_DRAWCLIPBOARD

 ■ WM_CHANGECBCHAIN

 ■ WM_THEMECHANGED

This use of integrity levels prevents standard user processes from driving input into the 
windows of elevated processes or from performing a shatter attack (such as sending the process 
malformed messages that trigger internal buffer overflows, which can lead to the execution 
of code at the elevated process’ privilege level) . UIPI also blocks window hooks from affecting 
the windows of higher integrity level processes so that a standard user process can’t log the 
keystrokes the user types into an administrative application, for example . Journal hooks are also 
blocked in the same way to prevent lower integrity level processes from monitoring the behav-
ior of higher integrity level processes .

Processes can choose to allow additional messages to pass the guard by calling the 
ChangeWindowMessageEx API . This function is typically used to add messages required by 
custom controls to communicate outside native common controls in Windows . An older API, 
ChangeWindowMessageFilter performs a similar function, but it is per-process rather than 
per-window . With ChangeWindowMessageFilter it is possible for two custom controls inside the 
same process to be using the same internal window messages, which could lead to one control’s 
potentially malicious window message to be allowed through, simply because it happens to be 
a query-only message for the other custom control .

Because accessibility applications such as the On-Screen Keyboard (Osk .exe) are subject to 
UIPI’s restrictions (which would require the accessibility application to be executed for each kind 
of visible integrity-level process on the desktop), these processes can enable UI Access . This 
flag can be present in the manifest file of the image and will run the process at a slightly higher 
integrity level than medium (between 0x2000 and 0x3000) if launched from a standard user 
account, or at high integrity level if launched from an administrator account . Note that in the 
second case, an elevation request won’t actually be displayed. For a process to set this flag, its 
image must also be signed and in one of several secure locations, including %SystemRoot% and 
%ProgramFiles% .

After the integrity check is complete, and assuming the mandatory policy allows access to the 
object based on the caller’s integrity, one of two algorithms is used for the discretionary check to an 
object, which will determine the final outcome of the access check:

 ■ Determine the maximum access allowed to the object, a form of which is exported to user 
mode with the Windows GetEffectiveRightsFromAcl function . This is also used when a program 
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specifies a desired access of MAXIMUM_ALLOWED, which is what the legacy APIs that don’t 
have a desired access parameter use .

 ■ Determine whether a specific desired access is allowed, which can be done with the Windows 
AccessCheck function or the AccessCheckByType function .

The first algorithm examines the entries in the DACL as follows:

1. If the object has no DACL (a null DACL), the object has no protection and the security system 
grants all access .

2. If the caller has the take-ownership privilege, the security system grants write-owner access 
before examining the DACL . (Take-ownership privilege and write-owner access are explained 
in a moment .)

3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and uses 
that SID as the SID for the next steps . Otherwise, read-control and write-DACL access rights 
are granted .

4. For each access-denied ACE that contains a SID that matches one in the caller’s access token, 
the ACE’s access mask is removed from the granted-access mask .

5. For each access-allowed ACE that contains a SID that matches one in the caller’s access token, 
the ACE’s access mask is added to the granted-access mask being computed, unless that 
 access has already been denied .

When all the entries in the DACL have been examined, the computed granted-access mask is 
returned to the caller as the maximum allowed access to the object . This mask represents the total set 
of access types that the caller will be able to successfully request when opening the object .

The preceding description applies only to the kernel-mode form of the algorithm . The Windows 
version implemented by GetEffectiveRightsFromAcl differs in that it doesn’t perform step 2, and it 
considers a single user or group SID rather than an access token .

Owner Rights
Because owners of an object can normally override the security of an object by always being 
granted read-control and write-DACL rights, a specialized method of controlling this behavior is 
exposed by Windows: the Owner Rights SID .

The Owner Rights SID exists for two main reasons: improving service hardening in the op-
erating system, and allowing more flexibility for specific usage scenarios. For example, suppose 
an administrator wants to allow users to create files and folders but not to modify the ACLs on 
those objects. (Users could inadvertently or maliciously grant access to those files or folders to 
unwanted accounts .) By using an inheritable Owner Rights SID, the users can be prevented from 
editing or even viewing the ACL on the objects they create . A second usage scenario relates to 
group changes. Suppose an employee has been part of some confidential or sensitive group, 
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has created several files while a member of that group, and has now been removed from the 
group for business reasons . Because that employee is still a user, he could continue accessing 
the sensitive files.

As mentioned, Windows also uses the Owner Rights SID to improve service hardening . 
Whenever a service creates an object at run time, the Owner SID associated with that object is 
the account the service is running in (such as local system or local service) and not the actual 
service SID . This means that any other service in the same account would have access to the 
object by being an owner . The Owner Rights SID prevents that unwanted behavior .

The second algorithm is used to determine whether a specific access request can be granted, 
based on the caller’s access token . Each open function in the Windows API that deals with securable 
objects has a parameter that specifies the desired access mask, which is the last component of the 
security equation . To determine whether the caller has access, the following steps are performed:

1. If the object has no DACL (a null DACL), the object has no protection and the security system 
grants the desired access .

2. If the caller has the take-ownership privilege, the security system grants write-owner access if 
requested and then examines the DACL . However, if write-owner access was the only access 
requested by a caller with take-ownership privilege, the security system grants that access and 
never examines the DACL .

3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and uses 
that SID as the SID for the next steps . Otherwise, read-control and write-DACL access rights 
are granted . If these rights were the only access rights that the caller requested, access is 
granted without examining the DACL

4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the 
 following conditions is satisfied:

a. The ACE is an access-deny ACE, and the SID in the ACE matches an enabled SID (SIDs can 
be enabled or disabled) or a deny-only SID in the caller’s access token .

b. The ACE is an access-allowed ACE, and the SID in the ACE matches an enabled SID in the 
caller’s token that isn’t of type deny-only .

c. It is the second pass through the descriptor for restricted-SID checks, and the SID in the 
ACE matches a restricted SID in the caller’s access token .

d. The ACE isn’t marked as inherit-only .
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5. If it is an access-allowed ACE, the rights in the access mask in the ACE that were requested are 
granted; if all the requested access rights have been granted, the access check succeeds . If it is 
an access-denied ACE and any of the requested access rights are in the denied-access rights, 
access is denied to the object .

6. If the end of the DACL is reached and some of the requested access rights still haven’t been 
granted, access is denied .

7.  If all accesses are granted but the caller’s access token has at least one restricted SID, the 
 system rescans the DACL’s ACEs looking for ACEs with access-mask matches for the accesses 
the user is requesting and a match of the ACE’s SID with any of the caller’s restricted SIDs . 
Only if both scans of the DACL grant the requested access rights is the user granted access to 
the object .

The behavior of both access-validation algorithms depends on the relative ordering of allow and 
deny ACEs . Consider an object with only two ACEs, where one ACE specifies that a certain user is 
 allowed full access to an object and the other ACE denies the user access . If the allow ACE precedes 
the deny ACE, the user can obtain full access to the object, but if the order is reversed, the user can-
not gain any access to the object .

Several Windows functions, such as SetSecurityInfo and SetNamedSecurityInfo, apply ACEs in the 
preferred order of explicit deny ACEs preceding explicit allow ACEs . Note that the security editor 
dialog boxes with which you edit permissions on NTFS files and registry keys, for example, use these 
functions . SetSecurityInfo and SetNamedSecurityInfo also apply ACE inheritance rules to the security 
descriptor on which they are applied .

Figure 6-7 shows an example access validation demonstrating the importance of ACE ordering . In 
the example, access is denied a user wanting to open a file even though an ACE in the object’s DACL 
grants the access because the ACE denying the user access (by virtue of the user’s membership in the 
Writers group) precedes the ACE granting access .

As we stated earlier, because it wouldn’t be efficient for the security system to process the DACL 
every time a process uses a handle, the SRM makes this access check only when a handle is opened, 
not each time the handle is used . Thus, once a process successfully opens a handle, the security 
system can’t revoke the access rights that have been granted, even if the object’s DACL changes . Also 
keep in mind that because kernel-mode code uses pointers rather than handles to access objects, the 
access check isn’t performed when the operating system uses objects . In other words, the Windows 
executive trusts itself (and all loaded drivers) in a security sense .

The fact that an object’s owner is always granted write-DACL access to an object means that users 
can never be prevented from accessing the objects they own . If, for some reason, an object had an 
empty DACL (no access), the owner would still be able to open the object with write-DACL access and 
then apply a new DACL with the desired access permissions .
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FIGURE 6-7 Access validation example

A Warning Regarding the GUI Security Editors
When you use the GUI permissions editors to modify security settings on a file, a registry, or an 
Active Directory object, or on another securable object, the main security dialog box shows you 
a potentially misleading view of the security that’s applied to the object . If you allow Full Con-
trol to the Everyone group and deny the Administrator group Full Control, the list might lead 
you to believe that the Everyone group access-allowed ACE precedes the Administrator deny 
ACE because that’s the order in which they appear . However, as we’ve said, the editors place 
deny ACEs before allow ACEs when they apply the ACL to the object .



 CHAPTER 6 Security 535

 

The Permissions tab of the Advanced Security Settings dialog box shows the order of ACEs 
in the DACL . However, even this dialog box can be confusing because a complex DACL can have 
deny ACEs for various accesses followed by allow ACEs for other access types .

 

The only definitive way to know what accesses a particular user or group will have to an 
object (other than having that user or a member of the group try to access the object) is to use 
the Effective Permissions tab of the dialog box that is displayed when you click the Advanced 
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button in the Properties dialog box . Enter the name of the user or group you want to check, 
and the dialog box shows you what permissions they are allowed for the object .

 

The AuthZ API

The AuthZ Windows API provides authorization functions and implement the same security 
model as the security reference monitor, but it implements the model totally in user mode in the 
% SystemRoot%\System32\Authz.dll library. This gives applications that want to protect their own 
private objects, such as database tables, the ability to leverage the Windows security model without 
incurring the cost of user mode to kernel mode transitions that they would make if they relied on the 
security reference monitor .

The AuthZ API uses standard security descriptor data structures, SIDs, and privileges . Instead of 
using tokens to represent clients, AuthZ uses AUTHZ_CLIENT_CONTEXT . AuthZ includes user-mode 
equivalents of all access-check and Windows security functions—for example, AuthzAccessCheck is 
the AuthZ version of the AccessCheck Windows API that uses the SeAccessCheck security reference 
monitor function .

Another advantage available to applications that use AuthZ is that they can direct AuthZ to cache 
the results of security checks to improve subsequent checks that use the same client context and 
security descriptor . AuthZ is fully documented in the Windows SDK .
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The discretionary access control security mechanisms described previously have been part of the 
Windows NT family since the beginning, and they work well enough in a static, controlled environ-
ment . This type of access checking, using a security ID (SID) and security group membership, is known 
as identity-based access control (IBAC), and it requires that the security system knows the identity of 
every possible accessor when the DACL is placed in an object’s security descriptor . 

Windows includes support for Claims Based Access Control (CBAC), where access is granted not 
based upon the accessor’s identity or group membership, but upon arbitrary attributes assigned 
to the accessor and stored in the accessor’s access token . Attributes are supplied by an attribute 
provider, such as AppLocker. The CBAC mechanism provides many benefits, including the ability to 
create a DACL for a user whose identity is not yet known or dynamically-calculated user attributes . 
The CBAC ACE (also known as a conditional ACE) is stored in a *-callback ACE structure, which is 
 essentially  private to AuthZ and is ignored by the system SeAccessCheck API . The kernel-mode routine 
SeSrpAccessCheck does not understand conditional ACEs, so only applications calling the AuthZ APIs 
can make use of CBAC . The only system component that makes use of CBAC is AppLocker, for set-
ting attributes such as path, or publisher . Third-party applications can make use of CBAC by taking 
 advantage of the CBAC AuthZ APIs .

Using CBAC security checks allows powerful management policies, such as the following:

 ■ Run only applications approved by the corporate IT department .

 ■ Allow only approved applications to access your Microsoft Outlook contacts or calendar .

 ■ Allow only people on a particular building’s floor to access printers on that floor.

 ■ Allow access to an intranet website only to full-time employees (as opposed to contractors) .

Attributes can be referenced in what is known as a conditional ACE, where the presence, absence, 
or value of one or more attributes is checked . An attribute name can contain any alphanumeric 
 Unicode characters, as well as “:/ ._” . The value of an attribute can be one of the following: 64-bit 
 integer, Unicode string, byte string, or array . 

Conditional ACEs
The format of SDDL (Security Descriptor Definition Language) strings has been expanded to support 
ACEs with conditional expressions . The new format of an SDDL string is this: AceType;AceFlags;Rights;
ObjectGuid;InheritObjectGuid;AccountSid;(ConditionalExpression) .

The AceType for a conditional ACE is either XA (for SDDL_CALLBACK_ACCESS_ALLOWED) or XD 
(for SDDL_CALLBACK_ACCESS_DENIED) . Note that ACEs with conditional expressions are used for 
claims-type authorization (specifically, the AuthZ APIs and AppLocker) and are not recognized by the 
object manager or file systems.

A conditional expression can include any of the elements shown in Table 6-7 .
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TABLE 6-7 Acceptable Elements for a Conditional Expression

Expression Element Description

AttributeName Tests whether the specified attribute has a nonzero value.

exists AttributeName Tests whether the specified attribute exists in the client context.

AttributeName Operator Value Returns the result of the specified operation. The following 
 operators are defined for use in conditional expressions to test the 
values of attributes . All of these are binary operators (as opposed 
to unary) and are used in the form AttributeName Operator Value .
Operators: Contains any_of , ==, !=, <, <=, >, >=

ConditionalExpression||ConditionalExpression Tests whether either of the specified conditional expressions is 
true .

ConditionalExpression && ConditionalExpression Tests whether both of the specified conditional expressions are 
true .

!(ConditionalExpression) The inverse of a conditional expression .

Member_of{SidArray} Tests whether the SID_AND_ATTRIBUTES array of the  client 
 context contains all of the security identifiers (SIDs) in the 
 comma- separated list specified by SidArray .

A conditional ACE can contain any number of conditions, and it is either ignored if the resultant 
evaluation of the condition is false or applied if the result is true . A conditional ACE can be added to 
an object using the AddConditionalAce API and checked using the AuthzAccessCheck API .

A conditional ACE could specify that access to certain data records within a program should be 
granted only to a user who meets the following criteria:

 ■ Holds the Role attribute, with a value of Architect, Program Manager, or Development Lead, 
and the Division attribute with a value of Windows

 ■ Whose ManagementChain attribute contains the value John Smith

 ■ Whose CommissionType attribute is Officer and whose PayGrade attribute is greater than 6 
(that is, the rank of General Officer in the US military)

Windows does not include tools to view or edit conditional ACEs .

Account Rights and Privileges

Many operations performed by processes as they execute cannot be authorized through object 
 access protection because they do not involve interaction with a particular object . For example, the 
ability to bypass security checks when opening files for backup is an attribute of an account, not of a 
particular object . Windows uses both privileges and account rights to allow a system administrator to 
control what accounts can perform security-related operations .

A privilege is the right of an account to perform a particular system-related operation, such as 
shutting down the computer or changing the system time . An account right grants or denies the 
 account to which it’s assigned the ability to perform a particular type of logon, such as a local logon 
or interactive logon, to a computer .

http://msdn.microsoft.com/en-us/library/aa379595(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa379571(v=vs.85).aspx
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A system administrator assigns privileges to groups and accounts using tools such as the Active 
Directory Users and Groups MMC snap-in for domain accounts or the Local Security Policy Editor 
(%SystemRoot%\System32\secpol.msc). You access the Local Security Policy Editor in the Adminis-
trative Tools folder of the Control Panel or the Start menu (if you’ve configured your Start menu to 
contain an Administrative Tools link). Figure 6-8 shows the User Rights Assignment configuration 
in the Local Security Policy Editor, which displays the complete list of privileges and account rights 
available on Windows . Note that the tool makes no distinction between privileges and account rights . 
However, you can differentiate between them because any user right that does not contain the words 
log on is an account privilege .

FIGURE 6-8 Local Security Policy Editor user rights assignment
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Account Rights
Account rights are not enforced by the security reference monitor, nor are they stored in tokens . 
The function responsible for logon is LsaLogonUser . Winlogon, for example, calls the LogonUser API 
when a user logs on interactively to a computer, and LogonUser calls LsaLogonUser . LogonUser takes 
a  parameter that indicates the type of logon being performed, which includes interactive, network, 
batch, service, and Terminal Server client .

In response to logon requests, the Local Security Authority (LSA) retrieves account rights assigned 
to a user from the LSA policy database at the time that a user attempts to log on to the system . LSA 
checks the logon type against the account rights assigned to the user account logging on and denies 
the logon if the account does not have the right that permits the logon type or it has the right that 
denies the logon type. Table 6-8 lists the user rights defined by Windows.

Windows applications can add and remove user rights from an account by using the 
 LsaAddAccountRights and LsaRemoveAccountRights functions, and they can determine what rights are 
assigned to an account with LsaEnumerateAccountRights .

TABLE 6-8 Account Rights

User Right Role

Deny logon locally, 
Allow logon locally

Used for interactive logons that originate on the local machine

Deny logon over the network, 
Allow logon over the network

Used for logons that originate from a remote machine

Deny logon through Terminal Services, 
Allow logon through Terminal Services

Used for logons through a Terminal Server client

Deny logon as a service, 
Allow logon as a service

Used by the service control manager when starting a service in a 
particular user account

Deny logon as a batch job, 
Allow logon as a batch job

Used when performing a logon of type batch

Privileges
The number of privileges defined by the operating system has grown over time. Unlike user rights, 
which are enforced in one place by the LSA, different privileges are defined by different components 
and enforced by those components . For example, the debug privilege, which allows a process to by-
pass security checks when opening a handle to another process with the OpenProcess Windows API, 
is checked for by the process manager . Table 6-9 is a full list of privileges, and it describes how and 
when system components check for them .

When a component wants to check a token to see whether a privilege is present, it uses the 
 PrivilegeCheck or LsaEnumerateAccountRights APIs if running in user mode and SeSinglePrivilegeCheck 
or SePrivilegeCheck if running in kernel mode . The privilege-related APIs are not account-right aware, 
but the account-right APIs are privilege-aware .
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Unlike account rights, privileges can be enabled and disabled . For a privilege check to succeed, the 
privilege must be in the specified token and it must be enabled. The idea behind this scheme is that 
privileges should be enabled only when their use is required so that a process cannot inadvertently 
perform a privileged security operation .

EXPERIMENT: Seeing a Privilege Get Enabled
By following these steps, you can see that the Date and Time Control Panel applet enables the 
SeTimeZonePrivilege privilege in response to you using its interface to change the time zone of 
the computer:

1. Run Process Explorer, and set the refresh rate to Paused .

2. Open the Date And Time item by right-clicking on the clock in the system tray region 
of the taskbar, and then select Adjust Date/Time . A new Rundll32 process will appear 
with a green highlight when you force a refresh with F5 .

3. Hover the mouse over the Rundll32 process, and verify that the target contains the 
text “Time Date Control Panel Applet” as well as a path to Timedate .cpl . The presence 
of this argument tells Rundll32, which is a Control Panel DLL hosting process, to load 
the DLL that implements the user interface that enables you to change the time and 
date .

4. View the Security tab of the process Properties dialog box for your Rundll32 process . 
You should see that the SeTimeZonePrivilege privilege is disabled . 
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5. Now click the Change Time Zone button in the Control Panel item, close the process 
Properties dialog box, and then open it again . On the Security tab, you should now see 
that the SeTimeZonePrivilege privilege is enabled .

TABLE 6-9 Privileges
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Privilege User Right Privilege Usage

SeAssignPrimaryTokenPrivilege Replace a process-
level token

Checked for by various components, such as 
NtSetInformationJob, that set a process’ token .

SeAuditPrivilege Generate security 
audits

Required to generate events for the Security event log with 
the ReportEvent API .

SeBackupPrivilege Back up files and 
directories

Causes NTFS to grant the following access to any file 
or  directory, regardless of the security descriptor that’s 
 present: READ_CONTROL, ACCESS_SYSTEM_SECURITY,
FILE_GENERIC_READ, FILE_TRAVERSE
Note that when opening a file for backup, the caller must 
specify the FILE_FLAG_BACKUP_SEMANTICS flag.
Also allows corresponding access to registry keys when 
using RegSaveKey .

SeChangeNotifyPrivilege Bypass traverse 
checking

Used by NTFS to avoid checking permissions on 
 intermediate directories of a multilevel directory lookup . 
Also used by file systems when applications register for 
 notification of changes to the file system structure.

SeCreateGlobalPrivilege Create global 
 objects

Required for a process to create section and symbolic 
link objects in the directories of the object manager 
namespace that are assigned to a different session than 
the caller .

SeCreatePagefilePrivilege Create a pagefile Checked for by NtCreatePagingFile, which is the function 
used to create a new paging file.

SeCreatePermanentPrivilege Create permanent 
shared objects

Checked for by the object manager when creating a 
 permanent object (one that doesn’t get deallocated when 
there are no more references to it) .

SeCreateSymbolicLinkPrivilege Create symbolic 
links

Checked for by NTFS when creating symbolic links on the 
file system with the CreateSymbolicLink API .

SeCreateTokenPrivilege Create a token 
object

NtCreateToken, the function that creates a token object, 
checks for this privilege .

SeDebugPrivilege Debug programs If the caller has this privilege enabled, the process 
manager allows access to any process or thread using 
NtOpenProcess or NtOpenThread, regardless of the pro-
cess’ or thread’s security descriptor (except for protected 
processes) .

SeEnableDelegationPrivilege Enable computer 
and user accounts 
to be trusted for 
delegation

Used by Active Directory services to delegate 
 authenticated credentials .

SeImpersonatePrivilege Impersonate a client 
after authentication

The process manager checks for this when a thread wants 
to use a token for impersonation and the token represents 
a different user than that of the thread’s process token .

SeIncreaseBasePriorityPrivilege Increase scheduling 
priority

Checked for by the process manager and is required to 
raise the priority of a process .

SeIncreaseQuotaPrivilege Adjust memory 
quotas for a process

Enforced when changing a process’ working set  thresholds, 
a process’ paged and nonpaged pool quotas, and a 
 process’ CPU rate quota .

SeIncreaseWorkingSetPrivilege Increase a process 
working set

Required to call SetProcessWorkingSetSize to increase the 
minimum working set . This indirectly allows the process 
to lock up to the minimum working set of memory using 
VirtualLock .
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Privilege User Right Privilege Usage

SeLoadDriverPrivilege Load and unload 
device drivers

Checked for by the NtLoadDriver and NtUnloadDriver 
driver functions .

SeLockMemoryPrivilege Lock pages in 
memory

Checked for by NtLockVirtualMemory, the kernel 
 implementation of VirtualLock .

SeMachineAccountPrivilege Add workstations to 
the domain

Checked for by the Security Accounts Manager on a 
 domain controller when creating a machine account in a 
domain .

SeManageVolumePrivilege Perform volume 
maintenance tasks

Enforced by file system drivers during a volume open 
 operation, which is required to perform disk checking and 
defragmenting activities .

SeProfileSingleProcessPrivilege Profile single pro-
cess

Checked by Superfetch and the prefetcher when 
 requesting information for an individual process through 
the NtQuerySystemInformation API .

SeRelabelPrivilege Modify an object 
label

Checked for by the SRM when raising the integrity level of 
an object owned by another user, or when attempting to 
raise the integrity level of an object higher than that of the 
caller’s token .

SeRemoteShutdownPrivilege Force shutdown 
from a remote 
system

Winlogon checks that remote callers of the 
InitiateSystemShutdown function have this privilege .

SeRestorePrivilege Restore files and 
directories

This privilege causes NTFS to grant the following access to 
any file or directory, regardless of the security descriptor 
that’s present:
WRITE_DAC 
WRITE_OWNER 
ACCESS_SYSTEM_SECURITY 
FILE_GENERIC_WRITE 
FILE_ADD_FILE 
FILE_ADD_SUBDIRECTORY 
DELETE 
Note that when opening a file for restore, the caller must 
specify the FILE_FLAG_BACKUP_SEMANTICS flag.
Allows corresponding access to registry keys when using 
RegSaveKey .

SeSecurityPrivilege Manage auditing 
and security log

Required to access the SACL of a security descriptor, and to 
read and clear the security event log .

SeShutdownPrivilege Shut down the 
system

This privilege is checked for by NtShutdownSystem and 
NtRaiseHardError, which presents a system error dialog box 
on the interactive console .

SeSyncAgentPrivilege Synchronize 
 directory service 
data

Required to use the LDAP directory synchronization 
 services . It allows the holder to read all objects and prop-
erties in the directory, regardless of the protection on the 
objects and properties .

SeSystemEnvironmentPrivilege Modify firmware 
 environment 
 variables

Required by NtSetSystemEnvironmentValue and 
NtQuerySystemEnvironmentValue to modify and read 
 firmware environment variables using the hardware 
 abstraction layer (HAL) .

SeSystemProfilePrivilege Profile system 
 performance

Checked for by NtCreateProfile, the function used to 
 perform profiling of the system. This is used by the 
Kernprof tool, for example .

SeSystemtimePrivilege Change the system 
time

Required to change the time or date .
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Privilege User Right Privilege Usage

SeTakeOwnershipPrivilege Take ownership 
of files and other 
objects

Required to take ownership of an object without being 
granted discretionary access . 

SeTcbPrivilege Act as part of the 
operating system

Checked for by the security reference monitor when 
the session ID is set in a token, by the Plug and Play 
manager for Plug and Play event creation and man-
agement, by BroadcastSystemMessageEx when called 
with BSM_ALLDESKTOPS, by LsaRegisterLogonProcess, 
and when specifying an application as a VDM with 
NtSetInformationProcess .

SeTimeZonePrivilege Change the time 
zone

Required to change the time zone .

SeTrustedCredManAccessPrivilege Access  credential 
manager as a 
 trusted caller

Checked by the credential manager to verify that it should 
trust the caller with credential information that can be 
queried in plain text . It is granted only to Winlogon by 
default .

SeUndockPrivilege Remove computer 
from a docking 
 station

Checked for by the user-mode Plug and Play manager 
when either a computer undock is initiated or a device 
eject request is made .

SeUnsolicitedInputPrivilege Receive unsolicited 
data from a terminal 
device

This privilege isn’t currently used by Windows .

EXPERIMENT: The Bypass Traverse Checking Privilege
If you are a systems administrator, you must be aware of the Bypass Traverse Checking privilege 
(internally called SeNotifyPrivilege) and its implications . This experiment demonstrates that not 
understanding its behavior can lead to improperly applied security .

1. Create a folder and, within that folder, a new text file with some sample text.

2. Navigate in Explorer to the new file, and go to the Security tab of its Properties dialog 
box . Click the Advanced button, and clear the check box that controls inheritance . 
 Select Copy when you are prompted as to whether you want to remove or copy 
 inherited permissions .

3. Next, modify the security of the new folder so that your account does not have any 
access to the folder . Do this by selecting your account and selecting all the Deny boxes 
in the permissions list .

4. Run Notepad, and browse using the File, Open dialog box to the new directory . You 
should be denied access to the directory .

5. In the File Name field of the Open dialog box, type the full path of the new file. The 
file should open.

If your account does not have the Bypass Traverse Checking privilege, NTFS performs an 
access check on each directory of the path to a file when you try to open a file, which results in 
you being denied access to the file in this example.
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Super Privileges
Several privileges are so powerful that a user to which they are assigned is effectively a “super user” 
who has full control over a computer. These privileges can be used in an infinite number of ways to 
gain unauthorized access to otherwise off-limit resources and to perform unauthorized operations . 
However, we’ll focus on using the privilege to execute code that grants the user privileges not as-
signed to the user, with the knowledge that this capability can be leveraged to perform any operation 
on the local machine that the user desires . 

This section lists the privileges and discusses the ways that they can be exploited . Other privileges, 
such as Lock Pages In Physical Memory, can be exploited for denial-of-service attacks on a system, 
but these are not discussed . Note that on systems with UAC enabled, these privileges will be granted 
only to applications running at high integrity level or higher, even if the account possesses them:

 ■ Debug programs A user with this privilege can open any process on the system (except for 
a Protected Process) without regard to the security descriptor present on the process . The user 
could implement a program that opens the LSASS process, for example, copy executable code 
into its address space, and then inject a thread with the CreateRemoteThread Windows API to 
execute the injected code in a more-privileged security context . The code could grant the user 
additional privileges and group memberships .

 ■ Take ownership This privilege allows a holder to take ownership of any securable object 
(even protected processes and threads) by writing his own SID into the owner field of the 
 object’s security descriptor . Recall that an owner is always granted permission to read and 
modify the DACL of the security descriptor, so a process with this privilege could modify the 
DACL to grant itself full access to the object and then close and reopen the object with full 
access. This would allow the owner to see sensitive data and to even replace system files that 
execute as part of normal system operation, such as LSASS, with his own programs that grant a 
user elevated privileges .

 ■ Restore files and directories A user assigned this privilege can replace any file on the 
system with her own. She could exploit this power by replacing system files as described in the 
preceding paragraph .

 ■ Load and unload device drivers A malicious user could use this privilege to load a device 
driver into the system . Device drivers are considered trusted parts of the operating system 
that can execute within it with System account credentials, so a driver could launch privileged 
programs that assign the user other rights .

 ■ Create a token object This privilege can be used in the obvious way to generate tokens that 
represent arbitrary user accounts with arbitrary group membership and privilege assignment .

 ■ Act as part of operating system LsaRegisterLogonProcess, the function a process calls to 
establish a trusted connection to LSASS, checks for this privilege . A malicious user with this 
privilege can establish a trusted-LSASS connection and then execute LsaLogonUser, a function 
used to create new logon sessions . LsaLogonUser requires a valid user name and password and 
accepts an optional list of SIDs that it adds to the initial token created for a new logon session . 
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The user could therefore use her own user name and password to create a new logon session 
that includes the SIDs of more privileged groups or users in the resulting token .

Note that the use of an elevated privilege does not extend past the machine boundary to the 
 network, because any interaction with another computer requires authentication with a domain 
 controller and validation of domain passwords . Domain passwords are not stored on a computer 
either in plain text or encrypted form, so they are not accessible to malicious code .

Access Tokens of Processes and Threads

Figure 6-9 brings together the concepts covered so far in this chapter by illustrating the basic process 
and thread security structures. In the figure, notice that the process object and the thread objects 
have ACLs, as do the access token objects themselves. Also in this figure, thread 2 and thread 3 each 
have an impersonation token, whereas thread 1 uses the default process access token .
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Default ACL

Access token

User's SID
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Privileges
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Primary group SID
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ACL Thread 1 ACL Thread 2 ACL Thread 3

FIGURE 6-9 Process and thread security structures
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Security Auditing

The object manager can generate audit events as a result of an access check, and Windows  functions 
available to user applications can generate them directly . Kernel-mode code is always allowed to 
generate an audit event . Two privileges, SeSecurityPrivilege and SeAuditPrivilege, relate to audit-
ing . A process must have the SeSecurityPrivilege privilege to manage the security Event Log and 
to view or set an object’s SACL . Processes that call audit system services, however, must have the 
 SeAuditPrivilege privilege to successfully generate an audit record .

The audit policy of the local system controls the decision to audit a particular type of security 
event . The audit policy, also called the local security policy, is one part of the security policy LSASS 
maintains on the local system, and it is configured with the Local Security Policy Editor as shown in 
Figure 6-10 . 

The audit policy configuration (both the basic settings under Local Policies and the Advanced 
 Audit Policy Configuration to be described later) is stored in the registry as a bitmapped value in the 
key HKEY_LOCAL_MACHINE\SECURITY\Policy\PolAdtEv. 

FIGURE 6-10 Local Security Policy Editor audit policy configuration

LSASS sends messages to the SRM to inform it of the auditing policy at system initialization time 
and when the policy changes . LSASS is responsible for receiving audit records generated based on the 
audit events from the SRM, editing the records, and sending them to the Event Logger . LSASS (instead 
of the SRM) sends these records because it adds pertinent details, such as the information needed to 
more completely identify the process that is being audited .

The SRM sends audit records via its ALPC connection to LSASS . The Event Logger then writes the 
audit record to the security Event Log . In addition to audit records the SRM passes, both LSASS and 
the SAM generate audit records that LSASS sends directly to the Event Logger, and the AuthZ APIs 
allow for applications to generate application-defined audits. Figure 6-11 depicts this overall flow.
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FIGURE 6-11 Flow of security audit records

Audit records are put on a queue to be sent to the LSA as they are received—they are not 
 submitted in batches . The audit records are moved from the SRM to the security subsystem in one 
of two ways . If the audit record is small (less than the maximum ALPC message size), it is sent as an 
ALPC message . The audit records are copied from the address space of the SRM to the address space 
of the LSASS process . If the audit record is large, the SRM uses shared memory to make the message 
 available to LSASS and simply passes a pointer in an ALPC message . 

Object Access Auditing
An important use of the auditing mechanism in many environments is to maintain a log of accesses 
to secured objects, files in particular. To do this, the Audit Object Access policy must be enabled, 
and there must be audit ACEs in System Access Control Lists that enable auditing for the objects in 
 question . 

When an accessor attempts to open a handle to an object, the security reference monitor first 
determines whether the attempt is allowed or denied . If object access auditing is enabled, the SRM 
then scans the System ACL of the object . There are two types of audit ACEs, access allowed and access 
denied . An audit ACE must match any of the security IDs held by the accessor, it must match any of 
the access methods requested, and its type (access allowed or access denied) must match the result of 
the access check in order to generate an object access audit record . 

Object access audit records include not just the fact of access allowed or denied, but also the 
 reason for the success or failure . This “reason for access” reporting generally takes the form of an 
access control entry, specified in SDDL (Security Descriptor Definition Language), in the audit record . 
This allows for a diagnosis of scenarios in which an object to which you believe access should be 
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 denied is being permitted, or vice versa, by identifying the specific access control entry that caused 
the attempted access to succeed or fail . 

As can be seen in Figure 6-10, object access auditing is disabled by default (as are all other 
 auditing policies) . 

EXPERIMENT: Object Access Auditing
You can demonstrate object access auditing by following these steps:

1. In Explorer, navigate to a file to which you would normally have access. In its 
 Properties dialog box, click on the Security tab and then select the Advanced settings . 
Click on the Auditing tab, and click through the administrative privileges warning . The 
resulting dialog box allows you to add auditing of access control entries to the file’s 
System Access Control List . 

 

2. Click the Add button . In the resulting Select User Or Group dialog box, enter your own 
user name or a group to which you belong, such as Everyone, and click Check Names 
and then OK . This presents a dialog box for creating an Auditing Access Control Entry 
for this user or group for this file. 
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3. In the Successful column, select Full control (which will cause all of the other access 
methods to be selected as well). Click OK four times to close the file Properties dialog 
box . 

4. In Explorer, double-click on the file to open it with its associated program. 

5. In Event Viewer, navigate to the Security log . Note that there is no entry for access to 
the file. This is because the audit policy for object access is not yet configured. 

6. In the Local Security Policy Editor, navigate to Local Policies, Audit Policy . Double-click 
on Audit Object Access, and then click Success to enable auditing of successful access 
to files.

7. In Event Viewer, click Action, Refresh . Note that the changes to audit policy resulted in 
audit records . 

8. In Explorer, double-click on the file to open it again. 

9. In Event Viewer, click Action, Refresh. Note that several file access audit records are 
now present .

Find one of the file access audit records for Event ID 4656, This shows up as “a handle to 
an object was requested.” Scroll down in the text box to find the Access Reasons section. The 
 following example shows that two access methods, READ_CONTROL and ReadAttributes, were 
requested. The former was granted because the accessor was the owner of the file, and the 
latter was granted because of the indicated Access Control Entry . The ACE includes the SID of 
the user who attempted the access and includes the designation A:FA, indicating that this SID is 
Allowed (A) all file access methods (FA) to the file. 
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Global Audit Policy
In addition to object-access ACEs on individual objects, a global audit policy can be defined for the 
system that enables object access auditing for all file system objects, for all registry keys, or for both. 
A security auditor can therefore be certain that the desired auditing will be performed, without 
 having to set or examine SACLs on all of the individual objects of interest . 

An administrator can set or query the global audit policy via the AuditPol command with the  
/resourceSACL option . This can also be done with a program calling the AuditSetGlobalSacl and 
AuditQueryGlobalSacl APIs . As with changes to objects’ SACLs, changing these global SACLs requires 
SeSecurityPrivilege . 

EXPERIMENT: Setting Global Audit Policy
You can use the AuditPol command to enable global audit policy . 

1. If not already done in the previous experiment, in the Local Security Policy Editor, 
 navigate to the Audit Policy settings (as shown in Figure 6-10), double-click Audit 
Object Access, and enable auditing for both success and failure . Note that on most 
systems, SACLs specifying object access auditing are uncommon, so few if any object 
access audit records will be produced at this point . 
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2. In an elevated command prompt window, enter the following command: 

C:\> auditpol /resourceSACL 

This will produce a summary of the commands for setting and querying global audit 
policy . 

3. In the same elevated command prompt window, enter the following commands: 

C:\> auditpol /resourceSACL /type:File /view 
C:\> auditpol /resourceSACL /type:Key /view

On a typical system, each of these commands will report that no Global SACL exists 
for the respective resource type . (Note that the keywords “File” and “Key” are case-
sensitive .)

4. In the same elevated command prompt window, enter the following command:

C:\> auditpol /resourceSACL /set /type:File /user:yourusername /success /failure 
/access:FW

This will set a global audit policy such that all attempts to open files for write access 
(FW) by the indicated user will result in audit records, whether the open attempts suc-
ceed or fail. The user name can be a specific user name on the system, a group such 
as Everyone, a domain-qualified user name such as domainname\username, or a SID. 

5. While running under the user name indicated, use Explorer or other tools to open a 
file. Then look at the security log in the system Event Log to find the audit records. 

6. At the end of the experiment, use the auditpol command to remove the global SACL 
you created in step 4, as follows:

C:\> auditpol /resourceSACL /remove /type:File /user:yourusername

The global audit policy is stored in the registry as a pair of system access control lists in  
HKEY_LOCAL_MACHINE\SECURITY\Policy\GlobalSaclNameFile and HKEY_LOCAL_MACHINE 
\SECURITY\Policy\GlobalSaclNameKey. These keys can be examined by running Regedit.exe under the 
System account, as described earlier in the “Security System Components” section . These keys will not 
exist until the corresponding global SACLs have been set at least once .

The global audit policy cannot be overridden by SACLs on objects, but object-specific SACLs  can 
allow for additional auditing . For example, global audit policy could require auditing of read access 
by all users to all files, but SACLs on individual files could add auditing of write access to those files by 
specific users or by more specific user groups. 

Global audit policy can also be configured via the Local Security Policy Editor in the Advanced 
Audit Policy settings, described in the next subsection . 
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Advanced Audit Policy Settings
In addition to the Audit Policy settings described previously, the Local Security Policy Editor  offers 
a much more fine-grained set of audit controls under the Advanced Audit Policy Configuration 
 heading, as shown in Figure 6-12 . 

FIGURE 6-12 Local Security Policy Editor Advanced Audit Policy Configuration settings

Each of the nine audit policy settings under Local Policies, as illustrated previously in Figure 6-10, 
maps to a group of settings here that provide more detailed control . For example, while the Audit 
Object Access settings under Local Policies allow access to all objects to be audited, the settings here 
allow auditing of access to various types of objects to be controlled individually . Enabling one of the 
audit policy settings under Local Policies implicitly enables all of the corresponding advanced audit 
policy events, but if finer control over the contents of the audit log is desired, the advanced settings 
can be set individually . The standard settings then become a product of the advanced settings; how-
ever, this is not visible in the Local Security Policy Editor . Attempts to specify audit settings by using 
both the basic and the advanced options can cause unexpected results . 

The Global Object Access Auditing option under the Advanced Audit Policy Configuration item can 
be used to configure the Global SACLs described in the previous section, using a graphical interface 
identical to that seen in Explorer or the Registry Editor for security descriptors in the file system or the 
registry . 
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Logon

Interactive logon (as opposed to network logon) occurs through the interaction of the logon process 
(Winlogon), the logon user interface process (LogonUI) and its credential providers, LSASS, one or 
more authentication packages, and the SAM or Active Directory . Authentication packages are DLLs 
that perform authentication checks . Kerberos is the Windows authentication package for interactive 
logon to a domain, and MSV1_0 is the Windows authentication package for interactive logon to a 
local computer, for domain logons to trusted pre–Windows 2000 domains, and for times when no 
domain controller is accessible .

Winlogon is a trusted process responsible for managing security-related user interactions . It 
coordinates logon, starts the user’s first process at logon, handles logoff, and manages various other 
operations relevant to security, including launching LogonUI for entering passwords at logon, chang-
ing passwords, and locking and unlocking the workstation . The Winlogon process must ensure that 
operations relevant to security aren’t visible to any other active processes . For example, Winlogon 
guarantees that an untrusted process can’t get control of the desktop during one of these operations 
and thus gain access to the password .

Winlogon relies on the credential providers installed on the system to obtain a user’s account 
name or password . Credential providers are COM objects located inside DLLs . The default providers 
are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32\SmartcardCredentialProvider.
dll, which support both password and smartcard PIN authentication . Allowing other credential pro-
viders to be installed allows Windows to use different user-identification mechanisms. For example, a 
third party might supply a credential provider that uses a thumbprint recognition device to identify 
users and extract their passwords from an encrypted database .

To protect Winlogon’s address space from bugs in credential providers that might cause the 
 Winlogon process to crash (which, in turn, will result in a system crash, because Winlogon is consid-
ered a critical system process), a separate process, LogonUI .exe, is used to actually load the credential 
providers and display the Windows logon interface to users . This process is started on demand when-
ever Winlogon needs to present a user interface to the user, and it exits after the action has finished. 
It also allows Winlogon to simply restart a new LogonUI process should it crash for any reason .

Winlogon is the only process that intercepts logon requests from the keyboard, which are sent 
through an RPC message from Win32k .sys . Winlogon immediately launches the LogonUI application 
to display the user interface for logon . After obtaining a user name and password from credential 
providers, Winlogon calls LSASS to authenticate the user attempting to log on . If the user is authen-
ticated, the logon process activates a logon shell on behalf of that user . The interaction between the 
components involved in logon is illustrated in Figure 6-13 .
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In addition to supporting alternative credential providers, LogonUI can load additional network 
provider DLLs that need to perform secondary authentication . This capability allows multiple network 
providers to gather identification and authentication information all at one time during normal logon. 
A user logging on to a Windows system might simultaneously be authenticated on a UNIX server . 
That user would then be able to access resources of the UNIX server from the Windows machine 
 without requiring additional authentication . Such a capability is known as one form of single sign-on .

Winlogon Initialization
During system initialization, before any user applications are active, Winlogon performs the following 
steps to ensure that it controls the workstation once the system is ready for user interaction:

1. Creates and opens an interactive window station (for example, \Sessions\1\Windows 
\ WindowStations\WinSta0 in the object manager namespace) to represent the keyboard, 
mouse, and monitor . Winlogon creates a security descriptor for the station that has one and 
only one ACE containing only the System SID . This unique security descriptor ensures that no 
other process can access the workstation unless explicitly allowed by Winlogon .

2. Creates and opens two desktops: an application desktop (\Sessions\1\Windows\WinSta0 
\Default, also known as the interactive desktop) and a Winlogon desktop (\Sessions\1 
\Windows\WinSta0\Winlogon, also known as the secure desktop). The security on the 
 Winlogon desktop is created so that only Winlogon can access that desktop . The other 
 desktop allows both Winlogon and users to access it . This arrangement means that any 
time the Winlogon desktop is active, no other process has access to any active code or data 
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 associated with the desktop . Windows uses this feature to protect the secure operations that 
involve passwords and locking and unlocking the desktop .

3. Before anyone logs on to a computer, the visible desktop is Winlogon’s . After a user logs 
on, pressing Ctrl+Alt+Delete switches the desktop from Default to Winlogon and launches 
 LogonUI . (This explains why all the windows on your interactive desktop seem to disappear 
when you press Ctrl+Alt+Delete, and then return when you dismiss the Windows Security 
dialog box .) Thus, the SAS always brings up a secure desktop controlled by Winlogon .

4. Establishes an ALPC connection with LSASS’s LsaAuthenticationPort . This connection will be 
used for exchanging information during logon, logoff, and password operations and is made 
by calling LsaRegisterLogonProcess .

5. Registers the Winlogon RPC message server, which listens for SAS, logoff, and workstation 
lock notifications from Win32k. This measure prevents Trojan horse programs from gaining 
control of the screen when the SAS is entered .

Note The Wininit process performs steps similar to steps 1 and 2 to allow legacy 
 interactive services running on session 0 to display windows, but it does not perform any 
other steps because session 0 is not available for user logon . (See Chapter 3 for more 
 information on Wininit and session isolation .)

How SAS Is Implemented
The SAS is secure because no application can intercept the Ctrl+Alt+Delete keystroke 
 combination or prevent Winlogon from receiving it . Win32k .sys reserves the Ctrl+Alt+Delete 
key combination so that whenever the Windows input system (implemented in the raw input 
thread in Win32k) sees the combination, it sends an RPC message to Winlogon’s message 
server, which listens for such notifications. The keystrokes that map to a registered hot key are 
otherwise not sent to any process other than the one that registered it, and only the thread 
that registered a hot key can unregister it, so a Trojan horse application cannot deregister 
 Winlogon’s ownership of the SAS .

A Windows function, SetWindowsHook, enables an application to install a hook procedure 
that’s invoked every time a keystroke is pressed, even before hot keys are processed, and it 
allows the hook to squash keystrokes . However, the Windows hot key processing code contains 
a special case for Ctrl+Alt+Delete that disables hooks so that the keystroke sequence can’t be 
intercepted . In addition, if the interactive desktop is locked, only hot keys owned by Winlogon 
are processed .

Once the Winlogon desktop is created during initialization, it becomes the active desktop . When 
the Winlogon desktop is active, it is always locked . Winlogon unlocks its desktop only to switch to the 
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application desktop or the screen-saver desktop . (Only the Winlogon process can lock or unlock a 
desktop .)

User Logon Steps
Logon begins when a user presses the SAS (Ctrl+Alt+Delete) . After the SAS is pressed, Winlogon starts 
LogonUI, which calls the credential providers to obtain a user name and password . Winlogon also 
creates a unique local logon SID for this user that it assigns to this instance of the desktop (keyboard, 
screen, and mouse) . Winlogon passes this SID to LSASS as part of the LsaLogonUser call . If the user is 
successfully logged on, this SID will be included in the logon process token—a step that protects ac-
cess to the desktop . For example, another logon to the same account but on a different system will be 
unable to write to the first machine’s desktop because this second logon won’t be in the first logon’s 
desktop token .

When the user name and password have been entered, Winlogon retrieves a handle to a package 
by calling the LSASS function LsaLookupAuthenticationPackage . Authentication packages are listed in 
the registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon passes logon informa-
tion to the authentication package via LsaLogonUser . Once a package authenticates a user, Winlogon 
continues the logon process for that user . If none of the authentication packages indicates a success-
ful logon, the logon process is aborted .

Windows uses two standard authentication packages for interactive logons: Kerberos and MSV1_0 . 
The default authentication package on a stand-alone Windows system is MSV1_0 (%SystemRoot% 
\System32\Msv1_0.dll), an authentication package that implements LAN Manager 2 protocol. LSASS 
also uses MSV1_0 on domain-member computers to authenticate to pre–Windows 2000 domains and 
computers that can’t locate a domain controller for authentication . (Computers that are disconnected 
from the network fall into this latter category .) The Kerberos authentication package, %SystemRoot% 
\System32\Kerberos.dll, is used on computers that are members of Windows domains. The  Windows 
Kerberos package, with the cooperation of Kerberos services running on a domain  controller, 
 supports the Kerberos protocol . This protocol is based on Internet RFC 1510 . (Visit the  Internet 
 Engineering Task Force [IETF] website, www.ietf.org, for detailed information on the Kerberos 
 standard .)

The MSV1_0 authentication package takes the user name and a hashed version of the password 
and sends a request to the local SAM to retrieve the account information, which includes the hashed 
password, the groups to which the user belongs, and any account restrictions. MSV1_0 first checks the 
account restrictions, such as hours or type of accesses allowed . If the user can’t log on because of the 
restrictions in the SAM database, the logon call fails and MSV1_0 returns a failure status to the LSA .

MSV1_0 then compares the hashed password and user name to that obtained from the SAM . 
In the case of a cached domain logon, MSV1_0 accesses the cached information by using LSASS 
 functions that store and retrieve “secrets” from the LSA database (the SECURITY hive of the registry) . 
If the information matches, MSV1_0 generates a LUID for the logon session and creates the logon ses-
sion by calling LSASS, associating this unique identifier with the session and passing the  information 
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needed to ultimately create an access token for the user . (Recall that an access token includes the 
user’s SID, group SIDs, and assigned privileges .)

Note MSV1_0 does not cache a user’s entire password hash in the registry because that 
would enable someone with physical access to the system to easily compromise a user’s 
domain account and gain access to encrypted files and to network resources the user is 
 authorized to access. Instead, it caches half of the hash. The cached half-hash is sufficient 
to verify that a user’s password is correct, but it isn’t sufficient to gain access to EFS keys 
and to authenticate as the user on a domain because these actions require the full hash .

If MSV1_0 needs to authenticate using a remote system, as when a user logs on to a trusted 
pre–Windows 2000 domain, MSV1_0 uses the Netlogon service to communicate with an instance of 
Netlogon on the remote system . Netlogon on the remote system interacts with the MSV1_0 authenti-
cation package on that system, passing back authentication results to the system on which the logon 
is being performed .

The basic control flow for Kerberos authentication is the same as the flow for MSV1_0. However, 
in most cases, domain logons are performed from member workstations or servers (rather than on 
a  domain controller), so the authentication package must communicate across the network as part 
of the authentication process . The package does so by communicating via the Kerberos TCP/IP port 
(port 88) with the Kerberos service on a domain controller . The Kerberos Key Distribution Center 
 service (%SystemRoot%\System32\Kdcsvc.dll), which implements the Kerberos authentication  
protocol, runs in the LSASS process on domain controllers .

After validating hashed user name and password information with Active Directory’s user account 
objects (using the Active Directory server %SystemRoot%\System32\Ntdsa.dll), Kdcsvc returns domain 
credentials to LSASS, which returns the result of the authentication and the user’s domain logon 
credentials (if the logon was successful) across the network to the system where the logon is taking 
place .

Note This description of Kerberos authentication is highly simplified, but it highlights the 
roles of the various components involved . Although the Kerberos authentication protocol 
plays a key role in distributed domain security in Windows, its details are outside the scope 
of this book .

After a logon has been authenticated, LSASS looks in the local policy database for the user’s 
 allowed access, including interactive, network, batch, or service process . If the requested logon 
doesn’t match the allowed access, the logon attempt will be terminated . LSASS deletes the newly 
created logon session by cleaning up any of its data structures and then returns failure to Winlogon, 
which in turn displays an appropriate message to the user . If the requested access is allowed, LSASS 
adds the appropriate additional security IDs (such as Everyone, Interactive, and the like) . It then checks 
its policy database for any granted privileges for all the SIDs for this user and adds these privileges to 
the user’s access token .



560 Windows Internals, Sixth Edition, Part 1

When LSASS has accumulated all the necessary information, it calls the executive to create the 
access token . The executive creates a primary access token for an interactive or service logon and 
an impersonation token for a network logon . After the access token is successfully created, LSASS 
duplicates the token, creating a handle that can be passed to Winlogon, and closes its own handle . If 
necessary, the logon operation is audited . At this point, LSASS returns success to Winlogon along with 
a handle to the access token, the LUID for the logon session, and the profile information, if any, that 
the authentication package returned .

EXPERIMENT: Listing Active Logon Sessions
As long as at least one token exists with a given logon session LUID, Windows considers the 
logon session to be active . You can use the LogonSessions tool from Sysinternals, which uses 
the LsaEnumerateLogonSessions function (documented in the Windows SDK) to list the active 
logon sessions:

C:\>logonsessions 
Logonsesions v1.21 
Copyright (C) 2004-2010 Bryce Cogswell and Mark Russinovich 
Sysinternals - wwww.sysinternals.com 
 
[0] Logon session 00000000:000003e7: 
    User name:    KERNELS\LAPT8$ 
    Auth package: NTLM 
    Logon type:   (none) 
    Session:      0 
    Sid:          S-1-5-18 
    Logon time:   2012-01-16 22:03:38 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[1] Logon session 00000000:0000cf19: 
    User name: 
    Auth package: NTLM 
    Logon type:   (none) 
    Session:      0 
    Sid:          (none) 
    Logon time:   2012-01-16 22:03:38 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[2] Logon session 00000000:000003e4: 
    User name:    KERNELS\LAPT8$ 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-20 
    Logon time:   2012-01-16 22:03:40 
    Logon server: 
    DNS Domain: 
    UPN: 
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[3] Logon session 00000000:000003e5: 
    User name:    NT AUTHORITY\LOCAL SERVICE 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-19 
    Logon time:   2012-01-16 22:03:40 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[4] Logon session 00000000:00021ed2: 
    User name:    NT AUTHORITY\ANONYMOUS LOGON 
    Auth package: NTLM 
    Logon type:   Network 
    Session:      0 
    Sid:          S-1-5-7 
    Logon time:   2012-01-16 22:03:46 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[5] Logon session 00000000:000882c2: 
    User name:    LAPT8\jeh 
    Auth package: NTLM 
    Logon type:   Interactive 
    Session:      1 
    Sid:          S-1-5-21-1488595123-1430011218-1163345924-1000 
    Logon time:   2012-01-17 01:34:46 
    Logon server: LAPT8 
    DNS Domain: 
    UPN: 
 
[6] Logon session 00000000:000882e3: 
    User name:    LAPT8\jeh 
    Auth package: NTLM  
    Logon type:   Interactive 
    Session:      1 
    Sid:          S-1-5-21-1488595123-1430011218-1163345924-1000 
    Logon time:   2012-01-17 01:34:46 
    Logon server: LAPT8 
    DNS Domain: 
    UPN:

Information reported for a session includes the SID and name of the user associated 
with the session, as well as the session’s authentication package and logon time . Note that 
the  Negotiate authentication package, seen in logon session 2 in the preceding output, will 
 attempt to  authenticate via Kerberos or NTLM, depending on which is most appropriate for the 
 authentication request .

The LUID for a session is displayed on the “Logon Session” line of each session block, and 
 using the Handle utility (also from Sysinternals), you can find the tokens that represent a 

`
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 particular logon session. For example, to find the tokens for logon session 5 in the example 
output just shown, you could enter this command:

C:\Windows\system32>handle -a 882c2 
 
Handle v3.46 
Copyright (C) 1997-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
System             pid: 4      type: Directory      D60: \Sessions\0\DosDevices\00000000-
000882c2 
winlogon.exe       pid: 440    type: Event           DC: 
 \BaseNamedObjects\00000000000882c2_WlballoonSmartCardUnlockNotificationEventName 
winlogon.exe       pid: 440    type: Event           E4:  
 \BaseNamedObjects\00000000000882c2_WlballoonKerberosNotificationEventName 
winlogon.exe       pid: 440    type: Event          1D4:  
 \BaseNamedObjects\00000000000882c2_WlballoonAlternateCredsNotificationEventName 
lsass.exe          pid: 492    type: Token          508: LAPT8\jeh:882c2 
lsass.exe          pid: 492    type: Token          634: LAPT8\jeh:882c2 
svchost.exe        pid: 892    type: Token          7C4: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token          E70: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token         1034: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token         1194: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token         1384: LAPT8\jeh:882c2

Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\Windows NT 
\Current Version\Winlogon\Userinit and creates a process to run whatever the value of that string is. 
(This value can be several  .EXEs separated by commas .) The default value is Userinit .exe, which loads 
the user profile and then creates a process to run whatever the value of HKCU\SOFTWARE\Microsoft 
\Windows NT\Current Version\Winlogon\Shell is, if that value exists. That value does not exist by 
 default . If it doesn’t exist, Userinit.exe does the same for HKLM\SOFTWARE\Microsoft\Windows NT 
\Current Version\Winlogon\Shell, which defaults to Explorer .exe . Userinit then exits (which is why 
Explorer .exe shows up as having no parent when examined in Process Explorer) . For more informa-
tion on the steps followed during the user logon process, see Chapter 13, “Startup and Shutdown,” in 
Part 2 .

Assured Authentication
A fundamental problem with password-based authentication is that passwords can be revealed, 
or stolen, and used by malicious third parties . New in Windows 7 and Windows Server 2008/R2 is 
a mechanism that tracks the authentication strength of how a user authenticated with the system, 
which allows objects to be protected from access if a user did not authenticate securely . (Smartcard 
authentication is considered to be a stronger form of authentication than password authentication .) 

On systems that are joined to a domain, the domain administrator can specify a mapping between 
an Object Identifier (OID), which is a unique numeric string representing a specific object type, on a 
certificate used for authenticating a user (such as on a smartcard or hardware security token) and a 
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Security ID (SID) that is placed into the user’s access token when the user successfully authenticates 
with the system . An ACE in a DACL on an object can specify such a SID be part of a user’s token in 
order for the user to gain access to the object . Technically, this is known as a group claim . In other 
words, the user is claiming membership in a particular group, which is allowed certain access rights on 
specific objects, with the claim based upon the authentication mechanism. This feature is not enabled 
by default, and it must be configured by the domain administrator in a domain with certificate-based 
authentication .

Assured Authentication builds upon existing Windows security features in a way that provides a 
great deal of flexibility to IT administrators and anyone concerned with enterprise IT security. The 
 enterprise decides which OIDs to embed in the certificates it uses for authenticating users and the 
mapping of particular OIDs to Active Directory universal groups (SIDs) . A user’s group membership 
can be used to identify whether a certificate was used during the logon operation. Different certifi-
cates can have different issuance policies and, thus, different levels of security, which can be used to 
protect highly sensitive objects (such as files or anything else that might have a security descriptor).

Authentication protocols (APs) retrieve OIDs from certificates during certificate-based 
 authentication . These OIDs must be mapped to SIDs, which are in turn processed during group 
 membership expansion, and placed in the access token . The mapping of OID to universal group is 
specified in Active Directory.

As an example, an organization might have several certificate issuance policies with the names 
Contractor, Full Time Employee, and Senior Management, which map to the universal groups 
 Contractor-Users, FTE-Users, and SM-Users, respectively . A user named Abby has a smartcard with 
a certificate issued using the Senior Management issuance policy, and when she logs in using her 
smartcard, she receives an additional group membership (which is represented by a SID in her access 
token) indicating that she is a member of the SM-Users group . Permissions can be set on objects 
(using an ACL) such that only members of the FTE-Users or SM-Users group (identified by their SIDs 
within an ACE) are granted access . If Abby logs in using her smartcard, she can access those objects, 
but if she logs in with just her user name and password (without the smartcard), she cannot access 
those objects because she will not have either the FTE-Users or SM-Users group in her access token . 
A user named Toby who logs in with a smartcard that has a certificate issued using the  Contractor 
 issuance policy would not be able to access an object that has an ACE requiring FTE-Users or 
 SM-Users group membership . 

Biometric Framework for User Authentication
Windows provides a standardized mechanism for supporting certain types of biometric devices— 
specifically, fingerprint scanners—to support user identification via a fingerprint swipe. Like many 
other such frameworks, the Windows Biometric Framework was developed to isolate the various 
 functions involved in supporting such devices, so as to minimize the code required to implement a 
new device . 
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The primary components of the Windows Biometric Framework are shown in Figure 6-14 . Except 
as noted in the following list, all of these components are supplied by Windows:

 ■ The Windows Biometric Service (%SystemRoot%\System32\Wbiosrvc .dll This provides 
the process execution environment in which one or more biometric service providers can 
execute . 

 ■ The Windows Biometric API This allows existing Windows components such as  WinLogon 
and LoginUI to access the biometric service . Third-party applications have access to the 
 biometric API and can use the biometric scanner for functions other than logging in to 
 Windows . An example of a function in this API is WinBioEnumServiceProviders . The Biometric 
API is exposed by %SystemRoot%\System32\Winbio.dll. 

 ■ The Fingerprint Biometric Service Provider This wraps the functions of biometric- type-
specific adapters so as to present a common interface, independent of the type of biometric, 
to the Windows Biometric Service . In the future, additional types of biometrics, such as retinal 
scans or voiceprint analyzers, might be supported by additional Biometric Service Providers . 
The Biometric Service Provider in turn uses three adapters, which are user-mode DLLs:

• The sensor adapter exposes the data-capture functionality of the scanner . The  sensor 
adapter will usually use Windows I/O calls to access the scanner hardware . Windows 
 provides a sensor adapter that can be used with simple sensors, those for which a Windows 
Biometric Device Interface (WBDI) driver exists . For more complex sensors, the sensor 
adapter is written by the sensor vendor . 

• The engine adapter exposes processing and comparison functionality specific to the scan-
ner’s raw data format and other features . The actual processing and comparison might be 
performed within the engine adapter DLL, or the DLL might communicate with some other 
module . The engine adapter is always provided by the sensor vendor . 

• The storage adapter exposes a set of secure storage functions . These are used to store and 
retrieve templates against which scanned biometric data is matched by the engine adapter . 
Windows provides a storage adapter using Windows cryptography services and standard 
disk file storage. A sensor vendor might provide a different storage adapter. 

 ■ The Windows Biometric Driver Interface This is a set of interface definitions (IRP  major 
function codes, DeviceIoControl codes, and so forth) to which any driver for a biometric 
 scanner device must conform if it is to be compatible with the Windows Biometric Service . 
WBDI is described in the Windows Driver Kit documentation . The Windows Driver Kit includes 
a sample WBDI driver . 

 ■ The functional device driver for the actual biometric scanner device This exposes the 
WBDI at its upper edge, and it usually uses the services of a lower-level bus driver, such as the 
USB bus driver, to access the scanner device . It can be a User-Mode Driver Framework (UMDF) 
driver, a Kernel-Mode Driver Framework (KMDF) driver, or a Windows Driver Model (WDM) 
driver . This driver is always provided by the sensor vendor . Microsoft recommends the use of 
UMDF and a USB hardware interface for the scanner . 
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FIGURE 6-14 Windows Biometric Framework components and architecture

A typical sequence of operations to support logging in via a fingerprint scan might be as follows: 

1. After initialization, the sensor adapter receives from the service provider a request for capture 
data . The sensor adapter in turn sends a DeviceIoControl request with the IOCTL_BIOMETRIC_
CAPTURE_DATA control code to the WBDI driver for the fingerprint scanner device.  

2. The WBDI driver puts the scanner into capture mode and queues the IOCTL_BIOMETRIC_ 
CAPTURE_DATA request until a fingerprint scan occurs. 

3. A prospective user swipes a finger across the scanner. The WBDI driver receives notification of 
this, obtains the raw scan data from the sensor, and returns this data to the sensor driver in a 
buffer associated with the IOCTL_BIOMETRIC_CAPTURE_DATA request . 

4. The sensor adapter provides the data to the Fingerprint Biometric Service Provider, which in 
turn passes the data to the engine adapter . 

5. The engine adapter processes the raw data into a form compatible with its template storage .

6. The Fingerprint Biometric Service Provider uses the storage adapter to obtain templates and 
corresponding security IDs from secure storage . It invokes the engine adapter to compare 
each template to the processed scan data . The engine adapter returns a status indicating 
whether it’s a match or not a match .

7.  If a match is found, the Biometric Service notifies WinLogon, via a credential provider DLL, of a 
successful login and passes it the security ID of the identified user. This notification is sent via 
an Advanced Local Procedure Call message, providing a path that cannot be spoofed
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User Account Control and Virtualization

UAC is meant to enable users to run with standard user rights, as opposed to administrative rights . 
Without administrative rights, users cannot accidentally (or deliberately) modify system settings, 
malware can’t normally alter system security settings or disable antivirus software, and users can’t 
compromise the sensitive information of other users on shared computers . Running with standard 
user rights can thus mitigate the impact of malware and protect sensitive data on shared computers .

UAC had to address several problems to make it practical for a user to run with a standard user 
 account . First, because the Windows usage model has been one of assumed administrative rights, 
software developers assumed their programs would run with those rights and so could access and 
modify any file, registry key, or operating system setting. The second problem UAC had to  address 
was that users sometimes need administrative rights to perform such operations as installing 
 software, changing the system time, and opening ports in the firewall. 

The UAC solution to these problems is to run most applications with standard user rights, even 
though the user is logged in to an account with administrative rights; but at the same time, UAC 
makes it possible for standard users to access administrative rights when they need them—whether 
for legacy applications that require them or for changing certain system settings . 

As described previously, UAC accomplishes this by creating a filtered admin token as well as the 
normal admin token when a user logs in to an administrative account . All processes created under the 
user’s session will normally have the filtered admin token in effect so that applications that can run 
with standard user rights will do so . However, the administrative user can run a program or perform 
other functions that require full administrator rights by performing UAC Elevation . 

Windows also allows certain tasks that were previously considered reserved for administrators 
to be performed by standard users, enhancing the usability of the standard user environment . For 
example, Group Policy settings exist that can enable standard users to install printer and other device 
drivers approved by IT administrators and to install ActiveX controls from administrator-approved 
sites . 

Finally, when software developers test in the UAC environment, they are encouraged to develop 
applications that can run without administrative rights . Fundamentally, nonadministrative programs 
should not need to run with Administrator privileges; programs that often require Administrator 
 privileges are typically legacy programs using old APIs or techniques, and they should be updated .

Together, these changes obviate the need for users to run with administrative rights all the time .

File System and Registry Virtualization
Although some software legitimately requires administrative rights, many programs needlessly store 
user data in system-global locations . When an application executes, it can be running in different user 
accounts, and it should therefore store user-specific data in the per-user %AppData% directory and 
save per-user settings in the user’s registry profile under HKEY_CURRENT_USER\Software. Standard 
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user accounts don’t have write access to the %ProgramFiles% directory or HKEY_LOCAL_MACHINE 
\Software, but because most Windows systems are single-user and most users have been administra-
tors until UAC was implemented, applications that incorrectly saved user data and settings to these 
locations worked anyway .

Windows enables these legacy applications to run in standard user accounts through the help of 
file system and registry namespace virtualization. When an application modifies a system-global loca-
tion in the file system or registry and that operation fails because access is denied, Windows redirects 
the operation to a per-user area . When the application reads from a system-global location, Windows 
first checks for data in the per-user area and, if none is found, permits the read attempt from the 
global location .

Windows will always enable this type of virtualization unless

 ■ The application is 64-bit . Because virtualization is purely an application-compatibility 
 technology meant to help legacy applications, it is enabled only for 32-bit applications . The 
world of 64-bit applications is relatively new and developers should follow the development 
guidelines for creating standard user-compatible applications .

 ■ The application is already running with administrative rights . In this case, there is no need for 
any virtualization .

 ■ The operation came from a kernel-mode caller .

 ■ The operation is being performed while the caller is impersonating . For example, any 
 operations not originating from a process classified as legacy according to this definition, 
including network file-sharing accesses, are not virtualized.

 ■ The executable image for the process has a UAC-compatible manifest (specifying a 
 requestedExecutionLevel setting, described in the next section) . 

 ■ The administrator does not have write access to the file or registry key. This exception exists to 
enforce backward compatibility, because the legacy application would have failed before UAC 
was implemented even if the application was run with administrative rights .

 ■ Services are never virtualized .

You can see the virtualization status (as discussed previously, the process’ virtualization status is 
stored as a flag in its token) of a process by adding the UAC Virtualization column to Task  Manager’s 
Processes page, as shown in Figure 6-15 . Most Windows components—including the Desktop 
 Window Manager (Dwm .exe), the Client Server Run-Time Subsystem (Csrss .exe), and Explorer—have 
virtualization disabled because they have a UAC-compatible manifest or are running with admin-
istrative rights and so do not allow virtualization . Internet Explorer (Iexplore .exe) has virtualization 
enabled because it can host multiple ActiveX controls and scripts and must assume that they were not 
written to operate correctly with standard user rights .

In addition to file system and registry virtualization, some applications require additional help to 
run correctly with standard user rights . For example, an application that tests the account in which 
it’s running for membership in the Administrators group might otherwise work, but it won’t run if 
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it’s not in that group. Windows defines a number of application-compatibility shims to enable such 
 applications to work anyway . The shims most commonly applied to legacy applications for opera-
tion with standard user rights are shown in Table 6-10 . Note that, if required, virtualization can be 
 completely disabled for a system using a local security policy setting .

FIGURE 6-15 Using Task Manager to view virtualization status

TABLE 6-10 UAC Virtualization Shims

Flag Meaning 

ElevateCreateProcess Changes CreateProcess to handle ERROR_ELEVATION_REQUIRED errors by 
calling the application information service to prompt for elevation

ForceAdminAccess Spoofs queries of Administrator group membership

VirtualizeDeleteFile Spoofs successful deletion of global files and directories

LocalMappedObject Forces global section objects into the user’s namespace

VirtualizeHKCRLite Redirects global registration of COM objects to a per-user location

VirtualizeRegisterTypeLib Converts per-machine typelib registrations to per-user registrations

File Virtualization
The file system locations that are virtualized for legacy processes are %ProgramFiles%,  
%ProgramData%, and %SystemRoot%, excluding some specific subdirectories. However, any 
file with an executable extension—including  .exe,  .bat,  .scr,  .vbs, and others—is excluded from 
 virtualization . This means that programs that update themselves from a standard user account 
fail  instead of creating private versions of their executables that aren’t visible to an administrator 
 running a global updater .
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Note To add additional extensions to the exception list, enter them in the HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd 
registry key and reboot . Use a multistring type to delimit multiple extensions, and do not 
include a leading dot in the extension name .

Modifications to virtualized directories by legacy processes are redirected to the user’s virtual 
root directory, %LocalAppData%\VirtualStore. The Local component of the path highlights the fact 
that virtualized files don’t roam with the rest of the profile when the account has a roaming pro-
file. If you navigate in Explorer to a directory containing virtualized files, Explorer displays a button 
labeled Compatibility Files in its toolbar, as shown in Figure 6-16 . Clicking the button takes you to the 
 corresponding VirtualStore subdirectory to show you the virtualized files.

FIGURE 6-16 Virtualized files are displayed here

The UAC File Virtualization Filter Driver (%SystemRoot%\System32\Drivers\Luafv.sys)  implements 
file system virtualization. Because this is a file system filter driver, it sees all local file system 
 operations, but it implements functionality only for operations from legacy processes . As shown in 
Figure 6-17, the filter driver changes the target file path for a legacy process that creates a file in a 
system-global location but does not for a nonvirtualized process with standard user rights . Default 
permissions on the \Windows directory deny access to the application written with UAC support, but 
the legacy process acts as though the operation succeeds, when it really created the file in a location 
fully accessible by the user .
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FIGURE 6-17 UAC File Virtualization Filter Driver operation

EXPERIMENT: File Virtualization Behavior
In this experiment, we will enable and disable virtualization on the command prompt and see 
several behaviors to demonstrate UAC file virtualization:

1. Open a nonelevated command prompt (you must have UAC enabled for this to work), 
and enable virtualization for it . You can change the virtualization status of a process by 
selecting UAC Virtualization from the shortcut menu that appears when you right-click 
the process in Task Manager .

2. Navigate to the C:\Windows directory, and use the following command to write a file:

echo hello-1 > test.txt

3. Now list the contents of the directory:

dir test.txt

You’ll see that the file appears.

4. Now disable virtualization by right-clicking on the process on the Processes page in 
Task Manager and deselecting UAC Virtualization, and then list the directory as in step 
3. Notice that the file is gone. However, a directory listing of the VirtualStore directory 
will reveal the file:

dir %LOCALAPPDATA%\VirtualStore\Windows\test.txt



 CHAPTER 6 Security 571

5. Enable virtualization again for this process .  

6. To take a look at a more complex scenario, create a new command prompt window, 
but elevate it this time, and then repeat steps 2 and 3 using the string “hello-2” .

7. Examine the text inside these files by using the following command in both command 
prompts:

echo test.txt

The following two screen shots show the expected output .

8. Finally, from your elevated command prompt, delete the test.txt file:

del test.txt

9. Repeat step 6 of the experiment . Notice that the elevated command prompt  cannot 
find the file anymore, while the standard user command prompt shows the old con-
tents of the file again. This demonstrates the failover mechanism described  earlier—
read operations will look in the per-user virtual store location first, but if the file 
doesn’t exist, read access to the system location will be granted .

Registry Virtualization
Registry virtualization is implemented slightly differently from file system virtualization. Virtualized 
registry keys include most of the HKEY_LOCAL_MACHINE\Software branch, but there are numerous 
exceptions, such as the following:

 ■ HKLM\Software\Microsoft\Windows
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 ■ HKLM\Software\Microsoft\Windows NT

 ■ HKLM\Software\Classes

Only keys that are commonly modified by legacy applications, but that don’t introduce 
 compatibility or interoperability problems, are virtualized. Windows redirects modifications of 
 virtualized keys by a legacy application to a user’s registry virtual root at HKEY_ CURRENT_USER 
\Software\Classes\VirtualStore. The key is located in the user’s Classes hive, %LocalAppData% 
\Microsoft\Windows\UsrClass.dat, which, like any other virtualized file data, does not roam with a 
roaming user profile. Instead of maintaining a fixed list of virtualized locations as Windows does 
for the file system, the virtualization status of a key is stored as a combination of flags, shown in 
Table 6-11 .

TABLE 6-11 Registry Virtualization Flags

Flag Meaning 

REG_KEY_DONT_VIRTUALIZE Specifies whether virtualization is enabled for this key. If the flag is set, virtualization 
is disabled .

REG_KEY_DONT_SILENT_FAIL If the REG_KEY_DONT_VIRTUALIZE flag is set (virtualization is disabled), this key 
specifies that a legacy application that would be denied access performing an 
 operation on the key is instead granted MAXIMUM_ALLOWED rights to the key (any 
access the account is granted), instead of the rights the application requested . If this 
flag is set, it implicitly disables virtualization as well.

REG_KEY_RECURSE_FLAG Determines whether the virtualization flags will propagate to the child keys (subkeys) 
of this key .

You can use the Reg.exe utility included in Windows, with the flags option, to display the  current 
virtualization state for a key or to set it. In Figure 6-18, note that the HKLM\Software key is fully 
 virtualized, but the Windows subkey (and all its children) have only silent failure enabled .

FIGURE 6-18 UAC registry virtualization flags on the Software and Windows keys

Unlike file virtualization, which uses a filter driver, registry virtualization is implemented in the 
configuration manager. (See Chapter 4 for more information on the registry and the configuration 
manager.) As with file system virtualization, a legacy process creating a subkey of a virtualized key is 
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redirected to the user’s registry virtual root, but a UAC-compatible process is denied access by default 
permissions . This is shown in Figure 6-19 .

User mode

Kernel mode

HKLM\Software\App

Virtualized
process

Ntoskrnl.exe

Registry

Non-virtualized
process

Access denied

HKCU\Software\Classes\VirtualStore\
Machine\Software\App

FIGURE 6-19 UAC registry virtualization operation

Elevation
Even if users run only programs that are compatible with standard user rights, some operations still 
require administrative rights . For example, the vast majority of software installations require admin-
istrative rights to create directories and registry keys in system-global locations or to install services 
or device drivers . Modifying system-global Windows and application settings also requires admin-
istrative rights, as does the parental controls feature . It would be possible to perform most of these 
 operations by switching to a dedicated administrator account, but the inconvenience of doing so 
would likely result in most users remaining in the administrator account to perform their daily tasks, 
most of which do not require administrative rights . 

It’s important to be aware that UAC elevations are conveniences and not security boundaries . A 
security boundary requires that security policy dictate what can pass through the boundary . User 
accounts are an example of a security boundary in Windows, because one user can’t access the data 
belonging to another user without having that user’s permission .

Because elevations aren’t security boundaries, there’s no guarantee that malware running on a 
 system with standard user rights can’t compromise an elevated process to gain administrative rights . 
For example, elevation dialog boxes only identify the executable that will be elevated; they say 
 nothing about what it will do when it executes .
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Running with Administrator Rights
Windows includes enhanced “run as” functionality so that standard users can conveniently launch 
processes with administrative rights . This functionality requires giving applications a way to identify 
operations for which the system can obtain administrative rights on behalf of the application, as 
 necessary . (We’ll say more on this topic shortly .)

To enable users acting as system administrators to run with standard user rights but not have 
to enter user names and passwords every time they want to access administrative rights, Windows 
makes use of a mechanism called Admin Approval Mode (AAM) . This feature creates two identities for 
the user at logon: one with standard user rights and another with administrative rights . Since every 
user on a Windows system is either a standard user or acting for the most part as a standard user in 
AAM, developers must assume that all Windows users are standard users, which will result in more 
 programs working with standard user rights without virtualization or shims .

Granting administrative rights to a process is called elevation . When elevation is performed by 
a standard user account (or by a user who is part of an administrative group but not the actual 
 Administrators group), it’s referred to as an over-the-shoulder (OTS) elevation because it requires the 
entry of credentials for an account that’s a member of the Administrators group, something that’s 
usually completed by a user typing over the shoulder of a standard user . An elevation performed by 
an AAM user is called a consent elevation because the user simply has to approve the assignment of 
his administrative rights .

Stand-alone systems, which are typically home computers, and domain-joined systems treat AAM 
access by remote users differently because domain-connected computers can use domain adminis-
trative groups in their resource permissions. When a user accesses a stand-alone computer’s file share, 
Windows requests the remote user’s standard user identity, but on domain-joined systems, Windows 
honors all the user’s domain group memberships by requesting the user’s administrative identity . 
Executing an image that requests administrative rights causes the application information service  
(AIS, contained in %SystemRoot%\System32\Appinfo.dll), which runs inside a service host process 
(%SystemRoot%\System32\Svchost.exe), to launch Consent.exe (%SystemRoot%\System32 
\Consent.exe). Consent captures a bitmap of the screen, applies a fade effect to it, switches to a 
desktop that’s accessible only to the local system account (the secure desktop), paints the bitmap as 
the background, and displays an elevation dialog box that contains information about the execut-
able . Displaying this dialog box on a separate desktop prevents any application present in the user’s 
account from modifying the appearance of the dialog box .

If an image is a Windows component digitally signed by Microsoft and the image is in the 
 Windows system directory, the dialog box displays a blue stripe across the top, as shown at the top of 
Figure 6-20, with a blue and gold shield at the left end of the stripe . If the image is signed by some-
one other than Microsoft, or if it is signed by Microsoft but resides in a directory tree other than the 
Windows directory tree, the shield becomes solid blue with a question mark over it . If the image is 
unsigned, the shield background and the stripe both become orange, the shield has an exclamation 
point over it, and the prompt stresses the unknown origin of the image . The elevation dialog box 
shows the image’s icon, description, and publisher for digitally signed images, but it shows only the 
file name and “Unknown publisher” for unsigned images. This difference makes it harder for malware 
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to mimic the appearance of legitimate software . The Details button at the bottom of the dialog box 
expands it to show the command line that will be passed to the executable if it launches .

FIGURE 6-20 AAC UAC elevation dialog boxes based on image signature

The OTS consent dialog box, shown in Figure 6-21, is similar, but prompts for administrator 
 credentials . It will list any accounts with administrator rights . 

FIGURE 6-21 OTS consent dialog box
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If a user declines an elevation, Windows returns an access-denied error to the process that initiated 
the launch . When a user agrees to an elevation by either entering administrator credentials or clicking 
Continue, AIS calls CreateProcessAsUser to launch the process with the appropriate administrative 
identity . Although AIS is technically the parent of the elevated process, AIS uses new support in the 
CreateProcessAsUser API that sets the process’ parent process ID to that of the process that origi-
nally launched it . (See Chapter 5, “Processes and Threads,” for more information on processes and 
this mechanism .) That’s why elevated processes don’t appear as children of the AIS service-hosting 
process in tools such as Process Explorer that show process trees . Figure 6-22 shows the operations 
involved in launching an elevated process from a standard user account .

AppInfo service Consent.exe

Admin.exe

Explorer

Standard user

Local system

Administrator

ShellExecute 
(Admin.exe)

Re
pa

re
nt

ed

CreateProcessAsUser 
(Admin.exe)

FIGURE 6-22 Launching an administrative application as a standard user

Requesting Administrative Rights
There are a number of ways the system and applications identify a need for administrative rights . One 
that shows up in the Explorer user interface is the Run As Administrator context menu command and 
shortcut option . These items also include a blue and gold shield icon that should be placed next to 
any button or menu item that will result in an elevation of rights when it is selected . Choosing the Run 
As Administrator command causes Explorer to call the ShellExecute API with the “runas” verb .

The vast majority of installation programs require administrative rights, so the image loader, 
which initiates the launch of an executable, includes installer-detection code to identify likely legacy 
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installers . Some of the heuristics it uses are as simple as detecting internal version information or 
whether the image has the words setup, install, or update in its file name. More sophisticated means 
of detection involve scanning for byte sequences in the executable that are common to third-party 
installation wrapper utilities . The image loader also calls the application compatibility library to see if 
the target executable requires administrator rights . The library looks in the application compatibility 
database to see whether the executable has the RequireAdministrator or RunAsInvoker compatibility 
flag associated with it.

The most common way for an executable to request administrative rights is for it to include a 
requestedExecutionLevel tag in its application manifest file. The element’s level attribute can have one 
of the three values shown in Table 6-12 .

TABLE 6-12 Requested Elevation Levels

Elevation Level Meaning Usage

As Invoker No need for administrative rights; never ask 
for elevation .

Typical user applications that don’t need 
 administrative privileges—for example, Notepad .

Highest Available Request approval for highest rights  available . 
If the user is logged on as a standard user, 
the process will be launched as invoker; 
otherwise, an AAM elevation prompt will 
appear, and the process will run with full 
 administrative rights .

Applications that can function without full 
 administrative rights but expect users to want 
full access if it’s easily accessible . For example, 
the Registry Editor, Microsoft Management 
Console, and the Event Viewer use this level .

Require 
Administrator

Always request administrative rights—an OTS 
elevation dialog box prompt will be shown for 
standard users; otherwise, AAM .

Applications that require administrative rights to 
work, such as the Firewall Settings editor, which 
affects systemwide security .

The presence of the trustInfo element in a manifest (which you can see in the excerpted string 
dump of eventvwr .exe discussed next) denotes an executable that was written with support for UAC 
and the requestedExecutionLevel element nests within it . The uiAccess attribute is where accessibility 
applications can use the UIPI bypass functionality mentioned earlier .

C:\>strings c:\Windows\System32\eventvwr.exe 
... 
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> 
    <security> 
        <requestedPrivileges> 
            <requestedExecutionLevel 
                level="highestAvailable" 
                uiAccess="false" 
            /> 
        </requestedPrivileges> 
    </security> 
</trustInfo> 
<asmv3:application> 
   <asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings"> 
        <autoElevate>true</autoElevate> 
   </asmv3:windowsSettings> 
</asmv3:application> 
...
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An easier way to determine the values specified by an executable is to view its manifest with the 
Sysinternals Sigcheck utility, like this:

sigcheck –m <executable>

EXPERIMENT: Using Application-Compatibility Flags
In this experiment, we will use an application-compatibility flag to run the Registry Editor as 
a standard user process . This will bypass the RequireAdministrator manifest flag and force 
 virtualization on Regedit .exe, allowing you to make changes to the virtualized registry directly .

1. Navigate to your %SystemRoot% directory, and copy the Regedit.exe file to another 
path on your system (such as C:\ or your Desktop folder).

2. Go to the HKLM\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags 
\Layers registry key, and create a new string value whose name is the path where you 
copied Regedit.exe, such as c:\regedit.exe

3. Set the value of this key to RUNASINVOKER .

4. Now start Regedit .exe from its location . (Be sure to close any running copies of the 
Registry Editor first.) You will not see the typical AAM dialog box, and Regedit.exe 
will now run with standard user rights . You will also be subject to the virtualized view 
of the registry, meaning you can now see what legacy applications see when accessing 
the registry .

Auto-Elevation
In the default configuration (see the next section for information on changing this), most Windows 
executables and control panel applets do not result in elevation prompts for administrative users, 
even if they need administrative rights to run . This is because of a mechanism called auto-elevation . 
Auto-elevation is intended to preclude administrative users from seeing elevation prompts for most 
of their work; the programs will automatically run under the user’s full administrative token .  

Auto-elevation has several requirements . The executable in question must be considered as a 
 Windows executable . This means it must be signed by the Windows publisher (not just by Microsoft), 
and it must be in one of several directories considered secure: %SystemRoot%\System32 and most of 
its subdirectories, %Systemroot%\Ehome, and a small number of directories under %ProgramFiles%—
for example, those containing Windows Defender and Windows Journal . 

There are additional requirements, depending on the type of executable . 

.exe files other than Mmc.exe auto-elevate if they are requested via an autoElevate element in their 
manifest . The string dump of EventVwr .exe in the previous section illustrates this . 
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Windows also includes a short internal list of executables that are auto-elevated without the 
autoElevate element . Two examples are Spinstall .exe, the service pack installer, and Pkgmgr .
exe, the package manager . They are handled this way because they are also supplied external to 
 Windows 7; they must be able to run on earlier versions of Windows where the autoExecute element 
in their  manifest might cause an error . These executables must still meet the signing and directory 
 requirements for Windows executables as described previously . 

Mmc .exe is treated as a special case, because whether it should auto-elevate or not depends on 
which system management snap-ins it is to load . Mmc .exe is normally invoked with a command line 
specifying an .msc file, which in turn specifies which snap-ins are to be loaded. When Mmc.exe is run 
from a protected administrator account (one running with the limited administrator token), it asks 
Windows for administrative rights . Windows validates that Mmc .exe is a Windows executable and 
then checks the  .msc . The  .msc must also pass the tests for a Windows executable, and furthermore 
must be on an internal list of auto-elevate .msc’s. This list includes nearly all .msc files in Windows.  

Finally, COM objects can request administrative rights within their registry key . To do so requires 
a subkey named Elevation with a REG_DWORD value named Enabled, having a value of 1 . Both the 
COM object and its instantiating executable must meet the Windows executable requirements, 
though the executable need not have requested auto-elevation . 

Controlling UAC Behavior
UAC can be modified via the dialog box shown in Figure 6-23. This dialog box is available under 
 Control Panel, Action Center, Change User Account Control Settings . Figure 6-23 shows the control in 
its default position for Windows 7 .

 
FIGURE 6-23 User Account Control settings
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The four possible settings have the effects described in Table 6-13 . 

TABLE 6-13 User Account Control Options

Slider Position When administrative user not running with administrative 
rights…

Remarks

…attempts to change 
Windows settings, for ex-
ample, use certain Control 
Panel applets

…attempts to install software, 
or run a program whose mani-
fest calls for elevation, or uses 
Run As Administrator

Highest position 
(“Always notify”)

UAC elevation prompt appears 
on the secure desktop

UAC elevation prompt appears on 
the secure desktop

This was the Windows 
Vista behavior

Second position UAC elevation occurs 
 automatically with no prompt 
or notification

UAC elevation prompt appears on 
the secure desktop

Windows 7 default 
 setting

Third position UAC elevation occurs 
 automatically with no prompt 
or notification

UAC elevation prompt appears on 
the user’s normal desktop

Not recommended

Lowest position 
(“Never notify”)

UAC is turned off for 
 administrative users

UAC is turned off for 
 administrative users

Not recommended . 

The third position is not recommended because the UAC elevation prompt appears not on the 
secure desktop but on the normal user’s desktop . This could allow a malicious program running in the 
same session to change the appearance of the prompt . It is intended for use only in systems where 
the video subsystem takes a long time to dim the desktop or is otherwise unsuitable for the usual 
UAC display .  

The lowest position is strongly discouraged because it turns UAC off completely as far as 
 administrative accounts are concerned . All processes run by a user with an administrative account will 
be run with the user’s full administrative rights in effect; there is no filtered admin token. Registry and 
file system virtualization are disabled as well for these accounts, and the Protected mode of Internet 
Explorer is disabled . However, virtualization is still in effect for nonadministrative accounts, and non-
administrative accounts will still see an OTS elevation prompt when they attempt to change Windows 
settings, run a program that requires elevation, or use the Run As Administrator context menu option 
in Explorer . 

The UAC setting is stored in four values in the registry under HKEY_LOCAL_MACHINE 
\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System, as shown in Table 6-14. 
 ConsentPromptBehaviorAdmin controls the UAC elevation prompt for administrators running with a 
filtered admin token, and ConsentPromptBehaviorUser controls the UAC prompt for users other than 
administrators . 
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TABLE 6-14 User Account Control Registry Values

Slider Position
ConsentPrompt 
BehaviorAdmin

ConsentPrompt 
BehaviorUser EnableLUA PromptOnSecureDesktop

Highest position 
(“Always notify”)

2 (display AAC UAC 
elevation prompt)

3 (display OTS UAC 
 elevation prompt)

1 (enabled) 1 (enabled)

Second position 5 (display AAC UAC 
elevation prompt, 
except for changes to 
Windows settings)

3 1 1

Third position 5 3 1 0 (disabled; UAC prompt 
appears on user’s normal 
desktop)

Lowest position 
(“Never notify”)

0 3 0 (disabled . 
Logins to 
admin-
istrative 
 accounts do 
not create 
a restricted 
admin ac-
cess token)

0

Application Identification (AppID)

Historically, security decisions in Windows have been based upon a user’s identity (in the form of the 
user’s SID and group membership), but a growing number of security components (AppLocker, fire-
wall, antivirus, antimalware, Rights Management Services, and others) need to make security decisions 
based upon what code is to be run . In the past, each of these security components used their own 
proprietary method for identifying applications, which led to inconsistent and overly-complicated 
policy authoring . The purpose of AppID is to bring consistency to how the security components 
 recognize applications by providing a single set of APIs and data structures .

Note This is not the same as the AppID used by DCOM/COM+ applications, where a GUID 
represents a process that is shared by multiple CLSIDs, nor is it the AppID used by Windows 
Live applications .

Just as a user is identified when she logs in, an application is identified just before it is started 
by generating the main program’s AppID . An AppID can be generated from any of the follow-
ing  attributes of the application: Fields within a code-signing certificate embedded within the file 
 allow for different combinations of publisher name, product name, file name, and version.  
APPID://FQBN is a Fully Qualified Binary Name, and it is a string in the following form:  
{Publisher\Product\Filename,Version}. The Publisher name is the Subject field of the x.509 certificate 
used to sign the code, using the following fields: O = Organization, L = Locality, S = State or Province, 
and C = Country.
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File hash . There are several methods that can be used for hashing . The default is  
APPID://SHA256HASH. However, for backward compatibility with SRP and most x.509 certificates, 
SHA-1 (APPID://SHA1HASH) is still supported. APPID://SHA256HASH specifies the SHA-256 hash of 
the file. 

The partial or complete path to the file. APPID://Path specifies a path with optional wildcard 
 characters (“*”) . 

Note An AppID does not serve as a means for certifying the quality or security of an 
 application . An AppID is simply a way of identifying an application so that administrators 
can reference the application in security policy decisions .

The AppID is stored in the process’s access token, allowing any security component to make 
 authorization decisions based upon a single, consistent identification. AppLocker uses conditional 
ACEs (described earlier) for specifying whether a particular program is allowed to be run by the user . 

When an AppID is created for a signed file, the certificate from the file is cached and verified to a 
trusted root certificate. The certificate path is re-verified daily to ensure the certificate path remains 
valid. Certificate caching and verification are recorded in the system event log. See Figure 6-24.

FIGURE 6-24 Event Viewer showing AppID service verifying signature of a program . 



 CHAPTER 6 Security 583

AppLocker

New to Windows 7 and Windows Server 2008/R2 (Enterprise and Ultimate editions) is a feature 
known as AppLocker, which allows an administrator to lockdown a system to prevent unauthorized 
programs from being run . Windows XP introduced Software Restriction Policies (SRP), which was the 
first step toward this capability, but SRP suffered from being difficult to manage, and it couldn’t be 
applied to specific users or groups. (All users were affected by SRP rules.) AppLocker is a replacement 
for SRP, and yet coexists alongside SRP, with AppLocker’s rules being stored separately from SRP’s 
rules . If both AppLocker and SRP rules are in the same Group Policy object (GPO), only the AppLocker 
rules will be applied . Another feature that makes AppLocker superior to SRP is AppLocker’s auditing 
mode, which allows an administrator to create an AppLocker policy and examine the results (stored 
in the system event log) to determine whether the policy will perform as expected—without actually 
performing the restrictions . AppLocker auditing mode can be used to monitor which applications are 
being used by one, or more, users on a system .

AppLocker allows an administrator to restrict the following types of files from being run:

 ■ Executable images ( .EXE and  .COM)

 ■ Dynamic-Link Libraries ( .DLL and  .OCX)

 ■ Microsoft Software Installer ( .MSI and  .MSP) for both install and uninstall

 ■ Scripts

 ■ Windows PowerShell ( .PS1)

 ■ Batch ( .BAT and  .CMD)

 ■ VisualBasic Script ( .VBS)

 ■ Java Script ( .JS)

AppLocker provides a simple GUI rule-based mechanism, which is very similar to network firewall 
rules, for determining which applications or scripts are allowed to be run by specific users and groups, 
using conditional ACEs and AppID attributes . There are two types of rules in AppLocker:

 ■ Allow the specified files to run, denying everything else.

 ■ Deny the specified files from being run, allowing everything else. “Deny” rules take 
 precedence over “allow” rules .

Each rule can also have a list of exceptions to exclude files from the rule. Using an exception, you 
could create a rule to “Allow everything in the C:\Windows or C:\Program Files directories to be run, 
except the built-in games .”

AppLocker rules can be associated with a specific user or group. This allows an administrator to 
support compliance requirements by validating and enforcing which users can run specific applica-
tions . For example, you can create a rule to “Allow users in the Finance security group to run the 
finance line-of-business applications.” This blocks everyone who is not in the Finance security group 
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from running finance applications (including administrators) but still provides access for those that 
have a business need to run the applications . Another useful rule would be to prevent users in the 
Receptionists group from installing or running unapproved software .

AppLocker rules depend upon conditional ACEs and attributes defined by AppID. Rules can be 
 created using the following criteria:

 ■ Fields within a code-signing certificate embedded within the file, allowing for different 
 combinations of publisher name, product name, file name, and version. For example, a 
rule could be created to “Allow all versions greater than 9 .0 of Contoso Reader to run” or 
“Allow anyone in the graphics group to run the installer or application from Contoso for 
 GraphicsShop as long as the version is 14 .*” . For example, the following SDDL string de-
nies execute access to any signed programs published by Contoso for the user account 
 RestrictedUser (identified by the user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;((Exists APPID://FQBN)  
&& ((APPID://FQBN) >= ({"O=CONTOSO, INCORPORATED, L=REDMOND,  
S=CWASHINGTON, C=US\*\*",0}))))

 ■ Directory path, allowing only files within a particular directory tree to run. This can also be 
used to identify specific files. For example, the following SDDL string denies execute access to 
the programs in the directory C:\Tools for the user account RestrictedUser (identified by the 
user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://PATH  
Contains "%OSDRIVE%\TOOLS\*"))

 ■ File hash. Using a hash will also detect if a file has been modified and prevent it from running, 
which can also be a weakness if files are changed frequently, because the hash rule will need 
to be updated frequently . File hashes are often used for scripts because few scripts are signed . 
For example, this SDDL string denies execute access to programs with the specified hash 
 values for the user account RestrictedUser (identified by the user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://SHA256HASH  
Any_of {#7a334d2b99d48448eedd308dfca63b8a3b7b44044496ee2f8e236f5997f1b647,  
#2a782f76cb94ece307dc52c338f02edbbfdca83906674e35c682724a8a92a76b}))

AppLocker rules can be defined on the local machine using the Security Policy MMC snap-in 
(%SystemRoot%\System32\secpol.msc) or a Windows PowerShell script, or they can be pushed to 
machines within a domain using group policy . AppLocker rules are stored in multiple locations within 
the registry:

 ■ HKLM\Software\Policies\Microsoft\Windows\SrpV2 This key is also mirrored to  
HKLM\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\SrpV2. The rules are stored in 
XML format .



 CHAPTER 6 Security 585

 ■ HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp\Exe The rules are stored as SDDL and 
a binary ACE .

 ■ HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy 
 Objects\{GUID}Machine\Software\Policies\Microsoft\Windows\SrpV2 AppLocker 
policy pushed down from a domain as part of a Group Policy Object (GPO) are stored here in 
XML format .

Certificates for files that have been run are cached in the registry under the key HKLM\SYSTEM 
\CurrentControlSet\Control\AppID\CertStore. AppLocker also builds a certificate chain (stored in 
HKLM\SYSTEM\CurrentControlSet\Control\AppID\CertChainStore) from the certificate found in a file 
back to a trusted root certificate. See Figure 6-25.

FIGURE 6-25 AppLocker configuration page in Local Security Policy

There are also AppLocker-specific PowerShell commands (also known as cmdlets) to enable 
 deployment and testing via scripting . Figure 6-26 demonstrates using PowerShell commands to 
determine which files in a directory tree have been signed, saving the current AppLocker policy in 
an XML file, and displaying which executable files in a directory tree could be run by a user named 
RestrictedUser .
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FIGURE 6-26 Powershell cmdlets used to examine executables for signatures, save AppLocker policies in an XML 
file, and test the ability of a user to run the executables

The AppID and SRP services co-exist in the same binary (%SystemRoot%\System32\AppIdSvc.dll), 
which runs within an SvcHost process . The service requests a registry change notification to monitor 
any changes under that key, which is written by either a GPO or the AppLocker UI in the Local Secu-
rity Policy MMC snap-in . When a change is detected, the AppID service triggers a user-mode task 
( %SystemRoot%\System32\AppIdPolicyConverter.exe), which reads the new XML rules and translates 
them into binary format ACEs and SDDL strings, which are understandable by both the user-mode 
and kernel-mode AppID and AppLocker components . The task stores the translated rules under 
HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp. This key is writable only by SYSTEM and Adminis-
trators, and it is marked read-only for authenticated users . Both user-mode and kernel-mode AppID 
components read the translated rules from the registry directly . The service also monitors the local 
machine trusted root certificate store, and it invokes a user-mode task (%SystemRoot%\System32 
\AppIdCertStoreCheck.exe) to reverify the certificates at least once per day and whenever there is a 
change to the certificate store. The AppID kernel-mode driver (%SystemRoot%\System32\drivers 
\AppId.sys) is notified about rule changes by the AppID service through an APPID_POLICY_CHANGED 
DeviceIoControl request . See Figure 6-27 .
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FIGURE 6-27 Scheduled task that runs every day to convert software restriction policies stored in XML to 
 binary format

An administrator can track which applications are being allowed or denied by looking at the 
 system Event Log using the event viewer (once AppLocker has been configured and the service 
started) . See Figure 6-28 .

FIGURE 6-28 Event Viewer showing AppLocker allowing and denying access to various applications . Event ID 
8004 is “denied”; 8002 is “allowed .”
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The implementations of AppID, AppLocker, and SRP are somewhat blurred and violate strict 
 layering, with various logical components co-existing within the same executables, and the naming is 
not as consistent as one would like .

The AppID service runs as LocalService so that it has access to the Trusted Root Certificate Store on 
the system . This also enables it to perform certificate verification. The AppID service is responsible for 
the following:

 ■ Verification of publisher certificates

 ■ Adding new certificates to the cache

 ■ Detecting AppLocker rule updates, and notifying the AppID driver

The AppID driver performs the majority of the AppLocker functionality and relies upon 
 communication (via DeviceIoControl requests) from the AppID service, so its device object is 
 protected by an ACL, granting access only to the NT SERVICE\AppIDSvc, NT SERVICE\LOCAL SERVICE 
and BUILTIN\Administrators groups. Thus, the driver cannot be spoofed by malware. 

When the AppID driver is first loaded, it requests a process creation  callback 
( CreateProcessNotifyEx) by calling PsSetCreateProcessNotifyRoutineEx . When the 
 CreateProcessNotifyEx routine is called, it is passed a PPS_CREATE_NOTIFY_INFO structure 
( describing the process being created) . It then gathers the AppID attributes that identify the 
 executable image and writes them to the process’ access token . Then it calls the undocumented 
 routine SeSrpAccessCheck, which examines the process token and the conditional ACE AppLocker 
rules, and determines whether the process should be allowed to run . If the process should not be 
allowed to run, the driver writes STATUS_ACCESS_DISABLED_BY_POLICY_OTHER to the Status field of 
the PPS_CREATE_NOTIFY_INFO structure, which causes the process creation to be canceled (and sets 
the process’ final completion status).

To perform DLL restriction, the image loader will send a DeviceIoControl request to the AppID 
driver whenever it loads a DLL into a process . The driver then checks the DLL’s identity against the 
 AppLocker conditional ACEs, just like it would for an executable . 

Note Performing these checks for every DLL load is time consuming and might be 
 noticeable to end users . For this reason, DLL rules are normally disabled, and they must be 
specifically enabled via the Advanced tab in the AppLocker properties page in the Local 
Security Policy snap-in . 

The scripting engines and the MSI installer have been modified to call the user-mode SRP APIs 
whenever they open a file, to check whether a file is allowed to be opened. The user-mode SRP APIs 
call the AuthZ APIs to perform the conditional ACE access check .
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Software Restriction Policies

Windows also contains a user-mode mechanism called Software Restriction Policies that enables 
administrators to control what images and scripts execute on their systems . The Software Restriction 
Policies node of the Local Security Policy Editor, shown in Figure 6-29, serves as the management 
interface for a machine’s code execution policies, although per-user policies are also possible using 
domain group policies .

Several global policy settings appear beneath the Software Restriction Policies node:

 ■ The Enforcement policy configures whether restriction policies apply to libraries, such as DLLs, 
and whether policies apply to users only or to administrators as well .

 ■ The Designated File Types policy records the extensions for files that are considered 
 executable code .

 ■ Trusted Publishers control who can select which certificate publishers are trusted.

 
FIGURE 6-29 Software Restriction Policy configuration

When configuring a policy for a particular script or image, an administrator can direct the system 
to recognize it using its path, its hash, its Internet Zone (as defined by Internet Explorer), or its cryp-
tographic certificate, and she can specify whether it is associated with the Disallowed or Unrestricted 
security policy .

Enforcement of Software Restriction Policies takes place within various components where files are 
treated as containing executable code . Some of these components are listed here:

 ■ The user-mode Windows CreateProcess function in %SystemRoot%\System32\Kernel32.dll 
enforces it for executable images .

 ■ The DLL loading code of Ntdll (%SystemRoot%\System32\Ntdll.dll) enforces it for DLLs.

 ■ The Windows command prompt (%SystemRoot%\System32\Cmd.exe) enforces it for batch 
file execution.
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 ■ Windows Scripting Host components that start scripts—%SystemRoot%\System32\Cscript.exe 
(for command-line scripts), %SystemRoot%\System32\Wscript.exe (for UI scripts), and  
%SystemRoot%\System32\Scrobj.dll (for script objects)—enforce it for script execution.

Each of these components determines whether the restriction policies are enabled by reading the 
registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer\CodeIdentifiers 
\TransparentEnabled, which if set to 1 indicates that policies are in effect. Then it determines whether 
the code it’s about to execute matches one of the rules specified in a subkey of the CodeIdentifiers 
key and, if so, whether or not the execution should be allowed . If there is no match, the default policy, 
as specified in the DefaultLevel value of the CodeIdentifiers key, determines whether the execution is 
allowed .

Software Restriction Policies are a powerful tool for preventing the unauthorized access of code 
and scripts, but only if properly applied . Unless the default policy is set to disallow execution, a user 
can make minor changes to an image that’s been marked as disallowed so that he can bypass the rule 
and execute it . For example, a user can change an innocuous byte of a process image so that a hash 
rule fails to recognize it, or copy a file to a different location to avoid a path-based rule.

EXPERIMENT: Watching Software Restriction Policy Enforcement
You can indirectly see Software Restriction Policies being enforced by watching accesses to the 
registry when you attempt to execute an image that you’ve disallowed .

1. Run secpol .msc to open the Local Security Policy Editor, and navigate to the Software 
Restriction Policies node .

2. Choose Create New Policies from the context menu if no policies are defined.

3. Create a path-based disallow restriction policy for %SystemRoot%\System32\Notepad.exe.

4. Run Process Monitor, and set an include filter for Safer. (See Chapter 4 for a description 
of Process Monitor .)

5. Open a command prompt, and run Notepad from the prompt .

Your attempt to run Notepad should result in a message telling you that you cannot execute 
the specified program, and Process Monitor should show the command prompt (cmd.exe) 
 querying the local machine restriction policies .

Conclusion

Windows provides an extensive array of security functions that meet the key requirements of both 
government agencies and commercial installations . In this chapter, we’ve taken a brief tour of the 
internal components that are the basis of these security features . In the next chapter, we’ll look at the 
I/O system .
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C H A P T E R  7

Networking

Microsoft Windows was designed with networking in mind, and it includes broad networking 
 support that is integrated with the I/O system and the Windows APIs . The four basic types of 

network software components are services, APIs, protocols, and drivers for network adapters—with 
each component layered on top of the next to form a network stack. Windows has well-defined 
 interfaces for each layer, so in addition to using the wide variety of APIs, protocols, and network 
adapter device drivers that ship with Windows, third parties can extend the operating system’s 
 networking capabilities by developing their own components .

In this chapter, we take you from the top of the Windows networking stack to the bottom . First, we 
present the mapping between the Windows networking software components and the Open Systems 
Interconnection (OSI) reference model. Then we briefly describe the networking APIs available on 
Windows and explain how they are implemented . You’ll learn how multiple redirector support and 
name resolution work, see how to access and cache remote files, and learn how a multitude of drivers 
interact to form a network protocol stack . After looking at the implementation of network adapter 
device drivers, we examine binding, which is the glue that connects services, protocol stacks, and 
network adapters .

Windows Networking Architecture

The goal of network software is to take a request (in the form of an I/O request) from an  application 
on one machine, pass it to another machine, execute the request on the remote machine, and  
return the results to the first machine. In the course of this process, the request must be  transformed 
several times . A high-level request, such as “read x number of bytes from file y on machine z,” 
requires software that can determine how to get to machine z and what communication software 
that machine understands . Then the request must be altered for transmission across a network—for 
example,  divided into short packets of information . When the request reaches the other side, it must 
be checked for completeness, decoded, and sent to the correct operating system component for 
 execution . Finally, the reply must be encoded for sending back across the network .
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The OSI Reference Model
To help different computer manufacturers standardize and integrate their networking software, in 
1984 the International Organization for Standardization (ISO) defined a software model for sending 
messages between machines . The result was the Open Systems Interconnection (OSI) reference model . 
The model defines six layers of software and one physical layer of hardware, as shown in Figure 7-1.
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FIGURE 7-1 OSI reference model

The OSI reference model is an idealized scheme that few systems implement precisely, but it’s 
often used to frame discussions of networking principles . Each layer on one machine assumes that 
it is “talking to” the same layer on the other machine . Both machines “speak” the same language, or 
protocol, at the same level . In reality, however, a network transmission must pass down each layer on 
the client machine, be transmitted across the network, and then pass up the layers on the destination 
machine until it reaches a layer that can understand and implement the request .

The purpose of each layer in the OSI model is to provide services to higher layers and to abstract 
how the services are implemented at lower layers . Describing the details of each layer is beyond the 
scope of this book, but following is a brief description of each layer in the OSI model . 

Note Most network descriptions start with the top-most layer and work down to the 
 lowest layer; however, here the description of the layers will start at the bottom and work 
toward the top, to demonstrate how each layer builds upon the services provided by the 
layer beneath it .

 ■ Physical This is the lowest layer in the OSI model, and it exchanges signals between 
 cooperating network entities over some physical medium (wire, radio, fiber, or other type). 
The physical layer specifies the mechanical, electrical, functional, and procedural standards for 
accessing the medium, such as connectors, cabling, signaling, and so on . Common examples 
are Ethernet (IEEE 802 .3) and Wi-Fi (IEEE 802 .11) .

 ■ Datalink This layer exchanges data frames (also called packets) between physically adjacent 
network entities (known as stations) using the services provided by the physical layer . By its na-
ture, the datalink layer is tightly tied to the physical layer and is really more of an architectural 
abstraction than the other layers within the model . The datalink layer provides each station 
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with its own unique address on the network, and it provides point-to-point  communications 
between stations (such as between two systems connected to the same Ethernet) . The capa-
bilities of the datalink layer vary considerably, depending upon the physical layer . Typically, 
transmit and receive errors are detected by the datalink layer, and in some instances, the error 
might be corrected . A datalink layer can be connection oriented, which is typically used in 
wide area networks (WANs), or connectionless, which is typically used in local area networks 
(LANs) . The IEEE (Institute of Electrical and Electronics Engineers) 802 committee is respon-
sible for the majority of the LAN architectures used throughout the world, and they specify 
the physical and datalink layers of most networking equipment . They divide the datalink layer 
into two sublayers: the Logical Link Control (LLC) and the Medium Access Control (MAC) . The 
LLC layer provides a single access method for the network layer to communicate with any 
802 .x MAC, insulating the network layer from the physical LAN type . The MAC layer provides 
access-control functions to the shared network medium, and it specifies signaling, the sharing 
protocol, address recognition, frame generation, CRC generation, and so on . The datalink layer 
does not guarantee that frames will be delivered to their destination .

 ■ Network The network layer implements node addresses and routing functions to allow 
packets to traverse multiple datalinks . This layer understands the network topology (hiding it 
from the transport layer) and knows how to direct packets to the nearest router . Any network 
entity containing the network, datalink, and physical layers is considered to be a node, and the 
network layer can transfer data between any two nodes on the network . There are two types 
of nodes implemented by the network layer: end nodes, which are the source or destination of 
data, and intermediate nodes (usually referred to as routers), which route packets between end 
nodes . Network-layer service can be either connection oriented, where all packets traveling 
between the end nodes follow the same path through the network, or connectionless, where 
each packet is routed independently . The network layer does not guarantee that packets will 
be delivered to their destination .

 ■ Transport The transport layer provides a transparent data-transfer mechanism between end 
nodes . On the sending side, the transport layer receives an unstructured stream of data from 
the layer above and segments the data into discrete packets, which can be sent across the 
network, using the services of the network layer beneath it . On the receiving side, the trans-
port layer reassembles the packets received from the network layer into a stream of data and 
provides it to the layer above . This layer provides reliable data transfer and will re-transmit lost 
or corrupted packets to ensure that the data stream received is identical to the data stream 
that was sent . 

 ■ Session This layer implements a connection or pipe between cooperating applications . Each 
connection endpoint has its own address (often called a port), which is unique on that system . 
There are a variety of communications services provided by session layers, such as two-way 
simultaneous (full-duplex), two-way alternate (single-duplex), or one-way . Once a connection 
is established, the systems typically send periodic messages to each other to ensure that each 
end of the connection is functioning . If an uncorrectable transmission error is detected over a 
connection, the connection is typically terminated and disconnected . 
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 ■ Presentation The presentation layer is responsible for preserving the information content of 
data sent over the network . It handles data formatting, including issues such as whether lines 
end in a carriage return/line feed (CR/LF) or just a carriage return (CR), whether data is to be 
compressed or encrypted, converting binary data from little-endian to big-endian, and so on . 
This layer is not present in most network protocol stacks, so its functionality is implemented at 
the application layer .

 ■ Application This is a layer that handles the information transfer between two network 
applications, including functions such as security checks, identification of the participat-
ing machines, and initiation of the data exchange . This is the protocol that is used by two 
 communicating applications, and is application specific.

The gray lines in Figure 7-1 represent protocols used in transmitting a request to a remote 
 machine . As stated earlier, each layer of the hierarchy assumes that it is speaking to the same layer on 
another machine and uses a common protocol . The collection of protocols through which a request 
passes on its way down and back up the layers of the network is called a protocol stack .

Not all network protocol suites implement all the layers in the OSI model . (The presentation layer 
is rarely provided .) In particular, the TCP/IP protocol stack (which predates the OSI model) matches 
poorly to the abstractions of OSI . As data travels down the network stack, each layer adds a header 
(and possibly a trailer) to the data payload, building up a structure that is very similar to the layers 
of an onion . When this structure is received on a remote node, it travels up the network stack, with 
each layer stripping off its header (and trailer) until the data payload is delivered to the receiving 
 application .

Windows Networking Components
Figure 7-2 provides an overview of the components of Windows networking, showing how each 
 component fits into the OSI reference model and which protocols are used between layers. The 
 mapping between OSI layers and networking components isn’t precise, which is the reason that some 
components cross layers . The various components include the following:

 ■ Networking APIs provide a protocol-independent way for applications to communicate across 
a network . Networking APIs can be implemented in user mode or in both user mode and ker-
nel mode . In some cases, they are wrappers around another networking API that implements 
a specific programming model or provides additional services. (Note that the term networking 
API also describes any programming interfaces provided by networking-related software .)

 ■ Transport Driver Interface (TDI) clients are legacy kernel-mode device drivers that usually 
implement the kernel-mode portion of a networking API’s implementation . TDI clients get 
their name from the fact that the I/O request packets (IRPs) they send to protocol drivers are 
formatted according to the Windows Transport Driver Interface standard (documented in the 
Windows Driver Kit). This standard specifies a common programming interface for kernel-
mode device drivers . (See Chapter 8, “I/O System,” in Part 2 for more information about IRPs .) 
The TDI interface is deprecated and will be removed in a future version of Windows . The TDI 
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interface is now being exported by the TDI Extension (TDX) Driver . Kernel-mode network 
clients should now use the Winsock Kernel (WSK) interface for accessing the network stack .

 ■ TDI transports (also known as transports) and Network Driver Interface Specification (NDIS) 
protocol drivers (or protocol drivers) are kernel-mode network protocol drivers . They ac-
cept IRPs from TDI clients and process the requests these IRPs represent . This processing 
might  require network communications with a peer, prompting the TDI transport to add 
protocol-specific headers (for example, TCP, UDP, and/or IP) to data passed in the IRP, and to 
communicate with adapter drivers using NDIS functions (also documented in the Windows 
Driver Kit) . TDI transports generally facilitate application network communications by trans-
parently performing message operations such as segmentation and reassembly, sequencing, 
 acknowledgment, and retransmission . 

 ■ Microsoft has decided that TCP/IP has won the network protocol wars, so it has re-architected 
the network protocol portion of the network stack from being protocol-neutral to being  
TCP/IP-centric . The interface between the TCP/IP protocol driver and Winsock is known as the 
Transport Layer Network Provider Interface (TLNPI) and is currently undocumented .

 ■ Winsock Kernel (WSK) is a transport-independent, kernel-mode networking API that replaces 
the legacy TDI . WSK provides network communication by using socket-like programming 
 semantics similar to user-mode Winsock, while also providing unique features such as asyn-
chronous I/O operations built on IRPs and event callbacks . WSK also natively supports IP 
 version 6 (IPv6) functionality in the Next Generation TCP/IP network stack in Windows .

 ■ The Windows Filtering Platform (WFP) is a set of APIs and system services that provide the 
ability to create network filtering applications. The WFP allows applications to interact with 
packet processing at different levels of the Windows networking stack, much like file system 
filters. Similarly, network data can be traced, filtered, and also modified before it reaches its 
destination .

 ■ WFP callout drivers are kernel-mode drivers that implement one or more callouts, which 
 extend the capabilities of the WFP by processing TCP/IP-based network data in ways that 
extend the basic functionality provided by the WFP .

 ■ The NDIS library (Ndis .sys) provides an abstraction mechanism that encapsulates Network 
Interface Card (NIC) drivers (also known as NDIS miniports), hiding from them the specifics of 
the Windows kernel-mode environment . The NDIS library exports functions for use by TCP/IP 
and legacy TDI transports .

 ■ NDIS miniport drivers are kernel-mode drivers that are responsible for interfacing the  network 
stack to a particular NIC . NDIS miniport drivers are written so that they are wrapped by the 
Windows NDIS library . NDIS miniport drivers don’t process IRPs; rather, they register a call-
table interface to the NDIS library that contains pointers to functions that perform simple 
operations on the NIC, such as sending a packet or querying properties . NDIS miniport drivers 
communicate with network adapters by using NDIS library functions that resolve to hardware 
abstraction layer (HAL) functions .
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As Figure 7-2 shows, the OSI layers don’t correspond to actual software . WSK transport providers, 
for example, frequently cross several boundaries . In fact, the bottom three layers of software and the 
hardware layer are often referred to collectively as the transport . Software components residing in the 
upper three layers are referred to as users or clients of the transport .”

Winsock
app/

service

Peer-to-
peer infra-
structure

WinInet
app

WinHTTP
app

WinInet
API

WinHTTP
API

IIS 7 H
TTP

services

Third-party
application

H
TTPAPI.D

LL

W
indow

s Filtering Platform
 (W

FP)
Inspection API

U
ser m

ode       Kernel m
ode

Winsock 2.0 API
(Transport and namespace functions)

. . .

WS2_32.DLL

Winsock
catalogWinsock 2.0 SPI

Transport SPI functions Namespace SPI functions

Application
layer

Presentation
layer

Session
layer

Transport

and

Network
layers

Data-Link
layer

Layered service providers
    TCP           UDP
LSP #1 LSP #1

LSP #2LSP #2 . . .
. . .. . .

(Namespace LSPs
not supported)

Transport service providers

Transport
service providers

TCP/IP UDP . . .

Namespace
service providers

DNS X.500 . . .

Third-party
TDI client

Third-party
WSK client HTTP.SYS

Next Generation Network Protocol Stack (NetIO)

NetBIOS
NetBT.SYS

TCPIP.SYS

AFD.SYS

Winsock driver

TDI Extension Driver (TDX) Winsock Kernel (WSK)

802.3 WAN 1394 Loopback IP tunnel

Network Driver Interface Specification (NDIS) API PPP/SLIP

RAW
ATM

ATM.SYS
UDP TCP/IP IPSec

FIGURE 7-2 OSI model and Windows networking components

In the remainder of this chapter, we’ll examine the networking components shown in Figure 7-2 
(as well as others not shown in the figure), looking at how they fit together and how they relate to 
Windows as a whole .
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Networking APIs

Windows implements multiple networking APIs to provide support for legacy applications and 
compatibility with industry standards. In this section, we’ll briefly look at the networking APIs and 
describe how applications use them . Keep in mind that the decision about which API an application 
uses depends on characteristics of the API, such as which protocols the API can layer over, whether 
the API supports reliable (or bidirectional) communication, and the API’s portability to other Windows 
platforms the application might run on . We’ll discuss the following networking APIs:

 ■ Windows Sockets (Winsock)

 ■ Winsock Kernel (WSK)

 ■ Remote procedure call (RPC)

 ■ Web access APIs

 ■ Named pipes and mailslots

 ■ NetBIOS

 ■ Other networking APIs

Windows Sockets
The original Windows Sockets (Winsock) (version 1 .0) was Microsoft’s implementation of BSD 
( Berkeley Software Distribution) Sockets, a programming API that became the standard by which 
UNIX systems have communicated over the Internet since the 1980s . Support for sockets on  Windows 
makes the task of porting UNIX networking applications to Windows relatively straightforward . 
The modern versions of Winsock include most of the functionality of BSD Sockets but also include 
Microsoft-specific enhancements, which continue to evolve. Winsock supports reliable, connection-
oriented communication as well as unreliable, connectionless communication . (“Reliable,” in this 
sense, indicates whether the sender is notified of any problems in the delivery of data to the receiver.) 
Windows provides Winsock 2.2, which adds numerous features beyond the BSD Sockets specification, 
such as functions that take advantage of Windows asynchronous I/O, to offer far better performance 
and scalability than straight BSD Sockets programming .

Winsock includes the following features:

 ■ Support for scatter-gather and asynchronous application I/O .

 ■ Quality of Service (QoS) conventions so that applications can negotiate latency and bandwidth 
requirements when the underlying network supports QoS .

 ■ Extensibility so that Winsock can be used with third-party protocols (deprecated) .

 ■ Support for integrated namespaces with third-party namespace providers . A server can 
 publish its name in Active Directory, for example, and by using namespace extensions, a client 
can look up the server’s address in Active Directory .
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 ■ Support for multicast messages, where messages transmit from a single source to multiple 
receivers .

We’ll examine typical Winsock operation and then describe ways that Winsock can be extended .

Winsock Client Operation
The first step a Winsock application takes is to initialize the Winsock API with a call to an initialization 
function . A Winsock application’s next step is to create a socket that will represent a communications 
endpoint . The application obtains the address of the server to which it wants to connect by calling 
getaddrinfo (and later calling freeaddrinfo to release the information) . The getaddrinfo function returns 
the list of protocol-specific addresses assigned to the server, and the client attempts to connect to 
each one in turn until it is able to establish a connection with one of them . This ensures that a client 
that supports both IP version 4 (IPv4) and IPv6 will connect to the appropriate and/or most efficient 
address on a server that might have both IPv4 and IPv6 addresses assigned to it . (IPv6 is preferred 
over IPv4.) Winsock is a protocol-independent API, so an address can be specified for any protocol in-
stalled on the system over which Winsock operates . After obtaining the server address, a connection-
oriented client attempts to connect to the server by using connect and specifying the server address .

When a connection is established, the client can send and receive data over its socket using the 
recv and send APIs . A connectionless client specifies the remote address with connectionless APIs, 
such as the connectionless equivalents of send and recv, and sendto and recvfrom . Clients can also use 
the select and WSAPoll APIs to wait on or poll multiple sockets for synchronous I/O operations, or to 
check their state .

Winsock Server Operation
The sequence of steps for a server application differs from that of a client . After initializing the 
Winsock API, the server creates a socket and then binds it to a local address by using bind . Again, the 
address family specified—whether it’s TCP/IPv4, TCP/IPv6, or some other address family—is up to the 
server application .

If the server is connection oriented, it performs a listen operation on the socket, indicating the 
backlog, or the number of connections the server asks Winsock to hold until the server is able to 
 accept them . Then it performs an accept operation to allow a client to connect to the socket . If there 
is a pending connection request, the accept call completes immediately; otherwise, it completes 
when a connection request arrives . When a connection is made, the accept function returns a new 
socket that represents the server’s end of the connection . (The original socket used for listening 
is not used for communications, only for receiving connection requests .) The server can perform 
receive and send operations by using functions such as recv and send . Like Winsock clients, servers 
can use the select and WSAPoll functions to query the state of one or more sockets; however, the 
Winsock  WSAEventSelect function and overlapped (asynchronous) I/O extensions are preferred for 
better  scalability . Figure 7-3 shows connection-oriented communication between a Winsock client 
and  server .
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FIGURE 7-3 Connection-oriented Winsock operation

After binding an address, a connectionless server is no different from a connectionless client: it can 
send and receive data over the socket simply by specifying the remote address with each operation . 
Most connectionless protocols are unreliable and, in general, will not know whether the destination 
actually received the sent data packets (which are known as datagrams) . Datagram protocols are ideal 
for quick message passing, where the overhead of establishing a connection is too much and reliabil-
ity is not required (although an application can build reliability on top of the protocol) .

Winsock Extensions
In addition to supporting functions that correspond directly to those implemented in BSD Sockets, 
Microsoft has added a handful of functions that aren’t part of the BSD standard . Two of these func-
tions, AcceptEx (the Ex suffix is short for Extended) and TransmitFile, are worth describing because 
many Web servers on Windows use them to achieve high performance . AcceptEx is a version of the 
accept function that, in the process of establishing a connection with a client, returns the client’s ad-
dress and the client’s first message. AcceptEx allows the server application to queue multiple accept 
operations so that high volumes of incoming connection requests can be handled . With this function, 
a web server avoids executing multiple Winsock functions that would otherwise be required .

After establishing a connection with a client, a web server frequently sends a file, such as a web 
page, to the client . The TransmitFile function’s implementation is integrated with the Windows cache 
manager so that a file can be sent directly from the file system cache. Sending data in this way is 
called zero-copy because the server doesn’t have to read the file data to send it; it simply specifies 
a handle to a file and the byte range (offset and length) of the file to send. In addition, TransmitFile 
 allows a server to add prefix or suffix data to the file’s data so that the server can send header infor-
mation, trailer information, or both, which might include the name of the web server and a field that 
indicates to the client the size of the message the server is sending . Internet Information Services (IIS), 
which is included with Windows, uses both AcceptEx and TransmitFile to achieve better performance .

Windows also supports a handful of other multifunction APIs, including ConnectEx, DisconnectEx, 
and TransmitPackets . ConnectEx establishes a connection and sends the first message on the connec-
tion . DisconnectEx closes a connection and allows the socket handle representing the connection to 
be reused in a call to AcceptEx or ConnectEx . Finally, TransmitPackets is similar to TransmitFile, except 
that it allows for the sending of in-memory data in addition to, or in lieu of, file data. Finally, by using 
the WSAImpersonateSocketPeer and WSARevertImpersonation functions, Winsock servers can perform 
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impersonation (described in Chapter 6, “Security”) to perform authorization or to gain access to 
 resources based on the client’s security credentials .

Extending Winsock
Winsock is an extensible API on Windows because third parties can add a transport service  provider 
that interfaces Winsock with other protocols, or layers on top of existing protocols, to provide 
functionality such as proxying . Third parties can also add a namespace service provider to augment 
 Winsock’s name-resolution facilities . Service providers plug in to Winsock by using the Winsock 
service provider interface (SPI) . When a transport service provider is registered with Winsock,  Winsock 
uses the transport service provider to implement socket functions, such as connect and accept, 
for the address types that the provider indicates it implements . There are no restrictions on how 
the  transport service provider implements the functions, but the implementation usually involves 
 communicating with a transport driver in kernel mode . 

Note Layered service providers are not secure and can be bypassed; secure network 
 protocol layering must be done in kernel mode . Installing itself as a Winsock layered 
 service provider (LSP) is a technique used frequently by malware and spyware .

A requirement of any Winsock client/server application is for the server to make its address 
 available to clients so that the clients can connect to the server . Standard services that execute on 
the TCP/IP protocol use well-known addresses to make their addresses available . As long as a browser 
knows the name of the computer a Web server is running on, it can connect to the web server by 
specifying the well-known web server address (the IP address of the server concatenated with :80, 
the port number used for HTTP) . Namespace service providers make it possible for servers to register 
their presence in other ways . For example, one namespace service provider might on the server side 
register the server’s address in Active Directory and on the client side look up the server’s address in 
Active Directory . Namespace service providers supply this functionality to Winsock by implementing 
standard Winsock name-resolution functions such as getaddrinfo and getnameinfo .

EXPERIMENT: Looking at Winsock Service and Namespace Providers
The Network Shell (Netsh .exe) utility included with Windows is able to show the  registered 
 Winsock transport and namespace providers by using the netsh winsock show catalog 
 command. For example, if there are two TCP/IP transport service providers, the first one listed 
is the default provider for Winsock applications using the TCP/IP protocol . Here’s sample output 
from Netsh showing the registered transport service providers:

C:\Users\Toby>netsh winsock show catalog 
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Winsock Catalog Provider Entry 
------------------------------------------------------ 
Entry Type: Base Service Provider 
Description: MSAFD Tcpip [TCP/IP] 
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 
Provider Path: %SystemRoot%\system32\mswsock.dll 
Catalog Entry ID: 1001 
Version: 2 
Address Family: 2 
Max Address Length: 16 
Min Address Length: 16 
Socket Type: 1 
Protocol: 6 
Service Flags: 0x20066 
Protocol Chain Length: 1 
 
Winsock Catalog Provider Entry 
------------------------------------------------------ 
Entry Type: Base Service Provider 
Description: MSAFD Tcpip [UDP/IP] 
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 
Provider Path: %SystemRoot%\system32\mswsock.dll 
Catalog Entry ID: 1002 
Version: 2 
Address Family: 2 
Max Address Length: 16 
Min Address Length: 16 
Socket Type: 2 
Protocol: 17 
Service Flags: 0x20609 
Protocol Chain Length: 1 
 
Winsock Catalog Provider Entry 
------------------------------------------------------ 
Entry Type: Base Service Provider 
Description: MSAFD Tcpip [RAW/IP] 
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 
Provider Path: %SystemRoot%\system32\mswsock.dll 
Catalog Entry ID: 1003 
Version: 2 
Address Family: 2 
Max Address Length: 16 
Min Address Length: 16 
Socket Type: 3 
Protocol: 0 
Service Flags: 0x20609 
Protocol Chain Length: 1 
. 
. 
. 
Name Space Provider Entry 
------------------------------------------------------ 
Description: Network Location Awareness Legacy (NLAv1) Namespace 
Provider ID: {6642243A-3BA8-4AA6-BAA5-2E0BD71FDD83} 
Name Space: 15 
Active: 1 
Version: 0 
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Name Space Provider Entry 
------------------------------------------------------ 
Description: E-mail Naming Shim Provider 
Provider ID: {964ACBA2-B2BC-40EB-8C6A-A6DB40161CAE} 
Name Space: 37 
Active: 1 
Version: 0 
 
 
Name Space Provider Entry 
------------------------------------------------------ 
Description: PNRP Cloud Namespace Provider 
Provider ID: {03FE89CE-766D-4976-B9C1-BB9BC42C7B4D} 
Name Space: 39 
Active: 1 
Version: 0 
. 
. 
. 

You can also use the Autoruns utility from Windows Sysinternals (www.microsoft.com 
/technet/sysinternals) to view namespace and transport providers, as well as to disable or delete 
those that might be causing problems or unwanted behavior on the system .

Winsock Implementation
Winsock’s implementation is shown in Figure 7-4 . Its application interface consists of an API DLL, 
Ws2_32.dll (%SystemRoot%\System32\Ws2_32.dll), which provides applications access to Winsock 
functions . Ws2_32 .dll calls on the services of namespace and transport service providers to carry out 
name and message operations . The Mswsock.dll (%SystemRoot%\System32\mswsock.dll) library acts 
as a transport service provider for the protocols supported by Microsoft and uses Winsock Helper 
libraries that are protocol specific to communicate with kernel-mode protocol drivers. For example, 
Wshtcpip.dll (%SystemRoot%\System32\wshtcpip.dll) is the TCP/IP helper. Mswsock.dll implements the 
Microsoft Winsock extension functions, such as TransmitFile, AcceptEx, and WSARecvEx . 

Windows ships with helper DLLs for TCP/IPv4, TCPv6, Bluetooth, NetBIOS, IrDA (Infrared Data 
 Association), and PGM (Pragmatic General Multicast) . It also includes namespace service providers 
for DNS (TCP/IP), Active Directory (NTDS), NLA (Network Location Awareness), PNRP (Peer Name 
 Resolution Protocol), and Bluetooth .

Like the named-pipe and mailslot APIs (described later in this chapter), Winsock integrates with 
the Windows I/O model and uses file handles to represent sockets. This support requires the aid 
of a kernel-mode driver, so Msafd.dll (%SystemRoot%\System32\msafd.dll) uses the services of the 
 Ancillary Function Driver (AFD—%SystemRoot%\System32\Drivers\Afd.sys) to implement socket-
based functions . AFD is a Transport Layer Network Provider Interface (TLNPI) client and executes 
network socket operations, such as sending and receiving messages . TLNPI is the undocumented 
interface between AFD and the TCP/IP protocol stack . If a legacy protocol driver is installed, Windows 
will use the TDI-TLNPI translation driver TDX (%SystemRoot%\System32\Drivers\tdx.sys) to map TDI 
IRPs to TLNPI requests .
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FIGURE 7-4 Winsock implementation 

Winsock Kernel
To enable kernel-mode drivers and modules to have access to networking API interfaces similar 
to those available to user-mode applications, Windows implements a socket-based networking 
 programming interface called Winsock Kernel (WSK) . WSK replaces the legacy TDI API interface 
 present on older versions of Windows but maintains the TDI API interface for transport provid-
ers . Compared to TDI, WSK provides better performance, better security, better scalability, and a 
much easier programming paradigm, because it relies less on internal kernel behavior and more on 
socket-based semantics . Additionally, WSK was written to take full advantage of the latest technolo-
gies in the Windows TCP/IP stack, which TDI was not originally anticipated to support . As shown in 
Figure 7-5, WSK makes use of the Network Module Registrar (NMR) component of Windows (part of 
 %SystemRoot%\System32\drivers\NetIO.sys) to attach and detach from transport protocols, and it 
can be used, just like Winsock, to support many types of network clients—for example, the Http .sys 
driver for the HTTP Server API (mentioned later in the chapter) is a WSK client . Using NMR with WSK 
is rather complicated, so registration-support APIs are provided to register with WSK (WskRegister, 
WskDeregister, WskCaptureProviderNPI, and WskReleaseProviderNPI) . 

Note The Raw transport protocol is not really a protocol and does not perform any 
 encapsulation of the user data . This allows the client to directly control the contents of the 
frames transmitted and received by the network interface .
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WSK enhances security by restricting address sharing—which allows multiple sockets to use the 
same transport (TCP/IP) address—through the use of nondefault sharing and security descriptors on 
addresses. WSK uses the security descriptor specified by the first socket for an address, and it checks 
the owning process and thread for each subsequent attempt to use that address .

I/O manager

Kernel-mode networking client applications

Winsock Kernel (WSK)

Transport
(TCP/IPv4)

Network
Module
Registrar
(NMR)

Transport
(TCP/IPv6)

Transport
(Raw)

FIGURE 7-5 WSK overview

WSK Implementation
WSK’s implementation is shown in Figure 7-6 . At its core is the WSK subsystem itself, which uses the 
Next Generation TCP/IP Stack (%SystemRoot%\System32\Drivers\Tcpip.sys) and the NetIO sup-
port library (%SystemRoot%\System32\Drivers\NetIO.sys) but is actually implemented in AFD. The 
 subsystem is responsible for the provider side of the WSK API . The subsystem interfaces with the  
TCP/IP transport protocols (shown at the bottom of Figure 7-5) . Attached to the WSK subsystem 
are WSK clients, which are kernel-mode drivers that implement the client-side WSK API in order to 
perform network operations . The WSK subsystem calls WSK clients to notify them of asynchronous 
events .

WSK
client

WSK
provider NPI

WSK
subsystem

WSK
client NPI

WSK
registration
functions

FIGURE 7-6 WSK implementation

WSK clients are bound to the WSK subsystem through the NMR or through the WSK’s registration 
functions, which allow WSK clients to dynamically detect when the WSK subsystem becomes avail-
able and then load their own dispatch table to describe the provider and client-side implementations 
of the WSK API . These implementations provide the standard WSK socket-based functions, such as 
WskSocket, WskAccept, WskBind, WskConnect, WskReceive, and WskSend, which have similar semantics 
(but not necessarily similar parameters) as their user-mode Winsock counterparts . However, unlike 
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user-mode Winsock, the WSK subsystem defines four kinds of socket categories, which identify which 
functions and events are available:

 ■ Basic sockets, which are used only to get and set information on the transport . They cannot be 
used to send or receive data or be bound to an address .

 ■ Listening sockets, which are used for sockets that accept only incoming connections .

 ■ Datagram sockets, which are used solely for sending and receiving datagrams .

 ■ Connection-oriented sockets, which support all the functionality required to send and receive 
network traffic over an established connection.

Apart from the socket functions described, WSK also provides events through which clients 
are notified of network status . Unlike the model for socket functions, in which a client controls 
the  connection, events allow the subsystem to control the connection and merely notify the 
 client . These include the WskAcceptEvent, WskInspectEvent, WskAbortEvent, WskReceiveFromEvent, 
 WskReceiveEvent, WskDisconnectEvent, and WskSendBacklogEvent routines .

Finally, like user-mode Winsock, WSK can be extended through extension interfaces that clients can 
associate with sockets . These extensions can enhance the default functionality provided by the WSK 
subsystem .

Remote Procedure Call
Remote procedure call (RPC) is a network programming standard originally developed in the early 
1980s . The Open Software Foundation (now The Open Group) made RPC part of the distributed com-
puting environment (DCE) distributed computing standard . Although there is a second RPC standard, 
SunRPC, the Microsoft RPC implementation is compatible with the OSF/DCE standard . RPC builds on 
other networking APIs, such as named pipes or Winsock, to provide an alternate programming model 
that in some respects hides the details of networking programming from an application developer . 
Fundamentally, RPC provides a mechanism for creating programs that are distributed across a net-
work, with portions of the application running transparently on one or more systems .

RPC Operation
An RPC facility is one that allows a programmer to create an application consisting of any number of 
procedures, some that execute locally and others that execute on remote computers via a network . 
It provides a procedural view of networked operations rather than a transport-centered view, thus 
simplifying the development of distributed applications .

Networking software is traditionally structured around an I/O model of processing . In Windows, 
for example, a network operation is initiated when an application issues an I/O request . The operating 
system processes the request accordingly by forwarding it to a redirector, which acts as a remote file 
system by making the client interaction with the remote file system invisible to the client. The redirec-
tor passes the operation to the remote file system, and after the remote system fulfills the request 
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and returns the results, the local network card interrupts . The kernel handles the interrupt, and the 
original I/O operation completes, returning results to the caller .

RPC takes a different approach altogether . RPC applications are like other structured applications, 
with a main program that calls procedures or procedure libraries to perform specific tasks. The differ-
ence between RPC applications and regular applications is that some of the procedure libraries in an 
RPC application are stored and execute on remote computers, as shown in Figure 7-7, whereas others 
execute locally .

To the RPC application, all the procedures appear to execute locally . In other words, instead of 
making a programmer actively write code to transmit computational or I/O-related requests across a 
network, handle network protocols, deal with network errors, wait for results, and so forth, RPC soft-
ware handles these tasks automatically . And the Windows RPC facility can operate over any available 
transport protocols loaded into the system .

RPC client application

ServerFunction()

RPC stub libraryRPC stub library

RPC server application

ServerFunction() {

}

Network

...

FIGURE 7-7 RPC operation

To write an RPC application, the programmer decides which procedures will execute locally and 
which will execute remotely . For example, suppose an ordinary workstation has a network connection 
to a supercomputer (a very fast machine usually designed for high-speed vector operations) . If the 
programmer were writing an application that manipulated large matrices, it would make sense from 
a performance perspective to offload the mathematical calculations to the supercomputer by writing 
the program as an RPC application .

RPC applications work like this: As an application runs, it calls local procedures as well as 
 procedures that aren’t present on the local machine . To handle the latter case, the application is 
linked to a local library or DLL that contains stub procedures, one for each remote procedure . For 
simple applications, the stub procedures are statically linked with the application, but for bigger 
components the stubs are included in separate DLLs . In DCOM, covered later in the chapter, the latter 
method is typically used . The stub procedures have the same name and use the same interface as the 
remote procedures, but instead of performing the required operations, the stub takes the parameters 
passed to it and marshals them for transmission across the network . Marshaling parameters means 
ordering and packaging them in a particular way to suit a network link, such as resolving references 
and picking up a copy of any data structures that a pointer refers to .
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The stub then calls RPC run-time procedures that locate the computer where the remote 
 procedure resides, determines which network transport mechanisms that computer uses, and sends 
the request to it using local transport software . When the remote server receives the RPC request, it 
unmarshals the parameters (the reverse of marshaling), reconstructs the original procedure call, and 
calls the procedure with the parameters passed from the calling system. When the server finishes, it 
performs the reverse sequence to return results to the caller .

In addition to the synchronous function-call-based interface described here, Windows RPC also 
supports asynchronous RPC . Asynchronous RPC lets an RPC application execute a function but not 
wait until the function completes to continue processing . Instead, the application can execute other 
code and later, when a response has arrived from the server, the RPC runtime notifies the client 
that the operation has completed. The RPC runtime uses the notification mechanism requested by 
the client. If the client uses an event synchronization object for notification, it waits for the signal-
ing of the event object by calling either WaitForSingleObject or WaitForMultipleObjects . If the client 
provides an asynchronous procedure call (APC), the runtime queues the execution of the APC to 
the thread that executed the RPC function . (The APC will not be delivered until the requesting 
thread enters an alertable wait state . See Chapter 3, “System Mechanisms,” for more information on 
APCs.) If the client program uses an I/O completion port as its notification mechanism, it must call 
 GetQueuedCompletionStatus to learn of the function’s completion . Alternatively, a client can poll for 
completion by calling RpcAsyncGetCallStatus .

In addition to the RPC runtime, Microsoft’s RPC facility includes a compiler, called the Microsoft 
Interface Definition Language (MIDL) compiler. The MIDL compiler simplifies the creation of an RPC 
application by generating the necessary stub routines . The programmer writes a series of ordinary 
function prototypes (assuming a C or C++ application) that describe the remote routines and then 
places the routines in a file. The programmer then adds some additional information to these pro-
totypes, such as a network-unique identifier for the package of routines and a version number, plus 
attributes that specify whether the parameters are input, output, or both . The embellished prototypes 
form the developer’s Interface Definition Language (IDL) file.

Once the IDL file is created, the programmer compiles it with the MIDL compiler, which produces 
client-side and server-side stub routines (mentioned previously), as well as header files to be included 
in the application. When the client-side application is linked to the stub routines file, all remote pro-
cedure references are resolved . The remote procedures are then installed, using a similar process, on 
the server machine . A programmer who wants to call an existing RPC application need only write the 
client side of the software and link the application to the local RPC run-time facility .

The RPC runtime uses a generic RPC transport provider interface to talk to a transport protocol . 
The provider interface acts as a thin layer between the RPC facility and the transport, mapping RPC 
 operations onto the functions provided by the transport . The Windows RPC facility implements 
transport provider DLLs for named pipes, HTTP, TCP/IP, and UDP . In a similar fashion, the RPC facility is 
designed to work with different network security facilities .

Most of the Windows networking services are RPC applications, which means that both local 
 applications and applications on remote computers might call them . Thus, a remote client computer 
might call the server service to list shares, open files, write to print queues, or activate users on your 
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server, all subject to security constraints, of course . The majority of client-management APIs are 
implemented using RPC .

Server name publishing, which is the ability of a server to register its name in a location accessible 
for client lookup, is in RPC and is integrated with Active Directory . If Active Directory isn’t installed, 
the RPC name locator services fall back on NetBIOS broadcast . This behavior allows RPC to function 
on stand-alone servers and workstations .

RPC Security
Windows RPC includes integration with security support providers (SSPs) so that RPC clients and 
servers can use authenticated or encrypted communications . When an RPC server wants secure 
 communication, it tells the RPC runtime what authentication service to add to the list of available 
 authentication services . When a client wants to use secure communication, it binds to the server . At 
that time, it must tell the RPC runtime the authentication service and authentication level it wants . 
Various authentication levels exist to ensure that only authorized clients connect to a server, verify 
that each message a server receives originates at an authorized client, check the integrity of RPC 
messages to detect manipulation, and even encrypt RPC message data . Obviously, higher authentica-
tion levels require more processing . The client can also optionally specify the server principal name . A 
principal is an entity that the RPC security system recognizes. The server must register its SSP-specific 
principal name with an SSP .

An SSP handles the details of performing network communication authentication and  encryption, 
not only for RPC but also for Winsock . Windows includes a number of built-in SSPs, including a 
Kerberos SSP to implement Kerberos version 5 authentication (including AES support) and Secure 
Channel (SChannel), which implements Secure Sockets Layer (SSL) and the Transport Layer Security 
(TLS) protocols . SChannel also supports TLS and SSL extensions, which allow you to use the AES cipher 
as well as elliptic curve cryptographic (ECC) ciphers on top of the protocols . Also, because it supports 
an open cryptographic interface (OCI) and crypto-agile capabilities, SChannel allows an administra-
tor to replace or add to the existing cryptographic algorithms. In the absence of a specified SSP, RPC 
software uses the built-in security of the underlying transport . Some transports, such as named pipes 
or local RPC, have built-in security . Others, like TCP, do not, and in this case RPC makes unsecure calls 
in the absence of a specified SSP. 

Note The use of unencrypted RPC might pose serious security issues for your organization .

Another feature of RPC security is the ability of a server to impersonate the security identity of a 
client with the RpcImpersonateClient function. After a server has finished performing impersonated 
operations on behalf of a client, it returns to its own security identity by calling RpcRevertToSelf or 
RpcRevertToSelfEx . (See Chapter 6 for more information on impersonation .)



 CHAPTER 7 Networking 609

RPC Implementation
RPC implementation is depicted in Figure 7-8, which shows that an RPC-based application links 
with the RPC run-time DLL (%SystemRoot%\System32\Rpcrt4.dll). The RPC run-time DLL provides 
 marshaling and unmarshaling functions for use by an application’s RPC function stubs as well as 
functions for sending and receiving marshaled data . The RPC run-time DLL includes support rou-
tines to handle RPC over a network as well as a form of RPC called local RPC . Local RPC can be used 
for communication between two processes located on the same system, and the RPC run-time DLL 
uses the advanced local procedure call (ALPC) facilities in kernel mode as the local networking API . 
(See  Chapter 3 for more information on ALPCs .) When RPC is based on nonlocal communication 
 mechanisms, the RPC run-time DLL uses the Winsock or named pipe APIs .
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Application
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stubs
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Winsock Named pipes LPC

Svchost.exe Rpcss.dll

Ntdll.dll
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FIGURE 7-8 RPC implementation

The RPC subsystem (RPCSS—%SystemRoot%\System32\Rpcss.dll) is implemented as a Windows 
service . RPCSS is itself an RPC application that communicates with instances of itself on other systems 
to perform name lookup, registration, and dynamic endpoint mapping . (For clarity, Figure 7-8 doesn’t 
show RPCSS linked with the RPC run-time DLL .)

Windows also includes support for RPC in kernel mode through the kernel-mode RPC driver 
(%SystemRoot%\System32\Drivers\Msrpc.sys). Kernel-mode RPC is for internal use by the system and 
is implemented on top of ALPC . Winlogon includes an RPC server with a documented set of interfaces 
that user-mode RPC clients might call, while Win32k .sys includes an RPC client that communicates 
with Winlogon for internal notifications, such as the secure attention sequence (SAS). (See Chapter 6 
for more information .) The TCP/IP stack in Windows (as well as the WFP) also uses kernel-mode RPC to 
communicate with the Network Storage Interface (NSI) service, which handles network  configuration 
information .
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Web Access APIs
To ease the development of Internet applications, Windows provides both client and server  Internet 
APIs . By using the APIs, applications can provide HTTP services and use FTP and HTTP services with-
out knowledge of the intricacies of the corresponding protocols . The client APIs include Windows 
Internet, also known as WinInet, which enables applications to interact with the FTP and HTTP proto-
cols, and WinHTTP, which enables applications to interact with the HTTP protocol and is more suitable 
than WinInet in certain situations (Windows services and middle-tier applications) . HTTP Server is a 
server-side API that enables the development of web server applications .

WinInet
WinInet supports the HTTP, FTP, and Gopher protocols. The APIs break down into sub-API sets specific 
to each protocol . Using the FTP-related APIs—such as InternetConnect to connect to an HTTP server, 
followed by HttpOpenRequest to open an HTTP request handle, HttpSendRequestEx to send a request 
to the sever and receive a response, InternetWriteFile to send a file, and InternetReadFileEx to receive 
a file—an application developer avoids the details of establishing a connection and formatting TCP/IP 
messages to the various protocols . The HTTP-related APIs also provide cookie persistence, client-side 
file caching, and automatic credential dialog handling. WinInet is used by core Windows components 
such as Windows Explorer and Internet Explorer . 

Note WinINet does not support server implementations or use by services . For these types 
of usage, use WinHTTP instead .

WinHTTP provides an abstraction of the HTTP v1 .1 protocol for HTTP client applications similar 
to what the WinInet HTTP-related APIs provide . However, whereas the WinInet HTTP API is intended 
for user-interactive, client-side applications, the WinHTTP API is designed for server applications that 
communicate with HTTP servers . Server applications are often implemented as Windows services that 
do not provide a user interface and so do not desire the dialog boxes that WinInet APIs display . In 
addition, the WinHTTP APIs are more scalable (such as supporting uploads of greater than 4 GB) and 
offer security functionality, such as thread impersonation, that is not available from the WinInet APIs . 

HTTP 
Using the HTTP Server API implemented by Windows, server applications can register to receive HTTP 
requests for particular URLs, receive HTTP requests, and send HTTP responses . The HTTP Server API 
includes SSL support so that applications can exchange data over secure HTTP connections . The API 
includes server-side caching capabilities, synchronous and asynchronous I/O models, and both IPv4 
and IPv6 addressing . The HTTP server APIs are used by IIS and other Windows services that rely on 
HTTP as a transport .

The HTTP Server API, which applications access through %SystemRoot%\System32\Httpapi.dll,  relies on 
the kernel-mode %SystemRoot%\System32\Drivers\Http.sys driver. Http.sys starts on demand the first 
time any application on the system calls HttpInitialize . Applications then call  HttpCreateServerSession 
to initialize a server session for the HTTP Server API . Next they use  HttpCreateRequestQueue to create 
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a private request queue and HttpCreateUrlGroup to create a URL group, specifying the URLs that they 
want to handle requests for with HttpAddUrlToUrlGroup . Using the request queues and their regis-
tered URLs (which they associate by using HttpSetUrlGroupProperty), Http .sys allows more than one 
application to service HTTP requests on a given port (port 80 for example), with each servicing HTTP 
requests to different parts of the URL namespace, as shown in Figure 7-9 .
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FIGURE 7-9 HTTP request queues and URL groups

HttpReceiveHttpRequest receives incoming requests directed at registered URLs, and 
 HttpSendHttpResponse sends HTTP responses . Both functions offer asynchronous operation so that an 
application can use GetOverlappedResult or I/O completion ports to determine when an operation is 
completed .

Applications can use Http .sys to cache data in nonpaged physical memory by calling 
 HttpAddFragmentToCache and associating a fragment name (specified as a URL prefix) with the 
cached data . Http .sys invokes the memory manager function MmAllocatePagesForMdlEx to allocate 
unmapped physical pages . (For large requests, Http .sys also attempts to use large pages to opti-
mize access to the buffered data .) When Http .sys requires a virtual address mapping for the physical 
 memory described by an entry in the cache—for instance, when it copies data to the cache or sends 
data from the cache—it uses MmMapLockedPagesSpecifyCache and then MmUnmapLockedPages 
 after it completes its access . Http .sys maintains cached data until an application invalidates it or an 
optional application-specified timeout associated with the data expires. Http.sys also trims cached 
data in a worker thread that wakes up when the low-memory notification event is signaled. (See 
Chapter 10, “Memory Management,” in Part 2 for information on the low-memory notification event.) 
When an application specifies one or more fragment names in a call to HttpSendHttpResponse,  
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Http .sys passes a pointer to the cached data in physical memory to the TCP/IP driver and avoids a 
copy operation . Http .sys also contains code for performing server-side authentication, including full 
SSL support, which removes the need to call back to the user-mode API to perform encryption and 
decryption of traffic.

Finally, the HTTP Server API contains many configuration options that clients can use to set 
 functionality, such as authentication policies, bandwidth throttling, logging, connection limits, server 
state, response caching, and SSL certificate binding.

Named Pipes and Mailslots
Named pipes and mailslots are programming APIs for interprocess communication . Named pipes 
provide for reliable bidirectional communications, whereas mailslots provide unreliable, unidirectional 
data transmission . An advantage of mailslots is that they support broadcast capability . In Windows, 
both APIs make use of standard Windows security authentication and authorization mechanisms, 
which allow a server to control precisely which clients can connect to it .

The names that servers assign to named pipes and clients conform to the Windows Universal 
Naming Convention (UNC), which is a protocol-independent way to identify resources on a Windows 
network . The implementation of UNC names is described later in the chapter .

Named-Pipe Operation
Named-pipe communication consists of a named-pipe server and a named-pipe client . A named-pipe 
server is an application that creates a named pipe to which clients can connect . A named pipe’s name 
has the format \\Server\Pipe\PipeName. The Server component of the name specifies the computer 
on which the named-pipe server is executing . (A named-pipe server can’t create a named pipe on a 
remote system .) The name can be a DNS name (for example, mspress.microsoft.com), a NetBIOS name 
(mspress), or an IP address (131 .107 .0 .1) . The Pipe component of the name must be the string “Pipe”, 
and PipeName is the unique name assigned to a named pipe . The unique portion of the named pipe’s 
name can include subdirectories; an example of a named-pipe name with a subdirectory is  
\\MyComputer\Pipe\MyServerApp\ConnectionPipe.

A named-pipe server uses the CreateNamedPipe Windows function to create a named pipe . One of 
the function’s input parameters is a pointer to the named-pipe name, in the form \\.\Pipe\PipeName. 
The “\\.\” is a Windows-defined alias for “this system,” because a pipe must be created on the local 
system (although it can be accessed from a remote system) . Other parameters the function accepts 
include an optional security descriptor that protects access to the named pipe, a flag that specifies 
whether the pipe should be bidirectional or unidirectional, a value indicating the maximum num-
ber of simultaneous connections the pipe supports, and a flag specifying whether the pipe should 
 operate in byte mode or message mode .

Most networking APIs operate only in byte mode, which means that a message sent with one send 
function might require the receiver to perform multiple receive operations, building up the complete 
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message from fragments. A named pipe operating in message mode simplifies the implementation 
of a receiver because there is a one-to-one correspondence between send and receive requests . A 
receiver therefore obtains an entire message each time it completes a receive operation and doesn’t 
have to concern itself with keeping track of message fragments .

The first call to CreateNamedPipe for a particular name creates the first instance of that name and 
establishes the behavior of all named-pipe instances having that name . A server creates additional 
instances, up to the maximum specified in the first call, with additional calls to CreateNamedPipe . 
After creating at least one named-pipe instance, a server executes the ConnectNamedPipe Windows 
function, which enables the named pipe the server created to establish connections with clients . 
 ConnectNamedPipe can be executed synchronously or asynchronously, and it doesn’t complete until a 
client establishes a connection with the instance (or an error occurs) .

A named-pipe client uses the Windows CreateFile or CallNamedPipe function, specifying 
the name of the pipe a server has created, to connect to a server . If the server has performed a 
 ConnectNamedPipe call, the client’s security profile and the access it requests to the pipe (read, 
write) are validated against the named pipe’s security descriptor . (See Chapter 6 for more informa-
tion on the security-check algorithms Windows uses .) If the client is granted access to a named pipe, 
it receives a handle representing the client side of a named-pipe connection and the server’s call to 
 ConnectNamedPipe completes .

After a named-pipe connection is established, the client and server can use the ReadFile and 
 WriteFile Windows functions to read from and write to the pipe . Named pipes support both syn-
chronous and asynchronous operations for message transmittal, depending upon how the handle to 
the pipe was opened . Figure 7-10 shows a server and client communicating through a named-pipe 
instance .

Server 
application

Client 
application

\\Server\Pipe\AppPipe

Named pipe 
instances

Client named pipe 
endpoint

FIGURE 7-10 Named-pipe communications

Another characteristic of the named-pipe networking API is that it allows a server to  impersonate 
a client by using the ImpersonateNamedPipeClient function . See the “Impersonation” section in 
 Chapter 6 for a discussion of how impersonation is used in client/server applications . A second 
 advanced area of functionality of the named-pipe API is that it allows for atomic send and receive 
operations through the TransactNamedPipe API, which behaves according to a simple transactional 
model in which a message is both sent and received in the same operation . In other words, it com-
bines a write operation and a read operation into a single operation by not completing a write 
request until it has been read by the recipient .
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Mailslot Operation
Mailslots provide an unreliable, unidirectional, multicast network transport . Multicast is a term used 
to describe a sender sending a message on the network to one or more specific listeners, which is dif-
ferent from a broadcast, which all systems would receive . One example of an application that can use 
this type of communication is a time-synchronization service, which might send a source time across 
the domain every few seconds . Such a message would be received by all applications listening on the 
particular mailslot . Receiving the source-time message isn’t crucial for every computer on the network 
(because time updates are sent relatively frequently); therefore, a source-time message is a good 
example for the use of mailslots, because the loss of a message will not cause any harm .

Like named pipes, mailslots are integrated with the Windows API . A mailslot server creates a 
mailslot by using the CreateMailslot function . CreateMailslot accepts a UNC name of the form  
“\\.\Mailslot\MailslotName” as an input parameter. Again like named pipes, a mailslot server can 
create mailslots only on the machine it’s executing on, and the name it assigns to a mailslot can 
include subdirectories . CreateMailslot also takes a security descriptor that controls client access to 
the mailslot . The handles returned by CreateMailslot are overlapped, which means that operations 
performed on the handles, such as sending and receiving messages, are asynchronous .

Because mailslots are unidirectional and unreliable, CreateMailslot doesn’t take many of the 
 parameters that CreateNamedPipe does . After it creates a mailslot, a server simply listens for incom-
ing client messages by executing the ReadFile function on the handle representing the mailslot .

Mailslot clients use a naming format similar to that used by named-pipe clients but with  variations 
that make it possible to send messages to all the mailslots of a given name within the client’s  domain 
or a specified domain. To send a message to a particular instance of a mailslot, the client calls 
 CreateFile, specifying the computer-specific name. An example of such a name is “\\Server\Mailslot 
\MailslotName”. (The client can specify “\\.\” to represent the local computer.) If the client wants to 
obtain a handle representing all the mailslots of a given name on the domain it’s a member of, it 
specifies the name in the format “\\*\Mailslot\MailslotName”, and if the client wants to broadcast to 
all the mailslots of a given name within a different domain, the format it uses is “\\DomainName 
\Mailslot\MailslotName”.

After obtaining a handle representing the client side of a mailslot, the client sends messages by 
calling WriteFile . Because of the way mailslots are implemented, only messages smaller than 424 
bytescan be sent . If a message is larger than 424 bytes, the mailslot implementation uses a reliable 
communications mechanism that requires a one-to-one client/server connection, which precludes 
multicast capability . This limitation makes mailslots generally unsuitable for messages larger than 
424 bytes . Figure 7-11 shows an example of a client broadcasting to multiple mailslot servers within 
a domain .
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FIGURE 7-11 Mailslot broadcast

Named Pipe and Mailslot Implementation
As evidence of their tight integration with Windows, named-pipe and mailslot functions are all 
implemented in the Kernel32 .dll Windows client-side DLL . ReadFile and WriteFile, which are the func-
tions applications use to send and receive messages using named pipes or mailslots, are the primary 
Windows I/O routines . The CreateFile function, which a client uses to open either a named pipe or a 
mailslot, is also a standard Windows I/O routine. However, the names specified by named-pipe and 
mailslot applications specify file-system namespaces managed by the named-pipe file-system driver 
(%SystemRoot%\System32\Drivers\Npfs.sys) and the mailslot file-system driver (%SystemRoot% 
\System32\Drivers\Msfs.sys), as shown in Figure 7-12. 

The name- pipe file-system driver creates a device object named \Device\NamedPipe and a 
 symbolic link to that object named \Global??\Pipe. The mailslot file-system driver creates a device 
object named \Device\Mailslot and a symbolic link named “\Global??\Mailslot”, which points to 
that device object. (See Chapter 3 for an explanation of the \Global?? object manager directory.) 
Names passed to CreateFile of the form “\\.\Pipe\…” and “\\.\Mailslot\…” have their prefix of “\\.\” 
translated to “\Global??\” so that the names resolve through a symbolic link to a device object. 
The special  functions CreateNamedPipe and CreateMailslot use the corresponding native functions 
 NtCreateNamedPipeFile and NtCreateMailslotFile, which ultimately call IoCreateFile .

NtReadFile, NtWriteFile,
NtCreateFile, NtCreateNamedPipeFile, 
NtCreateMailslotFile

User mode

Kernel mode

Application

\Device\NamedPipe
Named pipe FSD

Kernel32.dll
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FIGURE 7-12 Named-pipe and mailslot implementation
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Later in the chapter, we’ll discuss how the redirector file system driver is involved when a name 
that specifies a remote named pipe or mailslot resolves to a remote system. However, when a named 
pipe or mailslot is created by a server or opened by a client, the appropriate file-system driver (FSD) 
on the machine where the named pipe or mailslot is located is eventually invoked. The reason that 
named pipes and mailslots are implemented as FSDs is that they can take advantage of the existing 
infrastructure in the object manager, the I/O manager, the redirector (covered later in this chapter), 
and the Server Message Block (SMB) protocol. (For more information about SMB, see Chapter 12, “File 
Systems,” in Part 2.) This integration results in several benefits:

 ■ The FSDs use kernel-mode security functions to implement standard Windows security for 
named pipes and mailslots.

 ■ Applications can use CreateFile to open a named pipe or mailslot because FSDs integrate with 
the object manager namespace.

 ■ Applications can use Windows functions such as ReadFile and WriteFile to interact with named 
pipes and mailslots.

 ■ The FSDs rely on the object manager to track handle and reference counts for file objects 
representing named pipes and mailslots.

 ■ The FSDs can implement their own named pipe and mailslot namespaces, complete with 
 subdirectories.

EXPERIMENT: Listing the Named-Pipe Namespace and Watching   
Named-Pipe Activity
It’s not possible to use the Windows API to open the root of the named-pipe FSD and perform 
a directory listing, but you can do this by using native API services. The PipeList tool from 
Sysinternals shows you the names of the named pipes defined on a computer as well as the 
number of instances that have been created for a name and the maximum number of instances 
as defined by a server’s call to CreateNamedPipe. Here’s an example of PipeList output:

C:\>pipelist  
 
PipeList v1.01 
by Mark Russinovich 
http://www.sysinternals.com 
 
Pipe Name                                    Instances       Max Instances 
---------                                    ---------       ------------- 
InitShutdown                                      3               -1 
lsass                                             6               -1 
protected_storage                                 3               -1 
ntsvcs                                            3               -1 
scerpc                                            3               -1 
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net\NtControlPipe1                                1                1 
plugplay                                          3               -1 
net\NtControlPipe2                                1                1 
Winsock2\CatalogChangeListener-394-0              1                1 
epmapper                                          3               -1 
Winsock2\CatalogChangeListener-25c-0              1                1 
LSM_API_service                                   3               -1 
net\NtControlPipe3                                1                1 
eventlog                                          3               -1 
net\NtControlPipe4                                1                1 
Winsock2\CatalogChangeListener-3f8-0              1                1 
net\NtControlPipe5                                1                1 
net\NtControlPipe6                                1                1 
net\NtControlPipe0                                1                1 
atsvc                                             3               -1 
Winsock2\CatalogChangeListener-438-0              1                1 
Winsock2\CatalogChangeListener-2c8-0              1                1 
net\NtControlPipe7                                1                1 
net\NtControlPipe8                                1                1 
net\NtControlPipe9                                1                1 
net\NtControlPipe10                               1                1 
net\NtControlPipe11                               1                1 
net\NtControlPipe12                               1                1 
142CDF96-10CC-483c-A516-3E9057526912              1                1 
net\NtControlPipe13                               1                1 
net\NtControlPipe14                               1                1 
TSVNCache-000000000001b017                       20               -1 
TSVNCacheCommand-000000000001b017                 2               -1 
Winsock2\CatalogChangeListener-2b0-0              1                1 
Winsock2\CatalogChangeListener-468-0              1                1 
TermSrv_API_service                               3               -1 
Ctx_WinStation_API_service                        3               -1 
PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER            2               -1 
net\NtControlPipe15                               1                1 
keysvc                                            3               -1      

It’s clear from this output that several system components use named pipes as their 
 communications mechanism . For example, the InitShutdown pipe is created by WinInit to accept 
remote shutdown commands, and the Atsvc pipe is created by the Task Scheduler service to en-
able applications to communicate with it to schedule tasks . You can determine what process has 
each of these pipes open by using the object search facility in Process Explorer .

Note A Max Instances value of –1 means that there is no upper limit on the 
number of instances .
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NetBIOS
Until the 1990s, the Network Basic Input/Output System (NetBIOS) programming API had been the 
most widely used network programming API on PCs . NetBIOS allows for both reliable connection-
oriented and unreliable connectionless communication . Windows supports NetBIOS for its legacy 
applications . Microsoft discourages application developers from using NetBIOS because other APIs, 
such as named pipes and Winsock, are much more flexible and portable. NetBIOS is supported by the 
TCP/IP protocol on Windows .

NetBIOS Names
NetBIOS relies on a naming convention whereby computers and network services are assigned a  
16-byte NetBIOS name. The sixteenth byte of a NetBIOS name is treated as a modifier that can 
specify a name as unique or as part of a group . Only one instance of a unique NetBIOS name can be 
assigned to a network, but multiple applications can assign the same group name . A client can send 
multicast messages by sending them to a group name .

To support interoperability with Windows NT 4 systems as well as Windows 9x/Me, Windows 
 automatically defines a NetBIOS name for a domain that includes up to the first 15 bytes of the left-
most Domain Name System (DNS) name that an administrator assigns to the domain . For example, if 
a domain were named mspress.microsoft.com, the NetBIOS name of the domain would be mspress . 

Another concept used by NetBIOS is that of LAN adapter (LANA) numbers . A LANA number is 
assigned to every NetBIOS-compatible protocol that layers above a network adapter . For example, if 
a computer has two network adapters and TCP/IP and NWLink can use either adapter, there would 
be four LANA numbers . LANA numbers are important because a NetBIOS application must explicitly 
assign its service name to each LANA through which it’s willing to accept client connections . If the 
application listens for client connections on a particular name, clients can access the name only via 
protocols on the network adapters for which the name is registered .

NetBIOS Operation
A NetBIOS server application uses the NetBIOS API to enumerate the LANAs present on a system and 
assign a NetBIOS name representing the application’s service to each LANA . If the server is connec-
tion oriented, it performs a NetBIOS listen command to wait for client connection attempts . After a 
client is connected, the server executes NetBIOS functions to send and receive data . Connectionless 
communication is similar, but the server simply reads messages without establishing connections .

A connection-oriented client uses NetBIOS functions to establish a connection with a NetBIOS 
server and then executes further NetBIOS functions to send and receive data . An established NetBIOS 
connection is also known as a session . If the client wants to send connectionless messages, it simply 
specifies the NetBIOS name of the server with the send function.
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NetBIOS consists of a number of functions, but they all route through the same interface: Netbios . 
This routing scheme is the result of a legacy left over from the time when NetBIOS was implemented 
on MS-DOS as an MS-DOS interrupt service . A NetBIOS application would execute an MS-DOS 
 interrupt and pass a data structure to the NetBIOS implementation that specified every aspect of the 
command being executed . As a result, the Netbios function in Windows takes a single parameter, 
which is a data structure that contains the parameters specific to the service the application requests.

EXPERIMENT: Using Nbtstat to See NetBIOS Names
You can use the Nbtstat command, which is included with Windows, to list the active sessions 
on a system, the NetBIOS-to-TCP/IP name mappings cached on a computer, and the NetBIOS 
names defined on a computer. Here’s an example of the Nbtstat command with the –n option, 
which lists the NetBIOS names defined on the computer:

C:\Users\Toby>nbtstat -n 
 
Local Area Connection: 
Node IpAddress: [192.168.0.193] Scope Id: [] 
 
                NetBIOS Local Name Table 
 
       Name               Type         Status 
    --------------------------------------------- 
    WIN-NLRTEOW2ILZ<00>  UNIQUE      Registered 
    WORKGROUP      <00>  GROUP       Registered 
    WIN-NLRTEOW2ILZ<20>  UNIQUE      Registered

NetBIOS API Implementation
The components that implement the NetBIOS API are shown in Figure 7-13 . The Netbios function 
is exported to applications by %SystemRoot%\System32\Netbios.dll. Netbios.dll opens a handle to 
the kernel-mode driver named the NetBIOS emulator (%SystemRoot%\System32\Drivers\Netbios.
sys) and issues Windows DeviceIoControl file commands on behalf of an application. The NetBIOS 
emulator translates NetBIOS commands issued by an application into TDI commands that it sends to 
 protocol drivers .
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FIGURE 7-13 NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP protocol, the NetBIOS emulator requires 
the presence of the NetBT driver (%SystemRoot%\System32\Drivers\Netbt.sys). NetBT is known as the 
NetBIOS over TCP/IP driver and is responsible for supporting NetBIOS semantics that are inherent to 
the NetBIOS Extended User Interface (NetBEUI) protocol (included in previous versions of Windows) 
but not the TCP/IP protocol . For example, NetBIOS relies on NetBEUI’s message-mode transmission 
and NetBIOS name-resolution facilities, so the NetBT driver implements them on top of the TCP/IP 
protocol . 

Other Networking APIs
Windows includes other networking APIs that are used less frequently or are layered on the APIs 
 already described (and outside the scope of this book) . Five of these, however—Background 
 Intelligent Transfer Service (BITS), Distributed Component Object Model (DCOM), Message  Queuing 
(MSMQ), Peer-to-Peer Infrastructure (P2P), and Universal Plug and Play (UPnP) with Plug and 
Play Extensions (PnP-X)—are important enough to the operation of a Windows system and many 
 applications to merit brief descriptions .
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Background Intelligent Transfer Service
BITS is a service and an API that provides reliable asynchronous transfer of files between systems, 
using either the SMB, HTTP, or HTTPS protocol . BITS normally runs in the background, making use of 
unutilized network bandwidth by monitoring network utilization and throttling itself so that it con-
sumes only resources that would otherwise be unused; however, BITS transfers might also take place 
in the foreground and compete for resources with other processes running on the system .

BITS keeps track of ongoing, or scheduled, transfers in what are known as transfer jobs (not to be 
confused with jobs and job objects as described in Chapter 5, “Processes and Threads”) for each user . 
Each job is an entry in a queue and describes the files to transfer, the security context (access tokens) 
to run under, and the priority of the job . BITS version 4 .0 is integrated into BranchCache (described 
later in this chapter) to further reduce network bandwidth .

BITS is used by many other components in Windows, such as Microsoft Update, Windows Update, 
Internet Explorer (version 9 and later, for downloading files), Microsoft Outlook (for downloading 
 address books), Microsoft Security Essentials (for downloading daily virus signature updates), and 
 others, making BITS the most widely used network file-transfer system in use today.

BITS provides the following capabilities:

 ■ Seamless data transfer Components create BITS transfer jobs that will then run until the 
files are transferred. When a user logs out, the system restarts, or the system loses network 
connectivity, BITS pauses the transfer . The transfer resumes from where it left off once the 
user logs in again or network connectivity is restored . The application that created a transfer 
job does not need to remain running, but the user must remain logged in, while the transfer 
is taking place . Transfer jobs created under service accounts (such as Windows Update) are 
always considered to be logged on, allowing those jobs to run continuously .

 ■ Multiple transfer types BITS supports three transfer types: download (server to client), 
upload (client to server), and upload-reply (client to server, with a notification receipt from the 
server) .

 ■ Prioritization of transfers When a transfer job is created, the priority is specified 
( either Foreground, Background High, Background Normal, or Background Low) . All back-
ground  priority jobs make use only of unutilized network resources, while jobs with fore-
ground  priority compete with applications for network resources . If there are multiple 
jobs, BITS processes them in priority order, using a round-robin scheduling system within a 
 particular priority so that all jobs make progress on their transfers .

 ■ Secure data transfer BITS normally runs the transfer job using the security context of the 
job’s creator, but you can also use the BITS API to specify the credentials to use for imperson-
ating a user . For privacy across the network, you should use the HTTPS protocol .

 ■ Management The BITS API consists of methods for creating, starting, stopping,  monitoring, 
enumerating, modifying, or requesting notification of transfer-job status changes . Tools 
include BITSAdmin (which is deprecated and will be removed in a future version of Windows), 
and Windows PowerShell cmdlets (the preferred management mechanism) .
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When downloading files, BITS writes the file to a temporary hidden file in the destination 
 directory. Of course, BITS will impersonate the user to ensure that file-system security and quotas 
are  enforced properly . When the application calls the IBackgroundCopyJob::Complete method (or the 
 Complete-BitsTransfer cmdlet in PowerShell), BITS renames the temporary files to their destination 
names, and the files are available to the client. If there is already a file in the destination directory with 
the same name, BITS overwrites the file.

When uploading files, by default, BITS does not allow overwriting an existing file. When the 
 transfer is finished and BITS would overwrite the file, an error is returned to the client. To allow 
 overwrites, set the BITSAllowOverwrites property to True in the Internet Information Services (IIS) 
metabase using PowerShell or Windows Management Instrumentation (WMI) scripting .

The BITS server is a server-side component that lets you configure an IIS server to allow BITS 
clients to perform file transfers to IIS virtual directories. Upon completion of a file upload, the BITS 
server can notify a web application of the new file’s presence (via an HTTP POST message) so the web 
 application can process the uploaded files.

The BITS server extends IIS to support throttled, restartable uploads of files. To make use of the 
upload feature, you must create an IIS virtual directory on the server where you want the clients to 
upload their files. BITS adds properties to the IIS metabase for the virtual directory you create and 
uses these properties to determine how to upload the files. 

For security reasons, BITS will not permit uploading files to a virtual directory that has scripting 
and execute permissions enabled. If you upload a file to a virtual directory that has these permissions 
enabled, the job will fail . Also, BITS does not require the virtual directory to be write-enabled, so it 
is recommended that you turn off write access to the virtual directory; however, the user must have 
write access to the physical directory .

In some cases, the BITS Compact Server might be used instead of IIS . The Compact Server is 
 intended for use by enterprise and small business customers that meet the following conditions: 

 ■ The anticipated usage is a maximum of 25 URL groups, and each URL group supports up to 
three simultaneous file transfers

 ■ File transfers occur between systems in the same domain or mutually trusted domains

 ■ File transfers are not intended for Internet-facing clients

Figure 7-14 demonstrates how to load the BITS module within PowerShell, and some of the BITS 
PowerShell cmdlets .

Figure 7-15 demonstrates the use of the BITSAdmin tool, which is now deprecated in favor of 
 PowerShell for managing and using BITS .
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FIGURE 7-14 Using BITS from PowerShell

FIGURE 7-15 BitsAdmin tool
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Figure 7-16 shows BITS messages written to the event log .

FIGURE 7-16 BITS messages in the event log

Peer-to-Peer Infrastructure
Peer-to-Peer Infrastructure is a set of APIs that cover different technologies to enhance the Windows 
networking stack by providing flexible peer-to-peer (P2P) support for applications and services . The 
P2P infrastructure covers four major technologies, shown in Figure 7-17 .
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FIGURE 7-17 Peer-to-peer architecture
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Here are the major peer-to-peer components:

 ■ Peer-to-Peer Graphing Allows applications to pass data between peers efficiently and 
 reliably by using nodes and events .

 ■ Peer-to-Peer Namespace Provider Enables serverless name resolution of peers and their 
services (described later in the “Name Resolution” section) .

 ■ Peer-to-Peer Grouping Combines graphing and namespace technologies to group and 
isolate services and/or peers into a defined group and uniquely identify it.

 ■ Peer-to-Peer Identity Manager Enhances the services offered by the namespace provider 
to securely create, publish, and identify peer names, as well as to identify group members that 
are part of the grouping API .

The Peer-to-Peer Infrastructure in Windows is also paired with the Peer-to-Peer Collaboration 
Interface, which adds support for creating collaborative P2P applications (such as online games and 
group instant messaging) and supersedes the Real-Time Communications (RTC) architecture in ear-
lier versions of Windows . It also provides presence capabilities through the People Near Me (PNM) 
 architecture . 

DCOM
Microsoft’s COM API lets applications consist of different components, each component being a 
 replaceable, self-contained module . A COM object exports an object-oriented interface to  methods 
for manipulating the data within the object. Because COM objects present well-defined  interfaces, 
developers can implement new objects to extend existing interfaces and dynamically update 
 applications with the new support .

DCOM (Distributed Component Object Model) extends COM by letting an application’s 
 components reside on different computers, which means that applications don’t need to be 
 concerned that one COM object might be on the local computer and another might be across 
the network. DCOM thus provides location transparency, which simplifies developing distributed 
 applications . DCOM isn’t a self-contained API but relies on RPC to carry out its work .

Message Queuing
Message Queuing is a general-purpose platform for developing distributed applications that take 
advantage of loosely coupled messaging . Message Queuing is therefore an API and a messaging 
infrastructure. Its flexibility comes from the fact that its queues serve as message repositories in which 
senders can queue messages for receivers, and receivers can de-queue the messages at their discre-
tion . Senders and receivers do not need to establish connections to use Message Queuing, nor do 
they need to be executing at the same time, which allows for disconnected asynchronous message 
exchange .
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A notable feature of Message Queuing is that it is integrated with Microsoft Transaction Server 
(MTS) and SQL Server, so it can participate in Microsoft Distributed Transaction Coordinator  
(MS DTC) coordinated transactions . Using MS DTC with Message Queuing allows you to develop 
 reliable  transaction functionality for three-tier applications .

UPnP with PnP-X
Universal Plug and Play is an architecture for peer-to-peer network connectivity of intelligent 
 appliances, devices, and control points. It is designed to bring easy-to-use, flexible, standards-based 
connectivity to ad-hoc, managed, or unmanaged networks, whether these networks are in the home, 
in small businesses, or attached directly to the Internet . Universal Plug and Play is a distributed, open 
networking architecture that uses existing TCP/IP and Web technologies to enable seamless proximity 
networking in addition to control and data transfer among networked devices .

Universal Plug and Play supports zero-configuration, invisible networking, and automatic discovery 
for a range of device categories from a wide range of vendors . This enables a device to dynamically 
join a network, obtain an IP address, and convey its capabilities upon request . Then other control 
points can use the Control Point API with UPnP technology to learn about the presence and capabili-
ties of other devices . A device can leave a network smoothly and automatically when it is no longer in 
use .

Plug and Play Extensions (PnP-X), shown in Figure 7-18, is an additional component of Windows 
that allows network-attached devices to integrate with the Plug and Play manager in the kernel . With 
PnP-X, network-connected devices are shown in the Device Manager like locally attached devices 
and provide the same installation, management, and behavioral experience as a local device . (For 
 example, installation is performed through the standard Add New Hardware Wizard .) 
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FIGURE 7-18 PnP-X implementation

PnP-X uses a virtual network bus driver that uses an IP bus enumerator service (%SystemRoot% 
\System32\Ipbusenum.dll) to discover PnP-X compatible devices, which include UPnP devices 
(through the Simple Service Discovery Protocol) and the newer Device Profile for Web Services 
(DPWS) devices (using the WS-Discovery protocol) . The IP bus enumerator reports devices it  discovers 
to the Plug and Play manager, which uses user-mode Plug and Play manager services if needed (such 
as for driver installation) . It’s similar to wireless discovery (like Bluetooth) and unlike wired device 
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discovery (like USB), however, PnP-X enumeration and driver installation must be explicitly requested 
by a user from the Network Explorer .

Note DPWS v1 .1 became an OASIS standard in June 2009 and has goals similar to those 
of UPnP, but it is tightly integrated with web services standards and frameworks and allows 
greater extensibility than UPnP .

Multiple Redirector Support

Applications access file-system resources on remote systems (often called file shares) using UNC 
paths—for example, \\servername\sharename\file. Resources can be accessed directly using the 
UNC name if it is already known and the logged-on user’s credentials are sufficient. Optionally, the 
Windows Networking (WNet) API can be used to enumerate computers and resources that those 
computers export for sharing, map drive letters to UNC paths, and explicitly specify credentials . To 
access SMB servers from a client, Microsoft supplies an SMB client, which has a kernel-mode compo-
nent called the mini-redirector and a user-mode component called the Workstation service . (SMB is 
described in Chapter 12 in Part 2 .) Microsoft also makes available redirectors that can access WebDAV 
resources, NFS v2/v3 resources (Windows Professional and Enterprise editions only), and Terminal 
Services–shared drives . Third parties can add their own redirectors to Windows . In this section, we’ll 
examine the software that decides which redirector to invoke for file access using UNC paths . Here 
are the responsible components:

 ■ Multiple Provider Router (MPR) is a DLL (%SystemRoot%\System32\Mpr.dll) that determines 
which network to access when an application uses the Windows WNet API for browsing 
 remote file resources.

 ■ Multiple UNC Provider (MUP) is a driver (%SystemRoot%\System32\Drivers\Mup.sys) that 
determines which network to access when an application uses the Windows I/O APIs to open 
remote files through UNC paths or drive letters mapped to UNC paths .

Multiple Provider Router
The Windows WNet functions allow applications (including the Network and Sharing Center) to 
 connect to network resources, such as file servers and printers, and to browse the different share 
points . Because the WNet API can be called to work across different networks using different 
 transport protocols, software must be present to send the request to the correct network and to 
understand the results that the remote server returns . Figure 7-19 shows the redirector software 
responsible for these tasks .
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A provider is software that establishes Windows as a client of a remote network server . Some of the 
operations a WNet provider performs include making and breaking network connections, as well as 
supporting network printing . The built-in SMB WNet provider includes a DLL, the Workstation service, 
and the redirector . Other network vendors need to supply only a DLL and a redirector .

When an application calls a WNet routine, the call passes directly to the MPR DLL . MPR takes the 
call and determines which network provider recognizes the resource being accessed . Each  provider 
DLL beneath MPR supplies a set of standard functions collectively called the network provider 
 interface . This interface allows MPR to determine which network the application is trying to access 
and to direct the request to the appropriate WNet provider software . The SMB Workstation service’s 
provider is %SystemRoot%\System32\Ntlanman.dll, as specified by the ProviderPath value under the 
HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\NetworkProvider registry key.

When called by the WNetAddConnection2 or WNetAddConnection3 API function to connect 
to a remote network resource, MPR checks the HKLM\SYSTEM\CurrentControlSet\Control 
\NetworkProvider\HwOrder\ProviderOrder registry value to determine which network provid-
ers are loaded . It polls them one at a time, in the order in which they’re listed in the registry, until a 
 provider recognizes the resource or until all available providers have been polled . You can change 
the  ProviderOrder by using the Advanced Settings dialog box shown in Figure 7-20 . You can access 
the dialog box by opening the Start menu, typing view network connections in the search box, and 
pressing Enter . This brings up the Network Connections dialog box . Press the Alt key on the keyboard, 
which will display the menus in the dialog box . Click on the Advanced drop-down menu, and choose 
Advanced Settings, and then click on the Provider Order tab .
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FIGURE 7-20 The provider order editor

The WNetAddConnection function can also assign a drive letter or device name to a remote 
resource . When called to do so, WNetAddConnection routes the call to the appropriate network 
provider . The provider, in turn, creates a symbolic-link object in the object manager’s namespace that 
maps the drive letter being defined to the redirector (that is, the remote FSD) for that network.

Figure 7-21 shows the Session 0 DosDevices directory corresponding to the LUID of the user who 
performed the drive-letter mapping, which is where connections to remote file shares are stored. 
The symbolic link created by network providers relies on MUP to serve as the connection between 
a network path and the corresponding redirector. The figure shows that MUP creates a device 
object named \Device\LanmanRedirector, which is itself a symbolic link to \Device\MUP (which is 
not shown in the figure because the symbolic link is in the \Device directory), with additional text 
included in the symbolic link’s value indicating to the MUP redirector which mini-redirector the drive 
 letter  corresponds to. The “\Global??” directory shows you the drive letters available to the system 
session— others will be mapped in the session-specific DosDevices directory.

Then, when the WNet or other API calls the object manager to open a resource on a  different 
 network, the object manager uses the device object as a jumping-off point into the remote file 
 system . It calls an I/O manager parse method associated with the device object to locate the 
 redirector FSD that can handle the request. (See Chapter 12 in Part 2 for more information on file 
system drivers .)
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FIGURE 7-21 Resolving a network resource name

Multiple UNC Provider
The Multiple UNC Provider (MUP, %SystemRoot%\System32\Drivers\mup.sys) is a file-system driver 
that exposes remote file systems to Windows. It is a single point where file system filter drivers can be 
layered to filter any and all I/O requests made to remote file systems. (Prior to Windows Vista, there 
were many inconsistencies and difficulties regarding filtering remote file systems.) MUP receives I/O 
requests for access to remote file systems (via UNC paths or drive letters mapped to them) and de-
termines which redirector will handle the request . The term redirector is used because it redirects an 
I/O request to a remote system . Before, and optionally after, calling the redirector, MUP will call any 
registered surrogate providers that might provide file caching and path rewriting.

MUP implements what is known as a prefix cache, which is a list of which remote file system paths 
(\\<server name>[\<share name>]) that are handled by each redirector. It is possible that multiple 
redirectors could handle a particular prefix, so there is a list in the registry (HKLM\System 
\CurrentControlSet\Control\NetworkProvider\Order\ProviderOrder) containing a comma-separated 
list of the priority order in which MUP forwards requests to the redirectors . This list is also used to 
load the providers . Under ProviderOrder, there are two subkeys (HwOrder and Order) containing 
 identical information in a value named ProviderOrder . A typical value is the following:

ProviderOrder     REG_SZ     RDPNP,LanmanWorkstation,webClient 



 CHAPTER 7 Networking 631

Each entry specifies the name of a service in HKLM\System\CurrentControlSet\Services, where 
another subkey named NetworkProvider is found. For example, in the key HKLM\System 
\CurrentControlSet\Services\RDPNP\NetworkProvider are the following values:

DeviceName      REG_SZ         \Device\RdpDr 
DisplayName     REG_EXPAND_SZ     @%systemroot%\system32\drprov.dll,-100 
Name                 REG_SZ         Microsoft Terminal Services 
ProviderPath      REG_EXPAND_SZ    %SystemRoot%\System32\drprov.dll 

The DeviceName value is the name assigned to the kernel-mode redirector’s device object . 
 DisplayName is the formal name of the provider . (This can be either a string or the location of a string 
in the resource section of a DLL, as seen here .) Name is the name that will be displayed by net use to 
identify which redirector owns a particular drive . ProviderPath specifies the path where the provider 
DLL is located .

Note Not all redirectors are, or have to be, listed in provider order . (Typically, you will see 
only RDPNP, LanmanWorkstation, webclient listed .) The priority of the redirectors not listed 
in the registry follows those that are listed in decreasing order and is then based upon the 
order in which the mini-redirector registered with MUP via FsRtlRegisterUncProviderEx via 
RxRegisterMinirdr .

The components of a prefix (server name and share name) that are claimed by a redirector varies; 
most redirectors usually claim both the server name and the share name of a UNC path  
(\\<server name>\<share name>[\<path>]). For example, for the path \\Server\Users\Brian 
\Documents, a redirector might claim the prefix \\Server\Users, which would cause MUP to route all 
requests containing that prefix to that particular redirector, such as \\Server\Users\David\Documents 
\Chapter7.doc; however, a path with the prefix \\Server\Backups will have to be resolved by query-
ing the redirectors in priority order. If a redirector claims a prefix consisting of just a server name (for 
example, \\Server), MUP sends requests for all shares (for example, \\Server\Users, \\Server\WebDAV, 
and so on) on that server to the redirector . 

MUP uses the names found in ProviderOrder to look up the name of the device implementing 
the redirector, by looking in HKLM\System\CurrentControlSet\Services\<redirector name> 
\NetworkProvider\DeviceName. DeviceName is a symbolic link, pointing back to MUP—for example, 
\Device\MUP\;LanmanRedirector. (The semicolon identifies this as a “targeted open,” meaning that 
MUP will not look in the prefix cache.)

The relationships between MUP and the other components that are part of the remote file system 
are shown in Figure 7-22 .
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Surrogate Providers
Prior to Windows Vista, the caching of remote file systems (Offline Files) was implemented inside the 
SMB mini-redirector, and the DFS-N (Distributed File System Namespace) client was implemented 
inside MUP. A unified cache was needed, so the remote file system architecture was redesigned for 
Windows Vista . The DFS-N client was moved into a separate driver component known as a MUP 
surrogate provider, and Offline Files became a separate driver acting both as a mini-redirector and a 
surrogate provider . Currently, there are two surrogate providers:

 ■ Offline Files (%SystemRoot%\System32\Drivers\csc.sys), which determines whether a 
 requested file should be or has been cached locally. Offline Files is hardcoded to be the 
 highest priority surrogate .
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 ■ Distributed File System Client (%SystemRoot%\System32\Drivers\dfsc.sys), which determines 
whether the path to a requested file needs to be changed (rewritten) to point to another 
server or share . (The essence of DFS-N is that it collects one or more network shares in the 
same namespace .) DFSCDFS is hardcoded to be the second highest priority surrogate .

It might appear that having surrogates in the path between MUP and the redirectors would cause 
a performance penalty, but Offline Files does not process paths that are not enabled for offline 
 access, and after rejecting a path, MUP will not forward Offline Files further I/Os directed at the path. 
Likewise, DFS does not process non-DFS paths .

The list of surrogates is hardcoded, so MUP does not support the addition of additional surrogates .

Redirector
A network redirector consists of software components installed on a system that support access to 
various types of resources on remote systems, using various network file protocols. The types of 
resources a redirector supports depends upon the redirector and the capabilities of the protocol 
 system . Virtually all redirectors support UNC names, which allows the remote sharing of resources 
such as files, printers, named pipes, and mailslots (although a redirector might opt out of support-
ing pipes and mailslots, while still supporting printers and files). All redirectors shipping as part of 
 Windows include the following components:

 ■ A DLL loaded by MPR in user mode, to perform non-file-related operations such as 
 determining the capabilities of the network provider, enumerating remote network resources, 
logging on to a remote network, and mounting remote network shares .

 ■ A kernel-mode driver known as a mini-redirector that imports the RDBSS (Redirected Drive 
Buffering SubSystem) export driver (%SystemRoot%\System32\Drivers\rdbss.sys). The 
 mini-redirector services file I/O requests directed at remote systems.

Some redirectors require one or more of the following optional components:

 ■ A service process to assist the DLL and possibly store sensitive information or information 
that is global across client applications using a particular network or share . For example, 
the Workstation service (running in an SVCHOST process) keeps track of drive-letter to  
\\server\share mappings.

 ■ A network protocol driver that implements the legacy Transport Driver Interface (TDI) on its 
upper edge is required if the redirector uses a network protocol not supplied by Windows . 
(In essence, this means anything other than TCP/IP .) Such a protocol driver is responsible for 
implementing communications with the remote system .

 ■ A service process to assist the redirector . For example, the WebDav redirector forwards 
 file-access operations to the WebClient user-mode service, which in turn issues the actual 
WebDav network protocol requests using HTTP APIs .
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A redirector presents resources that are attached to remote systems as if they were attached to the 
local system. In Windows, there are no special file I/O APIs required to access resources on a remote 
system . When accessing a resource, an application generally does not know—nor does it care—
whether the resource is located on the local system or on a remote system . The name “redirector” is 
used because it redirects file system operations to the remote system and returns to the application 
the responses from the remote system . 

All redirectors that ship with Windows are implemented using the mini-redirector architecture, 
where protocol-specific code is implemented in a mini-redirector driver that imports the RDBSS 
library . RDBSS is implemented like a class driver, and the mini-redirectors are akin to port drivers . 
RDBSS registers with MUP by calling FsRtlRegisterUncProviderEx.

When a mini-redirector registers with RDBSS via RxRegisterMiniRdr, RDBSS in turn registers with 
MUP by calling FsRtlRegisterUncProviderEx. MUP routes requests (IRPs) to RDBSS, which performs 
processing that is common to all remote file systems, and then issues simplified requests via callback 
routines that mini-redirectors linked against it have registered . RDBSS provides common functionality 
such as a data structure and locking model, Cache Manager and Memory Manager integration, and 
handling of IRPs. This simplifies the implementation of the mini-redirectors, and it vastly reduces the 
amount of code that needs to be written and debugged .

Because RDBSS integrates with Cache Manager, RDBSS mini-redirectors might not directly see 
read and write requests on buffered handles (handles opened without specifying the FILE_FLAG_NO_ 
BUFFERING flag to the CreateFile API); changes are cached by the cache manager on the local system 
until they need to be written back to the remote system . This improves response time, and it saves 
network bandwidth by aggregating writes and eliminating duplicate reads . RDBSS relies on the 
mini-redirector to tell it when it is safe to cache data for read and/or write . For example, the SMB 
mini-redirector uses opportunistic locks (more commonly known as oplocks, which are discussed in 
Chapter 12 in Part 2) to manage caching. An oplock is a cache coherency mechanism that allows file-
system consumers to dynamically alter their caching state for a given file or stream (see Chapter 12 in 
Part 2 for more information about file system streams), while maintaining cache coherency between 
multiple concurrent users of a file. If the file (or stream) is not currently opened for read or write by 
another accessor (either locally or remotely), a client can locally cache reads, writes, and byte range 
locks. If the file is open by others but is not being written, writes and locks will not be locally cached, 
but reads can still be cached .

Mini-Redirectors
A mini-redirector implements a protocol necessary to contact a remote system and access its shared 
resources . The mini-redirector tries to make access to remote resources as transparent as possible 
to the local client application . For example, if there are network problems, a redirector might retry a 
request multiple times before it returns an error to the client application .
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There are several mini-redirectors included with Windows:

 ■ RDPDR (Remote Desktop Protocol Device Redirection), which allows access from a Terminal 
Server system to the client system’s files and printers (%SystemRoot%\System32\Drivers 
\rdpdr.sys)

 ■ SMB (Server Message Block), which is the standard remote file system used by Windows (also 
known as CIFS, or Common Internet File System) (%SystemRoot%\System32\Drivers 
\MRxSMB.SYS). MRxSMB.SYS will load sub-redirectors, which are covered in the next section.

 ■ WebDAV (Web Differencing and Versioning), which enables access to files over the HTTP(S) 
protocol (%SystemRoot%\System32\Drivers\MRxDAV.SYS).

 ■ MailSlot (part of MRxSMB .SYS) . Mailslots are handled very differently from named pipes . The 
surrogates are not called for I/Os sent to a mailslot, and prefix caching is not used. (All paths 
having “mailslot” as the share name are targeted directly at the mailslot mini-redirector .) 
There can be, at most, one mailslot mini-redirector, and it is currently reserved for the SMB 
 redirector .

 ■ Network File System (NFS) is an optional component that was formerly installed with Services 
For Unix (SFU) and is now an optional Windows component (available on all Server editions, 
but only Enterprise and Ultimate editions of Windows client) that can be installed using the 
Programs and Features control panel . (Click Turn Windows Features On Or Off, and then select 
Services For NFS .) NFS protocol versions 2 and 3 are supported .

Offline Files, covered in a following section, optionally enables disk caching and offline access to 
files accessed through the SMB protocol. Offline Files also registers as a MUP surrogate provider. 

Server Message Block and Sub-Redirectors
The Server Message Block (SMB) protocol is the primary remote file-access protocol used by Windows 
clients and servers, and dates back to the 1980s . SMB version 1 .0 (generally referred to as just SMB) 
was designed to operate in a friendly LAN environment, where speeds were typically 10 Mb/s and no 
one was trying to steal your data . To accomplish many common tasks required a series of synchro-
nous messages between the client and the server . Little thought was given to WANs, because WANs 
were scarce at the time . In 1996, SMB was submitted to the IETF as the Common Internet File System 
(CIFS) . Microsoft documents the CIFS/SMB protocol in the MS-CIFS and MS-SMB protocol documents .

The SMB 2 .0 protocol was released in Windows Vista and Windows Server 2008, and it was a 
 complete redesign of the main remote file protocol for Windows. SMB 2.0 provides a number of 
 improvements over SMB, such as the following:

 ■ Greatly reduced complexity . The number of opcodes was reduced from over 100 to just 19 .

 ■ Reduced the chattiness of the protocol to make it more suitable for running across WANs, 
which generally have much longer latencies and lower bandwidth than LANs .
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 ■ Compound requests allow multiple requests to be sent in a single network packet .

 ■ Pipelining requests allow multiple requests and data to be sent before the answer to a previous 
request is received (also known as credit-based flow control) .

 ■ Larger reads and writes .

 ■ Caching of folder and file properties.

 ■ Improved message-signing algorithm (HMAC SHA-256 replaced MD5) .

 ■ Improved scalability of file sharing.

 ■ Works well with Network Address Translation (NAT) .

 ■ Support for symbolic links .

Version 2 .1 of the SMB protocol (released with Windows 7 and Windows Server 2008/R2) 
is a  minor release (documented in the MS-SMB2 protocol specification). It adds the following 
 improvements:

 ■ A new opportunistic lock (oplock) leasing model, which allows greater file and handle caching 
opportunities—without requiring changes to existing applications

 ■ Support for even larger transmission units (large MTU), from a previous maximum of 64 KB 
to 1 MB (by default, but configurable up to 8 MB via the registry).

To maintain backward compatibility with SMB servers, an SMB2 client uses the existing SMB 
 connection setup mechanisms, and then advertises that it supports a higher version of the protocol . 
The SMB mini-redirector contains all the functionality that is common between the different ver-
sions of the protocol, with a separate sub-redirector implementing each variant of the SMB protocol . 
An SMB2 client establishes a connection and sends an SMB negotiate request that contains both the 
supported SMB and SMB2 dialects . If the server supports SMB2, it responds with an SMB2 negotiate 
response, and the client hands the connection to the SMB2 sub-redirector . At that point, all messages 
on the connection are SMB2 . If the server does not support SMB2, it responds with an SMB negotiate 
response, and the client hands the connection to the SMB1 sub-redirector:

 ■ The common portions are implemented by %SystemRoot%\System32\Drivers\MRxSMB.sys. 

 ■ The SMB 1 protocol is implemented by %SystemRoot%\System32\Drivers\MRxSMB10.sys.

 ■ The SMB 2 protocol is implemented by %SystemRoot%\System32\Drivers\MRxSMB20.sys.
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Distributed File System Namespace

Distributed File System Namespace (DFS-N) is a namespace aggregation and availability feature 
of Windows. As organizations grow, the number of file servers tends to increase, and users find it 
increasingly difficult to find the files they need because the files might be spread over a number of 
different servers with completely unrelated names . DFS-N allows an administrator to create a new 
file share (also known as a root or namespace) that aggregates multiple file shares, from the same 
or  different servers, into a single namespace . For example, assume the Aura Corporation had the 
 following shares: \\Development\Projects, \\Accounting\FY2012, and \\Marketing\CoolStuff. These 
shares could be presented to users through a DFS-N namespace \\Aura\Teams containing DFS-N 
links called \\Aura\Teams\\Aura\Development, \\Aura\Teams\Accounting, and \\Aura\Teams 
\ Marketing. The redirection of a client accessing the path \\Aura\Teams\Marketing to the real share 
path \\Marketing\CoolStuff is invisible to the user. In this example, \\Marketing\CoolStuff is the  
link target of \\Aura\Teams\Marketing. Link targets can, in fact, refer to paths below the root of a 
share like \\Marketing\CoolStuff\Presentations.

Other benefits that DFS-N provides are redundancy and location-aware redirection. Another 
major capability of DFS is availability, through a feature known as DFS Replication (DFSR) .  Replication 
 provides two benefits: high availability in case of a failure, and load balancing. As an organization 
grows geographically, accessing file servers from remote offices with wide area network (WAN) 
 connections might be slow and inefficient. An administrator could create a replicated version of a 
file server within the remote office, providing high-speed access to the files from the users within 
the  remote office. A DFS-N link, such as \\Aura\Teams\Accounting in the preceding example, might 
have multiple link targets associated with it—for example, \\AccountingEurope\FY2012 and  
\\AccountingUS\FY2012. In this case, the DFS-N server returns to the client an ordered list of avail-
able target servers and takes into account the location of the client and the target servers (using 
Active  Directory site information) when ordering the list so that the client can access the closest 
target first. If access to one link target fails, DFS-N tries the next available target, if available. When 
a DFS-N link has multiple target shares, the targets should normally contain the same data because 
the  client accessing the namespace will access only one of the targets at a time . This can be accom-
plished  using DFS Replication (DFS-R), discussed in the next section . A server-side implementation 
of DFS-N consists of a Windows service (%SystemRoot%\System32\Dfssvc.exe) and a device driver 
( %SystemRoot%\System32\Drivers\Dfs.sys). The DFSSVC service is responsible for exporting DFS 
topology-management interfaces and maintaining the DFS topology in either the registry (on non–
Active Directory systems) or Active Directory . The DFS driver performs topology lookups when it 
receives a client request touching a link so that it can direct the client to the share where the file it is 
requesting resides .

On the client side, DFS-N support is implemented in a MUP surrogate provider driver 
( %SystemRoot%\System32\Drivers\Dfsc.sys) and an MPR/WNet provider implemented in 
% SystemRoot%\System32\Ntlanman.dll. The Distributed File System Client (DFSC) driver is  responsible 
for determining if a UNC path is a DFS namespace, and if so, it translates the specified path into the 
name of one or more target shares . Communication with DFS-N servers is accomplished using the 
SMB redirector. The DFS-N client is only part of the I/O path when a file or directory is being created 
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or opened . Once it returns the name of a target share to MUP, DFSC is not involved with subsequent 
I/O to the file. 

The DFS-N protocols are documented in the MS-DFSC and MS-DFSNM protocol documents .

Distributed File System Replication

Distributed File System Replication (DFS-R) provides bandwidth-efficient, asynchronous, multimaster 
replication of file-system changes between servers. In addition to general-purpose, file-system repli-
cation (for example, keeping data on multiple DFS-N link target shares in sync), DFS-R is also used for 
replicating a domain controller’s \SYSVOL directory, which is where Windows domain controllers store 
logon scripts and Group Policy files. (Group Policy permits administrators to define usage and security 
policies for the computers that belong to a domain .) Because DFS-R supports multimaster replication, 
file-system changes can occur on any server, potentially simultaneously, and DFS-R will automatically 
handle conflicts and maintain synchronization of the file-system contents. 

The fundamental unit of DFS replication is a DFS replicated folder, which is a directory tree whose 
contents will be synchronized across multiple servers according to an administratively defined sched-
ule and replication topology . Replication schedules allow administrators to restrict replication activity 
to specific windows of time or restrict the amount of bandwidth that DFS-R will use.  

Replication topologies allow administrators to define the network connections between a set of 
servers (called a replication group) . Arbitrary topologies are supported, including common topolo-
gies such as ring, star, or mesh. The replication topology configuration is stored in Active Directory. 
Only directories on NTFS volumes can be replicated because DFS-R relies on the NTFS USN journal to 
detect changes to the contents of a replicated folder . 

DFS-R uses several technologies to conserve network bandwidth, making it well-suited to 
 replication over WANs that might have high latency and low bandwidth . Remote Differential 
 Compression (RDC) allows DFS-R to identify and replicate only those pieces of a file that have 
changed, rather than the whole file. DFS-R also compresses content before sending it to a remote 
partner, providing additional bandwidth savings . On Enterprise or Datacenter SKUs, DFS-R makes 
use of an extended version of RDC called RDC Similarity to provide further bandwidth savings; if 
content is modified in a replicated folder on server A, and chunks of the modified content are similar 
to chunks of any file in partner server B’s replicated folder, server B satisfies the similar chunks of the 
update’s content locally from the similar files, rather than downloading all of the modified content 
from server A . 

New capabilities for DFS-R in Windows Server 2008 R2 include support for clustering and true 
read-only replicas .

DFS-R is implemented as a Windows service (%SystemRoot%\System32\DfsrS.exe) that uses 
authenticated RPC with encryption to communicate between instances of itself running on  different 
computers. There is also a WMI interface for configuration and management of the service, a file 
system minifilter used to protect read-only replicas from modification, and a cluster resource DLL for 
integration with MSCS. The DFS-R protocol is documented in the MS-FRS2 specification.
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Offline Files

Offline Files (also known internally as client-side caching, or CSC) transparently caches files from a 
remote system (a file server) on the local machine to make the files available when the local machine 
is not connected to the network. Offline Files caches files for remote files accessed over the SMB 
 protocol. Files can be cached by users by simply right-clicking on a remote file, folder, or drive and 
selecting Always Available Offline, thus pinning the selected files to the cache. Cached items can be 
viewed in the Sync Center control panel. Caching also can be specified administratively using Group 
Policy .

There is a single Offline Files cache on the system, which is shared by all users of the system. All 
cached files are stored in an ACL-protected directory, which by default is %SystemRoot%\CSC. If you 
choose, you can encrypt the files in the Offline Files cache (accessed by going to Control Panel, Sync 
Center, and then clicking Manage Offline Files, clicking on the Encryption tab, and clicking the  Encrypt 
button) . Access to the cache is permitted only by using Offline File tools and the IOfflineFilesXxx COM 
APIs . The easiest way to examine the contents of the cache is to use the Sync Center control panel 
interface (click Manage Offline Files, and then click the View Your Offline Files button).

Offline Files understands two types of objects: 

 ■ Files Includes files, folders, and symbolic links. Caching is not done at the NTFS level, so not 
all file NTFS attributes are cached or are cacheable . Cacheable attributes include the stan-
dard Win32 file attributes (metadata), such as the name, ACL, and the contents—only a file’s 
( unnamed) data stream will be cached . 

 ■ Scope A scope is the portion of a namespace that corresponds to a physical share . In a DFS 
namespace, the root of a scope is the object that is pointed to by a DFS link, which can contain 
additional DFS links to other scopes . If DFS is not being used, a scope and a share are the same 
thing .

Offline Files does not support complete NTFS semantics for cached files and has the following 
limitations:

 ■ Offline Files does not cache alternate data streams, which are therefore not available offline. 
When online, access to alternate data streams works because I/O requests for streams go 
directly to the server .

 ■ Offline Files does not cache Extended Attributes (EAs). An implication of this is that if a file 
containing EAs is cached and the cached version is modified while the server is offline, any EAs 
on the server are deleted when changes are written back to the server .

Offline Files consists of the following components, as shown in Figure 7-23:

 ■ A user-mode agent (%SystemRoot%\System32\cscsvc.dll) running as a service in an SVCHOST 
process . This service is primarily concerned with maintaining synchronization between the 
cache and remote file systems. It also implements the COM interfaces used to interact with the 
Offline Files cache.
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 ■ A remote file system driver (%SystemRoot%\System32\Drivers\csc.sys) that acts as both a MUP 
surrogate provider and a mini-redirector . This driver is responsible for controlling when I/O 
 requests are sent to the cache or to the remote file system. The driver also implements the 
 local cache, updating the cached data as appropriate based on the I/O requests seen .

 ■ An Explorer extension DLL (%SystemRoot%\System32\cscui.dll) for selecting which files, 
 folders, or drives to pin in the Offline Files cache, and for displaying icon overlays to identify 
offline (cached) files. CSCUI links against %SystemRoot%\System32\cscobj.dll, which provides 
the interface to the Offline Files service.

 ■ A DLL (%SystemRoot%\System32\cscapi.dll) containing publicly available Win32 APIs for 
 interacting with the Offline Files from applications.

 ■ An in-process COM object (%SystemRoot%\System32\cscobj.dll) used by application clients of 
Offline Files COM APIs.
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Multiple UNC
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Redirected Drive
Buffering

SubSystem
(RDBSS)
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FIGURE 7-23 Offline Files architecture
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Caching Modes
Offline Files has five caching modes. The mode for an object is dependent upon the object’s 
 connection status, which is determined by whether or not the local system has a network connection 
to the file server.

Online
This is the default mode for objects cached by Offline Files. In this mode, the server is available. 
The file system metadata operations and write operations flow to the server, and the cache state is 
updated as required . Read operations are serviced from the cache . When working online, Offline Files 
attempt to cache data only if the SMB client has been granted at least read-caching privileges from 
the file server.

Offline (Slow Connection)
To isolate the user from fluctuations in network performance, Offline Files transition into Offline  
(Slow Connection) mode when the network performance meets the configured slow-link latency 
or bandwidth thresholds. In Windows 7, a default slow-link latency threshold is configured at 80 
 milliseconds (ms) . The latency and bandwidth thresholds can be controlled via the Group Policy editor 
(%SystemRoot%\gpedit.msc) via the Configure Slow-Link Mode policy.

When working in this mode, all file-system operations are serviced by the Offline Files cache. The 
data is synchronized back to the server every six hours by default, but this synchronization frequency 
can be controlled through Group Policy via the Configure Background Sync policy.

The Offline Files Service periodically checks the network performance of the shares in the  Offline 
Files cache. If the network latency improves to be less than half the configured slow-link latency 
threshold, the user will transition back to working online .

The slow-link behavior can be controlled via the Group Policy editor (%SystemRoot%\gpedit.msc) 
as shown in Figure 7-24 .
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FIGURE 7-24 Offline Files Group Policy settings

Offline (Working Offline)
The user can force the client to work offline by clicking the Work Offline button in Explorer. When 
running in this mode, all file-system operations are satisfied from the cache. Periodic background 
 synchronization of the data can be enabled in this mode through the Configure Background Sync 
policy, but by default they are not enabled . If the user wants to work online again, he must click the 
Work Online button in Explorer .

Offline (Not Connected)
A cached object is in Offline (Not Connected) mode when the server is not accessible. The transition 
to offline is transparently satisfied through the Offline Files cache, without the application know-
ing. When the network connection to the server is re-established, any changes written to the file are 
synchronized back to the server by the Offline Files agent. If a file is modified on both the client and 
the remote system while the file was offline, the conflict must be resolved by the user through Sync 
Center .

Offline (Need to Sync)
When a user transitions back online after making changes to the version of the file in the local cache, 
the status of this file will be Offline (Need to Sync) until the changes are synchronized back to the 
server. Offline Files keep the user working offline for the affected files until that synchronization is 
complete to ensure that the user sees a consistent view of the files, include the changes made while 
working offline.
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Ghosts
When files are selected to be available offline, they must be copied from the server to the client. Until 
the transfer is complete, not all the files will be visible on the client. This can cause confusion for the 
user if the server drops offline and the user tries to access a file before it is in the cache. To address 
this case, Offline Files creates ghosts of the files and directories on the server within the cache as soon 
as caching is enabled. The ghosts are markers for files and directories that have not been copied and 
are unavailable in the cache . Explorer displays ghosted files with an overlay on the file’s icon. As the 
cache is filled, the ghost entries eventually disappear. If the user tries to access a ghosted file and the 
server is online, the file is copied immediately to the cache and the ghost overlay is removed.

When a subdirectory of a share is pinned into the Offline Files cache, ghosts are also used to 
provide the user context to the surrounding namespace that is not cached. When offline, the sibling 
files and directories appear in a ghosted state so that the user does not think that this other content 
somehow disappeared. When files and directories are ghosted for this purpose, they are neither 
cached by Offline Files nor are they available while working offline, unless they are explicitly pinned in 
the Offline Files cache.

Data Security
The goal of Offline Files is to provide the same file-access experience for remote files that the user 
experience for local files. To achieve that end, Offline Files caches the users and their effective access 
for each file and directory in the cache. This information is used by the Offline Files driver to enforce 
the appropriate access on the objects in the cache. Encrypted files using EFS on the server are also 
encrypted in the cache . 

Offline Files caches access for a given user as the data is accessed or synchronized on behalf of 
that user. For example, if two users, Able and Baker, share a laptop, and user Able marks a file on the 
server to be available offline, the file is copied to the cache and only Able’s access is cached. If the 
server drops offline, user Baker would not be able to access the file in the cache; however, when the 
server is online again, and Baker tries to access the file, Offline Files updates the cache to reflect user 
Baker’s access, allowing both users to access the file when working offline. 

Files protected with EFS remain protected but are encrypted in the security context of the first user 
to bring the data into the cache. When working offline, only this user will be able to access the data in 
the cache .

Cache Structure
By default, the root directory for the Offline Files cache is located in %SystemRoot%\CSC and is 
protected with a DACL that grants Administrators full control of the directory and everyone else read, 
Read & Execute, and List Folder Contents access . As shown in Figure 7-25, beneath the root directory 
is a subdirectory with a name equal to the current version of the database schema (currently, 2 .0 .6) 
and a security descriptor specifying an owner SID of S-1-5-12, which is used to indicate it is owned by 
restricted code and cannot be accessed by anyone other than the Offline Files service. This security 
descriptor is inherited by all files and subdirectories beneath the schema version directory.
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FIGURE 7-25 Default Offline Files directory structure

In the schema version directory are two files and two directories. The files consist of the Priority 
Queue (pq) and SID Map (sm) databases . The Priority Queue is a database that tracks the usage of 
the files within the cache and orders them from most recently used to least recently used. The Offline 
Files agent threads walk the queue tail to head when pushing files out of the cache when the cache’s 
disk quota has been exceeded. Within the Offline Files cache, an internal user ID is used to represent 
a user when storing that user’s access . The SID Map is used to map these internal user IDs to SIDs . This 
becomes important when the server is offline and Offline Files must validate the user’s access itself.

The namespace directory is the root of the cache and contains a directory for each server that 
 Offline Files is caching. The temp directory is for encryption and is also used as a temporary location 
for files that are removed from the namespace before they are deleted. The temp directory is used as 
a scratch area by Offline Files.

For every file in the Offline Files cache, Offline Files adds a sparse NTFS alternate data stream 
named CscBitmapStream, which contains a bitmap indicating which pages of the file have been modi-
fied while the file was “offline” (server not reachable). Each bit in the bitmap represents a 4-KB page 
within the file. This bitmap is not created until the first offline write to a file. Writes that extend the 
file are not included in the bitmap. If the file is truncated while offline, the bitmap is also truncated to 
match the new length of the file. When the server is next online, only the changed pages are written 
to the server .
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BranchCache

BranchCache is a generalized content-caching mechanism designed to reduce network bandwidth, 
especially over WANs . The name BranchCache comes from the concept of branch offices within a 
company connecting to the company’s centralized servers via WAN links, which are typically hun-
dreds of times slower than LAN links and caching content used by computers in the branch office 
within that branch office. Moving the content cache to the branch office drastically reduces the time 
to access the content because the data does not have to traverse the WAN .

Unlike Offline Files, which caches only files, BranchCache caches content, which is anything that can 
be identified by a URL, such as files, web pages, an HTTP video stream, or even a blob accessed from 
a database or cloud service . 

BranchCache does not access the files in the CSC cache, because CSC is a client of BranchCache. 
Instead, Offline Files uses BranchCache to populate its own cache.

A variety of protocols make use of BranchCache, including the following ones:

 ■ Server Message Block (SMB) Used to access files on file servers

 ■ HTTP(S) Web pages, video streams, and other content identified by a URL

 ■ Background Intelligent Transfer Service (BITS) Used to transfer files, and runs over  
HTTP/TLS 1 .1

Figure 7-26 depicts the BranchCache architecture .

SharePoint BITS WMP IEOfficeExplorerCopyFileOffice

SMB (CSC/SRV) HTTP (WebIO/http.sys)

BranchCache

3rd Party Applications

FIGURE 7-26 BranchCache architecture

BranchCache’s operation is transparent to the applications accessing the content being cached, as 
shown in Figure 7-26 . When BranchCache is enabled on a client, a request made by that client to a 
content server carries headers/metadata (the exact mechanism depends upon the protocol used) to 
let the remote content server know that the client has BranchCache enabled . In this case, the content 
server returns content information (CI) describing that content, rather than the requested content . 
The CI contains hashes of all the segments and blocks in which the content is chunked . (This is cov-
ered in more detail later .) The client uses the CI for retrieving part, or all, of the content from the local 
BranchCache . If any part of the content is not available locally, the client goes back to the remote 
content server to retrieve the data that was not present in the local BranchCache and, once the data 
is retrieved, offers the missing data to the local BranchCache so that the same data can be served to 
other clients in the future .
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BranchCache operates in two caching modes, as shown in Figure 7-27:

 ■ Hosted Cache A single server in a branch office (running Windows Server 2008/R2, or later), 
with the BranchCache feature enabled, contains the entire content cache for all BranchCache-
enabled systems within that branch office.

 ■ Distributed Cache Instead of a hosted cache server caching content for the remote office, 
the clients within the remote office cache the content files themselves. The cache is spread 
across all the clients on the same subnet . There is no effort to evenly distribute the contents 
of the cache among peers within a branch office. In general, until the maximum local cache 
size is reached, each client has a copy of all the content it has accessed (resulting in content 
being duplicated throughout the distributed cache) . This is desirable because it adds redun-
dancy and some resiliency to the cache, especially when clients join and leave the branch 
office  network frequently, as is often the case when the users are working on laptops. The 
 distributed cache is implemented using peer-to-peer networking, using the Web Services 
Discovery (WS-D) multicast protocol to locate which client has the content in its cache, with a 
300-millisecond timeout . 

Headquarters

Branch office Branch office

Distributed Cache Hosted Cache

FIGURE 7-27 Types of BranchCache caching

BranchCache is fully compatible with end-to-end encryption, such as IPsec . Just like with CSC, 
Windows’ existing security mechanisms are used to ensure that access to cached content operates the 
same way that it would if the content were not cached . 
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BranchCache is similar to Offline Files, but it differs in several important ways. The most important 
of which is that content in the BranchCache is not available if the WAN is down . This is because the 
content is identified by a hash list generated and stored on the server, which the client uses to locate 
the cached content within the BranchCache (distributed or hosted) . Some BranchCache features the 
following behaviors:

 ■ Data transfer uses AES encryption .

 ■ For content that is not file-based, BranchCache caches only content that is larger than 64 KB. 
(This can be changed by editing the registry value HKLM\System\CurrentControlSet\Services 
\PeerDistKM\Parameters\MinContentLength on the server.)  

Caching Modes
BranchCache maintains two different local caches on each BranchCache-enabled system (which 
can be BranchCache content servers on one side of the WAN link, and BranchCache clients and 
 BranchCache hosted cache servers on other side):

 ■ The publication cache stores content information metadata for content published using the 
BranchCache Server APIs (PeerDistServerXxx) . The content information structure contains 
hashes of the various segments and blocks in which BranchCache breaks up the content into 
chunks, along with the secret needed to generate public and private content identifiers and 
the encryption key . 

 ■ Publishing is usually thought of as a server-side operation, though any BranchCache client 
can publish content . With regard to publishing, BranchCache offers two different approaches 
to its client applications/protocols for generating/managing/storing BranchCache content 
 information metadata:

• An application and/or protocol that uses BranchCache acceleration can ask  BranchCache 
to store content information metadata on its behalf (in the BranchCache publication 
cache), allowing BranchCache to manage the lifetime of that metadata according to rules, 
 timelines, and limits shared across multiple applications using BranchCache . This is achieved 
by publishing via the PeerDistServerXxx APIs, and it is what the  HTTP- BranchCache and 
BITS-BranchCache integrations do . 

• Alternatively, an application/protocol that wants to use BranchCache acceleration can 
ask BranchCache to generate only content information metadata without storing it, and 
instead simply return the metadata to the application or protocols . In this case, the applica-
tion or protocol has to implement its own way to store or manage that metadata . This is 
what the SMB-BranchCache integrations does .

In both cases, the protocol integrated with BranchCache or the application using BranchCache 
directly is responsible for transporting that content information metadata through the WAN 
link from the publishing content server to the clients in the remote branches . BranchCache 
does not have, or control, a data channel crossing the WAN link . The transport of content 
information metadata is intentionally left to the protocol or application using BranchCache 
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acceleration, so that the metadata can be transported with the same level of security, 
 authentication, and authorization that would have been used for retrieving the actual content 
when BranchCache is not used . This is consistent with the fact that, from a security standpoint, 
owning a copy of the BranchCache content information for a given content is equivalent to 
owning the entire content and therefore being authorized to retrieve a copy of it from other 
BranchCache entities (clients, hosted cache servers, or third-party implementations) .

The publication cache does not store any actual data of the published content; it stores only 
content information metadata . Publications tend to last for long periods of time, though the 
actual length of time is determined by the application that publishes the content . By default, 
the publication cache is constrained to consume no more than one percent of the volume on 
which it is located, which is specified by %SystemRoot%\ServiceProfiles\NetworkService 
\AppData\Local\PeerDistPub. The size and location of the publication cache can be changed 
using NetSh:

• netsh branchcache set publicationcache directory=C:\PublicationCacheFolder

• netsh branchcache set publicationcachesize size=20 percent=TRUE

 ■ The republication cache contains both metadata (but no secrets) and actual data (chunked 
in segments and blocks) for the BranchCache content retrieved by the local BranchCache 
client . It is stored with the purpose of making those chunks of content available to other 
 BranchCache clients . Republished content is stored for up to 28 days, but it can be flushed out 
earlier if the republication cache has reached its limit and space is needed for newer content 
to be republished . By default, the republication cache is constrained to consume no more than 
five percent of the volume on which it is located, which is by specified by %SystemRoot% 
\ServiceProfiles\NetworkService\AppData\Local\PeerDistRepub. The location and the size of 
the republication cache can be changed using NetSh:

• netsh branchcache set localcache directory=C:\BranchCache\Localcache

• netsh branchcache set localcache size=20 percent=TRUE

BranchCache attempts to persist the republication cache across system reboots through the 
use of an index file that contains the database of segment descriptors. When the system reboots, 
 BranchCache validates the general integrity of the republication cache by checking that it was 
properly closed . If the republication cache fails this consistency check, it is discarded . The publica-
tion cache is not persisted across reboots . The private SMB-BranchCache publication cache needs no 
explicit persistence; persistence comes for free, as a result of the SMB-BranchCache integration (which 
was covered previously) and the fact that with the SMB all published content is actual files. The hashes 
are validated before access to the files in the cache is allowed.

Configuration
BranchCache can be configured using the Local Security Group Policy editor as shown in Figure 7-28, 
using the network shell (NetSh) as shown in Figure 7-29, or as part of Group Policy pushed by an 
administrator (within a domain) .
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FIGURE 7-28 Configuring BranchCache using the Group Policy editor

FIGURE 7-29 Configuring BranchCache using the network shell

 ■ BranchCache Implementationservice in %SystemRoot%\PeerDistSvc.dll. This service starts 
when the BranchCache is enabled on both clients and servers, and it interacts with the 
 kernel-mode components (drivers) .

 ■ HTTP extension driver in %SystemRoot%\System32\Drivers\PeerDistKM.sys. This driver 
 registers with the Network Module Registrar (NMR) as a client of the http .sys driver and 
 examines all HTTP packets going into and out of the system. It adds files to the cache and 
 retrieves cached content information for published content from the BranchCache service, 
rather than sending the request to the web server .
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 ■ BranchCache APIs (PeerDistXxx) are exported by %SystemRoot%\System32\PeerDist.dll, which 
uses LRPC/ALPC to communicate with the BranchCache service .

 ■ The BranchCache HTTP transport in %SystemRoot%\System32\PeerDistHttpTrans.dll 
 implements the transport on top of which the Peer Content Caching and Retrieval: Retrieval 
Protocol [MS-PCCRR] exchanges data between BranchCache clients and/or hosted cache 
 servers . Each MS-PCCRR message is encapsulated in a simple transport message, which in turn, 
is sent over an HTTP request .

 ■ The Web Services Discovery Provider in %SystemRoot%\System32\PeerDistWSDDiscoProv.dll 
implements the WS-D protocol to discover which clients on the LAN are caching a particular 
file (or part of a file).

 ■ The BranchCache Network Shell Helper in %SystemRoot%\System32\PeerDistSh.dll is an 
 extension to the Network Shell (%SystemRoot%\System32\Netsh.exe) application that pro-
vides users with a means of monitoring and configuring the BranchCache service. Network 
Shell helper DLLs are installed by adding a string value to HKEY_LOCAL_MACHINE 
\SOFTWARE\Microsoft\NetSh, which provides the Network Shell with the path to the 
 helper DLL .

 ■ A standalone variant of all the BranchCache APIs are implemented in %SystemRoot% 
\System32\PeerDistHashPeerDistHash.dll (only present on Windows Server systems), which 
contains all of the BranchCache APIs and functionality and does not require the use of the 
BranchCache service . This component is designed for use by other Windows features that are 
tightly integrated with BranchCache, such as the SMB Groveler, which generates the hashes on 
the server .

 ■ Hash groveler service in %SystemRoot%\System32\smbhash.exe (only on Windows Server 
 systems). The groveler runs on the file or web server and generates hashes when clients 
request a hash list . The groveler monitors a given namespace or share and ensures that the 
BranchCache hashes are updated for all files within that namespace. All groveler I/O runs at 
low I/O priority so as not to interfere with the normal operation of the system . 

BranchCache uses the following protocols, which are documented at www.microsoft.com:

Peer Content Caching and Retrieval: Content Identification, as defined in [MS-PCCRC], defines the 
content information structures previously described . Peer Content Caching and Retrieval: Discovery 
Protocol, as defined in [MS-PCCRD], specifies a multicast to discover and locate services based on 
the Web Services Dynamic Discovery (WS-Discovery) protocol [WS-Discovery] . There are two modes 
of operations in WS-Discovery: client-initiated probes and service-initiated announcements . Both 
are sent through IP multicast to a predefined group. The primary role in the Content Caching and 
Retrieval System is Content Discovery .

 ■ Peer Content Caching and Retrieval: Retrieval Protocol, as defined in [MS-PCCRR], specifies the 
messages that are necessary for querying peer-role servers or a hosted cache server for the 
availability of certain content, and for retrieving the content . The primary role in the Content 
Caching and Retrieval System is Content Retrieval .
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 ■ Peer Content Caching and Retrieval: Hosted Cache Protocol, as defined in [MS-PCHC], 
 specifies an HTTPS-based mechanism for clients to notify a hosted cache server regarding the 
 availability of content and for a hosted cache server to indicate interest in the content . The 
primary role in the Content Caching and Retrieval System is Content Notification.

 ■ Peer Content Caching and Retrieval: Hypertext Transfer Protocol (HTTP) Extensions, as defined 
in [MS-PCCRTP], specifies a content encoding known as PeerDist that is used by an HTTP/1 .1 
client and an HTTP/1 .1 server to communicate content to each other . The primary role in the 
Content Caching and Retrieval System is Metadata (Hash) Retrieval .

 ■ Server Message Block (SMB) Version 2.1 Protocol, as defined in [MS-SMB2]. Version 2.1 of this 
protocol has enhancements for the detection of content caching-enabled shares and retrieval 
of metadata related to content caching . The primary role in the Content Caching and Retrieval 
System is Metadata (Hash) Retrieval .

Supporting SMB-BranchCache integration requires the following changes on both the clients and 
servers . On the client, the functionality of the existing client-side caching (CSC) components were 
extended . On the server, the SMB Server Driver (srv2 .sys) was extended to support hash list retrieval 
from the server, and a new service was added, the SMB Hash Generation Service (also known as the 
Groveler), to manage the generation, updating, and deletion of hashes for content on an SMB share .

BranchCache Optimized Application Retrieval: SMB Sequence
The following sequence describes how content that is cached by BranchCache is delivered to an 
 application without requiring any changes to the application, as shown in Figure 7-30 . This sequence 
refers to the case when the channel/protocol of choice for that application is SMB—for example, the 
application opens the file from the remote share with CreateFile (or something that calls  CreateFile, 
such as fopen) and reads from the file. If the application decides to retrieve the data via an HTTP 
 request (backed by either WinHTTP or WinInet), the sequence is very different, but it is still a 
 sequence completely transparent to the application .

BranchCache and SMB are integrated through the Offline Files component in Windows. The Offline 
Files service opportunistically tries to prefetch files accessed via SMB to optimize network usage and 
user experience on the client side. The offline files driver might temporarily delay the application’s 
read to give the prefetch from BranchCache an opportunity to stay ahead of the application’s read 
position. This delay is calculated based on the measured latency to the file server. 

Data retrieval begins with an application reading data from a file on a remote SMB share. When 
Offline Files is enabled on the client and BranchCache is not enabled, the application’s read request 
flow through the offline files driver to the SMB server. When both offline files and BranchCache are 
enabled on the client, the following steps occur:
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1. The offline files driver intercepts the read I/O request and determines whether the following 
specific conditions have been met to initiate prefetching the file:

a. The data is not already stored in the offline files cache. If the data is already present, the 
application’s read will be satisfied by this data without making any data requests to the 
file server.

b. The latency to the server (as observed by the client so far) is above the configured 
 threshold .

c. BranchCache hash generation is enabled on the file share.

d. The target file size is at least 64 KB.

e. The read is beyond the first 64 KB of the file.

2. If the preceding conditions are met, the offline files driver notifies the offline files service to 
start prefetching the file. 

3. The offline files service then retrieves the content information from the file server. If the server 
has the up-to-date content information for the specified file, it returns it to the client. If there 
is no content information for the specified file or if it is out of date, the SMB hash-generation 
service on the file server will be requested to generate new content information for this file, 
and no content information is returned to the client, causing offline files to skip BranchCache 
retrieval for this file.

4. If content information is retrieved from the file server, the offline files service then uses that 
information to attempt to retrieve data from BranchCache . 

5. BranchCache attempts to retrieve the data either from peers or the hosted cache (depending 
on the configuration). If data is found, it is returned to the offline files service; otherwise, an 
error is returned .

6. If data is found in BranchCache, the data is written to the offline files cache and the prefetch 
thread continues to attempt to retrieve data from BranchCache until it has retrieved up to 
8 MB of data or it fails to retrieve data .

7.  When the application’s read operation is allowed to proceed, it attempts to read the data 
from the offline files cache, which is prepopulated by data from BranchCache if the prefetch 
thread successfully retrieved data. Otherwise, the application’s read is allowed to flow to the 
server to retrieve data. Data retrieved from the file server is then cached in the offline files 
cache for later publication to BranchCache .

8. When the Offline Files Service is requested to prefetch data from BranchCache, it also 
 attempts to publish any data to BranchCache for the file from the offline files cache. File data 
is stored in the offline files cache until the offline files cache needs to reclaim space for newer 
files. The same data is also stored in BranchCache’s republication cache so that it can be 
shared with other BranchCache clients and across different protocols/applications integrated 
with BranchCache .
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If the client accesses the same content again (after closing the file and opening it again) and the 
content has not been changed on the server, the application will be able to retrieve the data from the 
Offline Files cache without doing the BranchCache lookup. This is called transparent caching .

If the requested data cannot be found through BranchCache, once it is retrieved from the SMB 
server it will be republished to the BranchCache for access by other clients . (These steps are not 
shown in Figure 7-30 .)
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FIGURE 7-30 BranchCache request flows

BranchCache Optimized Application Retrieval: HTTP Sequence
The following sequence describes how content that is cached by BranchCache is delivered to an 
application without requiring any changes to the application . This sequence covers the case when 
the channel/protocol of choice for that application is HTTP, for example the application retrieves the 
content via an HTTP request based on either WinInet or WinHTTP APIs .

BranchCache and HTTP are tightly integrated, both in terms of HTTP .sys on the server side and 
WinInet and WinHTTP on the client side . In contrast with the SMB-BranchCache integration, when 
BranchCache is enabled on both client and server, an application’s HTTP requests are always stalled, 
waiting for BranchCache retrievals . The HTTP-BranchCache integration is focuses on minimizing 
the usage of the WAN’s bandwidth (even when the WAN happens to be very fast and has very low 
 latency), and all the data that can be retrieved via BranchCache will be transferred via BranchCache .
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1. Data retrieval begins with an application issuing an HTTP Request .

2. When BranchCache is enabled on the client, the HTTP client stack (either WinInet or WinHTTP) 
adds headers to the request indicating that the client is capable of understanding the PeerDist 
HTTP encoding (as defined in [MS-PCCRTP]).

3. The HTTP client stack sends the request to the remote content server, typically across the 
WAN link .

4. The kernel-mode HTTP driver (HTTP .sys) receives the request on the content server . If 
 BranchCache is enabled on that server, HTTP .sys forwards a copy of the request to the 
 BranchCache HTTP extension driver (PeerDistKM .sys), which keeps track of the request and 
retrieves content information for that content (identified by its URL and content tags) from the 
BranchCache service .

5. The kernel-mode HTTP driver delivers the HTTP request to the associated web server in user 
mode (typically, IIS or a web service) and waits for a response .

6. The HTTP server authenticates and authorizes the client, it generates the response 
 accordingly, and it starts streaming the response down to HTTP .sys .

7.  Because BranchCache is enabled, HTTP .sys redirects the response through PeerDistKM .sys .

8. If the content information for that HTTP content is not available (or not yet available) or if the 
content tags do not match, the following steps occur:

a. PeerDistKM .sys sends a copy of the response stream to the BranchCache service for 
 publication so that the next request for the same URL will find the content information.

b. It allows the response stream to go back to HTTP .sys unchanged .

c. HTTP .sys sends out the response with actual data in it and no BranchCache metadata .

9. If, instead, the content information for that HTTP content is available and, based on content 
tags, it is found to be up to date with the content returned, the following steps occur:

a. PeerDistKM .sys replaces the body of the response with the content information 
 describing it in BranchCache terms .

b. It modifies the response headers adding that the response is now PeerDist-encoded.

c. It returns the modified (and, in general, much shorter) response stream to HTTP.sys.

d. HTTP.sys sends out the modified response, containing only BranchCache content 
 information metadata, but not any actual content data .

10. The response is received on the client side . If the response contains BranchCache content 
 information, the HTTP client stack passes that metadata to the BranchCache service, and it 
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starts serving the first application read for the actual contents of that response by asking 
BranchCache to retrieve the content data associated with the size of that first read.

11. BranchCache retrieves that data from the local republication cache (if available), or it retrieves 
a superset including the requested data either from other BranchCache clients in the LAN or 
from the hosted cache server (depending on the configuration).

12. If any of the requested data is missing, BranchCache signals to the HTTP stack the range of 
missing data, and the HTTP stack issues a range request back to the remote server for the 
missing data (or a superset including it) .

13. Once all the data is reassembled for the specific application read, it is returned to the 
 application in a way completely transparent to the application . 

14. The last three steps are repeated until all the application’s reads on the HTTP response in 
question are completed .

Name Resolution

Name resolution is the process by which a character-based name, such as www .microsoft .com or 
Mycomputer, is translated into a numeric address, such as 192 .168 .1 .1, that the network protocol stack 
can recognize . This section describes the three TCP/IP-related name resolution protocols provided 
by Windows: Domain Name System (DNS), Windows Internet Name Service (WINS), and Peer Name 
Resolution Protocol (PNRP) .

Domain Name System
Domain Name System (DNS) is the standard (RFC 1035, et al .) by which Internet names (such as  
www.microsoft.com) are translated to their corresponding IP addresses . A network application that 
wants to resolve a DNS name to an IP address sends a DNS lookup request using the UDP/IP  protocol 
(TCP/IP is used for requests whose response size exceeds 512 bytes) to a DNS server . DNS servers 
implement a distributed database of name/IP address pairs that are used to perform translations, and 
each server maintains the translations for a particular zone . Describing the details of DNS is outside 
the scope of this book, but DNS is the foundation of naming in Windows and so it is the primary 
Windows name resolution protocol .

The Windows DNS server is implemented as a Windows service (%SystemRoot%\System32 
\Dns.exe) that is included in server versions of Windows. Standard DNS server implementation relies 
on a text file as the translation database, but the Windows DNS server can be configured to store 
zone information in Active Directory .
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Peer Name Resolution Protocol
The Peer Name Resolution Protocol (PNRP) is a distributed peer-to-peer protocol that allows for 
 dynamic name resolution and publication exclusively across IPv6 networks . It allows Internet- 
connected devices to publish peer names and their associated IPv6 address, as well as optional 
information . Other devices will then resolve the peer name, retrieve the IPv6 address, and establish a 
connection . 

PNRP offers significant advantages over DNS, mainly by being distributed, which means that it is 
essentially serverless (other than for early bootstrapping), can scale to potentially millions of names, 
and is fault tolerant and bottleneck free . Because it includes secure name publication services, 
changes to name records can be performed from any system . DNS generally requires contacting a 
DNS server administrator to perform updates . PNRP name updates also occur in real time, making it 
appropriate for highly mobile devices, whereas DNS caches results . Finally, PNRP allows for naming 
more than just computers and services by allowing extended information to be published with name 
records. The specification for the Peer Name Resolution Protocol [MS-PNRP] can be found at  
www.microsoft.com .

Windows exposes PNRP via a PNRP API for applications and services, as well as by extending the 
getaddrinfo Winsock API described earlier in the chapter to perform resolution of PNRP IDs (described 
next) when an address includes the reserved .pnrp.net domain suffix.

PNRP peer names (also called P2P IDs) are made up of two components:

 ■ Authority For secure clients (which have their name records signed by a certifying  authority), 
the authority is identified by a SHA-1 hash of an associated public key, and for unsecured 
 clients, it is zero . If a client is secure, PNRP validates the name record before publishing it .

 ■ Classifier The classifier uses a simple string to identify a service provided by a peer, which 
allows multiple services to be provided by the same device . 

To create a PNRP ID, PNRP hashes the P2P ID and combines it with a unique 128-bit ID called 
the service location, as shown in Figure 7-31. The service location identifies different instances of the 
same P2P ID in the same cloud. (PNRP uses two clouds: a global cloud, which corresponds to all IPv6 
addresses on the Internet, and the link-local cloud, which corresponds to IPv6 addresses with the 
fe80::/10 prefix and is analogous to an IPv4 subnet.) 

authority.classifier

Public key

Friendly nameHash

Hash

(128 bits) Service location (128 bits)

} P2P ID

} PNRP ID

FIGURE 7-31 PNRP ID generation
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PNRP Resolution and Publication
PNRP name resolution occurs in two phases:

 ■ Endpoint determination In this phase, the requesting peer determines the IPv6 address 
 associated with the peer responsible for publishing the PNRP ID of the desired service .

 ■ PNRP ID resolution In this phase, once the requesting peer has located and confirmed the 
availability of the peer associated with the IPv6 address, it sends a PNRP request message for 
the PNRP ID of the service being requested. The peer providing the service replies to confirm 
the PNRP ID and can supply a comment and up to 4 KB of additional data, such as context 
information related to the service .

During the first phase, PNRP iterates over nodes while locating the publishing node, such that the 
node performing name resolution will be responsible for contacting nodes that are successively closer 
to the desired PNRP ID . Each iteration works as follows: Once a peer receives a request message, it 
performs a lookup in its cache for the requested PNRP ID . If a match is found, the request message is 
sent directly; otherwise, it is sent to the next closest PNRP ID (by seeing how much of the ID matches) .

When a node receives a request message for which it cannot find a PNRP ID, it checks the distance 
of any other IDs in the cache to the target ID. If it finds a node that is closer, the requested node 
sends a reply to the requesting node, where the reply contains the IPv6 address of the peer that 
most closely matches the target PNRP ID . The requesting node can then use the IPv6 address to send 
another query to that address’ node. If no node is closer, the requesting node is notified, and that 
node sends the request to the next closest node . Assuming PNRP IDs of 200, 350, 450, 500, and 800, 
Figure 7-32 depicts a possible endpoint determination phase for an example in which peer A is trying 
to find the endpoint for PNRP 800 (peer E).

To publish its PNRP ID(s), a peer first sends PNRP publication messages to its closest neighbors 
(entries in its cache that have IDs that are in the lowest levels) to seed their caches . It then randomly 
chooses nodes in the cloud that are not neighbors and sends them PNRP name resolution requests 
for its own PNRP ID . Through a mechanism described earlier, the endpoint determination phase 
results in the seeding of the PNRP ID across the caches of the random nodes that were chosen in 
the cloud .
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1 Peer A sends a PNRP 
request message to the 
node that registered the PNRP 
ID of 500 (peer C) because it is 
the closest (numerically) to 800.

2 Peer C does not have an entry for the 
PNRP ID of 800 or any entries that are 
closer to 800, so it sends back a response 
indicating that it could not find an entry 
closer to 800.

3 Peer A now sends a PNRP request message 
to the next closest PNRP ID (450), peer B.

5 Peer A sends a PNRP request 
to peer E.

4 Peer B does have an entry in 
its cache for the PNRP ID of 
800, so it sends the IPv6 
address of peer E to peer A.

6 Peer E sends a positive name 
resolution response back to 
peer A.

FIGURE 7-32 Example of PNRP name resolution

Location and Topology

Today, networked computers often move between networks that require different configuration 
 settings—for example, a corporate LAN and a home-based wireless network . Windows includes 
the Network Location Awareness (NLA) service to enable the dynamic configuration of network 
 applications and settings based on location, and Link-Layer Topology Discovery (LLTD) to enable the 
intelligent discovery and mapping of networked devices . 

Network Location Awareness
The Network Location Awareness (NLA) service provider is implemented as a Winsock Namespace 
Provider (NSP) and provides the necessary framework for allowing computers and devices that move 
across different networks to select the most appropriate configuration settings. For example, an 
 application taking advantage of NLA can detect when the user moves from a high-speed LAN to a 
high-latency wireless network and fine-tune its bandwidth use appropriately. NLA can also detect 
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when a home computer on a LAN might also have a secondary VPN connection to the office and 
select the proper configuration options.

Instead of having developers rely on manual network interface information to figure out the type 
of network, and the IP addresses or DNS names associated with them, NLA provides a standard-
ized query API for enumerating all the local network attachment information and correlating it with 
network interface information. The NLA API also includes notifications that enable applications to 
respond to changes when they occur . NLA provides applications two pieces of location information:

 ■ Logical network identity This identity is based on the logical network’s DNS domain name . 
If one does not exist, NLA uses custom static information stored in the registry together with 
the network’s subnet address as the identity .

 ■ Logical network interfaces For each network that a device is attached to, NLA creates an 
adapter name that identifies interfaces such as NICs or RAS connections in a unique fashion. 
Applications use adapter names with the IP Helper API (%SystemRoot%\System32\iphlpapi.dll) 
to query interface information and characteristics .

Each logical network is implemented as a service class with an associated GUID and  properties . 
NLA creates instances of that service class when it returns information about a logical network . 
 Service classes are schemas that describe a namespace; they define the name, identifier, and 
namespace-specific information that is common to all instances. These classes are then used in 
 combination with the WSALookupServiceXxx APIs when performing name resolution .

The best way to get network location information programmatically is to use the Network List 
Manager (NLM) APIs—for example INetworkListManager, INetwork, IEnumNetworks, INetworkEvents, 
and so on .

Network Connectivity Status Indicator
Network Connectivity Status Indicator (NCSI) determines in real time the connectivity level of 
 network connections on a system . It is loaded by the NLA service and functions solely as an informa-
tion  provider for NLA . NLA enables network-interacting programs to change their behavior based 
on how the computer is connected to the network . NCSI does not register as a client of NLA, but it 
does  receive certain private notifications directly from it. NCSI detects local vs. Internet connectivity, 
hotspot networks, and corporate connectivity detection and level .

The connectivity level of a network connection is assessed and is based on whether or not the 
 system has access to the Internet and to network devices such as the default gateway, DNS serv-
ers, and web proxy servers . This network connectivity information is used by various applications 
such as the Networking Tray Icon, Mini Map, Network Connection Wizard, Windows Media Center, 
 DirectAccess, Windows Update, and Outlook . NCSI information is displayed in the tray as an overlay 
on the network icon . Most of NCSI’s activity is disabled if a user is not logged in .

NCSI performs the primary tasks described in the following sections .
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Passive Poll
Every five seconds (configurable in the registry), NCSI activates to perform its general processing. The 
main purpose of this action is to query the network stack using the Network Storage Interface (NSI), 
and looks for:

1. Evidence that some traffic has been received. NSI returns packet counts for each network 
interface . If any packets have been received on an interface, that interface will have at least 
local connectivity .

2. Evidence that traffic has been received from either the Internet or corporate network. This is 
a little more complex and is determined by calculating the average number of hops a packet 
takes to depart from a system’s local ISP network (in a home/nondomain environment) or 
intranet (in a corporate environment) . NSI returns the largest hop count seen since the last 
time the hop counts were requested . If this value exceeds the average for a given IP family (for 
example, IPv4 vs . IPv6) on a given interface, that interface has internet connectivity .

3. Evidence that the host is communicating with a web proxy . The IP addresses for web proxies 
will have been identified using Web Proxy AutoDetect (WPAD), or DNS, and proxies config-
ured manually through Internet control panel . NSI returns details of the current TCP paths 
from the network stack . If this is a new path to a proxy, that interface has internet connectivity .

4. Evidence that an IPSEC Security Association (SA) has been established between the system 
and a host that has an IPv6 address matching the corporate network prefix defined in the 
registry . (This is passive corporate connectivity detection .)

5. Evidence that there is a reachable path reported by NSI to a host with an IPv6 prefix 
 matching the corporate network prefix in the registry. The interface is marked with corporate 
 connectivity .

In addition to handling the NSI queries, the passive poll is also used by NCSI to carry out most 
time-based processing . If there are no networks connected, NCSI continues to poll, but stops polling 
three polling periods after the last data is received .

Network Change Monitoring
NCSI has to be aware of changes to the configuration of interfaces on the system. This is handled 
by two event monitors that watch for NSI interface change notifications and DHCP status change 
 notifications. 

When NCSI detects that the network has changed, it records the current time in a data  structure 
associated with each interface . The passive poll task queries this value and, if it is older than 15 
seconds, it will perform an active probe . The 15-second delay (for example, three poll periods have 
elapsed) is used to re-evaluate the Internet connectivity state if it has seen one or more unreachable 
paths .

NCSI registers for DHCP events and responds to them immediately (that is, there is no dampening 
that happens) . If in that callback, DHCP reports that an interface is stable, an active probe is queued 
for that interface .
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Registry Change Monitoring
NCSI monitors two parent keys in the registry for any changes to themselves or their children using 
the registry change notification API. Any changes trigger NCSI to reload all values under each key:

 ■ HKLM\System\CurrentControlSet\Services\NlaSvc\Parameters\Internet

 ■ HKLM\SOFTWARE\Policies\Microsoft\Windows\NetworkConnectivityStatusIndicator

Active Probe
NCSI has two mechanisms for actively testing an interface to determine whether it has Internet 
 connectivity, both of which are configurable (and can be disabled) using the registry keys.

The first time an active probe is performed on an interface, it will be a web probe . This consists of 
an attempt to download the file http://www.msftncsi.com/ncsi.txt, and it compares the contents of 
that file with the expected value of “Microsoft NCSI”. If the comparison succeeds, the active probe is 
considered successful .

If NCSI has detected proxy servers, it checks to see if the interface being probed is the best 
 interface over which to reach the first proxy server. If so, it applies the proxy settings to the HTTP 
request. Otherwise, it first tries without the proxy settings, only applying them and making a second 
attempt if the first failed with name resolution failure. This is to support multihomed scenarios, where 
one interface is connected via proxy and the interface being probed is not . 

If an active probe succeeds, either the IPv4 or IPv6 Internet state will be brought to internet 
 connectivity. Because NCSI does not know whether the request was satisfied using IPv4 or IPv6 
 connectivity, it makes a guess based on the existence of default gateways for each address family, 
with IPv4 being selected if an exact determination cannot be made .

The next time an active probe is to be performed, if the hardware address of the default gateway 
is already in the list of known proxy-less gateways, a DNS probe is performed instead of a web probe . 
This is an optimization that produces quicker results . A DNS probe performs a simple DNS lookup for 
the name listed in the registry, with the default being dns.msftncsi.com .

HTTP probe behavior changes in multihomed scenarios when a proxy is detected . When an active 
probe is executed on an interface, a check is made whether or not that interface is preferred by the 
network stack to reach the first proxy server address. If so, the web probe is continued as normal. 
If not, the web probe is first attempted without the use of the proxy. If that fails because the name 
could not be resolved via DNS, NCSI concludes it must be behind the proxy after all and applies the 
proxy server settings and retries the probe .

The content retrieved by the HTTP request is compared to known content in the registry . If the 
content does not match, NCSI assumes that the interface is connected to a hotspot network (which 
has rerouted the HTTP request to a login page) . It then uses the Network List Manager (NLM) APIs 
to send a message to the PNIDUI (%SystemRoot%\System32\pnidui.dll) Shell Service Object (SSO), 
which then displays a balloon to indicate to the user that she needs to log in before connecting to 
the  Internet . The gateway MAC address is also recorded in a known hotspot gateway list for proxy 
 detection optimization later .

http://www.msftncsi.com/ncsi.txt
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NSCI can be configured via Group Policy, as shown in Figure 7-33, or via the registry.

FIGURE 7-33 NCSI parameters in the Group Policy editor

Link-Layer Topology Discovery
The Link-Layer Topology Discovery (LLTD) protocol operates over both wired and wireless networks 
and enables applications to discover the topology of a network . For example, the Network Map 
 functionality in Windows uses LLTD to draw the local network topology for the connected devices 
that support the LLTD protocol . Additionally, LLTD supports Quality of Service (QoS) extensions, which 
allow applications to diagnose network problems such as low signal strength on a wireless network 
and bandwidth constraints on home networks . Because it operates on the OSI data-link layer, LLTD 
works only on a single LAN or subnet and cannot cross routers, but its capabilities make it suitable 
for most home and small-office networks. The specification for the Link-Layer Topology Discovery 
protocol [MS-LLTD] can be found at www.microsoft.com .

The LLTD Mapper I/O and the LLTD Responder components implement LLTD . The former is 
 responsible for the discovery process and for generating network maps . Because it uses a protocol 
different from IP, the LLTD Mapper uses NDIS APIs to directly send commands to the network via 
the network adapter . The LLTD Responder listens for and responds to discovery commands with 
 information about the computer . As mentioned earlier, only devices that have a responder are shown 
in the network map .



 CHAPTER 7 Networking 663

Protocol Drivers

Network drivers take high-level I/O requests and translate them into low-level network protocol 
requests for transmission across the network . The network APIs rely on transport protocol drivers in 
kernel mode to perform the actual translation . Separating APIs from underlying protocols gives the 
networking architecture the flexibility of letting each API use a number of different protocols. The 
Internet’s explosive growth and reliance on the TCP/IP protocol has made TCP/IP the preeminent 
protocol in Windows . The Defense Advanced Research Projects Agency (DARPA) developed TCP/IP in 
1969, specifically as the foundation for a large-scale, fault-tolerant network that became the Internet; 
therefore, TCP/IP has WAN-friendly characteristics such as routability and good WAN performance . 
TCP/IP is the preferred Windows protocol and is installed by default .

The 4-byte network addresses used by the IPv4 protocol on the legacy TCP/IP stack limits the 
number of public IP addresses to roughly four billion, which is nearly exhausted as more and more 
devices, such as cell phones and PDAs, acquire an Internet presence . For this reason, the IPv6 proto-
col, which has 16-byte addresses, is gaining adoption . Windows includes a combined TCP/IP stack, 
called the Next Generation TCP/IP Stack, which supports both IPv4 and IPv6 simultaneously, with IPv6 
being the preferred protocol . When operating on IPv6 networks, the stack also supports coexistence 
with IPv4 networks through the use of tunneling . The Next Generation TCP/IP Stack offers several 
advanced features to improve network performance, some of which are outlined in the following list:

 ■ Receive Window Auto Tuning The TCP protocol defines a receive window size, which 
 determines how much data a receiver can accept before the server requires an acknowledg-
ment . Optimally, the receive window size should be equal to the bandwidth-delay product, 
which is the network link’s capacity multiplied by its end-to-end delay . This calculates the 
amount of data that can be “in transit” between the sender and receiver at any given time . 
The Windows TCP/IP stack analyzes the conditions of a network link and chooses the optimal 
receive window size, adjusting it as needed if the network conditions change .

 ■ Compound TCP (CTCP) Network congestion occurs when a node or link reaches its 
 carrying capacity . CTCP implements a congestion-avoidance algorithm that monitors network 
 bandwidth, latency, and packet losses . It aggressively increases the amount of data that can 
be sent by a machine when the network will support it, and it backs off when the network is 
congested. Using CTCP on a high-bandwidth, low-latency network can significantly improve 
transfer speeds

 ■ Explicit Congestion Notification (ECN) Whenever a TCP packet is lost (unacknowledged), 
the TCP protocol assumes that the data was dropped because of router congestion and 
 enforces congestion control, which dramatically lowers the sender’s transmission rate . ECN 
 allows routers to explicitly mark packets as being forwarded during congestion, which is read 
by the Windows TCP/IP stack as a sign that transmission rates should be lowered .  Lowering 
rates in this manner results in better performance than relying on loss-based congestion 
 control . ECN is disabled by default, because many outdated routers might drop packets with 
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the ECN bit set instead of ignoring the bit . To determine whether your network supports ECN, 
you can use the Microsoft Internet Connectivity Evaluation Tool (http://www.microsoft.com 
/windows/using/tools/igd/default.mspx) . You can examine and modify the ECN capability using 
the network shell (from an Admin command window), as shown in Figure 7-34 . 

FIGURE 7-34 Using the network shell to examine and configure TCP parameters

 ■ High-loss throughput improvements, including the NewReno Fast Recovery Algorithm, 
 Enhanced Selective Acknowledgment (SACK), Forward RTO-Recovery (F-RTO), and Limited 
Transit . These algorithms reduce the overall retransmission of acknowledgments or TCP 
 segments during high-loss scenarios while still maintaining the integrity of the TCP stream . 
This allows for greater bandwidth in these environments and preserves TCP’s reliable transport 
semantics .

The Next Generation TCP/IP Stack (%SystemRoot%\System32\Drivers\Tcpip.sys), shown in 
 Figure 7-35, implements TCP, UDP, IP, ARP, ICMP, and IGMP . To support legacy protocols such as 
 NetBIOS, which make use of the deprecated TDI interface, the network stack also includes a com-
ponent called TDX (TDI translation), which creates device objects that represent legacy protocols 
so that clients can obtain a file object representing a protocol and issue network I/O to the proto-
col using TDI IRPs . The TDX component creates several device objects that represent various TDI 
 client– accessible protocols: \Device\Tcp6, \Device\Tcp, \Device\Udp6, \Device\Udp, \Device\Rawip, 
and \Device\Tdx.
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FIGURE 7-35 Windows Next Generation TCP/IP Stack

EXPERIMENT: Looking at TCP/IP’s Device Objects
Using the kernel debugger to look at a live system, you can examine TCP/IP’s device objects . 
 After performing the !drvobj command to see the addresses of each of the driver’s device 
 objects, execute !devobj to view the name and other details about the device object .

kd> !drvobj tdx 
Driver object (861d9478) is for: 
 \Driver\tdx 
Driver Extension List: (id , addr) 
 
Device Object list: 
861db310  861db440  861d8440  861d03e8 
861cd440  861d2318  861d9350   
lkd> !devobj 861cd440   
Device object (861cd440) is for: 
 Tcp6 \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861db440   
Device object (861db440) is for: 
 RawIp \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861db4f8 DevObjExt 861db500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
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Device queue is not busy. 
lkd> !devobj 861d8440   
Device object (861d8440) is for: 
 Udp6 \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861d84f8 DevObjExt 861d8500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861d03e8 
Device object (861d03e8) is for: 
 Udp \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 6 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861d04a0 DevObjExt 861d04a8  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861cd440   
Device object (861cd440) is for: 
 Tcp6 \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861d2318   
Device object (861d2318) is for: 
 Tcp \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 167 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861d23d0 DevObjExt 861d23d8  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861d9350   
Device object (861d9350) is for: 
 Tdx \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 0 Type 00000021 Flags 00000050 
Dacl 8b0649a8 DevExt 00000000 DevObjExt 861d9408  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy.
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Windows Filtering Platform
Windows includes a rich and extensible platform for monitoring, intercepting, and processing 
 network traffic at all levels in the network stack. Other Windows networking services extend basic 
networking features of the TCP/IP protocol driver by relying on Windows Filtering Platform (WFP) . 
These include Network Address Translation (NAT), IP filtering, IP inspection, and Internet Protocol 
Security (IPsec) . Figure 7-36 shows how the different components of the WFP are integrated with the 
TCP/IP stack . These include

 ■ Filter engine The filter engine is implemented in both user mode and kernel mode and 
performs all the filtering operations on the network. Each filter engine component consists of 
filtering layers, one for each component of the network stack. The user-mode engine, respon-
sible for RPC and IPsec keying policy, among other things, contains approximately 10 filters, 
while the kernel-mode engine, which performs the network and transport layer filtering of the 
TCP/IP stack, contains around 50 .

 ■ Shims Shims are the kernel-mode components that reside between the network stack and 
the filter engine. They are responsible for making the decision to allow or block network traffic 
based on their filtering behavior, which is defined by the filter engine. A shim operates in three 
steps: it parses the incoming data to match incoming values with entries in the filter engine, 
calls the filter engine to return an action based on the incoming values, and then interprets 
the action (drop the packet, for example) .

 ■ Base filtering engine (BFE) The BFE is a user-mode service (%SystemRoot%\System32\Bfe.
dll) that manages all WFP operations. It is responsible for adding and removing filters from the 
WFP stack, managing the filter configuration, and enforcing security on the filter database.

 ■ Callout drivers Callout drivers are kernel-mode components that add custom filtering func-
tionality outside the basic support provided by the WFP . Callout drivers associate callout func-
tions with one or more kernel-mode filtering layers, and the WFP enables callout functions to 
perform deep packet inspection and modification. Network Address Translation (described 
next) and IPsec are implemented as callout drivers, for example .
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Network Address Translation
Network Address Translation (NAT) is a routing service that allows multiple private IP addresses to 
map to a single public IP address . Without NAT, each computer of a LAN must be assigned a public 
IP address to communicate across the Internet . NAT allows one computer of the LAN to be assigned 
an IP address and the other computers to use private IP addresses and be connected to the Internet 
through that computer . NAT translates between private IP addresses and the public IP address as 
necessary, routing packets between LAN computers and the Internet .

NAT components on Windows consist of a NAT device driver, %SystemRoot%\System32\Drivers 
\ipnat.sys, that interfaces with the WFP stack as a callout driver, as well as packet editors that can 
perform additional packet processing beyond address and port translation . 

IP Filtering
Windows includes a very basic IP filtering capability with which a user can choose to allow only 
 certain ports or IP protocols into or out of the network . Although this capability can serve to protect a 
computer from unauthorized network accesses, its drawback is that it is static and does not automati-
cally create new filters for traffic initiated by applications running on the computer. 

Windows also includes a host firewall capability, called Windows Firewall, that goes beyond the 
basic filtering just described. Windows Firewall uses WFP to provide a stateful firewall, which is one 
that keeps track of traffic flow so that it distinguishes between TCP/IP traffic that originates on the 
local LAN and unsolicited traffic that originates on the Internet. When Windows Firewall is enabled 
on an interface, one of three profiles can be applied—public, private, and domain. By default, when 
the public profile is chosen (or until a profile is selected), all unsolicited incoming traffic received by 
the computer is discarded. A user or application can define exceptions so that services running on the 
computer, such as file and printer sharing or a website, can be accessed from other computers.

The Windows Firewall service, which executes in a Svchost process, uses the BFE to pass exception 
rules defined in the configuration user interface to the IPNat driver. The WFP filter engine executes 
the callback functions of each registered callout driver as it processes both inbound and outbound 
IP packets . A callback function can provide NAT functionality by modifying source and destination 
 addresses in a packet, or as a firewall by returning a status code to TCP/IP that requests that  
TCP/IP drop the packet and cease processing for it . In kernel mode, Windows Firewall uses the 
 Microsoft  Protection Service driver (%SystemRoot%\System32\Drivers\Mpsdrv.sys) that provides 
support for PPTP and FTP filtering, because those protocols provide their own independent control 
and data channels. The driver must analyze the control channel to figure out which data channel to 
manipulate. The driver is also used for displaying notification windows when an application starts 
listening on a socket . 

Internet Protocol Security
Internet Protocol Security (IPsec), which is integrated with the Windows TCP/IP stack, helps  protect 
unicast (IPsec itself supports multicast, but the Windows implementation does not) IP data against 
 attacks such as eavesdropping, sniffer attacks, data modification, IP address spoofing, and man- in-
the-middle attacks (as long as the identity of the remote machine can be verified, such as a VPN). 
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You can use IPsec to provide defense-in-depth against network-based attacks from untrusted 
 computers; certain attacks that can result in the denial-of-service of applications, services, or the 
network; data corruption, data theft, and user-credential theft; and the administrative control over 
 servers, other computers, and the network . IPsec helps defend against network-based attacks 
through  cryptography-based security services, security protocols, and dynamic key management .

IPsec provides the following properties for unicast IP packets sent between trusted hosts:

 ■ Data origin authentication, which verifies the origin of an IP packet and ensures that 
 unauthenticated parties cannot access data .

 ■ Data integrity, which protects an IP packet from being modified in transit without being 
 detected .

 ■ Data confidentiality, which encrypts the payload of IP packets before transmission. Data 
 confidentiality ensures that only the IPsec peer with which a computer is communicating can 
read and interpret the contents of the packets . This property is optional .

 ■ Anti-replay (or replay protection), which ensures that each IP packet is unique and can’t be 
reused . This property prevents an attacker from intercepting IP packets and inserting modi-
fied packets into a data stream between a source computer and a destination computer. When 
anti-replay is used, attackers cannot reply to captured messages to establish a session or gain 
unauthorized access to data .

You can use IPsec to help defend against network-based attacks by configuring host-based IPsec 
packet filtering and enforcing trusted communications. When you use IPsec for host-based IPsec 
packet filtering, IPsec can permit or block specific types of unicast IP traffic based on source and 
 destination address combinations and specific protocols and specific ports.

In an Active Directory environment, Group Policy can be used to configure domains, sites, and 
organizational units (OUs), and IPsec policies (called connection security rules) can then be assigned as 
required to Group Policy objects (GPOs) through Windows Firewall with Advanced Security configura-
tion settings. Alternatively, you can configure and assign local IPsec policies. Active Directory–based 
connection security rules are stored in Active Directory, and a copy of the current policy is maintained 
in a cache in the local registry . Local connection security rules are stored in the local system registry .

To establish trusted communications, IPsec uses mutual authentication, and it supports the 
 following authentication methods through AuthIP, Microsoft’s extension to Internet Key Exchange 
(IKE):

 ■ Interactive user Kerberos 5 credentials or interactive user NTLMv2 credentials

 ■ User x.509 certificates

 ■ Computer SSL certificates

 ■ NAP health certificates
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 ■ Anonymous authentication (optional authentication)

 ■ Preshared key

If AuthIP is not available, plain IKE is also supported by IPsec . The Windows implementation of 
IPsec is based on IPsec Requests for Comments (RFCs) . The Windows IPsec architecture includes 
Windows Firewall with Advanced Security, the legacy IPsec Policy Agent, the IKE and Authenticated 
Internet Protocol (AuthIP) protocols, and an IPsec WFP callout driver, which are described in the 
 following list:

 ■ Windows Firewall with Advanced Security In addition to the filtering functionality 
 described earlier, the Windows Firewall service is also responsible for providing the security 
and policy configuration settings for IPsec, which can be configured through Group Policy 
either locally or on an Active Directory domain .

 ■ Legacy IPsec Policy Agent The legacy IPsec Policy Agent runs as a service . In the Services 
snap-in in the Microsoft Management Console (MMC), the IPsec Policy Agent appears in the 
list of computer services under the name IPsec Policy Agent . The IPsec Policy Agent obtains 
the legacy IPsec policy from an Active Directory domain or the local registry and then passes 
IP address filters to the IPsec driver and authentication and security settings to IKE. These 
policies are honored to enable compatibility with older versions of Windows, which implement 
IPsec management through Active Directory .

 ■ IKE and AuthIP IKE is a protocol that supports the authentication and key negotiation 
services required by IPsec. For outgoing traffic, IKE waits for requests to negotiate security 
 associations (SAs) from the IPsec driver, negotiates the SAs, and then sends the SA settings 
back to the IPsec driver. For incoming traffic, IKE receives a negotiation request directly 
from the remote peer, and all other traffic from the peer is dropped until the SAs have been 
successfully negotiated . SAs are a combination of mutually agreeable IPsec policy settings 
and keys that defines the security services, mechanisms, and keys that are used to help 
secure communications between IPsec peers . Each SA is a one-way or simplex connection 
that  secures the traffic it carries. IKE negotiates main mode SAs and quick mode SAs when 
 requested by the IPsec driver . The IKE main mode (or ISAKMP) SA protects the IKE negotiation . 
The quick mode (or IPsec) SAs protect application traffic. AuthIP is a proprietary extension to 
IKE supported by Windows Vista and later, while Windows 7 and Windows Server 2008 R2 also 
add support for IKEv2, an equivalent standardized extension . It adds a secondary authentica-
tion mechanism to increase security and simplify maintenance and configuration of IPsec.

 ■ IPsec WFP callout driver The IPsec WFP callout driver is a device driver (%SystemRoot% 
\System32\Drivers\Fwpkclnt.sys) that is bound to WFP and processes packets that pass 
through the TCP/IP driver. The IPsec driver monitors and secures outbound unicast IP traffic, 
and it monitors, decrypts, and validates inbound unicast IP packets. WFP receives filters from 
the IPsec Policy Agent and invokes the callout, which then permits, blocks, or secures packets 
as required. To secure traffic, the IPsecI driver uses active SA settings, or it requests that new 
SAs be created .
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You can use the Windows Firewall with Advanced Security (%SystemRoot%\System32\Wf.msc) 
snap-in that is available in MMC to create and manage connection security rules by using the New 
Connection Security Rule Wizard, shown in Figure 7-37 . This snap-in can be used to create, modify, 
and store local connection security rules or Active Directory–based connection security rules, and to 
modify connection security rules on remote computers . Alternatively, you can use the Netsh utility 
with the netsh advfirewall consec command to manage connection security rules . After IPsec-secured 
communication is established, you can monitor IPsec information for local computers and for remote 
computers by using the Windows Firewall with Advanced Security snap-in or the Netsh utility with the 
netsh advfirewall monitor command .

FIGURE 7-37 New Connection Security Rule Wizard

NDIS Drivers

When a protocol driver wants to read or write messages formatted in its protocol’s format from or 
to the network, the driver must do so using a network adapter . Expecting protocol drivers to under-
stand the nuances of every network adapter on the market (proprietary network adapters number 
in the thousands) is not reasonable, so network adapter vendors provide device drivers that can take 
network messages and transmit them via the vendors’ proprietary hardware . In 1989, Microsoft and 
3Com jointly developed the Network Driver Interface Specification (NDIS), which lets protocol drivers 
communicate with network adapter drivers in a device-independent manner . Network adapter drivers 
that conform to NDIS are called NDIS drivers or NDIS miniport drivers . The version of NDIS that ships 
with Windows 7 and Windows Server 2008 R2 is NDIS 6 .20 .

The NDIS library (%SystemRoot%\System32\Drivers\Ndis.sys) implements the boundary that 
 exists between network transports, such as the TCP/IP driver, and adapter drivers . The NDIS library 
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is a helper library that NDIS driver clients use to format commands they send to NDIS drivers . NDIS 
drivers interface with the library to receive requests and send back responses . Figure 7-38 shows the 
relationship between various NDIS-related components .

TCP/IP Protocol
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NDIS Protocol Edge

Lightweight filter driver
NDIS Filter Interface
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FIGURE 7-38 NDIS components

Instead of merely providing the NDIS boundary helper routines, the NDIS library provides 
NDIS drivers with an entire execution environment . NDIS drivers do not follow the standard 
 Windows device driver I/O model, and they cannot function without the encapsulation the NDIS 
library gives them . This insulation layer wraps NDIS drivers so thoroughly that NDIS drivers don’t 
 accept and process IRPs . Rather, protocol drivers such as TCP/IP call a function in the NDIS library, 
 NdisAllocateNetBufferList, and pass the packets to an NDIS miniport by calling an NDIS library 
 function (NdisSendNetBufferLists) . Additionally, to make development simpler, all components of the 
Windows Next Generation TCP/IP stack make use of the NET_BUFFER_LIST structure, including TCP/IP 
and WSK, which streamlines communications with NDIS . 

NDIS includes the following features:

 ■ NDIS drivers can report whether or not their network medium is active, which allows  Windows 
to display a network connected/disconnected icon on the taskbar . This feature also allows 
 protocols and other applications to be aware of this state and react accordingly . The  
TCP/IP transport, for example, uses this information to determine when it should reevaluate 
 addressing information it receives from DHCP .
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 ■ NDIS drivers can be paused and resumed, which enables run-time reconfiguration, such 
as adding or removing an NDIS Lightweight Filter driver. A lightweight filter replaces most 
instances of NDIS intermediate drivers used prior to NDIS version 6 . (Intermediate drivers are 
still supported in NDIS 6, but their complexity makes them suitable for only a small class of 
problems.) Lightweight filter drivers are covered in more detail in the upcoming sections.

 ■ TCP/IP offloading, including task and chimney offloading. Task offloading allows a network 
interface card to implement some or all of the TCP/IP protocol stack, providing a substantial 
increase in network performance. NDIS includes support for IPsec Task Offload Version 2, 
which includes support for additional cryptography suites used in IPsec, such as AES, as well 
as IPv6 support. Chimney offloading provides a direct connection (the so-called chimney) 
between network applications and the network card hardware, enabling greater offloading 
and connection state management to be implemented by the network card. These offloading 
operations can improve system performance by relieving the CPU from the tasks .

 ■ Receive-side scaling enables systems with multiple processors to perform packet receive 
operations based on the most efficient use of available target processors. NDIS supports the 
receive-side scaling (RSS) interface at the hardware level and targets interrupts and DPCs to 
the appropriate processors .

 ■ Wake-on-LAN allows a wake-on-LAN-capable network adapter to bring the system out of 
a suspended power state . Events that can trigger the network adapter to signal the system 
include media connections (such as plugging a network cable into the adapter), the receipt 
of protocol-specific patterns registered by a protocol (the TCP/IP transport asks to be woken 
for Address Resolution Protocol [ARP] requests), and, for Ethernet adapters, the receipt of a 
magic packet (a network packet that contains 16 contiguous copies of the adapter’s Ethernet 
address) .

 ■ Header-data split allows compatible network cards to improve network performance 
by  splitting the data and header part of an Ethernet frame into different buffers and 
 subsequently combining the buffers into smaller regions of memory than if the buffers were 
combined. This allows more efficient memory usage as well as better caching because multiple 
headers can fit in a single page.

 ■ Connection-oriented NDIS (CoNDIS) allows NDIS drivers to manage connection-oriented 
media (typically, a WAN), such as ISDN or PPP devices . (CoNDIS is described in more detail 
shortly .)

The interfaces that the NDIS library provides for NDIS drivers to interface with network adapter 
hardware are available via functions that translate directly to corresponding functions in the HAL .
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EXPERIMENT: Listing the Loaded NDIS Miniports
The Ndiskd kernel debugger extension library includes the !miniports and !miniport commands, 
which let you list the loaded miniports using a kernel debugger and, given the address of a 
miniport block (a data structure Windows uses to track miniports), see detailed information 
about the miniport driver . The following example shows the !miniports and !miniport com-
mands being used to list all the miniports and then specifics about the miniport responsible for 
interfacing the system to a PCI Ethernet adapter . (Note that WAN miniport drivers work with 
dial-up connections .)

lkd> .load ndiskd  
Loaded ndiskd extension DLL  
 
 
lkd> !miniports 
NDIS Driver verifier level: 0 
NDIS Failed allocations   : 0 
Miniport Driver Block: 86880d78, Version 0.0 
  Miniport: 868cf0e8, NetLuidIndex: 1, IfIndex: 9, RAS Async Adapter 
Miniport Driver Block: 84c3be60, Version 4.0 
  Miniport: 84c3c0e8, NetLuidIndex: 3, IfIndex: 15, VMware Virtual Ethernet Adapter  
Miniport Driver Block: 84c29240, Version 0.0 
  Miniport: 84c2b438, NetLuidIndex: 0, IfIndex: 2, WAN Miniport (SSTP) 
... 
lkd> !miniport 84bcc0e8 
 
 Miniport 84bcc0e8 : Broadcom NetXtreme 57xx Gigabit Controller, v6.0 
 
    AdapterContext : 85f6b000 
    Flags          : 0c452218 
                     BUS_MASTER, 64BIT_DMA, IGNORE_TOKEN_RING_ERRORS 
                     DESERIALIZED, RESOURCES_AVAILABLE, SUPPORTS_MEDIA_SENSE 
                     DOES_NOT_DO_LOOPBACK, SG_DMA,  
                     NOT_MEDIA_CONNECTED,  
    PnPFlags       : 00610021 
                     PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START 
                     HARDWARE_DEVICE, NDIS_WDM_DRIVER,  
    MiniportState        : STATE_RUNNING 
    IfIndex                  : 10 
    Ndis5MiniportInNdis6Mode : 0 
    InternalResetCount    : 0000 
    MiniportResetCount    : 0000 
    References            : 5 
    UserModeOpenReferences: 0 
    PnPDeviceState        : PNP_DEVICE_STARTED 
    CurrentDevicePowerState : PowerDeviceD0 
    Bus PM capabilities 
    DeviceD1:        0 
    DeviceD2:        0 
    WakeFromD0:        0 
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    WakeFromD1:        0 
    WakeFromD2:        0 
    WakeFromD3:        1 
 
    SystemState        DeviceState 
    PowerSystemUnspecified    PowerDeviceUnspecified 
    S0            D0 
    S1            PowerDeviceUnspecified 
    S2            PowerDeviceUnspecified 
    S3            D3 
    S4            D3 
    S5            D3 
    SystemWake: S5 
        DeviceWake: D3 
 
    WakeupMethods Enabled 2: 
        WAKE_UP_PATTERN_MATCH   
    WakeUpCapabilities: 
    MinMagicPacketWakeUp: 4 
    MinPatternWakeUp: 4 
    MinLinkChangeWakeUp: 0 
    Current PnP and PM Settings:          : 00000030 
                     DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,  
    Translated Allocated Resources: 
        Memory: ecef0000, Length: 10000 
        Interrupt Level: 9, Vector: a8 
    MediaType      : 802.3 
    DeviceObject   : 84bcc030, PhysDO : 848fd6b0  Next DO: 848fc7b0 
    MapRegisters   : 00000000 
    FirstPendingPkt: 00000000 
    DriverVerifyFlags  : 00000000 
    Miniport Interrupt : 85f72000 
    Miniport version 6.0 
    Miniport Filter List: 
    Miniport Open Block Queue: 
      8669bad0: Protocol 86699530 = NDISUIO, ProtocolBindingContext 8669be88, v6.0 
      86690008: Protocol 86691008 = VMNETBRIDGE, ProtocolBindingContext 866919b8, v5.0 
      84f81c50: Protocol 849fb918 = TCPIP6, ProtocolBindingContext 84f7b930, v6.1 
      84f7b230: Protocol 849f43c8 = TCPIP, ProtocolBindingContext 84f7b5e8, v6.1

The Flags field for the miniport that was examined indicates that the miniport supports 
64-bit direct memory access operation (64BIT_DMA), that the media is currently not active 
(NOT_MEDIA_CONNECTED), and that it can dynamically detect whether the media is connected 
or disconnected (SUPPORTS_MEDIA_SENSE) . Also listed are the adapter’s system-to-device 
power-state mappings and the bus resources that the Plug and Play manager assigned to the 
adapter . (See the section “The Power Manager” in Chapter 8 in Part 2 for more information on 
power-state mappings .)
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Variations on the NDIS Miniport
The NDIS model also supports hybrid network transport NDIS drivers, called NDIS intermediate 
 drivers . These drivers lie between transport drivers and NDIS miniport drivers . To an NDIS mini-
port driver, an NDIS intermediate driver looks like a transport driver; to a transport driver, an NDIS 
intermediate driver looks like an NDIS miniport driver . NDIS intermediate drivers can see all net-
work traffic taking place on a system because the drivers lie between protocol drivers and network 
 drivers . Software that provides fault-tolerant and load-balancing options for network adapters, such 
as  Microsoft’s Network Load Balancing Provider, are based on NDIS intermediate drivers . Finally, the 
NDIS model also implements lightweight filter drivers (LWF), which are similar to intermediate drivers 
but specifically designed for filtering network traffic. LWFs support dynamic insertion and removal 
while the protocol stack is running. Filter drivers have the ability to filter all communications to and 
from the underlying miniport adapter. They also have the ability to select specify types of filtering 
(packet data or control messages) and to be bypassed for those that they are not interested in . 

Connection-Oriented NDIS
Support for connection-oriented network hardware (for example, PPP) is native in Windows, which 
makes connection management and establishment standard in the Windows network  architecture . 
Connection-oriented NDIS drivers use many of the same APIs that standard NDIS drivers use; 
 however, connection-oriented NDIS drivers send packets through established network connections 
rather than placing them on the network medium .

In addition to miniport support for connection-oriented media, NDIS includes definitions for 
 drivers that work to support a connection-oriented miniport driver:

 ■ Call managers are NDIS drivers that provide call setup and teardown services for connection-
oriented clients (described shortly) . A call manager uses a connection-oriented miniport to 
exchange signaling messages with network switches or another connection-oriented net-
work medium . A call manager supports one or more signaling protocols . A call manager is 
 implemented as a network protocol driver .

 ■ An integrated miniport call manager (MCM) is a connection-oriented miniport driver that also 
provides call manager services to connection-oriented clients . An MCM is essentially an NDIS 
miniport driver with a built-in call manager .

 ■ A connection-oriented client uses the call setup and teardown services of a call manager 
or MCM and the send and receive services of a connection-oriented NDIS miniport driver . 
A  connection-oriented client can provide its own protocol services to higher levels in the 
network stack, or it can implement an emulation layer that interfaces connectionless legacy 
protocols and connection-oriented media . 
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Figure 7-39 shows the relationships between these components .
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FIGURE 7-39 Connection-oriented NDIS drivers

EXPERIMENT: Using Network Monitor to Capture Network Packets
Microsoft provides a tool named Network Monitor that lets you capture packets that flow 
through one or more NDIS miniport drivers on your system by installing an NDIS lightweight 
filter driver (Netmon). You can obtain the latest version of Network Monitor by going to  
http://www.microsoft.com/download/en/details.aspx?id=4865 . Don’t forget to download the 
NetMon protocol parsers from http://nmparsers.codeplex.com/; otherwise, you won’t be able 
to decode the Microsoft protocols. When you first start Network Monitor, you’ll see a window 
similar to the one shown in Figure 7-40 .
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FIGURE 7-40 Network monitor

In the Select Networks pane, Network Monitor lets you select which network connection 
you want to monitor . After selecting one or more, start the capture environment by clicking 
the New Capture button on the toolbar . You can now initiate monitoring by clicking the Start 
button on the toolbar . Perform operations that generate network activity on the connection 
you’re monitoring (such as browsing to a website), and after you see that Network Monitor has 
captured packets, stop monitoring by clicking the Stop button . In the Frame Summary pane, 
you will see all the raw network traffic during the capture period. The Network Conversations 
pane displays network traffic isolated by process, whenever possible. By clicking on the  
Iexplore .exe process in this example, Network Monitor shows only the relevant frames in the 
Frame Summary view, as shown in Figure 7-41 .
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FIGURE 7-41 Capturing packets with Network Monitor

The window shows the HTTP packets that Network Monitor captured as the Microsoft 
 website was accessed through Internet Explorer . If you click on a frame, Network  Monitor 
 displays a view of the packet that breaks it apart to show various layered application and 
 protocol headers in the Frame Details pane, as shown in the previous screen shot .

Network Monitor also includes a number of other features, such as capture triggers and 
 filters, that make it a powerful tool for troubleshooting network problems. You can also add 
parsers for other protocols, as well as view and modify their source code . Network Monitor 
parsers are hosted on CodePlex (http://nmparsers.codeplex.com), the Microsoft open source 
project site .

Remote NDIS
Prior to the development of Remote NDIS, a vendor that developed a USB network device had to 
 provide a driver that interfaced with NDIS as a miniport driver as well as interfacing with a USB WDM 
bus driver, as shown in Figure 7-42 . 
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FIGURE 7-42 NDIS miniport driver for a USB network device

Remote NDIS is a specification for network devices on USB. The specification eliminates the need 
for a hardware vendor to write an NDIS miniport driver by defining messages and the mechanism by 
which the messages are transmitted over USB . Remote NDIS messages mirror the NDIS interface and 
include messages for initializing and resetting a device, transmitting and receiving packets, setting 
and querying device parameters, and indicating media link status .

The Remote NDIS architecture, in Figure 7-43, relies on a Microsoft-supplied NDIS miniport driver, 
%SystemRoot%\System32\Drivers\Rndismp.sys, that translates NDIS commands and forwards them to 
a USB device . The architecture allows for a single NDIS miniport driver to be used for all Remote NDIS 
devices on USB .
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FIGURE 7-43 Remote NDIS architecture for USB network devices

Currently, USB is the only bus supported by RNDIS on Windows .
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QoS
If no special measures are taken, IP network traffic is delivered on a first-come, first-served basis. 
Applications have no control over the priority of their messages, and they can experience bursty 
network behavior, where they occasionally obtain high throughput and low latencies but otherwise 
receive poor network performance . While this level of service is acceptable in most situations (such as 
transferring files or browsing the Web), an increasing number of network applications demand more 
consistent service levels, or Quality of Service (QoS) guarantees . Video conferencing, media streaming, 
and enterprise resource planning (ERP) are examples of applications that require consistent network 
performance . QoS allows an application to specify minimum bandwidth and maximum latencies, 
which can be satisfied only if every networking software and hardware component between a sender 
and a receiver supports QoS standards such as IEEE 802.1P, an industry standard that specifies the 
format of QoS packets and how OSI layer 2 devices (switches and network adapters) respond to them .

Windows supports QoS through a policy-based QoS implementation that takes full advantage of 
the Next Generation TCP/IP network stack, WFP, and NDIS lightweight filter drivers. The implemen-
tation allows for managing or prioritizing bandwidth use based on different conditions, such as the 
application, the source or destination IP address, the protocol being used, and the source or destina-
tion ports . Network administrators typically apply QoS settings to a logon session or a computer with 
Active Directory–based Group Policy, but they can be applied locally as well .

Policy-based QoS provides two methods through which bandwidth can be managed. The first 
uses a special field in the IP header called the Differentiated Services Code Point (DSCP) . Routers that 
support DSCP read the value and separate packets into specific priority queues. The QoS architecture 
in Windows can mark outgoing packets with the appropriate DSCP field so that network devices can 
provide differentiated levels of service . The other bandwidth management method is the ability to 
simply throttle outgoing traffic based on the conditions outlined earlier, where the QoS components 
limit bandwidth to a specified rate.

The Windows QoS implementation consists of several components, as shown in Figure 7-44 . First, 
the QoS Client Side Extension (%SystemRoot%\System32\Gptext.dll) notifies the Group Policy client 
and the QoS Inspection Module that QoS settings have changed . Next, the QoS Inspection Module 
(Enterprise Quality of Service, eQoS), which is a WFP packet-inspection component implemented 
in the TCP/IP driver that reacts to policy changes, retrieves the updated policy and works with the 
 transport layer and QoS Packet Scheduler to mark traffic that matches the policy. Finally, the QoS 
Packet Scheduler, or Pacer (%SystemRoot%\System32\Drivers\Pacer.sys), provides the NDIS light-
weight filter functionality, such as throttling and setting the DSCP value, to control packet scheduling 
based on the QoS policies. Pacer also provides the GQoS (Generic QoS) and TC (Traffic Control) API 
support for legacy Windows applications that used these mechanisms . 

In addition to the systemwide, policy-based QoS support provided by the QoS architecture, 
Windows enables specific classes of socket-based applications to have individual and specific control 
of QoS behavior through an API called the Quality Windows Audio/Video Experience, or qWAVE . 
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Network-based multimedia applications, such as Voice over IP (VoIP), can use the qWAVE API to 
query information on real-time network bandwidth and adapt to changing network conditions, as 
well as to prioritize packets to efficiently use the available bandwidth. qWAVE also takes advantage 
of the topology protocols described earlier to dynamically determine if the current network devices 
will  support the required bandwidth for a video stream, for example . It can notify applications of 
 diminishing bandwidth, at which point the multimedia application is expected to reduce the stream 
quality, for example .
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FIGURE 7-44 Policy-based QoS architecture

qWAVE is implemented in the QoS2 (%SystemRoot%\System32\Qwave.dll) API library and provides 
four main components:

 ■ Admission control, which determines, when a new network multimedia stream is started, if the 
current network can support the sustained bandwidth requested .

 ■ Caching, which allows the detailed admission control checks to be bypassed if similar usage 
patterns occurred in the past and the calculation result was already cached .

 ■ Monitoring and probing, which keep track of available bandwidth and notify applications 
 during low-bandwidth or high-latency situations .

 ■ Traffic tagging and shaping, which uses the 802 .11p and DSCP technologies mentioned earlier 
to tag packets with the appropriate priority to ensure timely delivery .
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Figure 7-45 shows the general overview of the qWAVE architecture:
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FIGURE 7-45 qWAVE architecture

Binding

The final piece in the Windows networking architecture puzzle is the way in which the components 
at the various layers—networking API layer, transport driver layer, NDIS driver layer—locate one 
another . The name of the process that connects the layers is binding . You’ve witnessed binding taking 
place if you’ve changed your network configuration by adding or removing a component using the 
Network Connections folder .

When you install a networking component, you must supply an INF file for the component. 
(INF files are described in Chapter 8 in Part 2.) This file includes directions that setup API routines 
must  follow to install and configure the component, including binding dependencies or binding 
 relationships . A developer can specify binding dependencies for a proprietary component so that 
the Service Control Manager (the Service Control Manager is described in Chapter 4, “Management 
 Mechanisms”) will not only load the component in the correct order but will load the component 
only if other dependent components are present on the system . Binding relationships, which the bind 
engine determines with the aid of additional information in a component’s INF file, establish con-
nections between components at the various layers . The connections specify which components a 
network component on one layer can use on the layer beneath it .

For example, the Workstation service (redirector) automatically binds to the TCP/IP protocol . The 
order of the binding, which you can examine on the Adapters And Bindings tab in the Advanced 
Settings dialog box (shown in Figure 7-46), determines the priority of the binding . (See the section 
“Multiple Redirector Support” earlier in this chapter for instructions on how to launch the Advanced 
Settings dialog box.) When the redirector receives a request to access a remote file, it submits the 
request to both protocol drivers simultaneously . When the response comes, the redirector waits until 
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it has also received responses from any higher-priority protocol drivers . Only then will the redirector 
return the result to the caller . Thus, it can be advantageous to reorder bindings so that bindings of 
high priority are also the most performance efficient or applicable to most of the computers in your 
network . You can also manually remove bindings with the Advanced Settings dialog box .

FIGURE 7-46 Editing bindings with the Advanced Settings dialog box

The Bind value, in the Linkage subkey of a network component’s registry configuration key, 
stores binding information for that component. For example, if you examine HKLM\SYSTEM 
\CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind, you’ll see the binding information 
for the Workstation service .

Layered Network Services

Windows includes network services that build on the APIs and components we’ve presented in this 
chapter . Describing the capabilities and detailed internal implementation of all these services is 
 outside the scope of this book, but this section provides a brief overview of remote access, Active 
 Directory, Network Load Balancing, and Distributed File System (DFS), including DFS Replication 
(DFSR) .

Remote Access
Remote access, which is available with Windows Server with the Routing and Remote Access service, 
allows remote access clients to connect to remote access servers and access network resources such 
as files, printers, and network services as if the client were physically connected to the remote access 
server’s network . Windows provides two types of remote access:

 ■ Dial-up remote access is used by clients that connect to a remote access server via a telephone 
or other telecommunications infrastructure . The telecommunications medium is used to create 
a temporary physical or virtual connection between the client and the server .
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 ■ Virtual private network (VPN) remote access lets a VPN client establish a virtual point-to-point 
connection to the server over an IP network such as the Internet . Windows also supports 
the Secure Socket Transmission Protocol (SSTP), which is a newer tunneling protocol for VPN 
connections that has the ability to pass through most firewalls and routers that block PPTP 
or L2TP/IPsec traffic. It does so by packaging PPP data over the SSL channel of the HTTPS 
protocol . Because the latter operates on port 443 and is usually part of typical Web browsing 
behavior, it is much more likely to be available than traditional VPN tunneling protocols .

Remote access differs from remote control solutions because remote access acts as a proxy 
 connection to a Windows network, whereas remote control software executes applications on a 
server, presenting a user interface to the client .

Active Directory
Active Directory is the Windows implementation of Lightweight Directory Access Protocol (LDAP) 
directory services (RFC 4510) . Fundamentally, Active Directory is a database that stores objects rep-
resenting resources defined by applications in a Windows network. For example, the structure and 
membership of a Windows domain, including user accounts and password information, are stored in 
Active Directory .

Object classes and the attributes that define properties of objects are specified by a schema . 
The objects in the Active Directory are hierarchically arranged, much like the registry’s logical 
 organization, where container objects can store other objects, including other container objects . 
(See  Chapter 6 for more information on container objects .)

Active Directory supports a number of APIs that clients can use to access objects within an Active 
Directory database:

 ■ The LDAP C API is a C language API that uses the LDAP networking protocol . Applications 
written in C or C++ can use this API directly, and applications written in other languages can 
access the APIs through translation layers .

 ■ Active Directory Service Interfaces (ADSI) is a COM interface to Active Directory implemented 
on top of LDAP that abstracts the details of LDAP programming . ADSI supports multiple lan-
guages, including Microsoft Visual Basic, C, and Microsoft Visual C++ . ADSI can also be used 
by Microsoft Windows Script Host (WSH) applications .

 ■ Messaging API (MAPI) is supported for compatibility with Microsoft Exchange client and 
 Outlook Address Book client applications .

 ■ Security Account Manager (SAM) APIs are built on top of Active Directory to provide an 
 interface to logon authentication packages such as MSV1_0 (%SystemRoot%\System32 
\Msv1_0.dll, which is used for legacy NT LAN Manager authentication) and Kerberos  
(%SystemRoot%\System32\Kdcsvc.dll).

 ■ Windows NT 4 networking APIs (Net APIs) are used by Windows NT 4 clients to gain access to 
Active Directory through SAM .
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 ■ NTDS API is used to look up SIDs and GUIDs in an Active Directory implementation (via 
DsCrackNames mostly) as well as for its main purposes, Active Directory management and 
replication . Several third parties have written applications that monitor Active Directory from 
these APIs .

Active Directory is implemented as a database file that, by default, is named %SystemRoot%\Ntds 
\Ntds.dit and replicated across the domain controllers in a domain. The Active Directory directory 
service, which is a Windows service that executes in the Local Security Authority Subsystem (LSASS) 
process, manages the database, using DLLs that implement the on-disk structure of the database as 
well as provide transaction-based updates to protect the integrity of the database . The Active Direc-
tory database store is based on a version of the Extensible Storage Engine (ESE), also known as the JET 
Blue, database used by Microsoft Exchange Server 2007, Desktop Search, and Windows Mail . The ESE 
library (%SystemRoot%\System32\Esent.dll) provides routines for accessing the database, which are 
open for other applications to use as well . Figure 7-47 shows the Active Directory architecture .
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FIGURE 7-47 Active Directory architecture
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Network Load Balancing
As stated earlier in the chapter, Network Load Balancing, which is included with server versions of 
Windows, is based on NDIS lightweight filter technology. Network Load Balancing allows for the 
 creation of a cluster containing up to 32 computers, which are called cluster hosts in Network Load 
Balancing . The cluster can maintain multiple dedicated IP addresses and a single virtual IP address 
that is published for access by clients . Client requests go to all the computers in the cluster, but 
only one cluster host responds to the request . The Network Load Balancing NDIS drivers effectively 
 partition the client space among available cluster hosts in a distributed manner . This way, each host 
handles its portion of incoming client requests, and every client request always gets handled by 
one and only one host . The cluster host that determines it should handle a client request allows 
the request to propagate up to the TCP/IP protocol driver and eventually a server application; the 
other cluster hosts don’t . If a cluster host fails, the rest of the cluster realizes that the cluster host is 
no  longer a candidate for processing requests and redistributes the incoming client requests to the 
remaining cluster hosts . No new client requests are sent to the failed cluster host . Another cluster 
host can be added to the cluster as a replacement, and it will then seamlessly start handling client 
requests .

Network Load Balancing isn’t a general-purpose clustering solution because the server application 
that clients communicate with must have certain characteristics: the first is that it must be based on 
protocols supported by the Windows TCP/IP stack, and the second is that it must be able to handle 
client requests on any system in a Network Load Balancing cluster . This second requirement typically 
means that an application that must have access to shared state in order to service client requests 
must manage the shared state itself—Network Load Balancing doesn’t include services for automati-
cally distributing shared state across cluster hosts . Applications that are ideally suited for Network 
Load Balancing include a web server that serves static content, Windows Media Server, and Terminal 
Services . Figure 7-48 shows an example of a Network Load Balancing operation .
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FIGURE 7-48 Network Load Balancing operation

Network Access Protection
One of the most difficult challenges that network administrators face is ensuring that systems 
that connect to their private networks are up to date and meet the organization’s health policy 
 requirements . A health policy contains the specific requirements that a system must meet, such as 
the minimum required system hotfixes, or a minimum antivirus signature version. Enforcing these 
 requirements is even more difficult when the systems, such as home computers or laptops, are not 
under the network administrator’s control . Attackers often create malware that targets out-of-date 
software, so users who do not keep their systems up to date with the most recent operating system 
updates or antivirus signatures risk exposing the organization’s private network assets to attacks and 
viruses .

Network Access Protection (NAP) provides a mechanism that helps network administrators enforce 
compliance with health requirement policies for all systems that require network access . Systems that 
do not meet the required health policies are isolated from the network and are placed in quarantine . 
While in quarantine, the noncompliant system’s network connectivity is severely limited, and it can 
only see the remediation servers from which it can receive the necessary updates to bring it back 
into compliance . This ensures that only systems that comply with the health policy requirements are 
 allowed to access the organization’s network . NAP is not designed to protect a network from mali-
cious users; it is designed to help administrators maintain the health of the systems on the network, 
which in turn helps maintain the network’s overall integrity . NAP is a multivendor system, with clients 
running on other operating systems, such as Mac OS X and Linux, and several third-party System 
Health Agents, System Health Validators, and Enforcement Clients .
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An exhaustive description of NAP is beyond the scope of this book; however, Figures 7-49 and 
7-50 illustrate the various components that implement NAP on client and server systems . A detailed 
description of NAP can be found at http://technet.microsoft.com/en-us/network/bb545879.aspx .
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FIGURE 7-49 NAP client-side architecture

In brief, the components of NAP on the client include the following:

 ■ System Health Agent (SHA) Monitors one or more aspects of a client’s health, and 
 provides one or more Statements of Health (SoH) to the local system’s NAP Agent . For 
 example, an antivirus SHA might examine the version numbers of the antivirus engine and 
virus signature file, and place that information in its SoH. A SHA can be matched to a remedia-
tion server so that a noncompliant system will know how to become compliant . For example, 
a SHA for checking antivirus signatures could be matched to a server that contains the latest 
antivirus signature file and the antivirus application package. Some SHAs do not need to be 
matched with a remediation server . For example, a SHA might just report local system settings 
that a System Health Validator (SHV) running on the NAP server SHV can use to determine 
whether the system’s firewall is enabled. Windows XP Service Pack 3 and later provide a SHA 
(%SystemRoot%\System32\Mssha.dll) that monitors the settings of the Windows Action 
Center (SHA-WAC) . This SHA is typically referred to as the Windows SHA, or WSH . To write 
a SHA, look at the INapSystemHealthAgentBinding2, INapSystemHealthAgentCallback, and 
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 INapSystemHealthAgentRequest APIs . The SHA is dependent upon the System Health Validator 
(SHV), and it is expected that the author of a SHA also provide a SHV .

Note SHA vendors should understand that the evaluation process can  happen 
before the system has an IP address (for example, using 802 .1x), so the SHA 
cannot look for data outside the client system . In addition, the IP address can 
change at any point in time (for example, if NAP causes the client to move to the 
quarantine VLAN), so the SHA should not cache sockets or make any assumptions 
about its IP address .

 ■ NAP Agent %SystemRoot%\System32\qagentRT.dll (quarantine agent service runtime) . 
Runs on each client computer, collects the SoH from each SHA, and relays that information to 
the NAP Server . The NAP Agent communicates with the NAP Server running on the Network 
Policy Server using the Microsoft Statement of Health protocol [MS-SoH] .

 ■ Enforcement Client (EC) Responsible for communicating with an Enforcement Point when 
trying to connect to a network, and for enforcing machine compliance with NAP policies . An 
Enforcement Point is a server or network access device that can be used with NAP to require 
the evaluation of a NAP client’s health state and provide restricted network access or com-
munication . If the machine’s health is not compliant, the NAP EC indicates the restricted status 
to the NAP Agent. Windows provides ECs for IPsec (%SystemRoot%\System32\NapIPsec.dll), 
802.1X and VPN EAP-authenticated connections (%SystemRoot%\System32\Eapqec.dll), DHCP 
(%SystemRoot%\System32\Dhcpqec.dll), and a Remote Desktop gateway (%SystemRoot% 
\System32\Tsgqec.dll). To write an EC, look at the INapEnforcementClientBinding,  
INapEnforcementClientCallback, and INapEnforcementClientConnection2 APIs . 

Note The name “enforcement client” can be somewhat confusing . The name 
refers to its role as a client of a network enforcement point, so it is more about 
how a client system accesses a network (although access control is generally part 
of its function) .

The following diagram shows the NAP components on a server . On the server side, the entire 
mechanism is an add-on to the Network Policy Server (NPS) Server (part of the IAS service) . 
In general, the health requests arrive at the NPS as an addition to RADIUS requests sent to 
the NPS by the enforcement point . The servers, the NPS then passes the Statement of Health 
(SoH) to the health validation layer, which passes the SoH to the appropriate SHV .

From the NPS perspective, the requests are coming from RADIUS clients (for example, 802 .1x 
network switch, VPN server, DHCP server, and so on) in RADIUS UDP packets . Or it allows 
 private ALPC calls . (Instead of going through UDP, the ALPC is used by the other Windows 
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Server roles—for example, DHCP server—to simplify the programming model .) The RADIUS 
specification (RFC 2865) provides for a maximum packet size of 4096, which has a significant 
impact on the amount of data that a SHA can send .

The client IPsec EC talks to a Health Registration Authority (HRA) server over HTTP . The HRA 
is an IIS ISAPI filter, which passes the SoH to the NPS (using the ALPC interface) and is respon-
sible for issuing the certificates (when the machine is identified as qualified for a certificate). 
The HRA server list can be configured using DNS, by adding HRA server records and configur-
ing the client to get the list from DNS . Third parties can implement a RADIUS client to talk to 
the NPS over UDP .
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 ■ System Health Validator (SHV) Evaluates a SoH received from the corresponding SHA on a 
client and determines whether the client is in compliance with the organization’s health policy 
by checking with a Health Requirements Server (HRS) . For example, an antivirus HRS might 
specify the minimum antivirus engine version and virus signature file version. 
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Note The presence of a Health Requirements Server is an implementation detail; 
an SHV can perform all the necessary work on its own . 

The SHV uses this information to determine whether the SoH provided by the client SHA 
is in compliance with the health policy provided by the HRS . To write a SHV, look at the 
 INapSystemHealthValidator and INapSystemHealthValidationRequest2 APIs . The SHV is 
 dependent upon the System Health Agent (SHA), and it is expected that the author of a SHA 
also provide a SHV .

Not pictured in the diagram are one or more Remediation Servers, which allow a client to be 
brought into compliance (for example, a Windows Update server) . The SHV is not connected to the 
Remediation Servers, but it is aware of their existence (configured administratively). It passes informa-
tion about the servers to the client when the SoH indicates that the client is not compliant with the 
current policy requirements .

NAP client configuration is typically done in the Group Policy editor with the Enforcement Client 
snap-in, but it can also be performed using the NAP client configuration MMC snap-in  
(%SystemRoot%\System32\Napclcfg.msc) or the network shell (%SystemRoot%\System32\Netsh.exe), 
as shown in Figures 7-51, 7-52, and 7-53 . 

Note Group Policy always takes precedence over other configurations, followed by the 
 local configuration, and then by DNS auto-discovery.

FIGURE 7-51 NAP Client configuration
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FIGURE 7-52 NAP Client configuration

FIGURE 7-53 Configuring NAP using the network shell



 CHAPTER 7 Networking 695

Direct Access
In Windows 7 Ultimate and Enterprise editions, Microsoft added an always-on Virtual Private Network 
(VPN) capability known as DirectAccess (DA), which allows a remote client on the Internet access to a 
corporate domain-based network . A DA connection to a corporate network is created when the client 
system boots, and it lasts for as long as the client is running and connected to the Internet . If network 
problems cause the connection to be dropped, the connection will be automatically re-established 
when network connections permit . DA uses IPsec running over IPv6, which can be encapsulated in 
IPv4 using a variety of mechanisms (described later) if the local system does not have end-to-end 
IPv6 connectivity to the private network . Remote systems can even use DA when they are behind a 
firewall, because DA can use HTTPS (TCP port 443) as a transport (IP-HTTPS).

Unlike traditional VPN products, remote systems using DA to access a corporate network are 
 always visible and manageable—just as if the machine was directly plugged into the corporate 
 network . The corporate IT department can manage remote systems by updating Group Policy 
 settings or push software updates at any time the remote systems are attached to the Internet . The IT 
department can also specify which corporate network resources (applications, servers, subnets, and so 
on) can be accessed by a user or remote system that is connected using DA . 

For enhanced security, Authentication Mechanism Assurance (described in Chapter 6) can be 
required on DA clients . This requires two-factor authentication (for example, a smart card or other 
hardware token) to log on or unlock a system . 

As shown in Figure 7-54, there are many mechanisms available for connecting a DA client to a 
 corporate network: IPv6, Intra-Site Automatic Tunnel Addressing Protocol (ISATAP), IPv4 encrypted 
with IPsec, 6to4 tunnel, or Teredo . In all cases, a connection is made between the remote client and a 
DA server . This server provides Denial of Service (DoS) protection by rate-limiting connection nego-
tiation traffic used to connect to it, and it acts as an IPv6 tunnel gateway between the remote client 
and the corporate network . The DA server also functions as an IPv6-based IPsec security gateway, 
similar to a VPN server or VPN client access concentrator, to control access to the corporate network

A client typically has two IPv6 tunnels to the DA server: an infrastructure tunnel and an intranet 
tunnel . The infrastructure tunnel is for communicating with corporate infrastructure servers, such as 
a Domain Name System (DNS) server, and domain controllers . The infrastructure tunnel is created 
 automatically when the client boots, and it does not require the user to be logged in . The intranet 
tunnel is established when a user logs in, and it carries network traffic for the user.

DA also works with NAP . In this case, a Health Registration Authority (HRA) server is placed outside 
the corporate firewall (often referred to as the DMZ, or DeMilitarized Zone). The client is configured 
with the name of the HRA (which can be resolved to an IP address using a public DNS server) . When 
the client boots, it contacts the HRA and sends its Statement of Health . If the client is not healthy, it 
must access remediation servers, which are also in the DMZ . Once the client is healthy, it obtains a 
health certificate that can then be used with IPsec to connect to the DA server.
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Conclusion

The Windows network architecture provides a flexible infrastructure for networking APIs, network 
protocol drivers, and network adapter drivers . The Windows networking architecture takes advan-
tage of I/O layering to give networking support the extensibility to evolve as computer networking 
evolves . Similarly, new APIs can interface to existing Windows protocol drivers . Finally, the range 
of networking APIs implemented on Windows affords network application developers a range of 
 possible implementations, each with different programming models and protocol support .
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object security checks, 164

AccessCheckByType function, 531
access checks, 495–497

access token-based, 532–533
discretionary, 528, 530–531
user-mode equivalents, 536

access control, 523–536
claims based, 537
discretionary, 488
forms of, 23
identity-based, 537

access control entries (ACEs). See ACEs 
(access control entries)

access control lists (ACLs). See ACLs (access 
control lists)

access-denied errors, 292
access logging, 494–495
access mask, specifying, 165
access rights

administrative vs . user, 566
group claims, 563
to objects, 163
process requests, 368
protected processes and, 368
revocation, 533

access tokens, 5, 14, 506–513, 547
access checks based on, 532–533
AppIDs in, 582
creation, 560
generation, 77
privileges, adding, 559
user, 559

access validation
ACE ordering, 533–534
algorithms, 530–533

account profiles, loading, 325
account rights, 540

defined, 538
ACEs (access control entries), 523

audit types, 549

conditional, 537–538, 582, 584
flags, 524
inheritance, 527–528
order of, 528, 533–536
processing, 532
propagation, 528
in SACLs, 524
viewing, 535–536

ACLs (access control lists)
accumulation of access rights, 524
ACE order in, 528
assigning, 527–528
displaying, 163–164
services, permissions for, 316
types, 523
virtual service accounts in, 518, 520–521

act as part of operating system privilege, 
546

Action Center, viewing crashes in, 130
activation contexts, 237
active desktop, 557–558
Active Directory, 286, 490, 686–687

ACEs used in, 523
APIs to access objects, 686–687
architecture, 687
directory service, 687
schema, 686
server name publishing integration, 608

Active Directory Service Interfaces (ADSI), 
686

Active Directory Users and Groups MMC 
snap-in, 539

active logon sessions, listing, 560–562
active probes, 661
ActiveX controls, 344
addresses. See also IP addresses

well-known, 600
address mapping, 15
address ordering, 189
address sharing, restricting, 604
address space

initial process, 378–379
layout, 16
for Wow64 processes, 224–225

Address Windowing Extension (AWE), 16
AdjustBoost dispatch events, 431
AdjustBoost priority boosts, 443
AdjustUnwait dispatch events, 430–431
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AdjustUnwait priority boosts, 442–443
Admin Approval Mode (AAM), 574–576
administrative rights, 566

operations requiring, 573
requesting, 576–578
running with, 574–576

Administrator account name, 499
administrators

Bypass Traverse Checking privilege, 545
privileges assignment, 539

admission control, 683
ADSI (Active Directory Service Interfaces), 

686
Advanced Local Procedure Call (ALPC). 

See ALPC (Advanced Local Procedure 
Call)

Advanced Security Settings dialog box
Effective Permissions tab, 535–536
Permissions tab, 535

Advanced Settings dialog box Adapters 
And Bindings tab, 684–685

Advapi32 .dll, 37
process-creation routines, 369
virtual DLL files, 246

AFD (Ancillary Function Driver), 602
affinity masks, 40, 458. See also 

processor affinity
extended, 465–466
process, 464–465
restricting to specific node, 460
thread, 463–465

affinity policy, interrupts, 102–104
alertable wait state, 112
ALPC (Advanced Local Procedure Call), 

56, 209–219
asynchronous operation, 213–214
attributes, 215
blobs, 215–216
completion list, 213–214
connection model, 210–211
debugging, 218–219
handles, 215–216
handle table, 216
message model, 211–213
message queues, 212
message zones, 217
performance, 217
port creation, 73
ports, 210, 212–213
regions, 214–215
resources, 215–216
sections, 214–215
security, 214, 216–217
tracing, 218–219
uses, 209
views, 214–215

altitudes of registry callbacks, 303
AMD-V Rapid Virtualization Indexing 

(RVI), 259
Ancillary Function Driver (AFD), 602

ANSI character text strings, converting to 
Unicode, 24

antivirus products, use of callback 
mechanism, 303

APC boosts, 432
APC delivery

disabling, 196–197, 198
in Wow64, 225

APC interrupt level, 91, 386, 413
APC objects, 110
APC queue, 110
APCs (asynchronous procedure calls), 

110–112, 607
CPU quota enforcement, 474
disabling, 110
insertion and delivery behavior, 111
pending, 448, 469
per-process CPU Quota APC structure, 

472
per-thread, 472–473, 476
queuing to thread, 430
rate control, 383
signaling code implementation, 433
User APC reserve object, 162

APIC (Advanced Programmable Interrupt 
Controller), 84

architecture, 84
interrupt assignment, 90
viewing, 85–86
virtualizing, 257

API redirection
for application compatibility, 244–245
image loader support, 233

APIs
application-compatibility risks, 244
categorization, 245–247
separating from underlying protocols, 

663
API Sets, 245–247

image loader support, 233
AppID, 581–582

certificate verification, 588
application-compatibility flags, 578
application-compatibility shims, 568
application desktop, 556
application failures, troubleshooting, 

291–293
application layer in OSI reference model, 

594
application load failures, 243, 244
application manifests

execution level information, 577–578
version-specific GUIDs in, 244

applications
administrative rights, requesting, 

576–578
affinity updates, 480
AppIDs, 581–582
buffer overflows, 292
compatibility levels, 245
debugging startup, 233–234

dynamic configuration, 658
group-aware, 408
identification for security purposes, 

581–582
initialization, 232
I/O control functions, 227–228
nonadministrative, 566
notification of registry changes, 290
peer-to-peer support, 624–625
private objects, 497
problem diagnosis requests, 354
registry key creation, 301
registry settings, 279
registry settings, locating, 290–291
response times, 113
RPC, 606–607
single-instancing, 172–173
standard user rights, running with, 

566–573
startup, 278
subsystem DLL calls, 49
unprivileged user accounts, running 

in, 292
user data, saving, 566–567
USER function calls, 51
user-mode execution, 232
virtualization, 385
Winsock functions, access to, 602

application setup programs
service initialization, 305
service registration, 305

application start cursor, 385
AppLocker, 491, 583–588

auditing mode, 583
CBAC use, 537
conditional ACEs, 582, 584
PowerShell commands, 585–586
registry change notifications, 586
rules, 583
storage location of rules, 584–585

APs (authentication protocols), 563
arbiters, 97
argument table, 135
artificial wait state, 478
ASMP (asymmetric multiprocessing), 38
assembly language, 38
ASSERT checks, 45–46
association classes, 349–350
Assured Authentication, 562–563
asymmetric multiprocessing (ASMP), 38
asynchronous callbacks, for change 

notifications, 278
asynchronous events, interrupts, 80. See 

also interrupts
asynchronous execution, 204
asynchronous file transfer, 621
asynchronous messaging, 211–214

message zones, 217
asynchronous notifications, 213–214

AdjustUnwait priority boosts
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asynchronous procedure calls (APCs). 
See APCs (asynchronous procedure 
calls)

asynchronous RPC, 607
atomic lock operations, 197
attributes

ALPC, 215
cacheable, 639
CBAC, 537
process, 372–373

Audio Device Graph process (Audiodg .
exe), 368

auditing
advanced policy settings, 554
audit events, generating, 548
Audit Object Access policy, 549
local system policies, 548
mechanisms for, 548–554
policy configuration, 548

Audit Log, 524
Audit Object Access policy, 549
AuditPol command, 552
AuditQueryGlobalSacl API, 552
audit records

ACEs in, 549–550
flow of, 549
generation, 548
object-access, 549–550

AuditSetGlobalSacl API, 552
authentication

Assured Authentication, 562–563
biometric framework, 563–568
certificate-based, 563
credential providers, 77
Kerberos, 559–560
levels, 608
MSV1_0, 558–559
network communication, 608
password-based, 558–562
remote, 559
smartcard, 562
user, 555–556, 558–560

authentication packages, 491, 555
for user logon, 558–559

authentication protocols (APs), 563
authentication services, 608
AuthIP, 670, 671
authorization, 536–538
AUTHZ_CLIENT_CONTEXT, 536
AuthZ Windows API, 497, 536–538
Autochk .exe, 73
auto-elevation, 578–579
automated problem detection, 354. 

See also WDI (Windows Diagnostic 
Infrastructure)

auto-start services, 305, 321, 323, 327
dependencies, 327

availability, 637
AWE (Address Windowing Extension), 16

B
Background Intelligent Transfer Service 

(BITS), 621–624, 645
balancer, 262
balance set manager, 69–70, 439–441
balance-set-manager thread, 188
base filtering engine (BFE), 667
BaseNamedObjects directory, 147
Base Services, 2
basic sockets, 605
BCD (Boot Configuration Database), 278

registry hive, 283–284
remote editing, 284–285

BCDEdit, 284
BFE (base filtering engine), 667
binary dependencies

manifests, 237
resolving, 235

binary MOF (BMF) files, 348
binding, 684–685

bindings priority, 684–685
bins for registry cells, 296–298

allocation, 301
biometrics, 563–568
bitmasks, processor state, 462–463
BITS (Background Intelligent Transfer 

Service), 621–624
BITSAdmin tool, 622–623
BranchCache use, 645
capabilities, 621
Compact Server, 622
downloading files, 622
messages in event log, 624
PowerShell cmdlets, 622–623
uploading files, 622

blobs, 215–216
blocked threads, resuming execution, 475
blocking calls timeout parameter, 213
blocking IPC mechanisms, 213
blocks, registry hive, 296–298
boosts. See priority boosts
Boot Configuration Database (BCD). 

See BCD (Boot Configuration 
Database)

Boot.ini file, 283
boot loader, 278
boot menu, 324
boot process

auto-start and delayed auto-start 
services, 327

debugging mode, 369
failures, 328
information storage location, 286
last known good configuration, 328
performance diagnostics, 356
safe mode, 324
startup repair tool, 356
successful, 328

boot-start drivers, 321–322
boot-verification programs, 329

boundary descriptors, 171
BranchCache, 645–655

acceleration, 647
APIs, 650
application retrieval: HTTP sequence, 

653–655
application retrieval: SMB sequence, 

651–653
architecture, 645
availability, 647
caching modes, 646–651
configuration, 648–651
hash groveler service, 650
HTTP extension driver, 649
Implementation service, 649
Network Shell Helper, 650
operation, 645
protocols used by, 650–651
publication cache, 647–648
republication cache, 648

broadcasting, 614, 615
BSD (Berkeley Software Distribution) 

Sockets, 597
buffer overflows, 292
bus drivers, 64, 90
busy wait loops, 180
Bypass Traverse Checking privilege, 545
byte mode, 612–613

C
cacheable attributes, 639
cache-aware pushlocks, 200–201
cache manager, 55
caches

accessing, 639
BranchCache, 647
Offline Files, 639
republication, 648
structure, 643–644

caching
client-side, 639–644
content, 645–655
files, 639–644
network usage infomation, 683
security, 646

callable functions, 2–3
callbacks

allocation and deallocation, 216
asynchronous, 162, 278
to completion routine, 112
DPC, 117
executive objects, 214
NAT functionality, 669
pre and post, 176
registry, 303–304
Shim Engine, 244
user, 226
verifying, 176

call managers, 677
callout drivers, 667

 callout drivers
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callouts, 595
CBAC (Claims Based Access Control), 537
CBI (Component Based Servicing) stack, 

285–286
cell indexes, 297
cells, registry hive, 296

data types, 296–297
certificate-based authentication, 563
certificate chains, 585
certificate paths, reverification, 582
certificate verification, 588
change notifications, asynchronous 

callbacks for, 278
Change Notify privilege, 314
ChangeServiceConfig2 API, 314
ChangeWindowMessageEx API, 530
ChangeWindowMessageFilter API, 530
checked build, 45–46

ALPC message logging, 218
child partitions, 251–254. See 

also hypervisor (Hyper-V)
access to hardware, 251–252
access to memory, 258
emulated devices for, 255
enlightenments, 253–254
processors, adding, 257
viewing, 252–253
virtualization components, 252
virtual processors, 257

child processes
integrity level, 502
token inheritance, 507

chimney offloading, 674
CIM (Common Information Model), 

343–349
classes, 345

CIM_ManagedSystemElement class, 345
CIMV2 namespace, 350
Claims Based Access Control (CBAC), 537
classes

abstract, 345
associations, 349–350
CIM, 345
common-model, 345
definitions, 348
extended-model, 345–346
MOF definitions, viewing, 347
objects in, enumerating, 349
registrations in registry, 283
static, 347

client communication ports, 210
client IDs, 12
client operating systems. See 

also operating systems
vs . server versions, 41–43

client processes, impersonation limits, 515
clients

connectionless, 598
health monitoring, 690–691
of the transport, 596

Client/Server Run-Time Subsystem  
(Csrss .exe), 49. See also Csrss .exe 
(Client/Server Run-Time Subsystem)

client-side caching (CSC), 639–644
clock cycles

DFSS, triggering, 472
per quantum, 424–425
for quantum targets, 451–452
thread run time, 399, 423
threads, charging to, 472–474

clock interrupt handler, 107
clock interrupts, 83, 89–90, 112

minimizing, 122
clock intervals

change request tracing, 113–115
frequency, 423
length of, 423
modification, 112–113
for running threads, 422

clock interval timer, scheduling on, 451
Clockres program, 423
close method, 154
CLR (Common Language Runtime), 3

Windows DLLs, 3
CLR via C#, 3rd edition (Richter), 3
Clustered Shared Volumes (CSV), 267–268
cluster hosts, 688
clustering, 688
coalescing, timer, 122–123
code

atomic execution, 204
critical sections, 177, 179, 201, 203
dispatch, 95
integrity, 274–276
kernel-mode, 136, 274, 494
Self-Monitoring Analysis and Reporting 

Technology (SMART) code, 356
cold patches, 270
COM API, 344
COM class registrations, 283
commands, task-based, 341
Common Criteria for Information 

Technology Security Evaluation 
(CCITSE), 22, 489

Common Information Model (CIM), 
343–349

Common Language Runtime. See CLR 
(Common Language Runtime)

Common Language Runtime (CLR), 3
common-model classes, 345
communication ports, 210
COM objects, administrative rights 

requests, 579
Compaq, 37
compatibility, 34

dynamic runtime, 233
completion lists

ALPC, 213–214
ALPC support, 217

completion ports, 214

Component Based Servicing (CBS) stack, 
285–286

Component Services, 2
components, identifying, 286
compositing, 18
compound TCP (CTCP), 663
conditional ACEs, 537–538, 582, 584
conditional expressions, 537–538
condition variables (CondVars), 183, 

202–203
configuration data

reading, 278
storage location, 286

configuration manager, 54
cell mapping, 298–300
hive syncs, 302–303
key and value name storage, 304
key control block lookups, 304
memory management, 297
naming parsing, 300
object manager’s object support, 300
performance optimizations, 304
registry filtering, 303–304
registry management, 293–305
registry namespace implementation, 

154
registry virtualization, 572
subkey searches, 298

congestion. See also network traffic
avoidance algorithm, 663

ConnectEx API, 599
connection blobs, 216
connectionless networking protocols, 599
connection-oriented clients, 677
connection-oriented NDIS (CoNDIS), 674, 

677–678
connection-oriented network hardware, 

677–678
connection-oriented sockets, 605
connections. See network connections
connectivity status, 659–662
console applications, 52

services, 305
console window host (Conhost .exe), 51–52
consumers

of debug events, 230
trace data, 220
UBPM registration, 339–340

content
caching, 645–655
identification, 650
publishing, 647
republished, 648

contention count, 199
context attribute, 215
CONTEXT block, 12
context switches, 13, 424, 448

defined, 410
processor-specific implementations, 60
thread, 448

control handlers, 309

callouts
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controllers, 220
control objects, 57
control points, 626
control sets, last known good, 286
ConvertThreadToFiber function, 13
core parking, 118
Core Parking engine, 470
CoreProcessorSetvalue, 458
CoresPerPhysicalProcessor value, 458
core system files, 37
corporate networks, accessing, 695–696
corrected machine check interrupt level, 

91
C programming language, 35, 38
CPs (credential providers), 77, 491

alternative, 555–556
loading, 555
user identification tasks, 555

CPU. See also logical processors; 
processors

idle thread, 453–456
share weight, 472

CPU 0 congestion, 118
CPU quotas, 471–478

enforcement, 474
per-session blocks, 471–472
recovering, 476
updating and extending, 477

CPU rate limits, 478
CPU starvation

prevention, 434
thread priority boosts for, 439–441

CPU Stress tool, viewing priority boosts, 
435–437, 440–441

CPU throttling, 383, 448
clock cycles, charging to threads, 

472–474
quota enforcement, 474

CPU usage
displaying, 10, 26
limiting, 478
multimedia threads, 446
specifying, 416
system threads, mapping to, 70–71
threads, 399, 423

crash dump files, 28
crashed applications

error reporting, 130–132
user, informing, 130

create a token object privilege, 546
CreateEventEx API, 165
CreateFile function, 515
create global object privilege, 174
CreateMailslot function, 614
CreateMutexEx API, 165
CreateNamedPipe function, 612–613
CreatePrivateNamespace API, 171
CreateProcessAsUser function, 326, 576
CreateProcess function

flags and parameters, creating and 
validating, 371–373

flow of, 369–391
stage 1 decision tree, 375–376

CreateRestrictedToken function, 516
CreateSemaphoreEx API, 165
CreateService function, 305–306
CreateThread function, 398, 456–457
CreationFlags parameter, 371
Creator Group ID SID, 499
Creator Owner ID SID, 499
credential providers (CPs). See CPs 

(credential providers)
critical sections, 201

limitations, 201
mutually exclusive access, 178
spinlocks on, 179
SRW Locks, replacement by, 203

critical structure corruptions, 274
critical worker threads, 206
CSC (client-side caching), 639–644
CsrCreateProcess function, 384
CSR_PROCESS, 359–360, 365–366

allocation, 384
dumping, 366
pointer to, 396

Csrss .exe (Client/Server Run-Time 
Subsystem), 49

CSR_PROCESS maintenance, 365
CSR_THREAD maintenance, 396
parallel proces structures, 359–360
parallel thread structures, 392
process-creation routines, 369
process information, 365
SCM, killing, 332
shutdown routine, 331

CSR_THREAD, 392, 396
allocation, 384
dumping, 396
fields, 396

C-state intervals, 122
CSV (Clustered Shared Volumes), 267–268
CTCP (compound TCP), 663
Ctrl+Alt+Delete key combination, 557
CurrentControlSet key, 328–329
current directory, path, 236
current user. See also users

preferences and software configuration, 
281

D
DACLs (discretionary access control lists), 

165, 494, 523, 524
access checks, 531, 533
ACEs in, 523–524
assigning, 527–528
null, 524

DA (DirectAccess), 695–696
daisy-chain configurations, 101
dangling dependencies, 246
data execution prevention (DEP), 243

data formatting for transmission, 594
datagrams, 599
datagram sockets, 605
datalink layer in OSI reference model, 

592–593
Logical Link Control, 593
Medium Access Control, 593

data structures
abstraction layer, 362
CSR_PROCESS, 365–366
CSR_THREAD, 396
dispatcher database, 421–422
EPROCESS, 359–364
fields, displaying, 362–363
idle process and idle thread, 453
KPROCESS, 362–364
KTHREAD, 392–393
vs . objects, 22
PEB, 364–365
process, 359–371
PspCpuQuotaControl, 471
synchronization of access, 176–205
TEB, 394–395
thread, 360, 391–397
W32PROCESS, 367
W32THREAD, 396–397
of wait operations, 188–191

data transfer
BITS management, 621
congestion, 663
downloading, 622
high-loss scenarios, 664
prioritization, 621
reliable transfer, 593, 597
seamless, 621
transfer types, 621
uploading, 622

data transmission
bidirectional, 612–613
formatting for, 594
unreliable, unidirectional, 614–617

data view attribute, 215
DbgkCreateThread, 386
DbgUi APIs, 229, 230, 232
DCE (distributed computing 

environment), 605
DCOM (Distributed Component Object 

Model), 625
DdeImpersonateClient function, 514
deadline requirements, 100
deadlocks

avoiding, 213
detection, 201
limiting, 434

debug events, kernel-mode, 229
debugger. See also kernel debugger; 

user-mode debugger
breakpoints, 124, 126
debug event requests, 230
extension commands, 29
image loader, watching, 233–234

 debugger
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debugger (continued)
notifications, 46, 386
objects, viewing, 231
ports, 125
processes, breaking into, 230
system timers, listing, 119–121
timer resolution information, 114

debugger-based attacks, 369
Debugger.chm help file, 29
debugging

application startup, 233–234
crashing processes, 129
handles and object, 167
kernel, 26–31
kernel support, 229–230
loader snaps, 233–234
user-mode, 27, 229–232

debugging mode, booting in, 28
Debugging Tools for Windows, 27

help file, 31
Tlist .exe tool, 6
updates, 27

debug object, 229
debug programs privilege, 546
debug version of Windows, 45
default security, 496. See also security
Defense Advanced Research Projects 

Agency (DARPA), 663
deferred delete operations, 166
deferred procedure calls (DPCs). 

See DPCs (deferred procedure calls)
deferred ready threads, 383, 416

processing, 442
DelayedAutoStart parameter, 308
delayed auto-start services, 324

startup, 327
delayed worker threads, 205–206
delay load, 243
delete method, 154
delete operations, deferred, 166
DEP (data execution prevention), 243
dependencies

of auto-start services, 327
binding, 684
dangling, 246
defining and fulfilling, 242–243
of services, 324

Dependency Walker, 25
image type, viewing, 48
kernel and HAL images, viewing, 61–62

DependOnGroup parameter, 308, 324
DependOnService parameter, 308
Description parameter, 308
desktop

creating and opening, 556–557
locking or unlocking, 558
process association with, 372
protecting access to, 558
UAC prompts, 580

desktop object, 144
okay-to-close routine, 155

open method, 154
Desktops tool, 8
Developing Drivers with the Windows 

Driver Foundation (Orwick and 
Smith), 32

development environment, 3
device drivers, 36, 63–67. See also drivers

32-bit, 272
APC blocking, 111
auto-start, 323
biometric scanner, 564
characteristics, 306–308
development frameworks, 64–65
DPCs, 107
dynamically allocated queued spinlocks, 

182
fast mutexes, 196–197
installed, viewing, 65
integrity of code, 274–276
interrupt request restriction violations, 

95
I/O control functions, 227–228
kernel-mode APCs, 111–112
kernel-mode contexts, 63
loading, 322
minidrivers, 434
object access, 156
parameters, 309
priority boost specification, 433
registry settings, 279
spinlocks, 180
startup failures, 322
structured exception handling, 125
system calls access, 136
system threads, mapping to, 70–71
system worker thread use, 205
TDI clients, 594
types, 63
verification of, 17
WDM environment, 64
Windows internals, accessing with, 63

device interrupts, 81, 91
Device Manager, 286
Device Profile for Web Services (DPWS), 

626–627
devices

emulation, 251
symbolic link creation, 73

device-to-driver mappings, 286
DFS-N (Distributed File System 

Namespace), 637–638
DFS-R (Distributed File System 

Replication), 637, 638
DFSS (Distributed Fair Share Scheduler), 

471–477
clock cycles, charging to threads, 

472–474
idle-only queue thread management, 

475–477
initialization, 471
per-session CPU quota blocks, 471–472

quota enforcement, 474
scheduler, 476–477
session weight management, 477
turning off, 471

Dhcp service, 314–315
DiagLog session, 354
Diagnostic Policy Service (DPS), 354–355
diagnostic scenarios

built-in, 356–357
Group Policy settings, 355

diagnostics instrumentation, 354
dial-up remote access, 685–686
Differentiated Services Code Point (DSCP), 

682
Digital Equipment Corporation Alpha 

AXP, 37
digital rights management, protected 

processes and, 368
Direct2D, 18
DirectAccess (DA), 695–696
directed context switches, 13
directory object type, 144
DisconnectEx API, 599
discretionary access checks, 528
discretionary access control, 23, 488

access logging, 494
object protection, 494

discretionary access control lists (DACLs). 
See DACLs (discretionary access 
control lists)

disk diagnostics, 356
disk, paging data to, 15
dispatch code, 95
dispatcher, 409, 421
dispatcher database, 421–422

synchronization, 422
dispatcher headers, 188

flags, 192–193
interpreting, 192

dispatcher objects, 57, 153, 184, 187
thread state changes, 186
waiting for, 184–185

dispatcher synchronization objects, 117
dispatch events, thread priority boosts, 

430–431
dispatching

interrupt, 81–112
trap, 79–140

dispatch interrupts, 104–110, 413
display I/O functionality, 51
DisplayName parameter, 308
distributed applications, loosely coupled 

messaging, 625
Distributed Cache caching mode, 646
Distributed Component Object Model 

(DCOM), 625
distributed computing environment 

(DCE), 605
Distributed Fair Share Scheduler (DFSS). 

See DFSS (Distributed Fair Share 
Scheduler)
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Distributed File System Client, 633
Distributed File System Namespace 

(DFS-N), 637–638
Distributed File System Replication 

(DFS-R), 638
Distributed Management Task Force 

(DMTF), 342
Dllhost .exe, 11
DllMain routines, 244
DLL restriction, 588
DLLs

credential providers, 77
defined, 5
importing and loading, 242
initialization tasks, 244
KPP-protected, 272
loading and unloading by image loader, 

233, 235
name redirection rules, 236–238
name resolution by image loader, 

235–236
opening, 73
search path, 236
sub-DLLs, 245–247
subsystem, 36

DMTF (Distributed Management Task 
Force), 342

DNS (Domain Name System), 655
lookup requests, 655

DNS servers, 655
domain accounts, SIDs, 499
Domain Name System (DNS), 655
downloads, 622
DPC/dispatch interrupts, 91, 94, 104–110

generation rules, 106
for spinlocks, 179–180
triggering, 105–106

DPC objects, 105
DPC queues, 105
DPCs (deferred procedure calls), 104, 448

capabilities, 107–113
monitoring, 108–109
prioritization, 105
processing, 105–106
queuing, 476
targeted, 105
target processor, 118
threaded, 107
thread wake-up calls, 477

DPS (Diagnostic Policy Service), 354–355
DPWS (Device Profile for Web Services), 

626–627
drive-letter assignment, 323
drive-letter mapping, 629
Driver directory, 322
drivers. See also device drivers

boot-start and system-start, 321–322
context data, assigning and creating, 

304
network adapter-protocol driver 

communication, 672

object filtering, 176
signature enforcement, 18
signing policies, 274–275

Driver Verifier, 17, 56
deadlock detection, 201

DSCP (Differentiated Services Code Point), 
682

dt command, 29, 393–394, 397
KNODE structure, viewing, 459

dynamic-link libraries. See DLLs
Dynamic Memory, 260–263

architecture, 260
calculating, 262
configuring, 261
watching, 263–265

dynamic processors, 479–480
adding, 72
threaded DPC support, 479

dynamic providers, 347
dynamic runtime compatibility 

mitigations, 233
dynamic worker threads, 206

E
ECN (Explicit Congestion Notification), 

663–664
elevation shims, 385
elevation, UAC, 573–590

auto-elevation, 578–579
declining, 576
defined, 574
elevation prompts, 580
over-the-shoulder, 574
requested levels, 577

emulation, device, 251, 255
EnableCpuQuota registry value, 471
encryption of network communication, 

608
end nodes, data transfer between, 593
energy-report .html, 113
Enforcement Client (EC), 691
enlightened I/O, 254–256
enlightenments, 248, 253–254

kernel patch protection, 273
enlistment objects, 269
EnterCriticalSection function, 194–195
environment subsystem, 48–53

excutive objects and object services, 
143

server processes, 36
environment variables, creation, 73
EPROCESS, 359–371, 453

accessing, 360
CPU quota block pointer, 472
executive routines in, 362
fields, displaying, 362–363
key fields, 360–361
protected process flag, 368–369

EPROCESS object, setting up, 376–378
ERESOURCE, 432, 434

errata manager, 56
ErrorControl parameter, 307, 327
error port, 127, 132
error recovery, 268

kernel transaction manager, 56, 
268–270

service recovery options, 330–331
transactional modification of registry, 

287–289
error reports

crash analysis server, sending to, 130
destination, configuring, 130
Windows Error Reporting, 129–132

errors
access-denied, 292
automated detection and resolution, 

354. See also WDI (Windows 
Diagnostic Infrastructure)

fatal, 125
service startup, 327–328
system startup, 328
transmit and receive, 593

Ethernet frames, header-data split, 674
ETHREAD, 359, 391–397, 453

displaying, 393–394
executive thread object encapsulation, 

391
EtwConsumer objects, 144
ETW (Event Tracing for Windows), 56, 220

for ALPC messages, 218–219
clock interval change requests, 113
DiagLog session, 354
TCP/IP activity, tracing, 222–223
trace classes, 220–221
trace event header, 220

EtwRegistration objects, 144
Evaluation Assurance Levels (EALs), 489
event-based problem diagnosis, 354
event classes, 220
event handles, 155
Event Log provider, 344–345

association class, 350
inheritance, 346

Event Log, service startup error entries, 
327–328

event objects, 143
signaled state, 186

events
asynchronous, 80
default security, 496
intercepts for, 266
network-status, 605
synchronous, 80

Event Tracing for Windows (ETW). 
See ETW (Event Tracing for Windows)

event tracing, kernel, 220–223
event unwait operations, 198
Event Viewer, 587
Everyone SID, 498, 499
Ex APIs, 165
exception dispatcher, 124–126
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exception dispatching, 123–132
Windows Error Reporting, 129–132
Wow64, 225

exception handlers
frame-based, 125
vectored, 125

exception ports, 126
exceptions

aborts, 80
architecture-independent, 124
defined, 79–80
interrupt numbers, 124
kernel-mode, 125
reproducing, 80
from SRW Lock failure, 203
unhandled, 127–129

exclusive access, 198–199
executable images

integrity of, 274–276
opening, 373–376
running, decision tree, 375–376

executable pages, integrity of, 275–276
executables

administrative rights requests, 576–578
auto-elevation, 578–579
default configuration, 578
service applications, 305–321
virtualization and, 568
Windows, 578

execution
modes, 17–32
profiling, 91–95

executive components
object access, 156
system worker thread use, 205

executive interlocked functions, 182
executive LUID, 509, 510
executive mutexes, 196–198
executive objects, 57, 142–144

access methods, 494
creation, 143
object types, viewing, 143
primary, 143–144
security descriptor, 495

executive process object
creation, 370, 376–381
EPROCESS object setup, 376–378
final setup, 381
initial thread creation, 381–383
PEB setup, 380–381
process address space setup, 378–380

executive resources, 184, 198–199
listing, 198–199
thread waits on, 434

executive thread object
creation, 381–383
execution, starting, 385
fields of, 392
thread parameter, 382
thread representation, 391

executive, Windows, 36, 54–57

abstraction layer, 362
access token creation, 560
components, 54–55
functions, 54
infrastructure routines, 56–57
kernel-mode APCs, 111
prefixes, 66
process-creation routines, 369
support functions, 56
symbolic link objects, 173
system service stubs, 53
system worker thread management, 206
user-mode debugging module, 229

ExitWindowsEx function, 331
experiments, 25
expiration time, token, 510
Explicit Congestion Notification (ECN), 

663–664
Explorer, 562

display of virtualized files, 569
export tables, parsing by image loader, 

233
extended-model classes, 345–346
extensibility, 33
extension interfaces, 605
extensions, virtualization exceptions, 

568–569

F
facilities, displaying, 44
FailureActions parameter, 308, 330
FailureCommand parameter, 308, 330
failures

application, 291–293
application startup, 243–244
services, 330–331

fast mutexes, 196–198
acquiring, 196
vs . guarded mutexes, 197

fast user switching, 21
fatal errors, 125
FCL (Framework Class Library), 3
features enabled, determining, 43–44
fibers, 13
file access, caching, 643
file extensions

associations in HKCR, 283
virtualization exceptions, 568–569

file handles, 155
file hash, 582

for AppLocker rules, 584
file mapping objects, 14
file objects, 22, 143

default security overrides, 496
integrity level, 502

file renames, 73
file requests

compounding, 636
pipelining, 636

files
access methods, 494
caching on local machine, 639
ghosted, 643
locking down, 583

file shares, 627
aggregating, 637
caching files on local machine, 639

file sharing, and symbolic links, 173
file-system drivers (FSDs). See FSDs  

(file-system drivers)
file system minifilters, 274
file system namespace, 154
file system objects, global audit policy, 

552
file-system runtime library, 57
file system virtualization, 567–573
file transfer. See also data transfer

asynchronous, 621
file virtualization, 568–571

enabling and disabling, 570–571
filter drivers, 63, 64

lightweight, 677
filtered admin tokens, 507

characteristics, 516
UAC use, 566
viewing, 517

filter engine, 667
Fingerprint Biometric Service Provider, 

564
fingerprint scanners, 563
firewalls

rules, 318
stateful, 669

flags
ACE, 524
application-compatibility, 578
dispatcher header, 192
global, 207–209
handle table entry, 159–160
object, 147–148
object attribute, 147
object header, 146
PRCB, 116
registry virtualization, 572
security descriptor, 522–523

floating-point exceptions, 124
floating-point state, saving, 96
foreground threads

priority boosts, 435–437
quantum length, 427

fragment names, 611
frame-based exception handlers, 125
Framework Class Library (FCL), 3
free build, 45
FSDs (file-system drivers), 63, 154

filter drivers, 63
invoking, 616
MUP, 630
thread priority boost values, 434

function drivers, 64

exception dispatching
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functions
intrinsic, 178
name prefixes, 66–67
splitting across discrete files, 246
system call numbers, mapping to, 139
user-mode, 49
Windows executive calls, 49

Fusion (SxS) redirection, 237

G
games, thread priority boosts for, 

444–448
gates, 197

pushlocks, 199–201
Gdi32 .dll, 37
GDI functions, 51
GDI subsystem, 396
GDI/User objects, 142
getaddrinfo function, 598
GetEffectiveRightsFromAcl function, 

530–531
GetSystemTimeAdjustment function, 423
GetThreadContext function, 12
Gflags.exe, 207–208
ghosts, 643
global audit policy, 552–553

additional auditing, 553
configuring, 553
querying, 552
setting, 552–553
storage location, 553

Global Descriptor Table (GDT), 272
global flags, 207–209

changing, 207–208
maintain objects list, 141
viewing, 207–208

Global Flags tool, 25
global namespace, 173

accessing, 174
global resources, mutually exclusive 

access, 178
global spinlocks, 181
Graphics and Multimedia Services, 3
group-aware applications, 408
group claims, 563
Group parameter, 307
GroupSetMember value, 458
group SIDs, 508
groups, processor

assignment, 460–462
number per group, 462

guarded mutexes, 196–198
acquiring, 197
vs . fast mutexes, 197

guest operating systems, 248. See 
also hypervisor (Hyper-V); operating 
systems

address translation, virtual and physical, 
258

support from, 254
guest physical address space (GPA space), 

258
guest virtual address space (GVA space), 

251–252, 258
GUIDs, Windows version-specific, 244
GUI permissions editors, 534–536
GUI processes, state information, 367
GUI threads, priority boosts, 437–439

H
Hal .dll, 37
HAL (hardware abstraction layer), 36, 

60–62
checked build version, 46
dynamic processor support, 479–480
interrupt levels, 90
version, determining, 61
x86 versions, 60

handle attribute, 215
handle data blobs, 216
handle leaks, 167
handlers, control, 309
handles

defined, 22
existing, referencing objects with, 497
hive, 295
process, 360
to registry keys, 280
transaction, 288

handles, object, 155–160
debugging mechanisms, 167
kernel handle table, 160
maximum number, 159
open, searching for, 161
references, viewing, 167
resource accounting, 168
tracing, 165, 167
viewing, 156–157

handle tables, 158
ALPC-specific, 216
entries, structure of, 159–160
kernel handle table, 160
viewing, 160–161

Handle tool, 157
handle tracing database, 167
Handle Viewer, 25
hardware

device-to-driver mappings, 286
exceptions and interrupts, 80
interrupt processing, 82–84
in OSI reference model, 592–594
virtual address space, 15
virtualized, 248, 254–268

hardware abstraction layer (HAL). 
See HAL (hardware abstraction layer)

hardware device drivers, 63
hardware exceptions, 80–81
hardware-generated interrupts, 81
hardware profiles, 286

hashing, 582
header-data split, 674
header files, 32
health policies, 689
Health Requirements Server (HRS), 

692–693
heap manager, 54
helper DLLs, 602
high-frequency timers, 113–115
high interrupt level, 90
high-loss scenarios, 664
hive handles, 295
hives, reigstry, 293–294

bins, 296
cell indexes, 297
cell maps, 298–300
cells, 296
corruption, 303
loading and unloading, 294
log hives, 302–303
nonvolatile, 302
on-disk file names, 293–294
opening, 295
page pool usage, viewing, 298–299
recoverable state, 303
size limits, 295
structure, 296–298

hive syncs, 302–303
HKCU\SOFTWARE\Microsoft 

\Windows NT\Current Version\
Winlogon\Shell value, 562

HKEY_CLASSES_ROOT, 280–281, 283
HKEY_CURRENT_CONFIG, 280–281, 286
HKEY_CURRENT_USER, 280–281
HKEY_LOCAL_MACHINE, 24, 280–281, 

283–284
HKEY_PERFORMANCE_DATA, 280–281, 

287
HKEY_USERS, 280–281, 282
HKLM\SAM key, 492
HKLM\Security key, 492
HKLM\SOFTWARE\Microsoft\Windows NT 

\Current Version\Winlogon\Userinit 
value, 562

host-based IPsec packet filtering, 670
host-based virtualization, 248
Hosted Cache caching mode, 646
hot key processing code, 557
hotpatching, 233, 270–272

compile-time, 271–272
limitations, 272
operations, 270–271
patch descriptors, 271

housekeeping threads, 466
HTTP

BranchCache application retrieval 
sequence, 653–655

BranchCache integration, 653
requests and responses, 610–611

HTTPS, 621
BranchCache use, 645
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HTTP Server API, 610–612
Http .sys, 611
hung processes, 400
hvboot .sys driver, 251
hypercalls, 251
hypercritical worker threads, 206
Hyper-Threading, 39
hypervisor (Hyper-V), 248–268

architectural stack, 249
child partitions, 251–254
emulated devices, 255
enlightenments, 253–254
enlightenments, kernel patch 

protection, 273
guest physical address space, 258
hardware emulation and support, 

254–268
hardware management, 254
hypercalls, 251
initialization, 251
intercepts, 265–266
Live Migration, 266–268
parent partition, 249–251
parent partition operating system, 250
partitions, 249
security rating, 489
shadow page tables, 258
SLAT use, 259
synthetic devices, 255–257
VDevs, 254
virtual machine management service, 

250–251
virtual processors, 257
Windows driver architecture use, 

249–250
hypervisor library, 56
hypervisor stack, 249–250

I
i8259A Programmable Interrupt 

Controller (PIC), 84
i82489 Advanced Programmable Interrupt 

Controller (APIC), 84. See also APIC 
(Advanced Programmable Interrupt 
Controller)

IA32Exec .bin, 224
IA64 architecture

interrupt controllers, 85
interrupt request levels, 87
system service dispatching, 133

IBAC (identity-based access control), 537
ICs (integration components), 255–256
ideal node, 467
ideal processor, 466
identification, credential providers, 77
identity-based access control (IBAC), 537
idle-only queue, 456

flushing, 473, 475
locking mechanism, 472, 474
maintainence, 472

remote processor, 476
scheduling, 476–477
thread management, 475
thread reinsertion, 477
thread release, 468
threads, adding to, 474
threads, resuming execution, 476

idle process, 453–455
name, 455

idle processors, 468–469
registry activity, viewing, 290

idle scheduling, 458
idle/sleep processor states, 122
idle threads, 453–456

operations, 456
preemption, 456
priority level, 455
ready queue scanning, 458

idle-time duration, optimizing, 122
IDT (interrupt dispatch table), 82

viewing, 82–83
Iexplore .exe, 503
IKE (Internet Key Exchange), 671
image database, 325
image loader, 54, 232–247

API Sets use, 245–247
application initialization tasks, 232
context information, 395
DLL name redirection, 236–238
DLL name resolution, 235–236
DLL restriction, 588
DLL search, 242
DLL search order, viewing, 237–238
early process initialization, 234–235
import parsing, 242–243
initialization, 386
internals, 240–241
legacy installer identification, 576–577
loaded module database, 238–241
post-import initialization tasks, 243–244
SwitchBack, 244–245
tasks of, 233
watching, 233–234

ImagePath parameter, 307, 325
images

execution, 589–590
global flags, 208
uniprocessor flag, 464

image subsystem, 48
ImpersonateNamedPipeClient function, 

514, 613
ImpersonateSecurityContext function, 514
impersonation, 14, 495, 514–516

client, 608, 613
integrity policy, 516
misuse prevention, 515
server forms, 514

impersonation tokens, 509, 514
import parsing, 242–243
import tables, parsing by image loader, 

233, 235

increase scheduling priority privilege, 412
increaseuserva qualifier, 15
indirection, 155
inheritance

of ACE flags, 524
of ACEs, 527–528
class, 346
priority levels, 412
Windows API support, 528

initialization
Distributed Fair Share Scheduler, 471
hypervisor, 251
of processes, 232
system, 205, 556
of Unified Background Process 

Manager, 337
Winlogon, 556–558

initialization tasks
atomic execution, 204–205
import parsing, 242–243
post-import tasks, 243–244

initialized threads, 417
initial process address space, creating, 

378–379
init once, 204–205
in-memory structures, 277
input string parameters, 24
installers, 228

administrative rights for, 576–577
Institute of Electrical and Electronics 

Engineers (IEEE) 802 committee, 593
integer divide-by-zero exceptions, 124
integer overflow, 124
integration components (ICs), 255–256
integrity checks, mandatory, 528–529
integrity levels, 500–505

access based on, 529
implementation, 495
low, launching programs at, 513
object, 504–505
process, 502–503
propagation, 502
Protected Mode Internet Explorer use, 

503
for User Interface Privilege Isolation, 

529–530
integrity protection, 22
integrity state, 275
intelligent timer tick distribution, 121–122
Intel processors, 37
Intel VT Extended/Nested Page Table 

(NPT) technology, 259–260
interactive logon, 555

authentication packages, 555, 558
interactive logon manager (Winlogon), 

491. See also Winlogon
interactive processes, 318
interactive services, 319–321, 326
Interactive Services Detection (UI0Detect) 

service, 320
intercepts, 265–266
interfaces, testing, 661

HTTP Server API
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interlocked operations, 178
spinlocks for, 182

intermediate nodes, 593
internal data structures. See 

also processes; threads
contents, displaying, 29

internal support functions, 53
International Organization for 

Standardization (ISO), 592
Internet APIs, 610–612
Internet applications, 610–696
Internet Explorer

Protected Mode, 503, 529
virtualization support, 567

Internet Key Exchange (IKE), 671
interprocess communication, 

programming APIs for, 612–696
interprocessor interrupt level, 90
interprocessor interrupts (IPIs), 89
Interrupt Affinity Policy Tool, 103
interrupt controllers

IA64, 85
x64, 85
x86, 84

Interrupt Descriptor Table (IDT), 273
interrupt dispatching, 81–112
interrupt dispatch table (IDT), 82–83
interrupt objects, 95

address, 99
connecting and disconnecting, 100
ISR, registering, 101
viewing details, 97–100

interrupt request levels (IRQLs). See IRQLs 
(interrupt request levels)

interrupt requests (IRQs). See IRQs 
(interrupt requests)

interrupts
affinity, 102–104
APC, 110–112
defined, 79–80
dispatch or DPC, 104–110
handling, 451
hardware processing, 82–84
interrupt control flow, 96
IRQL, mapping to, 90–91
line-based, 101–102
masking, 87–88, 178
message signaled-based, 101–102
monitoring, 108–109
prioritization, 84–92, 102–104
routing algorithms, 84
service routines, 86–87
sharing, 101
software, 104–112

interrupt service routine (ISR), 81, 
100–101

interrupt trap handlers, 81
intra-user isolation, 495
intrinsic functions, 178
I/O

control functions, 227–228

device interrupts, 80, 81
per-file information, 26
priority boosts on completion, 433–434

IoCompletion object type, 144
I .O Completion packet reserve object, 

162–163
I/O completion ports

jobs associated with, 480
scalability, wait internals, and efficiency 

of work processing, 404
I/O manager, 55

file system namespace implementation, 
154

I/O model of processing, 605–606
I/O requests, 594, 663
I/O transfers, 81
IP addresses

cluster, 688
private to public mapping, 669
public, 663

IPC parsing bugs, 216
IP filtering, 669
IPIs (interprocessor interrupts), 89
IPsec, 669–672

architecture, 671
authentication methods, 670–671
Group Policy settings, 670
host-based packet filtering, 670
monitoring secured communication, 

672
WFP callout driver, 671

IPsec Policy Agent, 671
IPv4, 663
IPv6, 663
IRPs (I/O request packets), 594
IRQ lines, interrupts based on, 101–102
IRQLs (interrupt request levels), 86–91

APC level, 88
DISPATCH_LEVEL, 422
interrupts, mapping to, 90–91
lazy, 87
passive level, 88
predefined, 90–91
raising and lowering, 88
save locations, 89
on spinlocks, 178–179
vs . thread priorities, 412–413
viewing, 88–91

IRQs (interrupt requests), 82
IRQ 1, 99
prioritization, 103–104

isolation
intra-user, 495
service, 315–318
Session Zero Isolation, 318–321
transaction, 288

ISR (interrupt service routine), 81
interrupt level, connecting and 

disconnecting, 100
registering, 101

J
job objects, 480–484

job sets, 482
limits, specifying, 481–482
process accounting information, 480
quantum values, 425
viewing, 482–484

job object type, 143
jobs, 14

transfer, 621

K
Kd .exe, 28
KeAcquireInStackQueuedSpinLock 

function, 182
KeAcquireInterruptSpinLock API, 180
KeAcquire/ReleaseSpinLockForDpc API, 

107
KeAcquireSpinLock function, 180
KeAddSystemServiceTable function, 137
KeAreAllApcsDisabled function, 198
KeAreApcsDisabled function, 197
KeEnterGuardedRegion, 111
KeInitializeProcess function, 379
KePerformGroupConfiguration routine, 

460
Kerberos authentication, 555, 558–560

TCP/IP port (port 88), 559
Kerberos Key Distribution Center service, 

559
KeReleaseInStackQueuedSpinLock 

function, 182
KeReleaseInterruptSpinLock API, 180
KeReleaseSpinLock function, 180
kernel, 36, 57–60

attributes management, 215
blob management, 216
daisy-chain configuration support, 101
design, 37–41
dispatcher database, 421–422
dispatcher objects, 184, 187
DPC processing, 105–107
driver and DLL loader, 240
dynamic thread creation, 403
exceptions and interrupts, 

distinguishing between, 80
exception trapping and handling, 124
hardware support, 59–60
interrupt objects, 95
lock ordering scheme, 189
mutual exclusion functions, 177
NUMA system information, 459–460
objects, 57
portable interfaces, 59
processor control region, 58
protection mechanisms, 34
real-time, 100
scalability features, 40–41
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kernel (continued)
software interrupts, 90
structured exception handling, 125
system interrupts, 80
threaded DPC support for dynamic 

processors, 479
thread priority assignment, 411
thread scheduling, creation, and 

termination, 403. See also thread 
scheduling

user-mode debugging support, 
229–230

Windows scheduling code, 409
x86-specific interfaces, 60

Kernel32 .dll, 37
process-creation tasks, 369
thread creation, 398
user-mode debugging component, 232
virtual DLL files, 246
Windows subsystem–specific 

operations, 383–385
kernel boot process, 278
kernel debugger, 25

commands, 28
EPROCESS fields, displaying, 362–363
ETHREAD and KTHREAD, displaying, 

393–394
executive resources, listing, 198–199
extension commands, 29
handle table, viewing, 160–161
job objects, viewing, 482–484
key control blocks, viewing, 301–302
library, 56
NDIS mini-ports, listing, 675–676
NtGlobalFlag variable, viewing and 

setting, 209
PEB, displaying, 365
!process command, 363–364
ready threads, viewing, 408–409
security descriptors, viewing, 525–527
system worker threads, listing, 207
TCP/IP device objects, viewing, 665–666
TEB, dumping, 395
thread data structures, dumping, 394
tokens, viewing, 510–513

kernel debugging, 26–31
local, 28
system not booted in debug mode, 31

kernel dispatcher, 409
ready queues, 421

kernel event tracing, 220–223
kernel handles, 368
kernel handle table, 160

registry hives, opening, 295
kernel image

checked build version, 46
client and server version, 42

kernel logger, 220
TCP/IP activity, tracing, 222–223
trace classes, enabling, 220–221

kernel mode, 17–20, 34, 35
protected processes support, 368
RPC support, 609
transitioning to user mode, 18

kernel-mode APCs, 110–111, 162
kernel-mode code

signing, 274
system calls, 136
trust level, 494

Kernel Mode Code Signing (KMCS) policy, 
17, 274

kernel-mode components, 36–37
device drivers, 63

Kernel-Mode Driver Framework (KMDF), 
64

kernel-mode exceptions, 125
kernel-mode RPC, 609
kernel-mode system threads, 69
kernel-mode threads, 413
kernel-mode trampolines, 136–137
kernel objects, 142
Kernel Patch Protection (KPP), 272–274
kernel processor control block (KPRCB), 58

viewing, 58–59
Kernel Profiler (Kernrate), 91–95
kernel queues, 404
Kernel Security Device Driver (KSecDD), 

491
kernel stacks, 273
kernel streaming filter drivers, 63
kernel structures

substructures, 30
type information, displaying, 29

kernel support functions, defined, 4
kernel support routines, defined, 4
Kernel Transaction Manager (KTM), 56, 

268–270
KeServiceDescriptorTable, 137, 139
KeServiceDescriptorTableShadow, 137, 

139
KeStartDynamicProcessor function, 479
KeStartThread function, 382
KeUpdateRunTime routine, 115
KeUpdateSystemTime routine, 115
keyboard, logon requests from, 555
key control blocks

allocation, 300
deletion, 301
fast access to, 304
key name references, 304
viewing, 301–302

keyed events, 194–196
performance, 196
signaling, 195
waiter lists, 195–196

key object allocation, 300
key object type, 144
keys, registry, 279

access, protecting, 304
CurrentControlSet, 328–329
global audit policy, 552

linking, 295
missing, 291–292
naming scheme, 279
safe mode, 324
virtualized, 571–572

keystrokes, squashing, 557
KiCheckForThreadDispatch function, 469
KiCyclesPerClockQuantum value, 

423–425, 477
KiDeferredReadyThread function, 463, 

468–469
KiFloatingDispatch handler, 96
KiIdleLoop routine, 456
KiInterruptDispatchLBControl handler, 96
KiInterruptDispatchNoEOI handler, 95–96
KiInterruptDispatchNoLock handler, 95
KiProcessDeferredReadyList function, 463
KiSearchForNewThread function, 458, 

467, 468, 475
KiSelectCandidateProcessor function, 470
KiSelectNextThread function, 456–458
KiSelectReadyThread function, 457
KiSystemService routine, 136
KiThreadStartup function, 386
KMCS (Kernel Mode Code Signing) policy, 

17
KMDF (Kernel-Mode Driver Framework), 

64
KNODE, 459
Known DLLs, 237
KPCR (kernel processor control region), 58

viewing, 58–59
KPP (Kernel Patch Protection), 272–274

supported techniques for working 
around, 274

KPRCB (kernel processor control block), 
58

viewing, 58–59
KPROCESS, 364, 453

initializing, 379
viewing, 362–363

KQUEUE, 404
KSecDD, 491
KTHREAD, 391–397, 453

displaying, 393–394
Win32Thread field, 397

KTM (Kernel Transaction Manager), 56, 
268–270

KTM objects, 269
deferred deletion, 166

Ktmutil .exe, 270

L
LAN adapter (LANA) numbers, 618
language packs, 24
LANs, datalink layer, 593
last known good control set, 286, 

328–330
last processor, 466

kernel
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latency
decreasing, 430–433
optimizing for, 433

layered network services, 685–696
binding, 684–685

layered service providers (LSPs), 600
lazy IRQL, 87
Ldr, 232. See also image loader
least privilege, 313–314
LeaveCriticalSection function, 194
legacy applications

Administrative privileges, 566–567
application-compatibility shims, 568
compatibility assistance, 357
networking APIs for, 597, 618
standard user account, running in, 567

legacy hardware, registry descriptions, 
286

legacy IPsec Policy Agent, 671
levels of trust ratings, 487
licensed processors, 40
Lightweight Directory Access Protocol 

(LDAP) directory services, 686
lightweight filter drivers (LWF), 677
link command /SUBSYSTEM qualifier, 48
Link-Layer Topology Discovery (LLTD), 662
links, registry, 280
listening sockets, 605
LiveKd, 31

child partitions, viewing, 252–253
Live Migration, 266–268

memory transfer, 266–267
setup, 266
state transfer, 267
VM files, transfer of ownership, 267

LLTD (Link-Layer Topology Discovery), 662
load and unload device drivers privilege, 

546
loaded modules database, 238–241
loader data table entries, 238

fields, 238–241
loader snaps, 233–234
local accounts and group registry 

information, 286
local-account SIDs, 498
local area networks (LANs), 593
local kernel debugging, 28
local logon SIDs, 558
locally unique identifier (LUID). See LUID 

(locally unique identifier)
local namespace, 173
 .LOCAL redirection, 236
local RPC, 609
local security authentication server 

process, 77
Local Security Authority (LSA), 540
Local Security Authority process (LSASS). 

See LSASS (Local Security Authority 
subsystem)

local security policy, 548
Local Security Policy Editor

Advanced Audit Policy Configuration 
settings, 554

audit policy configuration, 548
BranchCache configuration, 648–649
Software Restriction Policies node, 589
User Rights Assignment configuration, 

539
local service account, 312–313, 333

account privileges, 312
group membership, 311
network resource access, 312
services running in, 310, 313

LocalServiceAndNoImpersonation service 
group, 333

LocalServiceNetworkRestricted service 
group, 333

LocalServiceNoNetwork service group, 
333

LocalService service group, 333
Local Session Manager (Lsm .exe), 76–77
Local SID, 499
local system

audit policy, 548
connecting to, 28

local system account
access to resources, 315–316
characteristics, 311
core operating system components 

in, 310
group membership, 311–312
privileges, 311–312
services, running in, 310–312

LocalSystemNetworkRestricted service 
group, 334

location, network, 658–662
Network Location Awareness service, 

658–659
lock convoys, 200
lockdown, system, 583–588
locking mechanisms

order of objects, 189
SRW Locks, 202–203
user-mode, 201–202

locking primitives
spinlocks, 179–180
for user-mode code, 183

lock ownership priority boosts, 431–433, 
442

logging
ALPC messages, 218
transacted operations, 288

log hives, 302–303
Logical Link Control (LLC), 593
logical network identity, 659
logical network interfaces, 659
logical networks, 659
logical prefetcher, 55
logical processors, 257. See 

also processors
active, 463
affinity mask, 458

candidate processor selection, 470
context switch to new thread, 410
dynamic, 479–480
group assignment, 460–462
ideal, last, and next, 466–467
idle, 463
nonparked, 463
number per group, 462
ready queue population, 468–470
state information, 458–459, 462–463
thread selection, 456–458

LogicalProcessorsPerCore value, 458
logon

aborted, 558
account rights retrieval, 540
active sessions, listing, 560–562
authentication requirements, 494
components of, 556
configuration data use, 278
via fingerprint scan, 565
interactive, 555
management, 77–78
registry activity during, 292–293
secure, 488
security, 555–565
service logon, 325
successful, 328–329
termination, 559
type, determining, 540
user, 558–562
Winlogon management of, 555

logon sessions
active, listing, 560–562
LUID for, 558
SID for, 498

LogonSessions, 560–562
logon SIDs, 498
LogonUI, 77, 491, 555

launching, 557
network provider DLLs, loading, 556

LogonUserEx function, 325
LogonUser function, 515
low-memory situations, 194
LPC, 209
LsaAddAccountRights function, 540
LsaAuthenticationPort function, 557
LsaEnumerateAccountRights function, 

540
LsaEnumerateLogonSessions function, 

560
LSA (Local Security Authority), 540
LsaLogonUser calls, 558
LsaLogonUser function, 540
LsaRemoveAccountRights function, 540
LSASS (Local Security Authority 

subsystem), 318, 322, 490
allowed access checks, 559
audit policy manintenance, 548
groups and privileges checks, 506
logon termination, 559
policy database, 490
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LSASS (continued)
processes shared by, 332
service startup, 322, 325
SRM connection, 493
user logon tasks, 558–560

LsaStorePrivateData function, 325
Lsm .exe, 76–77
LSPs (layered service providers), 600
LUID (locally unique identifier), 509

logon session, 558–561
token authentication ID, 510

LWF (lightweight filter drivers), 677

M
machines. See also hardware; processors; 

servers
location, network, 658–662
SIDs, 498

MailSlot mini-redirector, 635
mailslots, 612–617

client naming format, 614
creation, 73
as FSDs, 616
implementation, 615–616

malicious operations, 546–547. See 
also security

Managed Object Format (MOF) language, 
344–348

binary MOF (BMF) files, 348
class definitions, 347

management applications, 342–343
objects, examining, 350

management mechanisms
registry, 277–304
services, 305–336
Unified Background Process Manager, 

336–342
Windows Diagnostic Infrastructure, 

354–357
Windows Management Instrumentation, 

342–353
management policies, 537
mandatory integrity checks, 528–529
mandatory integrity control (MIC), 23, 

500
mandatory policies, 505

in tokens, 509
manifests, 237

image loader management, 233
manual reset events, 186
MAPI (Messaging API), 686
mapped files, 73
mapping, address, 15
Margosis, Aaron, 32
marshaling/unmarshaling, 606, 609
Max Instances values, 617
MCM (miniport call manager), 677
Media Foundation API, 368
Medium Access Control (MAC), 593

memory
accessing, 94
access violations, 124
child partition access, 258
displaying statistics, 26
paging data, 15
sharing, 177
virtual, 15–16, 258

memory diagnostic tool, 356
memory leaks

detecting, 416
diagnosing, 356

memory management
with hypervisor, 254
process data structures used, 359
specifying limits, 416
on virtual machines, 260–263

memory management events, 69
memory manager, 55

mapping operations, 15
paging operations, 15
pushlock use, 201

memory translation, 259
message passing. See also data transfer

ALPC for, 209–211. See also ALPC 
(Advanced Local Procedure Call)

canceled, 212
notifications, asynchronous, 213–214

Message Queuing, 625–626
messages

attributes, 215
blobs, 216
delayed copying of, 217
hypercalls, 251
resources, 216

message-signaled interrupts (MSI), 102
message zones, 212, 217
Messaging and Collaboration, 3
Messaging API (MAPI), 686
MIC (mandatory integrity control), 500
Microsoft Developer Network (MSDN), 2
Microsoft Distributed Transaction 

Coordinator  
(MS DTC), 626

Microsoft Interface Definition Language 
(MIDL) compiler, 607

Microsoft Internet Connectivity Evaluation 
Tool, 664

Microsoft  .NET Framework, 3
Microsoft scripts, 351
Microsoft TechNet Scripting Center, 351
minidrivers, 434
miniport call manager (MCM), 677
miniport drivers, 595
mini-redirectors, 627, 632–635

architecture, 634
MinWin, 51, 246

API Set redirection, 236
image loader support, 233

MIPS architecture, 37
Mmc .exe auto-elevation, 579

MMCSS (MultiMedia Class Scheduler 
Service), 430

network packet throttling, 448
scheduling categories, 445
tasks, 445

MmSessionCreate function, 73
mode transitions, 18
modules, loaded, 238–239
Motorola PowerPC, 37
MPR (Multiple Provider Router), 627–630
Msafd .dll, 602
MSDN (Microsoft Developer Network), 2
MS-DOS executables, 374–375
MS DTC (Microsoft Distributed 

Transaction Coordinator), 626
MSI (message-signaled interrupts), 102
Msinfo32, 65
MSI-X, 102
MSV1_0 authentication, 555, 558–559

remote authentication, 559
Mswsock .dll, 602
multicasting, 598, 614
multicore systems, 39
MultiMedia Class Scheduler Service 

(MMCSS), 430
multimedia playback boosts, 430, 

444–448
multimedia response times, 113
Multiple Provider Router (MPR), 627–630
multiple sessions management, 72
Multiple UNC Provider (MUP), 630–632
multiple user sessions, 20
multiprocessor environments, 196–276
Multiprocessor Specification (MP 

Specification), 84
multiprocessor systems, 38–39

affinity, 463–465
affinity mask, extended, 465–466
affinity mask, system, 466
dispatcher database, 421–422
ideal and last processors, 466–467
ideal node, 467
NUMA systems, 459–460
package sets, 458
processor group assignment, 460–462
processors per group, 462
processor state, 462–463
scheduler scalability, 463
SMT sets, 458–459
thread scheduling, 458–467
thread selection, 467–468

multitasking, defined, 38
multithreaded applications, 466–467
MUP (Multiple UNC Provider), 630–632
MUP surrogate providers, 632–633
music content, protected, 368
mutants, 144
mutexes, 144

default security, 496
fast and guarded, 196–198

LSASS (Local Security Authority subsystem)
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mutex objects
abandonment, 186
signaled state, 186

mutual exclusion, 176–177
multiprocessor, 179–180

N
named pipes, 612–617

activity, viewing, 616–617
connections, establishing, 613
creation, 73
as FSDs, 616
implementation, 615–616
modes, 612–613
namespace, listing, 616–617
servers and clients, 612
target systems, connecting, 28

name parsing, 300
name resolution, 235–236, 655–658

DNS, 655
PNRP, 656–658

name retention, 165
namespace extensions, 597
namespaces

aggregation and availability, 637–638
CIMV2, 350
file-system, 154
global, 173
instancing, 173–175
private, 171
registry, 154
scopes, 639
security, 353
session, 173–174
WMI, 348–349

namespace service providers, 602
Winsock, adding to, 600

NAP Agent, 691
NAP (Network Access Protection), 

689–694
client configuration, 693–694
client-side architecture, 690–691
DA and, 695
Group Policy settings, 693
server-side, 691–692

Nasarre, Christophe, 2, 123, 188
National Computer Security Center 

(NCSC), 487
native system calls

definition, 4
worker factory management, 403

native system services, defined, 4
NAT (Network Address Translation), 669
Nbsts command, 619
NCSI (Network Connectivity Status 

Indicator), 659–662
active probing, 661
network change monitoring, 660
passive polling, 660
registry change monitoring, 661

NDIS drivers, 595, 672–684
connection-oriented, 677–678
execution environment, 673
intermediate, 677
network medium activity, 673
pausing and resuming, 674
Remote NDIS, 680–681

Ndiskd kernel debugger extension library, 
675–676

NDIS library, 595, 672–673
NDIS Lightweight Filter driver, 630, 674
NDIS miniport drivers, 595

listing, 675–676
packets through, capturing, 678–680
for USB network devices, 680–681

NDIS (Network Driver Interface 
Specification), 672

components, 673
connection-oriented, 674, 677–678
features, 673–674
lightweight filter drivers, 674, 677
receive-side scaling, 674
TCP/IP offloading, 674

Ndis .sys, 595
Net APIs, 686
NetBIOS, 618–620

implementation, 619–620
names, listing, 619
naming convention, 618
operation, 618–619
routing scheme, 619
sessions, 618

NetBIOS Extended User Interface 
(NetBEUI) protocol, 620

Netbios function, 619
NetBT (NetBIOS over TCP/IP) driver, 620
 .NET Framework

Common Language Runtime, 3
components, 3
Framework Class Library, 3

Netlogon, 559
Netsh

BranchCache configuration, 648–649
connection security settings, 672
publication and republication cache 

configuration, 648
Winsock service and namespace 

providers, viewing, 600–602
network access, protecting, 689–696
Network Access Protection (NAP), 

689–694
network activity, displaying, 26
network adapter drivers, 672

NDIS drivers, 672–684
network adapters, 672

Wake-on-LAN, 674
Network Address Translation (NAT), 669
network applications

dynamic configuration, 658
service levels, 682–684

network bandwidth
conserving, 638

managing and prioritizing, 682
real-time information, 683
reducing, 645

network-based attack prevention, 
669–670

Network Basic Input/Output System 
(NetBIOS), 618–620

network communication, authentication 
and encryption, 608

network connections
connectivity level, determining, 

659–662
establishing, 593
monitoring, 679–680
peer-to-peer, 626–627
security configuration, 672

Network Connections dialog box, 628
Network Connectivity Status Indicator 

(NCSI), 659–662
network diagnostics, 356
network drive letter assignment, 323
Network Driver Interface Specification 

(NDIS). See NDIS (Network Driver 
Interface Specification)

Network File System (NFS), 635
network group, 498
networking, 3, 591–696

APIs, 597–627
architecture, 591–596
binding, 684–685
BranchCache, 645–655
connection-oriented network hardware, 

677–678
Distributed File System Namespace, 

637–638
Distributed File System Replication, 638
filtering operations, 667–676
high-loss scenarios, 664
location-based configuration settings, 

658–662
name resolution, 655–658
NDIS drivers, 672–684
network services, 685–696
Offline Files, 639–644
OSI reference model, 592–594
performance features, 663–664
privacy, 621
protocol drivers, 663–672
Quality of Service, 682–684
redirectors, 627–636
slow-link latency threshold, 641
software components, 591
surrogate providers, 632–633
topology discovery and mapping, 

658–662
UNC names, 612
Windows components, 594–597
Windows Filtering Platform, 667–676

networking APIs, 594, 597–627
Background Intelligent Transfer Service, 

621–624

 networking APIs
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networking APIs (continued)
byte mode and message mode, 

612–613
Distributed Component Object Model, 

625
Internet APIs, 610–612
mailslots, 612–617
Message Queuing, 625–626
named pipes, 612–617
NetBIOS, 618–620
Peer-to-Peer Infrastructure, 624–625
remote procedure call, 605–609
Universal Plug and Play, 626–627
Windows Sockets, 597–603
Winsock Kernel, 595, 603–605

networking components
connection-oriented, 677
health policies for, 689
installing, 684
logical network identity and interfaces, 

659
network connectivity, testing, 661

network layer in OSI reference model, 593
Network List Manager (NLM) APIs, 659
Network Load Balancing, 688–689
Network Location Awareness (NLA) 

service, 658–659
network logon service (Netlogon), 491
Network Module Registrar (NMR), 603
Network Monitor

downloading, 678
packet capture, 678–680

network packet throttling, 448
network protocol requests, 663
network provider interface, 628
network providers, 628

drive-letter mapping, 629
network redirectors. See redirectors
network restriction rules, 318
networks

bursty behavior, 682
changes on, monitoring, 660
IPv6, 663
logical, 659
mapping, 662

network servers, 63
network service account, 312

account privileges, 312
group membership, 311
services running in, 310

NetworkServiceAndNoImpersonation 
service group, 334

network services, 685–696
Active Directory, 686–687
DirectAccess, 695–696
Network Access Protection, 689–694
Network Load Balancing, 688–689
remote access, 685–686
RPC applications, 607–608

NetworkService service group, 334
Network Shell (Netsh .exe). See Netsh

network stack, 591
IPv4 and IPv6 coexistence, 663
legacy protocol support, 664
WFP integration, 667

network status events, 605
network traffic

authentication and key negotiation, 671
first-come, first-served delivery, 682
monitoring, intercepting, and 

processing, 667–676
polling for, 660
tagging and shaping, 683

network transmissions
multicast messages, 598
OSI reference model, traversing, 592
requests and replies, 591
zero-copy, 599

New Connection Security Rule Wizard, 
672

Next Generation TCP/IP Stack, 663–665
next processor, 466
NFS (Network File System), 635
NIC driver encapsulation, 595
NLA (Network Location Awareness) 

service, 658–659
NMR (Network Module Registrar), 603
Nobody SID, 499
node addresses, 593
nodes, 39

end, 593
intermediate, 593

No-Execute-Up mandatory policy, 505
nonuniform memory access (NUMA) 

systems, 459–460
No-Read-Up mandatory policy, 505, 529
Notepad registry settings, 290
notifications

asynchronous, 213–214
change, 278, 290
preshutdown, 308, 332
from services, 320, 326
shutdown, 331
time-change, 337

NotifyBootConfigStatus function, 
328–329

No-Write-Up mandatory policy, 505
NtAllocateReserveObject system call, 162
NtAlpcCreatePortSection API, 214
NtCreateThreadEx function, 398
NtCreateUserProcess function, 370

calling, 373
executable file, opening, 373–376
executive process object creation, 

376–381
NtDelayExecutionThread calls, 467
Ntdll .dll, 37, 53–54, 234

DbgUi functions, 230
image loader, 232
worker factory interface, 403

NTDS API, 687
NtGlobalFlag variable, 207

viewing and setting, 209
NtInitializeRegistry function, 329
NT Kernel Logger, 220
Ntkrnlpa .exe, 37
Ntoskrnl .exe, 27, 37, 42, 220
NtQueryInformationWorkerFactory API, 

404
NtQueueUserApcThread system call, 162
NtSetIoCompletion API, 162
NtSetSystemInformation, 73
null sessions, 311, 514
NUMA distance array, 460
NUMA node 0, 460–461
NUMA nodes, 460
NUMA (nonuniform memory access) 

systems, 39, 459–460
NUMA Proximity IDs, 460
NUMA spanning, 262

O
ObCheckObjectAccess function, 496
ObDereferenceObjectWithTag function, 

168
object access auditing, 549–552

demonstrating, 550–552
object attribute flags, 147–148
object attributes, 147

defined, 22
OBJECT_ATTRIBUTES, 398
ObjectAttributes parameter, 22
object bodies, 145–149

format and contents, 148
object directories, 169–171
object directory objects, 169
object handles, 155–160
object headers, 145–149

offsets, 146
quota charges attribute, 168
viewing, 150–152

Object Identifiers (OIDs), 562–563
object leaks, 167
object manager, 22, 56, 140–176

access permissions, recording, 495
access rights checking and storage, 163
audit event creation, 548
exploring, 140–141
filtering, 274
finding objects, 154–155
generic services, 149
goals, 141–142
handle creation, 155
kernel-managed thread pools, 403
name lookups, 169, 173
namespace, 141
namespace management, 174
object directory object, 169
object filtering, 176
object header and subheader access, 

148
object header control, 145

networking APIs
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object manager (continued)
object method calls, 153
object naming requirements, 169
object retention, 165–168
object security enforcement, 494
open handle counter, incrementing, 165
pushlock use, 201
reference count, incrementing, 165
remote file access, 170–171
security access validation, 496–497
security descriptor management, 525
symbolic link object, 173
type objects, 149–153

Object Manager (CIMOM), 343
object methods, 153–155

close method, 154
defined, 22
delete method, 154
okay-to-close method, 155
open method, 154
parse method, 154
query name method, 154
security method, 155
security routine, 153

ObjectName parameter, 308, 325
object name squatting, 171
object-oriented design, 35
object owners, write-DACL access, 533
object protection mechanisms, 494–536

access checks, 495–497
access control, 523–536
assured authentication, 562
filtered admin tokens, 516–517
impersonation, 514–516
integrity levels, 500–505
restricted tokens, 516
security descriptors, 522–536
SIDs, 497–517
tokens, 506–513
virtual service accounts, 518–521

object reference tagging, 167–168
object reference tracing, 167–168
object retention, 165–168
object reuse protection, 488
objects, 21

access, determining, 528–536
ACL assignment, 527–528
address ordering, 189
base named, viewing, 171–172
caching modes, 641–642
create, open, and query services, 149
default security, 496
deferred delete operations, 166
defined, 21
deleting, 166–167
desired access rights, 163
dispatcher objects, 153
executive-level, 57
existing handles, referencing by, 497
filtering, 176
integrity levels, 504–505

integrity protection, 22
internal structure, 22
job, 480–484
kernel, 57
locating in namespaces, 349
locking order, 189
management, 343. See also object 

manager
mandatory policies, 505
naming, 169, 170–171
open handle counter, 165
opening by name, 496
operating system tasks, 22
owner rights, 531–532
private, 497
protection, 23
referencing, 155
reserve, 162–163
resource accounting, 168
security, 163–165
security descriptors, 494, 522–523
security routine, 153
security settings, viewing, 534–536
sharing in global namespace, 169
signaled state, defining, 185–188
structure, 145
synchronization support, 153
temporary and permanent, 165–168
type objects, 149–153
types, 142
write-DACL access, 533

object security locks, 496
object subheaders, 145–147

conditions required for, 147
object types, defined, 21
Object Viewer, 25
ObpCreateHandle function, 496
ObReferenceObjectByHandle function, 

497
ObReferenceObjectWithTag function, 168
OCI (open cryptographic interface), 608
ODBC (Open Database Connectivity) 

adapter, 344
Offline Files, 632, 639–644

architecture, 640
cache, 639
cache structure, 643–644
caching modes, 641–642
capabilities, 635
components, 639–640
data security, 643
ghosts, 643
Group Policy settings, 642
limitations, 639
object types, 639
prefetching files, 651

Offline (Need to Sync) caching mode, 642
Offline (Not Connected) caching mode, 

642
Offline Registry Library, 278

Offline (Slow Connection) caching mode, 
641

Offline (Working Offline) caching mode, 
642

Offreg .dll, 278
OIDs (Object Identifiers), 562–563
okay-to-close method, 155
on-demand problem diagnosis, 354
one-time initialization, 204–205
Oney, Walter, 32
online caching mode, 641
open cryptographic interface (OCI), 608
Open Database Connectivity (ODBC) 

adapter, 344
Openfiles /query command, 140–141
open handle counter, 165
open method calls, 154
open object APIs, problems with, 165
OpenSCManager function, 321
Open Software Foundation (Open Group), 

605
Open Systems Interconnection (OSI) 

model, 592–594
operating systems. See also Windows 

operating system
administrative rights, requesting, 

576–578
child partitions, 251–254
dynamic processor support, 479–480
enlightenments, 248, 253–254
hypervisor component, 248. See 

also hypervisor (Hyper-V)
logical processors, 257. See also logical 

processors
parent partition, 249–251
ProcessorAdd callback, 479–480
security ratings, 487–489
software, kernel-mode execution, 17–32
tasks, objects role in, 22
updates and antivirus signatures, 689
virtualization, 248
virtual memory space, 15

operations, administrative rights for, 573
Orange Book, 487
Orwick, Penny, 32
OSI reference model, 592–594
over-the-shoulder (OTS) elevations, 

574–575
Owner Rights SID, 531–532

P
packets, 592

capturing, 678–680
filtering by IPSec, 670
forwarding, 663
receive-side scaling, 674
routing, 593
throttling, 448
unicast, 669–670

 packets
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page faults, 94–95
exception numbers, 82

paging data, 15
paging files, initialization, 73
parameters, marshaling, 606
Parameters subkey, 306
parent partition, 249–251. See 

also hypervisor (Hyper-V)
logical processors, 257

parent processes
absent, 376
retrieving, 5–6

parse method, 154
remote file access, 170–171

partitions, 249. See also child partitions; 
parent partition

passive interrupt level, 91
password-based authentication, 558–562
passwords for user logon, 558–559
patch descriptors, 271
PatchGuard, 272–274
pause assembly instruction, 180
PCA (Program Compatibility Assistant), 

357
Pcb (process control block) member, 362
PCR (processor control region), 89, 453
PEB (process environment block), 238, 

359
address, 364
fields, 364
fields, viewing, 365
setting up, 380–381

Peer Content Caching and Retrieval, 650
Content Identification, 650
Hosted Cache Protocol, 651
Hypertext Transfer Protocol (HTTP) 

Extensions, 651
Retrieval Protocol, 650

Peer Name Resolution Protocol (PNRP), 
656–658

Peer-to-Peer Collaboration Interface, 625
Peer-to-Peer Graphing, 625
Peer-to-Peer Grouping, 625
Peer-to-Peer Identity Manager, 625
Peer-to-Peer Infrastructure, 624–625
Peer-to-Peer Namespace Provider, 625
performance

ALPC optimizations, 217
emulated devices, 255
network, 682–684
offloading operations, 674
playback, 448
problems, detecting and resolving, 356

performance counters
accessing, 23, 287
descriptions, 25
Dynamic Memory-related, 263–265
mode-related, 18
System Calls/Sec, 140

Performance Data Helper (PDH) API and 
functions, 287

performance diagnostics, 356
Performance Monitor, 25–26

functions, 25
kernel mode vs . user mode counter, 19
kernel mode vs . user mode usage, 20
performance counter descriptions, 25
providers, viewing, 338–339
System Monitor function, 25
thread activity, viewing, 399

Performance Options dialog box, 426, 
428

Performance tool
job objects, viewing, 482–484
multimedia thread boosts, viewing, 

446–447
thread state transitions, viewing, 

419–421
permanent objects, 165–168
permissions

effective, viewing, 534–536
for protected process threads, 401

per-processor ready queues, 421–422
physical layer in OSI reference model, 592
Physical Memory counter, 264
physical memory, mapping to virtual 

memory, 15
PIC (Programmable Interrupt Controller), 

84
viewing, 85–86

pipelining, 636
PipeList, 616–617
pipes, establishing, 593. See also named 

pipes
PIT (Programmable Interrupt Timer), 112
Pkgmgr .exe, auto-elevation, 579
platforms, portability across, 37–38
Plug and Play drivers, 64

code signing, 274
Plug and Play Extensions (PnP-X), 

626–627
Plug and Play manager, 55

device interrupt assignment, 90
dynamic processor support, 480

PMP (Protected Media Path), 368, 369
PNRP (Peer Name Resolution Protocol), 

656–658
ID generation, 656
peer names, 655
phases of name resolution, 657–658

pointers, KPP-protected, 273
point-to-point communications, 593
policy-based QoS, 682
policy settings, viewing, 43–44
Pool Monitor, 25
portability, 33

across hardware architectures, 37–38
HAL and, 60

port objects, 210
ports, 593
POSIX executables, 374

process section base address, 380

POSIX subsystem, 53
PostQueuedCompletionStatus API, 162
power fail interrupt level, 90
power management, 122
power manager, 55
Power Options, 64
PowerPC architecture, 37
PowerRequest objects, 144
PRCB (processor region control block), 89

global spinlock pointers, 181
per-processor ready queues and 

summary, 421
quantum reset value, 423

predictable-reads isolation level, 288
preemption, 445, 449–450

idle thread, 456
preemptive scheduler, 409
prefetching, 386
prefix cache, 630–631
presentation layer in OSI reference model, 

594
preshutdown notifications, 308, 332
PreshutdownTimeout parameter, 308
previous mode, 136
primary tokens, 509
principal names, 608
printer drivers, 32-bit vs . 64-bit, 228
priority boosts, 430–448

AdjustBoost, 443
AdjustUnwait, 442–443
APC, 432
applying, 442–443
for CPU starvation, 439–441
effects of, 442
executive resources, waiting on, 434
foreground threads after waits, 435–437
GUI threads, 437–439
I/O completion, 433–434
lock ownership, 432–433
for multimedia applications and games, 

430, 444–448
removing, 443–444
scheduler/dispatcher events, 430–431
unwait, 431–432, 432
viewing, 435–437, 440–441

priority class, process, 371
priority-driven, preemptive scheduling, 

408–410, 449. See also thread 
scheduling

priority levels, 410–416
boosts, 430–448
boosts and quantum length, 427
changing, 414–415
idle thread, 455
inheritance, 412
vs . IRQLs, 412–413
mapping of Windows kernel to 

Windows API, 411
preemption and, 450
priority 0, 456
process, 414

page faults
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priority levels (continued)
ready queues, 421
real-time range, 412
recomputation, 442–444
thread-scheduling, 410–416

Priority Queue, 644
privacy, 621
private address spaces, 15
private namespaces, 171
private objects, 497
private virtual address spaces, 5
privilege arrays, 509
privileged access control, 23
privileges, 538–547

assignment, 539
auditing-related, 548
Bypass Traverse Checking privilege, 545
checks for, 507, 540
defined, 538
enabling and disabling, 541–542
enforcement, 540
exploitation, 546–547
list of, 543–545
local system account, 311–312
separating levels of, 501
services, specifying, 313–314
services, viewing, 314–315
super-user, 546–547

problem scenarios, automated detection 
and resolution, 354–358

procedures, local and remote, 606–607
process activity, viewing, 7–32
process address space

creating, 378–379
PEB in, 359
setting up, 379–380
TEB in, 391, 394

process creation, 369–391
executable file, opening, 373–376
executive thread object, stack, and 

context, creating, 381–383
flags and parameters, creating and 

validating, 371–373
initial thread execution, starting, 385
main stages, 370–371
process initialization in context of new 

process, 386–387
tracing, 387–391
Windows executive process object 

creation, 376–381
Windows subsystem–specific post-

initialization, 383–385
process environment block (PEB). See PEB 

(process environment block)
processes

access rights requests, 368
access tokens, 547
affinity mask, 464–465. See also affinity 

masks
attaching to, 28
attribute list, 372–373

base priority, 411–412
breaking into, 230
components, 5
CPU utilization, 10. See also CPU usage
CreateProcess flow, 369–391. See 

also process creation
CSR_PROCESS, 359
Csrss-specific information, 365
data structures, 359–371
defined, 5
details, viewing, 10–12
error port, 132
handles, 155, 360
handles, acquiring, 155
handle tables, 158, 496
hung, 400–401
ideal node, 467
initialization, 234–235
integrity levels, 500–505, 529
integrity levels, viewing, 501–502
internals, 359–367
job objects, 480–484
loaded modules database, 238
multiple services, running, 309
network resource access, 311
open handles list, 14
overhead, 360
parent/child relationships, viewing, 

6–7, 68
priority classes, 371–372
priority levels, specifying, 414
protected, 271, 368–369
quota structure, 168
resources, 14
security context, 14, 506
services. See services
services running in, viewing, 334–335
shared, 332–335
system resource access, 168
threads in, 12
threads, viewing, 399
timer resolution change requests, 114
user-mode, 36
virtualization status, 567
W32PROCESS, 360
window stations, 318
work factory use, viewing, 405–407

Process Explorer, 9–12, 25
access rights, 368
capabilities, 11–12
clock cycle counter use, 399
handle table, viewing, 164
hosting processes tooltips, 11
information in, 10
object handles, viewing, 156–157
parent processes, 5–6
priority levels, changing, 414–415
privileges, viewing enabled, 541–542
process details, viewing, 10–12
process integrity levels, viewing, 

501–502

protected processes and, 369
protected process threads, viewing, 402
service processes, viewing details, 76
service security tokens, viewing, 

314–315
services running in processes, viewing, 

334–335
SIDs, viewing, 500
symbols, accessing, 10
thread activity, viewing, 399
thread pools, viewing, 405–407
threads, killing, 414
thread stack, displaying, 400
thread startup address, 400
thread user start address, viewing, 

127–128
token contents, viewing, 513
Wmiprvse creation, viewing, 352
Wow64 processes, displaying, 401

process IDs, 5
processing

deferring, 104–105
real-time, 100

process manager, 55
CPU rate limit enforcement, 478
hypercritical work item use, 206

process memory, changing, 28
Process Monitor, 25

account privileges for, 289
administrative account, running in, 292
DLL search order, viewing, 237–238
DPC activity, monitoring, 108–109
internals, 289–293
Internet Explorer, tracing, 503
interrupts, monitoring, 108–109
process startup, tracing, 387–391
registry activity, monitoring, 289
troubleshooting techniques, 291–292

process notifications, 274
process objects, 360–362

creation, 232
information in, displaying, 363–364

process object type, 22, 143
processor access modes, 17–20
ProcessorAdd callback, 479–480
processor affinity, 408, 463–465. See 

also affinity masks
extended affinity mask, 465–466
group assignment, 460–462
specifying, 416
system affinity mask, 466
updating, 480

processor control region (PCR), 89, 453
processor groups, 40
Processor Machine State Registers (MSRs), 

273
processor region control block (PRCB). 

See PRCB (processor region control 
block)

processors. See also logical processors
adding to child partitions, 257

 processors



716

processors (continued)
CPU 0, 118
dynamic, 479–480
idle/sleep states, 122
IDT, 83
interrupt request level settings, 87
interrupts, 82
IRQL, changing, 89
licensed, 40
look-aside lists, 479
multiple, 38
timer expiration, 116
timer selection, 118–120
tracking, 40
virtual, 257

processor selection, 468–470
processor share-based scheduling, 

470–478
processor-specific data, 58
process security tokens, 9
process/thread runtime, updating, 116
process tree, 6–7, 11
Process Type object, 360
producers, 230
ProductPolicy registry value, 43
ProductSuite registry value, 42–43
ProductType registry value, 42–43
profile interrupt level, 90
profiles

loading and unloading, 283
roaming, 283, 569
security, 514
user, 282, 562

Program Compatibility Assistant (PCA), 
357

Programmable Interrupt Timer (PIT), 112
Programming the Microsoft Windows 

Driver Model, Second Edition (Oney), 
32

programs. See also executables
defined, 5
low integrity level, launching, 513

Protected Media Path (PMP), 368, 369
Protected Mode Internet Explorer (PIME), 

503, 529
protected processes, 271, 368–369

attribute list, 372
checks performed on, 385

protected process threads
information, viewing, 402
limitations, 401

Protection Profile (PP), 489
protocol drivers, 63

NDIS driver use, 672–684
network, 663–672
transport, 663
Windows Filtering Platform, 667–672

protocol stack, 594. See also network 
stack

providers, 344–345
built-in, 344

COM and DCOM servers, 344
defined, 628
dynamic, 347
event tracing, 220
interface features, 344
UBPM registration, 338–339
unregistering, 338
viewing, 338–339

proxies, detecting, 661
proximity IDs, 460–461
PsAllocateCpuQuotaBlock function, 

471–472
PsChargeProcessCpuCycles function, 473
PsCpuFairShareEnabled variable, 471
PsCreateSystemThread function, 69
PsGetSid function, 499–500
PsInvertedFunctionTable, 273
PspAllocateProcess function, 374, 

376–381
PspAllocateThread function, 381–383
PspCalculateCpuQuota-BlockCycleCredits 

function, 472
PspCpuQuotaControl data structure, 471
PspCreateThread function, 398

helper routines, 381
PspFlushProcessorIdleOnlyQueue 

function, 475
PspInsertProcess function, 381
PspInsertThread function, 381–383
PspLazyInitializeCpuQuota function, 471
PsPrioritySeparation function, 428–429, 

435, 438
PspStartNewFairShareInterval function, 

475
PspUserThreadStartup function, 386
PsReleaseThreadFromIdleOnlyQueue 

routine, 475, 477
publication cache, 647–648
public IP addresses, 663

private address mapping to, 669
publishing content, 647
pushlocks, 199–201

priority boosts and, 432
structure, 200

Q
Quality of Service (QoS), 682–684

components, 682–683
Winsock support, 597

Quality Windows Audio/Video Experience 
(qWAVE), 682–684

quantum, 409, 422–429
clock cycles per, 424–425
clock tick adjustment, 424
configuration settings, changing, 429
controlling, 425–426
end of, 450–452
expiration, 107
Priority Separation field, 428
registry value, 427–428

reset value, 423–424
short vs . long, 428
threads in idle process priority class, 428
values, 427
variable, 427, 428

quarantine agent service runtime, 691
query name method, 154
query/set native calls, worker factory 

management, 403
queued spinlocks, 181
QueueUserApc API, 162

R
race conditions, 480
rate limiting, CPU, 478
Raw transport protocol, 603
RDBSS (Redirected Drive Buffering 

SubSystem), 633–634
mini-redirectors, 634

RDPDR mini-redirector, 635
read-commit isolation level, 288
ready queues

context switch to, 424
deferred, 383
dispatcher, 421, 457
per-processor dispatcher, 421
preempted threads, 450
scanning, 421, 439, 440, 458
systemwide, 421
thread association with, 468–470

ready summary, 421
ready threads, 416

priority boosts for, 439
in ready queue, 421
viewing, 408–409

Real Time Clock (RTC), 112
real-time processing, 100
reaper function, 206
reason for access reporting, 549
receive window auto tuning, 663
recv and send APIs, 598
Redirected Drive Buffering SubSystem 

(RDBSS), 633–634
redirection

API Sets, 245–247
of DLL names, 236–238
in Wow64, 226

redirectors, 63, 605, 627–636
components, 633–634
mini-redirectors, 634–635
Multiple Provider Router, 627–630
Multiple UNC Provider, 630–632
prefix cache, 630–631
priority order, 631
Server Message Block, 635–636
surrogate providers, 632–633

reference count, object, 165–166
REG_BINARY values, 279
RegCreateKeyTransacted API, 287–288
RegDeleteKeyTransacted API, 287–288

processors
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REG_DWORD values, 279
Regedit .exe, 278

hives, loading and unloading, 294
local system account, running as, 492

Reg .exe, 278
virtualization state, displaying, 572

RegFlushKey API, 303
Regini .exe, 278
region blobs, 216
regions, mapping, 214–215
RegisterServiceCtrlHandler function, 309
registry, 23, 277–304

activity, montoring, 289
applications settings, locating, 290–291
AppLocker rules, 584–585
blocks, 296
buffer overflows, 292
compacting, 297
configuration data in, 227
configuration manager management, 

293–305
CurrentControlSet key, 328–329
data types, 279–280
editing, 277–278
EnableCpuQuota value, 471
error recovery, 287
filtering, 303–304
flushes, 302–303
global audit policy, 552
hives, 293–294. See also hives, registry
HKEY_CLASSES_ROOT, 283
HKEY_CURRENT_CONFIG, 286
HKEY_CURRENT_USER, 281
HKEY_LOCAL_MACHINE, 283–284
HKEY_PERFORMANCE_DATA, 287
HKEY_USERS, 282
idle system activity, viewing, 290
initialization, 73
internals, 293–305
keys, 279
last known good configuration, 286, 

328–330
links, 280
logical structure, 280–287
missing keys or values, 291–292
modification, 279
naming scheme, 279
Native and Wow64 portions, 227
performance counters, accessing, 23
performance optimizations, 304
permanent changes, 288
ProductPolicy value, 43
ProductSuite value, 42–43
ProductType value, 42–43
quantum settings, 427–428
root keys, 280–281
Services key, 305, 306
subsystem startup information, 49
symbolic links, 295
tools for editing, 277–278
transactional, 287

troubleshooting problems, 291–292
usage, 278–279
values, 279
viewing, 277–278
virtualization, 571–573, 578

Registry Editor, 284–285
registry filter notifications, 274
registry namespace, 154

virtualization, 567–590
REG_LINK values, 280
RegOpenKeyTransacted API, 287–288
REG_SZ values, 279
 .regtrans-ms extension, 289
relative identifiers (RIDs), 497–498
relative timers, 115
reliability, 34
relocation, 242
Remediation Servers, 693
remote access, 685–686
remote authentication, 559
remote clients, network connectivity, 

695–696
remote desktop connections, 20
remote editing of BCD, 284–285
remote files

caching on local machine, 639
requests for, 635–636

remote file systems
accessing, 630–633, 635–636
caching, 632

Remote NDIS, 680–681
remote performance monitoring, 287
remote procedure call (RPC). See RPC 

(remote procedure call)
remote resources, accessing, 629, 

633–635
remoting, 20
replay protection, 670
replication

benefits, 637
multimaster, 638
topologies, 638

replication groups, 638
republication cache, 648
RequiredPrivileges parameter, 308, 314
reserve blobs, 216
reserve objects, 162–163
resource accounting, 168
resource exhaustion prevention, 356
resource management, 416
Resource Manager (RM), 269

registry, 289
Resource Manager SID, 499
Resource Monitor

object handles, viewing, 157
resources, displaying, 26

resources
mutual exclusion and, 176–177
permissions, setting, 316
remote, 629, 633–635
service access to, 315–318

UNC name access, 627
responsiveness

improving, 430, 435, 437–439
thread priority boosts and, 433

restore files and directories privilege, 546
restricted service SIDs, 316–318
restricted tokens, 507, 516
retail build, 45
Richter, Jeffrey, 2, 3, 123, 188
RIDs (relative identifiers), 497–498

viewing, 499
rings 0 through 3, 17
RM (Resource Manager), 269
roaming profiles

registry values, 283
virtualized files and, 569

robustness, 34
root keys, registry, 280–281
root \Sessions directory, 73
routers, 593

congestion, 663
routing functions, 593
routing modes, 84
RpcImpersonateClient function, 514, 608
RPC (remote procedure call), 605–609

asynchronous, 607
implementation, 609
local and remote execution, 606, 609
operation, 605–608
security, 608
server name publishing, 608
subsystem, 609
unencrypted, 608

RPCSS, 609
RTC (Real Time Clock), 112
RtlUserThreadStart, 387
RtlVerifyVersionInfo function, 43
Run As Administrator command, 576
Runas command, 283, 292, 574–576
running threads, 417
run-once initialization (InitOnce), 183, 

204–205
runtime compatibility mitigations, 233
run-time patching, 233
Russinovich, Mark, 32

S
SACLs, 523, 524

assigning, 527–528
safe DLL search mode, 235–236
safe mode, 324

registry keys, 324
SAM APIs, 686
SAM database, 490
SAM (Security Accounts Manager), 490

security descriptors, 492
SAPICs (Streamlined Advanced 

Programmable Interrupt Controllers), 
84–85

 SAPICs (Streamlined Advanced Programmable Interrupt Controllers)
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SAS (secure attention sequence), 489
implementation, 557
logon startup, 558

SAs (security associations), 671
scalability, 40–41
scatter-gather, 597
ScAutoStartServices function, 323
sc command, 340
ScGenerateServiceDB function, 321
ScGenerateServiceTag function, 335
ScGetBootAndSystemDriverState 

function, 322
SChannel, 608
Scheduled Tasks service, 339
scheduling

processor share-based, 470–478
thread, 408–470
Windows system, 408–410

scheduling events, 69
thread priority boosts, 431

scheduling priorities, thread, 87. See 
also priority levels

ScInitDelayStart function, 327
ScLogonAndStartImage function, 325
SCM Extension DLL (Scext .dll), 336
SCM (Service Control Manager), 74–75, 

321–323
boot-verification program startup, 329
commands, 310
internal service database, 321
last known good control set, 328–330
named pipe creation, 326
network drive letter tracking, 323
service characteristics, 306
service database, 321–322
service deletion, 306
service entry and group order lists, 

321–322
service privileges, accounting, 314
service registry key creation, 305
service SID generation, 316
service-start command, 309, 326
shutdown routine, 331–332
startup, 321
SvcHost process launch, 333
UBPM initialization, 337

scopes, 639
script execution, controlling, 589–590
scripting API, 344
scripts, 351
ScStartService function, 325
ScTagQuery (Winsider Seminars & 

Solutions Inc .), 335
Sc tool, virtual service account creation, 

518–521
SDDL (Security Descriptor Definition 

Language), 537
SeAccessCheck function, 496
SeAuditPrivilege, 548
second-chance notification, 126

Second-Level Address Translation (SLAT), 
259

section blobs, 216
section objects, 143, 214–215, 373–374

mapping to API Sets, 247
secure attention sequence (SAS). See SAS 

(secure attention sequence)
Secure Socket Transmission Protocol 

(SSTP), 686
security, 22. See also security mechanisms

access control, 23
of cache content, 646
console processes, 52
debugger-based attacks, 369
IPsec, 669–672
job object limits, 481
local system account characteristics, 311
for namespaces, 353
object, 163–165
object name squatting, 171
privilege exploitation, 546–547
regions and, 214–215
of registry keys, 304
of RPC, 608
section objects and, 214
service isolation, 315–318
service security contexts, 310
shatter attack prevention, 320, 530
spoofing prevention, 516
systemwide policies in registry, 286
WMI, 353

Security Accounts Manager (SAM), 490, 
492

security associations (SAs), 671
security attribute, 215
security auditing, 23, 488, 548–554

global audit policy, 552–553
object access auditing, 549–552

security blobs, 216
security boundaries, 573
security checks, 536
security components

application identification, 581–582
communication paths, 493

security contexts
identifying, 506
process, 14
user, 23

security credentials, user, 23
security descriptors, 522–536

attributes, 522
flags, 522–523
thread, 399
viewing, 525–527

security identifiers (SIDs). See SIDs 
(security identifiers)

security mechanisms, 487–590
access checks, 495–497
access logging, 494–536
access tokens, 547
account rights, 538–547

ALPC mechanisms, 216–217
AppID, 581–582
AppLocker, 583–588
AuthZ Windows API, 536–538
core components, 490–493
logon, 555–565
object protection, 494–536
privileges, 538–547
ratings, 487–489
Software Restriction Policies, 589–590
UAC, 566–581

security method, 155
Security parameter, 308
security policy, 548
Security Policy MMC snap-in, AppLocker 

management, 584
security quality of service (SQOS), 515
security ratings

Common Criteria for Information 
Technology Security Evaluation, 
489–495

Trusted Computer System Evaluation 
Criteria, 487–489

security reference monitor (SRM), 55, 490
access rights checking, 163

security routine, 153
security support providers (SSPs), 608
Security Target (ST), 489
security tokens, 12
security validation of impersonating 

threads, 495
Self-Monitoring Analysis and Reporting 

Technology (SMART) code, 356
semaphore object type, 144
semaphores, 143, 144

default security, 496
ETHREAD, 196
object directory, 170
for shared resources, 202
for shared waiters, 198
signaled state, 186

SeNotifyPrivilege, 545
server communication ports, 210
server connection ports, 210
Server Message Block (SMB). See SMB 

(Server Message Block)
server name publishing, 608
server operating system versions vs . client 

versions, 41–43
servers

accept operations, queuing, 599
CPU addition and replacement, 

479–480
file-system change replication, 637, 638
impersonation, 514
principal names, 608
quantum length, 422
Remediation Servers, 693
replication groups, 638
well-known addresses, 600

Service-0x0-3e7$ window station, 318

SAS (secure attention sequence)
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service applications, 305–321
SCPs, 305

Service Control Manager (SCM), 74–75
service control programs, 341–342
Service Control (Sc .exe), 314–315
service groupNetworkService-

NetworkRestricted, 334
service hardening, 531–532
Service Host (SvcHost), services running 

in, 332–333
service logon SIDs, 317
service processes, 36

management, 74–75
service details, viewing, 76
services in, mapping, 75

service provider interface (SPI), 600
services, 305–336. See also Windows 

services
account settings, 313
alternate accounts, running in, 313
authenticating to other machines, 311, 

312
auto-start, 305, 321, 323
Change Notify privilege, 314
characteristics, 306–308
delayed auto-start, 324, 327
dependencies, 324
entry points, 309
FailureActions and FailureCommand 

values, 330
failures, 330–331
groupings, 333–334
group startup ordering, 321, 324
ImagePath value, 325
initializing, 309
interactive, 319–321, 326
isolation, 315–318
least privilege, running with, 313–314
listing, 75–76
local system account, running in, 

310–312
logon information, 325
main thread, 309–310
names, 74
ObjectName value, 325
Parameters subkey, 306
peer-to-peer support, 624–625
privileges, specifying, 313–314
privileges, viewing, 314–315
process, launching, 326
registering, 305
running in processes, viewing, 334–335
security context, 310
security descriptors, 342
service applications, 305–321
Service Control Manager, 321–323
service SIDs, 316–318
Services key, 305–306
service tags, 335–336
Session Zero Isolation, 318–321
shared processes, 332–335

shutdown, 331–332
shutdown notifications, 331
shutdown order, 332
startup, 74, 305, 323–327
startup errors, 327–328
status messages, 309
triggers, 340–341
user notifications, 320
well-known addresses, 600
window stations, 318–319

ServiceSidType parameter, 308
Services key, 305, 306
Services MMC snap-in, 342
service tags, 335–336
SeSecurityPrivilege, 548
session create requests, 73
session layer in OSI reference model, 593
session manager (Smss), 49, 72–74
session namespace, 173–174

instancing, viewing, 175
sessions

accounting information, 472
active logon, listing, 560–562
disconnecting, 21
multiple, 20
NetBIOS, 618
session weight, 477

Session Zero Isolation, 318–321
Set API, 477
SetInformationJobObject function, 464
SetPriorityClass function, 412
SetProcessAffinityMask function, 464
SetProcessWorkingSetSizeEx function, 416
SetServiceStatus function, 309
SetThreadAffinityMask function, 464
setup programs, virtualization, 385
SetWindowsHook function, 557
shadow page tables (SPTs), 258
shared access, executive resources for, 

198–199
shared memory

communication, 214
regions, 214–215
sections, 13

shared processes, 332–335
of services, 332–335

shatter attacks, 320, 530
ShellExecute API, 576
shifting, 123
shims, 233, 667

application-compatibility, 568
elevation, 385

shutdown
notifications, 331
ordering, 332
performance diagnostics, 356
services, 331–332

side-by-side assemblies, 384, 398
side-by-side redirection, 237
SIDs (security identifiers), 497–517

assignment, 498

firewall rules and, 318
integrity level, 501
list of, 498–499
local logon, 558
Owner Rights, 531–532
structure, 498
types, 316–317
values in, 497
viewing, 499–500

Sigcheck, viewing application 
manifests with, 578

signaled state, defining, 185–188
signed files, 582
silent process death, 130

solving, 132
simple problem scenarios, 354
single instancing, 172–173
SIPolicy tool, 43
SLAT (Second-Level Address 

Translation), 259
Sleep API, 467
SleepConditionVariableSRW API, 203
Slim Reader-Writer Locks (SRW Locks), 

183, 202–203
slow-link latency threshold, 641
smartcard authentication, 562
SMB 2 .0, 635–636
SMB 2 .1, 636, 651
SMB mini-redirector, 635, 636
SMB (Server Message Block), 635–636

backward compatibility, 636
BranchCache application retrieval 

sequence, 651–653
BranchCache integration, 651
BranchCache use, 645

SMB WNet provider, 628
Smith, Guy, 32
SMP (symmetric multiprocessing), 

38–40
Smss (session manager), 72–74

initialization steps, 72–73
session startup instance, 73–74
subsystem startup, 49

SMT sets, 458
sockets

categories, 605
client connections to, 598
extension interfaces, 605
listen operations, 598
Windows support, 597

software. See also applications
exceptions and interrupts, 80
interrupt request levels, 86–91
interrupts, 81, 104–276
licensing, 43–44
in OSI reference model, 592–594

Software Restriction Policies (SRP). 
See SRP (Software Restriction 
Policies)

special boot menu, 324

 special boot menu
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spinlocks, 179–180
global, 181
implementation, 179
instack queued, 182
for interlocked functions, 182
kernel-mode, 179–180
queued, 181
restrictions on, 183
viewing, 181

Spinstall .exe, auto-elevation, 579
SPI (service provider interface), 600
spoofing prevention, 516
SPTs (shadow page tables), 258
SQOS (security quality of service), 515
squatting attacks, 171
SRM (security reference monitor), 55, 490

audit policy, passing, 548
LSASS connection, 493
security model equation, 497

SRP (Software Restriction Policies), 384, 
583, 586–590

enforcement, 589–590
SRW Locks, 202–203
SSPs (security support providers), 608
SSTP (Secure Socket Transmission 

Protocol), 686
stack frames, exception handlers, 125
stack, thread, 400
stack traces, 167
standard user rights, 566

application execution with, 566–573
elevation, 574–576
running as administrative rights, 574

standard user tokens, 507
standby/resume performance diagnostics, 

356
standby threads, 416, 457, 469
start-of-thread function, 127
Start parameter, 307
StartServiceCtrlDispatcher function, 309
StartService function, 305
start-stop problem scenarios, 354
startup. See also boot process

errors, 327–328, 328
repair tool, 356
services, 323–327

Startup Programs Viewer, 25
stations, 592

point-to-point communications 
between, 593

Streamlined Advanced Programmable 
Interrupt Controllers (SAPICs), 84–85

stride value, 467
Strings, dumping API Set table with, 247
structured exception handling, 123
stub procedures, 606

generating, 607
SUA (Subsystem for UNIX-based 

Applications), 53
sub-DLLs, 245–247

subkeys, registry, 279. See also keys, 
registry

transacted deletion, 288
subsystem DLLs, 36, 48

user-mode debugging APIs, 229
Subsystem for UNIX-based Applications 

(SUA), 53
executive objects, 143

subsystem processes, creation, 73
subsystems

GDI, 396
internal support functions, 53
POSIX, 53
RPC, 609
startup, 49–50
Subsystem for UNIX-based Applications, 

53
Windows, 50–52

SunRPC, 605
Superfetch, 55
surrogate providers, 630, 632–633
SvcCtrlMain function, 321
Svchost .exe, 11
SwitchBack, 244–245

invoking, 245
SwitchBranch mechanism, 233
SwitchToFiber function, 13
SwitchToThread() call, 467
symbol files, 27
symbolic link objects, 173
symbolic links, 173

registry, 295
SMB support, 636

symbol server
configuring, 11
loading symbols from, 27

symmetric multiprocessing (SMP), 38–40
mutual exclusion, 177

Sync Center control panel interface, 639
synchronization, 176–205

condition variables, 202–203
critical sections, 201
data structures, 188–191
deadlocks, 201
of dispatcher database, 422
dispatcher objects, 184
executive resources, 184, 198–199
high-IRQL, 178–182
interlocked operations, 178
kernel mechanisms, 183–184
low-IRQL, 183–205
mutexes, 196–198
object support of, 153
pushlocks, 199–201
run once initialization, 204–205
scalable, pointer-size, 203
user-mode objects, 201–202

synchronization interrupt level, 91
synchronization objects

executive resources, 184
keyed events, 194–196

rules of behavior, 185–186
state, 184–185

synchronous event exceptions, 80
synchronous execution, 204
synthetic devices, 255–257
sysenter instruction, 133
Sysinternals Site Blog, 32
Sysinternals tools, 32
system. See also operating systems; 

system mechanisms; Windows 
operating system

affinity mask, 466
architecture. See system architecture
configuration, 283–284
connecting live, 28
crashes, 95
global flags, 207–276
health policies, 689
idle, 290
initialization. See system initialization
license policy file, 40
lockdown, 583–590
registry settings, 279
responsiveness performance 

diagnostics, 356
security policies, 286
service calls, 80
support processes, 36

System account security settings, 286
system address space

data structures in, 359
ETHREAD and other structures in, 391

system architecture, 33–78
client vs . server versions, 41–44
device drivers, 63–67
diagram, 47
environment subsystem, 48–53
hardware abstraction layer, 60–62
kernel, 57–60
key system components, 46–78
Ntdll .dll, 53–54
overview, 35–46
portability features, 37–38
requirements and design goals, 33–34
scalability features, 40–41
symmetric multiprocessing capabilities, 

38–40
system processes, 68–78
Windows executive, 54–57

system calls
from 32-bit systems, 134
from 64-bit systems, 135
defined, 4
exported, 136
functions and arguments, mapping 

to, 139
from kernel-mode code, 136
in Wow64, 225

System Calls/Sec performance counter, 
140

spinlocks
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system call table, 135, 139–140
compaction, 135

system clock. See also clock cycles; clock 
intervals

interval timer, 112
maintenance of, 112
restoring default value, 113
updating, 83

system code and data protection, 17
system events, thread state changes, 186
system files, restoring, 356
System Health Agent (SHA), 690
System Health Validator (SHV), 692
system idle process, 69, 455
system images, undocumented interfaces, 

66–67
system initialization

parent processes, 376
Smss functions, 72–73
system worker threads, 205
Wininit .exe functions, 74
Winlogon initialization, 556–558

System .log, parsing and repairing, 303
system mechanisms

Advanced Local Procedure Call, 
209–219

code integrity, 274–276
global flags, 207–209
hotpatch support, 270–272
Hypervisor, 248–268
image loader, 232–247
kernel event tracing, 220–223
Kernel Patch Protection, 272–274
Kernel Transaction Manager, 268–270
object manager, 140–176
synchronization, 176–205
system worker threads, 205–207
trap dispatching, 79–140
user-mode debugging, 229–232
Wow64, 224–228

system objects, integrity protection, 22
system physical address space (SPA 

space), 258
System process, 69–70, 455

handles, 160
protected mode, 368
system worker threads, 205

system processes, 68–78
Local Session Manager, 76–77
priority level, 412
Service Control Manager, 74–75
Session Manager, 72–74
system idle process, 69
System process. See System process
tree, viewing, 68
Windows logon process, 77
Wininit .exe process, 74

system profile, 282
system resources. See also resources

handles to, 155

System Service Descriptor Table (SSDT), 
273

system service dispatcher, 132–133
locating, 133–134
system service tables, locating, 137

system services, 54
activity, viewing, 140
dispatching, 132–276
dispatch stubs, 53
dispatch table, 135
numbers, 135

system service tables, 137
System software interrupts, 81
system-start drivers, 321–322
system threads, 69–72. See also threads

balance set manager, 439–441
device drivers, mapping to, 70–71
execution, mapping, 70
mode usage, 20
priority levels, 412

system time. See also clock cycles; system 
clock

keeping track of, 115
updating, 107

system timers, 119–121
system traps, 80
system unresponsiveness. See 

also performance
DPCs and, 107

systemwide cookies, 386
systemwide thread startup stub, 386–387
system worker threads, 205–207. See 

also system threads; threads
dynamic, 206
listing, 207
number of, 206
types, 205–206

T
tagged TLB, 259
Tag parameter, 307
take ownership privilege, 546
targeted DPCs, 105
Taskeng .exe, 11
TaskHost, 341
Task Manager, 25

access rights, 368
Applications tab, 8–9
kernel mode vs . user mode counter, 20
priority levels, changing, 414–415
process activity, viewing, 7–9
Processes tab, 8
virtualization status, viewing, 567–568

task offloading, 674
Task (Process) List, 25
TCB (thread control block), 393

CPU numbers, 466–467
TCP/IP, 595

activity, tracing, 222–223

device objects, viewing, 665–666
Next Generation TCP/IP Stack, 663
offloading, 674
receive window auto tuning, 663
WAN-friendly charactersitics, 663
well-known addresses, 600
WFP integration, 667

TCP/IP port (port 88), 559
TCP/IP protocol stack, 594
TDI Extension (TDX) Driver, 595
TDI (Transport Driver Interface), 603, 633

transports, 595
TDI (Transport Driver Interface) clients, 

594–595
TEB (thread environment block), 391, 

394–395
dumping, 395
fields, 395
service tags, 335

temporary objects, 165–168
terminal server sessions

detecting, 21
management, 76–77

terminal-services environments, 20
processor share-based scheduling, 470
window stations, 318

terminated threads, 417, 453
terms, definitions of, 4–5
Testlimit tool, 159
third-party device drivers, verification, 17
thread context, 12

32-bit and 64-bit, 13
thread data structures, 360

dumping, 394
thread dispatcher, activating, 104
threaded DPCs, 107

disabling, 107
thread environment block (TEB). See TEB 

(thread environment block)
thread IDs, 12
Thread Information Block (TIB), 394
thread-local storage (TLS), 12
thread objects, 143

KeyedWaitSemaphore, 196
thread parameter, 382
thread pools, 403–407

shutting down, 403
viewing, 405–407

threads
access tokens, 14, 547
activation context stack, 237
activity, examining, 398–402
affinity mask, 463
alertable wait state, 112
APC queue, 110
artificially waiting, 478
clock cycle count, 399
clock cycles charged to, 472–474
components, 12
contention count, 199
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threads (continued)
context switching, 448. See also context 

switches
CPU consumption, 399
CPU numbers, 466–467
CreateThread function, 398
creation, 398
creation time, 396
data structures, 391–397
debug objects associated with, 230
deferred ready state, 416–418
defined, 12
dispatching, 409
distribution of, 470
execution, 387, 398
execution states, 416–421
execution state transitions, 417–418
execution state transitions, viewing, 

419–421
executive resources, waiting on, 434
fibers, converting, 13
housekeeping, 466
idle thread, 453–456
impersonation, 495
impersonation tokens, 514
information, displaying, 394
information fields, 392–393
initialized state, 417–418
integrity levels, 529
internal start functions code, 128–129
internal structures, 391–398
killing, 399
mutual exclusion, 176–177
objects, waiting for, 184–185
passive interrupt level, 413
preempted, 409, 449–450
previous mode, 136
priority boosts, 411
priority levels, 410–416. See 

also priority levels
processor affinity, 408. See also affinity 

masks; processor affinity
quantum, 83, 409, 422–429
quantum expiration, 107
quorums, 379
ready state, 408–409, 416–418
reaper function, 206
running state, 417–418
run-time accounting, 399, 423
scheduling, 94, 408–470
scheduling on multiprocessor systems, 

458–467
scheduling priorities, 87
security access validation, 496
security contexts, 506
security descriptors, 399
selection, 456–458
selection on multiprocessor systems, 

467–468
shared and exclusive access, 198–199, 

202

shared memory sections, 13
SIDs, 497–517
stack, 400
standby state, 416–418
start address, 394, 399–400
start address, viewing, 127–128
startup in common routine, 387
startup wrapper function, 400
suspension, 111, 399
synchronization, 153, 184
system worker, 205–207
terminated state, 417–418
termination, 111, 386
transition state, 417–418
trap frame, 81
virtual address space, 13
wait blocks list, 188
waiting state, 417–418
wait queues, viewing, 191–194

thread scheduling, 408–470
context switches, 448
DFSS scheduling and, 476
dispatcher database, 421–422
fibers, 13
idle scheduling, 458
idle threads, 453–456
limitations, 470
on multiprocessor systems, 458–467
preemption, 449–450
priority boosts, 430–448
priority-driven, preemptive, 408–412
priority levels, 410–416
processor selection, 468–470
quantum, 422–429
quantum end, 450–452
thread execution states, 416–421
thread selection, 456–458
thread selection on multiprocessor 

systems, 467–468
threads in real-time range, 430
thread termination, 453
time slicing, 451–452
UMS, 13
voluntary switching, 449
work-stealing loop, 468

thread stack, 400–401
32-bit and 64-bit, 401

throttling. See CPU throttling
thunking, 225, 386
TIB (Thread Information Block), 394
time-keeping processor

CPU 0, 118–119
designating, 121

timer coalescing, 122–123
timer expirations, 115–117

minimizing, 122
timer object type, 144
timer processing, 112–123

intelligent timer tick distribution, 
121–122

listing timers, 119–121

timer coalescing, 122–123
timer expiration, 115–117

timers
coalescable, 122
high-frequency, 113–115
intelligent timer tick distribution, 

121–122
listing, 119–121
processing KPRCB fields, 117
processor selection, 118–120
queuing behaviors, 118–119
shifting, 123
tolerance, 122–123
types, 115

timer table, 115–116
Tlist .exe tool, 6

services running in processes, viewing, 
335

thread information, displaying, 394
TLNPI (Transport Layer Network Provider 

Interface), 595
AFD client, 602

TLS initializers, 244
TLS (thread-local storage), 12
TmEn objects, 144
TmRm objects, 144
TmTm objects, 144
TM (Transaction Manager), 269
TmTx objects, 144
TOKEN_MANDATORY_NEW_PROCESS_

MIN policy, 509
TOKEN_MANDATORY_NO_WRITE_UP 

policy, 509
token object type, 143
tokens, 506–513

AppLocker attributes, 509
authentication ID, 510
contents of, 507–508
expiration time, 510
filtered admin, 507, 566
generating, 507
impersonation, 514
informational fields, 509–510
LUID, 509
mandatory policies, 509
privilege arrays, 509
restricted, 507, 516
security information in, 509
types, 509
viewing, 510–513
write-restricted, 316–317

topology, network
discovery and mapping, 658–662
Link-Layer Topology Discovery, 662

TpWorkerFactory, 144, 403
trace data, kernel, 220–276
transaction handles, 288
transaction managers, 270
Transaction Manager (TM), 269
transaction objects, 269

threads
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transactions, 288
isolation level, 288

transfer jobs, 621
priority, 621
security context, 621

transition threads, 417
TransmitFile function, 599
TransmitPackets API, 599
Transport Driver Interface (TDI) clients, 

594–595
transport layer in OSI reference model, 

593
Transport Layer Network Provider 

Interface (TLNPI), 595
transport provider interfaces, 607
transports, 595
transport service providers, 600
transport, the, 596
trap, defined, 79
trap dispatching, 79–140

exception dispatching, 123–132
interrupt dispatching, 81–112
system service dispatchng, 132–142
timer processing, 112–123

trap frames, 81
trap handlers, 80, 81, 125
trigger consumers, registration, 339–340
trigger information, 339

viewing, 340–341
trigger providers, registration, 338–339
triggers, WDI, 354
Trojan horse prevention, 488
troubleshooting

modules, 355
registry-related problems, 291–292

Trusted Computer System Evaluation 
Criteria (TCSEC), 487–489

rating levels, 488
trusted facility management, 489
trusted path functionality, 488
tunneling, 663, 686
TxF, 269
TxR, 269, 287

common logging file system support, 
288

type initializers, information in, 152
type objects, 145, 149–153

Process, 360
viewing, 150–152

Type parameter, 307, 309

U
UAC File Virtualization Filter Driver, 

569–570
UAC (User Account Control), 77, 566–581

access tokens, 77
administrative rights requests, 576–578
administrative rights, running with, 

574–576

auto-elevation, 578–579
elevation, 566, 573–590
modifying behavior of, 579–581
standard user rights, 566
storage location of settings, 580–581
turning off, 580
virtualization, file system and registry, 

567–573
virtualized registry root, 283

UBPM (Unified Background Process 
Manager), 336–342

architecture, 336
consumer registration, 339–341
consumer thread creation, 337
ETW consumer initialization, 337
event manager setup, 337
event processing, 337
initialization, 337
internal tracing support, 337
provider registration, 338
service control programs, 341–342
TaskHost, 337, 341
UBPM API, 338

UIPI (User Interface Privilege Isolation), 
529–530

UMDF (User-Mode Driver Framework), 64
UMPD (User Mode Print Driver) 

framework, 396
UMS (user-mode scheduling), 13
unauthorized access

preventing, 487. See also security 
mechanisms

Software Restriction Policies for, 590
unauthorized operations, 546–547
UNC names, 612

redirector support, 633
unconnected communication ports, 210
UNC paths, accessing, 627
undocumented interfaces, viewing, 66–67
unhandled exception filter calls, 129
unhandled exceptions, 127–129

debugging, 129
unicast packets, 669–670
Unicode, 24
Unified Background Process Manager 

(UBPM). See UBPM (Unified 
Background Process Manager)

Universal Naming Convention (UNC), 
612, 627

Universal Plug and Play, 626–627
UNIX-based applications

networking, 597
subsystem for, 53

unrestricted service SIDs, 316
unwait boosts, 431–432
uploads, 622
USB network devices, 680–696
User32 .dll, 37
user access restrictions, 23. See 

also access rights

User Account Control Settings dialog 
box, 579

User Account Control (UAC). See UAC 
(User Account Control)

user address space, 17
User APC reserve object, 162–163
user applications, 36

user mode vs . kernel mode, 18
user authentication, 23, 555–556

biometric framework, 563–568
user callbacks, 226
user environment initialization, 78
USER functions, 51
user identification, 555
Userinit .exe, 77–78, 562
User Interface Privilege Isolation (UIPI), 

529–530
User Interface Services, 2
user logon, 558–562. See also logon

active sessions, listing, 560–562
Assured Authentication, 562–563
authentication, 558
via fingerprint scan, 565
management, 77

user mode, 17–20, 34, 35
context switches, 13
transitioing to kernel mode, 18

user-mode address space, 364
user-mode APCs, 110–111
user-mode applications

timer use, 117
vectored exception handling, 125

user-mode code
locking primitives, 183
passive interrupt level, 413
SRW Locks for, 203

user-mode debugger
CSR_PROCESS, dumping, 366
CSR_THREAD, dumping, 396
thread stack, displaying, 400

user-mode debugging, 56, 229–232
kernel support, 229–230
native support, 230
WinDbg for, 231
Windows subsystem support, 232

User-Mode Driver Framework (UMDF), 64
user-mode dump processes, 28
User Mode Print Driver framework 

(UMPD), 396
user-mode processes

debugging, 27
services, 74
session manager, 72–74
types, 36

user-mode scheduling (UMS), 13
user-mode synchronization objects, 

201–202
critical sections, 194, 201

user-mode thread pools, 403
user-mode threads, preempting, 107

 user mode threads, preempting
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user profiles
HKU subkeys, 282
loading, 562
per-user settings, 566–567
storage location, 282

User Profiles management dialog box, 282
user rights, 566

adding, removing, enumerating, 540
users

CPU priority, 470
CPU rate limits, 478
group membership, 506, 508
identity validation, 494–495, 555
intra-user isolation, 495
local logon SID, 558
privileges, 507
security context, 23
security credentials, 23
service UI notifications, 320
of the transport, 596

V
VADs (virtual address descriptors), 14
values, registry, 279

missing, 291–292
types, 279–280

variable quantums, 427
variables

condition, 202–203
signaling change to, 202

VDevs (virtual devices), 254
vectored exception handling, 125
VerifyVersionInfo function, 43
version numbers, 2
video display support, 51
VID (VM infrastructure driver), 251
view blobs, 216
virtual address descriptors (VADs), 14
virtual address space, 15
virtual directory, uploading to, 622
virtual DLL files, 246
virtualization, 248

application, 385
application-compatibility shims, 568
architecture, 248
disallowed, 567
enlightenments, 253–254
exceptions list, 568–569
file, 568–571
file system, 567–573
guests, 248
host-based, 248
hosts, 248
hypervisor-based, 248. See 

also hypervisor (Hyper-V)
memory, 258
registry, 567–573, 578

virtualization service clients (VSCs), 253, 
255–256

virtualization service providers (VSPs), 
251, 255–256

virtual machine management service, 
250–251

virtual machines
Dynamic Memory, 260–263
migrating between nodes, 266–268

virtual machine worker processes 
(VMWPs), 250–251

virtual memory, 15–16
access mode tag, 17
executive implementation, 55
limits, 416

virtual processors (VPs), 257
virtual service accounts, 518–521

passwords, 518
permissions, granting, 521

VMBus, 255–257
VM infrastructure driver (VID), 251
VMWPs (virtual machine worker 

processes), 250–251
volatile hives, 293–294
VPN remote access, 686
VPNs, always-on, 695
VSCs (virtualization service clients), 253, 

255–256
VSPs (virtualization service providers), 

251, 255–256
VT Extended/Nested Page Table (NPT) 

technology, 259

W
W32PROCESS, 360, 367

allocation, 385
dumping, 367

W32THREAD, 392, 396–397
dumping, 397
fields, 397

wait blocks, 188–189
for pushlocks, 199–200
state information, 188–189
wait information in, 188

wait calls, 449
worker factory management, 403

wait chain address ordering, 189
WaitForMultipleObjects function, 184
WaitForSingleObject function, 184
waiting threads, 417

boosting, 432
voluntary switching, 449

wait operations. See also synchronization
data structures for, 188–191

wait queues
reordering, 112
viewing, 191–194

waits
committed state, 190
on keyed events, 195
resolution, 112

satisfied, 190
timed-out, 190

wait state
aborted, 190
alertable, 112
entering, 189

wait status register, 190
Wake-on-LAN, 674
wake operations, 195
WANs

content caching, 645
datalink layer, 593
SMB 2 .0 for, 635

WbemTest, viewing WMI class definition, 
347

WBEM (Web-Based Enterprise 
Management), 342

WDF (Windows Driver Foundation), 64–65
WDI (Windows Diagnostic Infrastructure), 

56, 354–357
diagnostic functionality, 356–357
Diagnostic Policy Service, 354–355
Group Policy settings, 355
instrumentation, 354

WDM (Windows Driver Model), 64
Web access APIs, 610
Web-Based Enterprise Management 

(WBEM), 342
WebDAV mini-redirector, 635
web servers. See servers
Web Services, 3
well-known addresses, 600
WerFault .exe process, 129
WER (Windows Error Reporting), 129–132

configuring, 129
dialog box, 130
protected mode, 368
registry  configuration options, 130–132

WFP (Windows Filtering Platform), 
667–672

callout drivers, 595
components, 667–668
IPsec WFP callout driver, 671

wide area networks (WANs). See WANs
Win16 executables, 374–376
Win32 API, 2

history, 4
objects created through, 147

Win32 emulation on 64-bit Windows. 
See Wow64

Win32k .sys, 37
GUI thread priority boosts, 437–439
per-thread data structure, 392
routine definition, 153
W32PROCESS, 360

Win32PrioritySeparation registry value, 
428

Win32StartAddr, 394
Win32 subsystem process. See Csrss .exe 

(Client/Server Run-Time Subsystem)

user profiles
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WinDbg, 28, 399
debugger objects, viewing, 231
loaded modules database, dumping, 

239–241
windowing and graphics system, 37
window messages, integrity level and, 

529–530
Windows 7, 1–2

AppLocker, 583–588
client versions, 41
context, 245
security rating, 489
small-footprint versions, 100
vs . Windows Server 2008 R2, 41–43

Windows API, 2–4
description, 2
thread priority assignment, 410–411
user-mode APCs, 112

Windows API functions, defined, 4
Windows authentication, 77
Windows Biometric API, 564
Windows Biometric Driver Interface, 564
Windows Biometric Framework, 563–566
Windows Biometric Service, 564
Windows Boot Loader, 303
Windows Clustering, 267
Windows device drivers, 5. See 

also device drivers; drivers
Windows Diagnostic Infrastructure (WDI). 

See WDI (Windows Diagnostic 
Infrastructure)

Windows DLLs, 395
Windows Driver Foundation (WDF), 

64–65
Windows Driver Kit (WDK), 31

boost value recommendations, 433
Offreg .dll, 278

Windows Driver Model (WDM), 64
Windows Driver Model Windows 

Management Instrumentation 
routines, 55

Windows Embedded Standard 7, 100
Windows Error Reporting (WER). See WER 

(Windows Error Reporting)
Windows executables, 578
Windows executive. See executive, 

Windows
Windows File Protection, 356
Windows Filtering Platform (WFP), 

667–672
Windows Firewall

IPsec security and policy configuration, 
671

Windows Filtering Platform use, 669
Windows Firewall with Advanced Security 

snap-in, 672
Windows functions, narrow and wide 

versions, 24
Windows GDI services, 137–138
Windows global flags, 207–209
Windows image, opening, 373–485

Windows Initialization Process, 74
Windows installation image, 285
Windows internals

exploring, 25
exposing, 24–32
kernel debugging, 26–31
Performance Monitor, 25
tools for viewing, 25

Windows logon process, 77. See 
also logon

Windows Management Instrumentation 
(WMI). See WMI (Windows 
Management Instrumentation)

Windows Media Center Extender sessions, 
21

Windows Media Center interactive 
sessions, 21

Windows Media Certificate, 368
Windows Networking (WNet) API, 627
Windows NT, 4

driver model, 64
requirements of, 33

Windows operating system
checked build version, 45–46
client editions, 21
client vs . server versions, 41–44
Common Criteria certification, 489
core system files, 37
crash dump files, 28
debug version, 45–46
edition running, determining, 43
enlightenments, 248
hardware error architecture, 57
impersonation model, 217
integrity mechanism, 495
logon interface, 555
management mechansims, 277–358
MinWin version, 246
model, 34–35
networking support, 591–696
object-oriented design, 35
portability, 37–38
post-initialization operations, 383–385
priority levels, 410–416
processor share-based scheduling, 

470–478
registry, 23
releases, 1
requirements and design goals, 33–34
routine naming conventions, 67
scalability, 40–41
scheduling system, 408–410
security, 22, 536
security mechanisms, 487–590
SIDs, issuing, 498
system architecture, 33–78
TCSEC rating levels, 488
thread-based scheduling, 408–470
thread priority boosts, 411
Unicode, 24
versions, 1–2

version-specific GUID, 244
Windows API, 2
worldwide application binaries, 24

Windows PowerShell AppLocker 
commands, 584–585

Windows Server 2008 R2, 1–2
AppLocker, 583–588
security rating, 489
versions, 41
vs . Windows 7, 41–43

Windows service control manager, 4
Windows services, 305–336. See 

also services
defined, 4–5
DFS-R, 638
DNS server, 655
startup code, debugging, 374
virtual service accounts, 518–521

Windows Services MMC snap-in, 313
Windows Sockets, 597–603
Windows Software Development Kit (SDK)

contents, 31
Debugging Tools for Windows, 27
Windows API description, 2

Windows subsystem, 50–52
applications, 392
executive objects, 143
GDI/User objects, 142
object-based security, 23
process communication functions, 54
processes, creation, 369–485
process initialization, 383–412
thread setup, 398

Windows support images, 374
Windows Sysinternals Administrator’s 

Reference (Russinovich and 
Margosis), 32

Windows System Resource Manager 
(WSRM), 416

WindowStation objects, 144
okay-to-close routine, 155
open method, 154

window stations, 318
creating and opening, 556
Service-0x0-3e7$, 318
WinSta0, 318

Windows Transport Driver Interface 
standard, 594

Windows USER services, 137–138
Windows via C/C++ (Richter and Nasarre), 

2, 123, 188
windows, visible, 8
Windows XP, 583
WinHTTP, 610
WinInet, 557, 610

HTTP API, 610
instance of, 73

Winload startup tasks, 295
Winlogon, 78, 491

Ctrl+Alt+Delete key combination 
notification, 557
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Winlogon (continued)
desktop, 556, 557–558
initialization, 556–558
instance of, 73
logon coordination, 555
logon failure messages, 559
LsaAuthenticationPort connection, 557
RPC message server registration, 557
user logon steps, 558–562

WinObj, 140
ALPC port objects, viewing, 212–213
base names objects, viewing, 171–172
object ACLs, displaying, 163–164

Winsider Seminars & Solutions, 43
Winsock, 597–603

AcceptEx function, 599
client operation, 598
connection-oriented operation, 599
extending, 600
features, 597–598
Helper libraries, 602
implementation, 602–603
layered service providers, 600
namespace providers, viewing, 600–602
network communication authentication 

and encryption, 608
server operation, 598–599
service provider interface, 600
TransmitFile function, 599
transport providers, viewing, 600–602

Winsock 2 .2, 597
Winsock Kernel (WSK). See WSK (Winsock 

Kernel)
WinSta0, 173

opening, 326
WMI Administrative Tools, 346
Wmic .exe, 352–353
WMI CIM Studio, 346

namespaces, viewing, 348
WMI COM API, 344
WMI Object Browser, 350
Wmiprvse process, 351

creation, viewing, 352
WMI (Windows Management 

Instrumentation), 342–353
ActiveX controls, 344

architecture, 342–344
CIMOM Object Repository, 343
class association, 349–351
class definitions, 348
Common Information Model, 345–349
Control application, 353
implementation, 351–353
namespace, 348–349
provider classifications, 344–345
providers, 344–345
scripting API, 344
scripting language support, 351
security, 353
System Control commands, 352

WNetAddConnection2 and 
WNetAddConnection3 functions, 
628

WNetAddConnection function, 629
WNet provider, 628
worker factories, 403–407

thread creation, 403–404
thread termination, 404
viewing, 405–407

worker threads
allocation, 403
viewing, 406–407

work items, 205
Workstation service, 627
work-stealing loop, 468
world SIDs, 317
worldwide application binaries, 24
Wow64, 224–228

16-bit application support, 228
32-bit and 64-bit thread stacks, 401
address space for processes, 224–225
APC delivery, 225
architecture, 224
console support, 225
DLL versioning check, 237
exception dispatching, 225
file system redirection, 226
I/O control functions, 227–228
printer driver porting, 228
registry redirection, 227
restrictions, 228
system calls, 225

user callbacks, 226
user-mode DLLs, 224

Wow64Cpu .dll, 224
Wow64 .dll, 224
Wow64GetThreadContext function, 13
Wow64Win .dll, 224
Wow6432Node key, 227
Wowia32x .dll, 224
write-restricted SIDs, 317
write-restricted tokens, 316–317
WSK (Winsock Kernel), 595–597, 603–605

implementation, 604–605
WSRM (Windows System Resource 

Manager), 416

X
x64 architecture

interrupt controllers, 85
interrupt dispatch, 95–96
interrupt request levels, 87
system service dispatching, 133

x64 processors, 37
HAL image, 61
system code and data protection, 17

x86 architecture
exceptions and interrupt numbers, 124
HALs, 60
interrupt controllers, 84
interrupt request levels, 86
system code and data protection, 17
system service dispatching, 132–133

x86 interfaces, 60
Xperf Viewer, viewing DPC and ISR 

activity with, 110

Z
zero-copy file transmission, 599
zero page thread, 456
Zw versions of system calls, 136

Winlogon
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Introduction
Windows	Internals,	Sixth	Edition	is	intended	for	advanced	computer	professionals
(both	developers	and	system	administrators)	who	want	to	understand	how	the	core
components	of	the	Microsoft	Windows	7	and	Windows	Server	2008	R2	operating
systems	work	internally.	With	this	knowledge,	developers	can	better	comprehend
the	rationale	behind	design	choices	when	building	applications	specific	to	the
Windows	platform.	Such	knowledge	can	also	help	developers	debug	complex
problems.	System	administrators	can	benefit	from	this	information	as	well,	because
understanding	how	the	operating	system	works	“under	the	covers”	facilitates
understanding	the	performance	behavior	of	the	system	and	makes	troubleshooting
system	problems	much	easier	when	things	go	wrong.	After	reading	this	book,	you
should	have	a	better	understanding	of	how	Windows	works	and	why	it	behaves	as
it	does.



Structure	of	the	Book
For	the	first	time,	the	book	has	been	divided	in	two	parts.	This	was	done	to	get	the
information	out	more	quickly	since	it	takes	considerable	time	to	update	the	book
for	each	release	of	Windows.

Part	1	begins	with	two	chapters	that	define	key	concepts,	introduce	the	tools	used
in	the	book,	and	describe	the	overall	system	architecture	and	components.	The	next
two	chapters	present	key	underlying	system	and	management	mechanisms.	Part	1
wraps	up	by	covering	three	core	components	of	the	operating	system:	processes,
threads,	and	jobs;	security;	and	networking.

Part	2	covers	the	remaining	core	subsystems:	I/O,	storage,	memory	management,
the	cache	manager,	and	file	systems.	Part	2	concludes	with	a	description	of	the
startup	and	shutdown	processes	and	a	description	of	crash-dump	analysis.



History	of	the	Book
This	is	the	sixth	edition	of	a	book	that	was	originally	called	Inside	Windows	NT
(Microsoft	Press,	1992),	written	by	Helen	Custer	(prior	to	the	initial	release	of
Microsoft	Windows	NT	3.1).	Inside	Windows	NT	was	the	first	book	ever
published	about	Windows	NT	and	provided	key	insights	into	the	architecture	and
design	of	the	system.	Inside	Windows	NT,	Second	Edition	(Microsoft	Press,	1998)
was	written	by	David	Solomon.	It	updated	the	original	book	to	cover	Windows	NT
4.0	and	had	a	greatly	increased	level	of	technical	depth.

Inside	Windows	2000,	Third	Edition	(Microsoft	Press,	2000)	was	authored	by
David	Solomon	and	Mark	Russinovich.	It	added	many	new	topics,	such	as	startup
and	shutdown,	service	internals,	registry	internals,	file-system	drivers,	and
networking.	It	also	covered	kernel	changes	in	Windows	2000,	such	as	the	Windows
Driver	Model	(WDM),	Plug	and	Play,	power	management,	Windows	Management
Instrumentation	(WMI),	encryption,	the	job	object,	and	Terminal	Services.
Windows	Internals,	Fourth	Edition	was	the	Windows	XP	and	Windows	Server
2003	update	and	added	more	content	focused	on	helping	IT	professionals	make
use	of	their	knowledge	of	Windows	internals,	such	as	using	key	tools	from
Windows	Sysinternals	(	www.microsoft.com/technet/sysinternals)	and	analyzing
crash	dumps.	Windows	Internals,	Fifth	Edition	was	the	update	for	Windows	Vista
and	Windows	Server	2008.	New	content	included	the	image	loader,	user-mode
debugging	facility,	and	Hyper-V.

http://www.microsoft.com/technet/sysinternals


Sixth	Edition	Changes
This	latest	edition	has	been	updated	to	cover	the	kernel	changes	made	in	Windows
7	and	Windows	Server	2008	R2.	Hands-on	experiments	have	been	updated	to
reflect	changes	in	tools.



Hands-on	Experiments
Even	without	access	to	the	Windows	source	code,	you	can	glean	much	about
Windows	internals	from	tools	such	as	the	kernel	debugger	and	tools	from
Sysinternals	and	Winsider	Seminars	&	Solutions.	When	a	tool	can	be	used	to
expose	or	demonstrate	some	aspect	of	the	internal	behavior	of	Windows,	the	steps
for	trying	the	tool	yourself	are	listed	in	“EXPERIMENT”	boxes.	These	appear
throughout	the	book,	and	we	encourage	you	to	try	these	as	you’re	reading—seeing
visible	proof	of	how	Windows	works	internally	will	make	much	more	of	an
impression	on	you	than	just	reading	about	it	will.



Topics	Not	Covered
Windows	is	a	large	and	complex	operating	system.	This	book	doesn’t	cover
everything	relevant	to	Windows	internals	but	instead	focuses	on	the	base	system
components.	For	example,	this	book	doesn’t	describe	COM+,	the	Windows
distributed	object-oriented	programming	infrastructure,	or	the	Microsoft	.NET
Framework,	the	foundation	of	managed	code	applications.

Because	this	is	an	internals	book	and	not	a	user,	programming,	or	system
administration	book,	it	doesn’t	describe	how	to	use,	program,	or	configure
Windows.



A	Warning	and	a	Caveat
Because	this	book	describes	undocumented	behavior	of	the	internal	architecture
and	the	operation	of	the	Windows	operating	system	(such	as	internal	kernel
structures	and	functions),	this	content	is	subject	to	change	between	releases.
(External	interfaces,	such	as	the	Windows	API,	are	not	subject	to	incompatible
changes.)

By	“subject	to	change,”	we	don’t	necessarily	mean	that	details	described	in	this
book	will	change	between	releases,	but	you	can’t	count	on	them	not	changing.	Any
software	that	uses	these	undocumented	interfaces	might	not	work	on	future
releases	of	Windows.	Even	worse,	software	that	runs	in	kernel	mode	(such	as
device	drivers)	and	uses	these	undocumented	interfaces	might	experience	a	system
crash	when	running	on	a	newer	release	of	Windows.
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Chapter	8.	I/O	System
The	Windows	I/O	system	consists	of	several	executive	components	that	together
manage	hardware	devices	and	provide	interfaces	to	hardware	devices	for
applications	and	the	system.	In	this	chapter,	we’ll	first	list	the	design	goals	of	the
I/O	system,	which	have	influenced	its	implementation.	We’ll	then	cover	the
components	that	make	up	the	I/O	system,	including	the	I/O	manager,	Plug	and	Play
(PnP)	manager,	and	power	manager.	Then	we’ll	examine	the	structure	and
components	of	the	I/O	system	and	the	various	types	of	device	drivers.	We’ll	look	at
the	key	data	structures	that	describe	devices,	device	drivers,	and	I/O	requests,	after
which	we’ll	describe	the	steps	necessary	to	complete	I/O	requests	as	they	move
through	the	system.	Finally,	we’ll	present	the	way	device	detection,	driver
installation,	and	power	management	work.



I/O	System	Components
The	design	goals	for	the	Windows	I/O	system	are	to	provide	an	abstraction	of
devices,	both	hardware	(physical)	and	software	(virtual	or	logical),	to	applications
with	the	following	features:

Uniform	security	and	naming	across	devices	to	protect	shareable	resources.
(See	Chapter	6,	“Security,”	in	Part	1	for	a	description	of	the	Windows	security
model.)

High-performance	asynchronous	packet-based	I/O	to	allow	for	the
implementation	of	scalable	applications.

Services	that	allow	drivers	to	be	written	in	a	high-level	language	and	easily
ported	between	different	machine	architectures.

Layering	and	extensibility	to	allow	for	the	addition	of	drivers	that	transparently
modify	the	behavior	of	other	drivers	or	devices,	without	requiring	any	changes
to	the	driver	whose	behavior	or	device	is	modified.

Dynamic	loading	and	unloading	of	device	drivers	so	that	drivers	can	be	loaded
on	demand	and	not	consume	system	resources	when	unneeded.

Support	for	Plug	and	Play,	where	the	system	locates	and	installs	drivers	for
newly	detected	hardware,	assigns	them	hardware	resources	they	require,	and
also	allows	applications	to	discover	and	activate	device	interfaces.

Support	for	power	management	so	that	the	system	or	individual	devices	can
enter	low	power	states.

Support	for	multiple	installable	file	systems,	including	FAT,	the	CD-ROM	file
system	(CDFS),	the	Universal	Disk	Format	(UDF)	file	system,	and	the
Windows	file	system	(NTFS).	(See	Chapter	12,	for	more	specific	information
on	file	system	types	and	architecture.)

Windows	Management	Instrumentation	(WMI)	support	and	diagnosability	so
that	drivers	can	be	managed	and	monitored	through	WMI	applications	and
scripts.	(WMI	is	described	in	Chapter	4,	“Management	Mechanisms,”	in	Part
1.)

To	implement	these	features	the	Windows	I/O	system	consists	of	several	executive



components	as	well	as	device	drivers,	which	are	shown	in	Figure	8-1.

The	I/O	manager	is	the	heart	of	the	I/O	system.	It	connects	applications	and
system	components	to	virtual,	logical,	and	physical	devices,	and	it	defines	the
infrastructure	that	supports	device	drivers.

A	device	driver	typically	provides	an	I/O	interface	for	a	particular	type	of
device.	A	driver	is	a	software	module	that	interprets	high-level	commands,	such
as	read	or	write,	and	issues	low-level,	device-specific	commands,	such	as
writing	to	control	registers.	Device	drivers	receive	commands	routed	to	them	by
the	I/O	manager	that	are	directed	at	the	devices	they	manage,	and	they	inform
the	I/O	manager	when	those	commands	are	complete.	Device	drivers	often	use
the	I/O	manager	to	forward	I/O	commands	to	other	device	drivers	that	share	in
the	implementation	of	a	device’s	interface	or	control.

The	PnP	manager	works	closely	with	the	I/O	manager	and	a	type	of	device
driver	called	a	bus	driver	to	guide	the	allocation	of	hardware	resources	as	well
as	to	detect	and	respond	to	the	arrival	and	removal	of	hardware	devices.	The
PnP	manager	and	bus	drivers	are	responsible	for	loading	a	device’s	driver	when
the	device	is	detected.	When	a	device	is	added	to	a	system	that	doesn’t	have	an
appropriate	device	driver,	the	executive	Plug	and	Play	component	calls	on	the
device	installation	services	of	a	user-mode	PnP	manager.

The	power	manager	also	works	closely	with	the	I/O	manager	and	the	PnP
manager	to	guide	the	system,	as	well	as	individual	device	drivers,	through
power-state	transitions.

Windows	Management	Instrumentation	support	routines,	called	the	Windows
Driver	Model	(WDM)	WMI	provider,	allow	device	drivers	to	indirectly	act	as
providers,	using	the	WDM	WMI	provider	as	an	intermediary	to	communicate
with	the	WMI	service	in	user	mode.	(For	more	information	on	WMI,	see	the
section	“Windows	Management	Instrumentation”	in	Chapter	4	in	Part	1.)

The	registry	serves	as	a	database	that	stores	a	description	of	basic	hardware
devices	attached	to	the	system	as	well	as	driver	initialization	and	configuration
settings.	(See	“The	Registry”	section	in	Chapter	4	in	Part	1	for	more
information.)

INF	files,	which	are	designated	by	the	.inf	extension,	are	driver	installation	files.



INF	files	are	the	link	between	a	particular	hardware	device	and	the	driver	that
assumes	primary	control	of	the	device.	They	are	made	up	of	script-like
instructions	describing	the	device	they	correspond	to,	the	source	and	target
locations	of	driver	files,	required	driver-installation	registry	modifications,	and
driver	dependency	information.	Digital	signatures	that	Windows	uses	to	verify
that	a	driver	file	has	passed	testing	by	the	Microsoft	Windows	Hardware
Quality	Labs	(WHQL)	are	stored	in	.cat	files.	Digital	signatures	are	also	used	to
prevent	tampering	of	the	driver	or	its	INF	file.

The	hardware	abstraction	layer	(HAL)	insulates	drivers	from	the	specifics	of	the
processor	and	interrupt	controller	by	providing	APIs	that	hide	differences
between	platforms.	In	essence,	the	HAL	is	the	bus	driver	for	all	the	devices
soldered	onto	the	computer’s	motherboard	that	aren’t	controlled	by	other
drivers.

Figure	8-1.	I/O	system	components

The	I/O	Manager
The	I/O	manager	is	the	core	of	the	I/O	system	because	it	defines	the	orderly



framework,	or	model,	within	which	I/O	requests	are	delivered	to	device	drivers.
The	I/O	system	is	packet	driven.	Most	I/O	requests	are	represented	by	an	I/O
request	packet	(IRP),	which	travels	from	one	I/O	system	component	to	another.
(As	you’ll	discover	in	the	section	Fast	I/O,	fast	I/O	is	the	exception;	it	doesn’t	use
IRPs.)	The	design	allows	an	individual	application	thread	to	manage	multiple	I/O
requests	concurrently.	An	IRP	is	a	data	structure	that	contains	information
completely	describing	an	I/O	request.	(You’ll	find	more	information	about	IRPs	in
the	section	I/O	Request	Packets	later	in	the	chapter.)

The	I/O	manager	creates	an	IRP	in	memory	to	represent	an	I/O	operation,	passing
a	pointer	to	the	IRP	to	the	correct	driver	and	disposing	of	the	packet	when	the	I/O
operation	is	complete.	In	contrast,	a	driver	receives	an	IRP,	performs	the	operation
the	IRP	specifies,	and	passes	the	IRP	back	to	the	I/O	manager,	either	because	the
requested	I/O	operation	has	been	completed,	or	because	it	must	be	passed	on	to
another	driver	for	further	processing.

In	addition	to	creating	and	disposing	of	IRPs,	the	I/O	manager	supplies	code	that	is
common	to	different	drivers	and	that	the	drivers	can	call	to	carry	out	their	I/O
processing.	By	consolidating	common	tasks	in	the	I/O	manager,	individual	drivers
become	simpler	and	more	compact.	For	example,	the	I/O	manager	provides	a
function	that	allows	one	driver	to	call	other	drivers.	It	also	manages	buffers	for	I/O
requests,	provides	timeout	support	for	drivers,	and	records	which	installable	file
systems	are	loaded	into	the	operating	system.	There	are	close	to	one	hundred
different	routines	in	the	I/O	manager	that	can	be	called	by	device	drivers.

The	I/O	manager	also	provides	flexible	I/O	services	that	allow	environment
subsystems,	such	as	Windows	and	POSIX,	to	implement	their	respective	I/O
functions.	These	services	include	sophisticated	services	for	asynchronous	I/O	that
allow	developers	to	build	scalable,	high-performance	server	applications.

The	uniform,	modular	interface	that	drivers	present	allows	the	I/O	manager	to	call
any	driver	without	requiring	any	special	knowledge	of	its	structure	or	internal
details.	The	operating	system	treats	all	I/O	requests	as	if	they	were	directed	at	a
file;	the	driver	converts	the	requests	from	requests	made	to	a	virtual	file	to
hardware-specific	requests.	Drivers	can	also	call	each	other	(using	the	I/O
manager)	to	achieve	layered,	independent	processing	of	an	I/O	request.

Besides	providing	the	normal	open,	close,	read,	and	write	functions,	the	Windows



I/O	system	provides	several	advanced	features,	such	as	asynchronous,	direct,
buffered,	and	scatter/gather	I/O,	which	are	described	in	the	Types	of	I/O	section
later	in	this	chapter.

Typical	I/O	Processing
Most	I/O	operations	don’t	involve	all	the	components	of	the	I/O	system.	A	typical
I/O	request	starts	with	an	application	executing	an	I/O-related	function	(for
example,	reading	data	from	a	device)	that	is	processed	by	the	I/O	manager,	one	or
more	device	drivers,	and	the	HAL.

As	just	mentioned,	in	Windows,	threads	perform	I/O	on	virtual	files.	A	virtual	file
refers	to	any	source	or	destination	for	I/O	that	is	treated	as	if	it	were	a	file	(such	as
files,	directories,	pipes,	and	mailslots).	The	operating	system	abstracts	all	I/O
requests	as	operations	on	a	virtual	file,	because	the	I/O	manager	has	no	knowledge
of	anything	but	files,	therefore	making	it	the	responsibility	of	the	driver	to	translate
file-oriented	comments	(open,	close,	read,	write)	into	device-specific	commands.
This	abstraction	thereby	generalizes	an	application’s	interface	to	devices.	User-
mode	applications	(whether	Windows	or	POSIX)	call	documented	functions,
which	in	turn	call	internal	I/O	system	functions	to	read	from	a	file,	write	to	a	file,
and	perform	other	operations.	The	I/O	manager	dynamically	directs	these	virtual
file	requests	to	the	appropriate	device	driver.	Figure	8-2	illustrates	the	basic
structure	of	a	typical	I/O	request	flow.



Figure	8-2.	The	flow	of	a	typical	I/O	request

In	the	following	sections,	we’ll	look	at	these	components	more	closely,	covering
the	various	types	of	device	drivers,	how	they	are	structured,	how	they	load	and
initialize,	and	how	they	process	I/O	requests.	Then	we’ll	cover	the	operation	and
roles	of	the	PnP	manager	and	the	power	manager.



Device	Drivers
To	integrate	with	the	I/O	manager	and	other	I/O	system	components,	a	device
driver	must	conform	to	implementation	guidelines	specific	to	the	type	of	device	it
manages	and	the	role	it	plays	in	managing	the	device.	In	this	section,	we’ll	look	at
the	types	of	device	drivers	Windows	supports	as	well	as	the	internal	structure	of	a
device	driver.

Types	of	Device	Drivers
Windows	supports	a	wide	range	of	device	driver	types	and	programming
environments.	Even	within	a	type	of	device	driver,	programming	environments	can
differ,	depending	on	the	specific	type	of	device	for	which	a	driver	is	intended.	The
broadest	classification	of	a	driver	is	whether	it	is	a	user-mode	or	kernel-mode
driver.	Windows	supports	a	couple	of	types	of	user-mode	drivers:

Windows	subsystem	printer	drivers	translate	device-independent	graphics
requests	to	printer-specific	commands.	These	commands	are	then	typically
forwarded	to	a	kernel-mode	port	driver	such	as	the	universal	serial	bus	(USB)
printer	port	driver	(Usbprint.sys).

User-Mode	Driver	Framework	(UMDF)	drivers	are	hardware	device	drivers
that	run	in	user	mode.	They	communicate	to	the	kernel-mode	UMDF	support
library	through	ALPC.	See	the	User-Mode	Driver	Framework	(UMDF)	section
later	in	this	chapter	for	more	information.

In	this	chapter,	the	focus	is	on	kernel-mode	device	drivers.	There	are	many	types
of	kernel-mode	drivers,	which	can	be	divided	into	the	following	basic	categories:

File	system	drivers	accept	I/O	requests	to	files	and	satisfy	the	requests	by
issuing	their	own,	more	explicit,	requests	to	mass	storage	or	network	device
drivers.

Plug	and	Play	drivers	work	with	hardware	and	integrate	with	the	Windows
power	manager	and	PnP	manager.	They	include	drivers	for	mass	storage
devices,	video	adapters,	input	devices,	and	network	adapters.

Non–Plug	and	Play	drivers,	which	also	include	kernel	extensions,	are	drivers	or
modules	that	extend	the	functionality	of	the	system.	They	do	not	typically



integrate	with	the	PnP	or	power	managers	because	they	typically	do	not	manage
an	actual	piece	of	hardware.	Examples	include	network	API	and	protocol
drivers.	Process	Monitor’s	driver,	described	in	Chapter	4	in	Part	1,	is	also	an
example.

Within	the	category	of	kernel-mode	drivers	are	further	classifications	based	on	the
driver	model	that	the	driver	adheres	to	and	its	role	in	servicing	device	requests.

WDM	Drivers
WDM	drivers	are	device	drivers	that	adhere	to	the	Windows	Driver	Model
(WDM).	WDM	includes	support	for	Windows	power	management,	Plug	and	Play,
and	WMI,	and	most	Plug	and	Play	drivers	adhere	to	WDM.	There	are	three	types
of	WDM	drivers:

Bus	drivers	manage	a	logical	or	physical	bus.	Examples	of	buses	include
PCMCIA,	PCI,	USB,	and	IEEE	1394.	A	bus	driver	is	responsible	for	detecting
and	informing	the	PnP	manager	of	devices	attached	to	the	bus	it	controls	as
well	as	managing	the	power	setting	of	the	bus.

Function	drivers	manage	a	particular	type	of	device.	Bus	drivers	present	devices
to	function	drivers	via	the	PnP	manager.	The	function	driver	is	the	driver	that
exports	the	operational	interface	of	the	device	to	the	operating	system.	In
general,	it’s	the	driver	with	the	most	knowledge	about	the	operation	of	the
device.

Filter	drivers	logically	layer	either	above	or	below	function	drivers	(these	are
called	function	filters)	or	above	the	bus	driver	(these	are	called	bus	filters),
augmenting	or	changing	the	behavior	of	a	device	or	another	driver.	For	example,
a	keyboard	capture	utility	could	be	implemented	with	a	keyboard	filter	driver
that	layers	above	the	keyboard	function	driver.

In	WDM,	no	one	driver	is	responsible	for	controlling	all	aspects	of	a	particular
device.	The	bus	driver	is	responsible	for	detecting	bus	membership	changes	(device
addition	or	removal),	assisting	the	PnP	manager	in	enumerating	the	devices	on	the
bus,	accessing	bus-specific	configuration	registers,	and,	in	some	cases,	controlling
power	to	devices	on	the	bus.	The	function	driver	is	generally	the	only	driver	that
accesses	the	device’s	hardware.



Layered	Drivers
Support	for	an	individual	piece	of	hardware	is	often	divided	among	several	drivers,
each	providing	a	part	of	the	functionality	required	to	make	the	device	work
properly.	In	addition	to	WDM	bus	drivers,	function	drivers,	and	filter	drivers,
hardware	support	might	be	split	between	the	following	components:

Class	drivers	implement	the	I/O	processing	for	a	particular	class	of	devices,	such
as	disk,	keyboard,	or	CD-ROM,	where	the	hardware	interfaces	have	been
standardized,	so	one	driver	can	serve	devices	from	a	wide	variety	of
manufacturers.

Miniclass	drivers	implement	I/O	processing	that	is	vendor-defined	for	a
particular	class	of	devices.	For	example,	although	there	is	a	standardized	battery
class	driver	written	by	Microsoft,	both	uninterruptible	power	supplies	(UPS)
and	laptop	batteries	have	highly	specific	interfaces	that	differ	wildly	between
manufacturers,	such	that	a	miniclass	is	required	from	the	vendor.	Miniclass
drivers	are	essentially	kernel-mode	DLLs	and	do	not	do	IRP	processing	directly
—the	class	driver	calls	into	them,	and	they	import	functions	from	the	class
driver.

Port	drivers	implement	the	processing	of	an	I/O	request	specific	to	a	type	of	I/O
port,	such	as	SATA,	and	are	implemented	as	kernel-mode	libraries	of	functions
rather	than	actual	device	drivers.	Port	drivers	are	almost	always	written	by
Microsoft	because	the	interfaces	are	typically	standardized	in	such	a	way	that
different	vendors	can	still	share	the	same	port	driver.	However,	in	certain	cases,
third	parties	may	need	to	write	their	own	for	specialized	hardware.	In	some
cases,	the	concept	of	“I/O	port”	extends	to	cover	logical	ports	as	well.	For
example,	NDIS	is	the	network	“port”	driver,	and	Dxgport/Videoprt	are	the
DirectX/video	“port”	drivers.

Miniport	drivers	map	a	generic	I/O	request	to	a	type	of	port	into	an	adapter
type,	such	as	a	specific	network	adapter.	Miniport	drivers	are	actual	device
drivers	that	import	the	functions	supplied	by	a	port	driver.	Miniport	drivers	are
written	by	third	parties,	and	they	provide	the	interface	for	the	port	driver.	Like
miniclass	drivers,	they	are	kernel-mode	DLLs	and	do	not	do	IRP	processing
directly.



A	simplified	example	for	illustrative	purposes	will	help	demonstrate	how	device
drivers	work	at	a	high	level.	A	file	system	driver	accepts	a	request	to	write	data	to	a
certain	location	within	a	particular	file.	It	translates	the	request	into	a	request	to
write	a	certain	number	of	bytes	to	the	disk	at	a	particular	(that	is,	the	logical)
location.	It	then	passes	this	request	(via	the	I/O	manager)	to	a	simple	disk	driver.
The	disk	driver,	in	turn,	translates	the	request	into	a	physical	location	on	the	disk
and	communicates	with	the	disk	to	write	the	data.	This	layering	is	illustrated	in
Figure	8-3.

Figure	8-3.	Layering	of	a	file	system	driver	and	a	disk	driver

This	figure	illustrates	the	division	of	labor	between	two	layered	drivers.	The	I/O
manager	receives	a	write	request	that	is	relative	to	the	beginning	of	a	particular	file.
The	I/O	manager	passes	the	request	to	the	file	system	driver,	which	translates	the
write	operation	from	a	file-relative	operation	to	a	starting	location	(a	sector



boundary	on	the	disk)	and	a	number	of	bytes	to	write.	The	file	system	driver	calls
the	I/O	manager	to	pass	the	request	to	the	disk	driver,	which	translates	the	request
to	a	physical	disk	location	and	transfers	the	data.

Because	all	drivers—both	device	drivers	and	file	system	drivers—present	the	same
framework	to	the	operating	system,	another	driver	can	easily	be	inserted	into	the
hierarchy	without	altering	the	existing	drivers	or	the	I/O	system.	For	example,
several	disks	can	be	made	to	seem	like	a	very	large	single	disk	by	adding	a	driver.
This	logical,	volume	manager	driver	is	located	between	the	file	system	and	the	disk
drivers,	as	shown	in	the	conceptual,	simplified	architectural	diagram	presented	in
Figure	8-4.	(For	the	actual	storage	driver	stack	diagram,	see	Figure	9-3	in
Chapter	9).	Volume	manager	drivers	are	described	in	more	detail	in	Chapter	9.



Figure	8-4.	Adding	a	layered	driver

EXPERIMENT:	VIEWING	THE	LOADED	DRIVER	LIST

You	can	see	a	list	of	registered	drivers	by	executing	the	Msinfo32.exe	utility	from	the	Run	dialog	box	of	the
Start	menu.	Select	the	System	Drivers	entry	under	Software	Environment	to	see	the	list	of	drivers
configured	on	the	system.	Those	that	are	loaded	have	the	text	“Yes”	in	the	Started	column,	as	shown	here:



You	can	also	view	the	list	of	loaded	kernel-mode	drivers	with	Process	Explorer	from	Windows	Sysinternals
(http://www.microsoft.com/technet/sysinternals).	Run	Process	Explorer,	select	the	System	process,	and
select	DLLs	from	the	Lower	Pane	View	menu	entry	in	the	View	menu:

Process	Explorer	lists	the	loaded	drivers,	their	names,	version	information	(including	company	and
description),	and	load	address	(assuming	you	have	configured	Process	Explorer	to	display	the	corresponding
columns).

Finally,	if	you’re	looking	at	a	crash	dump	(or	live	system)	with	the	kernel	debugger,	you	can	get	a	similar
display	with	the	kernel	debugger	lm	kv	command:

lkd> lm kv
start    end        module name
82007000 823c0000   nt         (pdb symbols)
c:\programming\symbols\ntkrpamp.pdb\37D328E3BAE5460F8E662756ED80951D2\ntkrpamp.pdb

http://www.microsoft.com/technet/sysinternals


    Loaded symbol image file: ntkrpamp.exe
    Image path: ntkrpamp.exe
    Image name: ntkrpamp.exe
    Timestamp:        Fri Jan 18 21:30:58 2008 (47918B12)
    CheckSum:         00372038
    ImageSize:        003B9000
    File version:     6.0.6001.18000
    Product version:  6.0.6001.18000
    File flags:       0 (Mask 3F)
    File OS:          40004 NT Win32
    File type:        1.0 App
    File date:        00000000.00000000
    Translations:     0409.04b0
    CompanyName:      Microsoft Corporation
    ProductName:      Microsoft® Windows® Operating System
    InternalName:     ntkrpamp.exe
    OriginalFilename: ntkrpamp.exe
    ProductVersion:   6.0.6001.18000
    FileVersion:      6.0.6001.18000 (longhorn_rtm.080118-1840)
    FileDescription:  NT Kernel & System
    LegalCopyright:   © Microsoft Corporation. All rights reserved.
823c0000 823f3000   hal        (deferred)
    Image path: halmacpi.dll
    Image name: halmacpi.dll
    Timestamp:        Fri Jan 18 21:27:20 2008 (47918A38)
    CheckSum:         0003859F
    ImageSize:        00033000
    Translations:     0000.04b0 0000.04e0 0409.04b0 0409.04e0
82600000 82671000   ksecdd     (deferred)
    Image path: \SystemRoot\System32\Drivers\ksecdd.sys
    Image name: ksecdd.sys
    Timestamp:        Fri Jan 18 21:41:20 2008 (47918D80)
    CheckSum:         0006E742
    ImageSize:        00071000
    Translations:     0000.04b0 0000.04e0 0409.04b0 0409.04e0

Structure	of	a	Driver
The	I/O	system	drives	the	execution	of	device	drivers.	Device	drivers	consist	of	a
set	of	routines	that	are	called	to	process	the	various	stages	of	an	I/O	request.
Figure	8-5	illustrates	the	key	driver-function	routines.



Figure	8-5.	Primary	device	driver	routines

An	initialization	routine	The	I/O	manager	executes	a	driver’s	initialization
routine,	which	is	set	by	the	WDK	to	GSDriverEntry,	when	it	loads	the	driver
into	the	operating	system.	GSDriverEntry	initializes	the	compiler’s	protection
against	stack-overflow	errors	(called	a	cookie)	and	then	calls	DriverEntry,
which	is	what	the	driver	writer	must	implement.	The	routine	fills	in	system	data
structures	to	register	the	rest	of	the	driver’s	routines	with	the	I/O	manager	and
performs	any	global	driver	initialization	that’s	necessary.

An	add-device	routine	A	driver	that	supports	Plug	and	Play	implements	an
add-device	routine.	The	PnP	manager	sends	a	notification	to	the	driver	via	this
routine	whenever	a	device	for	which	the	driver	is	responsible	is	detected.	In	this
routine,	a	driver	typically	creates	a	device	object	(described	later	in	this	chapter)
to	represent	the	device.

A	set	of	dispatch	routines	Dispatch	routines	are	the	main	entry	points	that	a
device	driver	provides.	Some	examples	are	open,	close,	read,	and	write	and	any
other	capabilities	the	device,	file	system,	or	network	supports.	When	called	on
to	perform	an	I/O	operation,	the	I/O	manager	generates	an	IRP	and	calls	a
driver	through	one	of	the	driver’s	dispatch	routines.

A	start	I/O	routine	A	driver	can	use	a	start	I/O	routine	to	initiate	a	data
transfer	to	or	from	a	device.	This	routine	is	defined	only	in	drivers	that	rely	on
the	I/O	manager	to	queue	their	incoming	I/O	requests.	The	I/O	manager



serializes	IRPs	for	a	driver	by	ensuring	that	the	driver	processes	only	one	IRP	at
a	time.	Drivers	can	process	multiple	IRPs	concurrently,	but	serialization	is
usually	required	for	most	devices	because	they	cannot	concurrently	handle
multiple	I/O	requests.

An	interrupt	service	routine	(ISR)	When	a	device	interrupts,	the	kernel’s
interrupt	dispatcher	transfers	control	to	this	routine.	In	the	Windows	I/O	model,
ISRs	run	at	device	interrupt	request	level	(DIRQL),	so	they	perform	as	little
work	as	possible	to	avoid	blocking	lower	IRQL	interrupts.	(See	Chapter	3,
“System	Mechanisms,”	in	Part	1	for	more	information	on	IRQLs.)	An	ISR
usually	queues	a	deferred	procedure	call	(DPC),	which	runs	at	a	lower	IRQL
(DPC/dispatch	level),	to	execute	the	remainder	of	interrupt	processing.	(Only
drivers	for	interrupt-driven	devices	have	ISRs;	a	file	system	driver,	for	example,
doesn’t	have	one.)

An	interrupt-servicing	DPC	routine	A	DPC	routine	performs	most	of	the
work	involved	in	handling	a	device	interrupt	after	the	ISR	executes.	The	DPC
routine	executes	at	a	lower	IRQL	(DPC/dispatch	level)	than	that	of	the	ISR,
which	runs	at	device	level,	to	avoid	blocking	other	interrupts.	A	DPC	routine
initiates	I/O	completion	and	starts	the	next	queued	I/O	operation	on	a	device.

Although	the	following	routines	aren’t	shown	in	Figure	8-5,	they’re	found	in	many
types	of	device	drivers:

One	or	more	I/O	completion	routines	A	layered	driver	might	have	I/O
completion	routines	that	will	notify	it	when	a	lower-level	driver	finishes
processing	an	IRP.	For	example,	the	I/O	manager	calls	a	file	system	driver’s	I/O
completion	routine	after	a	device	driver	finishes	transferring	data	to	or	from	a
file.	The	completion	routine	notifies	the	file	system	driver	about	the	operation’s
success,	failure,	or	cancellation,	and	it	allows	the	file	system	driver	to	perform
cleanup	operations.

A	cancel	I/O	routine	If	an	I/O	operation	can	be	canceled,	a	driver	can	define
one	or	more	cancel	I/O	routines.	When	the	driver	receives	an	IRP	for	an	I/O
request	that	can	be	canceled,	it	assigns	a	cancel	routine	to	the	IRP,	and	as	the
IRP	goes	through	various	stages	of	processing,	this	routine	can	change,	or
outright	disappear,	if	the	current	operation	is	not	cancellable.	If	a	thread	that
issues	an	I/O	request	exits	before	the	request	is	completed	or	cancels	the



operation	(with	the	CancelIo	Windows	function,	for	example),	the	I/O	manager
executes	the	IRP’s	cancel	routine	if	one	is	assigned	to	it.	A	cancel	routine	is
responsible	for	performing	whatever	steps	are	necessary	to	release	any
resources	acquired	during	the	processing	that	has	already	taken	place	for	the
IRP	as	well	as	for	completing	the	IRP	with	a	canceled	status.

Fast	dispatch	routines	Drivers	that	make	use	of	the	cache	manager	in
Windows	(see	Chapter	11,	for	more	information	on	the	cache	manager),	such
as	file	system	drivers,	typically	provide	these	routines	to	allow	the	kernel	to
bypass	typical	I/O	processing	when	accessing	the	driver.	For	example,
operations	such	as	reading	or	writing	can	be	quickly	performed	by	accessing	the
cached	data	directly,	instead	of	taking	the	I/O	manager’s	usual	path	that
generates	discrete	I/O	operations.	Fast	dispatch	routines	are	also	used	as	a
mechanism	for	callbacks	from	the	memory	manager	and	cache	manager	to	file
system	drivers.	For	instance,	when	creating	a	section,	the	memory	manager	calls
back	into	the	file	system	driver	to	acquire	the	file	exclusively.

An	unload	routine	An	unload	routine	releases	any	system	resources	a	driver	is
using	so	that	the	I/O	manager	can	remove	the	driver	from	memory.	Any
resources	acquired	in	the	initialization	routine	(DriverEntry)	are	usually
released	in	the	unload	routine.	A	driver	can	be	loaded	and	unloaded	while	the
system	is	running	if	the	driver	supports	it,	but	the	unload	routine	will	be	called
only	after	all	file	handles	to	the	device	are	closed.

A	system	shutdown	notification	routine	This	routine	allows	driver	cleanup
on	system	shutdown.

Error-logging	routines	When	unexpected	errors	occur	(for	example,	when	a
disk	block	goes	bad),	a	driver’s	error-logging	routines	note	the	occurrence	and
notify	the	I/O	manager.	The	I/O	manager	writes	this	information	to	an	error	log
file.

NOTE

Most	kernel-mode	device	drivers	are	written	in	C.	Starting	with	the	Windows	Driver	Kit	8.0,	drivers	can
also	be	safely	written	in	C++	due	to	specific	support	for	kernel-mode	C++	in	the	new	compilers.	Use	of
assembly	language	is	highly	discouraged	because	of	the	complexity	it	introduces	and	its	effect	of	making	a
driver	difficult	to	port	between	hardware	architectures	such	as	the	x86,	x64,	and	IA64.



Driver	Objects	and	Device	Objects
When	a	thread	opens	a	handle	to	a	file	object	(described	in	the	I/O	Processing
section	later	in	this	chapter),	the	I/O	manager	must	determine	from	the	file	object’s
name	which	driver	it	should	call	to	process	the	request.	Furthermore,	the	I/O
manager	must	be	able	to	locate	this	information	the	next	time	a	thread	uses	the
same	file	handle.	The	following	system	objects	fill	this	need:

A	driver	object	represents	an	individual	driver	in	the	system.	The	I/O	manager
obtains	the	address	of	each	of	the	driver’s	dispatch	routines	(entry	points)	from
the	driver	object.

A	device	object	represents	a	physical	or	logical	device	on	the	system	and
describes	its	characteristics,	such	as	the	alignment	it	requires	for	buffers	and	the
location	of	its	device	queue	to	hold	incoming	IRPs.	It	is	the	target	for	all	I/O
operations	because	this	object	is	what	the	handle	communicates	with.

The	I/O	manager	creates	a	driver	object	when	a	driver	is	loaded	into	the	system,
and	it	then	calls	the	driver’s	initialization	routine	(DriverEntry),	which	fills	in	the
object	attributes	with	the	driver’s	entry	points.

At	any	time	after	loading,	a	driver	creates	device	objects	to	represent	logical	or
physical	devices,	or	even	a	logical	interface	or	endpoint	to	the	driver,	by	calling
IoCreateDevice	or	IoCreateDeviceSecure.	However,	most	Plug	and	Play	drivers
create	devices	with	their	add-device	routine	when	the	PnP	manager	informs	them
of	the	presence	of	a	device	for	them	to	manage.	Non–Plug	and	Play	drivers,	on	the
other	hand,	usually	create	device	objects	when	the	I/O	manager	invokes	their
initialization	routine.	The	I/O	manager	unloads	a	driver	when	the	driver’s	last
device	object	has	been	deleted	and	no	references	to	the	driver	remain.

When	a	driver	creates	a	device	object,	the	driver	can	optionally	assign	the	device	a
name.	A	name	places	the	device	object	in	the	object	manager	namespace,	and	a
driver	can	either	explicitly	define	a	name	or	let	the	I/O	manager	autogenerate	one.
(The	object	manager	namespace	is	described	in	Chapter	3	in	Part	1.)	By
convention,	device	objects	are	placed	in	the	\Device	directory	in	the	namespace,
which	is	inaccessible	by	applications	using	the	Windows	API.

NOTE



Some	drivers	place	device	objects	in	directories	other	than	\Device.	For	example,	the	IDE	driver	creates	the
device	objects	that	represent	IDE	ports	and	channels	in	the	\Device\Ide	directory.	See	Chapter	9	for	a
description	of	storage	architecture,	including	the	way	storage	drivers	use	device	objects.

If	a	driver	needs	to	make	it	possible	for	applications	to	open	the	device	object,	it
must	create	a	symbolic	link	in	the	\Global??	directory	to	the	device	object’s	name
in	the	\Device	directory.	(See	Chapter	3	in	Part	1	for	more	information	on	\??.)
Non–Plug	and	Play	and	file	system	drivers	typically	create	a	symbolic	link	with	a
well-known	name	(for	example,	\Device\Hardware2).	Because	well-known	names
don’t	work	well	in	an	environment	in	which	hardware	appears	and	disappears
dynamically,	PnP	drivers	expose	one	or	more	interfaces	by	calling	the
IoRegisterDeviceInterface	function,	specifying	a	GUID	(globally	unique	identifier)
that	represents	the	type	of	functionality	exposed.	GUIDs	are	128-bit	values	that
you	can	generate	by	using	a	tool	called	Uuidgen,	which	is	included	with	the	WDK
and	the	Windows	SDK.	Given	the	range	of	values	that	128	bits	represents,	it’s
statistically	almost	certain	that	each	GUID	that	Uuidgen	creates	will	be	forever	and
globally	unique.

IoRegisterDeviceInterface	generates	the	symbolic	link	associated	with	a	device
instance;	however,	a	driver	must	call	IoSetDeviceInterfaceState	to	enable	the
interface	to	the	device	before	the	I/O	manager	actually	creates	the	link.	Drivers
usually	do	this	when	the	PnP	manager	starts	the	device	by	sending	the	driver	a
start-device	IRP—in	this	case,	IRP_MJ_PNP,	IRP_MN_START_DEVICE.

An	application	wanting	to	open	a	device	object	whose	interfaces	are	represented
with	a	GUID	can	call	Plug	and	Play	setup	functions	in	user	space,	such	as
SetupDiEnumDeviceInterfaces,	to	enumerate	the	interfaces	present	for	a	particular
GUID	and	to	obtain	the	names	of	the	symbolic	links	it	can	use	to	open	the	device
objects.	For	each	device	reported	by	SetupDiEnumDeviceInterfaces,	an	application
executes	SetupDiGetDeviceInterfaceDetail	to	obtain	additional	information	about
the	device,	such	as	its	autogenerated	name.	After	obtaining	a	device’s	name	from
SetupDiGetDeviceInterfaceDetail,	the	application	can	execute	the	Windows
function	CreateFile	to	open	the	device	and	obtain	a	handle.

EXPERIMENT:	LOOKING	AT	DEVICE	OBJECTS

You	can	use	the	WinObj	tool	from	Sysinternals	or	the	!object	kernel	debugger	command	to	view	the	device
names	under	\Device	in	the	object	manager	namespace.	The	following	screen	shot	shows	an	I/O	manager–



assigned	symbolic	link	that	points	to	a	device	object	in	\Device	with	an	autogenerated	name:

When	you	run	the	!object	kernel	debugger	command	and	specify	the	\Device	directory,	you	should	see
output	similar	to	the	following:

lkd> !object \Device
Object: 8b611b88  Type: (84d10d40) Directory
    ObjectHeader: 8b611b70 (old version)
    HandleCount: 0  PointerCount: 365
    Directory Object: 8b602470  Name: Device

    Hash Address  Type          Name
    ---- -------  ----          ----
     00  85557a00 Device        KsecDD
         855589d8 Device        Ndis
         8b6151b0 SymbolicLink  {941D252A-0BDA-4772-B3CB-30697579BD4A}
         86859030 Device        0000009b
         88c92da8 Device        SrvNet
         886723f0 Device        Beep
         8b71fb90 SymbolicLink  ScsiPort2
         84d17a98 Device        00000032
         84d15f00 Device        00000025
         84d13030 Device        00000019
     01  86d44030 Device        NDMP10
         8d291eb0 SymbolicLink  {E85EEE75-32E3-4A94-8905-52709C2C9BCC}
         886da3c8 Device        Netbios
         86862030 Device        0000009c
         84d177c8 Device        00000033
         84d15c70 Device        00000026
     02  86de9030 Device        NDMP11
         84d19320 Device        00000040
         88633ca0 Device        NetBT_Tcpip_{033C65A4-C1D6-4824-B420-
DDAEADFF873E}
         8b7dcdd0 SymbolicLink  Ip
         84d17500 Device        00000034
         84d159a8 Device        00000027
     03  86df3380 Device        NDMP12
         8515ede0 Device        WMIAdminDevice
         84d1a030 Device        00000041
         8862e040 Device        Video0



         86eaec28 Device        KeyboardClass0
         84d03b00 Device        KMDF0
         84d17230 Device        00000035
         84d156e0 Device        00000028
     04  86e0d030 Device        NDMP13
         86e65030 Device        NDMP20
         85541030 Device        VolMgrControl
         86e6c358 Device        Tun0
         84d1ad68 Device        00000042
         8862ec48 Device        Video1
         88e15158 Device        0000009f
         9badd848 SymbolicLink  MailslotRedirector
         86e1d488 Device        KeyboardClass1
    ...

When	you	enter	the	!object	command	and	specify	an	object	manager	directory	object,	the	kernel	debugger
dumps	the	contents	of	the	directory	according	to	the	way	the	object	manager	organizes	it	internally.	For	fast
lookups,	a	directory	stores	objects	in	a	hash	table	based	on	a	hash	of	the	object	names,	so	the	output	shows
the	objects	stored	in	each	bucket	of	the	directory’s	hash	table.

As	Figure	8-6	illustrates,	a	device	object	points	back	to	its	driver	object,	which	is
how	the	I/O	manager	knows	which	driver	routine	to	call	when	it	receives	an	I/O
request.	It	uses	the	device	object	to	find	the	driver	object	representing	the	driver
that	services	the	device.	It	then	indexes	into	the	driver	object	by	using	the	function
code	supplied	in	the	original	request;	each	function	code	corresponds	to	a	driver
entry	point.	(The	function	codes	shown	in	Figure	8-6	are	described	in	the	section
IRP	Stack	Locations	later	in	this	chapter.)

A	driver	object	often	has	multiple	device	objects	associated	with	it.	The	list	of
device	objects	represents	the	physical	or	logical	devices	that	the	driver	controls.	For
example,	each	partition	of	a	hard	disk	has	a	separate	device	object	that	contains
partition-specific	information.	However,	the	same	hard	disk	driver	is	used	to	access
all	partitions.	When	a	driver	is	unloaded	from	the	system,	the	I/O	manager	uses	the
queue	of	device	objects	to	determine	which	devices	will	be	affected	by	the	removal
of	the	driver.



Figure	8-6.	The	driver	object

EXPERIMENT:	DISPLAYING	DRIVER	AND	DEVICE	OBJECTS

You	can	display	driver	and	device	objects	with	the	kernel	debugger	!drvobj	and	!devobj	commands,
respectively.	In	the	following	example,	the	driver	object	for	the	keyboard	class	driver	is	examined,	and	its
lone	device	object	viewed:

lkd> !drvobj kbdclass
Driver object (86e379a0) is for:
 \Driver\kbdclass
Driver Extension List: (id , addr)

Device Object list:
86e1d488  86eaec28

lkd> !devobj 86eaec28
Device object (86eaec28) is for:
 KeyboardClass0 \Driver\kbdclass DriverObject 86e379a0
Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044
DevExt 86eaece0 DevObjExt 86eaedc0
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
AttachedDevice (Upper) 86e15a40 \Driver\ctrl2cap
AttachedTo (Lower) 86e15020 \Driver\i8042prt
Device queue is not busy

Notice	that	the	!devobj	command	also	shows	you	the	addresses	and	names	of	any	device	objects	that	the
object	you’re	viewing	is	layered	over	(the	AttachedTo	line)	as	well	as	the	device	objects	layered	on	top	of
the	object	specified	(the	AttachedDevice	line).

Using	objects	to	record	information	about	drivers	means	that	the	I/O	manager



doesn’t	need	to	know	details	about	individual	drivers.	The	I/O	manager	merely
follows	a	pointer	to	locate	a	driver,	thereby	providing	a	layer	of	portability	and
allowing	new	drivers	to	be	loaded	easily.

Opening	Devices
A	file	object	is	a	kernel-mode	data	structure	that	represents	a	handle	to	a	device.
File	objects	clearly	fit	the	criteria	for	objects	in	Windows:	they	are	system
resources	that	two	or	more	user-mode	processes	can	share,	they	can	have	names,
they	are	protected	by	object-based	security,	and	they	support	synchronization.
Shared	resources	in	the	I/O	system,	like	those	in	other	components	of	the	Windows
executive,	are	manipulated	as	objects.	(See	Chapter	3	in	Part	1	for	a	description	of
the	object	manager	and	Chapter	6	in	Part	1	for	information	on	object	security.)

File	objects	provide	a	memory-based	representation	of	resources	that	conform	to
an	I/O-centric	interface,	in	which	they	can	be	read	from	or	written	to.	Table	8-1
lists	some	of	the	file	object’s	attributes.	For	specific	field	declarations	and	sizes,	see
the	structure	definition	for	FILE_OBJECT	in	WDM.h.

Table	8-1.	File	Object	Attributes

Attribute Purpose

File	name Identifies	the	physical	file	that	the	file	object	refers	to,	which	was	passed	in	to	the
CreateFile	API.

Current	byte
offset

Identifies	the	current	location	in	the	file	(valid	only	for	synchronous	I/O).

Share	modes Indicate	whether	other	callers	can	open	the	file	for	read,	write,	or	delete
operations	while	the	current	caller	is	using	it.

Open	mode
flags

Indicate	whether	I/O	will	be	synchronous	or	asynchronous,	cached	or	noncached,
sequential	or	random,	and	so	on.

Pointer	to
device	object

Indicates	the	type	of	device	the	file	resides	on.

Pointer	to	the
volume
parameter
block	(VPB)

Indicates	the	volume,	or	partition,	that	the	file	resides	on.



Pointer	to
section	object
pointers

Indicates	a	root	structure	that	describes	a	mapped/cached	file.	This	structure	also
contains	the	shared	cache	map,	which	identifies	which	parts	of	the	file	are	cached
(or	rather	mapped)	by	the	cache	manager	and	where	they	reside	in	the	cache.

Pointer	to
private	cache
map

Used	to	store	per-handle	caching	information	such	as	the	read	patterns	for	this
handle	or	the	page	priority	for	the	process.	See	Chapter	10,	for	more	information
on	page	priority.

List	of	I/O
request
packets	(IRPs)

If	thread-agnostic	I/O	is	used	(to	be	described	later)	and	the	file	object	is
associated	with	a	completion	port	(also	described	later),	this	is	a	list	of	all	the	I/O
operations	that	are	associated	with	this	file	object.

I/O
completion
context

Context	information	for	the	current	I/O	completion	port,	if	one	is	active.

File	object
extension

Stores	the	I/O	priority	(explained	later	in	this	chapter)	for	the	file	and	whether
share-access	checks	should	be	performed	on	the	file	object,	and	contains	optional
file	object	extensions	that	store	context-specific	information.

To	maintain	some	level	of	opacity	toward	driver	code	that	uses	the	file	object,	as
well	as	to	enable	extending	the	file	object	functionality	without	enlarging	the
structure,	the	file	object	also	contains	an	extension	field,	which	allows	for	up	to	six
different	kinds	of	additional	attributes.	These	are	described	in	Table	8-2.

Table	8-2.	File	Object	Extensions

Extension Purpose

Transaction
parameters

Contains	the	transaction	parameter	block,	which	contains	information	about	a
transacted	file	operation.	Returned	by	IoGetTransactionParameterBlock.

Device
object	hint

Identifies	the	device	object	of	the	filter	driver	with	which	this	file	should	be
associated.	Set	with	IoCreateFileEx	or	IoCreateFileSpecifyDeviceObjectHint.

I/O	status
block	range

Allows	applications	to	lock	a	user-mode	buffer	into	kernel-mode	memory	to
optimize	asynchronous	I/Os.	See	the	section	on	I/O	completion	port	optimizations
later	in	this	chapter.	Set	with	SetFileIoOverlappedRange.

Generic Contains	filter-driver-specific	information,	as	well	as	extended	create	parameters
(ECP)	that	were	added	by	the	caller.	Set	with	IoCreateFileEx.

Scheduled
file	I/O

Stores	a	file’s	bandwidth	reservation	information,	which	is	used	by	the	storage
system	to	optimize	and	guarantee	throughput	for	multimedia	applications.	See	the
section	on	bandwidth	reservation	later	in	this	chapter.	Set	with
SetFileBandwidthReservation.



Symbolic
link

Added	to	the	file	object	upon	creation,	when	a	mount	point	or	directory	junction	is
traversed	(or	a	filter	explicitly	reparses	the	path).	It	stores	the	caller-supplied	path,
including	information	about	any	intermediate	junctions,	so	that	if	a	relative	symbolic
link	is	hit,	it	can	walk	back	through	the	junctions.	See	Chapter	12	for	more
information	on	NTFS	symbolic	links,	mount	points,	and	directory	junctions.

When	a	caller	opens	a	file	or	a	simple	device,	the	I/O	manager	returns	a	handle	to	a
file	object.	Figure	8-7	illustrates	what	occurs	when	a	file	is	opened.

In	this	example,	(1)	a	C	program	calls	the	run-time	library	function	fopen,	which	in
turn	(2)	calls	the	Windows	CreateFile	function.	The	Windows	subsystem	DLL	(in
this	case,	Kernel32.dll)	then	(3)	calls	the	native	NtCreateFile	function	in	Ntdll.dll.
The	routine	in	Ntdll.dll	contains	the	appropriate	instruction	to	cause	a	transition
into	kernel	mode	to	the	system	service	dispatcher,	which	then	(4)	calls	the	real
NtCreateFile	routine	in	Ntoskrnl.exe.	(See	Chapter	3	in	Part	1	for	more
information	about	system	service	dispatching.)	Finally,	this	routine	wraps	the
parameters	and	flags	in	such	a	way	that	the	I/O	manager	function	IoCreateFile	can
actually	perform	the	operation.

NOTE

File	objects	represent	open	instances	of	files,	not	files	themselves.	Unlike	UNIX	systems,	which	use	vnodes,
Windows	does	not	define	the	representation	of	a	file;	Windows	file	system	drivers	define	their	own
representations.



Figure	8-7.	Opening	a	file	object

Similar	to	executive	objects,	files	are	protected	by	a	security	descriptor	that
contains	an	access	control	list	(ACL).	The	I/O	manager	consults	the	security
subsystem	to	determine	whether	a	file’s	ACL	allows	the	process	to	access	the	file
in	the	way	its	thread	is	requesting.	If	it	does	(5,	6),	the	object	manager	grants	the
access	and	associates	the	granted	access	rights	with	the	file	handle	that	it	returns.	If
this	thread	or	another	thread	in	the	process	needs	to	perform	additional	operations
not	specified	in	the	original	request,	the	thread	must	open	the	same	file	again	with
a	different	request	to	get	another	handle,	which	prompts	another	security	check.
(See	Chapter	6	in	Part	1	for	more	information	about	object	protection.)

EXPERIMENT:	VIEWING	DEVICE	HANDLES

Any	process	that	has	an	open	handle	to	a	device	will	have	a	file	object	in	its	handle	table	corresponding	to
the	open	instance.	You	can	view	these	handles	with	Process	Explorer	by	selecting	a	process	and	checking
Handles	in	the	Lower	Pane	View	submenu	of	the	View	menu.	Sort	by	the	Type	column	and	scroll	to	where
you	see	the	handles	that	represent	file	objects,	which	are	labeled	as	File.



In	this	example,	the	Csrss	process	has	a	handle	open	to	a	device	created	by	the	kernel	security	device	driver
(Ksecdd.sys).	You	can	look	at	the	specific	file	object	in	the	kernel	debugger	by	first	identifying	the	address
of	the	object.	The	following	command	reports	information	on	the	highlighted	handle	(handle	value	0xD4)
in	the	preceding	screen	shot,	which	is	in	the	Csrss.exe	process	that	has	a	process	ID	of	512	(0x200):

lkd> !handle d4 f 200

Searching for Process with Cid == 200
PROCESS fffffa800bf35b30
    SessionId: 0  Cid: 0200    Peb: 7fffffd8000  ParentCid: 0188
    DirBase: 1dba50000  ObjectTable: fffff8a000f28d80  HandleCount: 630.
    Image: csrss.exe

Handle table at fffff8a000f28d80 with 630 entries in use

00d4: Object: fffffa800c9cc9f0  GrantedAccess: 00100001 Entry: fffff8a001409350
Object: fffffa800c9cc9f0  Type: (fffffa800737a080) File
    ObjectHeader: fffffa800c9cc9c0 (new version)
        HandleCount: 1  PointerCount: 1

Because	the	object	is	a	file	object,	you	can	get	information	about	it	with	the	!fileobj	command:

lkd> !fileobj fffffa800c9cc9f0

Device Object: 0xfffffa8007da1550   \Driver\KSecDD
Vpb is NULL
Event signalled

Flags:  0x40002
          Synchronous IO
          Handle Created
CurrentByteOffset: 0



Because	a	file	object	is	a	memory-based	representation	of	a	shareable	resource	and
not	the	resource	itself,	it’s	different	from	other	executive	objects.	A	file	object
contains	only	data	that	is	unique	to	an	object	handle,	whereas	the	file	itself	contains
the	data	or	text	to	be	shared.	Each	time	a	thread	opens	a	file,	a	new	file	object	is
created	with	a	new	set	of	handle-specific	attributes.	For	example,	for	files	opened
synchronously,	the	current	byte	offset	attribute	refers	to	the	location	in	the	file	at
which	the	next	read	or	write	operation	using	that	handle	will	occur.	Each	handle	to
a	file	has	a	private	byte	offset	even	though	the	underlying	file	is	shared.	A	file
object	is	also	unique	to	a	process,	except	when	a	process	duplicates	a	file	handle	to
another	process	(by	using	the	Windows	DuplicateHandle	function)	or	when	a	child
process	inherits	a	file	handle	from	a	parent	process.	In	these	situations,	the	two
processes	have	separate	handles	that	refer	to	the	same	file	object.

Although	a	file	handle	is	unique	to	a	process,	the	underlying	physical	resource	is
not.	Therefore,	as	with	any	shared	resource,	threads	must	synchronize	their	access
to	shareable	resources	such	as	files,	file	directories,	and	devices.	If	a	thread	is
writing	to	a	file,	for	example,	it	should	specify	exclusive	write	access	when	opening
the	file	to	prevent	other	threads	from	writing	to	the	file	at	the	same	time.
Alternatively,	by	using	the	Windows	LockFile	function,	the	thread	could	lock	a
portion	of	the	file	while	writing	to	it	when	exclusive	access	is	required.

When	a	file	is	opened,	the	file	name	includes	the	name	of	the	device	object	on
which	the	file	resides.	For	example,	the	name
\Device\HarddiskVolume1\Myfile.dat	refers	to	the	file	Myfile.dat	on	the	C:
volume.	The	substring	\Device\HarddiskVolume1	is	the	name	of	the	internal
Windows	device	object	representing	that	volume.	When	opening	Myfile.dat,	the
I/O	manager	creates	a	file	object	and	stores	a	pointer	to	the	HarddiskVolume1
device	object	in	the	file	object	and	then	returns	a	file	handle	to	the	caller.
Thereafter,	when	the	caller	uses	the	file	handle,	the	I/O	manager	can	find	the
HarddiskVolume1	device	object	directly.	Keep	in	mind	that	internal	Windows
device	names	can’t	be	used	in	Windows	applications—instead,	the	device	name
must	appear	in	a	special	directory	in	the	object	manager’s	namespace,	which	is
\Global??.	This	directory	contains	symbolic	links	to	the	real,	internal	Windows
device	names.	As	was	described	earlier,	device	drivers	are	responsible	for	creating
links	in	this	directory	so	that	their	devices	will	be	accessible	to	Windows
applications.	You	can	examine	or	even	change	these	links	programmatically	with



the	Windows	QueryDosDevice	and	DefineDosDevice	functions.

EXPERIMENT:	VIEWING	WINDOWS	DEVICE	NAME	TO	WINDOWS	DEVICE	NAME
MAPPINGS

You	can	examine	the	symbolic	links	that	define	the	Windows	device	namespace	with	the	WinObj	utility
from	Sysinternals.	Run	WinObj,	and	click	on	the	\Global??	directory,	as	shown	here:

Notice	the	symbolic	links	on	the	right.	Try	right-clicking	on	the	device	C:	and	selecting	Properties.	You
should	see	something	like	this:



C:	is	a	symbolic	link	to	the	internal	device	named	\Device\HarddiskVolume3,	or	the	first	volume	on	the
first	hard	drive	in	the	system.	The	COM1	entry	in	WinObj	is	a	symbolic	link	to	\Device\Serial0,	and	so
forth.	Try	creating	your	own	links	with	the	subst	command	at	a	command	prompt.



I/O	Processing
Now	that	we’ve	covered	the	structure	and	types	of	drivers	and	the	data	structures
that	support	them,	let’s	look	at	how	I/O	requests	flow	through	the	system.	I/O
requests	pass	through	several	predictable	stages	of	processing.	The	stages	vary
depending	on	whether	the	request	is	destined	for	a	device	operated	by	a	single-
layered	driver	or	for	a	device	reached	through	a	multilayered	driver.	Processing
varies	further	depending	on	whether	the	caller	specified	synchronous	or
asynchronous	I/O,	so	we’ll	begin	our	discussion	of	I/O	types	with	these	two	and
then	move	on	to	others.

Types	of	I/O
Applications	have	several	options	for	the	I/O	requests	they	issue.	Furthermore,	the
I/O	manager	gives	drivers	the	choice	of	implementing	a	shortcut	I/O	interface	that
can	often	mitigate	IRP	allocation	for	I/O	processing.	In	this	section,	we’ll	explain
these	options	for	I/O	requests.

Synchronous	and	Asynchronous	I/O
Most	I/O	operations	that	applications	issue	are	synchronous	(which	is	the	default);
that	is,	the	application	thread	waits	while	the	device	performs	the	data	operation
and	returns	a	status	code	when	the	I/O	is	complete.	The	program	can	then	continue
and	access	the	transferred	data	immediately.	When	used	in	their	simplest	form,	the
Windows	ReadFile	and	WriteFile	functions	are	executed	synchronously.	They
complete	the	I/O	operation	before	returning	control	to	the	caller.

Asynchronous	I/O	allows	an	application	to	issue	multiple	I/O	requests	and	continue
executing	while	the	device	performs	the	I/O	operation.	This	type	of	I/O	can
improve	an	application’s	throughput	because	it	allows	the	application	thread	to
continue	with	other	work	while	an	I/O	operation	is	in	progress.	To	use
asynchronous	I/O,	you	must	specify	the	FILE_FLAG_OVERLAPPED	flag	when
you	call	the	Windows	CreateFile	function.	Of	course,	after	issuing	an	asynchronous
I/O	operation,	the	thread	must	be	careful	not	to	access	any	data	from	the	I/O
operation	until	the	device	driver	has	finished	the	data	operation.	The	thread	must
synchronize	its	execution	with	the	completion	of	the	I/O	request	by	monitoring	a
handle	of	a	synchronization	object	(whether	that’s	an	event	object,	an	I/O



completion	port,	or	the	file	object	itself)	that	will	be	signaled	when	the	I/O	is
complete.

Regardless	of	the	type	of	I/O	request,	internally	I/O	operations	issued	to	a	driver	on
behalf	of	the	application	are	performed	asynchronously;	that	is,	once	an	I/O
request	has	been	initiated,	the	device	driver	returns	to	the	I/O	system.	Whether	or
not	the	I/O	system	returns	immediately	to	the	caller	depends	on	whether	the	handle
was	opened	for	synchronous	or	asynchronous	I/O.	Figure	8-8	illustrates	the	flow	of
control	when	a	read	operation	is	initiated.	Notice	that	if	a	wait	is	done,	which
depends	on	the	overlapped	flag	in	the	file	object,	it	is	done	in	kernel	mode	by	the
NtReadFile	function.

You	can	test	the	status	of	a	pending	asynchronous	I/O	operation	with	the	Windows
HasOverlappedIoCompleted	macro.	If	you’re	using	I/O	completion	ports
(described	in	the	I/O	Completion	Ports	section	later	in	this	chapter),	you	can	use
the	GetQueuedCompletionStatus(Ex)	function(s).

Figure	8-8.	Control	flow	for	an	I/O	operation



Fast	I/O
Fast	I/O	is	a	special	mechanism	that	allows	the	I/O	system	to	bypass	generating	an
IRP	and	instead	go	directly	to	the	driver	stack	to	complete	an	I/O	request.	(Fast	I/O
is	described	in	detail	in	Chapters	Chapter	11	and	Chapter	12.)	A	driver	registers	its
fast	I/O	entry	points	by	entering	them	in	a	structure	pointed	to	by	the
PFAST_IO_DISPATCH	pointer	in	its	driver	object.

EXPERIMENT:	LOOKING	AT	A	DRIVER’S	REGISTERED	FAST	I/O	ROUTINES

The	!drvobj	kernel	debugger	command	can	list	the	fast	I/O	routines	that	a	driver	registers	in	its	driver
object.	However,	typically	only	file	system	drivers	have	any	use	for	fast	I/O	routines,	although	there	are
exceptions,	such	as	network	protocol	drivers	and	bus	filter	drivers.	The	following	output	shows	the	fast	I/O
table	for	the	NTFS	file	system	driver	object:

lkd> !drvobj \FileSystem\Ntfs 2
Driver object (fffffa8007d9fbe0) is for:
 \FileSystem\Ntfs
DriverEntry:   fffff880017d406c     Ntfs!GsDriverEntry
DriverStartIo: 00000000
DriverUnload:  00000000
AddDevice:     00000000

Dispatch routines:
...

Fast I/O routines:
FastIoCheckIfPossible     fffff88001782230     Ntfs!NtfsFastIoCheckIfPossible
FastIoRead                fffff880016efd60     Ntfs!NtfsCopyReadA
FastIoWrite               fffff880016f2a10     Ntfs!NtfsCopyWriteA
FastIoQueryBasicInfo      fffff880016e42e8     Ntfs!NtfsFastQueryBasicInfo
...
ReleaseForModWrite        fffff8800166fee4     Ntfs!NtfsReleaseFileForModWrite
AcquireForCcFlush         fffff8800167133c     Ntfs!NtfsAcquireFileForCcFlush
ReleaseForCcFlush         fffff880016713a0     Ntfs!NtfsReleaseFileForCcFlush

The	output	shows	that	NTFS	has	registered	its	NtfsCopyReadA	routine	as	the	fast	I/O	table’s	FastIoRead
entry.	As	the	name	of	this	fast	I/O	entry	implies,	the	I/O	manager	calls	this	function	when	issuing	a	read	I/O
request	if	the	file	is	cached.	If	the	call	doesn’t	succeed,	the	standard	IRP	path	is	selected.

Mapped	File	I/O	and	File	Caching
Mapped	file	I/O	is	an	important	feature	of	the	I/O	system,	one	that	the	I/O	system
and	the	memory	manager	produce	jointly.	(See	Chapter	10	for	details	on	how
mapped	files	are	implemented.)	Mapped	file	I/O	refers	to	the	ability	to	view	a	file
residing	on	disk	as	part	of	a	process’s	virtual	memory.	A	program	can	access	the
file	as	a	large	array	without	buffering	data	or	performing	disk	I/O.	The	program
accesses	memory,	and	the	memory	manager	uses	its	paging	mechanism	to	load	the



correct	page	from	the	disk	file.	If	the	application	writes	to	its	virtual	address	space,
the	memory	manager	writes	the	changes	back	to	the	file	as	part	of	normal	paging.

Mapped	file	I/O	is	available	in	user	mode	through	the	Windows
CreateFileMapping	and	MapViewOfFile	functions.	Within	the	operating	system,
mapped	file	I/O	is	used	for	important	operations	such	as	file	caching	and	image
activation	(loading	and	running	executable	programs).	The	other	major	consumer
of	mapped	file	I/O	is	the	cache	manager.	File	systems	use	the	cache	manager	to
map	file	data	in	virtual	memory	to	provide	better	response	time	for	I/O-bound
programs.	As	the	caller	uses	the	file,	the	memory	manager	brings	accessed	pages
into	memory.	Whereas	most	caching	systems	allocate	a	fixed	number	of	bytes	for
caching	files	in	memory,	the	Windows	cache	grows	or	shrinks	depending	on	how
much	memory	is	available.	This	size	variability	is	possible	because	the	cache
manager	relies	on	the	memory	manager	to	automatically	expand	(or	shrink)	the
size	of	the	cache,	using	the	normal	working	set	mechanisms	explained	in
Chapter	10,	in	this	case	applied	to	the	system	working	set.	By	taking	advantage	of
the	memory	manager’s	paging	system,	the	cache	manager	avoids	duplicating	the
work	that	the	memory	manager	already	performs.	(The	workings	of	the	cache
manager	are	explained	in	detail	in	Chapter	11.)

Scatter/Gather	I/O
Windows	also	supports	a	special	kind	of	high-performance	I/O	that	is	called
scatter/gather,	available	via	the	Windows	ReadFileScatter	and	WriteFileGather
functions.	These	functions	allow	an	application	to	issue	a	single	read	or	write	from
more	than	one	buffer	in	virtual	memory	to	a	contiguous	area	of	a	file	on	disk
instead	of	issuing	a	separate	I/O	request	for	each	buffer.	To	use	scatter/gather	I/O,
the	file	must	be	opened	for	noncached	I/O,	the	user	buffers	being	used	have	to	be
page-aligned,	and	the	I/Os	must	be	asynchronous	(overlapped).	Furthermore,	if	the
I/O	is	directed	at	a	mass	storage	device,	the	I/O	must	be	aligned	on	a	device	sector
boundary	and	have	a	length	that	is	a	multiple	of	the	sector	size.

I/O	Request	Packets
The	I/O	request	packet	(IRP)	is	where	the	I/O	system	stores	information	it	needs	to
process	an	I/O	request.	When	a	thread	calls	an	I/O	API,	the	I/O	manager
constructs	an	IRP	to	represent	the	operation	as	it	progresses	through	the	I/O



system.	If	possible,	the	I/O	manager	allocates	IRPs	from	one	of	three	per-processor
IRP	nonpaged	look-aside	lists:	the	small-IRP	look-aside	list	stores	IRPs	with	one
stack	location	(IRP	stack	locations	are	described	shortly),	the	medium-IRP	look-
aside	list	contains	IRPs	with	4	stack	locations	(which	can	also	be	used	for	IRPs
that	require	only	2	or	3	stack	locations),	and	the	large-IRP	look-aside	list	contains
IRPs	with	more	than	4	stack	locations—by	default,	the	system	stores	IRPs	with	10
stack	locations	on	the	large-IRP	look-aside	list,	but	once	per	minute	the	system
adjusts	the	number	of	stack	locations	allocated	and	can	increase	it	up	to	a
maximum	of	20,	based	on	how	many	stack	locations	have	been	recently	required.
Additionally,	these	lists	are	backed	by	global	look-aside	lists	as	well,	allowing
efficient	cross-CPU	IRP	flow.	If	an	IRP	requires	more	stack	locations	than	are
contained	in	the	IRPs	on	the	large-IRP	look-aside	list,	the	I/O	manager	allocates
IRPs	from	nonpaged	pool.	After	allocating	and	initializing	an	IRP,	the	I/O	manager
stores	a	pointer	to	the	caller’s	file	object	in	the	IRP.

NOTE

If	defined,	the	DWORD	registry	value	HKLM\System\CurrentControlSet\Session	Manager\I/O
System\LargeIrpStackLocations	specifies	how	many	stack	locations	are	contained	in	IRPs	stored	on	the
large-IRP	look-aside	list.

Figure	8-9	shows	a	sample	I/O	request	that	demonstrates	the	relationship	between
an	IRP	and	the	file,	device,	and	driver	objects	described	in	the	preceding	sections.
Although	this	example	shows	an	I/O	request	to	a	single-layered	device	driver,	most
I/O	operations	aren’t	this	direct;	they	involve	one	or	more	layered	drivers.	(This
case	will	be	shown	later	in	this	section.)



Figure	8-9.	Data	structures	involved	in	a	single-layered	driver	I/O	request

IRP	Stack	Locations
An	IRP	consists	of	two	parts:	a	fixed	header	(often	referred	to	as	the	IRP’s	body)
and	one	or	more	stack	locations.	The	fixed	portion	contains	information	such	as
the	type	and	size	of	the	request,	whether	the	request	is	synchronous	or
asynchronous,	a	pointer	to	a	buffer	for	buffered	I/O,	and	state	information	that
changes	as	the	request	progresses.	An	IRP	stack	location	contains	a	function	code
(consisting	of	a	major	code	and	a	minor	code),	function-specific	parameters,	and	a
pointer	to	the	caller’s	file	object.	The	major	function	code	identifies	which	of	a
driver’s	dispatch	routines	the	I/O	manager	invokes	when	passing	an	IRP	to	a	driver.
An	optional	minor	function	code	sometimes	serves	as	a	modifier	of	the	major
function	code.	Power	and	Plug	and	Play	commands	always	have	minor	function
codes.

Most	drivers	specify	dispatch	routines	to	handle	only	a	subset	of	possible	major
function	codes,	including	create	(open),	read,	write,	device	I/O	control,	power,	Plug



and	Play,	system	control	(for	WMI	commands),	cleanup,	and	close.	(See	the
following	experiment	for	a	complete	listing	of	major	function	codes.)	File	system
drivers	are	an	example	of	a	driver	type	that	often	fills	in	most	or	all	of	its	dispatch
entry	points	with	functions.	In	contrast,	a	driver	for	a	simple	USB	device	would
probably	fill	in	only	the	routines	needed	for	open,	close,	read,	write,	and	sending
I/O	control	codes.	The	I/O	manager	sets	any	dispatch	entry	points	that	a	driver
doesn’t	fill	to	point	to	its	own	IopInvalidDeviceRequest,	which	completes	the	IRP
with	an	error	status	indicating	that	the	major	function	specified	in	the	IRP	is
invalid	for	that	device.

EXPERIMENT:	LOOKING	AT	DRIVER	DISPATCH	ROUTINES

You	can	obtain	a	listing	of	the	functions	a	driver	has	defined	for	its	dispatch	routines	by	entering	a	7	after
the	driver	object’s	name	(or	address)	in	the	!drvobj	kernel	debugger	command.	The	following	output	shows
that	drivers	support	28	IRP	types.

lkd> !drvobj \Driver\kbdclass 7
Driver object (fffffa800adc2e70) is for:
 \Driver\kbdclass
Driver Extension List: (id , addr)

Device Object list:
fffffa800b04fce0  fffffa800abde560

DriverEntry:   fffff880071c8ecc  kbdclass!GsDriverEntry
DriverStartIo: 00000000
DriverUnload:  00000000
AddDevice:     fffff880071c53b4  kbdclass!KeyboardAddDevice

Dispatch routines:
[00] IRP_MJ_CREATE                      fffff880071bedd4  
kbdclass!KeyboardClassCreate
[01] IRP_MJ_CREATE_NAMED_PIPE           fffff800036abc0c  
nt!IopInvalidDeviceRequest
[02] IRP_MJ_CLOSE                       fffff880071bf17c  
kbdclass!KeyboardClassClose
[03] IRP_MJ_READ                        fffff880071bf804  
kbdclass!KeyboardClassRead
...
[19] IRP_MJ_QUERY_QUOTA                 fffff800036abc0c  
nt!IopInvalidDeviceRequest
[1a] IRP_MJ_SET_QUOTA                   fffff800036abc0c  
nt!IopInvalidDeviceRequest
[1b] IRP_MJ_PNP                         fffff880071c0368  kbdclass!KeyboardPnP

While	active,	each	IRP	is	usually	queued	in	an	IRP	list	associated	with	the	thread
that	requested	the	I/O.	(Otherwise,	it	is	stored	in	the	file	object	when	performing
thread-agnostic	I/O,	which	is	described	earlier	in	this	chapter.)	This	allows	the	I/O



system	to	find	and	cancel	any	outstanding	IRPs	if	a	thread	terminates	with	I/O
requests	that	have	not	been	completed.	Additionally,	paging	I/O	IRPs	are	also
associated	with	the	faulting	thread	(although	they	are	not	cancellable).	This	allows
Windows	to	use	the	thread-agnostic	I/O	optimization	—when	an	APC	is	not	used
to	complete	I/O	if	the	current	thread	is	the	initiating	thread.	This	means	that	page
faults	occur	inline,	instead	of	requiring	APC	delivery.

EXPERIMENT:	LOOKING	AT	A	THREAD’S	OUTSTANDING	IRPS

When	you	use	the	!thread	command,	it	prints	any	IRPs	associated	with	the	thread.	Run	the	kernel	debugger
with	live	debugging,	and	locate	the	service	control	manager	process	(Services.exe)	in	the	output	generated
by	the	!process	command:

lkd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
...
PROCESS 8623b840  SessionId: 0  Cid: 0270    Peb: 7ffd6000  ParentCid: 0210
    DirBase: ce21e080  ObjectTable: 964c06a0  HandleCount: 198.
    Image: services.exe
...

Then	dump	the	threads	for	the	process	by	executing	the	!process	command	on	the	process	object.	You
should	see	many	threads,	with	most	of	them	having	IRPs	reported	in	the	IRP	List	area	of	the	thread
information	(note	that	the	debugger	will	show	only	the	first	17	IRPs	for	a	thread	that	has	more	than	17
outstanding	I/O	requests):

lkd> !process 8623b840
PROCESS 8623b840  SessionId: 0  Cid: 0270    Peb: 7ffd6000  ParentCid: 0210
    DirBase: ce21e080  ObjectTable: 964c06a0  HandleCount: 198.
    Image: services.exe
    VadRoot 862b1358 Vads 71 Clone 0 Private 466. Modified 14. Locked 2.
    DeviceMap 8b0087d8
...
     THREAD 86a1d248  Cid 0270.053c  Teb: 7ffdc000 Win32Thread: 00000000
                 WAIT: (UserRequest) UserMode Alertable
            86a40ca0  NotificationEvent
            86a40490  NotificationEvent
        IRP List:
            86a81190: (0006,0094) Flags: 00060900  Mdl: 00000000
...

Choose	an	IRP,	and	examine	it	with	the	!irp	command:

lkd> !irp 86a81190
Irp is active with 1 stacks 1 is current (= 0x86a81200)
 No Mdl: No System Buffer: Thread 86a1d248:  Irp stack trace.
     cmd  flg cl Device   File     CompletionContext
>[  3, 0]   0  1 86156328 86a4e7a0 00000000-00000000    pending
           \FileSystem\Npfs
            Args: 00000800 00000000 00000000 00000000

This	IRP	has	a	major	function	of	3,	which	corresponds	to	IRP_MJ_READ,	which	can	be	found	in	WDM.h.
It	has	one	stack	location	and	is	targeted	at	a	device	owned	by	the	Npfs	driver	(the	Named	Pipe	File	System
driver).	(Npfs	is	described	in	Chapter	7,	“Networking,”	in	Part	1.)



IRP	Buffer	Management
When	an	application	or	a	device	driver	indirectly	creates	an	IRP	by	using	the
NtReadFile,	NtWriteFile,	or	NtDeviceIoControlFile	system	services	(or	the
Windows	API	functions	corresponding	to	these	services,	which	are	ReadFile,
WriteFile,	and	DeviceIoControl),	the	I/O	manager	determines	whether	it	needs	to
participate	in	the	management	of	the	caller’s	input	or	output	buffers.	The	I/O
manager	performs	three	types	of	buffer	management:

Buffered	I/O	The	I/O	manager	allocates	a	buffer	in	nonpaged	pool	of	equal
size	to	the	caller’s	buffer.	For	write	operations,	the	I/O	manager	copies	the
caller’s	buffer	data	into	the	allocated	buffer	when	creating	the	IRP.	For	read
operations,	the	I/O	manager	copies	data	from	the	allocated	buffer	to	the	user’s
buffer	when	the	IRP	completes	and	then	frees	the	allocated	buffer.	The
nonpaged	pool	buffer	is	pointed	to	by	the	IRP’s	AssociatedIrp.SystemBuffer
field.

Direct	I/O	When	the	I/O	manager	creates	the	IRP,	it	locks	the	user’s	buffer
into	memory	(that	is,	makes	it	nonpaged).	When	the	I/O	manager	has	finished
using	the	IRP,	it	unlocks	the	buffer.	The	I/O	manager	stores	a	description	of	the
memory	in	the	form	of	a	memory	descriptor	list	(MDL).	An	MDL	specifies	the
physical	memory	occupied	by	a	buffer.	(See	the	WDK	for	more	information	on
MDLs.)	Devices	that	perform	direct	memory	access	(DMA)	require	only
physical	descriptions	of	buffers,	so	an	MDL	is	sufficient	for	the	operation	of
such	devices.	(Devices	that	support	DMA	transfer	data	directly	between	the
device	and	the	computer’s	memory	by	using	a	DMA	controller,	not	the	CPU.)	If
a	driver	must	access	the	contents	of	a	buffer,	however,	it	can	map	the	buffer	into
the	system’s	address	space.

Neither	I/O	The	I/O	manager	doesn’t	perform	any	buffer	management.
Instead,	buffer	management	is	left	to	the	discretion	of	the	device	driver,	which
can	choose	to	manually	perform	the	steps	the	I/O	manager	performs	with	the
other	buffer	management	types.

For	each	type	of	buffer	management,	the	I/O	manager	places	applicable	references
in	the	IRP	to	the	locations	of	the	input	and	output	buffers.	The	type	of	buffer
management	the	I/O	manager	performs	depends	on	the	type	of	buffer	management



a	driver	requests	for	each	type	of	operation.	A	driver	registers	the	type	of	buffer
management	it	desires	for	read	and	write	operations	in	the	device	object	that
represents	the	device.	Device	I/O	control	operations	(those	requested	by	calling
NtDeviceIoControlFile)	are	specified	with	driver-defined	I/O	control	codes,	and	a
control	code	contains	bits	specifying	the	buffer	management	the	I/O	manager
should	use	when	issuing	IRPs	that	contain	that	code.

Drivers	commonly	use	buffered	I/O	when	callers	transfer	requests	smaller	than	one
page	(4	KB	on	x86	processors)	or	when	the	device	does	not	support	DMA.	They
use	direct	I/O	for	larger	requests	on	DMA-aware	devices.	File	system	drivers
commonly	use	neither	I/O	because	no	buffer	management	overhead	is	incurred
when	data	can	be	copied	from	the	file	system	cache	into	the	caller’s	original	buffer.
The	reason	that	most	drivers	don’t	use	neither	I/O	is	that	a	pointer	to	a	caller’s
buffer	is	valid	only	while	a	thread	of	the	caller’s	process	is	executing.

Drivers	that	use	neither	I/O	to	access	buffers	that	might	be	located	in	user	space
must	take	special	care	to	ensure	that	buffer	addresses	are	both	valid	and	do	not
reference	kernel-mode	memory.	Scalar	values,	however,	are	perfectly	safe	to	pass,
although	a	few	drivers	have	only	a	scalar	value	to	pass	around.	Failure	to	do	so
could	result	in	crashes	or	in	security	vulnerabilities,	where	applications	have	access
to	kernel-mode	memory	or	can	inject	code	into	the	kernel.	The	ProbeForRead	and
ProbeForWrite	functions	that	the	kernel	makes	available	to	drivers	verify	that	a
buffer	resides	entirely	in	the	user-mode	portion	of	the	address	space.	To	avoid	a
crash	from	referencing	an	invalid	user-mode	address,	drivers	can	access	user-mode
buffers	from	within	exception-handling	code	(called	try/except	blocks	in	C)	that
catch	any	invalid	memory	faults	and	translate	them	into	error	codes	to	return	to	the
application.	Additionally,	drivers	should	also	capture	all	input	data	into	a	kernel
buffer	instead	of	relying	on	user-mode	addresses,	since	the	caller	could	always
modify	the	data	behind	the	driver’s	back,	even	if	the	memory	address	itself	is	still
valid.

I/O	Request	to	a	Single-Layered	Driver
This	section	traces	a	synchronous	I/O	request	to	a	single-layered	kernel-mode
device	driver.	In	its	most	simplified	form,	handling	a	synchronous	I/O	to	a	single-
layered	driver	consists	of	seven	steps:



1.	 The	I/O	request	passes	through	a	subsystem	DLL.

2.	 The	subsystem	DLL	calls	the	I/O	manager’s	NtWriteFile	service.

3.	 The	I/O	manager	allocates	an	IRP	describing	the	request	and	sends	it	to	the
driver	(a	device	driver	in	this	case)	by	calling	its	own	IoCallDriver	function.

4.	 The	driver	transfers	the	data	in	the	IRP	to	the	device	and	starts	the	I/O
operation.

5.	 The	device	signals	I/O	completion	by	interrupting	the	CPU.

6.	 The	device	driver	services	the	interrupt.

7.	 The	driver	calls	the	I/O	manager’s	IoCompleteRequest	function	to	inform	it
that	it	has	finished	processing	the	IRP’s	request,	and	the	I/O	manager
completes	the	I/O	request.

These	seven	steps	are	illustrated	in	Figure	8-10.

Figure	8-10.	Issuing	and	completing	a	synchronous	I/O	request



Now	that	we’ve	seen	how	an	I/O	is	initiated,	let’s	take	a	closer	look	at	interrupt
processing	and	I/O	completion.

Servicing	an	Interrupt
After	an	I/O	device	completes	a	data	transfer,	it	interrupts	for	service,	and	the
Windows	kernel,	I/O	manager,	and	device	driver	are	called	into	action.	Figure	8-11
illustrates	the	first	phase	of	the	process.	(Chapter	3	in	Part	1	describes	the	interrupt
dispatching	mechanism,	including	DPCs.	We’ve	included	a	brief	recap	here
because	DPCs	are	key	to	I/O	processing	on	interrupt-driven	devices.)

Figure	8-11.	Servicing	a	device	interrupt	(phase	1)

When	a	device	interrupt	occurs,	the	processor	transfers	control	to	the	kernel	trap
handler,	which	indexes	into	its	interrupt	dispatch	table	to	locate	the	ISR	for	the



device.	ISRs	in	Windows	typically	handle	device	interrupts	in	two	steps.	When	an
ISR	is	first	invoked,	it	usually	remains	at	device	IRQL	only	long	enough	to	capture
the	device	status	and	then	stop	the	device’s	interrupt.	It	then	queues	a	DPC	and
exits,	dismissing	the	interrupt.	Later,	when	the	DPC	routine	is	called	at	IRQL	2,
the	device	finishes	processing	the	interrupt.	When	that’s	done,	the	device	calls	the
I/O	manager	to	complete	the	I/O	and	dispose	of	the	IRP.	It	will	also	start	the	next
I/O	request	that	is	waiting	in	the	device	queue.

The	advantage	of	using	a	DPC	to	perform	most	of	the	device	servicing	is	that	any
blocked	interrupt	whose	IRQL	lies	between	the	device	IRQL	and	the	DPC/dispatch
IRQL	(2)	is	allowed	to	occur	before	the	lower-priority	DPC	processing	occurs.
Intermediate-level	interrupts	are	thus	serviced	more	promptly	than	they	otherwise
would	be,	and	this	reduces	latency	on	the	system.	This	second	phase	of	an	I/O	(the
DPC	processing)	is	illustrated	in	Figure	8-12.



Figure	8-12.	Servicing	a	device	interrupt	(phase	2)

Completing	an	I/O	Request
After	a	device	driver’s	DPC	routine	has	executed,	some	work	still	remains	before
the	I/O	request	can	be	considered	finished.	This	third	stage	of	I/O	processing	is



called	I/O	completion	and	is	initiated	when	a	driver	calls	IoCompleteRequest	to
inform	the	I/O	manager	that	it	has	completed	processing	the	request	specified	in
the	IRP	(and	the	stack	location	that	it	owns).	The	steps	I/O	completion	entails	vary
with	different	I/O	operations.	For	example,	all	the	I/O	drivers	record	the	outcome
of	the	operation	in	an	I/O	status	block,	a	data	structure	stored	in	the	IRP	and	then
copied	back	into	a	caller-supplied	buffer	during	I/O	completion.	Similarly,	some
drivers	that	perform	buffered	I/O	require	the	I/O	system	to	return	data	to	the
calling	thread.

In	both	cases,	the	I/O	system	must	copy	data	that	is	stored	in	system	memory	into
the	caller’s	virtual	address	space.	If	the	IRP	completed	synchronously,	the	caller’s
address	space	is	current	and	directly	accessible,	but	if	the	IRP	completed
asynchronously,	the	I/O	manager	must	delay	IRP	completion	until	it	can	access	the
caller’s	address	space.	To	gain	access	to	the	caller’s	virtual	address	space,	the	I/O
manager	must	transfer	the	data	“in	the	context	of	the	caller’s	thread”—that	is,
while	the	caller’s	thread	is	executing	(which	implies	that	the	caller’s	process	is	the
current	process	and	its	address	space	is	mapped	on	the	processor).	It	does	so	by
queuing	a	special	kernel-mode	asynchronous	procedure	call	(APC)	to	the	thread.
This	process	is	illustrated	in	Figure	8-13.



Figure	8-13.	Completing	an	I/O	request	(phase	1)

As	explained	in	Chapter	3	in	Part	1,	APCs	execute	in	the	context	of	a	particular
thread,	whereas	a	DPC	executes	in	arbitrary	thread	context,	meaning	that	the	DPC
routine	can’t	touch	the	user-mode	process	address	space.	Remember	too	that	DPCs
have	a	higher	IRQL	than	APCs.

The	next	time	that	the	thread	begins	to	execute	at	low	IRQL	(below
DISPATCH_LEVEL),	the	pending	APC	is	delivered.	The	kernel	transfers	control
to	the	I/O	manager’s	APC	routine,	which	copies	the	data	(for	a	read	request)	and
the	return	status	into	the	original	caller’s	address	space,	frees	the	IRP	representing
the	I/O	operation,	and	either	sets	the	caller’s	file	handle	(and	any	caller-supplied
event)	to	the	signaled	state	for	synchronous	I/O	or	queues	an	entry	to	the	caller’s
I/O	completion	port.	The	I/O	is	now	considered	complete.	The	original	caller	or
any	other	threads	that	are	waiting	on	the	file	(or	other	object)	handle	are	released
from	their	waiting	state	and	readied	for	execution.	Figure	8-14	illustrates	the
second	stage	of	I/O	completion.



Figure	8-14.	Completing	an	I/O	request	(phase	2)

Although	this	is	the	normal	path	through	which	I/O	completion	occurs,	Windows
can	take	a	shortcut	if	the	I/O	happens	to	be	completed	in	the	same	thread	that
issued	the	I/O	request.	In	this	situation,	as	long	as	APC	delivery	was	not	disabled
(in	order	to	maintain	compatibility	with	legacy	versions	of	Windows,	which	always
used	an	APC,	even	in	this	situation),	the	phase	2	I/O	completion	mechanism	is
called	inline.

A	final	note	about	I/O	completion:	the	asynchronous	I/O	functions	ReadFileEx
and	WriteFileEx	allow	a	caller	to	supply	a	user-mode	APC	as	a	parameter.	If	the
caller	does	so,	the	I/O	manager	queues	this	APC	to	the	caller’s	thread	APC	queue
as	the	last	step	of	I/O	completion.	This	feature	allows	a	caller	to	specify	a
subroutine	to	be	called	when	an	I/O	request	is	completed	or	canceled.	User-mode
APC	completion	routines	execute	in	the	context	of	the	requesting	thread	and	are
delivered	only	when	the	thread	enters	an	alertable	wait	state	(such	as	calling	the
Windows	SleepEx,	WaitForSingleObjectEx,	or	WaitForMultipleObjectsEx
function).

Synchronization



Drivers	must	synchronize	their	access	to	global	driver	data	and	hardware	registers
for	two	reasons:

The	execution	of	a	driver	can	be	preempted	by	higher-priority	threads	and	time-
slice	(or	quantum)	expiration	or	can	be	interrupted	by	higher	IRQL	interrupts.

On	multiprocessor	systems,	Windows	can	run	driver	code	simultaneously	on
more	than	one	processor.

Without	synchronization,	corruption	could	occur—for	example,	because	device
driver	code	running	at	passive	IRQL	(0)	when	a	caller	initiates	an	I/O	operation
can	be	interrupted	by	a	device	interrupt,	causing	the	device	driver’s	ISR	to	execute
while	its	own	device	driver	is	already	running.	If	the	device	driver	was	modifying
data	that	its	ISR	also	modifies,	such	as	device	registers,	heap	storage,	or	static	data,
the	data	can	become	corrupted	when	the	ISR	executes.	Figure	8-15	illustrates	this
problem.

Figure	8-15.	Concurrent	access	to	shared	data	by	a	device	driver	dispatch	routine	and	ISR

To	avoid	this	situation,	a	device	driver	written	for	Windows	must	synchronize	its
access	to	any	data	that	can	be	accessed	at	more	than	one	IRQL.	Before	attempting
to	update	shared	data,	the	device	driver	must	lock	out	all	other	threads	(or	CPUs,
in	the	case	of	a	multiprocessor	system)	to	prevent	them	from	updating	the	same
data	structure.

The	Windows	kernel	provides	a	special	synchronization	routine	called



KeSynchronizeExecution	that	device	drivers	call	when	they	access	data	that	their
ISRs	also	access.	This	kernel	synchronization	routine	keeps	the	ISR	from	executing
while	the	shared	data	is	being	accessed.	A	driver	can	also	use
KeAcquireInterruptSpinLock	to	access	an	interrupt	object’s	spinlock	directly,
although	drivers	can	generally	behave	better	by	relying	on
KeSynchronizeExecution	for	synchronization	with	an	ISR	because	calling	this
function	at	PASSIVE_LEVEL	will	synchronize	with	a	KEVENT	in	the	interrupt
object	structure	instead	of	raising	IRQL.

By	now,	you	should	realize	that	although	ISRs	require	special	attention,	any	data
that	a	device	driver	uses	is	subject	to	being	accessed	by	the	same	device	driver
running	on	another	processor.	Therefore,	it’s	critical	for	device	driver	code	to
synchronize	its	use	of	any	global	or	shared	data	(or	any	accesses	to	the	physical
device	itself).	If	the	ISR	uses	that	data,	the	device	driver	must	use
KeSynchronizeExecution	or	KeAcquireInterruptSpinLock;	otherwise,	the	device
driver	can	use	standard	kernel	spinlocks	(which	are	acquired	at
DISPATCH_LEVEL	(IRQL	2).

I/O	Requests	to	Layered	Drivers
The	preceding	section	showed	how	an	I/O	request	to	a	simple	device	controlled	by
a	single	device	driver	is	handled.	I/O	processing	for	file-based	devices	or	for
requests	to	other	layered	drivers	happens	in	much	the	same	way.	The	major
difference	is,	obviously,	that	one	or	more	additional	layers	of	processing	are	added
to	the	model.

Figure	8-16	shows	a	very	simplified,	illustrative	example	of	how	an	asynchronous
I/O	request	might	travel	through	layered	drivers.	It	uses	as	an	example	a	disk
controlled	by	a	file	system.



Figure	8-16.	Queuing	an	asynchronous	request	to	layered	drivers

Once	again,	the	I/O	manager	receives	the	request	and	creates	an	I/O	request	packet
to	represent	it.	This	time,	however,	it	delivers	the	packet	to	a	file	system	driver.	The
file	system	driver	exercises	great	control	over	the	I/O	operation	at	that	point.
Depending	on	the	type	of	request	the	caller	made,	the	file	system	can	send	the
same	IRP	to	the	disk	driver	or	it	can	generate	additional	IRPs	and	send	them
separately	to	the	disk	driver.

EXPERIMENT:	VIEWING	A	DEVICE	STACK

The	kernel	debugger	command	!devstack	shows	you	the	device	stack	of	layered	device	objects	associated
with	a	specified	device	object.	This	example	shows	the	device	stack	associated	with	a	device	object,
\device\keyboardclass0,	which	is	owned	by	the	keyboard	class	driver:



lkd> !devstack keyboardclass0
  !DevObj           !DrvObj            !DevExt           ObjectName
  fffffa800a5e2040  \Driver\Ctrl2cap   fffffa800a5e2190
> fffffa800a612ce0  \Driver\kbdclass   fffffa800a612e30  KeyboardClass0
  fffffa800a612040  \Driver\i8042prt   fffffa800a612190
  fffffa80076e0a00  \Driver\ACPI       fffffa80076f3a90  0000005c
!DevNode fffffa800770f750 :
  DeviceInst is "ACPI\PNP0303\4&b0a2531&0"
  ServiceName is "i8042prt"

The	output	highlights	the	entry	associated	with	KeyboardClass0	with	the	“>”	character	in	column	one.	The
entries	above	that	line	are	drivers	layered	above	the	keyboard	class	driver,	and	those	below	are	layered
beneath	it.	In	general,	IRPs	flow	from	the	top	of	the	stack	to	the	bottom.

The	file	system	is	most	likely	to	reuse	an	IRP	if	the	request	it	receives	translates
into	a	single	straightforward	request	to	a	device.	For	example,	if	an	application
issues	a	read	request	for	the	first	512	bytes	in	a	file	stored	on	a	volume,	the	NTFS
file	system	would	simply	call	the	volume	manager	driver,	asking	it	to	read	one
sector	from	the	volume,	beginning	at	the	file’s	starting	location.

To	accommodate	its	reuse	by	multiple	drivers	in	a	request	to	layered	drivers,	an
IRP	contains	a	series	of	IRP	stack	locations	(not	to	be	confused	with	the	CPU
stack	used	by	threads	to	store	function	parameters	and	return	addresses).	These
data	areas,	one	for	every	driver	that	will	be	called,	contain	the	information	that
each	driver	needs	to	execute	its	part	of	the	request—for	example,	function	code,
parameters,	and	driver	context	information.	As	Figure	8-16	illustrates,	additional
stack	locations	are	filled	in	as	the	IRP	passes	from	one	driver	to	the	next.	You	can
think	of	an	IRP	as	being	similar	to	a	stack	in	the	way	data	is	added	to	it	and
removed	from	it	during	its	lifetime.	However,	an	IRP	isn’t	associated	with	any
particular	process,	and	its	allocated	size	doesn’t	grow	or	shrink.	The	I/O	manager
allocates	an	IRP	from	one	of	its	IRP	look-aside	lists	or	nonpaged	system	memory
at	the	beginning	of	the	I/O	operation.

NOTE

Since	the	number	of	devices	on	a	given	stack	is	known	in	advance,	the	I/O	manager	allocates	one	stack
location	per	device	driver	on	the	stack.	However,	there	are	situations	in	which	an	IRP	might	be	directed	into
a	new	driver	stack,	as	can	happen	in	scenarios	involving	the	Filter	Manager,	which	allows	one	filter	to
redirect	an	IRP	to	another	filter	(going	from	a	local	file	system	to	a	network	file	system,	for	example).	The
I/O	manager	exposes	an	API,	IoAdjustStackSizeForRedirection,	that	enables	this	functionality	by	adding
the	required	stack	locations	because	of	devices	present	on	the	redirected	stack.



EXPERIMENT:	EXAMINING	IRPS

In	this	experiment,	you’ll	find	an	uncompleted	IRP	on	the	system,	and	you’ll	determine	the	IRP	type,	the
device	at	which	it’s	directed,	the	driver	that	manages	the	device,	the	thread	that	issued	the	IRP,	and	what
process	the	thread	belongs	to.

At	any	point	in	time,	there	are	at	least	a	few	uncompleted	IRPs	on	a	system.	This	occurs	because	there	are
many	devices	to	which	applications	can	issue	IRPs	that	a	driver	will	complete	only	when	a	particular	event
occurs,	such	as	data	becoming	available.	One	example	is	a	blocking	read	from	a	network	endpoint.	You	can
see	the	outstanding	IRPs	on	a	system	with	the	!irpfind	kernel	debugger	command:

lkd> !irpfind

Scanning large pool allocation table for Tag: Irp? (86c16000 : 86d16000)
Searching NonPaged pool (80000000 : ffc00000) for Tag: Irp?

  Irp    [ Thread ] irpStack: (Mj,Mn)   DevObj  [Driver]         MDL Process
862d2380 [8666dc68] irpStack: ( c, 2)  84a6f020 [ \FileSystem\Ntfs]
862d2bb0 [864e3d78] irpStack: ( e,20)  86171348 [ \Driver\AFD] 0x864dbd90
862d4518 [865f7600] irpStack: ( d, 0)  86156328 [ \FileSystem\Npfs]
862d4688 [867133f0] irpStack: ( 3, 0)  86156328 [ \FileSystem\Npfs]
862dd008 [00000000] Irp is complete (CurrentLocation 4 > StackCount 3) 0x00420000
862dee28 [864fc030] irpStack: ( 3, 0)  84baf030 [ \Driver\kbdclass]

The	entry	in	bold	in	the	output	describes	an	IRP	that	is	directed	at	the	Kbdclass	driver,	so	it	is	likely	that
the	IRP	was	issued	by	the	Windows	subsystem	raw	input	thread	that	reads	keyboard	input.	Examining	the
IRP	with	the	!irp	command	reveals	the	following:

lkd> !irp 862dee28
Irp is active with 3 stacks 3 is current (= 0x862deee0)
 No Mdl: System buffer=864f5108: Thread 864fc030:  Irp stack trace.
     cmd  flg cl Device   File     CompletionContext
 [  0, 0]   0  0 00000000 00000000 00000000-00000000

            Args: 00000000 00000000 00000000 00000000
 [  0, 0]   0  0 00000000 00000000 00000000-00000000

            Args: 00000000 00000000 00000000 00000000
>[  3, 0]   0  1 84baf030 864f52f8 00000000-00000000    pending
           \Driver\kbdclass
            Args: 00000078 00000000 00000000 00000000

The	active	stack	location	is	at	the	bottom.	(The	debugger	shows	the	active	location	with	a	“>”	character	in
column	one.)	It	has	a	major	function	of	3,	which	corresponds	to	IRP_MJ_READ.

The	next	step	is	to	see	what	device	object	the	IRP	is	targeting	by	executing	the	!devobj	command	on	the
device	object	address	in	the	active	stack	location.

lkd> !devobj 84baf030
Device object (84baf030) is for:
 KeyboardClass1 \Driver\kbdclass DriverObject 84b706b8
Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044
Dacl 8b0538b8 DevExt 84baf0e8 DevObjExt 84baf1c8
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
AttachedTo (Lower) 84badaa0 \Driver\TermDD
Device queue is not busy.



The	device	at	which	the	IRP	is	targeted	is	KeyboardClass1.	The	presence	of	a	device	object	owned	by	the
Termdd	driver	attached	beneath	it	reveals	that	it	is	the	device	that	represents	keyboard	input	from	a
Terminal	Server	client,	not	the	physical	keyboard.

We	can	see	details	about	the	thread	and	process	that	issued	the	IRP	by	using	the	!thread	and	!process
commands:

lkd> !thread 864fc030
THREAD 864fc030  Cid 01d4.0234  Teb: 7ffd9000 Win32Thread: ffac4008
              WAIT: (WrUserRequest) KernelMode Alertable
    8623c620  SynchronizationEvent
    864fc3a8  NotificationTimer
    864fc378  SynchronizationTimer
    864fc360  SynchronizationEvent
IRP List:
    86af0e28: (0006,01d8) Flags: 00060970  Mdl: 00000000
    86503958: (0006,0268) Flags: 00060970  Mdl: 00000000
    862dee28: (0006,01d8) Flags: 00060970  Mdl: 00000000
Not impersonating
DeviceMap                 8b0087d8
Owning Process            0       Image:         <Unknown>
Attached Process          864d2d90       Image:         csrss.exe
Wait Start TickCount      171909         Ticks: 29 (0:00:00:00.452)
Context Switch Count      121222
UserTime                  00:00:00.000
KernelTime                00:00:00.717
Win32 Start Address 0x764d9a30
Stack Init 96f46000 Current 96f45c28 Base 96f46000 Limit 96f43000 Call 0
Priority 15 BasePriority 13 PriorityDecrement 0 IoPriority 2 PagePriority 5

lkd> !process 864d2d90
PROCESS 864d2d90  SessionId: 1  Cid: 0208    Peb: 7ffdf000  ParentCid: 0200
    DirBase: ce21e0a0  ObjectTable: 964a6e68  HandleCount: 284.
    Image: csrss.exe

Locating	the	thread	in	Process	Explorer	by	opening	the	Properties	dialog	box	for	Csrss.exe	and	going	to	the
Threads	tab	confirms,	through	the	names	of	the	functions	on	its	stack,	the	role	of	the	thread	as	a	raw	input
thread	for	the	Windows	subsystem:



After	the	disk	controller’s	DMA	adapter	finishes	a	data	transfer,	the	disk	controller
interrupts	the	host,	causing	the	ISR	for	the	disk	controller	to	run,	which	requests	a
DPC	callback	completing	the	IRP,	as	shown	in	Figure	8-17.

As	an	alternative	to	reusing	a	single	IRP,	a	file	system	can	establish	a	group	of
associated	IRPs	that	work	in	parallel	on	a	single	I/O	request.	For	example,	if	the
data	to	be	read	from	a	file	is	dispersed	across	the	disk,	the	file	system	driver	might
create	several	IRPs,	each	of	which	reads	some	portion	of	the	request	from	a
different	sector.	This	queuing	is	illustrated	in	Figure	8-18.



Figure	8-17.	Completing	a	layered	I/O	request



Figure	8-18.	Queuing	associated	IRPs

The	file	system	driver	delivers	the	associated	IRPs	to	the	volume	manager,	which
in	turn	sends	them	to	the	disk	device	driver,	which	queues	them	to	the	disk	device.
They	are	processed	one	at	a	time,	and	the	file	system	driver	keeps	track	of	the
returned	data.	When	all	the	associated	IRPs	complete,	the	I/O	system	completes
the	original	IRP	and	returns	to	the	caller,	as	shown	in	Figure	8-19.



Figure	8-19.	Completing	associated	IRPs

NOTE

All	Windows	file	system	drivers	that	manage	disk-based	file	systems	are	part	of	a	stack	of	drivers	that	is	at
least	three	layers	deep:	the	file	system	driver	sits	at	the	top,	a	volume	manager	in	the	middle,	and	a	disk
driver	at	the	bottom.	In	addition,	any	number	of	filter	drivers	can	be	interspersed	above	and	below	these
drivers.	For	clarity,	the	preceding	example	of	layered	I/O	requests	includes	only	a	file	system	driver	and	the
volume	manager	driver.	See	Chapter	9,	on	storage	management,	for	more	information.

Thread	Agnostic	I/O
In	the	I/O	models	described	thus	far,	IRPs	are	queued	to	the	thread	that	initiated
the	I/O	and	are	completed	by	the	I/O	manager	issuing	an	APC	to	that	thread	so
that	process-specific	and	thread-specific	context	is	accessible	by	completion



processing.	Thread-specific	I/O	processing	is	usually	sufficient	for	the	performance
and	scalability	needs	of	most	applications,	but	Windows	also	includes	support	for
thread	agnostic	I/O	via	two	mechanisms:

I/O	completion	ports,	which	are	described	at	length	later	in	this	chapter

Locking	the	user	buffer	into	memory	and	mapping	it	into	the	system	address
space

With	I/O	completion	ports,	the	application	decides	when	it	wants	to	check	for	the
completion	of	I/O,	so	the	thread	that	happens	to	have	issued	an	I/O	request	is	not
necessarily	relevant	because	any	other	thread	can	perform	the	completion	request.
As	such,	instead	of	completing	the	IRP	inside	the	specific	thread’s	context,	it	can
be	completed	in	the	context	of	any	thread	that	has	access	to	the	completion	port.

Likewise,	with	a	locked	and	kernel-mapped	version	of	the	user	buffer,	there’s	no
need	to	be	in	the	same	memory	address	space	as	the	issuing	thread	because	the
kernel	can	access	the	memory	from	arbitrary	contexts.	Applications	can	enable	this
mechanism	by	using	SetFileIoOverlappedRange	as	long	as	they	have	the
SE_LOCK_MEMORY	privilege.

With	both	completion	port	I/O	and	I/O	on	file	buffers	set	by
SetFileIoOverlappedRange,	the	I/O	manager	associates	the	IRPs	with	the	file
object	to	which	they	have	been	issued	instead	of	with	the	issuing	thread.	The
!fileobj	extension	in	WinDbg	will	show	an	IRP	list	for	file	objects	that	are	used
with	these	mechanisms.

In	the	next	sections,	we’ll	see	how	thread	agnostic	I/O	increases	the	reliability	and
performance	of	applications	on	Windows.

I/O	Cancellation
While	there	are	many	ways	in	which	IRP	processing	occurs	and	various	methods
to	complete	an	I/O	request,	a	great	many	I/O	processing	operations	actually	end	in
cancellation	rather	than	completion.	For	example,	a	device	may	require	removal
while	IRPs	are	still	active,	or	the	user	might	cancel	a	long-running	operation	to	a
device—for	example,	a	network	operation.	Another	situation	requiring	I/O
cancellation	support	is	thread	and	process	termination.	When	a	thread	exits,	the
I/Os	associated	with	the	thread	must	be	cancelled	because	the	I/O	operations	are



no	longer	relevant,	and	the	thread	cannot	be	deleted	until	the	outstanding	I/Os	have
completed.

The	Windows	I/O	manager,	working	with	drivers,	must	deal	with	these	requests
efficiently	and	reliably	to	provide	a	smooth	user	experience.	Drivers	manage	this
need	by	registering	a	cancel	routine	for	their	cancellable	I/O	operations	(typically,
those	operations	that	are	still	enqueued	and	not	yet	in	progress),	which	is	invoked
by	the	I/O	manager	to	cancel	an	I/O	operation.	When	drivers	fail	to	play	their	role
in	these	scenarios,	users	may	experience	unkillable	processes,	which	have
disappeared	visually	but	linger	and	still	appear	in	Task	Manager	or	Process
Explorer.	(See	Chapter	5,	“Processes,	Threads,	and	Jobs”	in	Part	1	for	more
information	on	processes	and	threads.)

User-Initiated	I/O	Cancellation
Most	software	uses	one	thread	to	handle	user	interface	(UI)	input	and	one	or	more
threads	to	perform	work,	including	I/O.	In	some	cases,	when	a	user	wants	to	abort
an	operation	that	was	initiated	in	the	UI,	an	application	might	need	to	cancel
outstanding	I/O	operations.	Operations	that	complete	quickly	might	not	require
cancellation,	but	for	operations	that	take	arbitrary	amounts	of	time—like	large	data
transfers	or	network	operations—Windows	provides	support	for	cancelling	both
synchronous	operations	and	asynchronous	operations.	A	thread	can	cancel	its	own
outstanding	asynchronous	I/Os	by	calling	CancelIo.	It	can	cancel	all	asynchronous
I/Os	issued	to	a	specific	file	handle,	regardless	of	by	which	thread,	in	the	same
process	with	CancelIoEx.	CancelIoEx	also	works	on	operations	associated	with	I/O
completion	ports	through	the	thread-agnostic	support	in	Windows	that	was
mentioned	earlier	because	the	I/O	system	keeps	track	of	a	completion	port’s
outstanding	I/Os	by	linking	them	with	the	completion	port.

For	cancelling	synchronous	I/Os,	a	thread	can	call	CancelSynchronousIo.
CancelSynchronousIo	enables	even	create	(open)	operations	to	be	cancelled	when
supported	by	a	device	driver,	and	several	drivers	in	Windows	support	this
functionality,	including	the	drivers	that	manage	network	file	systems	(for	example,
MUP,	DFS,	and	SMB),	which	can	cancel	open	operations	to	network	paths.
Figures	Figure	8-20	and	Figure	8-21	show	synchronous	and	asynchronous	I/O
cancellation.	(To	a	driver,	all	cancel	processing	looks	the	same.)



Figure	8-20.	Synchronous	I/O	cancellation

Figure	8-21.	Asynchronous	I/O	cancellation

I/O	Cancellation	for	Thread	Termination
The	other	scenario	in	which	I/Os	must	be	cancelled	is	when	a	thread	exits,	either
directly	or	as	the	result	of	its	process	terminating	(which	causes	the	threads	of	the
process	to	terminate).	Because	every	thread	has	a	list	of	IRPs	associated	with	it,



the	I/O	manager	can	walk	this	list,	look	for	cancellable	IRPs,	and	cancel	them.
Unlike	CancelIoEx,	which	does	not	wait	for	an	IRP	to	be	cancelled	before
returning,	the	process	manager	will	not	allow	thread	termination	to	proceed	until
all	I/Os	have	been	cancelled.	As	a	result,	if	a	driver	fails	to	cancel	an	IRP,	the
process	and	thread	object	will	remain	allocated	until	the	system	shuts	down.
Figure	8-22	illustrates	the	process	termination	scenario.

Figure	8-22.	Cancellation	during	process	termination

NOTE

Only	IRPs	for	which	a	driver	sets	a	cancel	routine	are	cancellable.	The	process	manager	waits	until	all	I/Os
associated	with	a	thread	are	either	cancelled	or	completed	before	deleting	the	thread.

EXPERIMENT:	DEBUGGING	AN	UNKILLABLE	PROCESS

In	this	experiment,	we’ll	use	Notmyfault	from	Sysinternals	(we’ll	cover	Notmyfault	heavily	in	the	“Crash
Dump	Analysis”	section	in	Chapter	14)	to	force	the	unkillable	process	problem	to	exhibit	itself	by	causing
the	Myfault.sys	driver	(which	Notmyfault.exe	uses)	to	indefinitely	hold	an	IRP	without	having	registered	a
cancel	routine	for	it.

To	start,	run	Notmyfault.exe,	select	Hang	With	IRP	from	the	list	of	options	on	the	Hang	tab,	and	then	click
the	Hang	button.	The	dialog	box	should	look	like	the	following	when	properly	configured.



You	shouldn’t	see	anything	happen,	and	you	should	be	able	to	click	the	Cancel	button	to	quit	the
application.	However,	you	should	still	see	the	Notmyfault	process	in	Task	Manager	or	Process	Explorer.
Attempts	to	terminate	the	process	will	fail	because	Windows	will	wait	forever	for	the	IRP	to	complete	given
that	the	Myfault	driver	doesn’t	register	a	cancel	routine.

To	debug	an	issue	such	as	this,	you	can	use	WinDbg	to	look	at	what	the	thread	is	currently	doing.	Open	a
local	kernel	debugger	session,	and	start	by	listing	the	information	about	the	Notmyfault.exe	process	with	the
!process	command:

lkd> !process 0 7 notmyfault.exe
PROCESS 86843ab0  SessionId: 1  Cid: 0594    Peb: 7ffd8000  ParentCid: 05c8
    DirBase: ce21f380  ObjectTable: 9cfb5070  HandleCount:  33.
    Image: NotMyfault.exe
    VadRoot 86658138 Vads 44 Clone 0 Private 210. Modified 5. Locked 0.
    DeviceMap 987545a8
...
     THREAD 868139b8  Cid 0594.0230  Teb: 7ffde000 Win32Thread: 00000000
                        WAIT: (Executive) KernelMode Non-Alertable
           86797c64  NotificationEvent
       IRP List:
           86a51228: (0006,0094) Flags: 00060000  Mdl: 00000000

...
       ChildEBP RetAddr  Args to Child
       88ae4b78 81cf23bf 868139b8 86813a40 00000000 nt!KiSwapContext+0x26
       88ae4bbc 81c8fcf8 868139b8 86797c08 86797c64 nt!KiSwapThread+0x44f
       88ae4c14 81e8a356 86797c64 00000000 00000000 
nt!KeWaitForSingleObject+0x492
       88ae4c40 81e875a3 86a51228 86797c08 86a51228 
nt!IopCancelAlertedRequest+0x6d
       88ae4c64 81e87cba 00000103 86797c08 00000000 
nt!IopSynchronousServiceTail+0x267



       88ae4d00 81e7198e 86727920 86a51228 00000000 nt!IopXxxControlFile+0x6b7
       88ae4d34 81c92a7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
       88ae4d34 77139a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a
       01d5fecc 00000000 00000000 00000000 00000000 ntdll!KiFastSystemCallRet
...

From	the	stack	trace,	you	can	see	that	the	thread	that	initiated	the	I/O	realized	that	the	IRP	had	been
cancelled	(IopSynchronousServiceTail	called	IopCancelAlertedRequest)	and	is	now	waiting	for	the
cancellation	or	completion.	The	next	step	is	to	use	the	same	debugger	extension	command	used	in	the
previous	experiments,	!irp,	and	attempt	to	analyze	the	problem.	Copy	the	IRP	pointer,	and	examine	it	with
!irp:

lkd> !irp 86a51228
Irp is active with 1 stacks 1 is current (= 0x86a51298)
 No Mdl: No System Buffer: Thread 868139b8:  Irp stack trace.
     cmd  flg cl Device   File     CompletionContext
>[  e, 0]   5  0 86727920 86797c08 00000000-00000000
           \Driver\MYFAULT
            Args: 00000000 00000000 83360020 00000000

From	this	output,	it	is	obvious	who	the	culprit	driver	is:	\Driver\MYFAULT,	or	Myfault.sys.	The	name	of
the	driver	emphasizes	that	the	only	way	this	situation	can	happen	is	through	a	driver	problem	and	not	a
buggy	application.	Unfortunately,	now	that	you	know	which	driver	caused	this	issue,	there	isn’t	much	you
can	do—a	system	reboot	is	necessary	because	Windows	can	never	safely	assume	it	is	okay	to	ignore	the	fact
that	cancellation	hasn’t	occurred	yet.	The	IRP	could	return	at	any	time	and	cause	corruption	of	system
memory.	If	you	encounter	this	situation	in	practice,	you	should	check	for	a	newer	version	of	the	driver,
which	might	include	a	fix	for	the	bug.

I/O	Completion	Ports
Writing	a	high-performance	server	application	requires	implementing	an	efficient
threading	model.	Having	either	too	few	or	too	many	server	threads	to	process
client	requests	can	lead	to	performance	problems.	For	example,	if	a	server	creates	a
single	thread	to	handle	all	requests,	clients	can	become	starved	because	the	server
will	be	tied	up	processing	one	request	at	a	time.	A	single	thread	could
simultaneously	process	multiple	requests,	switching	from	one	to	another	as	I/O
operations	are	started,	but	this	architecture	introduces	significant	complexity	and
can’t	take	advantage	of	systems	with	more	than	one	logical	processor.	At	the	other
extreme,	a	server	could	create	a	big	pool	of	threads	so	that	virtually	every	client
request	is	processed	by	a	dedicated	thread.	This	scenario	usually	leads	to	thread-
thrashing,	in	which	lots	of	threads	wake	up,	perform	some	CPU	processing,	block
while	waiting	for	I/O,	and	then,	after	request	processing	is	completed,	block	again
waiting	for	a	new	request.	If	nothing	else,	having	too	many	threads	results	in
excessive	context	switching,	caused	by	the	scheduler	having	to	divide	processor
time	among	multiple	active	threads.



The	goal	of	a	server	is	to	incur	as	few	context	switches	as	possible	by	having	its
threads	avoid	unnecessary	blocking,	while	at	the	same	time	maximizing	parallelism
by	using	multiple	threads.	The	ideal	is	for	there	to	be	a	thread	actively	servicing	a
client	request	on	every	processor	and	for	those	threads	not	to	block	when	they
complete	a	request	if	additional	requests	are	waiting.	For	this	optimal	process	to
work	correctly,	however,	the	application	must	have	a	way	to	activate	another	thread
when	a	thread	processing	a	client	request	blocks	on	I/O	(such	as	when	it	reads	from
a	file	as	part	of	the	processing).

The	IoCompletion	Object
Applications	use	the	IoCompletion	executive	object,	which	is	exported	to	the
Windows	API	as	a	completion	port,	as	the	focal	point	for	the	completion	of	I/O
associated	with	multiple	file	handles.	Once	a	file	is	associated	with	a	completion
port,	any	asynchronous	I/O	operations	that	complete	on	the	file	result	in	a
completion	packet	being	queued	to	the	completion	port.	A	thread	can	wait	for	any
outstanding	I/Os	to	complete	on	multiple	files	simply	by	waiting	for	a	completion
packet	to	be	queued	to	the	completion	port.	The	Windows	API	provides	similar
functionality	with	the	WaitForMultipleObjects	API	function,	but	the	advantage	that
completion	ports	have	is	that	concurrency,	or	the	number	of	threads	that	an
application	has	actively	servicing	client	requests,	is	controlled	with	the	aid	of	the
system.

When	an	application	creates	a	completion	port,	it	specifies	a	concurrency	value.
This	value	indicates	the	maximum	number	of	threads	associated	with	the	port	that
should	be	running	at	any	given	time.	As	stated	earlier,	the	ideal	is	to	have	one
thread	active	at	any	given	time	for	every	processor	in	the	system.	Windows	uses
the	concurrency	value	associated	with	a	port	to	control	how	many	threads	an
application	has	active.	If	the	number	of	active	threads	associated	with	a	port	equals
the	concurrency	value,	a	thread	that	is	waiting	on	the	completion	port	won’t	be
allowed	to	run.	Instead,	it	is	expected	that	one	of	the	active	threads	will	finish
processing	its	current	request	and	check	to	see	whether	another	packet	is	waiting	at
the	port.	If	one	is,	the	thread	simply	grabs	the	packet	and	goes	off	to	process	it.
When	this	happens,	there	is	no	context	switch,	and	the	CPUs	are	utilized	nearly	to
their	full	capacity.

Using	Completion	Ports



Figure	8-23	shows	a	high-level	illustration	of	completion	port	operation.	A
completion	port	is	created	with	a	call	to	the	Windows	API	function
CreateIoCompletionPort.	Threads	that	block	on	a	completion	port	become
associated	with	the	port	and	are	awakened	in	last	in,	first	out	(LIFO)	order	so	that
the	thread	that	blocked	most	recently	is	the	one	that	is	given	the	next	packet.
Threads	that	block	for	long	periods	of	time	can	have	their	stacks	swapped	out	to
disk,	so	if	there	are	more	threads	associated	with	a	port	than	there	is	work	to
process,	the	in-memory	footprints	of	threads	blocked	the	longest	are	minimized.

A	server	application	will	usually	receive	client	requests	via	network	endpoints	that
are	identified	by	file	handles.	Examples	include	Windows	Sockets	2	(Winsock2)
sockets	or	named	pipes.	As	the	server	creates	its	communications	endpoints,	it
associates	them	with	a	completion	port	and	its	threads	wait	for	incoming	requests
by	calling	GetQueuedCompletionStatus	on	the	port.	When	a	thread	is	given	a
packet	from	the	completion	port,	it	will	go	off	and	start	processing	the	request,
becoming	an	active	thread.	A	thread	will	block	many	times	during	its	processing,
such	as	when	it	needs	to	read	or	write	data	to	a	file	on	disk	or	when	it	synchronizes
with	other	threads.	Windows	detects	this	activity	and	recognizes	that	the
completion	port	has	one	less	active	thread.	Therefore,	when	a	thread	becomes
inactive	because	it	blocks,	a	thread	waiting	on	the	completion	port	will	be
awakened	if	there	is	a	packet	in	the	queue.



Figure	8-23.	I/O	completion	port	operation

Microsoft’s	guidelines	are	to	set	the	concurrency	value	roughly	equal	to	the	number
of	processors	in	a	system.	Keep	in	mind	that	it’s	possible	for	the	number	of	active
threads	for	a	completion	port	to	exceed	the	concurrency	limit.	Consider	a	case	in
which	the	limit	is	specified	as	1.	A	client	request	comes	in,	and	a	thread	is
dispatched	to	process	the	request,	becoming	active.	A	second	request	arrives,	but	a
second	thread	waiting	on	the	port	isn’t	allowed	to	proceed	because	the	concurrency
limit	has	been	reached.	Then	the	first	thread	blocks	waiting	for	a	file	I/O,	so	it
becomes	inactive.	The	second	thread	is	then	released,	and	while	it’s	still	active,	the
first	thread’s	file	I/O	is	completed,	making	it	active	again.	At	that	point—and	until
one	of	the	threads	blocks—the	concurrency	value	is	2,	which	is	higher	than	the
limit	of	1.	Most	of	the	time,	the	count	of	active	threads	will	remain	at	or	just	above
the	concurrency	limit.

The	completion	port	API	also	makes	it	possible	for	a	server	application	to	queue
privately	defined	completion	packets	to	a	completion	port	by	using	the
PostQueuedCompletionStatus	function.	A	server	typically	uses	this	function	to
inform	its	threads	of	external	events,	such	as	the	need	to	shut	down	gracefully.

Applications	can	use	thread	agnostic	I/O,	described	earlier,	with	I/O	completion



ports	to	avoid	associating	threads	with	their	own	I/Os	and	associating	them	with	a
completion	port	object	instead.	In	addition	to	the	other	scalability	benefits	of	I/O
completion	ports,	their	use	can	minimize	context	switches.	Standard	I/O
completions	must	be	executed	by	the	thread	that	initiated	the	I/O,	but	when	an	I/O
associated	with	an	I/O	completion	port	completes,	the	I/O	manager	uses	any
waiting	thread	to	perform	the	completion	operation.

I/O	Completion	Port	Operation
Windows	applications	create	completion	ports	by	calling	the	Windows	API
CreateIoCompletionPort	and	specifying	a	NULL	completion	port	handle.	This
results	in	the	execution	of	the	NtCreateIoCompletion	system	service.	The
executive’s	IoCompletion	object	contains	a	kernel	synchronization	object	called	a
kernel	queue.	Thus,	the	system	service	creates	a	completion	port	object	and
initializes	a	queue	object	in	the	port’s	allocated	memory.	(A	pointer	to	the	port	also
points	to	the	queue	object	because	the	queue	is	at	the	start	of	the	port	memory.)	A
kernel	queue	object	has	a	concurrency	value	that	is	specified	when	a	thread
initializes	it,	and	in	this	case	the	value	that	is	used	is	the	one	that	was	passed	to
CreateIoCompletionPort.	KeInitializeQueue	is	the	function	that
NtCreateIoCompletion	calls	to	initialize	a	port’s	queue	object.

When	an	application	calls	CreateIoCompletionPort	to	associate	a	file	handle	with	a
port,	the	NtSetInformationFile	system	service	is	executed	with	the	file	handle	as
the	primary	parameter.	The	information	class	that	is	set	is
FileCompletionInformation,	and	the	completion	port’s	handle	and	the
CompletionKey	parameter	from	CreateIoCompletionPort	are	the	data	values.
NtSetInformationFile	dereferences	the	file	handle	to	obtain	the	file	object	and
allocates	a	completion	context	data	structure.

Finally,	NtSetInformationFile	sets	the	CompletionContext	field	in	the	file	object	to
point	at	the	context	structure.	When	an	asynchronous	I/O	operation	completes	on	a
file	object,	the	I/O	manager	checks	to	see	whether	the	CompletionContext	field	in
the	file	object	is	non-NULL.	If	it	is,	the	I/O	manager	allocates	a	completion	packet
and	queues	it	to	the	completion	port	by	calling	KeInsertQueue	with	the	port	as	the
queue	on	which	to	insert	the	packet.	(Remember	that	the	completion	port	object
and	queue	object	have	the	same	address.)



When	a	server	thread	invokes	GetQueuedCompletionStatus,	the	system	service
NtRemoveIoCompletion	is	executed.	After	validating	parameters	and	translating
the	completion	port	handle	to	a	pointer	to	the	port,	NtRemoveIoCompletion	calls
IoRemoveIoCompletion,	which	eventually	calls	KeRemoveQueueEx.	For	high-
performance	scenarios,	it’s	possible	that	multiple	I/Os	may	have	been	completed,
and	although	the	thread	will	not	block,	it	will	still	call	into	the	kernel	each	time	to
get	one	item.	The	GetQueuedCompletionStatus	or	GetQueuedCompletionStatusEx
API	allows	applications	to	retrieve	more	than	one	I/O	completion	status	at	the
same	time,	reducing	the	number	of	user-to-kernel	roundtrips	and	maintaining	peak
efficiency.	Internally,	this	is	implemented	through	the	NtRemoveIoCompletionEx
function,	which	calls	IoRemoveIoCompletion	with	a	count	of	queued	items,	which
is	passed	on	to	KeRemoveQueueEx.

As	you	can	see,	KeRemoveQueueEx	and	KeInsertQueue	are	the	engines	behind
completion	ports.	They	are	the	functions	that	determine	whether	a	thread	waiting
for	an	I/O	completion	packet	should	be	activated.	Internally,	a	queue	object
maintains	a	count	of	the	current	number	of	active	threads	and	the	maximum
number	of	active	threads.	If	the	current	number	equals	or	exceeds	the	maximum
when	a	thread	calls	KeRemoveQueueEx,	the	thread	will	be	put	(in	LIFO	order)
onto	a	list	of	threads	waiting	for	a	turn	to	process	a	completion	packet.	The	list	of
threads	hangs	off	the	queue	object.	A	thread’s	control	block	data	structure
(KTHREAD)	has	a	pointer	in	it	that	references	the	queue	object	of	a	queue	that	it’s
associated	with;	if	the	pointer	is	NULL,	the	thread	isn’t	associated	with	a	queue.

Windows	keeps	track	of	threads	that	become	inactive	because	they	block	on
something	other	than	the	completion	port	by	relying	on	the	queue	pointer	in	a
thread’s	control	block.	The	scheduler	routines	that	possibly	result	in	a	thread
blocking	(such	as	KeWaitForSingleObject,	KeDelayExecution-Thread,	and	so	on)
check	the	thread’s	queue	pointer.	If	the	pointer	isn’t	NULL,	the	functions	call
KiActivateWaiterQueue,	a	queue-related	function	that	decrements	the	count	of
active	threads	associated	with	the	queue.	If	the	resultant	number	is	less	than	the
maximum	and	at	least	one	completion	packet	is	in	the	queue,	the	thread	at	the	front
of	the	queue’s	thread	list	is	awakened	and	given	the	oldest	packet.	Conversely,
whenever	a	thread	that	is	associated	with	a	queue	wakes	up	after	blocking,	the
scheduler	executes	the	function	KiUnwaitThread,	which	increments	the	queue’s
active	count.



Finally,	the	PostQueuedCompletionStatus	Windows	API	function	results	in	the
execution	of	the	NtSetIoCompletion	system	service.	This	function	simply	inserts
the	specified	packet	onto	the	completion	port’s	queue	by	using	KeInsertQueue.

Figure	8-24	shows	an	example	of	a	completion	port	object	in	operation.	Even
though	two	threads	are	ready	to	process	completion	packets,	the	concurrency	value
of	1	allows	only	one	thread	associated	with	the	completion	port	to	be	active,	and	so
the	two	threads	are	blocked	on	the	completion	port.

Figure	8-24.	I/O	completion	port	operation

Finally,	the	exact	notification	model	of	the	I/O	completion	port	can	be	fine-tuned
through	the	SetFileCompletionNotificationModes	API,	which	allows	application
developers	to	take	advantage	of	additional,	specific	improvements	that	usually
require	code	changes	but	can	offer	even	more	throughput.	Three	notification-mode
optimizations	are	supported,	which	are	listed	in	Table	8-3.	Note	that	these	modes
are	per	file	handle	and	permanent.

Table	8-3.	I/O	Completion	Port	Notification	Modes

Notification
Mode

Meaning

Skip
completion
port	on
success

If	the	following	three	conditions	are	true,	the	I/O	manager	does	not	queue	a
completion	entry	to	the	port	when	it	would	ordinarily	do	so.	First,	a	completion
port	must	be	associated	with	the	file	handle;	second,	the	file	must	be	opened	for
asynchronous	I/O;	third,	the	request	must	return	success	immediately	without
returning	ERROR_PENDING.



Skip	set
event	on
handle

The	I/O	manager	does	not	set	the	event	for	the	file	object	if	a	request	returns	with	a
success	code	or	the	error	returned	is	ERROR_PENDING	and	the	function	that	is
called	is	not	a	synchronous	function.	If	an	explicit	event	is	provided	for	the	request,
it	is	still	signaled.

Skip	set	user
event	on	fast
I/O

The	I/O	manager	does	not	set	the	explicit	event	provided	for	the	request	if	a	request
takes	the	fast	I/O	path	and	returns	with	a	success	code	or	the	error	returned	is
ERROR_PENDING	and	the	function	that	is	called	is	not	a	synchronous	function.

I/O	Prioritization
Without	I/O	priority,	background	activities	like	search	indexing,	virus	scanning,
and	disk	defragmenting	can	severely	impact	the	responsiveness	of	foreground
operations.	A	user	launching	an	application	or	opening	a	document	while	another
process	is	performing	disk	I/O,	for	example,	experiences	delays	as	the	foreground
task	waits	for	disk	access.	The	same	interference	also	affects	the	streaming
playback	of	multimedia	content	like	music	from	a	disk.

Windows	includes	two	types	of	I/O	prioritization	to	help	foreground	I/O	operations
get	preference:	priority	on	individual	I/O	operations	and	I/O	bandwidth
reservations.

I/O	Priorities
The	Windows	I/O	manager	internally	includes	support	for	five	I/O	priorities,	as
shown	in	Table	8-4,	but	only	three	of	the	priorities	are	used.	(Future	versions	of
Windows	may	support	High	and	Low.)

Table	8-4.	I/O	Priorities

I/O	Priority Usage

Critical Memory	manager

High Not	used

Normal Normal	application	I/O

Low Not	used

Very	Low Scheduled	tasks,	Superfetch,	defragmenting,	content	indexing,	background	activities

I/O	has	a	default	priority	of	Normal,	and	the	memory	manager	uses	Critical	when



it	wants	to	write	dirty	memory	data	out	to	disk	under	low-memory	situations	to
make	room	in	RAM	for	other	data	and	code.	The	Windows	Task	Scheduler	sets
the	I/O	priority	for	tasks	that	have	the	default	task	priority	to	Very	Low.	The
priority	specified	by	applications	that	perform	background	processing	is	Very	Low.
All	of	the	Windows	background	operations,	including	Windows	Defender	scanning
and	desktop	search	indexing,	use	Very	Low	I/O	priority.

Prioritization	Strategies
Internally,	these	five	I/O	priorities	are	divided	into	two	I/O	prioritization	modes,
called	strategies.	These	are	the	hierarchy	prioritization	and	the	idle	prioritization
strategies.	Hierarchy	prioritization	deals	with	all	the	I/O	priorities	except	Very
Low.	It	implements	the	following	strategy:

All	critical-priority	I/O	must	be	processed	before	any	high-priority	I/O.

All	high-priority	I/O	must	be	processed	before	any	normal-priority	I/O.

All	normal-priority	I/O	must	be	processed	before	any	low-priority	I/O.

All	low-priority	I/O	is	processed	after	any	higher-priority	I/O.

As	each	application	generates	I/Os,	IRPs	are	put	on	different	I/O	queues	based	on
their	priority,	and	the	hierarchy	strategy	decides	the	ordering	of	the	operations.

The	idle	prioritization	strategy,	on	the	other	hand,	uses	a	separate	queue	for	non-
idle	priority	I/O.	Because	the	system	processes	all	hierarchy	prioritized	I/O	before
idle	I/O,	it’s	possible	for	the	I/Os	in	this	queue	to	be	starved,	as	long	as	there’s	even
a	single	non-idle	I/O	on	the	system	in	the	hierarchy	priority	strategy	queue.

To	avoid	this	situation,	as	well	as	to	control	backoff	(the	sending	rate	of	I/O
transfers),	the	idle	strategy	uses	a	timer	to	monitor	the	queue	and	guarantee	that	at
least	one	I/O	is	processed	per	unit	of	time	(typically,	half	a	second).	Data	written
using	non-idle	I/O	priority	also	causes	the	cache	manager	to	write	modifications	to
disk	immediately	instead	of	doing	it	later	and	to	bypass	its	read-ahead	logic	for
read	operations	that	would	otherwise	preemptively	read	from	the	file	being
accessed.	The	prioritization	strategy	also	waits	for	50	milliseconds	after	the
completion	of	the	last	non-idle	I/O	in	order	to	issue	the	next	idle	I/O.	Otherwise,
idle	I/Os	would	occur	in	the	middle	of	non-idle	streams,	causing	costly	seeks.

Combining	these	strategies	into	a	virtual	global	I/O	queue	for	demonstration



purposes,	a	snapshot	of	this	queue	might	look	similar	to	Figure	8-25.	Note	that
within	each	queue,	the	ordering	is	first-in,	first-out	(FIFO).	The	order	in	the	figure
is	shown	only	as	an	example.

Figure	8-25.	Sample	entries	in	a	global	I/O	queue

User-mode	applications	can	set	I/O	priority	on	three	different	objects.
SetPriorityClass	and	SetThreadPriority	set	the	priority	for	all	the	I/Os	that	either
the	entire	process	or	specific	threads	will	generate	(the	priority	is	stored	in	the	IRP
of	each	request).	SetFileInformationByHandle	can	set	the	priority	for	a	specific	file
object	(the	priority	is	stored	in	the	file	object).	Drivers	can	also	set	I/O	priority
directly	on	an	IRP	by	using	the	IoSetIoPriorityHint	API.

NOTE

The	I/O	priority	field	in	the	IRP	and/or	file	object	is	a	hint.	There	is	no	guarantee	that	the	I/O	priority	will
be	respected	or	even	supported	by	the	different	drivers	that	are	part	of	the	storage	stack.

The	two	prioritization	strategies	are	implemented	by	two	different	types	of	drivers.
The	hierarchy	strategy	is	implemented	by	the	storage	port	drivers,	which	are
responsible	for	all	I/Os	on	a	specific	port,	such	as	ATA,	SCSI,	or	USB.	Only	the
ATA	port	driver	(%SystemRoot%\System32\Ataport.sys)	and	USB	port	driver
(%SystemRoot%\System32\Usbstor.sys)	implement	this	strategy,	while	the	SCSI
and	storage	port	drivers	(%SystemRoot%\System32\Scsiport.sys	and
%SystemRoot%\System32\Stor	port.sys)	do	not.

NOTE

All	port	drivers	check	specifically	for	Critical	priority	I/Os	and	move	them	ahead	of	their	queues,	even	if
they	do	not	support	the	full	hierarchy	mechanism.	This	mechanism	is	in	place	to	support	critical	memory
manager	paging	I/Os	to	ensure	system	reliability.

This	means	that	consumer	mass	storage	devices	such	as	IDE	or	SATA	hard	drives



and	USB	flash	disks	will	take	advantage	of	I/O	prioritization,	while	devices	based
on	SCSI,	Fibre	Channel,	and	iSCSI	will	not.

On	the	other	hand,	it	is	the	system	storage	class	device	driver
(%SystemRoot%\System32\Class	pnp.sys)	that	enforces	the	idle	strategy,	so	it
automatically	applies	to	I/Os	directed	at	all	storage	devices,	including	SCSI	drives.
This	separation	ensures	that	idle	I/Os	will	be	subject	to	backoff	algorithms	to
ensure	a	reliable	system	during	operation	under	high	idle	I/O	usage	and	so	that
applications	that	use	them	can	make	forward	progress.	Placing	support	for	this
strategy	in	the	Microsoft-provided	class	driver	avoids	performance	problems	that
would	have	been	caused	by	lack	of	support	for	it	in	legacy	third-party	port	drivers.

Figure	8-26	displays	a	simplified	view	of	the	storage	stack	and	where	each	strategy
is	implemented.	See	Chapter	9	for	more	information	on	the	storage	stack.

Figure	8-26.	Implementation	of	I/O	prioritization	across	the	storage	stack

I/O	Priority	Inversion	Avoidance	(I/O	Priority	Inheritance)
To	avoid	I/O	priority	inversion	(in	which	a	high-I/O-priority	thread	can	be	starved
by	a	low-I/O-priority	thread),	the	executive	resource	(ERESOURCE)	locking
functionality	utilizes	several	strategies.	The	ERESOURCE	was	picked	for	the
implementation	of	I/O	priority	inheritance	particularly	because	of	its	heavy	use	in
file	system	and	storage	drivers,	where	most	I/O	priority	inversion	issues	can	appear.

If	an	ERESOURCE	is	being	acquired	by	a	thread	with	low	I/O	priority,	and	there
are	currently	waiters	on	the	ERESOURCE	with	normal	or	higher	priority,	the
current	thread	is	temporarily	boosted	to	normal	I/O	priority	by	using	the
PsBoostThreadIo	API,	which	increments	the	IoBoostCount	in	the	ETHREAD



structure.

It	then	calls	the	IoBoostThreadIoPriority	API,	which	enumerates	all	the	IRPs
queued	to	the	target	thread	(recall	that	each	thread	has	a	list	of	pending	IRPs)	and
checks	which	ones	have	a	lower	priority	than	the	target	priority	(normal	in	this
case),	thus	identifying	pending	idle	I/O	priority	IRPs.	In	turn,	the	device	object
responsible	for	each	of	those	IRPs	is	identified,	and	the	I/O	manager	checks
whether	a	priority	callback	has	been	registered,	which	driver	developers	can	do
through	the	IoRegisterPriorityCallback	API	and	by	setting	the
DO_PRIORITY_CALLBACK_ENABLED	flag	on	their	device	object.	Depending
on	whether	the	IRP	was	a	paging	I/O,	this	mechanism	is	called	the	threaded	boost
or	the	paging	boost.

Finally,	if	no	matching	IRPs	were	found,	but	the	thread	has	at	least	some	pending
IRPs,	all	are	boosted	regardless	of	device	object	or	priority,	which	is	called	blanket
boosting.

I/O	Priority	Boosts	and	Bumps
A	few	other	subtle	modifications	to	normal	I/O	paths	are	used	by	Windows	to
avoid	starvation,	inversion,	or	otherwise	unwanted	scenarios	when	I/O	priority	is
being	used.	Typically,	these	modifications	are	done	by	boosting	I/O	priority	when
needed.	The	following	scenarios	exhibit	this	behavior.

When	a	driver	is	being	called	with	an	IRP	targeted	to	a	particular	file	object,
Windows	makes	sure	that	if	the	request	comes	from	kernel	mode,	the	IRP	uses
normal	priority	even	if	the	file	object	has	a	lower	I/O	priority	hint.	This	is
called	the	kernel	bump.

When	reads	or	writes	to	the	paging	file	are	occurring	(through	IoPageRead	and
IoPageWrite),	Windows	checks	whether	the	request	comes	from	kernel	mode
and	is	not	being	performed	on	behalf	of	Superfetch	(which	always	uses	idle
I/O).	In	this	case,	the	IRP	uses	normal	priority	even	if	the	current	thread	has	a
lower	I/O	priority.	This	is	called	the	paging	bump.

The	following	experiment	will	show	you	an	example	of	Very	Low	I/O	priority	and
how	you	can	use	Process	Monitor	to	look	at	I/O	priorities	on	different	requests.

EXPERIMENT:	VERY	LOW	VS.	NORMAL	I/O	THROUGHPUT



You	can	use	the	IO	Priority	sample	application	(included	in	the	book’s	utilities)	to	look	at	the	throughput
difference	between	two	threads	with	different	I/O	priorities.	Launch	IoPriority.exe,	make	sure	Thread	1	is
checked	to	use	Low	priority,	and	then	click	the	Start	IO	button.	You	should	notice	a	significant	difference
in	speed	between	the	two	threads,	as	shown	in	the	following	screen.

You	should	also	notice	that	Thread	1’s	throughput	remains	fairly	constant,	around	2	KB/s.	This	can	easily
be	explained	by	the	fact	that	IO	Priority	performs	its	I/Os	at	2	KB/s,	which	means	that	the	idle
prioritization	strategy	is	kicking	in	and	guaranteeing	at	least	one	I/O	each	half-second.	Otherwise,	Thread	2
would	starve	any	I/O	that	Thread	1	is	attempting	to	make.

Note	that	if	both	threads	run	at	low	priority	and	the	system	is	relatively	idle,	their	throughput	will	be
roughly	equal	to	the	throughput	of	a	single	normal	I/O	priority	in	the	example.	This	is	because	low	priority
I/Os	are	not	artificially	throttled	or	otherwise	hindered	if	there	isn’t	any	competition	from	higher	priority
I/O.

You	can	also	use	Process	Monitor	to	trace	IO	Priority’s	I/Os	and	look	at	their	I/O	priority	hint.	Launch
Process	Monitor,	configure	a	filter	for	IoPriority.exe,	and	repeat	the	experiment.	In	this	application,	Thread
1	writes	to	File_1,	and	Thread	2	writes	to	File_2.	Scroll	down	until	you	see	a	write	to	File_1,	and	you
should	see	output	similar	to	that	shown	next.

You	can	see	that	I/Os	directed	at	File_1	have	a	priority	of	Very	Low.	By	looking	at	the	Time	Of	Day
column,	you’ll	also	notice	that	the	I/Os	are	spaced	0.5	second	from	each	other—another	sign	of	the	idle
strategy	in	action.

Finally,	by	using	Process	Explorer,	you	can	identify	Thread	1	in	the	IoPriority	process	by	looking	at	the	I/O
priority	for	each	of	its	threads	on	the	Threads	tab	of	its	process	Properties	dialog	box.	You	can	also	see	that
the	priority	for	the	thread	is	lower	than	the	default	of	8	(normal),	which	indicates	that	the	thread	is	probably
running	in	background	priority	mode.	The	following	screen	shot	shows	what	you	should	expect	to	see.



Note	that	if	IO	Priority	sets	the	priority	on	File_1	instead	of	on	the	issuing	thread,	both	threads	would	look
the	same.	Only	Process	Monitor	could	show	you	the	difference	in	I/O	priorities.

EXPERIMENT:	PERFORMANCE	ANALYSIS	OF	I/O	PRIORITY
BOOSTING/BUMPING

The	kernel	exposes	several	internal	variables	that	can	be	queried	through	the	undocumented
SystemLowPriorityIoInformation	system	class	available	in	NtQuerySystemInformation.	However,	even
without	writing	or	relying	on	such	an	application,	you	can	use	the	local	kernel	debugger	for	viewing	these
numbers	on	your	system.	The	following	variables	are	available:

IoLowPriorityReadOperationCount	and	IoLowPriorityWriteOperationCount

IoKernelIssuedIoBoostedCount

IoPagingReadLowPriorityCount	and	IoPagingWriteLowPriorityCount

IoPagingReadLowPriorityBumpedCount	and	IoPagingWriteHighPriorityBumpedCount

IoBoostedThreadedIrpCount	and	IoBoostedPagingIrpCount

IoBlanketBoostCount

You	can	use	the	dd	memory-dumping	command	in	the	kernel	debugger	to	see	the	values	of	these	variables.

Bandwidth	Reservation	(Scheduled	File	I/O)
Windows	I/O	bandwidth	reservation	support	is	useful	for	applications	that	desire
consistent	I/O	throughput.	Using	the	SetFileBandwidthReservation	call,	a	media
player	application	asks	the	I/O	system	to	guarantee	it	the	ability	to	read	data	from	a



device	at	a	specified	rate.	If	the	device	can	deliver	data	at	the	requested	rate	and
existing	reservations	allow	it,	the	I/O	system	gives	the	application	guidance	as	to
how	fast	it	should	issue	I/Os	and	how	large	the	I/Os	should	be.

The	I/O	system	won’t	service	other	I/Os	unless	it	can	satisfy	the	requirements	of
applications	that	have	made	reservations	on	the	target	storage	device.	Figure	8-27
shows	a	conceptual	timeline	of	I/Os	issued	on	the	same	file.	The	shaded	regions
are	the	only	ones	that	will	be	available	to	other	applications.	If	I/O	bandwidth	is
already	taken,	new	I/Os	will	have	to	wait	until	the	next	cycle.

Figure	8-27.	Effect	of	I/O	requests	during	bandwidth	reservation

Like	the	hierarchy	prioritization	strategy,	bandwidth	reservation	is	implemented	at
the	port	driver	level,	which	means	it	is	available	only	for	IDE,	SATA,	or	USB-
based	mass-storage	devices.

Container	Notifications
Container	notifications	are	specific	classes	of	events	that	drivers	can	register	for
through	an	asynchronous	callback	mechanism	by	using	the
IoRegisterContainerNotification	API	and	selecting	the	notification	class	that
interests	them.	Thus	far,	one	class	is	implemented	in	Windows,	which	is	the
IoSessionStateNotification	class.	This	class	allows	drivers	to	have	their	registered
callback	invoked	whenever	a	change	in	the	state	of	a	given	session	is	registered.
The	following	changes	are	supported:

A	session	is	created	or	terminated

A	user	connects	to	or	disconnects	from	a	session

A	user	logs	on	to	or	logs	off	from	a	session

By	specifying	a	device	object	that	belongs	to	a	specific	session,	the	driver	callback
will	be	active	only	for	that	session,	while	by	specifying	a	global	device	object	(or
no	device	object	at	all),	the	driver	will	receive	notifications	for	all	events	on	a



system.	This	feature	is	particularly	useful	for	devices	that	participate	in	the	Plug
and	Play	device	redirection	functionality	that	is	provided	through	Terminal
Services,	which	allows	a	remote	device	to	be	visible	on	the	connecting	host’s	Plug
and	Play	manager	bus	as	well	(such	as	audio	or	printer	device	redirection).	Once
the	user	disconnects	from	a	session	with	audio	playback,	for	example,	the	device
driver	needs	a	notification	in	order	to	stop	redirecting	the	source	audio	stream.

Driver	Verifier
Driver	Verifier	is	a	mechanism	that	can	be	used	to	help	find	and	isolate	common
bugs	in	device	drivers	or	other	kernel-mode	system	code.	Microsoft	uses	Driver
Verifier	to	check	its	own	device	drivers	as	well	as	all	device	drivers	that	vendors
submit	for	Windows	Hardware	Quality	Labs	(WHQL)	testing.	Doing	so	ensures
that	the	drivers	submitted	are	compatible	with	Windows	and	free	from	common
driver	errors.	(Although	not	described	in	this	book,	there	is	also	a	corresponding
Application	Verifier	tool	that	has	resulted	in	quality	improvements	for	user-mode
code	in	Windows.)

Also,	although	Driver	Verifier	serves	primarily	as	a	tool	to	help	device	driver
developers	discover	bugs	in	their	code,	it	is	also	a	powerful	tool	for	system
administrators	experiencing	crashes.	Chapter	14	describes	its	role	in	crash	analysis
troubleshooting.

Driver	Verifier	consists	of	support	in	several	system	components:	the	memory
manager,	I/O	manager,	and	HAL	all	have	driver	verification	options	that	can	be
enabled.	These	options	are	configured	using	the	Driver	Verifier	Manager
(%SystemRoot%\System32\Verifier.exe).	When	you	run	Driver	Verifier	with	no
command-line	arguments,	it	presents	a	wizard-style	interface,	as	shown	in
Figure	8-28.



Figure	8-28.	Driver	Verifier	Manager

You	can	also	enable	and	disable	Driver	Verifier,	as	well	as	display	current	settings,
by	using	its	command-line	interface.	From	a	command	prompt,	type	verifier	/?	to
see	the	switches.

Even	when	you	don’t	select	any	options,	Driver	Verifier	monitors	drivers	selected
for	verification,	looking	for	a	number	of	illegal	and	boundary	operations,	including
calling	kernel-memory	pool	functions	at	invalid	IRQL,	double-freeing	memory,
allocating	synchronization	objects	from	NonPagedPoolSession	memory,
referencing	a	freed	object,	delaying	shutdown	for	longer	than	20	minutes,	and
requesting	a	zero-size	memory	allocation.

What	follows	is	a	description	of	the	I/O-related	verification	options	(shown	in
Figure	8-29).	The	options	related	to	memory	management	are	described	in
Chapter	10,	along	with	how	the	memory	manager	redirects	a	driver’s	operating
system	calls	to	special	verifier	versions.



Figure	8-29.	Driver	Verifier	I/O-related	options

These	options	have	the	following	effects:

I/O	Verification	When	this	option	is	selected,	the	I/O	manager	allocates	IRPs
for	verified	drivers	from	a	special	pool	and	their	usage	is	tracked.	In	addition,
the	Verifier	crashes	the	system	when	an	IRP	is	completed	that	contains	an
invalid	status	or	when	an	invalid	device	object	is	passed	to	the	I/O	manager.
This	option	also	monitors	all	IRPs	to	ensure	that	drivers	mark	them	correctly
when	completing	them	asynchronously,	that	they	manage	device-stack	locations
correctly,	and	that	they	delete	device	objects	only	once.	In	addition,	the	Verifier
randomly	stresses	drivers	by	sending	them	fake	power	management	and	WMI
IRPs,	changing	the	order	in	which	devices	are	enumerated,	and	adjusting	the
status	of	PnP	and	power	IRPs	when	they	complete	to	test	for	drivers	that	return
incorrect	status	from	their	dispatch	routines.	Finally,	Verifier	also	detects
incorrect	re-initialization	of	remove	locks	while	they	are	still	being	held	due	to
pending	device	removal.

DMA	Checking	DMA	(direct	access	memory)	is	a	hardware-supported
mechanism	that	allows	devices	to	transfer	data	to	or	from	physical	memory
without	involving	the	CPU.	The	I/O	manager	provides	a	number	of	functions
that	drivers	use	to	initiate	and	control	DMA	operations,	and	this	option	enables
checks	for	correct	use	of	the	functions	and	buffers	that	the	I/O	manager



supplies	for	DMA	operations.

Force	Pending	I/O	Requests	For	many	devices,	asynchronous	I/Os	complete
immediately,	so	drivers	may	not	be	coded	to	properly	handle	the	occasional
asynchronous	I/O.	When	this	option	is	enabled,	the	I/O	manager	will	randomly
return	STATUS_PENDING	in	response	to	a	driver’s	calls	to	IoCallDriver,
which	simulates	the	asynchronous	completion	of	an	I/O.

IRP	Logging	This	option	monitors	a	driver’s	use	of	IRPs	and	makes	a	record
of	IRP	usage,	which	is	stored	as	WMI	information.	You	can	then	use	the
Dc2wmiparser.exe	utility	in	the	WDK	to	convert	these	WMI	records	to	a	text
file.	Note	that	only	20	IRPs	for	each	device	will	be	recorded—each	subsequent
IRP	will	overwrite	the	entry	added	least	recently.	After	a	reboot,	this
information	is	discarded,	so	Dc2wmiparser.exe	should	be	run	if	the	contents	of
the	trace	are	to	be	analyzed	later.



Kernel-Mode	Driver	Framework	(KMDF)
We’ve	already	discussed	some	details	about	the	Windows	Driver	Foundation
(WDF)	in	Chapter	2,	“System	Architecture,”	in	Part	1.	In	this	section,	we’ll	take	a
deeper	look	at	the	components	and	functionality	provided	by	the	kernel-mode	part
of	the	framework,	KMDF.	Note	that	this	section	will	only	briefly	touch	on	some	of
the	core	architecture	of	KMDF.	For	a	much	more	complete	overview	on	the
subject,	please	refer	to	http://msdn.microsoft.com/en-
us/library/windows/hardware/gg463370.aspx.

Structure	and	Operation	of	a	KMDF	Driver
First,	let’s	take	a	look	at	which	kinds	of	drivers	or	devices	are	supported	by
KMDF.	In	general,	any	WDM-conformant	driver	should	be	supported	by	KMDF,
as	long	as	it	performs	standard	I/O	processing	and	IRP	manipulation.	KMDF	is	not
suitable	for	drivers	that	don’t	use	the	Windows	kernel	API	directly	but	instead
perform	library	calls	into	existing	port	and	class	drivers.	These	types	of	drivers
cannot	use	KMDF	because	they	only	provide	callbacks	for	the	actual	WDM	drivers
that	do	the	I/O	processing.	Additionally,	if	a	driver	provides	its	own	dispatch
functions	instead	of	relying	on	a	port	or	class	driver,	IEEE	1394	and	ISA,	PCI,
PCMCIA,	and	SD	Client	(for	Secure	Digital	storage	devices)	drivers	can	also	make
use	of	KMDF.

Although	KMDF	provides	an	abstraction	on	top	of	WDM,	the	basic	driver
structure	shown	earlier	also	generally	applies	to	KMDF	drivers.	At	their	core,
KMDF	drivers	must	have	the	following	functions:

An	initialization	routine	Just	like	any	other	driver,	a	KMDF	driver	has	a
DriverEntry	function	that	initializes	the	driver.	KMDF	drivers	will	initiate	the
framework	at	this	point	and	perform	any	configuration	and	initialization	steps
that	are	part	of	the	driver	or	part	of	describing	the	driver	to	the	framework.	For
non–Plug	and	Play	drivers,	this	is	where	the	first	device	object	should	be
created.

An	add-device	routine	KMDF	driver	operation	is	based	on	events	and
callbacks	(described	shortly),	and	the	EvtDriverDeviceAdd	callback	is	the
single	most	important	one	for	PnP	devices	because	it	receives	notifications

http://msdn.microsoft.com/en-us/library/windows/hardware/gg463370.aspx


when	the	PnP	manager	in	the	kernel	enumerates	one	of	the	driver’s	devices.

One	or	more	EvtIo*	routines	Just	like	a	WDM	driver’s	dispatch	routines,
these	callback	routines	handle	specific	types	of	I/O	requests	from	a	particular
device	queue.	A	driver	typically	creates	one	or	more	queues	in	which	KMDF
places	I/O	requests	for	the	driver’s	devices.	These	queues	can	be	configured	by
request	type	and	dispatching	type.

The	simplest	KMDF	driver	might	need	to	have	only	an	initialization	and	add-
device	routine	because	the	framework	will	provide	the	default,	generic
functionality	that’s	required	for	most	types	of	I/O	processing,	including	power	and
Plug	and	Play	events.	In	the	KMDF	model,	events	refer	to	run-time	states	to	which
a	driver	can	respond	or	during	which	a	driver	can	participate.	These	events	are	not
related	to	the	synchronization	primitives	(synchronization	is	discussed	in	Chapter	3
in	Part	1),	but	are	internal	to	the	framework.

For	events	that	are	critical	to	a	driver’s	operation,	or	which	need	specialized
processing,	the	driver	registers	a	given	callback	routine	to	handle	this	event.	In
other	cases,	a	driver	can	allow	KMDF	to	perform	a	default,	generic	action	instead.
For	example,	during	an	eject	event	(EvtDeviceEject),	a	driver	can	choose	to
support	ejection	and	supply	a	callback	or	to	fall	back	to	the	default	KMDF	code
that	will	tell	the	user	that	the	device	is	not	ejectable.	Not	all	events	have	a	default
behavior,	however,	and	callbacks	must	be	provided	by	the	driver.	One	notable
example	is	the	EvtDriverDeviceAdd	event	that	is	at	the	core	of	any	Plug	and	Play
driver.

EXPERIMENT:	DISPLAYING	KMDF	DRIVERS

The	Wdfkd.dll	extension	that	ships	with	the	Debugging	Tools	for	Windows	package	provides	many
commands	that	can	be	used	to	debug	and	analyze	KMDF	drivers	and	devices	(instead	of	using	the	built-in
WDM-style	debugging	extension	that	may	not	offer	the	same	kind	of	WDF-specific	information).	You	can
display	installed	KMDF	drivers	with	the	!wdfkd.wdfldr	debugger	command.	In	the	following	example,	the
output	from	a	typical	Windows	computer	is	shown,	displaying	the	built-in	drivers	that	are	installed.

lkd> !wdfkd.wdfldr
 LoadedModuleList      0xfffff880010682d8
----------------------------------
LIBRARY_MODULE  fffffa8002776120
  Version       v1.9 build(7600)
  Service       \Registry\Machine\System\CurrentControlSet\Services\Wdf01000
  ImageName     Wdf01000.sys
  ImageAddress  0xfffff88000c00000
  ImageSize     0xa4000



  Associated Clients: 16

ImageName        Version    WdfGlobals          FxGlobals           ImageAddress
                 ImageSize
peauth.sys       v1.7(6001) 0xfffffa8004754210  0xfffffa80047540c0  
0xfffff880074cc000
                 0x000a6000
scfilter.sys     v1.5(6000) 0xfffffa8002ef34e0  0xfffffa8002ef3390  
0xfffff880040b3000
                 0x0000e000
WinUSB.sys       v1.9(7600) 0xfffffa8002eefd20  0xfffffa8002eefbd0  
0xfffff88004000000
                 0x00011000
monitor.sys      v1.9(7600) 0xfffffa8004854a10  0xfffffa80048548c0  
0xfffff8800412a000
                 0x0000e000
vmswitch.sys     v1.5(6000) 0xfffffa8002de5d60  0xfffffa8002de5c10  
0xfffff88003e9b000
                 0x00068000
vmbus.sys        v1.5(6000) 0xfffffa8002d7fcf0  0xfffffa8002d7fba0  
0xfffff88003e5f000
                 0x0003c000
Vid.sys          v1.5(6000) 0xfffffa8002ddacf0  0xfffffa8002ddaba0  
0xfffff88002a00000
                 0x00033000
umbus.sys        v1.9(7600) 0xfffffa8002e57e70  0xfffffa8002e57d20  
0xfffff880035db000
                 0x00012000
storvsp.sys      v1.5(6000) 0xfffffa8002e48b10  0xfffffa8002e489c0  
0xfffff88003575000
                 0x00023000
CompositeBus.sys v1.9(7600) 0xfffffa8002d79160  0xfffffa8002d79010  
0xfffff88002936000
                 0x00010000
HDAudBus.sys     v1.7(6001) 0xfffffa8002e357f0  0xfffffa8002e356a0  
0xfffff880037a9000
                 0x00024000
intelppm.sys     v1.9(7600) 0xfffffa8002c518f0  0xfffffa8002c517a0  
0xfffff880027e7000
                 0x00016000
cdrom.sys        v1.9(7600) 0xfffffa80028bf8f0  0xfffffa80028bf7a0  
0xfffff880011c4000
                 0x0002a000
vmstorfl.sys     v1.5(6000) 0xfffffa8002b2cdd0  0xfffffa8002b2cc80  
0xfffff8800144a000
                 0x00010000
vdrvroot.sys     v1.9(7600) 0xfffffa80027887c0  0xfffffa8002788670  
0xfffff8800139c000
                 0x0000d000
msisadrv.sys     v1.9(7600) 0xfffffa80029c5430  0xfffffa80029c52e0  
0xfffff8800135f000
                 0x0000a000
----------------------------------
Total:  1  library  loaded

KMDF	Data	Model



The	KMDF	data	model	is	object-based,	much	like	the	model	for	the	kernel,	but	it
does	not	make	use	of	the	object	manager.	Instead,	KMDF	manages	its	own	objects
internally,	exposing	them	as	handles	to	drivers	and	keeping	the	actual	data
structures	opaque.	For	each	object	type,	the	framework	provides	routines	to
perform	operations	on	the	object,	such	as	WdfDeviceCreate,	which	creates	a
device.	Additionally,	objects	can	have	specific	data	fields	or	members	that	can	be
accessed	by	Get/Set	(used	for	modifications	that	should	never	fail)	or
Assign/Retrieve	APIs	(used	for	modifications	that	can	fail).	For	example,	the
WdfInterruptGetInfo	function	returns	information	on	a	given	interrupt	object
(WDFINTERRUPT).

Also	unlike	the	implementation	of	kernel	objects,	which	all	refer	to	distinct	and
isolated	object	types,	KMDF	objects	are	all	part	of	a	hierarchy—most	object	types
are	bound	to	a	parent.	The	root	object	is	the	WDFDRIVER	structure,	which
describes	the	actual	driver.	The	structure	and	meaning	is	analogous	to	the
DRIVER_OBJECT	structure	provided	by	the	I/O	manager,	and	all	other	KMDF
structures	are	children	of	it.	The	next	most	important	object	is	WDFDEVICE,
which	refers	to	a	given	instance	of	a	detected	device	on	the	system,	which	must
have	been	created	with	WdfDeviceCreate.	Again,	this	is	analogous	to	the
DEVICE_OBJECT	structure	that’s	used	in	the	WDM	model	and	by	the	I/O
manager.	Table	8-5	lists	the	object	types	supported	by	KMDF.

Table	8-5.	KMDF	Object	Types

Object Type Description

Child	List WDFCHILDLIST List	of	child	WDFDEVICE	objects	associated	with
the	device.	Only	used	by	bus	drivers.

Collection WDFCOLLECTION List	of	objects	of	a	similar	type,	such	as	a	group	of
WDFDEVICE	objects	being	filtered.

Deferred
Procedure	Call

WDFDPC Instance	of	a	DPC	object	(see	Chapter	3	in	Part	1
for	more	information	on	DPCs).

Device WDFDEVICE Instance	of	a	device.

DMA
Common
Buffer

WDFCOMMONBUFFER Region	of	memory	that	a	device	and	driver	can
access	for	direct	memory	access	(DMA).



DMA	Enabler WDFDMAENABLER Enables	DMA	on	a	given	channel	for	a	driver.

DMA
Transaction

WDFDMATRANSACTION Instance	of	a	DMA	transaction.

Driver WDFDRIVER Root	object	for	the	driver;	represents	the	driver,	its
parameters,	and	its	callbacks,	among	other	items.

File WDFFILEOBJECT Instance	of	a	file	object	that	can	be	used	as	a
channel	for	communication	between	an	application
and	the	driver.

Generic	Object WDFOBJECT Allows	driver-defined	custom	data	to	be	wrapped
inside	the	framework’s	object	data	model	as	an
object.

Interrupt WDFINTERRUPT Instance	of	an	interrupt	that	the	driver	must	handle.

I/O	Queue WDFQUEUE Represents	a	given	I/O	queue.

I/O	Request WDFREQUEST Represents	a	given	request	on	a	WDFQUEUE.

I/O	Target WDFIOTARGET Represents	the	device	stack	being	targeted	by	a
given	WDFREQUEST.

Look-Aside
List

WDFLOOKASIDE Describes	an	executive	look-aside	list.

Memory WDFMEMORY Describes	a	region	of	paged	or	nonpaged	pool.

Registry	Key WDFKEY Describes	a	registry	key.

Resource	List WDFCMRESLIST Identifies	the	hardware	resources	assigned	to	a
WDFDEVICE.

Resource
Range	List

WDFIORESLIST Identifies	a	given	possible	hardware	resource	range
for	a	WDFDEVICE.

Resource
Requirements
List

WDFIORESREQLIST Contains	an	array	of	WDFIORESLIST	objects
describing	all	possible	resource	ranges	for	a
WDFDEVICE.

Spinlock WDFSPINLOCK Describes	a	spinlock	(see	Chapter	3	in	Part	1	for
more	information).

String WDFSTRING Describes	a	Unicode	string	structure.

Timer WDFTIMER Describes	an	executive	timer	(see	Chapter	3	in	Part



1	for	more	information).

USB	Device WDFUSBDEVICE Identifies	the	one	instance	of	a	USB	device.

USB	Interface WDFUSBINTERFACE Identifies	one	interface	on	the	given
WDFUSBDEVICE.

USB	Pipe WDFUSBPIPE Identifies	a	pipe	to	an	endpoint	on	a	given
WDFUSBINTERFACE.

Wait	Lock WDFWAITLOCK Represents	a	kernel	dispatcher	event	object.

WMI	Instance WDFWMIINSTANCE Represents	a	WMI	data	block	for	a	given
WDFWMIPROVIDER.

WMI	Provider WDFWMIPROVIDER Describes	the	WMI	schema	for	all	the
WDFWMIINSTANCE	objects	supported	by	the
driver.

Work	Item WDFWORKITEM Describes	an	executive	work	item.

For	each	of	these	objects,	other	KMDF	objects	can	be	attached	as	children—some
objects	have	only	one	or	two	valid	parents,	while	other	objects	can	be	attached	to
any	parent.	For	example,	a	WDFINTERRUPT	object	must	be	associated	with	a
given	WDFDEVICE,	but	a	WDFSPINLOCK	or	WDFSTRING	can	have	any	object
as	a	parent,	allowing	fine-grained	control	over	their	validity	and	usage	and
reducing	global	state	variables.	Figure	8-30	shows	the	entire	KMDF	object
hierarchy.

Note	that	the	associations	mentioned	earlier	and	shown	in	the	figure	are	not
necessarily	immediate.	The	parent	must	simply	be	on	the	hierarchy	chain,	meaning
one	of	the	ancestor	nodes	must	be	of	this	type.	This	relationship	is	useful	to
implement	because	object	hierarchies	affect	not	only	the	objects’	locality	but	also
their	lifetime.	Each	time	a	child	object	is	created,	a	reference	count	is	added	to	it	by
its	link	to	its	parent.	Therefore,	when	a	parent	object	is	destroyed,	all	the	child
objects	are	also	destroyed,	which	is	why	associating	objects	such	as	WDFSTRING
or	WDFMEMORY	with	a	given	object,	instead	of	the	default	WDFDRIVER
object,	can	automatically	free	up	memory	and	state	information	when	the	parent
object	is	destroyed.

Closely	related	to	the	concept	hierarchy	is	KMDF’s	notion	of	object	context.
Because	KMDF	objects	are	opaque,	as	discussed,	and	are	associated	with	a	parent



object	for	locality,	it	becomes	important	to	allow	drivers	to	attach	their	own	data	to
an	object	in	order	to	track	certain	specific	information	outside	the	framework’s
capabilities	or	support.

Figure	8-30.	KMDF	object	hierarchy

Object	contexts	allow	all	KMDF	objects	to	contain	such	information,	and	they
additionally	allow	multiple	object	context	areas,	which	permit	multiple	layers	of
code	inside	the	same	driver	to	interact	with	the	same	object	in	different	ways.	In
the	WDM	model,	the	device	extension	data	structure	allows	such	information	to	be
associated	with	a	given	device,	but	with	KMDF	even	a	spinlock	or	string	can
contain	context	areas.	This	extensibility	allows	each	library	or	layer	of	code
responsible	for	processing	an	I/O	to	interact	independently	of	other	code,	based	on
the	context	area	that	it	works	with,	and	allows	a	mechanism	similar	to	inheritance.

Finally,	KMDF	objects	are	also	associated	with	a	set	of	attributes	that	are	shown	in
Table	8-6.	These	attributes	are	usually	configured	to	their	defaults,	but	the	values
can	be	overridden	by	the	driver	when	creating	the	object	by	specifying	a
WDF_OBJECT_ATTRIBUTES	structure	(similar	to	the	object	manager’s



OBJECT_ATTRIBUTES	structure	that’s	used	when	creating	a	kernel	object).

Table	8-6.	KMDF	Object	Attributes

Attribute Description

ContextSizeOverride Size	of	the	object	context	area.

ContextTypeInfo Type	of	the	object	context	area.

EvtCleanupCallback Callback	to	notify	the	driver	of	the	object’s	cleanup	before	deletion
(references	may	still	exist).

EvtDestroyCallback Callback	to	notify	the	driver	of	the	object’s	imminent	deletion	(reference
count	will	be	0).

ExecutionLevel Describes	the	maximum	IRQL	at	which	the	callbacks	may	be	invoked	by
KMDF.

ParentObject Identifies	the	parent	of	this	object.

Size Size	of	the	object.

SynchronizationScope Specifies	whether	callbacks	should	be	synchronized	with	the	parent,	a
queue	or	device,	or	nothing.

KMDF	I/O	Model
The	KMDF	I/O	model	follows	the	WDM	mechanisms	discussed	earlier	in	the
chapter.	In	fact,	one	can	even	think	of	the	framework	itself	as	a	WDM	driver,	since
it	uses	kernel	APIs	and	WDM	behavior	to	abstract	KMDF	and	make	it	functional.
Under	KMDF,	the	framework	driver	sets	its	own	WDM-style	IRP	dispatch	routines
and	takes	control	over	all	IRPs	sent	to	the	driver.	After	being	handled	by	one	of
three	KMDF	I/O	handlers	(which	we’ll	describe	shortly),	it	then	packages	these
requests	in	the	appropriate	KMDF	objects,	inserts	them	in	the	appropriate	queues
if	required,	and	performs	driver	callback	if	the	driver	is	interested	in	those	events.
Figure	8-31	describes	the	flow	of	I/O	in	the	framework.

Based	on	the	IRP	processing	discussed	for	WDM	drivers	earlier,	KMDF	performs
one	of	the	following	three	actions:

Sends	the	IRP	to	the	I/O	handler,	which	processes	standard	device	operations



Sends	the	IRP	to	the	PnP	and	power	handler	that	processes	these	kinds	of
events	and	notifies	other	drivers	if	the	state	has	changed

Sends	the	IRP	to	the	WMI	handler,	which	handles	tracing	and	logging.

These	components	will	then	notify	the	driver	of	any	events	it	registered	for,
potentially	forward	the	request	to	another	handler	for	further	processing,	and	then
complete	the	request	based	on	an	internal	handler	action	or	as	the	result	of	a	driver
call.	If	KMDF	has	finished	processing	the	IRP	but	the	request	itself	has	still	not
been	fully	processed,	KMDF	will	take	one	of	the	following	actions:

For	bus	drivers	and	function	drivers,	complete	the	IRP	with
STATUS_INVALID_DEVICE_REQUEST

For	filter	drivers,	forward	the	request	to	the	next	lower	driver

Figure	8-31.	KMDF	I/O	flow	and	IRP	processing

I/O	processing	by	KMDF	is	based	on	the	mechanism	of	queues	(WDFQUEUE,	not
the	KQUEUE	object	discussed	in	the	earlier	section	on	I/O	completion	and	in
Chapter	3	in	Part	1).	KMDF	queues	are	highly	scalable	containers	of	I/O	requests



(packaged	as	WDFREQUEST	objects)	and	provide	a	rich	feature	set	beyond
merely	sorting	the	pending	I/Os	for	a	given	device.	For	example,	queues	also	track
currently	active	requests	and	support	I/O	cancellation,	I/O	concurrency	(the	ability
to	perform	and	complete	more	than	one	I/O	request	at	a	time),	and	I/O
synchronization	(as	noted	in	the	list	of	object	attributes	in	Table	8-6).	A	typical
KMDF	driver	creates	at	least	one	queue	(if	not	more)	and	associates	one	or	more
events	with	each	queue,	as	well	as	some	of	the	following	options:

The	callbacks	registered	with	the	events	associated	with	this	queue.

The	power	management	state	for	the	queue.	KMDF	supports	both	power-
managed	and	nonpower-managed	queues.	For	the	former,	the	I/O	handler	will
handle	waking	up	the	device	when	required	(and	when	possible),	arm	the	idle
timer	when	the	device	has	no	I/Os	queued	up,	and	call	the	driver’s	I/O
cancellation	routines	when	the	system	is	switching	away	from	a	working	state.

The	dispatch	method	for	the	queue.	KMDF	can	deliver	I/Os	from	a	queue	either
in	a	sequential,	parallel,	or	manual	mode.	Sequential	I/Os	are	delivered	one	at	a
time	(KMDF	waits	for	the	driver	to	complete	the	previous	request),	while
parallel	I/Os	are	delivered	to	the	driver	as	soon	as	possible.	In	manual	mode,	the
driver	must	manually	retrieve	I/Os	from	the	queue.

Whether	or	not	the	queue	can	accept	zero-length	buffers,	such	as	incoming
requests	that	don’t	actually	contain	any	data.

NOTE

The	dispatch	method	affects	solely	the	number	of	requests	that	are	allowed	to	be	active	inside	a	driver’s
queue	at	one	time.	It	does	not	determine	whether	the	event	callbacks	themselves	will	be	called	concurrently
or	serially.	That	behavior	is	determined	through	the	synchronization	scope	object	attribute	described	earlier.
Therefore,	it	is	possible	for	a	parallel	queue	to	have	concurrency	disabled	but	still	have	multiple	incoming
requests.

Based	on	the	mechanism	of	queues,	the	KMDF	I/O	handler	can	perform	several
possible	tasks	upon	receiving	either	a	create,	close,	cleanup,	write,	read,	or	device
control	(IOCTL)	request:

For	create	requests,	the	driver	can	request	to	be	immediately	notified	through
EvtDeviceFileCreate,	or	it	can	create	a	nonmanual	queue	to	receive	create
requests.	It	must	then	register	an	EvtIoDefault	callback	to	receive	the



notifications.	Finally,	if	none	of	these	methods	are	used,	KMDF	will	simply
complete	the	request	with	a	success	code,	meaning	that	by	default,	applications
will	be	able	to	open	handles	to	KMDF	drivers	that	don’t	supply	their	own	code.

For	cleanup	and	close	requests,	the	driver	will	be	immediately	notified	through
EvtFileCleanup	and	EvtFileClose	callbacks,	if	registered.	Otherwise,	the
framework	will	simply	complete	with	a	success	code.

Finally,	Figure	8-32	illustrates	the	flow	of	an	I/O	request	to	a	KMDF	driver	for
the	most	common	driver	operations	(read,	write,	and	I/O	control	codes).



Figure	8-32.	Handling	read,	write,	and	IOCTL	I/O	requests	by	KMDF



User-Mode	Driver	Framework	(UMDF)
Although	this	chapter	focuses	on	kernel-mode	drivers,	Windows	includes	a
growing	number	of	drivers	that	actually	run	in	user	mode,	as	previously	described,
using	the	User-Mode	Driver	Framework	(UMDF)	that	is	part	of	the	WDF.	Before
finishing	our	discussion	on	drivers,	we’ll	take	a	quick	look	at	the	architecture	of
UMDF	and	what	it	offers.	Once	again,	for	a	much	more	complete	overview	on	the
subject,	please	refer	to	http://msdn.microsoft.com/en-
us/library/windows/hardware/gg463370.aspx.

UMDF	is	designed	specifically	to	support	what	are	called	protocol	device	classes,
which	refers	to	devices	that	all	use	the	same	standardized,	generic	protocol	and
offer	specialized	functionality	on	top	of	it.	These	protocols	currently	include	IEEE
1394	(FireWire),	USB,	Bluetooth,	and	TCP/IP.	Any	device	running	on	top	of	these
buses	(or	connected	to	a	network)	is	a	potential	candidate	for	UMDF—examples
include	portable	music	players,	PDAs,	cell	phones,	cameras	and	webcams,	and	so
on.	Two	other	large	users	of	UMDF	are	SideShow-compatible	devices	(auxiliary
displays)	and	the	Windows	Portable	Device	(WPD)	Framework,	which	supports
USB	removable	storage	(USB	bulk	transfer	devices).	Finally,	as	with	KMDF,	it’s
possible	to	implement	software-only	drivers,	such	as	for	a	virtual	device,	in	UMDF.

To	make	porting	code	easier	from	kernel	mode	to	user	mode,	and	to	keep	a
consistent	architecture,	UMDF	uses	the	same	conceptual	driver	programming
model	as	KMDF,	but	it	uses	different	components,	interfaces,	and	data	structures.
For	example,	KMDF	includes	objects	unique	to	kernel	mode,	while	UMDF
includes	some	objects	unique	to	user	mode.	Objects	and	functionality	that	can’t	be
accessed	through	UMDF	include	direct	handling	of	interrupts,	DMA,	nonpaged
pool,	and	strict	timing	requirements.	Furthermore,	a	UMDF	driver	can’t	be	on	any
kernel	driver	stack	or	be	a	client	of	another	driver	or	the	kernel	itself.

Unlike	KMDF	drivers,	which	run	as	driver	objects	representing	a	.sys	image	file,
UMDF	drivers	run	in	a	driver	host	process,	similar	to	a	service-hosting	process.
The	host	process	contains	the	driver	itself	(which	is	implemented	as	an	in-process
COM	component),	the	user-mode	driver	framework	(implemented	as	a	DLL
containing	COM-like	components	for	each	UMDF	object),	and	a	run-time
environment	(responsible	for	I/O	dispatching,	driver	loading,	device-stack
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management,	communication	with	the	kernel,	and	a	thread	pool).

Just	like	in	the	kernel,	each	UMDF	driver	runs	as	part	of	a	stack,	which	can
contain	multiple	drivers	that	are	responsible	for	managing	a	device.	Naturally,	since
user-mode	code	can’t	access	the	kernel	address	space,	UMDF	also	includes	some
components	that	allow	this	access	to	occur	through	a	specialized	interface	to	the
kernel.	This	is	implemented	by	a	kernel-mode	side	of	UMDF	that	uses	ALPC	(see
Chapter	3	in	Part	1	for	more	information	on	advanced	local	procedure	call)	to	talk
to	the	run-time	environment	in	the	user-mode	driver	host	processes.	Figure	8-33
displays	the	architecture	of	the	UMDF	driver	model.

Figure	8-33.	UMDF	architecture

Figure	8-33	shows	two	different	device	stacks	that	manage	two	different	hardware
devices,	each	with	a	UMDF	driver	running	inside	its	own	driver	host	process.	From
the	diagram,	you	can	see	that	the	following	components	take	part	in	the
architecture:

Applications	Applications	are	the	clients	of	the	drivers.	These	are	standard
Windows	applications	that	use	the	same	APIs	to	perform	I/Os	as	they	would
with	a	KMDF-managed	or	a	WDM-managed	device.	Applications	don’t	know
that	they’re	talking	to	a	UMDF-based	device,	and	the	calls	are	still	sent	to	the
kernel’s	I/O	manager.

Windows	kernel	(I/O	manager)	Based	on	the	application	I/O	APIs,	the	I/O



manager	builds	the	IRPs	for	the	operations,	just	like	for	any	other	standard
device.

Reflector	The	reflector	is	what	makes	UMDF	“tick.”	It	is	a	standard	WDM
filter	driver	that	sits	at	the	top	of	the	device	stack	of	each	device	that	is	being
managed	by	a	UMDF	driver.	The	reflector	is	responsible	for	managing	the
communication	between	the	kernel	and	the	user-mode	driver	host	process.	IRPs
related	to	power	management,	Plug	and	Play,	and	standard	I/O	are	redirected	to
the	host	process	through	ALPC.	This	lets	the	UMDF	driver	respond	to	the	I/Os
and	perform	work,	as	well	as	be	involved	in	the	Plug	and	Play	model,	by
providing	enumeration,	installation,	and	management	of	its	devices.	The
reflector	is	also	responsible	for	keeping	an	eye	on	the	driver	host	processes	by
making	sure	that	they	remain	responsive	to	requests	within	an	adequate	time	to
prevent	drivers	and	applications	from	hanging.

Driver	manager	The	driver	manager	is	responsible	for	starting	and	quitting	the
driver	host	processes,	based	on	which	UMDF-managed	devices	are	present,	and
also	for	managing	information	on	them.	It	is	also	responsible	for	responding	to
messages	coming	from	the	reflector	and	applying	them	to	the	appropriate	host
process	(such	as	reacting	to	device	installation).	The	driver	manager	runs	as	a
standard	Windows	service	and	is	configured	for	automatic	startup	as	soon	as
the	first	UMDF	driver	for	a	device	is	installed.	Only	one	instance	of	the	driver
manager	runs	for	all	driver	host	processes,	and	it	must	always	be	running	to
allow	UMDF	drivers	to	work.

Host	process	The	host	process	provides	the	address	space	and	run-time
environment	for	the	actual	driver.	Although	it	runs	in	the	local	service	account,
it	is	not	actually	a	Windows	service	and	is	not	managed	by	the	SCM—only	by
the	driver	manager.	The	host	process	is	also	responsible	for	providing	the	user-
mode	device	stack	for	the	actual	hardware,	which	is	visible	to	all	applications	on
the	system.	In	the	current	UMDF	release,	each	device	instance	has	its	own
device	stack,	which	runs	in	a	separate	host	process.	In	the	future,	multiple
instances	may	share	the	same	host	process.	Host	processes	are	child	processes
of	the	driver	manager.

Kernel-mode	drivers	If	specific	kernel	support	for	a	device	that	is	managed
by	a	UMDF	driver	is	needed,	it	is	also	possible	to	write	a	companion	kernel-



mode	driver	that	fills	that	role.	In	this	way,	it	is	possible	for	a	device	to	be
managed	both	by	a	UMDF	and	a	KMDF	(or	WDM)	driver.

You	can	easily	see	UMDF	in	action	on	your	system	by	inserting	a	USB	flash	drive
with	some	content	on	it.	Run	Process	Explorer,	and	you	should	see	a
WUDFHost.exe	process	that	corresponds	to	a	driver	host	process.	Switch	to	DLL
view	and	scroll	down	until	you	see	DLLs	similar	to	the	ones	shown	in	Figure	8-34.

Figure	8-34.	DLL	in	UMDF	host	process

You	can	identify	three	main	components,	which	match	the	architectural	overview
described	earlier:

WUDFx.dll,	the	framework	itself

WUDFPlatform.dll,	the	run-time	environment

WpdRapi2.dll,	the	COM	component	representing	the	WPD	driver,	exposing
contents	of	USB	storage	devices	to	Windows	shell	and	media	applications



The	Plug	and	Play	(PnP)	Manager
The	PnP	manager	is	the	primary	component	involved	in	supporting	the	ability	of
Windows	to	recognize	and	adapt	to	changing	hardware	configurations.	A	user
doesn’t	need	to	understand	the	intricacies	of	hardware	or	manual	configuration	to
install	and	remove	devices.	For	example,	it’s	the	PnP	manager	that	enables	a
running	Windows	laptop	that	is	placed	on	a	docking	station	to	automatically	detect
additional	devices	located	in	the	docking	station	and	make	them	available	to	the
user.

Plug	and	Play	support	requires	cooperation	at	the	hardware,	device	driver,	and
operating	system	levels.	Industry	standards	for	the	enumeration	and	identification
of	devices	attached	to	buses	are	the	foundation	of	Windows	Plug	and	Play	support.
For	example,	the	USB	standard	defines	the	way	that	devices	on	a	USB	bus	identify
themselves.	With	this	foundation	in	place,	Windows	Plug	and	Play	support
provides	the	following	capabilities:

The	PnP	manager	automatically	recognizes	installed	devices,	a	process	that
includes	enumerating	devices	attached	to	the	system	during	a	boot	and	detecting
the	addition	and	removal	of	devices	as	the	system	executes.

Hardware	resource	allocation	is	a	role	the	PnP	manager	fills	by	gathering	the
hardware	resource	requirements	(interrupts,	I/O	memory,	I/O	registers,	or	bus-
specific	resources)	of	the	devices	attached	to	a	system	and,	in	a	process	called
resource	arbitration,	optimally	assigning	resources	so	that	each	device	meets	the
requirements	necessary	for	its	operation.	Because	hardware	devices	can	be
added	to	the	system	after	boot-time	resource	assignment,	the	PnP	manager	must
also	be	able	to	reassign	resources	to	accommodate	the	needs	of	dynamically
added	devices.

Loading	appropriate	drivers	is	another	responsibility	of	the	PnP	manager.	The
PnP	manager	determines,	based	on	the	identification	of	a	device,	whether	a
driver	capable	of	managing	the	device	is	installed	on	the	system,	and	if	one	is,	it
instructs	the	I/O	manager	to	load	it.	If	a	suitable	driver	isn’t	installed,	the	kernel-
mode	PnP	manager	communicates	with	the	user-mode	PnP	manager	to	install
the	device,	possibly	requesting	the	user’s	assistance	in	locating	a	suitable	set	of
drivers.



The	PnP	manager	also	implements	application	and	driver	mechanisms	for	the
detection	of	hardware	configuration	changes.	Applications	or	drivers	sometimes
require	a	specific	hardware	device	to	function,	so	Windows	includes	a	means
for	them	to	request	notification	of	the	presence,	addition,	or	removal	of	devices.

It	also	provides	a	place	for	storage	device	state,	and	it	participates	in	system
setup,	upgrade,	migration,	and	offline	image	management.

In	addition,	it	supports	network	connected	devices,	such	as	network	projectors
and	printers,	by	allowing	specialized	bus	drivers	to	detect	the	network	as	a	bus
and	create	device	nodes	for	the	devices	running	on	it.

Level	of	Plug	and	Play	Support
Windows	aims	to	provide	full	support	for	Plug	and	Play,	but	the	level	of	support
possible	depends	on	the	attached	devices	and	installed	drivers.	If	a	single	device	or
driver	doesn’t	support	Plug	and	Play,	the	extent	of	Plug	and	Play	support	for	the
system	can	be	compromised.	In	addition,	a	driver	that	doesn’t	support	Plug	and
Play	might	prevent	other	devices	from	being	usable	by	the	system.	Table	8-7	shows
the	outcome	of	various	combinations	of	devices	and	drivers	that	can	and	can’t
support	Plug	and	Play.

Table	8-7.	Device	and	Driver	Plug	and	Play	Capability

	 Type	of	Driver

Type	of	Device Plug	and	Play Non–Plug	and	Play

Plug	and	Play Full	Plug	and	Play No	Plug	and	Play

Non–Plug	and	Play Possible	partial	Plug	and	Play No	Plug	and	Play

A	device	that	isn’t	Plug	and	Play–compatible	is	one	that	doesn’t	support	automatic
detection,	such	as	a	legacy	ISA	sound	card.	Because	the	operating	system	doesn’t
know	where	the	hardware	physically	lies,	certain	operations—such	as	laptop
undocking,	sleep,	and	hibernation—are	disallowed.	However,	if	a	Plug	and	Play
driver	is	manually	installed	for	the	device,	the	driver	can	at	least	implement	PnP
manager–directed	resource	assignment	for	the	device.

Drivers	that	aren’t	Plug	and	Play–compatible	include	legacy	drivers,	such	as	those



that	ran	on	Windows	NT	4.	Although	these	drivers	might	continue	to	function	on
later	versions	of	Windows,	the	PnP	manager	can’t	reconfigure	the	resources
assigned	to	such	devices	in	the	event	that	resource	reallocation	is	necessary	to
accommodate	the	needs	of	a	dynamically	added	device.	For	example,	a	device
might	be	able	to	use	I/O	memory	ranges	A	and	B,	and	during	the	boot	the	PnP
manager	assigns	it	range	A.	If	a	device	that	can	use	only	A	is	attached	to	the
system	later,	the	PnP	manager	can’t	direct	the	first	device’s	driver	to	reconfigure
itself	to	use	range	B.	This	prevents	the	second	device	from	obtaining	required
resources,	which	results	in	the	device	being	unavailable	for	use	by	the	system.
Legacy	drivers	also	impair	a	machine’s	ability	to	sleep	or	hibernate.	(See	the
section	The	Power	Manager	later	in	this	chapter	for	more	details.)

Driver	Support	for	Plug	and	Play
To	support	Plug	and	Play,	a	driver	must	implement	a	Plug	and	Play	dispatch
routine,	a	power	management	dispatch	routine	(described	in	the	section	The	Power
Manager	later	in	this	chapter),	and	an	add-device	routine.	Bus	drivers	must	support
different	types	of	Plug	and	Play	requests	than	function	or	filter	drivers	do,	however.
For	example,	when	the	PnP	manager	is	guiding	device	enumeration	during	the
system	boot	(described	in	detail	later	in	this	chapter),	it	asks	bus	drivers	for	a
description	of	the	devices	that	they	find	on	their	respective	buses.	The	description
includes	data	that	uniquely	identifies	each	device	as	well	as	the	resource
requirements	of	the	devices.	The	PnP	manager	takes	this	information	and	loads	any
function	or	filter	drivers	that	have	been	installed	for	the	detected	devices.	It	then
calls	the	add-device	routine	of	each	driver	for	every	installed	device	the	drivers	are
responsible	for.

Function	and	filter	drivers	prepare	to	begin	managing	their	devices	in	their	add-
device	routines,	but	they	don’t	actually	communicate	with	the	device	hardware.
Instead,	they	wait	for	the	PnP	manager	to	send	a	start-device	command	for	the
device	to	their	Plug	and	Play	dispatch	routine.	Prior	to	sending	the	start-device
command	the	PnP	manager	performs	resource	arbitration	to	decide	what	resources
to	assign	the	device.	The	start-device	command	includes	the	resource	assignment
that	the	PnP	manager	determines	during	resource	arbitration.	When	a	driver
receives	a	start-device	command,	it	can	configure	its	device	to	use	the	specified
resources.	If	an	application	tries	to	open	a	device	that	hasn’t	finished	starting,	it



receives	an	error	indicating	that	the	device	does	not	exist.

After	a	device	has	started,	the	PnP	manager	can	send	the	driver	additional	Plug
and	Play	commands,	including	ones	related	to	a	device’s	removal	from	the	system
or	to	resource	reassignment.	For	example,	when	the	user	invokes	the	remove/eject
device	utility,	shown	in	Figure	8-35	(accessible	by	right-clicking	on	the	USB
connector	icon	in	the	taskbar	and	selecting	Eject	USB	Mass	Storage	Device),	to	tell
Windows	to	eject	a	USB	flash	drive,	the	PnP	manager	sends	a	query-remove
notification	to	any	applications	that	have	registered	for	Plug	and	Play	notifications
for	the	device.	Applications	typically	register	for	notification	on	their	handles,
which	they	close	during	a	query-remove	notification.	If	no	applications	veto	the
query-remove	request,	the	PnP	manager	sends	a	query-remove	command	to	the
driver	that	owns	the	device	being	ejected.	At	that	point,	the	driver	has	a	chance	to
deny	the	removal	or	to	ensure	that	any	pending	I/O	operations	involving	the	device
have	completed	and	to	begin	rejecting	further	I/O	requests	aimed	at	the	device.	If
the	driver	agrees	to	the	remove	request	and	no	open	handles	to	the	device	remain,
the	PnP	manager	next	sends	a	remove	command	to	the	driver	to	request	that	the
driver	discontinue	accessing	the	device	and	release	any	resources	the	driver	has
allocated	on	behalf	of	the	device.

Figure	8-35.	Remove/eject	utility

When	the	PnP	manager	needs	to	reassign	a	device’s	resources,	it	first	asks	the
driver	whether	it	can	temporarily	suspend	further	activity	on	the	device	by	sending
the	driver	a	query-stop	command.	The	driver	either	agrees	to	the	request,	if	doing
so	wouldn’t	cause	data	loss	or	corruption,	or	denies	the	request.	As	with	a	query-
remove	command,	if	the	driver	agrees	to	the	request,	the	driver	completes	pending
I/O	operations	and	won’t	initiate	further	I/O	requests	for	the	device	that	can’t	be
aborted	and	subsequently	restarted.	The	driver	typically	queues	new	I/O	requests
so	that	the	resource	reshuffling	is	transparent	to	applications	currently	accessing
the	device.	The	PnP	manager	then	sends	the	driver	a	stop	command.	At	that	point,
the	PnP	manager	can	direct	the	driver	to	assign	different	resources	to	the	device



and	once	again	send	the	driver	a	start-device	command	for	the	device.

The	various	Plug	and	Play	commands	essentially	guide	a	device	through	an
assortment	of	operational	states,	forming	a	well-defined	state-transition	table,
which	is	shown	in	simplified	form	in	Figure	8-36.	(Several	possible	transitions	and
Plug	and	Play	commands	have	been	omitted	for	clarity.	Also,	the	state	diagram
depicted	is	that	implemented	by	function	drivers.	Bus	drivers	implement	a	more
complex	state	diagram.)	A	state	shown	in	the	figure	that	we	haven’t	discussed	is	the
one	that	results	from	the	PnP	manager’s	surprise-remove	command.	This
command	results	when	either	a	user	removes	a	device	without	warning,	as	when
the	user	ejects	a	PCMCIA	card	without	using	the	remove/eject	utility,	or	the	device
fails.	The	surprise-remove	command	tells	the	driver	to	immediately	cease	all
interaction	with	the	device	because	the	device	is	no	longer	attached	to	the	system
and	to	cancel	any	pending	I/O	requests.

Figure	8-36.	Device	Plug	and	Play	state	transitions

Driver	Loading,	Initialization,	and	Installation
Driver	loading	and	initialization	on	Windows	consists	of	two	types	of	loading:
explicit	loading	and	enumeration-based	loading.	Explicit	loading	is	guided	by	the
HKLM\SYSTEM\CurrentControlSet\Services	branch	of	the	registry,	as	described
in	the	section	“Service	Applications”	in	Chapter	4	in	Part	1.	Enumeration-based
loading	results	when	the	PnP	manager	dynamically	loads	drivers	for	the	devices



that	a	bus	driver	reports	during	bus	enumeration.

The	Start	Value
In	Chapter	4	in	Part	1,	we	explained	that	every	driver	and	Windows	service	has	a
registry	key	under	the	Services	branch	of	the	current	control	set.	The	key	includes
values	that	specify	the	type	of	the	image	(for	example,	Windows	service,	driver,
and	file	system),	the	path	to	the	driver	or	service’s	image	file,	and	values	that
control	the	driver	or	service’s	load	ordering.	There	are	two	main	differences
between	explicit	device	driver	loading	and	Windows	service	loading:

Only	device	drivers	can	specify	Start	values	of	boot-start	(0)	or	system-start	(1).

Device	drivers	can	use	the	Group	and	Tag	values	to	control	the	order	of	loading
within	a	phase	of	the	boot,	but	unlike	services,	they	can’t	specify
DependOnGroup	or	DependOnService	values.

Chapter	13,	describes	the	phases	of	the	boot	process	and	explains	that	a	driver
Start	value	of	0	means	that	the	operating	system	loader	loads	the	driver.	A	Start
value	of	1	means	that	the	I/O	manager	loads	the	driver	after	the	executive
subsystems	have	finished	initializing.	The	I/O	manager	calls	driver	initialization
routines	in	the	order	that	the	drivers	load	within	a	boot	phase.	Like	Windows
services,	drivers	use	the	Group	value	in	their	registry	key	to	specify	which	group
they	belong	to;	the	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List	determines
the	order	that	groups	are	loaded	within	a	boot	phase.

A	driver	can	further	refine	its	load	order	by	including	a	Tag	value	to	control	its
order	within	a	group.	The	I/O	manager	sorts	the	drivers	within	each	group
according	to	the	Tag	values	defined	in	the	drivers’	registry	keys.	Drivers	without	a
tag	go	to	the	end	of	the	list	in	their	group.	You	might	assume	that	the	I/O	manager
initializes	drivers	with	lower-number	tags	before	it	initializes	drivers	with	higher-
number	tags,	but	such	isn’t	necessarily	the	case.	The	registry	key
HKLM\SYSTEM\CurrentControlSet\Control\GroupOrderList	defines	tag
precedence	within	a	group;	with	this	key,	Microsoft	and	device	driver	developers
can	take	liberties	with	redefining	the	integer	number	system.

Here	are	the	guidelines	by	which	drivers	set	their	Start	value:

Non–Plug	and	Play	drivers	set	their	Start	value	to	reflect	the	boot	phase	they



want	to	load	in.

Drivers,	including	both	Plug	and	Play	and	non–Plug	and	Play	drivers,	that	must
be	loaded	by	the	boot	loader	during	the	system	boot	specify	a	Start	value	of
boot-start	(0).	Examples	include	system	bus	drivers	and	the	boot	file	system
driver.

A	driver	that	isn’t	required	for	booting	the	system	and	that	detects	a	device	that
a	system	bus	driver	can’t	enumerate	specifies	a	Start	value	of	system-start	(1).
An	example	is	the	serial	port	driver,	which	informs	the	PnP	manager	of	the
presence	of	standard	PC	serial	ports	that	were	detected	by	Setup	and	recorded
in	the	registry.

A	non–Plug	and	Play	driver	or	file	system	driver	that	doesn’t	have	to	be	present
when	the	system	boots	specifies	a	Start	value	of	auto-start	(2).	An	example	is
the	Multiple	Universal	Naming	Convention	(UNC)	Provider	(MUP)	driver,
which	provides	support	for	UNC-based	path	names	to	remote	resources	(for
example,	\\REMOTECOMPUTERNAME\SHARE).

Plug	and	Play	drivers	that	aren’t	required	to	boot	the	system	specify	a	Start
value	of	demand-start	(3).	Examples	include	network	adapter	drivers.

The	only	purpose	that	the	Start	values	for	Plug	and	Play	drivers	and	drivers	for
enumerable	devices	have	is	to	ensure	that	the	operating	system	loader	loads	the
driver—if	the	driver	is	required	for	the	system	to	boot	successfully.	Beyond	that,
the	PnP	manager’s	device	enumeration	process,	described	next,	determines	the
load	order	for	Plug	and	Play	drivers.

Device	Enumeration
The	PnP	manager	begins	device	enumeration	with	a	virtual	bus	driver	called	Root,
which	represents	the	entire	computer	system	and	acts	as	the	bus	driver	for	non–
Plug	and	Play	drivers	and	for	the	HAL.	The	HAL	acts	as	a	bus	driver	that
enumerates	devices	directly	attached	to	the	motherboard	as	well	as	system
components	such	as	batteries.	Instead	of	actually	enumerating,	the	HAL	relies	on
the	hardware	description	the	Setup	process	recorded	in	the	registry	to	detect	the
primary	bus	(a	PCI	bus	in	most	cases)	and	devices	such	as	batteries	and	fans.

The	primary	bus	driver	enumerates	the	devices	on	its	bus,	possibly	finding	other
buses,	for	which	the	PnP	manager	initializes	drivers.	Those	drivers	in	turn	can



detect	other	devices,	including	other	subsidiary	buses.	This	recursive	process	of
enumeration,	driver	loading	(if	the	driver	isn’t	already	loaded),	and	further
enumeration	proceeds	until	all	the	devices	on	the	system	have	been	detected	and
configured.

As	the	bus	drivers	report	detected	devices	to	the	PnP	manager,	the	PnP	manager
creates	an	internal	tree	called	the	device	tree	that	represents	the	relationships
between	devices.	Nodes	in	the	tree	are	called	devnodes,	and	a	devnode	contains
information	about	the	device	objects	that	represent	the	device	as	well	as	other	Plug
and	Play–related	information	stored	in	the	devnode	by	the	PnP	manager.	Figure	8-
37	shows	an	example	of	a	simplified	device	tree.	This	system	is	ACPI-compliant,
so	an	ACPI-compliant	HAL	serves	as	the	primary	bus	enumerator.	A	PCI	bus
serves	as	the	system’s	primary	bus,	which	USB,	ISA,	and	SCSI	buses	are
connected	to.

Figure	8-37.	Example	device	tree

The	Device	Manager	utility,	which	is	accessible	from	the	Computer	Management
snap-in	in	the	Programs/Administrative	Tools	folder	of	the	Start	menu	(and	also
from	the	Device	Manager	link	of	the	System	utility	in	Control	Panel),	shows	a



simple	list	of	devices	present	on	a	system	in	its	default	configuration.	You	can	also
select	the	Devices	By	Connection	option	from	the	Device	Manager’s	View	menu	to
see	the	devices	as	they	relate	to	the	device	tree.	Figure	8-38	shows	an	example	of
the	Device	Manager’s	Devices	By	Connection	view.

Figure	8-38.	Device	Manager	showing	the	device	tree

Taking	device	enumeration	into	account,	the	load	and	initialization	order	of	drivers
is	as	follows:

1.	 The	I/O	manager	invokes	the	driver	entry	routine	of	each	boot-start	driver.	If
a	boot	driver	has	child	devices,	the	I/O	manager	enumerates	those	devices,
reporting	their	presence	to	the	PnP	manager.	The	child	devices	are
configured	and	started	if	their	drivers	are	boot-start	drivers.	If	a	device	has	a



driver	that	isn’t	a	boot-start	driver,	the	PnP	manager	creates	a	devnode	for	the
device	but	doesn’t	start	it	or	load	its	driver.

2.	 After	the	boot-start	drivers	are	initialized,	the	PnP	manager	walks	the	device
tree,	loading	the	drivers	for	devnodes	that	weren’t	loaded	in	step	1	and
starting	their	devices.	As	each	device	starts,	the	PnP	manager	enumerates
related	child	devices,	if	a	device	has	any,	starting	those	devices’	drivers	and
performing	enumeration	of	their	children	as	required.	The	PnP	manager
loads	the	drivers	for	detected	devices	in	this	step	regardless	of	the	driver’s
Start	value.	(The	one	exception	is	if	the	Start	value	is	set	to	disabled.)	At	the
end	of	this	step,	all	Plug	and	Play	devices	have	their	drivers	loaded	and	are
started,	except	devices	that	aren’t	enumerable	and	the	children	of	those
devices.

3.	 The	PnP	manager	loads	any	drivers	with	a	Start	value	of	system-start	that
aren’t	yet	loaded.	Those	drivers	detect	and	report	their	nonenumerable
devices.	The	PnP	manager	loads	drivers	for	those	devices	until	all
enumerated	devices	are	configured	and	started.

4.	 The	service	control	manager	loads	drivers	marked	as	auto-start.

The	device	tree	serves	to	guide	both	the	PnP	manager	and	the	power	manager	as
they	issue	Plug	and	Play	and	power	IRPs	to	devices.	In	general,	IRPs	flow	from
the	top	of	a	devnode	to	the	bottom,	and	in	some	cases	a	driver	in	one	devnode
creates	new	IRPs	to	send	to	other	devnodes,	always	moving	toward	the	root.	The
flow	of	Plug	and	Play	and	power	IRPs	is	further	described	later	in	this	chapter.

EXPERIMENT:	DUMPING	THE	DEVICE	TREE

A	more	detailed	way	to	view	the	device	tree	than	using	Device	Manager	is	to	use	the	!devnode	kernel
debugger	command.	Specifying	0	1	as	command	options	dumps	the	internal	device	tree	devnode	structures,
indenting	entries	to	show	their	hierarchical	relationships,	as	shown	here:

lkd> !devnode 0 1
Dumping IopRootDeviceNode (= 0x85161a98)
DevNode 0x85161a98 for PDO 0x84d10390
  InstancePath is "HTREE\ROOT\0"
  State = DeviceNodeStarted (0x308)
  Previous State = DeviceNodeEnumerateCompletion (0x30d)
  DevNode 0x8515bea8 for PDO 0x8515b030
  DevNode 0x8515c698 for PDO 0x8515c820
    InstancePath is "Root\ACPI_HAL\0000"
    State = DeviceNodeStarted (0x308)
    Previous State = DeviceNodeEnumerateCompletion (0x30d)



    DevNode 0x84d1c5b0 for PDO 0x84d1c738
      InstancePath is "ACPI_HAL\PNP0C08\0"
      ServiceName is "ACPI"
      State = DeviceNodeStarted (0x308)
      Previous State = DeviceNodeEnumerateCompletion (0x30d)
      DevNode 0x85ebf1b0 for PDO 0x85ec0210
        InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_0"
        ServiceName is "intelppm"
        State = DeviceNodeStarted (0x308)
        Previous State = DeviceNodeEnumerateCompletion (0x30d)
      DevNode 0x85ed6970 for PDO 0x8515e618
        InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_1"
        ServiceName is "intelppm"
        State = DeviceNodeStarted (0x308)
        Previous State = DeviceNodeEnumerateCompletion (0x30d)
      DevNode 0x85ed75c8 for PDO 0x85ed79e8
        InstancePath is "ACPI\ThermalZone\THM_"
        State = DeviceNodeStarted (0x308)
        Previous State = DeviceNodeEnumerateCompletion (0x30d)
      DevNode 0x85ed6cd8 for PDO 0x85ed6858
        InstancePath is "ACPI\pnp0c14\0"
        ServiceName is "WmiAcpi"
        State = DeviceNodeStarted (0x308)
        Previous State = DeviceNodeEnumerateCompletion (0x30d)
      DevNode 0x85ed7008 for PDO 0x85ed6730
        InstancePath is "ACPI\ACPI0003\2&daba3ff&2"
        ServiceName is "CmBatt"
        State = DeviceNodeStarted (0x308)
        Previous State = DeviceNodeEnumerateCompletion (0x30d)
      DevNode 0x85ed7e60 for PDO 0x84d2e030
        InstancePath is "ACPI\PNP0C0A\1"
        ServiceName is "CmBatt"
...

Information	shown	for	each	devnode	includes	the	InstancePath,	which	is	the	name	of	the	device’s
enumeration	registry	key	stored	under	HKLM\SYSTEM\CurrentControlSet\Enum,	and	the	ServiceName,
which	corresponds	to	the	device’s	driver	registry	key	under	HKLM\SYSTEM\CurrentControlSet\Services.
To	see	the	resources,	such	as	interrupts,	ports,	and	memory,	assigned	to	each	devnode,	specify	0	3	as	the
command	options	for	the	!devnode	command.

A	record	of	all	the	devices	detected	since	the	system	was	installed	is	recorded
under	the	HKLM\SYSTEM\CurrentControlSet\Enum	registry	key.	Subkeys	are	in
the	form	<Enumerator>\<Device	ID>\<Instance	ID>,	where	the	enumerator	is	a
bus	driver,	the	device	ID	is	a	unique	identifier	for	a	type	of	device,	and	the	instance
ID	uniquely	identifies	different	instances	of	the	same	hardware.

Device	Stacks
As	the	devnodes	are	created	by	the	PnP	manager,	driver	objects	and	device	objects
are	created	to	manage	and	logically	represent	the	linkage	between	the	devnodes.
This	linkage	is	called	a	device	stack,	and	it	can	be	thought	of	as	an	ordered	list	of
device	object/driver	pairs.	Each	device	stack	has	a	bottom	and	top,	and	Figure	8-39



shows	that	a	device	stack	is	made	up	of	at	least	two,	and	sometimes	more,	device
objects:

A	physical	device	object	(PDO)	that	the	PnP	manager	instructs	a	bus	driver	to
create	when	the	bus	driver	reports	the	presence	of	a	device	on	its	bus	during
enumeration.	The	PDO	represents	the	physical	interface	to	the	device	and	is
always	on	the	bottom	of	the	device	stack.

One	or	more	optional	filter	device	objects	(FiDOs)	that	layer	between	the	PDO
and	the	functional	device	object	(FDO;	described	later	in	this	list)	and	that	are
created	by	bus	filter	drivers.

One	or	more	optional	FiDOs	that	layer	between	the	PDO	and	the	FDO	(and
that	layer	above	any	FiDOs	created	by	bus	filter	drivers)	that	are	created	by
lower-level	filter	drivers.

One	(and	only	one)	functional	device	object	(FDO)	that	is	created	by	the	driver,
which	is	called	a	function	driver,	that	the	PnP	manager	loads	to	manage	a
detected	device.	An	FDO	represents	the	logical	interface	to	a	device.	A	function
driver	can	also	act	as	a	bus	driver	if	devices	are	attached	to	the	device
represented	by	the	FDO.	The	function	driver	often	creates	an	interface
(described	earlier)	to	the	FDO’s	corresponding	PDO	so	that	applications	and
other	drivers	can	open	the	device	and	interact	with	it.	Sometimes	function
drivers	are	divided	into	a	separate	class/port	driver	and	miniport	driver	that
work	together	to	manage	I/O	for	the	FDO.

One	or	more	optional	FiDOs	that	layer	above	the	FDO	and	that	are	created	by
upper-level	filter	drivers.



Figure	8-39.	Device	stack	internals

Device	stacks	are	built	from	the	bottom	up	and	rely	on	the	I/O	manager’s	layering
functionality,	so	IRPs	flow	from	the	top	of	a	device	stack	toward	the	bottom.
However,	any	level	in	the	device	stack	can	choose	to	complete	an	IRP.	For
example,	the	function	driver	can	handle	a	read	request	without	passing	the	IRP	to
the	bus	driver.	Only	when	the	function	driver	requires	the	help	of	a	bus	driver	to
perform	bus-specific	processing	does	the	IRP	flow	all	the	way	to	the	bottom	and
then	into	the	device	stack	containing	the	bus	driver.

Device	Stack	Driver	Loading
So	far,	we’ve	avoided	answering	two	important	questions:	“How	does	the	PnP
manager	determine	what	function	driver	to	load	for	a	particular	device?”	and
“How	do	filter	drivers	register	their	presence	so	that	they	are	loaded	at	appropriate
times	in	the	creation	of	a	device	stack?”

The	answer	to	both	these	questions	lies	in	the	registry.	When	a	bus	driver	performs
device	enumeration,	it	reports	device	identifiers	for	the	devices	it	detects	back	to
the	PnP	manager.	The	identifiers	are	bus-specific;	for	a	USB	bus,	an	identifier
consists	of	a	vendor	ID	(VID)	for	the	hardware	vendor	that	made	the	device	and	a
product	ID	(PID)	that	the	vendor	assigned	to	the	device.	(See	the	WDK	for	more
information	on	device	ID	formats.)	Together	these	IDs	form	what	Plug	and	Play



calls	a	device	ID.	The	PnP	manager	also	queries	the	bus	driver	for	an	instance	ID
to	help	it	distinguish	different	instances	of	the	same	hardware.	The	instance	ID	can
describe	either	a	bus-relative	location	(for	example,	the	USB	port)	or	a	globally
unique	descriptor	(for	example,	a	serial	number).

The	device	ID	and	instance	ID	are	combined	to	form	a	device	instance	ID	(DIID),
which	the	PnP	manager	uses	to	locate	the	device’s	key	in	the	enumeration	branch
of	the	registry	(HKLM\SYSTEM\CurrentControlSet\Enum).	Figure	8-40	presents
an	example	of	a	keyboard’s	enumeration	subkey.	The	device’s	key	contains
descriptive	data	and	includes	values	named	Service	and	ClassGUID	(which	are
obtained	from	a	driver’s	INF	file)	that	help	the	PnP	manager	locate	the	device’s
drivers.

Figure	8-40.	Keyboard	enumeration	key

To	deal	with	multifunction	devices	(such	as	all-in-one	printers	or	cell	phones	with
integrated	camera	and	music	player	functionalities),	Windows	also	supports	a
container	ID	property	that	can	be	associated	with	a	devnode.	The	container	ID	is	a
globally	unique	identifier	(GUID)	that	is	unique	to	a	single	instance	of	a	physical
device	and	shared	between	all	the	function	devnodes	that	belong	to	it,	as	shown	in
Figure	8-41.



Figure	8-41.	All-in-one	printer	with	a	unique	ID	as	seen	by	the	PnP	manager

The	container	ID	is	a	property	that,	similar	to	the	instance	ID,	is	reported	back	by
the	bus	driver	of	the	corresponding	hardware.	Then,	when	the	device	is	being
enumerated,	all	devnodes	associated	with	the	same	PDO	share	the	container	ID.
Because	Windows	already	supports	many	buses	out	of	the	box—such	as	PnP-X,
Bluetooth,	and	USB—most	device	drivers	can	simply	return	the	bus-specific	ID,
from	which	Windows	will	generate	the	corresponding	container	ID.	For	other
kinds	of	devices	or	buses,	the	driver	can	generate	its	own	unique	ID	through
software.

Finally,	when	device	drivers	do	not	supply	a	container	ID,	Windows	can	make
educated	guesses	by	querying	the	topology	for	the	bus,	when	that’s	available,
through	mechanisms	such	as	ACPI.	By	understanding	whether	a	certain	device	is	a
child	of	another,	and	whether	it	is	removable,	hot-pluggable,	or	user-reachable	(as
opposed	to	an	internal	motherboard	component),	Windows	is	able	to	assign
container	IDs	to	device	nodes	that	reflect	multifunction	devices	correctly.

The	final	end-user	benefit	of	grouping	devices	by	container	IDs	is	visible	in	the
Devices	And	Printers	UI	present	in	modern	versions	of	Windows.	This	feature	is
able	to	display	the	scanner,	printer,	and	faxing	components	of	an	all-in-one	printer
as	a	single	graphical	element	instead	of	as	three	distinct	devices.	For	example,	in
Figure	8-42,	the	HP	PSC	1500	series	is	identified	as	a	single	device.



Figure	8-42.	Devices	And	Printers

EXPERIMENT:	VIEWING	DETAILED	DEVNODE	INFORMATION	IN	DEVICE
MANAGER

The	Device	Manager	applet	that	you	can	access	from	the	Hardware	link	of	the	System	Control	Panel
application	shows	detailed	information	about	a	device	node	on	its	Details	tab.	The	tab	allows	you	to	view	an
assortment	of	fields,	including	the	devnode’s	device	instance	ID,	hardware	ID,	service	name,	filters,	and
power	capabilities.

The	following	screen	shows	the	selection	combo	box	of	the	Details	tab	expanded	to	reveal	the	types	of
information	you	can	access:



Using	the	ClassGUID	value,	the	PnP	manager	locates	the	device’s	class	key	under
HKLM\SYSTEM\CurrentControlSet\Control\Class.	The	keyboard	class	key	is
shown	in	Figure	8-43.	The	enumeration	key	and	class	key	supply	the	PnP	manager
with	the	information	it	needs	to	load	the	drivers	necessary	for	the	device’s
devnode.	Drivers	are	loaded	in	the	following	order:

1.	 Any	lower-level	filter	drivers	specified	in	the	LowerFilters	value	of	the
device’s	enumeration	key.

2.	 Any	lower-level	filter	drivers	specified	in	the	LowerFilters	value	of	the
device’s	class	key.

3.	 The	function	driver	specified	by	the	Service	value	in	the	device’s
enumeration	key.	This	value	is	interpreted	as	the	driver’s	key	under
HKLM\SYSTEM\CurrentControlSet\Services.

4.	 Any	upper-level	filter	drivers	specified	in	the	UpperFilters	value	of	the
device’s	enumeration	key.

5.	 Any	upper-level	filter	drivers	specified	in	the	UpperFilters	value	of	the
device’s	class	key.



Figure	8-43.	Keyboard	class	key

In	all	cases,	drivers	are	referenced	by	the	name	of	their	key	under
HKLM\SYSTEM\CurrentControlSet\Services.

NOTE

The	WDK	refers	to	a	device’s	enumeration	key	as	its	hardware	key	and	to	the	class	key	as	the	software	key.

The	keyboard	device	shown	in	Figure	8-40	and	Figure	8-43	has	no	lower-level
filter	drivers.	The	function	driver	is	the	i8042prt	driver,	and	there	are	two	upper-
level	filter	drivers	specified	in	the	keyboard’s	class	key:	kbdclass	and	vmkbd2.

Driver	Installation
If	the	PnP	manager	encounters	a	device	for	which	no	driver	is	installed,	it	relies	on
the	user-mode	PnP	manager	to	guide	the	installation	process.	If	the	device	is
detected	during	the	system	boot,	a	devnode	is	defined	for	the	device,	but	the
loading	process	is	postponed	until	the	user-mode	PnP	manager	starts.	(The	user-
mode	PnP	manager	is	implemented	in	%SystemRoot%\System32\Umpnpmgr.dll
and	runs	in	a	service	hosting	process	(Svchost.exe).)



The	components	involved	in	a	driver’s	installation	are	shown	in	Figure	8-44.	Dark-
shaded	objects	in	the	figure	correspond	to	components	generally	supplied	by	the
system,	whereas	lighter-shaded	objects	are	those	included	in	a	driver’s	installation
files.	First,	a	bus	driver	informs	the	PnP	manager	of	a	device	it	enumerates	using	a
DIID	(1).	The	PnP	manager	checks	the	registry	for	the	presence	of	a
corresponding	function	driver,	and	when	it	doesn’t	find	one,	it	informs	the	user-
mode	PnP	manager	(2)	of	the	new	device	by	its	DIID.	The	user-mode	PnP
manager	first	tries	to	perform	an	automatic	install	without	user	intervention.	If	the
installation	process	involves	the	posting	of	dialog	boxes	that	require	user	interaction
and	the	currently	logged-on	user	has	administrator	privileges,	(3)	the	user-mode
PnP	manager	launches	the	Rundll32.exe	application	(the	same	application	that
hosts	Control	Panel	utilities)	to	execute	the	Hardware	Installation	Wizard
(%SystemRoot%\System32\Newdev.dll).	If	the	currently	logged-on	user	doesn’t
have	administrator	privileges	(or	if	no	user	is	logged	on)	and	the	installation	of	the
device	requires	user	interaction,	the	user-mode	PnP	manager	defers	the	installation
until	a	privileged	user	logs	on.	The	Hardware	Installation	Wizard	uses	Setupapi.dll
and	CfgMgr32.dll	(configuration	manager)	API	functions	to	locate	INF	files	that
correspond	to	drivers	that	are	compatible	with	the	detected	device.	This	process
might	involve	having	the	user	insert	installation	media	containing	a	vendor’s	INF
files,	or	the	wizard	might	locate	a	suitable	INF	file	in	the	driver	store
(%SystemRoot%\System32\DriverStore)	that	contains	drivers	that	ship	with
Windows	or	others	that	are	downloaded	through	Windows	Update.	Installation	is
performed	in	two	steps.	In	the	first,	the	third-party	driver	developer	imports	the
driver	package	into	the	driver	store,	and	in	the	second	step,	the	system	performs
the	actual	installation,	which	is	always	done	through	the
%SystemRoot%\System32\Drvinst.exe	process.



Figure	8-44.	Driver	installation	components

To	find	drivers	for	the	new	device,	the	installation	process	gets	a	list	of	hardware
IDs	and	compatible	IDs	from	the	bus	driver.	These	IDs	describe	all	the	various
ways	the	hardware	might	be	identified	in	a	driver	installation	file	(.inf).	The	lists
are	ordered	so	that	the	most	specific	description	of	the	hardware	is	listed	first.	If
matches	are	found	in	multiple	INFs,	more	precise	matches	are	preferred	over	less
precise	matches,	digitally	signed	INFs	are	preferred	over	unsigned	ones,	and	newer
signed	INFs	are	preferred	over	older	signed	ones.	If	a	match	is	found	based	on	a
compatible	ID,	the	Hardware	Installation	Wizard	can	choose	to	prompt	for	media
in	case	a	more	up-to-date	driver	came	with	the	hardware.

The	INF	file	locates	the	function	driver’s	files	and	contains	commands	that	fill	in
the	driver’s	enumeration	and	class	keys,	and	the	INF	file	might	direct	the	Hardware
Installation	Wizard	to	(4)	launch	class	or	device	coinstaller	DLLs	that	perform
class-specific	or	device-specific	installation	steps,	such	as	displaying	configuration
dialog	boxes	that	let	the	user	specify	settings	for	a	device.

EXPERIMENT:	LOOKING	AT	A	DRIVER’S	INF	FILE

When	a	driver	or	other	software	that	has	an	INF	file	is	installed,	the	system	copies	its	INF	file	to	the
%SystemRoot%\Inf	directory.	One	file	that	will	always	be	there	is	Keyboard.inf	because	it’s	the	INF	file
for	the	keyboard	class	driver.	View	its	contents	by	opening	it	in	Notepad	and	you	should	see	something	like



this:

; Copyright (c) Microsoft Corporation.  All rights reserved.

[Version]
Signature="$Windows NT$"
Class=Keyboard
ClassGUID={4D36E96B-E325-11CE-BFC1-08002BE10318}
Provider=%MS%
DriverVer=06/21/2006,6.1.7601.17514

[SourceDisksNames]
3426=windows cd
...

If	you	search	the	file	for	“.sys”,	you’ll	come	across	the	entry	that	directs	the	user-mode	PnP	manager	to
install	the	i8042prt.sys	and	kbdclass.sys	drivers:

...

[STANDARD_CopyFiles]
i8042prt.sys,,,0x100
kbdclass.sys,,,0x100
...

Before	actually	installing	a	driver,	the	user-mode	PnP	manager	checks	the	system’s
driver-signing	policy.	If	the	settings	specify	that	the	system	should	block	or	warn	of
the	installation	of	unsigned	drivers,	the	user-mode	PnP	manager	checks	the	driver’s
INF	file	for	an	entry	that	locates	a	catalog	(a	file	that	ends	with	the	.cat	extension)
containing	the	driver’s	digital	signature.

Microsoft’s	WHQL	tests	the	drivers	included	with	Windows	and	those	submitted
by	hardware	vendors.	When	a	driver	passes	the	WHQL	tests,	it	is	“signed”	by
Microsoft.	This	means	that	WHQL	obtains	a	hash,	or	unique	value	representing	the
driver’s	files,	including	its	image	file,	and	then	cryptographically	signs	it	with
Microsoft’s	private	driver-signing	key.	The	signed	hash	is	stored	in	a	catalog	file
and	included	on	the	Windows	installation	media	or	returned	to	the	vendor	that
submitted	the	driver	for	inclusion	with	its	driver.

EXPERIMENT:	VIEWING	CATALOG	FILES

When	you	install	a	component	such	as	a	driver	that	includes	a	catalog	file,	Windows	copies	the	catalog	file
to	a	directory	under	%SystemRoot%\System32\Catroot.	Navigate	to	that	directory	in	Explorer	and	you	find
the	subdirectory	that	contains	.cat	files.	Nt5.cat	and	Nt5ph.cat	store	the	signatures	and	page	hashes	for
Windows	system	files,	for	example.

If	you	open	one	of	the	catalog	files,	a	dialog	box	appears	with	two	pages.	The	page	labeled	General	shows
information	about	the	signature	on	the	catalog	file,	and	the	Security	Catalog	page	has	the	hashes	of	the



components	that	are	signed	with	the	catalog	file.	This	screen	shot	of	a	catalog	file	for	NVIDIA	video
drivers	shows	the	hash	for	the	video	adapter’s	kernel	miniport	driver.	Other	hashes	in	the	catalog	are
associated	with	the	various	support	DLLs	that	ship	with	the	driver.

As	it	is	installing	a	driver,	the	user-mode	PnP	manager	extracts	the	driver’s
signature	from	its	catalog	file,	decrypts	the	signature	using	the	public	half	of
Microsoft’s	driver-signing	private/public	key	pair,	and	compares	the	resulting	hash
with	a	hash	of	the	driver	file	it’s	about	to	install.	If	the	hashes	match,	the	driver	is
verified	as	having	passed	WHQL	testing.	If	a	driver	fails	the	signature	verification,
the	user-mode	PnP	manager	acts	according	to	the	settings	of	the	system	driver-
signing	policy,	either	failing	the	installation	attempt,	warning	the	user	that	the
driver	is	unsigned,	or	silently	installing	the	driver.

NOTE

Drivers	installed	using	setup	programs	that	manually	configure	the	registry	and	copy	driver	files	to	a	system
and	driver	files	that	are	dynamically	loaded	by	applications	aren’t	checked	for	signatures	by	the	PnP
manager’s	signing	policy.	Instead,	they	are	checked	by	the	Kernel	Mode	Code	Signing	policy	described	in
Chapter	3	in	Part	1.	Only	drivers	installed	using	INF	files	are	validated	against	the	PnP	manager’s	driver-
signing	policy.

After	a	driver	is	installed,	the	kernel-mode	PnP	manager	(step	5	in	Figure	8-44)
starts	the	driver	and	calls	its	add-device	routine	to	inform	the	driver	of	the	presence



of	the	device	it	was	loaded	for.	The	construction	of	the	device	stack	then	continues
as	described	earlier.

NOTE

The	user-mode	PnP	manager	also	checks	to	see	whether	the	driver	it’s	about	to	install	is	on	the	protected
driver	list	maintained	by	Windows	Update	and,	if	so,	blocks	the	installation	with	a	warning	to	the	user.
Drivers	that	are	known	to	have	incompatibilities	or	bugs	are	added	to	the	list	and	blocked	from	installation.



The	Power	Manager
Just	as	Windows	Plug	and	Play	features	require	support	from	a	system’s	hardware,
its	power-management	capabilities	require	hardware	that	complies	with	the
Advanced	Configuration	and	Power	Interface	(ACPI)	specification	(available	at
http://www.acpi.info).

The	ACPI	standard	defines	various	power	levels	for	a	system	and	for	devices.	The
six	system	power	states	are	described	in	Table	8-8.	They	are	referred	to	as	S0
(fully	on	or	working)	through	S5	(fully	off).	Each	state	has	the	following
characteristics:

Power	consumption	The	amount	of	power	the	computer	consumes

Software	resumption	The	software	state	from	which	the	computer	resumes
when	moving	to	a	“more	on”	state

Hardware	latency	The	length	of	time	it	takes	to	return	the	computer	to	the
fully	on	state

States	S1	through	S4	are	sleeping	states,	in	which	the	computer	appears	to	be	off
because	of	reduced	power	consumption.	However,	the	computer	retains	enough
information,	either	in	memory	or	on	disk,	to	move	to	S0.	For	states	S1	through	S3,
enough	power	is	required	to	preserve	the	contents	of	the	computer’s	memory	so
that	when	the	transition	is	made	to	S0	(when	the	user	or	a	device	wakes	up	the
computer),	the	power	manager	continues	executing	where	it	left	off	before	the
suspend.

Table	8-8.	System	PowerState	Definitions

State Power
Consumption

Software	Resumption Hardware
Latency

S0	(fully	on) Maximum Not	applicable None

S1	(sleeping) Less	than	S0,	more
than	S2

System	resumes	where	it	left	off	(returns	to	S0) Less	than	2
seconds

S2	(sleeping) Less	than	S1,	more
than	S3

System	resumes	where	it	left	off	(returns	to	S0) 2	or	more
seconds

http://www.acpi.info


S3	(sleeping) Less	than	S2;
processor	is	off

System	resumes	where	it	left	off	(returns	to	S0) Same	as
S2

S4
(hibernating)

Trickle	current	to
power	button	and
wake	circuitry

System	restarts	from	saved	hibernatation	file
and	resumes	where	it	left	off	prior	to
hibernation	(returns	to	S0)

Long	and
undefined

S5	(fully	off) Trickle	current	to
power	button

System	boot Long	and
undefined

When	the	system	moves	to	S4,	the	power	manager	saves	the	compressed	contents
of	memory	to	a	hibernation	file	named	Hiberfil.sys,	which	is	large	enough	to	hold
the	uncompressed	contents	of	memory,	in	the	root	directory	of	the	system	volume.
(Compression	is	used	to	minimize	disk	I/O	and	to	improve	hibernation	and
resume-from-hibernation	performance.)	After	it	finishes	saving	memory,	the	power
manager	shuts	off	the	computer.	When	a	user	subsequently	turns	on	the	computer,
a	normal	boot	process	occurs,	except	that	Bootmgr	checks	for	and	detects	a	valid
memory	image	stored	in	the	hibernation	file.	If	the	hibernation	file	contains	saved
system	state,	Bootmgr	launches	Winresume,	which	reads	the	contents	of	the	file
into	memory,	and	then	resumes	execution	at	the	point	in	memory	that	is	recorded
in	the	hibernation	file.

On	systems	with	hybrid	sleep	enabled	(by	default,	only	desktop	computers),	a	user
request	to	put	the	computer	to	sleep	will	actually	be	a	combination	of	both	the	S3
state	and	the	S4	state:	while	the	computer	is	put	to	sleep,	an	emergency	hibernation
file	will	also	be	written	to	disk.	Unlike	typical	hibernation	files,	which	contain
almost	all	active	memory,	the	emergency	hibernation	file	includes	only	data	that
could	not	be	paged	in	at	a	later	time,	making	the	suspend	operation	faster	than	a
typical	hibernation	(because	less	data	is	written	to	disk).	Drivers	will	then	be
notified	that	an	S4	transition	is	occurring,	allowing	them	to	configure	themselves
and	save	state	just	as	if	an	actual	hibernation	request	had	been	initiated.	After	this
point,	the	system	is	put	in	the	normal	sleep	state	just	like	during	a	standard	sleep
transition.	However,	if	the	power	goes	out,	the	system	is	now	essentially	in	an	S4
state—the	user	can	power	on	the	machine,	and	Windows	will	resume	from	the
emergency	hibernation	file.

The	computer	never	directly	transitions	between	states	S1	and	S4;	instead,	it	must
move	to	state	S0	first.	As	illustrated	in	Figure	8-45,	when	the	system	is	moving
from	any	of	states	S1	through	S5	to	state	S0,	it’s	said	to	be	waking,	and	when	it’s



transitioning	from	state	S0	to	any	of	states	S1	through	S5,	it’s	said	to	be	sleeping.

Figure	8-45.	System	power-state	transitions

Although	the	system	can	be	in	one	of	six	power	states,	ACPI	defines	devices	as
being	in	one	of	four	power	states,	D0	through	D3.	State	D0	is	fully	on,	and	state
D3	is	fully	off.	The	ACPI	standard	leaves	it	to	individual	drivers	and	devices	to
define	the	meanings	of	states	D1	and	D2,	except	that	state	D1	must	consume	an
amount	of	power	less	than	or	equal	to	that	consumed	in	state	D0,	and	when	the
device	is	in	state	D2,	it	must	consume	power	less	than	or	equal	to	that	consumed	in
D1.	Microsoft,	in	conjunction	with	the	major	hardware	OEMs,	has	defined	a	series
of	power	management	reference	specifications	that	specify	the	device	power	states
that	are	required	for	all	devices	in	a	particular	class	(for	the	major	device	classes:
display,	network,	SCSI,	and	so	on).	For	some	devices,	there’s	no	intermediate
power	state	between	fully	on	and	fully	off,	which	results	in	these	states	being
undefined.

Power	Manager	Operation
Power	management	policy	in	Windows	is	split	between	the	power	manager	and	the
individual	device	drivers.	The	power	manager	is	the	owner	of	the	system	power
policy.	This	ownership	means	that	the	power	manager	decides	which	system	power
state	is	appropriate	at	any	given	point,	and	when	a	sleep,	hibernation,	or	shutdown
is	required,	the	power	manager	instructs	the	power-capable	devices	in	the	system	to
perform	appropriate	system	power-state	transitions.	The	power	manager	decides
when	a	system	power-state	transition	is	necessary	by	considering	a	number	of
factors:

System	activity	level



System	battery	level

Shutdown,	hibernate,	or	sleep	requests	from	applications

User	actions,	such	as	pressing	the	power	button

Control	Panel	power	settings

When	the	PnP	manager	performs	device	enumeration,	part	of	the	information	it
receives	about	a	device	is	its	power-management	capabilities.	A	driver	reports
whether	or	not	its	devices	support	device	states	D1	and	D2	and,	optionally,	the
latencies,	or	times	required,	to	move	from	states	D1	through	D3	to	D0.	To	help	the
power	manager	determine	when	to	make	system	power-state	transitions,	bus
drivers	also	return	a	table	that	implements	a	mapping	between	each	of	the	system
power	states	(S0	through	S5)	and	the	device	power	states	that	a	device	supports.

The	table	lists	the	lowest	possible	device	power	state	for	each	system	state	and
directly	reflects	the	state	of	various	power	planes	when	the	machine	sleeps	or
hibernates.	For	example,	a	bus	that	supports	all	four	device	power	states	might
return	the	mapping	table	shown	in	Table	8-9.	Most	device	drivers	turn	their	devices
completely	off	(D3)	when	leaving	S0	to	minimize	power	consumption	when	the
machine	isn’t	in	use.	Some	devices,	however,	such	as	network	adapter	cards,
support	the	ability	to	wake	up	the	system	from	a	sleeping	state.	This	ability,	along
with	the	lowest	device	power	state	in	which	the	capability	is	present,	is	also
reported	during	device	enumeration.

Table	8-9.	Example	System-to-Device	Power	Mappings

System	Power	State Device	Power	State

S0	(fully	on) D0	(fully	on)

S1	(sleeping) D1

S2	(sleeping) D2

S3	(sleeping) D2

S4	(hibernating) D3	(fully	off)

S5	(fully	off) D3	(fully	off)



Driver	Power	Operation
When	the	power	manager	decides	to	make	a	transition	between	system	power
states,	it	sends	power	commands	to	a	driver’s	power	dispatch	routine.	More	than
one	driver	can	be	responsible	for	managing	a	device,	but	only	one	of	the	drivers	is
designated	as	the	device	power-policy	owner.	This	driver	determines,	based	on	the
system	state,	a	device’s	power	state.	For	example,	if	the	system	transitions	between
state	S0	and	S1,	a	driver	might	decide	to	move	a	device’s	power	state	from	D0	to
D1.

Instead	of	directly	informing	the	other	drivers	that	share	the	management	of	the
device	of	its	decision,	the	device	power-policy	owner	asks	the	power	manager,	via
the	PoRequestPowerIrp	function,	to	tell	the	other	drivers	by	issuing	a	device	power
command	to	their	power	dispatch	routines.	This	behavior	allows	the	power
manager	to	control	the	number	of	power	commands	that	are	active	on	a	system	at
any	given	time.	For	example,	some	devices	in	the	system	might	require	a	significant
amount	of	current	to	power	up.	The	power	manager	ensures	that	such	devices
aren’t	powered	up	simultaneously.

EXPERIMENT:	VIEWING	A	DRIVER’S	POWER	MAPPINGS

You	can	see	a	driver’s	system	power	state	to	driver	power	state	mappings	with	Device	Manager.	Open	the
Properties	dialog	box	for	a	device,	and	choose	the	Power	Data	entry	in	the	drop-down	list	on	the	Details	tab
to	see	the	mappings.

The	dialog	box	also	displays	the	current	power	state	of	the	device,	the	device-specific	power	capabilities
that	it	provides,	and	the	power	states	from	which	it	is	able	to	wake	the	system.



Many	power	commands	have	corresponding	query	commands.	For	example,	when	the	system	is	moving	to
a	sleep	state,	the	power	manager	will	first	ask	the	devices	on	the	system	whether	the	transition	is	acceptable.
A	device	that	is	busy	performing	time-critical	operations	or	interacting	with	device	hardware	might	reject
the	command,	which	results	in	the	system	maintaining	its	current	system	power-state	setting.

EXPERIMENT:	VIEWING	THE	SYSTEM	POWER	CAPABILITIES	AND	POLICY

You	can	view	a	computer’s	system	power	capabilities	by	using	the	!pocaps	kernel	debugger	command.
Here’s	the	output	of	the	command	when	run	on	an	ACPI-compliant	laptop:

lkd> !pocaps
PopCapabilities @ 0x82114d80
  Misc Supported Features:  PwrButton SlpButton Lid S3 S4 S5 HiberFile FullWake
                            VideoDim
  Processor Features:       Thermal
  Disk Features:            SpinDown
  Battery Features:         BatteriesPresent
    Battery 0 - Capacity:        0  Granularity:        0
    Battery 1 - Capacity:        0  Granularity:        0
    Battery 2 - Capacity:        0  Granularity:        0
  Wake Caps
    Ac OnLine Wake:         Sx
    Soft Lid Wake:          Sx
    RTC Wake:               S4
    Min Device Wake:        Sx
    Default Wake:           Sx

The	Misc	Supported	Features	line	reports	that,	in	addition	to	S0	(fully	on),	the	system	supports	system
power	states	S1,	S3,	S4,	and	S5	(it	doesn’t	implement	S2)	and	has	a	valid	hibernation	file	to	which	it	can
save	system	memory	when	it	hibernates	(state	S4).

The	Power	Options	page,	shown	here	(available	by	selecting	Power	Options	in	Control	Panel),	lets	you
configure	various	aspects	of	the	system’s	power	policy.	The	exact	properties	you	can	configure	depend	on



the	system’s	power	capabilities,	which	we	just	examined.

By	changing	any	of	the	preconfigured	plan	settings,	you	can	set	the	idle	detection	timeouts	that	control
when	the	system	turns	off	the	monitor,	spins	down	hard	disks,	goes	to	standby	mode	(moves	to	system
power	state	S1),	and	hibernates	(moves	the	system	to	power	state	S4).	In	addition,	selecting	the	Change
Plan	Settings	option	lets	you	specify	the	power-related	behavior	of	the	system	when	you	press	the	power	or
sleep	buttons	or	close	a	laptop’s	lid.

The	settings	you	configure	by	clicking	the	Change	Advanced	Power	Settings	link	directly	affect	values	in
the	system’s	power	policy,	which	you	can	display	with	the	!popolicy	debugger	command.	Here’s	the	output
of	the	command	on	the	same	system:

lkd> !popolicy
SYSTEM_POWER_POLICY (R.1) @ 0x82107994
  PowerButton:         Sleep  Flags: 00000000   Event: 00000000
  SleepButton:         Sleep  Flags: 00000000   Event: 00000000
  LidClose:            Sleep  Flags: 00000000   Event: 00000000
  Idle:                Sleep  Flags: 00000000   Event: 00000000
  OverThrottled:        None  Flags: 00000000   Event: 00000000
  IdleTimeout:           384  IdleSensitivity:        90%
  MinSleep:               S3  MaxSleep:               S3
  LidOpenWake:            S0  FastSleep:              S0



  WinLogonFlags:           1  S4Timeout:            fd20
  VideoTimeout:          300  VideoDim:                0
  SpinTimeout:           258  OptForPower:             0
  FanTolerance:            0% ForcedThrottle:          0%

  SpinTimeout:           258  OptForPower:             0
  MinThrottle:             0% DyanmicThrottle:      None

The	first	lines	of	the	display	correspond	to	the	button	behaviors	specified	on	the	Advanced	Settings	tab	of
Power	Options,	and	on	this	system	both	the	power	and	the	sleep	buttons	put	the	computer	in	a	sleep	state,
just	as	closing	the	lid	does.

The	timeout	values	shown	at	the	end	of	the	output	are	expressed	in	seconds	and	displayed	in	hexadecimal
notation.	The	values	reported	here	directly	correspond	to	the	settings	you	can	see	configured	on	the	Power
Options	page.	(The	laptop	is	on	battery.)	For	example,	the	video	timeout	is	300,	meaning	the	monitor	turns
off	after	300	seconds,	or	5	minutes,	and	the	hard	disk	spin-down	timeout	is	0x258,	which	corresponds	to
600	seconds,	or	10	minutes.

Driver	and	Application	Control	of	Device	Power
Besides	responding	to	power	manager	commands	related	to	system	power-state
transitions,	a	driver	can	unilaterally	control	the	device	power	state	of	its	devices.	In
some	cases,	a	driver	might	want	to	reduce	the	power	consumption	of	a	device	it
controls	when	the	device	is	left	inactive	for	a	period	of	time.	Examples	include
monitors	that	support	a	dimmed	mode	and	disks	that	support	spin-down.	A	driver
can	either	detect	an	idle	device	itself	or	use	facilities	provided	by	the	power
manager.	If	the	device	uses	the	power	manager,	it	registers	the	device	with	the
power	manager	by	calling	the	PoRegisterDeviceForIdleDetection	function.

This	function	informs	the	power	manager	of	the	timeout	values	to	use	to	detect	a
device	as	idle	and	of	the	device	power	state	that	the	power	manager	should	apply
when	it	detects	the	device	as	being	idle.	The	driver	specifies	two	timeouts:	one	to
use	when	the	user	has	configured	the	computer	to	conserve	energy	and	the	other	to
use	when	the	user	has	configured	the	computer	for	optimum	performance.	After
calling	PoRegisterDeviceForIdleDetection,	the	driver	must	inform	the	power
manager,	by	calling	the	PoSetDeviceBusy	or	PoSetDeviceBusyEx	functions,
whenever	the	device	is	active,	and	then	register	for	idle	detection	again	to	disable
and	re-enable	it	as	needed.	The	PoStartDeviceBusy	and	PoEndDeviceBusy	APIs
are	available	in	newer	versions	of	Windows	as	well,	which	simplify	the
programming	logic	required	to	achieve	the	behavior	that’s	desired.

Although	a	device	has	control	over	its	own	power	state,	it	does	not	have	the	ability



to	manipulate	the	system	power	state	or	to	prevent	system	power	transitions	from
occurring.	For	example,	if	a	badly	designed	driver	doesn’t	support	any	low-power
states,	it	can	choose	to	remain	on	or	turn	itself	completely	off	without	hindering	the
system’s	overall	ability	to	enter	a	low-power	state—this	is	because	the	power
manager	only	notifies	the	driver	of	a	transition	and	doesn’t	ask	for	consent.

Although	drivers	and	the	kernel	are	chiefly	responsible	for	power	management,
applications	are	also	allowed	to	provide	their	input.	User-mode	processes	can
register	for	a	variety	of	power	notifications,	such	as	when	the	battery	is	low	or
critically	low,	when	the	laptop	has	switched	from	DC	(battery)	to	AC
(adapter/charger)	power,	or	when	the	system	is	initiating	a	power	transition.	Just
like	drivers,	however,	applications	cannot	veto	these	operations,	and	they	can	have
up	to	two	seconds	to	clean	up	any	state	necessary	before	a	sleep	transition.

Power	Availability	Requests
Even	though	applications	and	drivers	cannot	veto	sleep	transitions	that	are	already
initiated,	certain	scenarios	demand	a	mechanism	for	disabling	the	ability	to	initiate
sleep	transitions	when	a	user	is	interacting	with	the	system	in	certain	ways.	For
example,	if	the	user	is	currently	watching	a	movie	and	the	machine	would	normally
go	idle	(based	on	a	lack	of	mouse	or	keyboard	input	after	15	minutes),	the	media
player	application	should	have	the	capability	to	temporarily	disable	idle	transitions
as	long	as	the	movie	is	playing.	You	can	probably	imagine	other	power-saving
measures	that	the	system	would	normally	undertake,	such	as	turning	off	or	even
just	dimming	the	screen,	that	would	also	limit	your	enjoyment	of	visual	media.	In
legacy	versions	of	Windows,	SetThreadExecutionState	was	a	user-mode	API
capable	of	controlling	system	and	display	idle	transitions	by	informing	the	power
manager	that	a	user	was	still	present	on	the	machine,	but	this	API	did	not	provide
any	sort	of	diagnostic	capabilities,	nor	did	it	allow	sufficient	granularity	for
defining	the	availability	request.	Also,	drivers	were	not	able	to	issue	their	own
requests,	and	even	user	applications	had	to	correctly	manage	their	threading	model,
because	these	requests	were	at	the	thread	level,	not	at	the	process	or	system	level.

Windows	now	supports	power	request	objects,	which	are	implemented	by	the
kernel	and	are	bona-fide	object	manager–defined	objects.	You	can	use	the	WinObj
utility	that	was	introduced	in	Chapter	3	in	Part	1	and	see	the	PowerRequest	object



type	in	the	\ObjectTypes	directory,	or	use	the	!object	kernel	debugger	command	on
the	\ObjectTypes\PowerRequest	object	type,	to	validate	this.	Power	availability
requests	are	generated	by	user-mode	applications	through	the	PowerCreateRequest
API	and	then	enabled	or	disabled	with	the	PowerSetRequest	and
PowerClearRequest	APIs,	respectively.	In	the	kernel,	drivers	use
PoCreatePowerRequest,	PoSetPowerRequest,	and	PoClearPowerRequest.	Because
no	handles	are	used,	PoDeletePowerRequest	is	implemented	to	remove	the
reference	on	the	object	(while	user	mode	can	simply	use	CloseHandle).

There	are	three	kinds	of	requests	that	can	be	used	through	the	Power	Request	API:
a	system	request,	a	display	request,	and	an	“away-mode”	request.	The	first	type
requests	that	the	system	not	automatically	go	to	sleep	due	to	the	idle	timer
(although	the	user	can	still	close	the	lid	to	enter	sleep,	for	example),	while	the
second	does	the	same	for	the	display.	“Away-mode”	is	a	modification	to	the	normal
sleep	(S3	state)	behavior	of	Windows,	which	is	used	to	keep	the	computer	in	full
powered-on	mode	but	with	the	display	and	sound	card	turned	off,	making	it	appear
to	the	user	as	though	the	machine	is	really	sleeping.	This	behavior	is	normally	used
only	by	specialized	set-top	boxes	or	media	center	devices	when	media	delivery
must	continue	even	though	the	user	has	pressed	a	physical	sleep	button,	for
example.	In	the	future,	Windows	may	support	other	requests	as	well.

EXPERIMENT:	VIEWING	A	POWER	AVAILABILITY	REQUEST	IN	THE	DEBUGGER

Because	power	availability	requests	are	objects	managed	by	the	object	manager,	applications	have	handles
open	to	them	when	calling	the	PowerCreateRequest	API,	and	Process	Explorer	is	able	to	find	these	handles
by	using	the	Search	DLL/Handle	functionality	that	was	introduced	in	previous	chapters.

You	can	search	for	“PowerRequest”	and	find	certain	services	and	applications	on	your	machine	that	have
made	availability	requests.	(Drivers	will	not	show	up	because	the	kernel	API	does	not	use	handles.)	For
example,	the	Print	Spooler	(Spoolsvc.exe)	and	Windows	Media	Player	Network	Sharing	Service
(Wmpntwk.exe)	are	two	Windows	services	that	have	availability	request	objects.

By	launching	the	Poavltst.exe	test	utility	from	the	Book	Tools	and	searching	with	Process	Explorer,	you	will
also	find	that	it	too	has	a	handle	open.	Use	the	handle	lower-pane	view	to	obtain	the	kernel	address	of	the
object,	in	this	case	0x8544ABF8.



You	can	then	use	local	kernel	debugging	to	dump	the	power	request	object	as	shown	next.	Unfortunately,
the	underlying	kernel	data	structure	is	not	present	in	the	symbol	files,	so	only	a	hex	dump	is	possible.
Nevertheless,	the	layout	of	the	object	is	easy	to	understand:	a	doubly	linked	list	(the	first	two	pointers),
some	flags,	and	then	a	pointer	to	the	actual	request	information	that	the	test	application	supplied,	which	is
highlighted	in	bold.

kd> dc 8544ABF8
855d01a8  819586c0 85448ea0 00000001 00000007  ......D.........
855d01b8  00000000 00000000 00000000 00000000  ................
855d01c8  b13e9b50

By	using	the	same	dump	command	on	the	pointer,	the	power	request’s	diagnostic	reason	is	visible:
“Computation	in	progress.”

kd> dc b13e9b50
b13e9b50  00000001 8556b030 00000000 00000044  ....0.V.....D...
b13e9b60  00000001 00000014 00000000 80080001  ................
b13e9b70  00000000 006f0043 0070006d 00740075  ....C.o.m.p.u.t.
b13e9b80  00740061 006f0069 0020006e 006e0069  a.t.i.o.n. .i.n.
b13e9b90  00700020 006f0072 00720067 00730065   .p.r.o.g.r.e.s

You	can	also	use	the	dl	(dump	list)	command	on	the	first	pointer	in	the	object’s	dump	to	dump	a	list	of	all
the	power	requests	on	the	system,	which	are	linked	by	the	PopPowerRequestObjectList	symbol	in	the
kernel.	This	will	let	you	see	power	requests	that	Process	Explorer	cannot	locate,	such	as	those	created	by
drivers.

EXPERIMENT:	VIEWING	POWER	AVAILABILITY	REQUESTS	WITH	POWERCFG

As	you	saw,	dumping	power	availability	requests	requires	quite	a	bit	of	kernel	spelunking.	Thankfully,	the
Powercfg	utility	provides	much	of	the	same	capabilities	in	an	easier-to-use	command-line	version.	Here’s
the	output	of	the	utility	while	browsing	a	Windows	laptop’s	share	from	another	machine,	while	at	the	same
time	playing	an	MP3	file	and	launching	the	Poavltst.exe	application:

C:\Users\Administrator>powercfg -requests
DISPLAY:



[PROCESS] \Device\HarddiskVolume1\Users\Administrator\PoAvlTst.exe
Computation in progress
[PROCESS] \Device\HarddiskVolume1\Program Files\Windows Media Player\wmplayer.exe

SYSTEM:
[DRIVER] Parallels Audio Controller (x32) 
(PCI\VEN_8086&DEV_2445&SUBSYS_04001AB8&REV_02\3&
11583659&0&FC)
An audio stream is currently in use.
[DRIVER] \FileSystem\srvnet
An active remote client has recently sent requests to this machine.
[PROCESS] \Device\HarddiskVolume1\Program Files\Windows Media Player\wmplayer.exe

AWAYMODE:
None.

Note	the	same	“Computation	in	progress”	string,	as	well	as	the	fact	that	the	SMB	driver	and	the	audio
driver	are	also	requesting	power	availability	and	have	indicated	their	reason	for	doing	so.	Windows	Media
Player,	on	the	other	hand,	continues	to	use	the	legacy	API,	so	no	information	about	the	reason	is	available.

Processor	Power	Management	(PPM)
So	far,	this	section	has	only	described	the	power	manager’s	control	over	device	(D)
and	system	(S)	states,	but	another	important	state	management	must	also	be
performed	on	a	modern	operating	system:	that	of	the	processor	(P	and	C	states).
Windows	implements	a	processor	power	manager	(PPM)	that	is	responsible	for
controlling	both	C	states	(the	idle	states	of	the	processor)	and	P	states	(the	package
states	of	the	processor)	and	for	interacting	with	ACPI	firmware	as	well	as	a
vendor-supplied	power	management	driver,	as	needed	(Intelppm.sys	for	Intel
CPUs,	for	example).	Which	states	are	chosen	is	usually	determined	by	a
combination	of	internal	algorithms	and	settings	that	ship	in	the	Windows	registry,
most	of	which	are	tunable	by	OEMs	and	administrators.	We	will	show	all	these
tunable	policy	values	later	in	this	section.

Although	the	exact	specifics	of	PPM	are	outside	the	scope	of	this	book	and	are
often	hardware-specific,	it	is	worth	going	into	detail	about	one	particular
technology	that	is	unique	to	Windows:	core	parking.	At	its	essence,	core	parking	is
a	load-based	engine	running	inside	the	PPM	that	makes	two	sets	of	decisions:

Which	particular	P	states	should	be	entered	for	a	given	processor,	and	how
power	should	be	managed	across	a	power	domain.	A	domain	is	the	set	of
functional	units	associated	with	a	given	processor	core	(including	the	core
itself),	which	are	all	sharing	the	same	clock	generator	crystal	with	the	same
divider,	and	thus	the	same	frequency.	This	could	be	an	entire	package,	half	a



package,	or	even	just	one	SMT	core	with	multiple	logical	processors.

Which	particular	cores	should	be	made	unavailable	to	the	scheduler	engine	(see
Chapter	5	in	Part	1	for	more	information	on	scheduling)	in	order	to	reduce
attempts	to	make	those	selected	cores	busy	again.	These	selected	cores	are
called	parked	cores.	Note	that	hard	affinity	settings	will	still	force	the	scheduler
to	pick	one	of	these	“unavailable”	cores,	as	described	later.

NOTE

In	its	current	implementation,	core	parking	does	not	rebalance	interrupts	or	shift	software	timers	away	from
parked	cores,	but	it	may	do	so	in	the	future.

To	summarize,	core	parking	aggressively	puts	processors	in	their	deepest	idle	(C)
states	(not	necessarily	P	states)	and	tries	to	keep	them	that	way.

Core	Parking	Policies
Because	the	power	requirements	and	usage	models	of	desktop	machines	vary	from
those	of	server	machines,	core	parking	implements	two	internal	policies	for
managing	processor	cores.	The	first	policy,	called	core	parking	override,	is	used	by
default	on	client	systems.	This	policy	has	lower	idle	thresholds	for	when	to	begin
parking	(that	is,	it	parks	more	aggressively)	and,	most	importantly,	always	leaves
one	thread	in	an	SMT	package	unparked—in	other	words,	it	is	responsible	for
essentially	disabling	the	Hyper-Threading	feature	found	on	Intel	CPUs	until	load
warrants	it.	This	effect	is	shown	in	Figure	8-46:	CPU	1	and	CPU	3	are	parked
because	they	correspond	to	the	second	thread	of	CPU	0’s	and	CPU	2’s	SMT	sets.

The	second	core	parking	policy	is	the	default	behavior,	which	is	to	say	that	it	does
not	make	any	special	considerations	for	SMT	cores.	This	policy	is	also	paired	with
less	aggressive	threshold	parameters	that	are	more	suitable	for	server	workloads,	in
which	load	is	usually	low	during	the	majority	of	the	time	but	all	processors	should
be	readily	available	when	peaks	are	hit.

Additionally,	the	engine	is	tuned	to	avoid	coalescing	processing	too	much	to	a
single	node	or	subset	of	nodes.	Although	consolidating	work	has	energy	benefits
because	less	power	is	distributed	or	wasted	across	the	system,	it	now	adds
significant	contention	to	the	memory	controller(s),	which	on	a	distributed	NUMA
system	would	have	been	less	busy	because	of	the	scheduler’s	ideal	node	and



process-seed	selection	algorithms.	(See	Chapter	5	in	Part	1	for	more	information.)
Therefore,	core	parking	has	to	walk	an	interesting	tightrope	between	reducing
power,	increasing	cache	and	memory	access	effectiveness,	and	reducing	contention
on	node-local	resources.	An	example	of	this	balancing	act	is	that	the	core	parking
engine	will	always	keep	at	least	one	core	available	per	NUMA	node	to	keep	the
scheduler’s	spreading	efforts	useful	and	to	help	support	applications	that
specifically	partition	their	workloads	across	nodes	through	NUMA-aware	thread
affinity	and	memory	allocation.

Figure	8-46.	Resource	Monitor	showing	core	parking	effects	on	SMT	systems

Utility	Function
Decisions	taken	by	the	PPM	engine	as	to	whether	to	modify	the	power	state	of	a



core,	as	well	as	which	cores	to	park	or	unpark,	are	gated	by	one	primal	metric:
utility.	The	utility	of	a	processor	represents,	in	the	engine’s	view,	the	load	of	a
given	core	and	is	computed	by	multiplying	the	average	frequency	of	a	core
(expressed	as	a	percentage	of	its	maximum)	by	the	busy	period	of	the	core
(expressed	as	a	percentage	of	non-idle	time).	Because	two	percentages	are	being
multiplied,	the	maximum	utility	is	10,000,	and	almost	all	the	engine’s	calculations
are	done	by	comparing	utility	(actually,	as	we	show	later,	a	value	derived	from
utility)	with	some	threshold	or	average.

NOTE

On	modern	processors,	the	average	frequency	is	obtained	by	invoking	the	feedback	handler	associated	with
the	current	power	domain,	which	is	managed	by	the	vendor-supplied	power	management	driver	(such	as
Intelppm.sys).	If	a	feedback	mechanism	is	not	available,	the	current	domain’s	frequency	is	used	instead.

Because	the	utility	of	a	processor	can,	obviously,	change	rapidly	over	time,	the
engine	builds	a	history	of	the	utilities	of	each	core,	as	well	as	a	core’s	average
frequency.	It	also	keeps	a	running	sum	of	the	utilities	added	up	over	time,	such	that
the	final	averaged	utility	is	calculated	as	the	running	sum	divided	by	the	number	of
history	entries.

EXPERIMENT:	VIEWING	UTILITY	AND	FREQUENCY	INFORMATION

As	with	most	other	PPM-related	information,	the	KPRCB	stores	information	on	the	current	utility	as	well	as
the	utility	history.	Furthermore,	a	few	debugger	extensions	are	also	available	to	easily	visualize	PPM	utility
information.

When	you	run	the	!ppm	kernel	debugger	command,	you	should	see	output	similar	to	the	following,	which
shows	information	for	LP	0:

lkd> !ppm

Processor 0

  Idle States (3)
    0: C1 - intelppm
    1: C2 - intelppm
    2: C3 - intelppm
  Last Used Idle State:    2

  Current Frequency:  100%
  HardwareFeedback:   55%
  Maximum Policy:     100%
  Platform Cap:       100%
  Minimum Policy:     5%
  Minimum Performace: 44%



  Minimum Throttle:   5%

  Utility:            5400

Highlighted	in	bold	are	the	three	values	that	were	described	earlier.	The	utility	of	this	processor	is	5400,
and	it	is	currently	running	at	100	percent	of	its	maximum	frequency.	The	hardware	feedback	is	the	average
frequency	from	the	feedback	handler	described	previously,	which	the	Intelppm.sys	vendor-supplied	PPM
driver	has	calculated	as	55	percent	on	this	processor.

You	can	also	look	at	the	PPM	information	for	other	processors	while	in	a	remote	debugging	session	by
using	the	~	(tilde)	command	to	switch	processors.	When	using	the	local	kernel	debugger,	you	have	to	dump
the	KPRCB	structure	manually	and	list	the	.PowerState	substructure,	as	shown	in	the	following	output.	In
this	example,	the	PPM	state	for	LP	1	is	dumped.

lkd> !running -i

System Processors:  (0000000f)
  Idle Processors:  (0000000a)

       Prcbs     Current (pri) Next    (pri) Idle
  0    8376cd20  87f0b030 (12)               83776380  ................
  1    8b404120  8b409800 ( 0)               8b409800  ................
  2    8b43a120  86e6ed48 (11)               8b43f800  ................
  3    8b470120  8b475800 ( 0)               8b475800  ................

lkd> dt nt!_KPRCB 8b404120   PowerState.
   +0x33a0 PowerState  :
      +0x000 IdleStates  : 0x877ff890 PPMIDLE_STATES
      +0x008 IdleTimeLast : 0xed
      +0x010 IdleTimeTotal : 0xadae7baa
...

EXPERIMENT:	VIEWING	UTILITY	AND	FREQUENCY	HISTORY

If	the	current	core	parking	policy	enables	history	tracking	(which	is	normally	disabled	on	client	systems),
you	can	also	see	the	utility	function	over	time,	as	well	as	the	frequency.	To	do	so,	a	different	kernel
extension	has	to	used,	!ppmstate.

Here’s	the	output	of	!ppmstate	on	a	server	system	with	core	parking	enabled:

lkd> !ppmstate

Prcb.PowerState - 0x837700c0

  IdleStates:             0x877fe1b0
  IdleTimeLast:           0.000.006us (0x860 )
  IdleTimeTotal:          11:35.968.474us (0x6bc4ae5f )
  IdleAccounting:         0x874d8008

  Hypervisor State:       0x0
  LastPerfCheck:          13:20.311.497us (0x7becdf55)
  PerfDomain:             0x874d9c50
  PerfConstraint:         0x874d9cc8
  Utility:                0xf6c



  PerfHistory:            0x88604300
  PerfHistory contents    (3 slots, oldest to newest)

    Slot    Utility     Frequency
       0       3435           82%
       1      10800          108%
       2      10900          109%

  ThermalConstraint:      100%
  PerfActionDPC:          0x83770120
  PerfActionMask:         0x0
  WmiDispatchPtr:         nt!PpmWmiDispatch
  WmiInterfaceEnabled:    0x1

  CurrentKernelUserTime:  0xc59e
  CurrentIdleThreadKTime: 0xb556

Unlike	with	!ppm,	you	can	also	easily	use	!ppmstate	during	local	kernel	debugging	because	the	extension
accepts	the	address	of	the	PowerState	field	of	any	KPRCB	as	a	parameter.

When	parking	and	unparking	cores,	the	engine	also	uses	a	secondary	metric	called
generic	utility.	Generic	utility	is	the	sum	of	all	the	utility	functions	across	all	the
processors	involved	in	the	core	parking	algorithm.	This	value	is	used	to	gauge	the
overall	activity	level	of	the	system	and	is	later	converted	into	a	percentage	(this	will
be	described	later	in	the	algorithm	section).	Thus,	because	administrators	and	users
set	power	policies	on	a	systemwide	basis	and	not	on	a	processor	basis	(while	core
parking	works	at	the	processor	level),	generic	utility	is	needed	to	convert	the	per-
processor	utility	function	into	a	systemwide	representation	of	utility.

Algorithm	Overrides
Since	core	parking	is	decoupled	from	the	scheduler	(which	is	what	developers	have
some	control	over),	there	are	a	few	scenarios	in	which	the	scheduler’s	goals	must
override	those	of	the	core	parking	engine.	The	first	scenario	is	forced	affinitization.
When	discussing	the	scheduler’s	algorithms	in	Chapter	5	in	Part	1,	we	noted	that
the	scheduler	will	sometimes	forcefully	pick	a	parked	core	if	it	is	the	ideal
processor	of	a	thread	and	when	no	unparked	cores	are	available.	When	this
happens,	the	core	parking	engine	is	made	aware	because	the	affinity	count	in	the
KPRCB’s	power	state	is	incremented.	Over	time,	the	engine	builds	a	weighted
history	(as	configured	by	policy)	of	cores	that	are	repeatedly	targeted	by	hard-
affinitized	policy	and,	past	a	certain	threshold,	also	configured	by	policy,	will	cause
the	engine	to	react	appropriately	(this	will	be	described	in	the	algorithm	outlined
later	in	this	section).



A	second	override	occurs	whenever	a	core	is	parked	(which	means	that	a	low,	or
zero,	utility	function	is	expected),	yet	the	calculated	utility	is	past	the	configured
threshold.	This	override	is	not	controllable	through	scheduling—in	fact,	it	means
that	software	timer	expirations,	DPCs,	interrupts,	and	other	similar	scenarios	have
caused	a	parked	core	to	run	code	outside	the	scheduler’s	purview.	When	such	a
situation	is	detected,	the	engine	reacts	differently,	as	described	by	the	algorithm.
Additionally,	a	history	of	such	“overutilization”	is	kept,	weighted	according	to	the
current	policy,	and	it	too	will	cause	changes	in	the	algorithm	if	it	reaches	a	certain
policy-configurable	threshold.

Look	back	at	Figure	8-46,	which	showed	the	Resource	Monitor,	and	notice	how
CPU	1	and	3,	even	though	parked,	still	had	accumulated	some	CPU	time.
Depending	on	the	current	policy,	one	or	more	of	those	CPUs	could	have	been
considered	overutilized.

Increase/Decrease	Actions
Whenever	the	PPM	engine	is	in	a	situation	in	which	it	must	increase	or	decrease
the	amount	of	parked	cores,	or	increase	or	decrease	a	given	core’s	performance
state,	it	can	apply	one	of	three	different	actions:

Ideal	In	the	ideal	model,	the	engine	tries	to	achieve	a	performance	(frequency)
midpoint	between	the	decrease	and	increase	thresholds	when	choosing	a
performance	state	(PERFSTATE_POLICY_CHANGE_IDEAL).	When	parking
or	unparking	cores,	it	modifies	the	parked	state	of	as	many	cores	as	needed
until	the	generic	utility	distribution	across	unparked	cores	reaches	a	value	that	is
just	below	or	above	the	increase	or	decrease	threshold,	respectively
(CORE_PARKING_POLICY_CHANGE_IDEAL).

Step	In	the	step	model,	the	engine	increases	or	decreases	performance
(frequency)	by	one	frequency	step	(if	specific	frequency	steps	are	exposed
through	ACPI)	or	by	5	percent	as	needed
(PERFSTATE_POLICY_CHANGE_STEP).	When	parking	or	unparking	cores,
it	always	picks	just	one	more	core	to	park	or	unpark
(CORE_PARKING_POLICY_CHANGE_STEP).

Rocket	In	the	rocket	model,	the	engine	sets	the	core	to	its	maximum	or
minimum	performance	(frequency)	state



(PERFSTATE_POLICY_CHANGE_ROCKET).	When	parking,	it	parks	all
cores	(except	one	per	node,	or	whatever	the	current	policy	specifies),	and	when
unparking,	it	unparks	all	cores
(CORE_PARKING_POLICY_CHANGE_ROCKET).

Later	in	this	section,	when	we	look	at	the	actual	core	parking	algorithm,	we’ll	see
when	these	increase	and	decrease	actions	are	taken.

Thresholds	and	Policy	Settings
Ultimately,	what	determines	whether	performance	states	will	be	pushed	up	or
down	and	whether	cores	will	be	parked	or	unparked	depends	on	the	thresholds	and
policy	settings	that	have	been	set	in	the	registry,	configured	in	particular	for	each
processor	vendor	and	type	as	well	as	across	client	and	server	systems,	AC	versus
DC	power,	and	different	power	plans	(for	example,	High	Performance,	Balanced,
or	Low	Power).	Core	parking	uses	the	policy	settings	and	thresholds	shown	in
Table	8-10	through	Table	8-14.

Table	8-10.	Processor	Performance	Policies	(GUID_PROCESSOR_PERF)

Policy	GUID Policy	Meaning

INCREASE/DECREASE_THRESHOLD Specifies	the	busy	threshold	that	must	be	met	before
changing	the	processor’s	performance	state

INCREASE/DECREASE_POLICY Specifies	the	algorithm	used	to	select	a	new
performance	state	when	the	ideal	performance	state
does	not	match	the	current	performance	state

INCREASE/DECREASE_TIME Specifies	the	minimum	number	of	performance	check
intervals	since	the	last	performance	state	change	before
the	performance	state	can	be	changed

TIME_CHECK Specifies	the	amount	of	time	that	must	expire	before
processor	performance	states	and	parked	cores	may	be
reevaluated	(in	milliseconds)

BOOST_POLICY Specifies	how	much	processors	may	opportunistically
increase	frequency	above	maximum	when	allowed	by
current	operating	conditions

ALLOW_THROTTLING Allows	processors	to	use	throttle	states	(T	states)	in
addition	to	performance	states.



HISTORY Specifies	the	number	of	processor-performance	time-
check	intervals	to	use	when	calculating	the	average
utility

Table	8-11.	Idle	State	Management	Policies	(GUID_PROCESSOR_IDLE)

Policy	GUID Policy	Meaning

ALLOW_SCALING Specifies	whether	the	idle	state	promotion	and	demotion
values	should	be	scaled	based	on	the	current	performance
state

DISABLE Specifies	whether	idle	states	should	be	disabled

TIME_CHECK Specifies	the	time	that	must	elapse	since	the	last	idle	state
promotion	or	demotion	before	idle	states	may	be
promoted	or	demoted	again	(in	microseconds)

DEMOTE/PROMOTE_THRESHOLD Specifies	the	busy	threshold	that	must	be	met	before
changing	the	idle	state	of	the	processor

Table	8-12.	Core	Parking	Policies	(GUID_PROCESSOR_CORE_PARKING)

Policy	GUID Policy	Meaning

INCREASE/DECREASE_THRESHOLD Specifies	the	busy	threshold	that	must	be	met	before
changing	the	number	of	cores	that	are	unparked

INCREASE/DECREASE_POLICY Specifies	the	algorithm	used	to	select	the	number	of
cores	to	park	or	unpark	when	required

MAX/MIN_CORES Specifies	the	number	of	unparked	cores	allowed	(in	a
percentage)

INCREASE/DECREASE_TIME Specifies	the	minimum	number	of	performance-check
intervals	that	must	elapse	before	more	cores	can	be
parked	or	unparked

CORE_OVERRIDE Ensures	that	at	least	one	processor	remains	unparked
per	core

PERF_STATE Specifies	what	performance	state	a	processor	enters
when	parked

Table	8-13.	Affinity	History	Policies



(GUID_PROCESSOR_CORE_PARKING_AFFINITY_HISTORY)

Policy	GUID Policy	Meaning

DECREASE_FACTOR Specifies	the	factor	by	which	to	decrease	affinity	history	on	each	core
after	the	current	performance	check

THRESHOLD Specifies	the	threshold	above	which	a	core	is	considered	to	have	had
significant	affinitized	work	scheduled	to	it	while	parked

WEIGHTING Specifies	the	weighting	given	to	each	occurrence	where	affinitized	work
was	scheduled	to	a	parked	core

Table	8-14.	Overutilization	Policies
(GUID_PROCESSOR_CORE_PARKING_OVER_UTILIZATION)

Policy	GUID Policy	Meaning

HISTORY_DECREASE_FACTOR Specifies	the	factor	by	which	to	decrease	the	overutilization
history	on	each	core	after	the	current	performance	check

HISTORY_THRESHOLD Specifies	the	threshold	above	which	a	core	is	considered	to
have	been	recently	overutilized	while	parked

WEIGHTING Specifies	the	weighting	given	to	each	occurrence	when	a
parked	core	is	found	to	be	overutilized

THRESHOLD Specifies	the	busy	threshold	that	must	be	met	before	a	parked
core	is	considered	overutilized

EXPERIMENT:	VIEWING	CURRENT	CORE	PARKING	POLICY

When	the	!popolicy	experiment	was	used	in	an	earlier	part	of	this	chapter,	it	showed	you	only	the	system
power	policy,	not	the	entire	policy,	which	also	covers	PPM.	By	using	the	dt	command	with	the	correct
structure	type,	you	are	also	able	to	see	the	PPM	policy,	which	covers	the	policy	GUIDs	that	were	shown	in
the	preceding	tables.	Because	the	system	power	policy	starts	at	offset	4,	simply	subtract	4	from	the	pointer
returned	by	!popolicy.

lkd> !popolicy
SYSTEM_POWER_POLICY (R.1) @ 0x8377a6c4

lkd> dt nt!_POP_POWER_SETTING_VALUES 8377a6c0
...

+0x10c AllowThrottling  : 0 ''
+0x10d PerfHistoryCount : 0x20 ' '
+0x110 PerfTimeCheck    : 0xf
+0x114 PerfIncreaseTime : 1



+0x118 PerfDecreaseTime : 1
+0x11c PerfIncreaseThreshold : 0x1e ''
+0x11d PerfDecreaseThreshold : 0xa ''
+0x11e PerfIncreasePolicy : 0x2 ''
+0x11f PerfDecreasePolicy : 0x1 ''
+0x120 PerfMinPolicy    : 0x5 ''
+0x121 PerfMaxPolicy    : 0x64 'd'
+0x124 PerfBoostPolicy  : 0x64
+0x128 CoreParkingIncreaseThreshold : 0x55 'U'
+0x129 CoreParkingDecreaseThreshold : 0x32 '2'
+0x12a CoreParkingMaxCores : 0x64 'd'
+0x12b CoreParkingMinCores : 0xa ''
+0x12c CoreParkingIncreasePolicy : 0 ''
+0x12d CoreParkingDecreasePolicy : 0 ''
+0x130 CoreParkingIncreaseTime : 7
+0x134 CoreParkingDecreaseTime : 0x14
+0x138 CoreParkingAffinityHistoryDecreaseFactor : 0x2 ''
+0x13a CoreParkingAffinityHistoryThreshold : 0x96
+0x13c CoreParkingAffinityWeighting : 0x64
+0x13e CoreParkingOverUtilizationHistoryDecreaseFactor : 0x2 ''
+0x140 CoreParkingOverUtilizationHistoryThreshold : 0x28
+0x142 CoreParkingOverUtilizationWeighting : 0x64
+0x144 CoreParkingOverUtilizationThreshold : 0x3c '<'
+0x145 ParkingCoreOverride : 0x1 ''
+0x146 ParkingPerfState : 0 ''

Another	way	to	see	a	more	limited	set	of	the	current	policy	is	to	use	the	!ppmperfpolicy	extension,	which
displays	a	few	of	the	core	policy	settings:

lkd> !ppmperfpolicy

  MaxPerf:           100%
  MinPerf:           5%
  TimeCheck:         15 ms
  IncreaseTime:      1 time check period(s)
  DecreaseTime:      1 time check period(s)
  IncreaseThreshold: 30%
  DecreaseThreshold: 10%
  IncreasePolicy:    2
  DecreasePolicy:    1
  HistoryCount:      1
  BoostPolicy:       100

Performance	Check
The	algorithm	that	powers	the	PPM	engine	is	called	the	performance	check.	It	is
executed	by	the	PpmCheckStart	timer	callback,	which	runs	periodically	based	on
the	current	policy’s	performance-check	interval.	The	callback	acquires	the	policy
lock	and	sets	the	initial	phase	to	PpmCheckPhaseInitiate.	It	calls	PpmCheckRun,
which	runs	the	algorithm	illustrated	in	the	following	diagram.



The	steps	shown	in	the	diagram	line	up	with	the	PPM_CHECK_PHASE
enumeration	described	in	Table	8-15.

Table	8-15.	PPM	Check	Phases

Phase	Name Phase	Meaning

PpmCheckPhaseInitiate Notifies	the	vendor-supplied	processor	power	driver
that	the	core	parking	engine	is	about	to	start	its
performance	check



PpmCheckPhaseRecordUtility Runs	on	each	processor	to	calculate	the	utility
function	for	each	core

PpmCheckPhaseCalculateCoreParkingMask Using	the	utility	function,	current	core	parking
status,	affinitization,	and	overutilization	history,
organizes	all	the	cores	in	different	sets	that	are	used
to	determine	the	best	cores	to	unpark	or	park.	It
then	performs	the	unparking	of	cores

PpmCheckPhaseReportUnparkedCores Runs	on	each	unparked	processor	to	notify	the
scheduler	that	the	core	has	been	unparked

PpmCheckPhaseSelectProcessorState Computes	the	new	performance	state	(target
frequency)	for	each	processor	based	on	its	parking
state	and	utility

PpmCheckPhaseSelectDomainState Selects	the	best	performance	state	for	all	the
processors	in	a	given	domain	based	on	the
constraints,	and	switches	to	the	new	processor
performance	state

PpmCheckPhaseCommitDomainState Calls	the	vendor-supplied	processor	power	driver	to
commit	the	new	processor	performance	states

PpmCheckPhaseReportParkedCores Runs	on	each	parked	processor	to	notify	the
scheduler	that	the	core	has	been	unparked.	Any
ongoing	or	queued	thread	activity	is	moved	off	the
core.

PpmCheckPhaseEnd Releases	the	policy	lock	and	switches	the	phase	to
the	not-running	phase

PpmCheckPhaseNotRunning Indicates	that	the	performance	check	is	not	running

Some	of	the	steps	in	Table	8-15	require	a	bit	more	discussion	than	just	a	single	line.
Here	are	extended	details.

Step	2:	Recording	utility	PpmCheckRecordAllUtility	enumerates	all	processors
that	are	part	of	the	core	parking	engine’s	current	registered	set	and	determines
which	ones	it	will	query	for	utility	remotely	(that	is,	from	the	current	core	running
the	check	algorithm)	or	whether	it	will	force	a	targeted	DPC	to	query	utility
locally.	This	determination	is	made	by	calling	PpmPerfRecordUtility	and	hinges	on
the	idleness	of	the	core	and	its	current	utility	value.	Because	these	numbers	end	up
multiplied	together,	the	busier	a	core	becomes	(higher	utility),	the	greater	the
inaccuracy	of	not	having	precise	frequency	measurements	becomes,	the	latter	being



a	side	effect	of	running	the	check	on	a	remote	instead	of	a	local	core.

Additionally,	while	running	locally,	the	function	can	also	check	whether	the	CPU
was	throttled	outside	the	PPM’s	purview,	usually	indicating	broken	firmware	or
drivers	(or	the	existence	of	a	power	management	strategy	that	is	outside	the	OS’s
view	and/or	control).

Other	than	those	checks,	recording	the	utility	is	ultimately	about	computing	the
value	described	earlier	in	the	Utility	Function	section	and	keeping	track	of	its
history,	if	the	policy	enables	it.

Step	4:	Choosing	which	cores	to	unpark	The	work	in	this	step	is	done	by	two
functions.	The	first,	PpmPerfCalculateCoreParkingMask,	computes	how	many
cores	should	be	unparked	and	builds	a	variety	of	sets	that	can	be	used	to	prioritize
unparking:

Overutilized	cores	Those	whose	utility	is	higher	than	the	policy	threshold,	as
described	in	the	Algorithm	Overrides	section.

Previously	overutilized	cores	Cores	that	were	overutilized	during	the	previous
performance	check,	as	described	in	the	Algorithm	Overrides	section.

Affinitized	cores	Cores	that	have	been	forcefully	chosen	by	the	scheduler
because	of	affinitization	overrides,	also	described	in	the	Algorithm	Overrides
section.

Unparked	cores	Cores	that	are	already	unparked.

Highly	utilized	unparked	codes	Unparked	cores	with	a	high	utility	function.

The	function	then	computes	the	generic	utility	(described	in	the	Utility	Function
section)	and	determines	whether	the	generic	utility	percentage	(defined	as	the
generic	utility	divided	by	the	sum	of	busy	frequencies	across	all	cores)	is	above	or
below	the	thresholds	specified	in	the	policy.	Based	on	which	threshold	is	crossed,	if
any,	the	policy-defined	increase/decrease	action	(described	in	the
Increase/Decrease	Actions	section	earlier)	is	performed,	which	results	in	a	count	of
cores	to	unpark.

This	number,	the	generic	utility,	and	the	sets	described	earlier	are	sent	to
PpmPerfChooseCoresToUnpark,	which	is	responsible	for	picking	which	processors
should	be	unparked	based	on	how	to	spread	the	generic	utility.	The	algorithm	first



checks	whether	the	target	count	is	already	covered	by	the	already	unparked	cores,
and	if	so,	exits.	Otherwise,	it	keeps	unparking	cores	until	the	overutilized	group	is
enough	to	handle	the	remaining	unpark	requests.	In	other	words,	overutilized	cores
always	become	unparked,	and	the	algorithm	must	pick	which	other,
nonoverutilized	cores,	should	also	be	unparked.

To	do	so,	it	runs	the	following	elimination	round	in	the	specified	order.	Each	step	is
taken	only	if	it	results	in	a	nonzero	intersection	(if	other	candidates	exist):

Remove	any	processors	that	are	not	already	overutilized

Remove	any	processors	that	are	not	already	highly	utilized

Remove	any	processors	that	are	not	already	unparked

Remove	any	processors	that	were	not	previously	overutilized

Remove	any	processors	that	do	not	have	forced	affinitized	threads

In	the	most	optimistic	scenario,	this	results	in	a	set	of	overutilized,	highly	utilized,
previously	overutilized,	and	forced-affinitized	processors.	In	other	words,	this	set
contains	the	processors	least	likely	to	benefit	from	parking	in	the	first	place.	From
this	set,	the	core	parking	engine	picks	the	lowest	processor	number	and	then	enters
a	new	round	of	elimination	until	the	conditions	specified	earlier	match.

At	the	end	of	the	algorithm,	after	all	overutilized	cores	and	noneliminated	cores
have	been	unparked,	the	generic	utility	is	balanced	(distributed	equally)	across	all
the	newly	unparked	processors.

Step	5:	Selecting	processor	state	PpmPerfSelectProcessorStates	enumerates	each
processor	that’s	part	of	this	run	and	calls	PpmPerfSelectProcessorState	for	each
one.	In	this	case,	the	algorithm	can	run	remotely	(without	requiring	a	local	DPC
callback	on	the	core)	because	all	the	data	is	available	from	the	KPRCB.	The
purpose	of	this	function	is	to	decide	which	processor	state	makes	the	most	sense
for	the	given	processor,	based	on	its	expected	utility	function.

The	first	check	is	to	verify	whether	this	processor	has	been	selected	for	parking	in
step	3.	If	it	was	selected,	the	target	power	state	for	parked	cores,	based	on	policy,	is
selected.	Three	possibilities	exist:

Lightest	The	parked	processor	is	targeted	to	run	at	100	percent	of	its
frequency.



Deepest	The	parked	processor	is	targeted	to	run	at	1	percent	of	its	frequency.

No	Preference	The	parked	processor	will	be	treated	just	like	any	other
processor	and	continue	the	regular	algorithm.

Assuming	that	the	algorithm	does	continue,	the	next	step	is	to	compute	the
busyness	of	the	processor.	Since	the	utility	function	is	equal	to	the	busyness
percentage	multiplied	by	the	average	frequency,	this	means	that	the	busyness	of	the
processor	is	its	utility	divided	by	its	average	frequency.	This	busyness	is	then
compared	with	the	increase	and/or	decrease	thresholds	specified	by	policy,	and	one
of	the	three	possible	actions	are	taken	(ideal,	step,	or	rocket,	described	earlier	in
Increase/Decrease	Actions).

The	domain	performance	handler	callback	(owned	by	the	vendor-supplied
processor	driver)	is	then	called	with	the	new	target	frequencies	and	with	whether
throttling	was	allowed	by	the	policy.

Step	6:	Selecting	domain	state	As	shown	in	the	previous	illustration,	this	step	is
also	composed	of	a	few	substeps.	The	first,	done	remotely,	is	performed	by
PpmPerfSelectDomainStates,	which	picks	the	domain	masters	and	calls
PpmPerfSelectDomainState	to	run	on	them.	This	function	iterates	over	all	the
processors	in	the	domain	and	picks	the	one	with	the	highest	performance	state	(the
highest	desired	frequency).	It	then	sets	this	as	the	desired	frequency	for	the	entire
domain.

Now	that	each	domain	master	has	selected	its	domain	state,	control	returns	to
PpmPerfSelectDomainStates,	which	queues	a	local	DPC	for	all	of	the	domain
masters	that	is	implemented	by	PpmPerfApplyDomainState.	This	is	the	second
step.	This	function	takes	into	consideration	the	valid	P	states	(and	T	states,	if
throttling	is	enabled	by	policy)	and	trims	any	states	outside	the	current	processor
constraints,	which	include	percentage	caps	and	thermal	caps.	When	it	has	picked
the	best	target	frequency	(and	consulted	with	the	domain	performance	handler
callback),	it	queues	a	DPC	to	all	the	processors	in	each	domain	to	apply	the
selected	performance	state	to	each	core.

In	this	third	step,	implemented	by	the	PpmPerfApplyProcessorState	DPC	routine,
the	domain’s	performance	handler	callback	is	called	to	switch	states.	Finally,
PpmScaleIdleStateValues	is	called.	If	idle	scaling	is	enabled	by	policy,	this	function



scales	the	processor’s	C	states	(idle	states)	according	to	the	promotion/demotion
percentages	specified	in	the	policy.

EXPERIMENT:	VIEWING	CURRENT	PPM	CHECK	INFORMATION

The	kernel	debugger	includes	an	extension,	!ppmcheck,	which	you	can	use	to	check	whether	core	parking	is
enabled	and	which	cores	are	currently	parked,	as	well	as	the	internal	performance	checking	algorithm	state.
Here’s	a	sample	output	of	the	extension:

lkd> !ppmcheck

  PpmCheckArmed:             TRUE
  PpmCheckStartDpc:          0x8377aa58
  PpmCheckDpc:               0x8377aa78
  PpmCheckTimer:             0x8377aa30
  PpmCheckMakeupCount:       -
  PpmCheckLastExecutionTime: -
  PpmCheckTime:              08:40.738.783us (0x50a26d3d)
  PpmCheckPhase:             9
  PpmCheckRegistered:        0x8376b408
    {[0000000F]}
  PpmPerfStatesRegistered:   0x8376b390
    {[0000000F]}
  CoreParkingEnabled:        TRUE
  CoreParkingMask:           0x8376b35c
    {[0000000A]}

You	can	also	see	the	complete	PPM	information	for	a	given	processor	by	looking	at	the	PRCB’s	PowerState
field	and	further	drilling	down	into	the	Domain	and	PerfConstraint	members.	This	will	show	you	the
selected	domain	performance	state,	the	constraints	(thermal	and	frequency	caps),	and	other	accounting
information.	You	can	use	dt	nt!_KPRCB	@$prcb	PowerState	to	see	this	information	for	the	current	PRCB:

+0x33a0 PowerState  :
      +0x000 IdleStates  : 0x877fe1b0 PPMIDLE_STATES
      +0x008 IdleTimeLast : 0xa6
      +0x010 IdleTimeTotal : 0x97789fc9
      +0x018 IdleTimeEntry : 0
      +0x020 IdleAccounting : 0x874d8008 PROCIDLE_ACCOUNTING
      +0x024 Hypervisor  : 0 ( ProcHypervisorNone )
      +0x028 PerfHistoryTotal : 0
      +0x02c ThermalConstraint : 0x64 'd'
      +0x02d PerfHistoryCount : 0x1 ''
      +0x02e PerfHistorySlot : 0 ''
      +0x02f Reserved    : 0 ''
      +0x030 LastSysTime : 0xfa86
      +0x034 WmiDispatchPtr : 0x837c5464
      +0x038 WmiInterfaceEnabled : 0n1
      +0x040 FFHThrottleStateInfo : PPMFFH_THROTTLE_STATE_INFO
      +0x060 PerfActionDpc : _KDPC
      +0x080 PerfActionMask : 0n0
      +0x088 IdleCheck   : PROCIDLE_SNAP
      +0x098 PerfCheck   : PROCIDLE_SNAP
      +0x0a8 Domain      : 0x874d9c50 PROCPERF_DOMAIN
      +0x0ac PerfConstraint : 0x874d9cc8 PROCPERF_CONSTRAINT
      +0x0b0 Load        : (null)
      +0x0b4 PerfHistory : (null)
      +0x0b8 Utility     : 0xba8



      +0x0bc OverUtilizedHistory : 0
      +0x0c0 AffinityCount : 0
      +0x0c4 AffinityHistory : 0

lkd> dt  0x874d9c50 PROCPERF_DOMAIN
nt!PROCPERF_DOMAIN
   +0x000 Link             : LISTENTRY [ 0x8376b39c - 0x8376b39c ]
   +0x008 Master           : 0x8b470120 KPRCB
   +0x00c Members          : KAFFINITY_EX
   +0x018 FeedbackHandler  : 0x93d19d08     unsigned char  +0
   +0x01c GetFFHThrottleState : 0x93d1804e     void  +0
   +0x020 BoostPolicyHandler : 0x93d18104     void  +0
   +0x024 PerfSelectionHandler : 0x93d19bee     unsigned long  +0
   +0x028 PerfHandler      : 0x93d19d40     void  +0
   +0x02c Processors       : 0x874d9cc8 PROCPERF_CONSTRAINT
   +0x030 PerfChangeTime   : 0xaa90c1ed
   +0x038 ProcessorCount   : 4
   +0x03c PreviousFrequencyMhz : 0x532
   +0x040 CurrentFrequencyMhz : 0xa65
   +0x044 PreviousFrequency : 0x31
   +0x048 CurrentFrequency : 0x64
   +0x04c CurrentPerfContext : 0
   +0x050 DesiredFrequency : 0x64
   +0x054 MaxFrequency     : 0xa65
   +0x058 MinPerfPercent   : 0x2c
   +0x05c MinThrottlePercent : 5
   +0x060 MaxPercent       : 0x64
   +0x064 MinPercent       : 5
   +0x068 ConstrainedMaxPercent : 0x64
   +0x06c ConstrainedMinPercent : 0x2c
   +0x070 Coordination     : 0x1 ''
   +0x074 PerfChangeIntervalCount : 0n0

lkd> dt 0x874d9cc8 PROCPERF_CONSTRAINT
ntdll!PROCPERF_CONSTRAINT
   +0x000 Prcb             : 0x8376cd20 _KPRCB
   +0x004 PerfContext      : 0x877febe0
   +0x008 PercentageCap    : 0x64
   +0x00c ThermalCap       : 0x64
   +0x010 TargetFrequency  : 0x36
   +0x014 AcumulatedFullFrequency : 0x46c3df
   +0x018 AcumulatedZeroFrequency : 0xd51828
   +0x01c FrequencyHistoryTotal : 0
   +0x020 AverageFrequency : 0x36



Conclusion
The	I/O	system	defines	the	model	of	I/O	processing	on	Windows	and	performs
functions	that	are	common	to	or	required	by	more	than	one	driver.	Its	chief
responsibility	is	to	create	IRPs	representing	I/O	requests	and	to	shepherd	the
packets	through	various	drivers,	returning	results	to	the	caller	when	an	I/O	is
complete.	The	I/O	manager	locates	various	drivers	and	devices	by	using	I/O	system
objects,	including	driver	and	device	objects.	Internally,	the	Windows	I/O	system
operates	asynchronously	to	achieve	high	performance	and	provides	both
synchronous	and	asynchronous	I/O	capabilities	to	user-mode	applications.

Device	drivers	include	not	only	traditional	hardware	device	drivers	but	also	file
system,	network,	and	layered	filter	drivers.	All	drivers	have	a	common	structure
and	communicate	with	one	another	and	the	I/O	manager	by	using	common
mechanisms.	The	I/O	system	interfaces	allow	drivers	to	be	written	in	a	high-level
language	to	lessen	development	time	and	to	enhance	their	portability.	Because
drivers	present	a	common	structure	to	the	operating	system,	they	can	be	layered
one	on	top	of	another	to	achieve	modularity	and	reduce	duplication	between
drivers.	Also,	all	Windows	device	drivers	should	be	designed	to	work	correctly	on
multiprocessor	systems.

Finally,	the	role	of	the	PnP	manager	is	to	work	with	device	drivers	to	dynamically
detect	hardware	devices	and	to	build	an	internal	device	tree	that	guides	hardware
device	enumeration	and	driver	installation.	The	power	manager	works	with	device
drivers	to	move	devices	into	low-power	states	when	applicable	to	conserve	energy
and	prolong	battery	life.

Three	more	upcoming	chapters	will	cover	additional	topics	related	to	the	I/O
system:	storage	management,	file	systems	(including	details	on	the	NTFS	file
system),	and	the	cache	manager.



Chapter	9.	Storage	Management
Storage	management	defines	the	way	that	an	operating	system	interfaces	with
nonvolatile	storage	devices	and	media.	The	term	storage	encompasses	many
different	devices,	including	optical	media,	USB	flash	drives,	floppy	disks,	hard
disks,	solid	state	disks	(SSDs),	network	storage	such	as	iSCSI,	storage	area
networks	(SANs),	and	virtual	storage	such	as	VHDs	(virtual	hard	disks).	Windows
provides	specialized	support	for	each	of	these	classes	of	storage	media.	Because
our	focus	in	this	book	is	on	the	kernel	components	of	Windows,	in	this	chapter
we’ll	concentrate	on	just	the	fundamentals	of	the	hard	disk	storage	subsystem	in
Windows,	which	includes	support	for	external	disks	and	flash	drives.	Significant
portions	of	the	support	Windows	provides	for	removable	media	and	remote	storage
(offline	archiving)	are	implemented	in	user	mode.

In	this	chapter,	we’ll	examine	how	kernel-mode	device	drivers	interface	file	system
drivers	to	disk	media,	discuss	how	disks	are	partitioned,	describe	the	way	volume
managers	abstract	and	manage	volumes,	and	present	the	implementation	of
multipartition	disk-management	features	in	Windows,	including	replicating	and
dividing	file	system	data	across	physical	disks	for	reliability	and	for	performance
enhancement.	We’ll	also	describe	how	file	system	drivers	mount	volumes	they	are
responsible	for	managing,	and	we’ll	conclude	by	discussing	drive	encryption
technology	in	Windows	and	support	for	automatic	backups	and	recovery.



Storage	Terminology
To	fully	understand	the	rest	of	this	chapter,	you	need	to	be	familiar	with	some
basic	terminology:

Disks	are	physical	storage	devices	such	as	a	hard	disk,	CD-ROM,	DVD,	Blu-
ray,	solid	state	disk	(SSD),	or	flash.

A	disk	is	divided	into	sectors,	which	are	addressable	blocks	of	fixed	size.	Sector
sizes	are	determined	by	hardware.	Most	hard	disk	sectors	are	512	bytes	(but	are
moving	to	4,096	bytes),	and	CD-ROM	sectors	are	typically	2,048	bytes.	For
more	information	on	moving	to	4,096-byte	sectors,	see
http://support.microsoft.com/kb/2510009.

Partitions	are	collections	of	contiguous	sectors	on	a	disk.	A	partition	table	or
other	disk-management	database	stores	a	partition’s	starting	sector,	size,	and
other	characteristics	and	is	located	on	the	same	disk	as	the	partition.

Simple	volumes	are	objects	that	represent	sectors	from	a	single	partition	that
file	system	drivers	manage	as	a	single	unit.

Multipartition	volumes	are	objects	that	represent	sectors	from	multiple
partitions	and	that	file	system	drivers	manage	as	a	single	unit.	Multipartition
volumes	offer	performance,	reliability,	and	sizing	features	that	simple	volumes
do	not.

http://support.microsoft.com/kb/2510009


Disk	Devices
From	the	perspective	of	Windows,	a	disk	is	a	device	that	provides	addressable
long-term	storage	for	blocks	of	data,	which	are	accessed	using	file	system	drivers.
In	other	words,	each	byte	on	the	disk	does	not	have	its	own	address,	but	each	block
does	have	an	address.	These	blocks	are	known	as	sectors	and	are	the	basic	unit	of
storage	and	transfer	to	and	from	the	device	(in	other	words,	all	transfers	must	be	a
multiple	of	the	sector	size).	Whether	the	device	is	implemented	using	rotating
magnetic	media	(hard	disk	or	floppy	disk)	or	solid	state	memory	(flash	disk	or
thumb	drive)	is	irrelevant.

Windows	supports	a	wide	variety	of	interconnect	mechanisms	for	attaching	a	disk
to	a	system,	including	SCSI,	SAS	(Serial	Attached	SCSI),	SATA	(Serial	Advanced
Technology	Attachment),	USB,	SD/MMC,	and	iSCSI.

Rotating	Magnetic	Disks
The	typical	disk	drive	(often	referred	to	as	a	hard	disk)	is	built	using	one	or	more
rigid	rotating	platters	covered	in	a	magnetic	material.	An	arm	containing	a	head
moves	back	and	forth	across	the	surface	of	the	platter	reading	and	writing	bits	that
are	stored	magnetically.

Disk	Sector	Format
While	the	disk	interconnect	mechanisms	have	been	evolving	since	IBM	introduced
hard	disks	in	1956	and	have	become	faster	and	more	intelligent,	the	underlying
disk	format	has	changed	very	little,	except	for	annual	increases	in	areal	density	(the
number	of	bits	per	square	inch).	Since	the	inception	of	disk	drives,	the	data	portion
of	a	disk	sector	has	typically	been	512	bytes.

Disk	storage	areal	density	has	increased	from	2,000	bits	per	square	inch	in	1956	to
over	650	billion	bits	per	square	inch	in	2011,	with	most	of	that	gain	coming	in	the
last	15	years.	Disk	manufacturers	are	reaching	the	physical	limits	of	current
magnetic	disk	technology,	so	they	are	changing	the	format	of	the	disks:	increasing
the	sector	size	from	512	bytes	to	4,096	bytes,	and	changing	the	size	of	the	error
correcting	code	(ECC)	from	50	bytes	to	100	bytes.	This	new	disk	format	is	known
as	the	advanced	format.	The	size	of	the	advanced	format	sector	was	chosen



because	it	matches	the	x86	page	size	and	the	NTFS	cluster	size.	The	advanced
format	provides	about	10	percent	greater	capacity	by	reducing	the	amount	of
overhead	per	sector	(everything	except	the	data	area	is	overhead)	and	through
better	error	correcting	capabilities.	(A	single	100-byte	ECC	is	better	than	eight	50-
byte	ECCs).	The	downside	to	advanced	format	disks	is	potentially	wasted	space	for
small	files,	but	as	you’ll	see	in	Chapter	12,	NTFS	has	a	mechanism	for	efficiently
storing	small	files.

Advanced	format	disks	provide	an	emulation	mechanism	(known	as	512e)	for
legacy	operating	systems	that	understand	only	512-byte	sectors.	With	512e,	the
host	does	not	know	that	the	disk	supports	4,096-byte	sectors;	it	continues	to	read
and	write	512-byte	sectors	(called	logical	blocks).	The	disk’s	controller	will
translate	a	logical	block	number	into	the	correct	physical	sector.	For	example,	if	the
host	issues	a	read	request	for	logical	block	number	6,	then	the	disk	controller	will
read	physical	sector	number	0	into	its	internal	buffer	and	return	only	the	512-byte
portion	corresponding	to	logical	block	6	to	the	host,	as	shown	in	Figure	9-1.

Figure	9-1.	Advanced	format	sector	with	512e

Writes	are	a	little	more	complicated	in	that	they	require	the	disk’s	controller	to
perform	a	read-modify-write	operation,	as	shown	in	Figure	9-2.

1.	 The	host	writes	logical	block	6	to	the	controller.

2.	 The	controller	maps	logical	block	6	to	physical	sector	0	and	reads	the	entire
sector	into	the	controller’s	memory.

3.	 The	controller	copies	logical	block	6	into	its	position	within	the	copy	of	the
physical	sector	in	the	controller’s	memory.

4.	 The	controller	writes	the	4,096-byte	physical	sector	from	memory	back	to
the	disk.

Obviously,	there	is	a	performance	penalty	associated	with	using	512e,	but



advanced	format	disks	will	still	work	with	legacy	operating	systems.

Figure	9-2.	512e	read-modify-write	operation

Windows	supports	native	4,096-byte	advance	format	sectors,	so	there	is	no
additional	read-modify-write	overhead.	As	you	will	see	in	Chapter	12,	NTFS	was
written	to	support	sectors	of	more	than	512	bytes	and	by	default	issues	disk	I/Os
using	a	4,096-byte	cluster.	The	Windows	cache	manager	(see	Chapter	11)	will
attempt	to	reduce	the	penalty	of	applications	assuming	512-byte	sectors;	however,
applications	should	be	upgraded	to	query	the	size	of	a	disk’s	sectors	(by	issuing	an
IOCTL_STORAGE_QUERY_PROPERTY	I/O	request	and	examining	the
returned	BytesPerPhysicalSector	value)	and	not	assume	512-byte	sectors	when
performing	sector	I/O.	It	is	very	important	that	partitioning	tools	understand	the
size	of	a	disk’s	physical	sectors	and	align	partitions	to	physical	sector	boundaries
because	partitions	must	be	an	integral	number	of	physical	sectors.

Solid	State	Disks
Recently,	the	cost	of	manufacturing	flash	memory	has	decreased	to	the	point	where
manufacturers	are	building	storage	subsystems	with	a	disk-type	interface,	calling
the	device	a	solid	state	disk	(SSD)	or	flash	disk.	As	far	as	Windows	is	concerned,
an	SSD	is	a	disk,	but	there	are	some	important	differences	between	a	rotating	disk
and	an	SSD	that	Windows	has	to	support.	Before	getting	into	the	details	of	how
Windows	supports	SSDs,	let’s	look	at	how	an	SSD	is	implemented.

Flash	memory	in	some	respects	is	very	similar	to	a	computer’s	RAM	(random
access	memory),	except	that	flash	memory	does	not	lose	its	contents	when	the
power	is	removed,	which	means	that	flash	memory	is	nonvolatile.	The	most
common	types	of	flash	memory	are	NOR	and	NAND.	NOR	flash	memory	is
operationally	the	closest	to	RAM	in	that	each	byte	is	individually	addressable,



while	NAND	flash	memory	is	organized	into	blocks,	like	a	disk.	Typically,	NOR-
type	flash	memory	is	used	to	hold	the	BIOS	on	your	computer’s	motherboard,	and
NAND-type	flash	memory	is	used	in	SSDs.

The	most	important	difference	between	flash	memory	and	RAM	is	that	RAM	can
be	read	and	written	an	almost	infinite	number	of	times,	while	flash	memory	can	be
overwritten	something	less	than	100,000	times.	(Depending	on	the	type	of	flash
memory,	it	may	be	as	few	as	1,000	times).	In	effect,	flash	memory	wears	out,	so
flash	memory	should	be	treated	more	like	media	with	a	limited	lifetime	(such	as	a
floppy	disk)	than	RAM	or	a	magnetic	disk.	Another	major	difference	between
flash	memory	and	RAM	is	that	flash	memory	cannot	be	updated	in	place;	a	block
must	be	erased	before	it	can	be	written	(even	for	NOR-type	flash	memory).	Flash
memory	is	significantly	faster	than	magnetic	disks	(usually	by	a	factor	of	100,000,
or	so;	access	time:	50	nanoseconds	versus	5	milliseconds),	but	it	is	slower	than
RAM	(usually	by	a	factor	of	50).	From	a	practical	perspective,	memory	access
time	is	not	the	whole	story	because	flash	memory	is	not	on	the	system	memory
bus.	Instead,	it	sits	behind	a	disk-type	controller	interface	on	an	I/O	bus,	so	in
reality	the	difference	between	flash	and	magnetic	disks	may	be	on	the	order	of
only	1,000	times	faster,	and	in	some	workloads	a	rotating	magnetic	disk	can
outperform	a	low-end	SSD.

NAND-Type	Flash	Memory
NAND-type	flash	memory	is	most	commonly	used	in	SSDs,	so	that	is	what	we
will	examine	in	detail.	NAND-type	flash	comes	in	two	types:

Single-level	cell	(SLC)	stores	1	bit	per	internal	cell,	has	a	higher	number	of
program/erase	cycles	(on	the	order	of	100,000),	and	is	significantly	faster	than
multilevel	cell	(MLC),	but	it	is	much	more	expensive	than	MLC.

Multilevel	cell	(MLC)	stores	multiple	bits	per	internal	cell	and	is	significantly
cheaper	than	SLC.	MLC	needs	more	ECC	bits	than	SLC,	has	fewer	erase	cycles
(~5,000),	and	consumes	more	power	than	SLC.

NAND-type	flash	is	typically	organized	into	4,096-byte	pages	(which	may	be
exposed	as	eight	512-byte	sectors	or	a	single	4,096-byte	sector),	which	are	the
smallest	readable	or	writable	units,	and	the	pages	are	grouped	into	blocks	of	64	to
1,024	pages,	with	thousands	of	blocks	per	chip.	As	with	a	magnetic	disk,	there	is



overhead	on	each	page,	with	ECC,	page	health,	and	spare	bits.	The	block	is	the
smallest	erasable	unit,	so	to	change	a	single	sector	within	a	page	requires	that	the
entire	block	be	erased	and	then	rewritten.	(Flash	cells	can	be	written	only	after	they
have	been	erased.)	This	means	that	writing	a	sector	to	an	empty	block	is	very	fast,
but	if	there	is	not	an	available	empty	block,	the	controller	has	to	perform	the
following	actions:

1.	 Read	the	entire	block	into	the	controller’s	internal	RAM.

2.	 Erase	the	block	in	the	flash	memory.

3.	 Update	the	block	in	RAM	with	the	contents	of	the	new	sector.

4.	 Write	the	entire	block	to	the	flash	memory.

Notice	that	what	started	as	a	write	to	a	sector	(512	bytes)	became	a	write	of	an
entire	block.	For	this	example,	if	we	assume	128	pages	in	a	block	and	a	completely
full	block,	then	the	write	would	take	1,023	times	longer	(the	block	contains	1,024
sectors)	than	the	write	of	a	single	sector	to	an	empty	block.	This	example	is	a	worst
case	and	is	decidedly	not	the	norm,	but	it	illustrates	an	important	aspect	of	SSDs:
as	more	and	more	of	the	SSD’s	memory	is	consumed,	it	will	have	to	rewrite
substantially	more	data	than	a	single	sector.	In	effect,	SSDs	slow	down	as	they	fill
up.	This	has	important	implications	that	are	addressed	in	the	next	section,	File
Deletion	and	the	Trim	Command.

As	a	block	wears	out,	eventually	it	will	fail	to	erase.	Also,	the	more	a	block	is
erased	and	rewritten,	the	slower	it	becomes	(a	result	of	the	physics	behind	how
flash	memory	is	implemented).	This	means	that	an	SSD	will	only	get	slower	as	you
use	it—even	on	an	empty	block.	For	example,	on	a	1-GB	USB	MLC	flash	disk
with	128	pages	per	block	(giving	us	2,048	blocks),	erasing	and	writing	one	block
per	second	would	wear	out	all	the	blocks	in	23.7	days	(assuming	a	maximum	of
1,000	erase	cycles	per	block,	which	is	typical	for	the	cheaper	flash	disks).	Erasing
and	writing	the	same	block	once	per	second	will	wear	out	that	block	in	only	16.6
minutes!	SSDs	typically	have	spare	blocks	held	in	reserve	(often	20	percent	of	the
SSD’s	capacity)	so	that	if	a	block	wears	out,	the	data	is	moved	to	a	spare	block.
Clearly,	flash	memory	cannot	be	used	the	same	way	as	RAM	or	a	magnetic	disk.

The	flash	memory	controller	implements	a	technique	called	wear-leveling	to	spread
the	wear	(erases)	across	the	SSD.	Wear-leveling	depends	on	the	fact	that	most	of



the	data	that	you	write	to	a	disk	is	static;	that	is,	it	does	not	change	often	(it	is
usually	read	frequently,	but	that	doesn’t	cause	wear).	Of	course,	there	is	also
dynamic	data	(such	as	log	files)	that	changes	frequently.	There	are	many	different
types	of	wear-leveling	algorithms,	but	describing	them	is	beyond	the	scope	of	this
book.	The	important	concept	to	understand	about	wear-leveling	is	that	the
controller	will	move	data	around	within	the	flash	memory	in	an	attempt	to	spread
writes	across	all	the	flash	memory,	thus	prolonging	the	overall	life	of	the	SSD.	An
implication	of	wear-leveling	is	that	more	blocks	are	subjected	to	more	frequent
program/erase	cycles	in	an	attempt	to	extend	the	overall	life	of	the	flash	memory,
but	when	the	drive	fails	(as	they	all	do),	then	more	blocks	will	fail	at	the	same
time.	Keep	in	mind	that	the	SSD	industry	is	moving	toward	the	point	where	SSDs
will	advertise	their	health	more	explicitly,	and	at	the	point	of	impending	write
failure	they	will	become	read-only	drives.

File	Deletion	and	the	Trim	Command
The	file	system	keeps	track	of	which	areas	of	a	disk	are	currently	in	use	for	each
file,	and	when	a	file	is	deleted	it	does	not	zero	all	the	areas	on	the	disk	that
contained	the	file—if	it	did,	then	deleting	a	large	file	would	take	longer	than
deleting	a	small	file,	and	file	undelete	utilities	would	not	work.	Instead,	the	file
system	driver	will	mark	those	areas	of	the	disk	as	available	in	its	data	structures
(usually	referred	to	as	metadata;	see	Chapter	12	for	more	information).	This	is	not
a	problem	for	magnetic	disks	because	they	read	and	write	sectors	natively,	but
SSDs	do	not	read	and	write	sectors	natively	(recall	that	the	size	of	the	writable
unit,	the	page,	is	much	smaller	than	the	size	of	the	erasable	unit,	the	block).

SSDs	have	to	manage	the	contents	of	pages	and	blocks	when	updating	a	sector.
This	becomes	a	huge	problem	because	the	SSD	does	not	know	that	the	contents	of
a	page	are	free	unless	it	has	been	erased.	The	SSD	would	continue	to	preserve
“deleted”	data	when	updating	a	sector	or	during	wear-leveling,	reducing	the
amount	of	free	space	available	to	the	SSD	controller.	The	end	result	would	be	that
the	speed	of	the	SSD	would	degrade	up	to	the	point	at	which	all	sectors	have	been
accessed	(at	least	once),	and	the	only	way	to	speed	it	up	again	would	be	to	erase
the	entire	drive.	This	is	exactly	the	behavior	that	existed	in	early	SSDs.

The	solution	to	this	problem	was	the	introduction	of	the	trim	command	to	the
SSD’s	controller.	The	file	system	detects	that	the	SSD	supports	the	trim	command



by	sending	the	I/O	request	IOCTL_STORAGE_QUERY_PROPERTY	with	the
property	ID	StorageDeviceTrimProperty	down	the	storage	stack	(covered	later	in
this	chapter).	When	a	file	is	deleted	or	truncated	on	a	disk	that	supports	the	trim
command,	the	file	system	sends	the	list	of	sectors	that	the	file	occupied	to	the	disk
driver,	using	the	I/O	request
IOCTL_STORAGE_MANAGE_DATA_SET_ATTRIBUTES	with	the	action
parameter	DeviceDsmAction_Trim.	When	the	disk	driver	receives	this	I/O	request,
it	sends	a	trim	command	to	the	SSD,	notifying	the	SSD	that	those	sectors	are	now
free	and	may	be	erased	and	repurposed	at	the	SSD’s	convenience.	This	lets	the
SSD	reclaim	those	sectors	during	an	update	or	wear-leveling	operation,	thereby
improving	the	performance	of	the	SSD.	Note	that	the	trim	command	cannot	be
queued	internally	within	the	SSD’s	controller	and	executes	synchronously,	which
may	manifest	as	a	noticeable	pause	when	a	large	file	is	being	deleted.

While	Windows	does	support	SSDs,	Microsoft	recommends	that	they	be	backed
up	frequently	if	they	are	being	used	for	important	data.	A	standard	disk
defragmenter	should	never	be	used	on	an	SSD	because	it	will	wear	out	the	flash
very	quickly.	The	Windows	defragmenter	will	not	attempt	to	defragment	an	SSD.
(Defragmenting	an	SSD	isn’t	generally	useful	because	file	fragmentation	does	not
slow	down	access	to	a	file	on	an	SSD	in	the	same	way	that	it	does	on	a	magnetic
disk.)	As	we’ll	see	in	Chapter	12,	NTFS	was	not	designed	with	short-lived	(flash
memory)	disks	in	mind,	and	it	frequently	issues	lots	of	small	writes	to	its
transaction	log,	which	is	important	for	increasing	reliability	but	causes	additional
wear	to	the	flash	memory.	Using	an	SSD	as	your	C:	drive	may	drastically	increase
the	speed	of	your	system,	but	understand	that	the	SSD	will	wear	out	before	a
magnetic	disk	would.

NOTE

High-end	magnetic	disks	can	outperform	low-end	SSDs	in	some	cases	because	many	low-end	SSDs
perform	poorly	for	small,	random	writes,	which	is	a	characteristic	of	the	typical	Windows	workload.



Disk	Drivers
The	device	drivers	involved	in	managing	a	particular	storage	device	are	collectively
known	as	a	storage	stack.	Figure	9-3	shows	each	type	of	driver	that	might	be
present	in	a	stack	and	includes	a	brief	description	of	its	purpose.	This	chapter
describes	the	behavior	of	device	drivers	below	the	file	system	layer	in	the	stack.
(The	file	system	driver	operation	is	described	in	Chapter	12.)

Figure	9-3.	Windows	storage	stack

Winload
As	you	saw	in	Chapter	4,	“Management	Mechanisms,”	in	Part	1,	Winload	is	the
Windows	operating	system	file	that	conducts	the	first	portion	of	the	Windows	boot
process.	Although	Winload	isn’t	technically	part	of	the	storage	stack,	it	is	involved
with	storage	management	because	it	includes	support	for	accessing	disk	devices
before	the	Windows	I/O	system	is	operational.	Winload	resides	on	the	boot
volume;	the	boot-sector	code	on	the	system	volume	executes	Bootmgr.	Bootmgr



reads	the	Boot	Configuration	Database	(BCD)	from	the	system	volume	or	EFI
firmware	and	presents	the	computer’s	boot	choices	to	the	user.	Bootmgr	translates
the	name	of	the	BCD	boot	entry	that	a	user	selects	to	the	appropriate	boot	partition
and	then	runs	Winload	to	load	the	Windows	system	files	(starting	with	the	registry,
Ntoskrnl.exe	and	its	dependencies,	and	the	boot	drivers)	into	memory	to	continue
the	boot	process.	In	all	cases,	Winload	uses	the	computer	firmware	to	read	the	disk
containing	the	system	volume.

Disk	Class,	Port,	and	Miniport	Drivers
During	initialization,	the	Windows	I/O	manager	starts	the	disk	storage	drivers.
Storage	drivers	in	Windows	follow	a	class/port/miniport	architecture,	in	which
Microsoft	supplies	a	storage	class	driver	that	implements	functionality	common	to
all	storage	devices	and	a	storage	port	driver	that	implements	class-specific
functionality	common	to	a	particular	bus—such	as	SATA	(Serial	Advanced
Technology	Attachment),	SAS	(Serial	Attached	SCSI),	or	Fibre	Channel—and
OEMs	supply	miniport	drivers	that	plug	into	the	port	driver	to	interface	Windows
to	a	particular	controller	implementation.

In	the	disk	storage	driver	architecture,	only	class	drivers	conform	to	the	standard
Windows	device	driver	interfaces.	Miniport	drivers	use	a	port	driver	interface
instead	of	the	device	driver	interface,	and	the	port	driver	simply	implements	a
collection	of	device	driver	support	routines	that	interface	miniport	drivers	to
Windows.	This	approach	simplifies	the	role	of	miniport	driver	developers	and,
because	Microsoft	supplies	operating	system–specific	port	drivers,	allows	driver
developers	to	focus	on	hardware-specific	driver	logic.	Windows	includes	Disk
(%SystemRoot%\System32\Drivers\Disk.sys),	a	class	driver	that	implements
functionality	common	to	all	disks.	Windows	also	provides	a	handful	of	disk	port
drivers.	For	example,	%SystemRoot%\System32\Drivers\Scsiport.sys	is	the	legacy
port	driver	for	disks	on	SCSI	buses	(Scsiport	is	now	deprecated	and	should	no
longer	be	used),	and	%SystemRoot%\System32\Drivers\Ataport.sys	is	a	port
driver	for	IDE-based	systems.	Most	newer	drivers	use	the
%SystemRoot%\System32\Drivers\Storport.sys	port	driver	as	a	replacement	for
Scsiport.sys.	Storport.sys	is	designed	to	realize	the	high	performance	capabilities	of
hardware	RAID	and	Fibre	Channel	adapters.	The	Storport	model	is	similar	to
Scsiport,	making	it	easy	for	vendors	to	migrate	existing	Scsiport	miniport	drivers	to



Storport.	Miniport	drivers	that	developers	write	to	use	Storport	take	advantage	of
several	of	Storport’s	performance	enhancing	features,	including	support	for	the
parallel	execution	of	I/O	initiation	and	completion	on	multiprocessor	systems,	a
more	controllable	I/O	request-queue	architecture,	and	execution	of	more	code	at
lower	IRQL	to	minimize	the	duration	of	hardware	interrupt	masking.	Storport	also
includes	support	for	dynamic	redirection	of	interrupts	and	DPCs	to	the	best	(most
local)	NUMA	node	(often	referred	to	as	NUMA	I/O)	on	systems	that	support	it.

Both	the	Scsiport.sys	and	Ataport.sys	drivers	implement	a	version	of	the	disk
scheduling	algorithm	known	as	C-LOOK.	The	drivers	place	disk	I/O	requests	in
lists	sorted	by	the	first	sector	(also	known	as	the	logical	block	address,	or	LBA)	at
which	an	I/O	request	is	directed.	They	use	the	KeInsertByKeyDeviceQueue	and
KeRemoveByKeyDeviceQueue	functions	(documented	in	the	Windows	Driver
Kit)	representing	I/O	requests	as	items	and	using	a	request’s	starting	sector	as	the
key	required	by	the	functions.	When	servicing	requests,	the	drivers	proceed
through	the	list	from	lowest	sector	to	highest.	When	they	reach	the	end	of	the	list
the	drivers	start	back	at	the	beginning,	since	new	requests	might	have	been	inserted
in	the	meantime.	If	disk	requests	are	spread	throughout	a	disk	this	approach	results
in	the	disk	head	continuously	moving	from	near	the	outermost	cylinders	of	the	disk
toward	the	innermost	cylinders.	Storport.sys	does	not	implement	disk	scheduling
because	it	is	commonly	used	for	managing	I/Os	directed	at	storage	arrays	where
there	is	no	clearly	defined	notion	of	a	disk	start	and	end.

Windows	ships	with	several	miniport	drivers.	On	systems	that	have	at	least	one
ATAPI-based	IDE	device,	%SystemRoot%\System32\Drivers\Atapi.sys,
%SystemRoot%\System32\Drivers\Pciidex.sys,	and
%SystemRoot%\System32\Drivers\Pciide.sys	together	provide	miniport
functionality.	Most	Windows	installations	include	one	or	more	of	the	drivers
mentioned.

iSCSI	Drivers
The	development	of	iSCSI	as	a	disk	transport	protocol	integrates	the	SCSI	protocol
with	TCP/IP	networking	so	that	computers	can	communicate	with	block-storage
devices,	including	disks,	over	IP	networks.	Storage	area	networking	(SAN)	is
usually	architected	on	Fibre	Channel	networking,	but	administrators	can	leverage
iSCSI	to	create	relatively	inexpensive	SANs	from	networking	technology	such	as



Gigabit	Ethernet	to	provide	scalability,	disaster	protection,	efficient	backup,	and
data	protection.	Windows	support	for	iSCSI	comes	in	the	form	of	the	Microsoft
iSCSI	Software	Initiator,	which	is	available	on	all	editions	of	Windows.

The	Microsoft	iSCSI	Software	Initiator	includes	several	components:

Initiator	This	optional	component,	which	consists	of	the	Storport	port	driver
and	the	iSCSI	miniport	driver	(%SystemRoot%\System32\Drivers\Msiscsi.sys),
uses	the	TCP/IP	driver	to	implement	software	iSCSI	over	standard	Ethernet
adapters	and	TCP/IP	offloaded	network	adapters.

Initiator	service	This	service,	implemented	in
%SystemRoot%\System32\Iscsicli.exe,	manages	the	discovery	and	security	of
all	iSCSI	initiators	as	well	as	session	initiation	and	termination.	iSCSI	device
discovery	functionality	is	implemented	in
%SystemRoot%\System32\Iscsium.dll.	An	important	goal	of	the	iSCSI	service
is	to	provide	a	common	discovery/management	infrastructure	irrespective	of	the
protocol	driver	being	used,	which	could	be	the	Microsoft	software	initiator
driver	or	an	HBA	driver	(host	bus	adapter;	iSCSI	protocol	handling	offloaded
to	hardware,	which	is	generally	Storport	miniports).	In	this	context,	iSCSI	also
provides	Win32	and	WMI	interfaces	for	management	and	configuration.	The
iSCSI	initiator	service	supports	four	discovery	mechanisms:

—	iSNS	(Internet	Storage	Name	Service)	The	addresses	of	the	iSNS	servers
that	the	iSCSI	initiator	service	will	use	are	statically	configured	using	the
iscsicli	AddiSNSServer	command.

—	SendTargets	The	SendTarget	portals	are	statically	configured	using	the
iscsicli	AddTargetPortal	command.

—	Host	Bus	Adapter	Discovery	iSCSI	HBAs	that	conform	to	the	iSCSI
initiator	service	interfaces	can	participate	in	target	discovery	by	means	of	an
interface	between	the	HBA	and	the	iSCSI	initiator	service.

—	Manually	Configured	Targets	iSCSI	targets	can	be	manually	configured
using	the	iscsicli	AddTarget	command	or	with	the	iSCSI	Control	Panel	applet.

Management	applications	These	include	Iscsicli.exe,	a	command-line	tool	for
managing	iSCSI	device	connections	and	security,	and	the	corresponding
Control	Panel	application.



Some	vendors	produce	iSCSI	adapters	that	offload	the	iSCSI	protocol	to	hardware.
The	initiator	service	works	with	these	adapters,	which	must	support	the	iSNS
protocol	(RFC	4171),	so	that	all	iSCSI	devices,	including	those	discovered	by	the
initiator	service	and	those	discovered	by	iSCSI	hardware,	are	recognized	and
managed	through	standard	Windows	interfaces.

Multipath	I/O	(MPIO)	Drivers
Most	disk	devices	have	one	path—or	series	of	adapters,	cables,	and	switches—
between	them	and	a	computer.	Servers	requiring	high	levels	of	availability	use
multipathing	solutions,	where	more	than	one	set	of	connection	hardware	exists
between	the	computer	and	a	disk	so	that	if	a	path	fails,	the	system	can	still	access
the	disk	via	an	alternate	path.	Without	support	from	the	operating	system	or	disk
drivers,	however,	a	disk	with	two	paths,	for	example,	appears	as	two	different	disks.
Windows	includes	multipath	I/O	support	to	manage	multipath	disks	as	a	single
disk.	This	support	relies	on	built-in	or	third-party	drivers	called	device-specific
modules	(DSMs)	to	manage	details	of	the	path	management—for	example,	load
balancing	policies	that	choose	which	path	to	use	for	routing	requests	and	error
detection	mechanisms	to	inform	Windows	when	a	path	fails.	Built	into	Windows	is
a	DSM	(%SystemRoot%\System32\Drivers\Msdsm.sys)	that	works	with	all	storage
arrays	that	conform	to	the	industry	standard	(T10	SPC4	specification)	definition	of
asymmetric	logical	unit	arrays	(ALUA).	Storage	array	vendors	must	write	their
own	DSM	if	the	modules	are	not	ALUA-compliant.	Support	for	writing	a	DSM	is
now	part	of	the	Windows	Driver	Kit.	MPIO	support	is	available	as	an	optional
feature	for	Windows	Server	2008/R2,	which	must	be	installed	via	Server	Manager.
MPIO	is	not	available	on	client	editions	of	Windows.

In	a	Windows	MPIO	storage	stack,	shown	in	Figure	9-4,	the	disk	driver	includes
functionality	for	MPIO	devices,	which	in	older	versions	of	Windows	was	a	separate
driver	(Mpdev.sys).	Disk.sys	is	responsible	for	claiming	ownership	of	device
objects	representing	multipath	disks—so	that	it	can	ensure	that	only	one	device
object	is	created	to	represent	those	disks—and	for	locating	the	appropriate	DSM	to
manage	the	paths	to	the	device.	The	Multipath	Bus	Driver
(%SystemRoot%\System32\Drivers\Mpio.sys)	manages	connections	between	the
computer	and	the	device,	including	power	management	for	the	device.	Disk.sys
informs	Mpio.sys	of	the	presence	of	the	devices	for	it	to	manage.	The	port	driver



(and	the	miniport	drivers	beneath	it)	for	a	multipath	disk	is	not	MPIO-aware	and
does	not	participate	in	anything	related	to	handling	multiple	paths.	There	are	a	total
of	three	disk	device	stacks,	two	representing	the	physical	paths	(children	of	the
adapter	device	stacks)	and	one	representing	the	disk	(child	of	the	MPIO	adapter
device	stack).	When	the	latter	receives	a	request,	it	uses	the	DSM	to	determine
which	path	to	forward	that	request	to.	The	DSM	makes	the	selection	based	on
policy,	and	the	request	is	sent	to	the	corresponding	disk	device	stack,	which	in	turn
forwards	it	to	the	device	via	the	corresponding	adapter.

Figure	9-4.	Windows	MPIO	storage	stack

The	system	crash	dump	and	hibernation	mechanisms	operate	in	a	very	restricted
environment	(very	little	operating	system	and	device	driver	support).	Drivers
operating	in	this	environment	have	some	knowledge	of	MPIO,	but	there	are	limits
as	to	what	can	be	supported.	For	example,	if	one	path	to	a	disk	is	down,	Windows
can	failover	only	to	another	disk	that	is	controlled	by	the	same	miniport	driver.



MPIO	configuration	management	is	provided	through	MPClaim
(%SystemRoot%\System32\Mpclaim.exe)	and	a	disk	properties	tab	in	Explorer.

EXPERIMENT:	WATCHING	PHYSICAL	DISK	I/O

Diskmon	from	Windows	Sysinternals	(www.microsoft.com/technet/sysinternals)	uses	the	disk	class	driver’s
Event	Tracing	for	Windows	(or	ETW,	which	is	described	in	Chapter	3,	“System	Mechanisms,”	in	Part	1)
instrumentation	to	monitor	I/O	activity	to	physical	disks	and	display	it	in	a	window.	Diskmon	updates	once
a	second	with	new	data.	For	each	operation,	Diskmon	shows	the	time,	duration,	target	disk	number,	type
and	offset,	and	length,	as	you	can	see	in	the	screen	shown	here.

Disk	Device	Objects
The	Windows	disk	class	driver	creates	device	objects	that	represent	disks.	Device
objects	that	represent	disks	have	names	of	the	form	\Device\HarddiskX\DRX;	the
number	that	identifies	the	disk	replaces	both	Xs.	To	maintain	compatibility	with
applications	that	use	older	naming	conventions,	the	disk	class	driver	creates
symbolic	links	with	Windows	NT	4–formatted	names	that	refer	to	the	device
objects	the	driver	created.	For	example,	the	volume	manager	driver	creates	the	link
\Device\Harddisk0\Partition0	to	refer	to	\Device\Harddisk0\DR0,	and
\Device\Harddisk0\Partition1	to	refer	to	the	first	partition	device	object	of	the	first
disk.	For	backward	compatibility	with	applications	that	expect	legacy	names,	the
disk	class	driver	also	creates	the	same	symbolic	links	in	Windows	that	represent
physical	drives	that	it	would	have	created	on	Windows	NT	4	systems.	Thus,	for
example,	the	link	\GLOBAL??\PhysicalDrive0	references	\Device\Harddisk0\DR0.
Figure	9-5	shows	the	WinObj	utility	from	Sysinternals	displaying	the	contents	of	a
Harddisk	directory	for	a	basic	disk.	You	can	see	the	physical	disk	and	partition
device	objects	in	the	pane	at	the	right.

http://www.microsoft.com/technet/sysinternals


Figure	9-5.	WinObj	showing	a	Harddisk	directory	of	a	basic	disk

As	you	saw	in	Chapter	3	in	Part	1,	the	Windows	API	is	unaware	of	the	Windows
object	manager	namespace.	Windows	reserves	two	groups	of	namespace
subdirectories	to	use,	one	of	which	is	the	\Global??	subdirectory.	(The	other	group
is	the	collection	of	per-session	\BaseNamedObjects	subdirectories,	which	are
covered	in	Chapter	3.)	In	this	subdirectory,	Windows	makes	available	device
objects	that	Windows	applications	interact	with—including	COM	and	parallel	ports
—as	well	as	disks.	Because	disk	objects	actually	reside	in	other	subdirectories,
Windows	uses	symbolic	links	to	connect	names	under	\Global??	to	objects	located
elsewhere	in	the	namespace.	For	each	physical	disk	on	a	system,	the	I/O	manager
creates	a	\Global??\PhysicalDriveX	link	that	points	to	\Device\HarddiskX\DRX.
(Numbers,	starting	from	0,	replace	X.)	Windows	applications	that	directly	interact
with	the	sectors	on	a	disk	open	the	disk	by	calling	the	Windows	CreateFile
function	and	specifying	the	name	\\.\PhysicalDriveX	(in	which	X	is	the	disk
number)	as	a	parameter.	(Note	that	directly	accessing	a	mounted	disk’s	sectors
requires	administrator	privileges.)	The	Windows	application	layer	converts	the
name	to	\Global??\PhysicalDriveX	before	handing	the	name	to	the	Windows



object	manager.

Partition	Manager
The	partition	manager,	%SystemRoot%\System32\Drivers\Partmgr.sys,	is
responsible	for	discovering,	creating,	deleting,	and	managing	partitions.	To	become
aware	of	partitions,	the	partition	manager	acts	as	the	function	driver	for	disk	device
objects	created	by	disk	class	drivers.	The	partition	manager	uses	the	I/O	manager’s
IoReadPartitionTableEx	function	to	identify	partitions	and	create	device	objects
that	represent	them.	As	miniport	drivers	present	the	disks	that	they	identify	early	in
the	boot	process	to	the	disk	class	driver,	the	disk	class	driver	invokes	the
IoReadPartitionTableEx	function	for	each	disk.	This	function	invokes	sector-level
disk	I/O	that	the	class,	port,	and	miniport	drivers	provide	to	read	a	disk’s	MBR
(Master	Boot	Record)	or	GPT	(GUID	Partition	Table;	described	later	in	this
chapter),	constructs	an	internal	representation	of	the	disk’s	partitioning,	and	returns
a	PDRIVE_LAYOUT_INFORMATION_EX	structure.	The	partition	manager
driver	creates	device	objects	to	represent	each	primary	partition	(including	logical
drives	within	extended	partitions)	that	the	driver	obtains	from
IoReadPartitionTableEx.	These	names	have	the	form	\Device\HarddiskVolumeY,
where	Y	represents	the	partition	number.

The	partition	manager	is	also	responsible	for	ensuring	that	all	disks	and	partitions
have	a	unique	ID	(a	signature	for	MBR	and	a	GUID	for	GPT).	If	it	encounters	two
disks	with	the	same	ID,	it	tries	to	determine	(by	writing	to	one	disk	and	reading
from	the	other)	whether	they	are	two	different	disks	or	the	same	disk	being	viewed
via	two	different	paths	(this	can	happen	if	the	MPIO	software	isn’t	present	or	isn’t
working	correctly).	If	the	two	disks	are	different,	the	partition	manager	makes	only
one	available	for	use	by	the	upper	layers	of	the	storage	stack,	bringing	them	online
and	keeping	the	others	offline.	Disk-management	utilities	and	storage	APIs	can
force	an	offline	disk	online,	however	the	partition	manager	will	change	the	ID	in
doing	so	to	prevent	conflicts.

By	managing	disk	attributes	that	are	persisted	in	the	registry	(such	as	read-only	and
offline),	the	partition	manager	can	perform	actions	such	as	hiding	partitions	from
the	volume	manager,	which	inhibits	the	volumes	from	manifesting	on	the	system.
Clustering	and	Hyper-V	use	these	attributes.	The	partition	manager	also	redirects



write	operations	that	are	sent	directly	to	the	disk	but	fall	within	a	partition	space	to
the	corresponding	volume	manager.	The	volume	manager	determines	whether	to
allow	the	write	operation	based	on	whether	the	volume	is	dismounted	or	not.



Volume	Management
Windows	has	the	concept	of	basic	and	dynamic	disks.	Windows	calls	disks	that
rely	exclusively	on	the	MBR-style	or	GPT	partitioning	scheme	basic	disks.
Dynamic	disks	implement	a	more	flexible	partitioning	scheme	than	that	of	basic
disks.	The	fundamental	difference	between	basic	and	dynamic	disks	is	that
dynamic	disks	support	the	creation	of	new	multipartition	volumes.	Recall	from	the
list	of	terms	earlier	in	the	chapter	that	multipartition	volumes	provide	performance,
sizing,	and	reliability	features	not	supported	by	simple	volumes.	Windows	manages
all	disks	as	basic	disks	unless	you	manually	create	dynamic	disks	or	convert
existing	basic	disks	(with	enough	free	space)	to	dynamic	disks.	Microsoft
recommends	that	you	use	basic	disks	unless	you	require	the	multipartition
functionality	of	dynamic	disks.

NOTE

Windows	does	not	support	multipartition	volumes	on	basic	disks.	For	a	number	of	reasons,	including	the
fact	that	laptops	usually	have	only	one	disk	and	laptop	disks	typically	don’t	move	easily	between	computers,
Windows	uses	only	basic	disks	on	laptops.	In	addition,	only	fixed	disks	can	be	dynamic,	and	disks	located
on	IEEE	1394	or	USB	buses	or	on	shared	cluster	server	disks	are	by	default	basic	disks.

Basic	Disks
This	section	describes	the	two	types	of	partitioning,	MBR-style	and	GPT,	that
Windows	uses	to	define	volumes	on	basic	disks	and	the	volume	manager	driver
that	presents	the	volumes	to	file	system	drivers.	Windows	silently	defaults	to
defining	all	disks	as	basic	disks.

MBR-Style	Partitioning
The	standard	BIOS	implementations	that	BIOS-based	(non-EFI)	x86	(and	x64)
hardware	uses	dictate	one	requirement	of	the	partitioning	format	in	Windows—
that	the	first	sector	of	the	primary	disk	contains	the	Master	Boot	Record	(MBR).
When	a	BIOS-based	x86	system	boots,	the	computer’s	BIOS	reads	the	MBR	and
treats	part	of	the	MBR’s	contents	as	executable	code.	The	BIOS	invokes	the	MBR
code	to	initiate	an	operating	system	boot	process	after	the	BIOS	performs
preliminary	configuration	of	the	computer’s	hardware.	In	Microsoft	operating



systems	such	as	Windows,	the	MBR	also	contains	a	partition	table.	A	partition
table	consists	of	four	entries	that	define	the	locations	of	as	many	as	four	primary
partitions	on	a	disk.	The	partition	table	also	records	a	partition’s	type.	Numerous
predefined	partition	types	exist,	and	a	partition’s	type	specifies	which	file	system
the	partition	includes.	For	example,	partition	types	exist	for	FAT32	and	NTFS.

A	special	partition	type,	an	extended	partition,	contains	another	MBR	with	its	own
partition	table.	The	equivalent	of	a	primary	partition	in	an	extended	partition	is
called	a	logical	drive.	By	using	extended	partitions,	Microsoft’s	operating	systems
overcome	the	apparent	limit	of	four	partitions	per	disk.	In	general,	the	recursion
that	extended	partitions	permit	can	continue	indefinitely,	which	means	that	no
upper	limit	exists	to	the	number	of	possible	partitions	on	a	disk.	The	Windows	boot
process	makes	evident	the	distinction	between	primary	and	logical	drives.	The
system	must	mark	one	primary	partition	of	the	primary	disk	as	active	(bootable).
The	Windows	code	in	the	MBR	loads	the	code	stored	in	the	first	sector	of	the
active	partition	(the	system	volume)	into	memory	and	then	transfers	control	to	that
code.	Because	of	the	role	in	the	boot	process	played	by	this	first	sector	in	the
primary	partition,	Windows	designates	the	first	sector	of	any	partition	as	the	boot
sector.	As	you	will	see	in	Chapter	13,	every	partition	formatted	with	a	file	system
has	a	boot	sector	that	stores	information	about	the	structure	of	the	file	system	on
that	partition.

GUID	Partition	Table	Partitioning
As	part	of	an	initiative	to	provide	a	standardized	and	extensible	firmware	platform
for	operating	systems	to	use	during	their	boot	process,	Intel	designed	the	Extensible
Firmware	Interface	(EFI)	specification,	originally	for	the	Itanium	processor.	Intel
donated	EFI	to	the	Unified	EFI	Forum,	which	has	continued	to	evolve	UEFI	for
x86,	x64,	and	ARM	CPUs.	UEFI	includes	a	mini–operating	system	environment
implemented	in	firmware	(typically	flash	memory)	that	operating	systems	use	early
in	the	system	boot	process	to	load	system	diagnostics	and	their	boot	code.	UEFI
defines	a	partitioning	scheme,	called	the	GUID	(globally	unique	identifier)
Partition	Table	(GPT)	that	addresses	some	of	the	shortcomings	of	MBR-style
partitioning.	For	example,	the	sector	addresses	that	the	GPT	structures	use	are	64
bits	wide	instead	of	32	bits.	A	32-bit	sector	address	is	sufficient	to	access	only	2
terabytes	(TB)	of	storage,	while	a	GPT	allows	the	addressing	of	disk	sizes	into	the



foreseeable	future.	Other	advantages	of	the	GPT	scheme	include	the	fact	that	it
uses	cyclic	redundancy	checksums	(CRC)	to	ensure	the	integrity	of	the	partition
table,	and	it	maintains	a	backup	copy	of	the	partition	table.	GPT	takes	its	name
from	the	fact	that	in	addition	to	storing	a	36-byte	Unicode	partition	name	for	each
partition,	it	assigns	each	partition	a	GUID.

Figure	9-6	shows	a	sample	GPT	partition	layout.	As	in	MBR-style	partitioning,	the
first	sector	of	a	GPT	disk	is	an	MBR	(protective	MBR)	that	serves	to	protect	the
GPT	partitioning	in	case	the	disk	is	accessed	from	a	non-GPT-aware	operating
system.	However,	the	second	and	last	sectors	of	the	disk	store	the	GPT	headers
with	the	actual	partition	table	following	the	second	sector	and	preceding	the	last
sector.	With	its	extensible	list	of	partitions,	GPT	partitioning	doesn’t	require	nested
partitions,	as	MBR	partitions	do.

Figure	9-6.	Example	GPT	partition	layout

NOTE

Because	Windows	doesn’t	support	the	creation	of	multipartition	volumes	on	basic	disks,	a	new	basic	disk
partition	is	the	equivalent	of	a	volume.	For	this	reason,	the	Disk	Management	MMC	snap-in	uses	the	term
partition	when	you	create	a	volume	on	a	basic	disk.

Basic	Disk	Volume	Manager
The	volume	manager	driver	(%SystemRoot%\System32\Drivers\Volmgr.sys)
creates	disk	device	objects	that	represent	volumes	on	basic	disks	and	plays	an
integral	role	in	managing	all	basic	disk	volumes,	including	simple	volumes.	For



each	volume,	the	volume	manager	creates	a	device	object	of	the	form
\Device\HarddiskVolumeX,	in	which	X	is	a	number	(starting	from	1)	that
identifies	the	volume.

The	volume	manager	is	actually	a	bus	driver	because	it’s	responsible	for
enumerating	basic	disks	to	detect	the	presence	of	basic	volumes	and	report	them	to
the	Windows	Plug	and	Play	(PnP)	manager.	To	implement	this	enumeration,	the
volume	manager	leverages	the	PnP	manager,	with	the	aid	of	the	partition	manager
(Partmgr.sys)	driver	to	determine	what	basic	disk	partitions	exist.	The	partition
manager	registers	with	the	PnP	manager	so	that	Windows	can	inform	the	partition
manager	whenever	the	disk	class	driver	creates	a	partition	device	object.	The
partition	manager	informs	the	volume	manager	about	new	partition	objects	through
a	private	interface	and	creates	filter	device	objects	that	the	partition	manager	then
attaches	to	the	partition	objects.	The	existence	of	the	filter	objects	prompts
Windows	to	inform	the	partition	manager	whenever	a	partition	device	object	is
deleted	so	that	the	partition	manager	can	update	the	volume	manager.	The	disk
class	driver	deletes	a	partition	device	object	when	a	partition	in	the	Disk
Management	MMC	snap-in	is	deleted.	As	the	volume	manager	becomes	aware	of
partitions,	it	uses	the	basic	disk	configuration	information	to	determine	the
correspondence	of	partitions	to	volumes	and	creates	a	volume	device	object	when
it	has	been	informed	of	the	presence	of	all	the	partitions	in	a	volume’s	description.

Windows	volume	drive-letter	assignment,	a	process	described	shortly,	creates
drive-letter	symbolic	links	under	the	\Global??	object	manager	directory	that	point
to	the	volume	device	objects	that	the	volume	manager	creates.	When	the	system	or
an	application	accesses	a	volume	for	the	first	time,	Windows	performs	a	mount
operation	that	gives	file	system	drivers	the	opportunity	to	recognize	and	claim
ownership	for	volumes	formatted	with	a	file	system	type	they	manage.	(Mount
operations	are	described	in	the	section	Volume	Mounting	later	in	this	chapter.)

Dynamic	Disks
As	we’ve	stated,	dynamic	disks	are	the	disk	format	in	Windows	necessary	for
creating	multipartition	volumes	such	as	mirrors,	striped	arrays,	and	RAID-5	arrays
(described	later	in	the	chapter).	Dynamic	disks	are	partitioned	using	Logical	Disk
Manager	(LDM)	partitioning.	LDM	is	part	of	the	Virtual	Disk	Service	(VDS)



subsystem	in	Windows,	which	consists	of	user-mode	and	device	driver	components
and	oversees	dynamic	disks.	A	major	difference	between	LDM’s	partitioning	and
MBR-style	and	GPT	partitioning	is	that	LDM	maintains	one	unified	database	that
stores	partitioning	information	for	all	the	dynamic	disks	on	a	system—including
multipartition-volume	configuration.

The	LDM	Database
The	LDM	database	resides	in	a	1-MB	reserved	space	at	the	end	of	each	dynamic
disk.	The	need	for	this	space	is	the	reason	Windows	requires	free	space	at	the	end
of	a	basic	disk	before	you	can	convert	it	to	a	dynamic	disk.	The	LDM	database
consists	of	four	regions,	which	Figure	9-7	shows:	a	header	sector	that	LDM	calls
the	Private	Header,	a	table	of	contents	area,	a	database	records	area,	and	a
transactional	log	area.	(The	fifth	region	shown	in	Figure	9-7	is	simply	a	copy	of	the
Private	Header.)	The	Private	Header	sector	resides	1	MB	before	the	end	of	a
dynamic	disk	and	anchors	the	database.	As	you	spend	time	with	Windows,	you’ll
quickly	notice	that	it	uses	GUIDs	to	identify	just	about	everything,	and	disks	are	no
exception.	A	GUID	(globally	unique	identifier)	is	a	128-bit	value	that	various
components	in	Windows	use	to	uniquely	identify	objects.	LDM	assigns	each
dynamic	disk	a	GUID,	and	the	Private	Header	sector	notes	the	GUID	of	the
dynamic	disk	on	which	it	resides—hence	the	Private	Header’s	designation	as
information	that	is	private	to	the	disk.	The	Private	Header	also	stores	the	name	of
the	disk	group,	which	is	the	name	of	the	computer	concatenated	with	Dg0	(for
example,	Daryl-Dg0	if	the	computer’s	name	is	Daryl),	and	a	pointer	to	the
beginning	of	the	database	table	of	contents.	For	reliability,	LDM	keeps	a	copy	of
the	Private	Header	in	the	disk’s	last	sector.

The	database	table	of	contents	is	16	sectors	in	size	and	contains	information
regarding	the	database’s	layout.	LDM	begins	the	database	record	area	immediately
following	the	table	of	contents	with	a	sector	that	serves	as	the	database	record
header.	This	sector	stores	information	about	the	database	record	area,	including	the
number	of	records	it	contains,	the	name	and	GUID	of	the	disk	group	the	database
relates	to,	and	a	sequence	number	identifier	that	LDM	uses	for	the	next	entry	it
creates	in	the	database.	Sectors	following	the	database	record	header	contain	128-
byte	fixed-size	records	that	store	entries	that	describe	the	disk	group’s	partitions
and	volumes.



A	database	entry	can	be	one	of	four	types:	partition,	disk,	component,	and	volume.
LDM	uses	the	database	entry	types	to	identify	three	levels	that	describe	volumes.
LDM	connects	entries	with	internal	object	identifiers.	At	the	lowest	level,	partition
entries	describe	soft	partitions	(hard	partitions	are	described	later	in	this	chapter),
which	are	contiguous	regions	on	a	disk;	identifiers	stored	in	a	partition	entry	link
the	entry	to	a	component	and	disk	entry.	A	disk	entry	represents	a	dynamic	disk
that	is	part	of	the	disk	group	and	includes	the	disk’s	GUID.	A	component	entry
serves	as	a	connector	between	one	or	more	partition	entries	and	the	volume	entry
each	partition	is	associated	with.	A	volume	entry	stores	the	GUID	of	the	volume,
the	volume’s	total	size	and	state,	and	a	drive-letter	hint.	Disk	entries	that	are	larger
than	a	database	record	span	multiple	records;	partition,	component,	and	volume
entries	rarely	span	multiple	records.

Figure	9-7.	LDM	database	layout

LDM	requires	three	entries	to	describe	a	simple	volume:	a	partition,	component,
and	volume	entry.	The	following	listing	shows	the	contents	of	a	simple	LDM
database	that	defines	one	200-MB	volume	that	consists	of	one	partition:

Disk Entry      Volume Entry    Component Entry    Partition Entry
Name: Disk1     Name: Volume1   Name: Volume1-01   Name: Disk1-01
GUID: XXX-XX... ID: 0x408       ID: 0x409          ID: 0x407
Disk ID: 0x404  State: ACTIVE   Parent ID: 0x408   Parent ID: 0x409
                Size: 200MB                        Disk ID: 0x404
                GUID: XXX-XX...                    Start: 300MB
                Drive Hint: H:                     Size: 200MB

The	partition	entry	describes	the	area	on	a	disk	that	the	system	assigned	to	the
volume,	the	component	entry	connects	the	partition	entry	with	the	volume	entry,
and	the	volume	entry	contains	the	GUID	that	Windows	uses	internally	to	identify
the	volume.	Multipartition	volumes	require	more	than	three	entries.	For	example,	a
striped	volume	(which	is	described	later	in	the	chapter)	consists	of	at	least	two
partition	entries,	a	component	entry,	and	a	volume	entry.	The	only	volume	type
that	has	more	than	one	component	entry	is	a	mirror;	mirrors	have	two	component



entries,	each	of	which	represents	one	half	of	the	mirror.	LDM	uses	two	component
entries	for	mirrors	so	that	when	you	break	a	mirror,	LDM	can	split	it	at	the
component	level,	creating	two	volumes	with	one	component	entry	each.

The	final	area	of	the	LDM	database	is	the	transactional	log	area,	which	consists	of
a	few	sectors	for	storing	backup	database	information	as	the	information	is
modified.	This	setup	safeguards	the	database	in	case	of	a	crash	or	power	failure
because	LDM	can	use	the	log	to	return	the	database	to	a	consistent	state.

EXPERIMENT:	USING	LDMDUMP	TO	VIEW	THE	LDM	DATABASE

You	can	use	LDMDump	from	Sysinternals	to	view	detailed	information	about	the	contents	of	the	LDM
database.	LDMDump	takes	a	disk	number	as	a	command-line	argument,	and	its	output	is	usually	more	than
a	few	screens	in	size,	so	you	should	pipe	its	output	to	a	file	for	viewing	in	a	text	editor—for	example,
ldmdump	/d0	>	disk.txt.	The	following	example	shows	excerpts	of	LDMDump	output.	The	LDM	database
header	displays	first,	followed	by	the	LDM	database	records	that	describe	a	12-GB	disk	with	three	4-GB
dynamic	volumes.	The	volume’s	database	entry	is	listed	as	Volume1.	At	the	end	of	the	output,	LDMDump
lists	the	soft	partitions	and	definitions	of	volumes	it	locates	in	the	database.

C:\>ldmdump /d0
Logical Disk Manager Configuration Dump v1.03
Copyright (C) 2000-2002 Mark Russinovich

PRIVATE HEAD:
Signature          : PRIVHEAD
Version            : 2.12
Disk Id            : b5f4a801-758d-11dd-b7f0-000c297f0108
Host Id            : 1b77da20-c717-11d0-a5be-00a0c91db73c
Disk Group Id      : b5f4a7fd-758d-11dd-b7f0-000c297f0108
Disk Group Name    : WIN-SL5V78KD01W-Dg0
Logical disk start : 3F
Logical disk size  : 7FF7C1 (4094 MB)
Configuration start: 7FF800
Configuration size : 800 (1 MB)
Number of TOCs     : 2
TOC size           : 7FD (1022 KB)
Number of Configs  : 1
Config size        : 5C9 (740 KB)
Number of Logs     : 1
Log size           : E0 (112 KB)

TOC 1:
Signature          : TOCBLOCK
Sequence           : 0x1
Config bitmap start: 0x11
Config bitmap size : 0x5C9
Log bitmap start   : 0x5DA
Log bitmap size    : 0xE0
...
VBLK DATABASE:
0x000004: [000001] <DiskGroup>
         Name        : WIN-SL5V78KD01W-Dg0
         Object Id   : 0x0001



         GUID        : b5f4a7fd-758d-11dd-b7f0-000c297f010
0x000006: [000003] <Disk>
         Name        : Disk1
         Object Id   : 0x0002
         Disk Id     : b5f4a7fe-758d-11dd-b7f0-000c297f010

0x000007: [000005] <Disk>
         Name        : Disk2
         Object Id   : 0x0003
         Disk Id     : b5f4a801-758d-11dd-b7f0-000c297f010

0x000008: [000007] <Disk>
         Name        : Disk3
         Object Id   : 0x0004
         Disk Id     : b5f4a804-758d-11dd-b7f0-000c297f010

0x000009: [000009] <Component>
         Name        : Volume1-01
         Object Id   : 0x0006
         Parent Id   : 0x0005

0x00000A: [00000A] <Partition>
         Name        : Disk1-01
         Object Id   : 0x0007
         Parent Id   : 0x3157
         Disk Id     : 0x0000
         Start       : 0x7C100
         Size        : 0x0 (0 MB)
         Volume Off  : 0x3 (0 MB)

0x00000B: [00000B] <Partition>
         Name        : Disk2-01
         Object Id   : 0x0008
         Parent Id   : 0x3157
         Disk Id     : 0x0000
         Start       : 0x7C100
         Size        : 0x0 (0 MB)
         Volume Off  : 0x7FE80003 (1047808 MB)

0x00000C: [00000C] <Partition>
         Name        : Disk3-01
         Object Id   : 0x0009
         Parent Id   : 0x3157
         Disk Id     : 0x0000
         Start       : 0x7C100
         Size        : 0x0 (0 MB)
         Volume Off  : 0xFFD00003 (2095616 MB)

0x00000D: [00000F] <Volume>
         Name        : Volume1
         Object Id   : 0x0005
         Volume state: ACTIVE
         Size        : 0x017FB800 (12279 MB)
         GUID        : b5f4a806-758d-11dd-b7f0-c297f0108
         Drive Hint  : E:

LDM	and	GPT	or	MBR-Style	Partitioning



When	you	install	Windows	on	a	computer,	one	of	the	first	things	it	requires	you	to
do	is	to	create	a	partition	on	the	system’s	primary	physical	disk	(specified	in	the
BIOS	or	UEFI	as	the	disk	from	which	to	boot	the	system).	To	make	enabling
BitLocker	easier,	Windows	Setup	will	create	a	small	(100	MB)	unencrypted
partition	known	as	the	system	volume,	containing	the	Boot	Manager	(Bootmgr),
Boot	Configuration	Database	(BCD),	and	other	early	boot	files.	(By	default,	this
volume	does	not	have	a	drive	letter	assigned	to	it,	but	you	can	assign	one	using	the
Disk	Management	MMC	snap-in,	at	%SystemRoot%\System32\Diskmgmt.msc,	if
you	want	to	examine	the	contents	of	the	volume	with	Windows	Explorer).	In
addition,	Windows	Setup	requires	you	to	create	a	partition	that	serves	as	the	home
for	the	boot	volume,	onto	which	the	setup	program	installs	the	Windows	system
files	and	creates	the	system	directory	(\Windows).	The	nomenclature	that
Microsoft	defines	for	system	and	boot	volumes	is	somewhat	confusing.	The	system
volume	is	where	Windows	places	boot	files,	such	as	the	Boot	Manager,	and	the
boot	volume	is	where	Windows	stores	the	rest	of	the	operating	system	files,	such	as
Ntoskrnl.exe,	the	core	kernel	file.

NOTE

If	the	system	has	BitLocker	enabled,	the	boot	volume	will	be	encrypted,	but	the	system	volume	is	never
encrypted.

Although	the	partitioning	data	of	a	dynamic	disk	resides	in	the	LDM	database,
LDM	implements	MBR-style	partitioning	or	GPT	partitioning	so	that	the	Windows
boot	code	can	find	the	system	and	boot	volumes	when	the	volumes	are	on	dynamic
disks.	(Winload	and	the	Itanium	firmware,	for	example,	know	nothing	about	LDM
partitioning.)	If	a	disk	contains	the	system	or	boot	volumes,	partitions	in	the	MBR
or	GPT	describe	the	location	of	those	volumes.	Otherwise,	one	partition
encompasses	the	entire	usable	area	of	the	disk.	LDM	marks	this	partition	as	type
“LDM”.	The	region	encompassed	by	this	place-holding	MBR-style	or	GPT
partition	is	where	LDM	creates	partitions	that	the	LDM	database	organizes.	On
MBR-partitioned	disks	the	LDM	database	resides	in	hidden	sectors	at	the	end	of
the	disk,	and	on	GPT-partitioned	disks	there	exists	an	LDM	metadata	partition	that
contains	the	LDM	database	near	the	beginning	of	the	disk.

Another	reason	LDM	creates	an	MBR	or	a	GPT	is	so	that	legacy	disk-management



utilities,	including	those	that	run	under	Windows	and	under	other	operating
systems	in	dual-boot	environments,	don’t	mistakenly	believe	a	dynamic	disk	is
unpartitioned.

Because	LDM	partitions	aren’t	described	in	the	MBR	or	GPT	of	a	disk,	they	are
called	soft	partitions;	MBR-style	and	GPT	partitions	are	called	hard	partitions.
Figure	9-8	illustrates	this	dynamic	disk	layout	on	an	MBR-style	partitioned	disk.

Figure	9-8.	Internal	dynamic	disk	organization

Dynamic	Disk	Volume	Manager
The	Disk	Management	MMC	snap-in	DLL	(DMDiskManager,	located	in
%SystemRoot%\System32\Dmdskmgr.dll),	shown	in	Figure	9-9,	is	used	to	create
and	change	the	contents	of	the	LDM	database.	When	you	launch	the	Disk
Management	MMC	snap-in,	DMDiskManager	loads	into	memory	and	reads	the
LDM	database	from	each	disk	and	returns	the	information	it	obtains	to	the	user.	If
it	detects	a	database	from	another	computer’s	disk	group,	it	notes	that	the	volumes
on	the	disk	are	foreign	and	lets	you	import	them	into	the	current	computer’s
database	if	you	want	to	use	them.	As	you	change	the	configuration	of	dynamic
disks,	DMDiskManager	updates	its	in-memory	copy	of	the	database.	When
DMDiskManager	commits	changes,	it	passes	the	updated	database	to	the	VolMgrX
driver	(%SystemRoot%\System32\Drivers\Volmgrx.sys).	VolMgrX	is	a	kernel-
mode	DLL	that	provides	dynamic	disk	functionality	for	VolMgr,	so	it	controls
access	to	the	on-disk	database	and	creates	device	objects	that	represent	the	volumes
on	dynamic	disks.	When	you	exit	Disk	Management,	DMDiskManager	stops.



Figure	9-9.	Disk	Management	MMC	snap-in

Multipartition	Volume	Management
VolMgr	is	responsible	for	presenting	volumes	that	file	system	drivers	manage	and
for	mapping	I/O	directed	at	volumes	to	the	underlying	partitions	that	they’re	part
of.	For	simple	volumes,	this	process	is	straightforward:	the	volume	manager
ensures	that	volume-relative	offsets	are	translated	to	disk-relative	offsets	by	adding
the	volume-relative	offset	to	the	volume’s	starting	disk	offset.

Multipartition	volumes	are	more	complex	because	the	partitions	that	make	up	a
volume	can	be	located	on	discontiguous	partitions	or	even	on	different	disks.	Some
types	of	multipartition	volumes	use	data	redundancy,	so	they	require	more	involved
volume-to-disk–offset	translation.	Thus,	VolMgr	uses	VolMgrX	to	process	all	I/O
requests	aimed	at	the	multipartition	volumes	they	manage	by	determining	which
partitions	the	I/O	ultimately	affects.

The	following	types	of	multipartition	volumes	are	available	in	Windows:

Spanned	volumes

Mirrored	volumes

Striped	volumes

RAID-5	volumes

After	describing	multipartition-volume	partition	configuration	and	logical	operation



for	each	of	the	multipartition-volume	types,	we’ll	cover	the	way	that	the	VolMgr
driver	handles	IRPs	that	a	file	system	driver	sends	to	multipartition	volumes.	The
term	volume	manager	is	used	to	represent	VolMgr	and	the	VolMgrX	extension
DLL	throughout	the	explanation	of	multipartition	volumes.

Spanned	Volumes
A	spanned	volume	is	a	single	logical	volume	composed	of	a	maximum	of	32	free
partitions	on	one	or	more	disks.	The	Disk	Management	MMC	snap-in	combines
the	partitions	into	a	spanned	volume,	which	can	then	be	formatted	for	any	of	the
Windows-supported	file	systems.	Figure	9-10	shows	a	100-GB	spanned	volume
identified	by	drive	letter	D	that	has	been	created	from	the	last	third	of	the	first	disk
and	the	first	third	of	the	second.	Spanned	volumes	were	called	volume	sets	in
Windows	NT	4.

Figure	9-10.	Spanned	volume

A	spanned	volume	is	useful	for	consolidating	small	areas	of	free	disk	space	into
one	larger	volume	or	for	creating	a	single	large	volume	out	of	two	or	more	small
disks.	If	the	spanned	volume	has	been	formatted	for	NTFS,	it	can	be	extended	to
include	additional	free	areas	or	additional	disks	without	affecting	the	data	already
stored	on	the	volume.	This	extensibility	is	one	of	the	biggest	benefits	of	describing
all	data	on	an	NTFS	volume	as	a	file.	NTFS	can	dynamically	increase	the	size	of	a
logical	volume	because	the	bitmap	that	records	the	allocation	status	of	the	volume
is	just	another	file—the	bitmap	file.	The	bitmap	file	can	be	extended	to	include	any
space	added	to	the	volume.	Dynamically	extending	a	FAT	volume,	on	the	other
hand,	would	require	the	FAT	itself	to	be	extended,	which	would	dislocate
everything	else	on	the	disk.

A	volume	manager	hides	the	physical	configuration	of	disks	from	the	file	systems



installed	on	Windows.	NTFS,	for	example,	views	volume	D:	in	Figure	9-10	as	an
ordinary	100-GB	volume.	NTFS	consults	its	bitmap	to	determine	what	space	in	the
volume	is	free	for	allocation.	After	translating	a	byte	offset	to	a	cluster	offset,	it
then	calls	the	volume	manager	to	read	or	write	data	beginning	at	a	particular	cluster
offset	on	the	volume.	The	volume	manager	views	the	physical	sectors	in	the
spanned	volume	as	numbered	sequentially	from	the	first	free	area	on	the	first	disk
to	the	last	free	area	on	the	last	disk.	It	determines	which	physical	sector	on	which
disk	corresponds	to	the	supplied	cluster	offset.

Striped	Volumes
A	striped	volume	is	a	series	of	up	to	32	partitions,	one	partition	per	disk,	that	gets
combined	into	a	single	logical	volume.	Striped	volumes	are	also	known	as	RAID
level	0	(RAID-0)	volumes.	Figure	9-11	shows	a	striped	volume	consisting	of	three
partitions,	one	on	each	of	three	disks.	(A	partition	in	a	striped	volume	need	not
span	an	entire	disk;	the	only	restriction	is	that	the	partitions	on	each	disk	be	the
same	size.)

Figure	9-11.	Striped	volume

To	a	file	system,	this	striped	volume	appears	to	be	a	single	450-GB	volume,	but	the
volume	manager	optimizes	data	storage	and	retrieval	times	on	the	striped	volume
by	distributing	the	volume’s	data	among	the	physical	disks.	The	volume	manager
accesses	the	physical	sectors	of	the	disks	as	if	they	were	numbered	sequentially	in
stripes	across	the	disks,	as	illustrated	in	Figure	9-12.

Figure	9-12.	Logical	numbering	of	physical	sectors	on	a	striped	volume



Because	each	stripe	unit	is	a	relatively	narrow	64	KB	(a	value	chosen	to	prevent
small	individual	reads	and	writes	from	accessing	two	disks),	the	data	tends	to	be
distributed	evenly	among	the	disks.	Striping	thus	increases	the	probability	that
multiple	pending	read	and	write	operations	will	be	bound	for	different	disks.	And
because	data	on	all	three	disks	can	be	accessed	simultaneously,	latency	time	for
disk	I/O	is	often	reduced,	particularly	on	heavily	loaded	systems.

Spanned	volumes	make	managing	disk	volumes	more	convenient,	and	striped
volumes	spread	the	I/O	load	over	multiple	disks.	These	two	volume-management
features	don’t	provide	the	ability	to	recover	data	if	a	disk	fails,	however.	For	data
recovery,	the	volume	manager	implements	two	redundant	storage	schemes:
mirrored	volumes	and	RAID-5	volumes.	These	features	are	created	with	the
Windows	Disk	Management	administrative	tool.

Mirrored	Volumes
In	a	mirrored	volume,	the	contents	of	a	partition	on	one	disk	are	duplicated	in	an
equal-sized	partition	on	another	disk.	Mirrored	volumes	are	sometimes	referred	to
as	RAID	level	1	(RAID-1).	A	mirrored	volume	is	shown	in	Figure	9-13.

Figure	9-13.	Mirrored	volume

When	a	program	writes	to	drive	C:,	the	volume	manager	writes	the	same	data	to
the	same	location	on	the	mirror	partition.	If	the	first	disk	or	any	of	the	data	on	its
C:	partition	becomes	unreadable	because	of	a	hardware	or	software	failure,	the
volume	manager	automatically	accesses	the	data	from	the	mirror	partition.	A
mirror	volume	can	be	formatted	for	any	of	the	Windows-supported	file	systems.
The	file	system	drivers	remain	independent	and	are	not	affected	by	the	volume
manager’s	mirroring	activity.

Mirrored	volumes	can	aid	in	read	I/O	throughput	on	heavily	loaded	systems.	When



I/O	activity	is	high,	the	volume	manager	balances	its	read	operations	between	the
primary	partition	and	the	mirror	partition	(accounting	for	the	number	of	unfinished
I/O	requests	pending	from	each	disk).	Two	read	operations	can	proceed
simultaneously	and	thus	theoretically	finish	in	half	the	time.	When	a	file	is
modified,	both	partitions	of	the	mirror	set	must	be	written,	but	disk	writes	are
performed	in	parallel,	so	the	performance	of	user-mode	programs	is	generally	not
affected	by	the	extra	disk	update.

Mirrored	volumes	are	the	only	multipartition	volume	type	supported	for	system
and	boot	volumes.	The	reason	for	this	is	that	the	Windows	boot	code,	including	the
MBR	code	and	Winload,	don’t	have	the	sophistication	required	to	understand
multipartition	volumes—mirrored	volumes	are	the	exception	because	the	boot
code	treats	them	as	simple	volumes,	reading	from	the	half	of	the	mirror	marked	as
the	boot	or	system	drive	in	the	MBR-style	partition	table.	Because	the	boot	code
doesn’t	modify	the	disk	metadata	and	will	read	or	write	to	the	same	half	of	the
mirrored	set,	it	can	safely	ignore	the	other	half	of	the	mirror;	however,	the	Boot
Manager	and	OS	loader	will	update	the	file	\Boot\BootStat.dat	on	the	system
volume.	This	file	is	used	only	to	communicate	status	between	the	various	phases	of
booting,	so,	again,	it	does	not	need	to	be	written	to	the	other	half	of	the	mirror.

EXPERIMENT:	WATCHING	MIRRORED	VOLUME	I/O	OPERATIONS

Using	the	Performance	Monitor,	you	can	verify	that	write	operations	directed	at	mirrored	volumes	copy	to
both	disks	that	make	up	the	mirror	and	that	read	operations,	if	relatively	infrequent,	occur	primarily	from
one	half	of	the	volume.	This	experiment	requires	three	hard	disks.	If	you	don’t	have	three	disks,	you	can
skip	the	experiment	setup	instructions	and	view	the	Performance	tool	screen	shot	in	this	experiment	that
demonstrates	the	experiment’s	results.

Use	the	Disk	Management	MMC	snap-in	to	create	a	mirrored	volume.	To	do	this,	perform	the	following
steps:

1.	 Run	Disk	Management	by	starting	Computer	Management,	expanding	the	Storage	tree,	and	clicking
Disk	Management	(or	by	inserting	Disk	Management	as	a	snap-in	in	an	MMC	console).

2.	 Right-click	on	an	unallocated	space	of	a	drive,	and	then	click	New	Simple	Volume.

3.	 Follow	the	instructions	in	the	New	Simple	Volume	Wizard	to	create	a	simple	volume.	(Make	sure
there’s	enough	room	on	another	disk	for	a	volume	of	the	same	size	as	the	one	you’re	creating.)

4.	 Right-click	on	the	new	volume,	and	then	click	Add	Mirror	on	the	context	menu.

Once	you	have	a	mirrored	volume,	run	the	Performance	Monitor	tool	and	add	counters	for	the	PhysicalDisk
performance	object	for	both	disk	instances	that	contain	a	partition	belonging	to	the	mirror.	Select	the	Disk
Writes/sec	counters	for	each	instance.	Select	a	large	directory	from	the	third	disk	(the	one	that	isn’t	part	of



the	mirrored	volume),	and	copy	it	to	the	mirrored	volume.	The	Performance	Monitor	tool	output	window
should	look	something	like	the	following	screen	shot	as	the	copy	operation	progresses.

The	top	two	lines,	which	overlap	throughout	the	timeline,	are	the	Disk	Writes/sec	counters	for	each	disk.
The	screen	shot	reveals	that	the	volume	manager	(in	this	case	VolMgr)	is	writing	the	copied	file	data	to
both	halves	of	the	volume.

RAID-5	Volumes
A	RAID-5	volume	is	a	fault	tolerant	variant	of	a	regular	striped	volume.	RAID-5
volumes	implement	RAID	level	5.	They	are	also	known	as	striped	volumes	with
rotated	parity	because	they	are	based	on	the	striping	approach	taken	by	striped
volumes.	Fault	tolerance	is	achieved	by	reserving	the	equivalent	of	one	disk	for
storing	parity	for	each	stripe.	Figure	9-14	is	a	visual	representation	of	a	RAID-5
volume.

In	Figure	9-14,	the	parity	for	stripe	1	is	stored	on	disk	1.	It	contains	a	byte-for-byte
logical	sum	(XOR)	of	the	first	stripe	units	on	disks	2	and	3.	The	parity	for	stripe	2
is	stored	on	disk	2,	and	the	parity	for	stripe	3	is	stored	on	disk	3.	Rotating	the
parity	across	the	disks	in	this	way	is	an	I/O	optimization	technique.	Each	time	data
is	written	to	a	disk,	the	parity	bytes	corresponding	to	the	modified	bytes	must	be
recalculated	and	rewritten.	If	the	parity	were	always	written	to	the	same	disk,	that
disk	would	be	busy	continually	and	could	become	an	I/O	bottleneck.



Figure	9-14.	RAID-5	volume

Recovering	a	failed	disk	in	a	RAID-5	volume	relies	on	a	simple	arithmetic
principle:	in	an	equation	with	n	variables,	if	you	know	the	value	of	n	–	1	of	the
variables,	you	can	determine	the	value	of	the	missing	variable	by	subtraction.	For
example,	in	the	equation	x	+	y	=	z,	where	z	represents	the	parity	stripe	unit,	the
volume	manager	computes	z	–	y	to	determine	the	contents	of	x;	to	find	y,	it
computes	z	–	x.	The	volume	manager	uses	similar	logic	to	recover	lost	data.	If	a
disk	in	a	RAID-5	volume	fails	or	if	data	on	one	disk	becomes	unreadable,	the
volume	manager	reconstructs	the	missing	data	by	using	the	XOR	operation	(bitwise
logical	addition).

If	disk	1	in	Figure	9-14	fails,	the	contents	of	its	stripe	units	2	and	5	are	calculated
by	XOR-ing	the	corresponding	stripe	units	of	disk	3	with	the	parity	stripe	units	on
disk	2.	The	contents	of	stripes	3	and	6	on	disk	1	are	similarly	determined	by	XOR-
ing	the	corresponding	stripe	units	of	disk	2	with	the	parity	stripe	units	on	disk	3.
At	least	three	disks	(or,	rather,	three	same-sized	partitions	on	three	disks)	are
required	to	create	a	RAID-5	volume.

The	Volume	Namespace
The	volume	namespace	mechanism	handles	the	assignment	of	drive	letters	to
device	objects	that	represent	actual	volumes,	which	lets	Windows	applications
access	these	drives	through	familiar	means,	and	also	provides	mount	and	dismount
functionality.

The	Mount	Manager
The	Mount	Manager	device	driver
(%SystemRoot%\System32\Drivers\Mountmgr.sys)	assigns	drive	letters	for
dynamic	disk	volumes	and	basic	disk	volumes	created	after	Windows	is	installed,



CD-ROMs,	floppies,	and	removable	devices.	Windows	stores	all	drive-letter
assignments	under	HKLM\SYSTEM\MountedDevices.	If	you	look	in	the	registry
under	that	key,	you’ll	see	values	with	names	such	as	\??\Volume{X}	(where	X	is	a
GUID)	and	values	such	as	\DosDevices\C:.	Every	volume	has	a	volume	name
entry,	but	a	volume	doesn’t	necessarily	have	an	assigned	drive	letter	(for	example,
the	system	volume).	Figure	9-15	shows	the	contents	of	an	example	Mount
Manager	registry	key.	Note	that	the	MountedDevices	key	isn’t	included	in	a	control
set	and	so	isn’t	protected	by	the	last	known	good	boot	option.	(See	the	section	Last
Known	Good	in	Chapter	13	for	more	information	on	control	sets	and	the	last
known	good	boot	option.)

Figure	9-15.	Mounted	devices	listed	in	the	Mount	Manager’s	registry	key

The	data	that	the	registry	stores	in	values	for	basic	disk	volume	drive	letters	and
volume	names	is	the	disk	signature	and	the	starting	offset	of	the	first	partition
associated	with	the	volume.	The	data	that	the	registry	stores	in	values	for	dynamic
disk	volumes	includes	the	volume’s	VolMgr-internal	GUID.	When	the	Mount
Manager	initializes	during	the	boot	process,	it	registers	with	the	Windows	Plug	and
Play	subsystem	so	that	it	receives	notification	whenever	a	device	identifies	itself	as
a	volume.	When	the	Mount	Manager	receives	such	a	notification,	it	determines	the
new	volume’s	GUID	or	disk	signature	and	uses	the	GUID	or	signature	as	a	guide



to	look	in	its	internal	database,	which	reflects	the	contents	of	the	MountedDevices
registry	key.	The	Mount	Manager	then	determines	whether	its	internal	database
contains	the	drive-letter	assignment.	If	the	volume	has	no	entry	in	the	database,	the
Mount	Manager	asks	VolMgr	for	a	suggested	drive-letter	assignment	and	stores
that	in	the	database.	VolMgr	doesn’t	return	suggestions	for	simple	volumes,	but	it
looks	at	the	drive-letter	hint	in	the	volume’s	database	entry	for	dynamic	volumes.

If	no	suggested	drive-letter	assignment	exists	for	a	dynamic	volume,	the	Mount
Manager	uses	the	first	unassigned	drive	letter	(if	one	exists),	defines	a	new
assignment,	creates	a	symbolic	link	for	the	assignment	(for	example,	\Global??\D:),
and	updates	the	MountedDevices	registry	key.	If	there	are	no	available	drive	letters,
no	drive-letter	assignment	is	made.	At	the	same	time,	the	Mount	Manager	creates	a
volume	symbolic	link	(that	is,	\Global??\Volume{X})	that	defines	a	new	volume
GUID	if	the	volume	doesn’t	already	have	one.	This	GUID	is	different	from	the
volume	GUIDs	that	VolMgr	uses	internally.

Mount	Points
Mount	points	let	you	link	volumes	through	directories	on	NTFS	volumes,	which
makes	volumes	with	no	drive-letter	assignment	accessible.	For	example,	an	NTFS
directory	that	you’ve	named	C:\Projects	could	mount	another	volume	(NTFS	or
FAT)	that	contains	your	project	directories	and	files.	If	your	project	volume	had	a
file	you	named	\CurrentProject\Description.txt,	you	could	access	the	file	through
the	path	C:\Projects\CurrentProject\Description.txt.	What	makes	mount	points
possible	is	reparse	point	technology.	(Reparse	points	are	discussed	in	more	detail	in
Chapter	12.)

A	reparse	point	is	a	block	of	arbitrary	data	with	some	fixed	header	data	that
Windows	associates	with	an	NTFS	file	or	directory.	An	application	or	the	system
defines	the	format	and	behavior	of	a	reparse	point,	including	the	value	of	the
unique	reparse	point	tag	that	identifies	reparse	points	belonging	to	the	application
or	system	and	specifies	the	size	and	meaning	of	the	data	portion	of	a	reparse	point.
(The	data	portion	can	be	as	large	as	16	KB.)	Any	application	that	implements	a
reparse	point	must	supply	a	file	system	filter	driver	to	watch	for	reparse-related
return	codes	for	file	operations	that	execute	on	NTFS	volumes,	and	the	driver	must
take	appropriate	action	when	it	detects	the	codes.	NTFS	returns	a	reparse	status
code	whenever	it	processes	a	file	operation	and	encounters	a	file	or	directory	with



an	associated	reparse	point.

The	Windows	NTFS	file	system	driver,	the	I/O	manager,	and	the	object	manager
all	partly	implement	reparse	point	functionality.	The	object	manager	initiates
pathname	parsing	operations	by	using	the	I/O	manager	to	interface	with	file	system
drivers.	Therefore,	the	object	manager	must	retry	operations	for	which	the	I/O
manager	returns	a	reparse	status	code.	The	I/O	manager	implements	pathname
modification	that	mount	points	and	other	reparse	points	might	require,	and	the
NTFS	file	system	driver	must	associate	and	identify	reparse	point	data	with	files
and	directories.	You	can	therefore	think	of	the	I/O	manager	as	the	reparse	point
file	system	filter	driver	for	many	Microsoft-defined	reparse	points.

One	common	use	of	reparse	points	is	the	symbolic	link	functionality	offered	on
Windows	by	NTFS	(see	Chapter	12	for	more	information	on	NTFS	symbolic
links).	If	the	I/O	manager	receives	a	reparse	status	code	from	NTFS	and	the	file	or
directory	for	which	NTFS	returned	the	code	isn’t	associated	with	one	of	a	handful
of	built-in	Windows	reparse	points,	no	filter	driver	claimed	the	reparse	point.	The
I/O	manager	then	returns	an	error	to	the	object	manager	that	propagates	as	a	“file
cannot	be	accessed	by	the	system”	error	to	the	application	making	the	file	or
directory	access.

Mount	points	are	reparse	points	that	store	a	volume	name	(\Global??\Volume{X})
as	the	reparse	data.	When	you	use	the	Disk	Management	MMC	snap-in	to	assign
or	remove	path	assignments	for	volumes,	you’re	creating	mount	points.	You	can
also	create	and	display	mount	points	by	using	the	built-in	command-line	tool
Mountvol.exe	(%SystemRoot%\System32\Mountvol.exe).

The	Mount	Manager	maintains	the	Mount	Manager	remote	database	on	every
NTFS	volume	in	which	the	Mount	Manager	records	any	mount	points	defined	for
that	volume.	The	database	file	resides	in	the	directory	System	Volume	Information
on	the	NTFS	volume.	Mount	points	move	when	a	disk	moves	from	one	system	to
another	and	in	dual-boot	environments—that	is,	when	booting	between	multiple
Windows	installations—because	of	the	existence	of	the	Mount	Manager	remote
database.	NTFS	also	keeps	track	of	reparse	points	in	the	NTFS	metadata	file
\$Extend\$Reparse.	(NTFS	doesn’t	make	any	of	its	metadata	files	available	for
viewing	by	applications.)	NTFS	stores	reparse	point	information	in	the	metadata
file	so	that	Windows	can,	for	example,	easily	enumerate	the	mount	points	(which



are	reparse	points)	defined	for	a	volume	when	a	Windows	application,	such	as
Disk	Management,	requests	mount-point	definitions.

Volume	Mounting
Because	Windows	assigns	a	drive	letter	to	a	volume	doesn’t	mean	that	the	volume
contains	data	that	has	been	organized	in	a	file	system	format	that	Windows
recognizes.	The	volume-recognition	process	consists	of	a	file	system	claiming
ownership	for	a	partition;	the	process	takes	place	the	first	time	the	kernel,	a	device
driver,	or	an	application	accesses	a	file	or	directory	on	a	volume.	After	a	file	system
driver	signals	its	responsibility	for	a	partition,	the	I/O	manager	directs	all	IRPs
aimed	at	the	volume	to	the	owning	driver.	Mount	operations	in	Windows	consist	of
three	components:	file	system	driver	registration,	volume	parameter	blocks	(VPBs),
and	mount	requests.

NOTE

The	partition	manager	honors	the	system	SAN	policy,	which	can	be	set	with	the	Windows	DiskPart	utility,
that	specifies	whether	it	should	surface	disks	for	visibility	to	the	volume	manager.	The	default	policy	in
Windows	Server	2008	Enterprise	and	Datacenter	editions	is	to	not	make	SAN	disks	visible,	which	prevents
the	system	from	aggressively	mounting	their	volumes.

The	I/O	manager	oversees	the	mount	process	and	is	aware	of	available	file	system
drivers	because	all	file	system	drivers	register	with	the	I/O	manager	when	they
initialize.	The	I/O	manager	provides	the	IoRegisterFileSystem	function	to	local	disk
(rather	than	network)	file	system	drivers	for	this	registration.	When	a	file	system
driver	registers,	the	I/O	manager	stores	a	reference	to	the	driver	in	a	list	that	the
I/O	manager	uses	during	mount	operations.

Every	device	object	contains	a	VPB	data	structure,	but	the	I/O	manager	treats
VPBs	as	meaningful	only	for	volume	device	objects.	A	VPB	serves	as	the	link
between	a	volume	device	object	and	the	device	object	that	a	file	system	driver
creates	to	represent	a	mounted	file	system	instance	for	that	volume.	If	a	VPB’s	file
system	reference	is	empty	(VPB->DeviceObject	==	NULL),	no	file	system	has
mounted	the	volume.	The	I/O	manager	checks	a	volume	device	object’s	VPB
whenever	an	open	API	that	specifies	a	file	name	or	a	directory	name	on	a	volume
device	object	executes.

For	example,	if	the	Mount	Manager	assigns	drive	letter	D	to	the	second	volume	on



a	system,	it	creates	a	\Global??\D:	symbolic	link	that	resolves	to	the	device	object
\Device\HarddiskVolume2.	A	Windows	application	that	attempts	to	open	the
\Temp\Test.txt	file	on	the	D:	drive	specifies	the	name	D:\Temp\Test.txt,	which	the
Windows	subsystem	converts	to	\Global??\D:\Temp\Test.txt	before	invoking
NtCreateFile,	the	kernel’s	file-open	routine.	NtCreateFile	uses	the	object	manager
to	parse	the	name,	and	the	object	manager	encounters	the
\Device\HarddiskVolume2	device	object	with	the	path	\Temp\Test.txt	still
unresolved.	At	that	point,	the	I/O	manager	checks	to	see	whether
\Device\HarddiskVolume2’s	VPB	references	a	file	system.	If	it	doesn’t,	the	I/O
manager	asks	each	registered	file	system	driver	via	a	mount	request	whether	the
driver	recognizes	the	format	of	the	volume	in	question	as	the	driver’s	own.

EXPERIMENT:	LOOKING	AT	VPBS

You	can	look	at	the	contents	of	a	VPB	by	using	the	!vpb	kernel	debugger	command.	Because	the	VPB	is
pointed	to	by	the	device	object	for	a	volume,	you	must	first	locate	a	volume	device	object.	To	do	this,	you
must	dump	the	volume	manager’s	driver	object,	locate	a	device	object	that	represents	a	volume,	and	display
the	device	object,	which	reveals	its	Vpb	field.

lkd> !drvobj volmgr
Driver object (84905030) is for:
 \Driver\volmgr
Driver Extension List: (id , addr)

Device Object list:
84a64780  849d5b28  84a64518  84a64030
84905e00

The	!drvobj	command	lists	the	addresses	of	the	device	objects	a	driver	owns.	In	this	example,	there	are	five
device	objects.	One	of	them	represents	the	programmatic	(control)	interface	to	the	device	driver,	and	the
rest	are	volume	device	objects.	Because	the	objects	are	listed	in	reverse	order	from	the	way	that	they	were
created	and	the	driver	creates	the	control	device	object	first,	the	first	device	object	listed	is	that	of	a	volume.
Now	execute	the	!devobj	kernel	debugger	command	on	the	volume	device	object	address:

lkd> !devobj 84a64780
Device object (84a64780) is for:
 HarddiskVolume4 \Driver\volmgr DriverObject 84905030
Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050
Vpb 84a64228 Dacl 8b1a8674 DevExt 84a64838 DevObjExt 84a64930 Dope 849fd838 
DevNode
    849d5938
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
AttachedDevice (Upper) 84a66020 \Driver\volsnap
Device queue is not busy

The	!devobj	command	shows	the	Vpb	field	for	the	volume	device	object.	(The	device	object	shown	is
named	HarddiskVolume4.)	Now	you’re	ready	to	execute	the	!vpb	command:

lkd> !vpb 84a64228



Vpb at 0x84a64228
Flags: 0x1 mounted
DeviceObject: 0x84a6b020
RealDevice:   0x849d5b28
RefCount: 4311
Volume Label:   OS

The	command	reveals	that	the	volume	device	object	is	mounted	by	a	file	system	driver	that	has	assigned	the
volume	the	name	OS.	The	RealDevice	field	in	the	VPB	points	back	to	the	volume	device	object,	and	the
DeviceObject	field	points	to	the	mounted	file	system	device	object.	You	can	use	!devobj	on	this	address	to
get	more	information	on	the	mounted	file	system,	as	seen	in	the	following	output,	which	shows	that	NTFS
has	mounted	the	volume:

lkd> !devobj 0x84a6b020
Device object (84a6b020) is for:
  \FileSystem\Ntfs DriverObject 84a02ad0
Current Irp 00000000 RefCount 0 Type 00000008 Flags 00040000
DevExt 84a6b0d8 DevObjExt 84a6bc00
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
AttachedDevice (Upper) 84a63ac0 \FileSystem\FltMgr
Device queue is not busy

The	convention	followed	by	file	system	drivers	for	recognizing	volumes	mounted
with	their	format	is	to	examine	the	volume’s	boot	record	(VBR),	which	is	stored	in
the	first	sector	of	the	volume.	Boot	records	for	Microsoft	file	systems	contain	a
field	that	stores	a	file	system	format	type.	File	system	drivers	usually	examine	this
field,	and	if	it	indicates	a	format	they	manage,	they	look	at	other	information
stored	in	the	boot	record.	This	information	usually	includes	a	file	system	name
field	and	enough	data	for	the	file	system	driver	to	locate	critical	metadata	files	on
the	volume.	NTFS,	for	example,	will	recognize	a	volume	only	if	the	MBR	partition
Type	field	is	NTFS	(0x07),	the	Name	field	is	“NTFS,”	and	the	critical	metadata
files	described	by	the	boot	record	are	consistent.

If	a	file	system	driver	signals	affirmatively,	the	I/O	manager	fills	in	the	VPB	and
passes	the	open	request	with	the	remaining	path	(that	is,	\Temp\Test.txt)	to	the	file
system	driver.	The	file	system	driver	completes	the	request	by	using	its	file	system
format	to	interpret	the	data	that	the	volume	stores.	After	a	mount	fills	in	a	volume
device	object’s	VPB,	the	I/O	manager	hands	subsequent	open	requests	aimed	at	the
volume	to	the	mounted	file	system	driver.	If	no	file	system	driver	claims	a	volume,
Raw—a	file	system	driver	built	into	Ntoskrnl.exe—claims	the	volume	and	fails	all
requests	to	open	files	on	that	partition;	however,	Raw	does	allow	sector	I/O	to	the
partition	for	applications	with	administrator	privileges,	but	even	an	administrator
cannot	write	to	sectors	of	a	mounted	volume,	except	for	the	boot	sectors.	Figure	9-



16	shows	a	simplified	example	(that	is,	the	figure	omits	the	file	system	driver’s
interactions	with	the	Windows	cache	and	memory	managers)	of	the	path	that	I/O
directed	at	a	mounted	volume	follows.

Figure	9-16.	Mounted	volume	I/O	flow

Instead	of	having	every	file	system	driver	loaded,	regardless	of	whether	they	have
any	volumes	to	manage,	Windows	tries	to	minimize	memory	usage	by	using	a
surrogate	driver	named	File	System	Recognizer
(%SystemRoot%\System32\Drivers\Fs_rec.sys)	to	perform	preliminary	file	system
recognition.	File	System	Recognizer	knows	enough	about	each	file	system	format
that	Windows	supports	to	be	able	to	examine	a	boot	record	and	determine	whether
it’s	associated	with	a	Windows	file	system	driver.	When	the	system	boots,	File
System	Recognizer	registers	as	a	file	system	driver,	and	when	the	I/O	manager	calls
it	during	a	file	system	mount	operation	for	a	new	volume,	File	System	Recognizer
loads	the	appropriate	file	system	driver	if	the	VBR	describes	a	file	system	that	isn’t
loaded.	After	loading	a	file	system	driver,	File	System	Recognizer	forwards	the
mount	IRP	to	the	file	system	driver	and	lets	it	claim	ownership	of	the	volume.

Aside	from	the	boot	volume,	which	a	driver	mounts	while	the	kernel	is	initializing,
file	system	drivers	mount	most	volumes	when	the	Chkdsk	file	system	consistency-
checking	application	runs	during	a	boot	sequence.	The	boot-time	version	of
Chkdsk	is	a	native	application	(as	opposed	to	a	Win32	application)	named



Autochk.exe	(%SystemRoot%\System32\Autochk.exe),	and	the	Session	Manager
(%SystemRoot%\System32\Smss.exe)	runs	it	because	it	is	specified	as	a	boot-run
program	in	the	HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\BootExecute	value.	Autochk	accesses	each	drive	letter	to	see	whether	the
volume	associated	with	the	letter	requires	a	consistency	check.

One	place	in	which	mounting	can	occur	more	than	once	for	the	same	disk	is	with
removable	media.	Windows	file	system	drivers	respond	to	media	changes	by
querying	the	disk’s	volume	identifier.	If	they	see	the	volume	identifier	change,	the
driver	dismounts	the	disk	and	attempts	to	remount	it.

Volume	I/O	Operations
File	system	drivers	manage	data	stored	on	volumes	but	rely	on	the	volume	manager
to	interact	with	storage	drivers	to	transfer	data	to	and	from	the	disk	or	disks	on
which	a	volume	resides.	File	system	drivers	obtain	references	to	the	volume
manager’s	volume	objects	through	the	mount	process	and	then	send	the	volume
manager	requests	via	the	volume	objects.	Applications	can	also	send	the	volume
manager	requests,	bypassing	file	system	drivers,	when	they	want	to	directly
manipulate	a	volume’s	data.	File-undelete	programs	are	an	example	of	applications
that	do	this.

Whenever	a	file	system	driver	or	an	application	sends	an	I/O	request	to	a	device
object	that	represents	a	volume,	the	Windows	I/O	manager	routes	the	request
(which	comes	in	an	IRP—a	self-contained	package,	described	in	Chapter	8)	to	the
volume	manager	that	created	the	target	device	object.	Thus,	if	an	application
(running	with	administrator	privileges)	wants	to	read	the	boot	sector	of	the	second
volume	on	the	system	(which	is	a	simple	volume	in	this	example),	it	opens	a	handle
to	\\.\HarddiskVolume2	and	then	calls	ReadFile	to	read	512	bytes	starting	at	offset
zero	on	the	device.	(Both	the	starting	byte	offset	and	length	must	be	a	multiple	of
the	sector	size.)	The	I/O	manager	sends	the	application’s	request	in	the	form	of	an
IRP	to	the	volume	manager	that	owns	the	device	object,	notifying	it	that	the	IRP	is
directed	at	the	HarddiskVolume2	device.

Because	volumes	are	logical	conveniences	that	Windows	uses	to	represent
contiguous	areas	on	one	or	more	physical	disks,	the	volume	manager	must	translate
offsets	that	are	relative	to	a	volume	to	offsets	that	are	relative	to	the	beginning	of	a



disk.	If	volume	2	consists	of	one	partition	that	begins	4,096	sectors	into	the	disk,
the	partition	manager	would	adjust	the	IRP’s	parameters	to	designate	an	offset	with
that	value	before	passing	the	request	to	the	disk	class	driver.	The	disk	class	driver
uses	a	miniport	driver	to	carry	out	physical	disk	I/O,	and	reads	the	requested	data
into	an	application	buffer	designated	in	the	IRP.

Some	examples	of	a	volume	manager’s	operations	will	help	clarify	its	role	when	it
handles	requests	aimed	at	multipartition	volumes.	If	a	striped	volume	consists	of
two	partitions,	partition	1	and	partition	2,	the	VolMgr	device	object	intercepts	file
system	disk	I/O	aimed	at	the	device	object	for	the	volume,	and	the	VolMgr	driver
adjusts	the	request	before	passing	it	to	the	disk	class	driver.	The	adjustment	that
VolMgr	makes	configures	the	request	to	refer	to	the	correct	offset	of	the	request’s
target	stripe	on	either	partition	1	or	partition	2.	If	the	I/O	spans	both	partitions	of
the	volume,	VolMgr	must	issue	two	associated	I/O	requests,	one	aimed	at	each
disk.	This	is	shown	in	Figure	9-17.

In	the	case	of	writes	to	a	mirrored	volume,	VolMgr	splits	each	request	so	that	each
half	of	the	mirror	receives	the	write	operation.	For	mirrored	reads,	VolMgr
performs	a	read	from	half	of	a	mirror,	relying	on	the	other	half	when	a	read
operation	fails.



Figure	9-17.	VolMgr	I/O	operations

Virtual	Disk	Service
A	company	that	makes	storage	products	such	as	RAID	adapters,	hard	disks,	or
storage	arrays	has	to	implement	custom	applications	for	installing	and	managing
their	devices.	The	use	of	different	management	applications	for	different	storage
devices	has	obvious	drawbacks	from	the	perspective	of	system	administration.
These	drawbacks	include	learning	multiple	interfaces	and	the	inability	to	use
standard	Windows	storage	management	tools	to	manage	third-party	storage
devices.

Windows	includes	the	Virtual	Disk	Service	(or	VDS,	located	at
%SystemRoot%\System32\Vds.exe),	which	provides	a	unified	high-level	storage
interface	so	that	administrators	can	manage	storage	devices	from	different	vendors
using	the	same	user	interfaces.	VDS	is	shown	in	Figure	9-18.	VDS	exports	a
COM-based	API	that	allows	applications	to	create	and	format	disks	and	to	view
and	manage	hardware	RAID	adapters.	For	example,	a	utility	can	use	the	VDS	API
to	query	the	list	of	physical	disks	that	map	to	a	RAID	logical	unit	number	(LUN).
Windows	disk-management	utilities,	including	the	Disk	Management	MMC	snap-
in	and	the	DiskPart	and	DiskRAID	command-line	tools,	use	VDS	APIs.



Figure	9-18.	VDS	service	architecture

VDS	supplies	two	interfaces,	one	for	software	providers	and	one	for	hardware
providers:

Software	providers	implement	interfaces	to	high-level	storage	abstractions	such
as	disks,	disk	partitions,	and	volumes.	Examples	of	operations	supported	by
these	interfaces	include	creating,	extending,	and	deleting	volumes;	adding	or
breaking	mirrors;	and	formatting	and	assigning	drive	letters.	VDS	looks	for
registered	software	providers	in
HKLM\SYSTEM\CurrentControlSet\Services\Vds\SoftwareProviders,	which
contains	subkeys	whose	names	are	GUIDs.	Within	each	subkey	is	a	value
named	ClsId,	which	specifies	the	COM	class	ID,	and	these	are	listed	in
HKEY_CLASSES_ROOT\CLSID\<ClsId>.	Windows	includes	the	VDS
Dynamic	Provider	(%SystemRoot%\System32\Vdsdyn.dll)	for	interfacing	to
dynamic	disks	and	the	VDS	Basic	Provider
(%SystemRoot%\System32\Vdsbas.dll)	for	interfacing	to	basic	disks.



Hardware	vendors	implement	VDS	hardware	providers	as	DLLs	that	register
under	HKLM\SYSTEM\CurrentControlSet\Services\Vds\HardwareProviders
and	that	translate	device-independent	VDS	commands	into	commands	for	their
hardware.	The	hardware	provider	allows	for	management	of	a	storage
subsystem	such	as	a	hardware	RAID	array	or	an	adapter	card,	and	supported
operations	include	creating,	extending,	deleting,	masking,	and	unmasking	LUNs.

When	an	application	initiates	a	connection	to	the	VDS	API	and	the	VDS	service
isn’t	started,	the	Svchost	process	hosting	the	RPC	service	starts	the	VDS	loader
process	(%SystemRoot%\System32\Vdsldr.exe),	which	starts	the	VDS	service
process	and	then	exits.	When	the	last	connection	to	the	VDS	API	closes,	the	VDS
service	process	exits.



Virtual	Hard	Disk	Support
Windows	includes	extensive	built-in	support	for	VHD	(Virtual	Hard	Disk,	the
Microsoft	virtual	machine	disk	format)	files.	Using	disk-management	utilities,	you
can	create,	delete,	and	merge	VHDs,	as	well	as	attach	them	to	the	system	as	though
they	were	physical	disks.	Windows	also	includes	support	for	booting	Windows
installations	stored	in	NTFS	volumes	within	VHDs.

There	are	three	types	of	VHDs,	all	of	which	are	supported	by	the	VHD
functionality	in	Windows:

Dynamic	The	VHD	does	not	necessarily	contain	all	the	blocks	it	is	advertising
(thinly	provisioned)	and	will	be	grown	as	necessary,	up	to	its	maximum	size.	In
other	words,	the	amount	of	space	being	consumed	by	the	VHD	is	equal	to	the
amount	of	data	that	is	being	stored	in	it	(plus	a	small	amount	of	overhead	for
the	VHD	container).

Fixed	The	VHD	is	of	fixed	size,	cannot	grow,	and	contains	all	the	disk	blocks	it
is	advertising	(fully	provisioned).

Differencing	Similar	to	a	dynamic	VHD,	but	contains	only	the	sectors	that
would	have	been	modified	when	compared	with	a	parent	VHD	(which	is	read-
only).	The	parent	VHD	may	be	of	any	of	the	three	VHD	types	(including
another	differencing	VHD).	Differencing	VHDs	are	generally	used	for	taking	a
snapshot	of	the	state	of	a	parent	VHD.	That	state	can	then	be	recovered	by
simply	deleting	the	differencing	VHD.	This	is	often	used	in	checkpointing
virtual	machines	(VMs)	to	enable	the	user	to	return	the	VM	to	a	particular	state.
Note	that	the	differencing	VHD	must	be	kept	in	the	same	directory	as	the
parent	VHD.

When	presented	to	the	system,	the	standard	partition	manager	and	volume	manager
mounting	volume	recognition	and	mounting	processes	take	place,	making	file
systems	stored	in	the	VHD	accessible	using	Windows	file	system	APIs	and	utilities.

VHDs	can	be	contained	within	a	VHD,	so	Windows	limits	the	number	of	nesting
levels	of	VHDs	that	it	will	present	to	the	system	as	a	disk	to	two,	with	the
maximum	number	of	nesting	levels	specified	by	the	registry	value
HKLM\System\CurrentControlSet\Services\FsDepends\Parameters\VirtualDiskMaxTreeDepth.



Mounting	VHDs	can	be	prevented	by	setting	the	registry	value
HKLM\System\CurrentControlSet\Services\FsDepends\Parameters\VirtualDiskNoLocalMount
to	1.

Windows	can	also	boot	from	a	VHD.	A	bootable	VHD	may	be	created	from
scratch	during	installation	(when	booting	the	Windows	installation	disk)	or	from	a
running	system	using	various	tools,	including	ImageX	or	Sysinternals’s	Disk2VHD.
That	“system	in	a	VHD”	can	be	run	under	Virtual	PC	or	Hyper-V	(on	Windows
Server),	and	Windows	Ultimate	and	Enterprise	editions	can	directly	boot	from	a
VHD.

Windows	also	extends	its	support	of	VHDs	to	all	its	built-in	disk-management
utilities.	Creating,	mounting,	and	dismounting	a	VHD	can	be	done	while	Windows
is	running	using	the	Disk	Management	MMC	snap-in
(%SystemRoot%\System32\Diskmgmt.msc)	or	the	DiskPart
(%SystemRoot%\System32\Diskpart.exe)	command-line	tool.	These	tools	are
implemented	using	Virtual	Disk	Service	(VDS)	APIs,	which	can	also	be	used	by
third-party	utilities	for	managing	and	manipulating	VHDs.

Attaching	VHDs
The	root-enumerated	bus	driver	Vdrvroot
(%SystemRoot%\System32\Drivers\Vdrvroot.sys)	creates	a	physical	device	object
(PDO)	for	each	nested	file	system	to	be	mounted.	The	PnP	manager	loads	the
Vhdmp	(%SystemRoot%\System32\Drivers\Vhdmp.sys)	Storport	miniport	driver
as	the	function	driver	on	the	PDO,	exposing	what	to	the	rest	of	the	system	looks
like	a	physical	disk.	The	I/O	manager	then	layers	the	rest	of	the	storage	stack	(disk
class	driver,	partition	manager,	volume	manager,	and	file	system	driver)	on	top	of
the	device	stack	(DevStack)	containing	Vhdmp.	When	Vhdmp	receives	sector	read
and	write	requests,	it	translates	those	requests	into	offsets	within	the	VHD	file	and
then	forwards	the	requests	to	the	storage	stack	where	the	VHD	file	is	located.

Nested	File	Systems
To	support	nested	file	systems,	a	dependency	tree	is	created	to	track	which	file
systems	have	dependencies	on	other	file	systems.	This	is	important	for	several
systemwide	operations	to	function	properly,	such	as	dismounting	a	volume



(dependent	file	systems	would	have	to	be	dismounted	first),	system	shutdown
(similar	to	volume	dismounting),	and	volume	snapshots	(dependent	volumes	need
to	be	flushed	before	the	parent	during	a	FlushAndHold	operation).	Dependencies
are	tracked	by	a	file	system	minifilter	driver
(%SystemRoot%\System32\Drivers\Fsdepends.sys),	which	sits	above	the	file
system	driver.	Dependencies	are	tracked	by	Fsdepends	using	PnP	removal	relations,
instead	of	parent-child	relationships,	because	removal	relations	are	more	dynamic
and	are	queried	at	run	time	rather	than	set	up	statically.	(This	is	important	because
nested	drivers	can	set	up	additional	dependency	relationships	after	a	VHD	is
mounted.)

As	far	as	most	Windows	components	are	concerned,	a	mounted	VHD	volume	is
identical	to	a	volume	residing	on	a	physical	disk,	with	the	limitations	that	neither
paging	files,	the	hibernation	file,	or	the	crash	dump	file	can	be	located	on	a
mounted	VHD	and	VHDs	cannot	be	larger	than	2	TB.



BitLocker	Drive	Encryption
An	operating	system	can	enforce	its	security	policies	only	while	it’s	active,	so	you
have	to	take	additional	measures	to	protect	data	when	the	physical	security	of	a
system	can	be	compromised	and	the	data	accessed	from	outside	the	operating
system.	Hardware-based	mechanisms	such	as	BIOS	passwords	and	encryption	are
two	technologies	commonly	used	to	prevent	unauthorized	access,	especially	on
laptops,	which	are	the	computers	most	likely	to	be	lost	or	stolen.

While	Windows	supports	the	Encrypting	File	System	(EFS),	you	can’t	use	EFS	to
protect	access	to	sensitive	areas	of	the	system,	such	as	the	registry	hive	files.	For
example,	if	Group	Policy	allows	you	to	log	on	to	your	laptop	even	when	you’re	not
connected	to	a	domain,	then	your	domain	credential	verifiers	are	cached	in	the
registry,	so	an	attacker	could	use	tools	to	obtain	your	domain	account	password
hash	and	use	that	to	try	to	obtain	your	password	with	a	password	cracker.	The
password	would	provide	access	to	your	account	and	EFS	files	(assuming	you	didn’t
store	the	EFS	key	on	a	smartcard).	To	make	it	easy	to	encrypt	the	entire	boot
volume,	including	all	its	system	files	and	data,	Windows	includes	a	full-volume
encryption	feature	called	Windows	BitLocker	Drive	Encryption.

BitLocker	operates	in	two	modes:

Standard	Protects	the	fixed	disks	in	a	system.

BitLocker	To	Go	Protects	removable	disks	formatted	using	the	FAT	file
system,	including	USB	flash	disks.

In	standard	mode,	BitLocker	helps	prevent	unauthorized	access	to	data	on	lost	or
stolen	computers	by	combining	two	major	data-protection	procedures:

Encrypting	the	entire	Windows	operating	system	volume	on	the	hard	disk.

Verifying	the	integrity	of	early	boot	components	and	boot	configuration	data.

The	most	secure	implementation	of	BitLocker	leverages	the	enhanced	security
capabilities	of	a	Trusted	Platform	Module	(TPM)	version	1.2.	The	TPM	is	a
cryptographic	coprocessor	installed	in	many	newer	computers	by	computer
manufacturers.	The	TPM	implements	a	variety	of	functions,	including	public	key
cryptography.	Information	on	the	operation	of	the	TPM	can	be	found	at



http://www.TrustedComputingGroup.org/.	The	TPM	works	with	BitLocker	to	help
protect	user	data	and	to	ensure	that	a	computer	running	Windows	has	not	been
tampered	with	while	the	system	was	offline.	On	computers	that	do	not	have	a	TPM
version	1.2,	BitLocker	can	still	encrypt	the	Windows	operating	system	volume.
However,	this	implementation	requires	the	user	to	insert	a	USB	startup	flash	disk	to
start	the	computer	or	resume	from	hibernation,	and	it	does	not	provide	the	full
offline	and	preboot	protection	that	a	TPM-enabled	system	does.

BitLocker’s	architecture	provides	functionality	and	management	mechanisms	in
both	kernel	mode	and	user	mode.	At	a	high	level,	the	main	components	of
BitLocker	are:

The	Trusted	Platform	Module	driver
(%SystemRoot%\System32\Drivers\Tpm.sys),	a	kernel-mode	driver	that
accesses	the	TPM	chip.

The	TPM	Base	Services,	which	include	a	user-mode	service	that	provides	user-
mode	access	to	the	TPM	(%SystemRoot%\System32\Tbssvc.dll),	a	WMI
provider,	and	an	MMC	snap-in	for	configuration
(%SystemRoot%\System32\Tpm.msc).

The	BitLocker-related	code	in	the	Boot	Manager	(\Bootmgr,	on	the	system
volume)	that	authenticates	access	to	the	disk,	handles	boot-related	unlocking,
and	allows	recovery.

The	BitLocker	filter	driver	(%SystemRoot%\System32\Drivers\Fvevol.sys),	a
kernel-mode	filter	driver	that	performs	on-the-fly	encryption	and	decryption	of
the	volume.

The	BitLocker	WMI	provider	and	management	script,	which	allow
configuration	and	scripting	of	the	BitLocker	interface.

In	the	next	sections,	we’ll	take	a	look	at	these	various	components	and	the	services
they	provide.	Figure	9-19	provides	an	overview	of	the	BitLocker	architecture.

http://www.TrustedComputingGroup.org/


Figure	9-19.	BitLocker	architecture

Encryption	Keys
BitLocker	encrypts	the	contents	of	the	volume	using	a	full-volume	encryption	key
(FVEK)	and	cryptography	that	uses	the	AES128-CBC	(by	default)	or	AES256-
CBC	algorithm,	with	a	Microsoft-specific	extension	called	a	diffuser.	In	turn,	the
FVEK	is	encrypted	with	a	volume	master	key	(VMK)	and	stored	in	a	special
metadata	region	of	the	volume.	Securing	the	volume	master	key	is	an	indirect	way
of	protecting	data	on	the	volume:	the	addition	of	the	volume	master	key	allows	the
system	to	be	rekeyed	easily	when	keys	upstream	in	the	trust	chain	are	lost	or
compromised.	This	ability	to	rekey	the	system	saves	the	time	and	expense	of
decrypting	and	re-encrypting	the	entire	volume	again.

When	you	configure	BitLocker,	you	have	a	number	of	options	for	how	the	VMK
will	be	protected,	depending	on	the	system’s	hardware	capabilities.	If	the	system



has	a	TPM,	you	can	encrypt	the	VMK	with	the	TPM,	have	the	system	encrypt	the
VMK	using	a	key	stored	in	the	TPM	and	one	stored	on	a	USB	flash	device,
encrypt	the	VMK	using	a	TPM-stored	key	and	a	PIN	you	enter	when	the	system
boots,	or	encrypt	the	VMK	with	a	combination	of	both	a	PIN	and	a	USB	flash
device.	For	systems	that	don’t	have	a	compatible	TPM,	BitLocker	offers	the	option
of	encrypting	the	VMK	using	a	key	stored	on	an	external	USB	flash	device.

In	any	case	you’ll	need	an	unencrypted	100-MB	NTFS	system	volume,	the	volume
where	the	Boot	Manager	and	BCD	are	stored,	because	the	MBR	and	boot-sector
code	are	legacy	code,	run	in	16-bit	real	mode	(as	discussed	in	Chapter	13),	and	do
not	have	the	ability	to	perform	any	on-the-fly	decryption	of	the	same	volume
they’re	running	on.	This	means	that	these	components	must	remain	on	an
unencrypted	volume	so	that	the	BIOS	can	access	them	and	they	can	run	and	locate
Bootmgr.

As	covered	earlier	in	this	chapter,	the	system	volume	is	created	automatically	when
Windows	is	installed	on	a	system,	regardless	of	whether	or	not	you	are	using
BitLocker.	This	places	the	system	volume	at	the	beginning	of	the	disk	(the	first
partition),	which	keeps	the	rest	of	the	disk	contiguous.

Figure	9-20	and	Table	9-1	summarize	the	various	ways	in	which	the	VMK	can	be
generated.

Table	9-1.	VMK	Sources

Source Identifies Security User	Impact

TPM	only What	it	is Protects	against	software	attacks,	but
vulnerable	to	hardware	attacks.

None

TPM	+
PIN

What	it	is	+	What
you	know

Adds	protection	against	most	hardware
attacks	as	well.

User	must	enter	PIN
each	boot

TPM	+
USB	key

What	it	is	+	What
you	have

Fully	protects	against	hardware	attacks,
but	vulnerable	to	stolen	USB	key.

User	must	insert	USB
key	each	boot

TPM	+
USB	key
+	PIN

What	it	is	+	What
you	have	+	What
you	know

Maximum	level	of	protection. User	must	enter	PIN
and	insert	USB	key
each	boot

USB	key What	you	have Minimum	level	of	protection	for User	must	insert	USB



only systems	without	TPM,	but	vulnerable
to	stolen	key.

key	each	boot

Finally,	BitLocker	also	provides	a	simple	encryption-based	authentication	scheme
to	ensure	the	integrity	of	the	drive	contents.	Although	AES	encryption	is	currently
considered	uncrackable	through	brute-force	attacks	and	is	one	of	the	most	widely
used	algorithms	in	the	industry	today,	it	doesn’t	provide	a	way	to	ensure	that
modified	encrypted	data	can’t	in	some	way	be	modified	such	that	it	is	translated
back	to	plaintext	data	that	an	attacker	could	make	use	of.	For	example,	by	precise
manipulation	of	the	encrypted	data,	a	hacker	might	be	able	to	cause	a	certain	logon
function	to	behave	differently	and	allow	all	logons.



Figure	9-20.	BitLocker	key	generation

To	protect	the	system	against	this	type	of	attack,	BitLocker	includes	a	diffuser
algorithm	called	Elephant.	The	job	of	the	diffuser	is	to	make	sure	that	even	a	single
bit	change	in	the	ciphertext	(encrypted	data)	will	result	in	a	totally	random	plaintext
data	output,	ensuring	that	the	modified	executable	code	will	most	likely	arbitrarily
crash	instead	of	performing	a	specific	malicious	function.	Additionally,	when
combined	with	code	integrity	(see	Chapter	3	in	Part	1	for	more	information	on
code	integrity),	the	diffuser	will	also	cause	core	system	files	to	fail	their	signature



checks,	rendering	the	system	unbootable.

Trusted	Platform	Module	(TPM)
A	TPM	is	a	tamper-resistant	processor	mounted	on	a	motherboard	that	provides
various	cryptographic	services	such	as	key	and	random	number	generation	and
sealed	storage.	Support	for	TPM	in	Windows	reaches	beyond	supporting
BitLocker,	however.	Through	the	TPM	Base	Services	(TBS),	other	applications	on
the	system	can	also	take	advantage	of	compatible	hardware	TPM	chips	and	use
WMI	to	administer	and	script	access	to	the	TPM.	For	example,	Windows	uses	a
TPM	as	an	additional	seed	into	random	number	generation,	which	enhances	the
overall	security	of	all	applications	on	the	system	that	depend	on	strong	security	or
hashing	algorithms	(including	mechanisms	such	as	logons).

Although	your	computer	may	have	a	TPM,	that	does	not	necessarily	mean	that
Windows	will	be	able	to	support	it.	There	are	two	requirements	for	Windows	TPM
support:

The	computer	must	have	a	TPM	version	1.2	or	higher.

The	computer	must	have	a	Trusted	Computing	Group	(TCG)–compliant	BIOS.
The	BIOS	establishes	a	chain	of	trust	for	the	preboot	environment	and	must
include	support	for	TCG-specific	Static	Root	of	Trust	Measurement	(SRTM).

The	easiest	way	to	determine	whether	your	machine	contains	a	compatible	TPM	is
to	run	the	TPM	MMC	snap-in	(%SystemRoot%\System32\Tpm.msc).	If	Windows
detects	a	compatible	TPM,	you	should	see	a	window	similar	to	the	one	shown	in
Figure	9-21.	Otherwise,	an	error	message	will	appear.

As	stated	earlier,	BitLocker	can	be	configured	to	use	the	TPM	to	perform	system
integrity	checks	on	critical	early	boot	components.	At	a	high	level,	the	TPM
collects	and	stores	measurements	from	multiple	early	boot	components	and	boot
configuration	data	to	create	a	system	identifier	(much	like	a	fingerprint)	for	that
computer.	It	stores	each	part	of	this	fingerprint	as	a	hash	in	a	160-bit	platform
configuration	register	(PCR).	BitLocker	uses	the	hash	of	these	functions	to	seal	the
VMK,	which	is	the	key	that	BitLocker	uses	to	protect	other	keys,	including	the
FVEKs	used	to	encrypt	volumes.

If	the	early	boot	components	are	changed	or	tampered	with,	such	as	by	changing



the	BIOS	or	MBR,	changing	an	operating	system	file,	or	moving	the	hard	disk	to	a
different	computer,	the	TPM	prevents	BitLocker	from	unsealing	the	VMK,	and
Windows	enters	a	key	recovery	mode	(described	later	in	the	chapter).	If	the	PCR
values	match	those	used	to	seal	the	key,	the	system	is	deemed	to	be	tamper	free,
and	it	unseals	the	key,	and	BitLocker	can	decrypt	the	keys	used	to	encrypt	the
volumes.	Once	the	keys	are	unsealed,	Windows	starts	and	system	protection
becomes	the	responsibility	of	the	user	and	the	operating	system.

Figure	9-21.	The	TPM	MMC	snap-in	after	initializing	the	TPM.

A	platform	validation	profile	supported	by	TPMs	consists	of	at	least	16,	and	as
many	as	24,	PCRs	that	contain	additional	information	and	only	reset	after	a	TPM
reset	(implying	a	machine	reboot).	Each	PCR	is	associated	with	components	that
run	when	an	operating	system	starts,	as	shown	in	Table	9-2.

Table	9-2.	Platform	Configuration	Registers

Index Meaning



0 Core	Root	of	Trust	of	Measurement	(CRTM),	BIOS,	and	platform	extensions

1 Platform	and	motherboard	configuration	and	data	(BIOS	data	and	CPU	microcode)

2 Option	ROM	code

3 Option	ROM	configuration	and	data

4 Master	Boot	Record	(MBR)	code

5 Master	Boot	Record	(MBR)	partition	table

6 Power-state	transition	and	wake	events

7 Computer	manufacturer-specific

8 First	NTFS	boot	sector	(volume	boot	record)

9 Remaining	NTFS	boot	sectors	(volume	boot	record)

10 Boot	Manager

11 BitLocker	Access	Control

12 Defined	for	use	by	the	static	operating	system

13 Defined	for	use	by	the	static	operating	system

14 Defined	for	use	by	the	static	operating	system

15 Defined	for	use	by	the	static	operating	system

16 Used	for	debugging

17 Dynamic	CRTM

18 Platform	defined

19 Used	by	a	trusted	operating	system

20 Used	by	a	trusted	operating	system

21 Used	by	a	trusted	operating	system

22 Used	by	a	trusted	operating	system

23 Application	support

By	default,	BitLocker	uses	registers	0,	2,	4,	5,	8,	9,	10,	and	11	to	seal	the	VMK.



The	set	of	PCRs	used	by	BitLocker	is	known	as	the	Platform	Validation	Profile,
which	can	be	configured	via	Group	Policy	(Computer
Configuration\Administrative	Templates\Windows	Components\BitLocker	Drive
Encryption\Operating	System	Drives\Configure	TPM	platform	validation	profile)
and	depends	on	the	security	requirements	of	your	organization,	as	shown	in
Table	9-2.	PCR	11	must	be	selected	to	enable	BitLocker	protection.

NOTE

If	you	change	anything	protected	by	the	PCRs	specified	in	your	Platform	Validation	Profile,	your	system
will	not	boot	without	either	the	recovery	key	or	recovery	password.	For	example,	if	you	need	to	update	the
BIOS	on	your	system,	suspend	BitLocker	(using	the	BitLocker	Drive	Encryption	Control	Panel	applet)
before	performing	the	update.

BitLocker	Boot	Process
The	actual	measurements	stored	in	the	TPM	PCRs	are	generated	by	the	TPM
itself,	the	TPM	BIOS,	and	Windows.	When	the	system	boots,	the	TPM	does	a	self-
test,	following	which	the	CRTM	in	the	BIOS	measures	its	own	hashing	and	PCR
loading	code	and	writes	the	hash	to	the	first	PCR	of	the	TPM.	It	then	hashes	the
BIOS	and	stores	that	measurement	in	the	first	PCR	as	well.	The	BIOS	in	turn
hashes	the	next	component	in	the	boot	sequence,	the	MBR	of	the	boot	drive,	and
this	process	continues	until	the	operating	system	loader	is	measured.	Each
subsequent	piece	of	code	that	runs	is	responsible	for	measuring	the	code	that	it
loads	and	for	storing	the	measurement	in	the	appropriate	PCR	in	the	TPM.

Finally,	when	the	user	selects	which	operating	system	to	boot,	the	Boot	Manager
(Bootmgr)	reads	the	encrypted	VMK	from	the	volume	and	asks	the	TPM	to	unseal
it.	As	described	previously,	only	if	all	the	measurements	are	the	same	as	when	the
VMK	was	sealed,	including	the	optional	PIN	(password),	will	the	TPM
successfully	decrypt	the	VMK.	This	process	not	only	guarantees	that	the	machine
and	system	files	are	identical	to	the	applications	or	operating	systems	that	are
allowed	to	read	the	drive,	but	also	verifies	the	uniqueness	of	the	operating	system
installation.	For	example,	even	another	identical	Windows	operating	system
installed	on	the	same	machine	will	not	get	access	to	the	drive	because	Bootmgr
takes	an	active	role	in	protecting	the	VMK	from	being	passed	to	an	operating
system	to	which	it	doesn’t	belong	(by	generating	a	MAC	hash	of	several	system



configuration	options).

You	can	think	of	this	scheme	as	a	verification	chain,	where	each	component	in	the
boot	sequence	describes	the	next	component	to	the	TPM.	In	effect,	the	TPM	acts
like	a	safe	with	12	combination	dials,	with	each	dial	containing	2,160	numbers.
Only	if	all	the	PCRs	match	the	original	ones	given	to	it	when	BitLocker	was
enabled	will	the	TPM	divulge	its	secret.	BitLocker	therefore	protects	the	encrypted
data	even	when	the	disk	is	removed	and	placed	in	another	system,	the	system	is
booted	using	a	different	operating	system,	or	the	unencrypted	files	on	the	boot
volume	are	compromised.	Figure	9-22	shows	the	various	steps	of	the	preboot
process	up	until	Winload	begins	loading	the	operating	system.

Figure	9-22.	BitLocker	preboot	process

The	administrator	may	need	to	temporarily	suspend	BitLocker	protection	because	a
component	specified	in	the	Platform	Validation	Profile	needs	to	be	changed	(for
example,	updating	BIOS,	changing	a	drive’s	partition	table,	installing	another
operating	system	on	the	same	disk,	and	so	on).	The	BitLocker	Drive	Encryption
Control	Panel	applet	provides	a	simple	mechanism	for	suspending	BitLocker	(click
Suspend	Protection	for	the	volume).	When	BitLocker	is	suspended,	the	contents	of
the	volume	are	still	encrypted,	but	the	volume	master	key	is	encrypted	with	a
symmetric	clear	key,	which	is	written	to	the	volume’s	BitLocker	metadata.	When	a
volume	is	mounted,	BitLocker	automatically	looks	for	a	clear	key	and	will	be	able
to	decrypt	the	contents	of	the	volume.	When	BitLocker	protection	on	a	volume	is
resumed,	the	clear	key	is	removed	from	the	metadata.



NOTE

Exposing	the	volume	master	key	even	for	a	brief	period	of	time	is	a	security	risk	because	an	attacker	could
access	the	volume	master	key	and	FVEK	when	these	keys	were	exposed	by	the	clear	key,	so	do	not	leave	a
volume	suspended	for	any	longer	than	absolutely	necessary.

BitLocker	Key	Recovery
For	recovery	purposes,	BitLocker	uses	a	recovery	key	(stored	on	a	USB	device)	or
a	recovery	password	(numerical	password),	as	shown	earlier	in	Figure	9-20.
BitLocker	creates	the	recovery	key	and	recovery	password	during	initialization.	A
copy	of	the	VMK	is	encrypted	with	a	256-bit	AES-CCM	key	that	can	be	computed
with	the	recovery	password	and	a	salt	stored	in	the	metadata	block.	The	password
is	a	48-digit	number,	eight	groups	of	6	digits,	with	three	properties	for
checksumming:

Each	group	of	6	digits	must	be	divisible	by	11.	This	check	can	be	used	to
identify	groups	mistyped	by	the	user.

Each	group	of	6	digits	must	be	less	than	216	*	11.	Each	group	contains	16	bits
of	key	information.	The	eight	groups,	therefore,	hold	128	bits	of	key.

The	sixth	digit	in	each	group	is	a	checksum	digit.

Inserting	the	recovery	key	or	typing	the	recovery	password	enables	an	authorized
user	to	regain	access	to	the	encrypted	volume	in	the	event	of	an	attempted	security
breach	or	system	failure.	Figure	9-23	displays	the	prompt	requesting	the	user	to
type	the	recovery	password.



Figure	9-23.	BitLocker	recovery	screen

The	recovery	key	or	password	is	also	used	in	cases	when	parts	of	the	system	have
changed,	resulting	in	different	measurements.	One	common	example	of	this	is
when	a	user	has	modified	the	BCD,	such	as	by	adding	the	debug	option.	Upon
reboot,	Bootmgr	will	detect	the	change	and	ask	the	user	to	validate	it	by	inputting
the	recovery	key.	For	this	reason,	it	is	extremely	important	not	to	lose	this	key,
because	it	isn’t	only	used	for	recovery	but	for	validating	system	changes.	Another
application	of	the	recovery	key	is	for	foreign	volumes.	Foreign	volumes	are
operating	system	volumes	that	were	BitLocker-enabled	on	another	computer	and
have	been	transferred	to	a	different	Windows	computer.	An	administrator	can
unlock	these	volumes	by	entering	the	recovery	password.

Full-Volume	Encryption	Driver
Unlike	EFS,	which	is	implemented	by	the	NTFS	file	system	driver	and	operates	at
the	file	level,	BitLocker	encrypts	at	the	volume	level	using	the	full-volume
encryption	(FVE)	driver	(%SystemRoot%\System32\Drivers\Fvevol.sys),	as	shown
in	Figure	9-24.



Figure	9-24.	BitLocker	filter	driver	implementation

FVE	is	a	filter	driver,	so	it	automatically	sees	all	the	I/O	requests	sent	to	the
volume,	encrypting	blocks	as	they’re	written	and	decrypting	them	as	they’re	read
using	the	FVEK	assigned	to	the	volume	when	it’s	initially	configured	to	use
BitLocker.	Because	the	encryption	and	decryption	happen	beneath	NTFS	in	the
I/O	system,	the	volume	appears	to	NTFS	as	if	it’s	unencrypted,	and	NTFS	is	not
aware	that	BitLocker	is	enabled.	If	you	attempt	to	read	data	from	the	volume	from
outside	Windows,	however,	it	appears	to	be	random	data.

BitLocker	also	uses	an	extra	measure	to	make	plaintext	attacks	in	which	an	attacker
knows	the	contents	of	a	sector	and	uses	that	information	to	try	and	derive	the	key
used	to	encrypt	it	more	difficult.	By	combining	the	FVEK	with	the	sector	number
to	create	the	key	used	to	encrypt	a	particular	sector,	and	passing	the	encrypted	data
through	the	Elephant	diffuser,	BitLocker	ensures	that	every	sector	is	encrypted
with	a	slightly	different	key,	resulting	in	different	encrypted	data	for	different
sectors	even	if	their	contents	are	identical.

BitLocker	encrypts	every	sector	(including	unallocated	sectors)	on	a	volume	with
the	exception	of	the	first	sector	and	three	unencrypted	metadata	blocks	containing
the	encrypted	VMK	and	other	data	used	by	BitLocker.	The	metadata	is	surfaced	in
the	volume’s	System	Volume	Information	directory.

BitLocker	Management



BitLocker	provides	a	variety	of	administrative	interfaces,	each	suited	to	a	particular
role	or	task.	It	provides	a	WMI	interface	(and	works	with	the	TBS—TPM	Base
Services—WMI	interface)	for	programmatic	access	to	the	BitLocker	functionality,
a	set	of	group	policies	that	allow	administrators	to	define	the	behavior	across	the
network	or	a	series	of	machines,	integration	with	Active	Directory,	and	a
command-line	management	program	(%SystemRoot%\System32\Manage-
bde.exe).

Developers	and	system	administrators	with	scripting	familiarity	can	access	the
Win32_Tpm	and	Win32_EncryptableVolume	interfaces	to	protect	keys,	define
authentication	methods,	define	which	PCR	registers	are	used	as	part	of	the
BitLocker	Platform	Validation	Profile,	and	manually	initiate	encryption	or
decryption	of	an	entire	volume.	The	Manage-bde.exe	program,	located	in
%SystemRoot%\System32,	uses	these	interfaces	to	allow	command-line
management	of	the	BitLocker	service.

On	systems	that	are	joined	to	a	domain,	the	key	for	each	machine	can
automatically	be	backed	up	as	part	of	a	key	escrow	service,	allowing	IT
administrators	to	easily	recover	and	gain	access	to	machines	that	are	part	of	the
corporate	network.	Additionally,	various	group	policies	related	to	BitLocker	can	be
configured.	You	can	access	these	by	using	the	Local	Group	Policy	Editor,	under
the	Computer	Configuration,	Administrative	Templates,	Windows	Components,
BitLocker	Drive	Encryption	entry.	For	example,	Figure	9-25	displays	the	option	for
enabling	the	Active	Directory	key	backup	functionality.

If	a	TPM	chip	is	present	on	the	system,	additional	options	(such	as	TPM	Key
Backup)	can	be	accessed	from	the	Trusted	Platform	Module	Services	entry	under
Windows	Components.

To	ensure	easy	access	to	corporate	data,	the	Data	Recovery	Agent	(DRA)	feature
has	been	added	to	BitLocker.	The	DRA	is	most	commonly	configured	via	Group
Policy	and	allows	a	certificate	to	be	specified	as	a	key	protector.	This	allows
anyone	holding	that	certificate	(or	a	smartcard	containing	the	certificate)	to	access
(or	unlock)	a	BitLocker-protected	volume.	See	http://technet.microsoft.com/en-
us/library/dd875560(WS.10).aspx	for	more	information	on	configuring	DRA.

http://technet.microsoft.com/en-us/library/dd875560(WS.10).aspx


Figure	9-25.	BitLocker	Group	Policy	settings

BitLocker	To	Go
USB	flash	disks	have	become	a	popular	method	for	transporting	data	because	of
their	small	size,	low	cost,	and	large	capacity.	However,	it	is	precisely	these	qualities
that	make	USB	flash	disks	a	security	threat.	Gigabytes	of	confidential	information
can	be	stored	on	a	device	the	size	of	an	AA	battery	that	is	easily	lost	or	stolen.
Standard	BitLocker	only	encrypts	NTFS	volumes,	and	all	USB	flash	disks	use	the
FAT	file	system	by	default.	BitLocker	To	Go	(BTG)	now	brings	the	security	of
BitLocker	full-volume	encryption	to	disk	devices	using	the	FAT	file	system.	BTG-
encrypted	flash	disks	can	be	created	only	on	the	Enterprise,	Ultimate,	or	Server
editions	of	Windows.	They	can	be	read	on	any	edition—even	on	older	operating
systems	such	as	Windows	XP	and	Windows	Vista—but	can	be	written	only	on
Windows	7	or	Windows	Server	2008/R2.	To	ensure	that	BTG	is	used,	Group
Policy	can	be	used	to	restrict	writing	to	removable	media	unless	it	is	protected	with
BTG.

Like	standard	BitLocker,	BTG	encrypts	the	volume	using	AES,	the	decryption	key
is	encrypted	with	multiple	key	protectors,	and	a	recovery	key	can	be	saved	to	a	file
or	escrowed	through	Active	Directory.	Unlike	standard	BitLocker,	BTG	does	not
make	use	of	the	TPM	or	public	key	cryptography.	One	of	the	key	protectors	may
be	either	a	user-supplied	password	or	a	smartcard.



BTG	can	be	enabled	in	Explorer	(right-click	on	the	flash	disk,	and	select	Turn	On
BitLocker)	or	from	the	BitLocker	Control	Panel	applet.	Once	it’s	enabled,	BTG
will	create	a	FAT32	discovery	volume	containing	the	files	shown	in	Figure	9-26.
The	purpose	of	the	discovery	volume	is	to	provide	the	stand-alone	BitLockerToGo
application	and	its	MUI	files	(user	interface	strings	in	various	languages)	and
metadata	to	the	host	operating	system.

Figure	9-26.	BitLocker	To	Go	files

The	encrypted	volume	is	implemented	as	one	or	more	cover	files,	named	COV
0000.	ER	to	COV	9999.	ER,	each	of	which	can	have	a	maximum	size	of	4	GB,	as
shown	in	Figures	Figure	9-26	and	Figure	9-27.	Any	extra	space	left	on	the	volume
will	be	filled	with	padding	files	to	prevent	any	additional	files	from	being	added	to
the	discovery	volume.



Figure	9-27.	BitLocker	To	Go	layout

When	the	BitLockerToGo	application	mounts	the	encrypted	virtual	volume,	the
discovery	volume	will	be	hidden	and	is	not	accessible.	The	virtual	volume	may
then	be	accessed	like	any	other	disk.



Volume	Shadow	Copy	Service
The	Volume	Shadow	Copy	Service	(VSS)	is	a	built-in	Windows	mechanism	that
enables	the	creation	of	consistent,	point-in-time	copies	of	data,	known	as	shadow
copies	or	snapshots.	VSS	coordinates	with	applications,	file-system	services,
backup	applications,	fast-recovery	solutions,	and	storage	hardware	to	produce
consistent	shadow	copies.

Shadow	Copies
Shadow	copies	are	created	through	one	of	two	mechanisms—clone	and	copy-on-
write.	The	VSS	provider	(described	in	more	detail	later)	determines	the	method	to
use.	(Providers	can	implement	the	snapshot	as	they	see	fit.	For	example,	certain
hardware	providers	will	take	a	hybrid	approach:	clone	first,	and	then	copy-on-
write.)

Clone	Shadow	Copies
A	clone	shadow	copy,	also	called	a	split	mirror,	is	a	full	duplicate	of	the	original
data	on	a	volume,	created	either	by	software	or	hardware	mirroring.	Software	or
hardware	keeps	a	clone	synchronized	with	the	master	copy	until	the	mirror
connection	is	broken	in	order	to	create	a	shadow	copy.	At	that	moment,	the	live
volume	(also	called	the	original	volume)	and	the	shadow	volume	become
independent.	The	live	volume	is	writable	and	still	accepts	changes,	but	the	shadow
volume	is	read-only	and	stores	contents	of	the	live	volume	at	the	time	it	was
created.

Copy-on-Write	Shadow	Copies
A	copy-on-write	shadow	copy,	also	called	a	differential	copy,	is	a	differential,
rather	than	a	full,	duplicate	of	the	original	data.	Similar	to	a	clone	copy,	differential
copies	can	be	created	by	software	or	hardware	mechanisms.	Whenever	a	change	is
made	to	the	live	data,	the	block	of	data	being	modified	is	copied	to	a	“differences
area”	associated	with	the	shadow	copy	before	the	change	is	written	to	the	live	data
block.	Overlaying	the	modified	data	on	the	live	data	creates	a	view	of	the	live	data
at	the	point	in	time	when	the	shadow	copy	was	created.



NOTE

The	in-box	VSS	provider	that	ships	with	Windows	supports	only	copy-on-write	shadow	copies.

VSS	Architecture
VSS	(%SystemRoot%\System32\Vssvc.exe)	coordinates	VSS	writers,	VSS
providers,	and	VSS	requestors.	A	VSS	writer	is	a	software	component	that	enables
shadow-copy-aware	applications,	such	as	Microsoft	SQL	Server,	Microsoft
Exchange	Server,	and	Active	Directory,	to	receive	freeze	and	thaw	notifications	to
ensure	that	backup	copies	of	their	data	files	are	internally	consistent.	Implementing
a	VSS	provider	allows	an	ISV	or	IHV	with	unique	storage	schemes	to	integrate
with	the	shadow	copy	service.	For	instance,	an	IHV	with	mirrored	storage	devices
might	define	a	shadow	copy	as	the	frozen	half	of	a	split	mirrored	volume.	VSS
requestors	are	the	applications	that	request	the	creation	of	volume	shadow	copies
and	include	backup	utilities	and	the	Windows	System	Restore	feature.	Figure	9-28
shows	the	relationship	between	the	VSS	shadow	copy	service,	writers,	providers,
and	requestors.

Figure	9-28.	VSS	architecture

VSS	Operation
Regardless	of	the	specific	purpose	for	the	copy	and	the	application	making	use	of
VSS,	shadow	copy	creation	follows	the	same	steps,	shown	in	Figure	9-29.	First,	a
requestor	sends	a	command	to	VSS	to	enumerate	writers,	gather	metadata,	and
prepare	for	the	copy	(1).	VSS	asks	each	writer	to	return	information	on	its	restore
capabilities	and	an	XML	description	of	its	backup	components	(2).	Next,	each



writer	prepares	for	the	copy	in	its	own	appropriate	way,	which	might	include
completing	outstanding	transactions	and	flushing	caches.	A	prepare	command	is
sent	to	all	involved	providers	as	well	(3).

At	this	point,	VSS	initiates	the	commit	phase	of	the	copy	(4).	VSS	instructs	each
writer	to	quiesce	its	data	and	temporarily	freeze	all	write	I/O	requests	(read
requests	are	still	passed	through).	VSS	then	flushes	volume	file	system	buffers	and
requests	that	the	volume	file	system	drivers	freeze	their	I/O	by	sending	them	the
IOCTL_VOLSNAP_FLUSH_AND_HOLD_WRITES	device	I/O	control
command,	ensuring	that	all	the	file	system	metadata	is	written	out	to	disk
consistently	(5).	Once	the	system	is	in	this	state,	VSS	sends	a	command	telling	the
provider	to	perform	the	actual	copy	creation	(6).	VSS	allows	up	to	10	seconds	for
the	creation,	after	which	it	aborts	the	operation	if	it	is	not	already	completed	in	this
interval.	After	the	provider	has	created	the	shadow	copy,	VSS	asks	the	file	systems
to	thaw,	or	resume	write	I/O	operations,	by	sending	them	the
IOCTL_VOLSNAP_RELEASE_WRITES	command,	and	it	releases	the	writers
from	their	temporary	freeze.	All	queued	write	I/O	operations	then	proceed	(7).

VSS	next	queries	the	writers	to	confirm	that	I/O	operations	were	successfully	held
during	the	creation	to	ensure	that	the	created	shadow	copy	is	consistent.	If	the
shadow	copy	is	inconsistent	as	the	result	of	file	system	damage,	the	shadow	copy	is
deleted	by	VSS.	In	other	cases	of	writer	failure,	VSS	simply	notifies	the	requestor.
At	this	point,	the	requestor	can	retry	the	procedure	from	(1)	or	wait	for	user	action.
If	the	copy	was	created	consistently,	VSS	tells	the	requestor	the	location	of	the
copy.

An	optional	final	step	is	to	make	the	snapshot	device(s)	writable,	such	that
interested	writers	such	as	TxF	(transactional	NTFS)	can	perform	additional
recovery	actions	on	the	snapshot	device	itself.	After	this	recovery	step,	the
snapshot	is	sealed	read-only	and	handed	out	to	the	requestor.

NOTE

VSS	also	allows	the	surfacing	of	shadow	copy	devices	on	a	different	server—called	transportable	shadow
copies.



Figure	9-29.	VSS	shadow	copy	creation

Shadow	Copy	Provider
The	Shadow	Copy	Provider	(%SystemRoot%\System32\Drivers\Swprov.dll)
implements	software-based	differential	copies	with	the	aid	of	the	Volume	Shadow
Copy	Driver	(Volsnap—%SystemRoot%\System32\Drivers\Volsnap.sys).	Volsnap
is	a	storage	filter	driver	that	resides	between	file	system	drivers	and	volume
manager	drivers	(the	drivers	that	present	views	of	the	sectors	that	represent	a
volume)	so	that	the	I/O	system	forwards	it	I/O	operations	directed	at	a	volume.

When	asked	by	VSS	to	create	a	shadow	copy,	Volsnap	queues	I/O	operations
directed	at	the	target	volume	and	creates	a	differential	file	in	the	volume’s	System
Volume	Information	directory	to	store	volume	data	that	subsequently	changes.
Volsnap	also	creates	a	virtual	volume	through	which	applications	can	access	the
shadow	copy.	For	example,	if	a	volume’s	name	in	the	object	manager	namespace	is
\Device\HarddiskVolume1,	the	shadow	volume	would	have	a	name	like
\Device\HarddiskVolumeShadowCopyN,	where	N	is	a	unique	ID.

Whenever	Volsnap	sees	a	write	operation	directed	at	a	live	volume,	it	reads	a	copy
of	the	sectors	that	will	be	overwritten	into	a	paging	file—a	backed	memory	section
that’s	associated	with	the	corresponding	shadow	copy.	It	services	read	operations
directed	at	the	shadow	copy	of	modified	sectors	from	this	memory	section,	and	it
services	reads	to	unmodified	areas	by	reading	from	the	live	volume.	Because	the
backup	utility	won’t	save	the	paging	file	or	the	contents	of	the	system-managed
System	Volume	Information	directory	located	on	every	volume	(which	includes



shadow	copy	differential	files),	Volsnap	uses	the	defragmentation	API	to	determine
the	location	of	these	files	and	directories	and	does	not	record	changes	to	them.

Figure	9-30	demonstrates	the	behavior	of	applications	accessing	a	volume	and	a
backup	application	accessing	the	volume’s	shadow	volume	copy.	When	an
application	writes	to	a	sector	after	the	snapshot	time,	the	Volsnap	driver	makes	a
backup	copy,	like	it	has	for	sectors	a,	b,	and	c	of	volume	C:	in	the	figure.
Subsequently,	when	an	application	reads	from	sector	c,	Volsnap	directs	the	read	to
volume	C:,	but	when	a	backup	application	reads	from	sector	c,	Volsnap	reads	the
sector	from	the	snapshot.	When	a	read	occurs	for	any	unmodified	sector,	such	as
d,	Volsnap	routes	the	read	to	volume	C:.

NOTE

Volsnap	avoids	copy-on-write	operations	for	the	paging	file,	hibernation	file,	and	the	difference	data	stored
in	the	System	Volume	Information	folder.	All	other	files	will	get	copy-on-write	protection.

Figure	9-30.	Volsnap	operation

EXPERIMENT:	LOOKING	AT	MICROSOFT	SHADOW	COPY	PROVIDER	FILTER
DEVICE	OBJECTS



You	can	see	the	Microsoft	Shadow	Copy	Provider	driver’s	device	objects	attached	to	each	volume	device	on
a	Windows	system	in	a	kernel	debugger.	Every	system	has	at	least	one	volume,	and	the	following	command
displays	the	device	object	of	the	first	volume	on	a	system:

1: kd> !devobj \device\harddiskvolume1
Device object (88cfd908) is for:
 HarddiskVolume1 \Driver\volmgr DriverObject 8861a550
Current Irp 00000000 RefCount 3274 Type 00000007 Flags 00201150
Vpb 88cfc3f8 Dacl 8bbcf7ec DevExt 88cfd9c0 DevObjExt 88cfdaa8 Dope
   88cfdb38 DevNode 88cfc008
ExtensionFlags (0x00000800)  DOE_DEFAULT_SD_PRESENT
Characteristics (0000000000)
AttachedDevice (Upper) 88cfd3b8 \Driver\fvevol
Device queue is not busy.
1: kd> !devstack 88cfd908
  !DevObj   !DrvObj            !DevExt   ObjectName
  88d015a0  \Driver\volsnap    88d01658
  88cfc478  \Driver\rdyboost   88cfc530
  88cfd3b8  \Driver\fvevol     88cfd470
> 88cfd908  \Driver\volmgr     88cfd9c0  HarddiskVolume1
!DevNode 88cfc008 :
  DeviceInst is "STORAGE\Volume\{53ffaec4-5e9c-11e1-a633-
806e6f6e6963}#0000000000100000"
  ServiceName is "volsnap"

The	address	of	HarddiskVolume1’s	device	object	(88cfd908)	is	passed	to	the	!devstack	command,	which
displays	the	device	objects	layered	on	top	of	it.

Uses	in	Windows
Several	features	in	Windows	make	use	of	VSS,	including	Backup,	System	Restore,
Previous	Versions,	and	Shadow	Copies	for	Shared	Folders.	We’ll	look	at	some	of
these	uses	and	describe	why	VSS	is	needed	and	which	VSS	functionality	is
applicable	to	the	applications.

Backup
A	limitation	of	many	backup	utilities	relates	to	open	files.	If	an	application	has	a
file	open	for	exclusive	access,	a	backup	utility	can’t	gain	access	to	the	file’s
contents.	Even	if	the	backup	utility	can	access	an	open	file,	the	utility	runs	the	risk
of	creating	an	inconsistent	backup.	Consider	an	application	that	updates	a	file	at	its
beginning	and	then	at	its	end.	A	backup	utility	saving	the	file	during	this	operation
might	record	an	image	of	the	file	that	reflects	the	start	of	the	file	before	the
application’s	modification	and	the	end	after	the	modification.	If	the	file	is	later
restored	the	application	might	deem	the	entire	file	corrupt	because	it	might	be
prepared	to	handle	the	case	where	the	beginning	has	been	modified	and	not	the
end,	but	not	vice	versa.	These	two	problems	illustrate	why	most	backup	utilities



skip	open	files	altogether.

EXPERIMENT:	VIEWING	SHADOW	VOLUME	DEVICE	OBJECTS

You	can	see	the	existence	of	shadow	volume	device	objects	in	the	object	manager	namespace	by	starting
the	Windows	backup	application	(under	System	Tools	in	the	Accessories	folder	of	the	Start	menu),	and	then
running	WinObj	to	see	the	objects	in	the	\Device	subdirectory,	as	shown	here.

Instead	of	opening	files	to	back	up	on	the	live	volume,	the	backup	utility	opens
them	on	the	shadow	volume.	A	shadow	volume	represents	a	point-in-time	view	of
a	volume,	so	by	relying	on	the	shadow	copy	facility,	the	backup	utility	overcomes
both	the	backup	problems	related	to	open	files.

Previous	Versions	and	System	Restore
The	Windows	Previous	Versions	feature	also	integrates	support	for	automatically
creating	volume	snapshots,	typically	one	per	day,	that	you	can	access	through
Explorer	(by	opening	a	Properties	dialog	box)	using	the	same	interface	used	by
Shadow	Copies	for	Shared	Folders.	This	enables	you	to	view,	restore,	or	copy	old
versions	of	files	and	directories	that	you	might	have	accidentally	modified	or
deleted.

Windows	also	takes	advantage	of	volume	snapshots	to	unify	user	and	system	data-



protection	mechanisms	and	avoid	saving	redundant	backup	data.	When	an
application	installation	or	configuration	change	causes	incorrect	or	undesirable
behaviors,	you	can	use	System	Restore	to	restore	system	files	and	data	to	their	state
as	it	existed	when	a	restore	point	was	created.	When	you	use	the	System	Restore
user	interface	in	Windows	7	to	go	back	to	a	restore	point,	you’re	actually	copying
earlier	versions	of	modified	system	files	from	the	snapshot	associated	with	the
restore	point	to	the	live	volume.

EXPERIMENT:	NAVIGATING	THROUGH	PREVIOUS	VERSIONS

As	you	saw	earlier,	each	time	Windows	creates	a	new	system	restore	point,	this	results	in	a	shadow	copy
being	taken	for	that	volume.	You	can	use	Windows	Explorer	to	navigate	through	time	and	see	older	copies
of	each	drive	being	shadowed.	To	see	a	list	of	all	previous	versions	of	an	entire	volume,	right-click	on	a
partition,	such	as	C:,	and	select	Restore	Previous	Versions.	You	will	see	a	dialog	box	similar	to	the	one
shown	here.

Pick	any	of	the	versions	shown,	and	then	click	the	Open	button.	This	opens	a	new	Explorer	window
displaying	that	volume	at	the	point	in	time	when	the	snapshot	was	taken.	The	path	shown	will	include
localhost\C$\<volume	label>	(<drive>:)	(<date>,	<time>),	which	is	how	Explorer	virtualizes	the	different
shadow	copies	taken.	(C$	is	the	local	hidden	default	share	that	Windows	networking	uses;	for	more
information,	see	Chapter	7,	“Networking,”	in	Part	1.)	Note	that	Explorer	will	normally	display	a	path	as	a
friendly	name	in	its	address	bar.	To	see	the	actual	path,	click	once	within	the	address	bar.

NOTE
If	your	disk	is	drastically	low	on	free	space,	the	space	consumed	by	the	shadow
copy	will	be	reclaimed,	in	which	case	you	might	not	have	any	previous	versions.



Internally,	each	volume	shadow	copy	shown	isn’t	a	complete	copy	of	the	drive,	so	it
doesn’t	duplicate	the	entire	contents	twice,	which	would	double	disk	space
requirements	for	every	single	copy.	Previous	Versions	uses	the	copy-on-write
mechanism	described	earlier	to	create	shadow	copies.	For	example,	if	the	only	file
that	changed	between	time	A	and	time	B,	when	a	volume	shadow	copy	was	taken,
is	New.txt,	the	shadow	copy	will	contain	only	New.txt.	This	allows	VSS	to	be	used
in	client	scenarios	with	minimal	visible	impact	on	the	user,	since	entire	drive
contents	are	not	duplicated	and	size	constraints	remain	small.

Although	shadow	copies	for	previous	versions	are	taken	daily	(or	whenever	a
Windows	Update	or	software	installation	is	performed,	for	example),	you	can
manually	request	a	copy	to	be	taken.	This	can	be	useful	if,	for	example,	you’re
about	to	make	major	changes	to	the	system	or	have	just	copied	a	set	of	files	you
want	to	save	immediately	for	the	purpose	of	creating	a	previous	version.	You	can
access	these	settings	by	right-clicking	Computer	on	the	Start	Menu	or	desktop,
selecting	Properties,	and	then	clicking	System	Protection.	You	can	also	open
Control	Panel,	click	System	And	Maintenance,	and	then	click	System.	The	dialog
box	shown	in	Figure	9-31	allows	you	to	select	the	volumes	on	which	to	enable
System	Restore	(which	also	affects	previous	versions)	and	to	create	an	immediate
restore	point	and	name	it.



Figure	9-31.	System	Restore	and	Previous	Versions	configuration

EXPERIMENT:	MAPPING	VOLUME	SHADOW	DEVICE	OBJECTS

Although	you	can	browse	previous	versions	by	using	Explorer,	this	doesn’t	give	you	a	permanent	interface
through	which	you	can	access	that	view	of	the	drive	in	an	application-independent,	persistent	way.	You	can
use	the	Vssadmin	utility	(%SystemRoot%\System32\Vssadmin.exe)	included	with	Windows	to	view	all	the
shadow	copies	taken,	and	you	can	then	take	advantage	of	symbolic	links	to	map	a	copy.	This	experiment
will	show	you	how.

1.	 List	all	shadow	copies	available	on	the	system	by	using	the	list	shadows	command:

vssadmin	list	shadows

You’ll	see	output	that	resembles	the	following.	Each	entry	is	either	a	previous	version	copy	or	a
shared	folder	with	shadow	copies	enabled.

vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool
(C) Copyright 2001-2005 Microsoft Corp.

Contents of shadow copy set ID: {dfe617b7-ef2b-4280-9f4e-ddf94c2ccfac}
   Contained 1 shadow copies at creation time: 8/27/2008 1:59:58 PM
      Shadow Copy ID: {f455a794-6b0c-49e4-9ae5-e54647fd1f31}
         Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-
806e6f6e6963}\
         Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1
         Originating Machine: WIN-SL5V78KD01W
         Service Machine: WIN-SL5V78KD01W
         Provider: 'Microsoft Software Shadow Copy provider 1.0'
         Type: ClientAccessibleWriters



         Attributes: Persistent, Client-accessible, No auto release,
             Differential, Auto recovered

Contents of shadow copy set ID: {02dad996-e7b0-4d2d-9fb9-7e692be8fe3c}
   Contained 1 shadow copies at creation time: 8/29/2008 1:51:14 AM
      Shadow Copy ID: {79c9ee14-ca1f-4e46-b3f0-0dc98f8eb0d4}
         Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-
806e6f6e6963}\
         Shadow Copy Volume: \\?
\GLOBALROOT\Device\HarddiskVolumeShadowCopy2.
...

Note	that	each	shadow	copy	set	ID	displayed	in	this	output	matches	the	C$	entries	shown	by
Explorer	in	the	previous	experiment	(although	the	date	and	time	may	be	formatted	differently),	and
the	tool	also	displays	the	shadow	copy	volume,	which	corresponds	to	the	shadow	copy	device	objects
that	you	can	see	with	WinObj.

2.	 You	can	now	use	the	Mklink.exe	utility	to	create	a	directory	symbolic	link	(for	more	information	on
symbolic	links,	see	Chapter	12),	which	will	let	you	map	a	shadow	copy	into	an	actual	location.	Use
the	/d	flag	to	create	a	directory	link,	and	specify	a	folder	on	your	drive	to	map	to	the	given	volume
device	object.	Make	sure	to	append	the	path	with	a	backslash	(\)	as	shown	here:

mklink	/d	c:\old	\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2\

3.	 Finally,	with	the	Subst.exe	utility,	you	can	map	the	c:\old	directory	to	a	real	volume	using	the
command	shown	here:

subst	g:	c:\old

You	can	now	access	the	old	contents	of	your	drive	from	any	application	by	using	the	c:\old	path,	or
from	any	command-prompt	utility	by	using	the	g:\	path—for	example,	try	dir	g:	to	list	the	contents
of	your	drive.



Conclusion
In	this	chapter,	we’ve	reviewed	the	on-disk	organization,	components,	and
operation	of	Windows	disk	storage	management.	In	Chapter	11,	we’ll	delve	into
the	cache	manager,	an	executive	component	integral	to	the	operation	of	file	system
drivers	that	mount	the	volume	types	presented	in	this	chapter.	However,	next,	we’ll
take	a	close	look	at	an	integral	component	of	the	Windows	kernel:	the	memory
manager.



Chapter	10.	Memory	Management
In	this	chapter,	you’ll	learn	how	Windows	implements	virtual	memory	and	how	it
manages	the	subset	of	virtual	memory	kept	in	physical	memory.	We’ll	also	describe
the	internal	structure	and	components	that	make	up	the	memory	manager,
including	key	data	structures	and	algorithms.	Before	examining	these	mechanisms,
we’ll	review	the	basic	services	provided	by	the	memory	manager	and	key	concepts
such	as	reserved	memory	versus	committed	memory	and	shared	memory.



Introduction	to	the	Memory	Manager
By	default,	the	virtual	size	of	a	process	on	32-bit	Windows	is	2	GB.	If	the	image	is
marked	specifically	as	large	address	space	aware,	and	the	system	is	booted	with	a
special	option	(described	later	in	this	chapter),	a	32-bit	process	can	grow	to	be	3
GB	on	32-bit	Windows	and	to	4	GB	on	64-bit	Windows.	The	process	virtual
address	space	size	on	64-bit	Windows	is	7,152	GB	on	IA64	systems	and	8,192	GB
on	x64	systems.	(This	value	could	be	increased	in	future	releases.)

As	you	saw	in	Chapter	2,	“System	Architecture,”	in	Part	1	(specifically	in	Table	2-
2),	the	maximum	amount	of	physical	memory	currently	supported	by	Windows
ranges	from	2	GB	to	2,048	GB,	depending	on	which	version	and	edition	of
Windows	you	are	running.	Because	the	virtual	address	space	might	be	larger	or
smaller	than	the	physical	memory	on	the	machine,	the	memory	manager	has	two
primary	tasks:

Translating,	or	mapping,	a	process’s	virtual	address	space	into	physical	memory
so	that	when	a	thread	running	in	the	context	of	that	process	reads	or	writes	to
the	virtual	address	space,	the	correct	physical	address	is	referenced.	(The	subset
of	a	process’s	virtual	address	space	that	is	physically	resident	is	called	the
working	set.	Working	sets	are	described	in	more	detail	later	in	this	chapter.)

Paging	some	of	the	contents	of	memory	to	disk	when	it	becomes
overcommitted—that	is,	when	running	threads	or	system	code	try	to	use	more
physical	memory	than	is	currently	available—and	bringing	the	contents	back
into	physical	memory	when	needed.

In	addition	to	providing	virtual	memory	management,	the	memory	manager
provides	a	core	set	of	services	on	which	the	various	Windows	environment
subsystems	are	built.	These	services	include	memory	mapped	files	(internally
called	section	objects),	copy-on-write	memory,	and	support	for	applications	using
large,	sparse	address	spaces.	In	addition,	the	memory	manager	provides	a	way	for	a
process	to	allocate	and	use	larger	amounts	of	physical	memory	than	can	be
mapped	into	the	process	virtual	address	space	at	one	time	(for	example,	on	32-bit
systems	with	more	than	3	GB	of	physical	memory).	This	is	explained	in	the	section
Address	Windowing	Extensions	later	in	this	chapter.



NOTE

There	is	a	Control	Panel	applet	that	provides	control	over	the	size,	number,	and	locations	of	the	paging	files,
and	its	nomenclature	suggests	that	“virtual	memory”	is	the	same	thing	as	the	paging	file.	This	is	not	the
case.	The	paging	file	is	only	one	aspect	of	virtual	memory.	In	fact,	even	if	you	run	with	no	page	file	at	all,
Windows	will	still	be	using	virtual	memory.	This	distinction	is	explained	in	more	detail	later	in	this	chapter.

Memory	Manager	Components
The	memory	manager	is	part	of	the	Windows	executive	and	therefore	exists	in	the
file	Ntoskrnl.exe.	No	parts	of	the	memory	manager	exist	in	the	HAL.	The	memory
manager	consists	of	the	following	components:

A	set	of	executive	system	services	for	allocating,	deallocating,	and	managing
virtual	memory,	most	of	which	are	exposed	through	the	Windows	API	or
kernel-mode	device	driver	interfaces

A	translation-not-valid	and	access	fault	trap	handler	for	resolving	hardware-
detected	memory	management	exceptions	and	making	virtual	pages	resident	on
behalf	of	a	process

Six	key	top-level	routines,	each	running	in	one	of	six	different	kernel-mode
threads	in	the	System	process	(see	the	experiment	“Mapping	a	System	Thread
to	a	Device	Driver,”	which	shows	how	to	identify	system	threads,	in	Chapter	2
in	Part	1):

—	The	balance	set	manager	(KeBalanceSetManager,	priority	16).	It	calls	an
inner	routine,	the	working	set	manager	(MmWorkingSetManager),	once	per
second	as	well	as	when	free	memory	falls	below	a	certain	threshold.	The
working	set	manager	drives	the	overall	memory	management	policies,	such	as
working	set	trimming,	aging,	and	modified	page	writing.

—	The	process/stack	swapper	(KeSwapProcessOrStack,	priority	23)	performs
both	process	and	kernel	thread	stack	inswapping	and	outswapping.	The	balance
set	manager	and	the	thread-scheduling	code	in	the	kernel	awaken	this	thread
when	an	inswap	or	outswap	operation	needs	to	take	place.

—	The	modified	page	writer	(MiModifiedPageWriter,	priority	17)	writes	dirty
pages	on	the	modified	list	back	to	the	appropriate	paging	files.	This	thread	is
awakened	when	the	size	of	the	modified	list	needs	to	be	reduced.



—	The	mapped	page	writer	(MiMappedPageWriter,	priority	17)	writes	dirty
pages	in	mapped	files	to	disk	(or	remote	storage).	It	is	awakened	when	the	size
of	the	modified	list	needs	to	be	reduced	or	if	pages	for	mapped	files	have	been
on	the	modified	list	for	more	than	5	minutes.	This	second	modified	page	writer
thread	is	necessary	because	it	can	generate	page	faults	that	result	in	requests	for
free	pages.	If	there	were	no	free	pages	and	there	was	only	one	modified	page
writer	thread,	the	system	could	deadlock	waiting	for	free	pages.

—	The	segment	dereference	thread	(MiDereferenceSegmentThread,	priority
18)	is	responsible	for	cache	reduction	as	well	as	for	page	file	growth	and
shrinkage.	(For	example,	if	there	is	no	virtual	address	space	for	paged	pool
growth,	this	thread	trims	the	page	cache	so	that	the	paged	pool	used	to	anchor	it
can	be	freed	for	reuse.)

—	The	zero	page	thread	(MmZeroPageThread,	base	priority	0)	zeroes	out
pages	on	the	free	list	so	that	a	cache	of	zero	pages	is	available	to	satisfy	future
demand-zero	page	faults.	Unlike	the	other	routines	described	here,	this	routine
is	not	a	top-level	thread	function	but	is	called	by	the	top-level	thread	routine
Phase1Initialization.	MmZeroPageThread	never	returns	to	its	caller,	so	in	effect
the	Phase	1	Initialization	thread	becomes	the	zero	page	thread	by	calling	this
routine.	Memory	zeroing	in	some	cases	is	done	by	a	faster	function	called
MiZeroInParallel.	See	the	note	in	the	section	Page	List	Dynamics	later	in	this
chapter.

Each	of	these	components	is	covered	in	more	detail	later	in	the	chapter.

Internal	Synchronization
Like	all	other	components	of	the	Windows	executive,	the	memory	manager	is	fully
reentrant	and	supports	simultaneous	execution	on	multiprocessor	systems—that	is,
it	allows	two	threads	to	acquire	resources	in	such	a	way	that	they	don’t	corrupt	each
other’s	data.	To	accomplish	the	goal	of	being	fully	reentrant,	the	memory	manager
uses	several	different	internal	synchronization	mechanisms,	such	as	spinlocks,	to
control	access	to	its	own	internal	data	structures.	(Synchronization	objects	are
discussed	in	Chapter	3,	“System	Mechanisms,”	in	Part	1.)

Some	of	the	systemwide	resources	to	which	the	memory	manager	must
synchronize	access	include:



Dynamically	allocated	portions	of	the	system	virtual	address	space

System	working	sets

Kernel	memory	pools

The	list	of	loaded	drivers

The	list	of	paging	files

Physical	memory	lists

Image	base	randomization	(ASLR)	structures

Each	individual	entry	in	the	page	frame	number	(PFN)	database

Per-process	memory	management	data	structures	that	require	synchronization
include	the	working	set	lock	(held	while	changes	are	being	made	to	the	working	set
list)	and	the	address	space	lock	(held	whenever	the	address	space	is	being
changed).	Both	these	locks	are	implemented	using	pushlocks.

Examining	Memory	Usage
The	Memory	and	Process	performance	counter	objects	provide	access	to	most	of
the	details	about	system	and	process	memory	utilization.	Throughout	the	chapter,
we’ll	include	references	to	specific	performance	counters	that	contain	information
related	to	the	component	being	described.	We’ve	included	relevant	examples	and
experiments	throughout	the	chapter.	One	word	of	caution,	however:	different
utilities	use	varying	and	sometimes	inconsistent	or	confusing	names	when
displaying	memory	information.	The	following	experiment	illustrates	this	point.
(We’ll	explain	the	terms	used	in	this	example	in	subsequent	sections.)

EXPERIMENT:	VIEWING	SYSTEM	MEMORY	INFORMATION

The	Performance	tab	in	the	Windows	Task	Manager,	shown	in	the	following	screen	shot,	displays	basic
system	memory	information.	This	information	is	a	subset	of	the	detailed	memory	information	available
through	the	performance	counters.	It	includes	data	on	both	physical	and	virtual	memory	usage.



The	following	table	shows	the	meaning	of	the	memory-related	values.

Task
Manager
Value

Definition

Memory
bar
histogram

Bar/chart	line	height	shows	physical	memory	in	use	by	Windows	(not	available	as	a
performance	counter).	The	remaining	height	of	the	graph	is	equal	to	the	Available
counter	in	the	Physical	Memory	section,	described	later	in	the	table.	The	total	height	of
the	graph	is	equal	to	the	Total	counter	in	that	section.	This	represents	the	total	RAM
usable	by	the	operating	system,	and	does	not	include	BIOS	shadow	pages,	device
memory,	and	so	on.

Physical
Memory
(MB):
Total

Physical	memory	usable	by	Windows

Physical
Memory
(MB):
Cached

Sum	of	the	following	performance	counters	in	the	Memory	object:	Cache	Bytes,
Modified	Page	List	Bytes,	Standby	Cache	Core	Bytes,	Standby	Cache	Normal	Priority
Bytes,	and	Standby	Cache	Reserve	Bytes	(all	in	Memory	object)

Physical
Memory
(MB):
Available

Amount	of	memory	that	is	immediately	available	for	use	by	the	operating	system,
processes,	and	drivers.	Equal	to	the	combined	size	of	the	standby,	free,	and	zero	page
lists.



Physical
Memory
(MB):
Free

Free	and	zero	page	list	bytes

Kernel
Memory
(MB):
Paged

Pool	paged	bytes.	This	is	the	total	size	of	the	pool,	including	both	free	and	allocated
regions

Kernel
Memory
(MB):
Nonpaged

Pool	nonpaged	bytes.	This	is	the	total	size	of	the	pool,	including	both	free	and	allocated
regions

System:
Commit
(two
numbers
shown)

Equal	to	performance	counters	Committed	Bytes	and	Commit	Limit,	respectively

To	see	the	specific	usage	of	paged	and	nonpaged	pool,	use	the	Poolmon	utility,	described	in	the	Monitoring
Pool	Usage	section.

The	Process	Explorer	tool	from	Windows	Sysinternals	(http://www.microsoft.com/technet/sysinternals)	can
show	considerably	more	data	about	physical	and	virtual	memory.	On	its	main	screen,	click	View	and	then
System	Information,	and	then	choose	the	Memory	tab.	Here	is	an	example	display	from	a	32-bit	Windows
system:

We	will	explain	most	of	these	additional	counters	in	the	relevant	sections	later	in	this	chapter.

http://www.microsoft.com/technet/sysinternals


Two	other	Sysinternals	tools	show	extended	memory	information:

VMMap	shows	the	usage	of	virtual	memory	within	a	process	to	an	extremely	fine	level	of	detail.

RAMMap	shows	detailed	physical	memory	usage.

These	tools	will	be	featured	in	experiments	found	later	in	this	chapter.

Finally,	the	!vm	command	in	the	kernel	debugger	shows	the	basic	memory	management	information
available	through	the	memory-related	performance	counters.	This	command	can	be	useful	if	you’re	looking
at	a	crash	dump	or	hung	system.	Here’s	an	example	of	its	output	from	a	4-GB	Windows	client	system:

1: kd> !vm

*** Virtual Memory Usage ***
        Physical Memory:      851757 (   3407028 Kb)
        Page File: \??\C:\pagefile.sys
          Current:   3407028 Kb  Free Space:   3407024 Kb
          Minimum:   3407028 Kb  Maximum:      4193280 Kb
        Available Pages:      699186 (   2796744 Kb)
        ResAvail Pages:       757454 (   3029816 Kb)
        Locked IO Pages:           0 (         0 Kb)
        Free System PTEs:     370673 (   1482692 Kb)
        Modified Pages:         9799 (     39196 Kb)
        Modified PF Pages:      9798 (     39192 Kb)
        NonPagedPool Usage:        0 (         0 Kb)
        NonPagedPoolNx Usage:   8735 (     34940 Kb)
        NonPagedPool Max:     522368 (   2089472 Kb)
        PagedPool 0 Usage:     17573 (     70292 Kb)
        PagedPool 1 Usage:      2417 (      9668 Kb)
        PagedPool 2 Usage:         0 (         0 Kb)
        PagedPool 3 Usage:         0 (         0 Kb)
        PagedPool 4 Usage:        28 (       112 Kb)
        PagedPool Usage:       20018 (     80072 Kb)
        PagedPool Maximum:    523264 (   2093056 Kb)
        Session Commit:         6218 (     24872 Kb)
        Shared Commit:         18591 (     74364 Kb)
        Special Pool:              0 (         0 Kb)
        Shared Process:         2151 (      8604 Kb)
        PagedPool Commit:      20031 (     80124 Kb)
        Driver Commit:          4531 (     18124 Kb)
        Committed pages:      179178 (    716712 Kb)
        Commit limit:        1702548 (   6810192 Kb)

        Total Private:         66073 (    264292 Kb)
         0a30 CCC.exe          11078 (     44312 Kb)
         0548 dwm.exe           6548 (     26192 Kb)
         091c MOM.exe           6103 (     24412 Kb)
    ...

We	will	describe	many	of	the	details	of	the	output	of	this	command	later	in	this	chapter.



Services	Provided	by	the	Memory	Manager
The	memory	manager	provides	a	set	of	system	services	to	allocate	and	free	virtual
memory,	share	memory	between	processes,	map	files	into	memory,	flush	virtual
pages	to	disk,	retrieve	information	about	a	range	of	virtual	pages,	change	the
protection	of	virtual	pages,	and	lock	the	virtual	pages	into	memory.

Like	other	Windows	executive	services,	the	memory	management	services	allow
their	caller	to	supply	a	process	handle	indicating	the	particular	process	whose
virtual	memory	is	to	be	manipulated.	The	caller	can	thus	manipulate	either	its	own
memory	or	(with	the	proper	permissions)	the	memory	of	another	process.	For
example,	if	a	process	creates	a	child	process,	by	default	it	has	the	right	to
manipulate	the	child	process’s	virtual	memory.	Thereafter,	the	parent	process	can
allocate,	deallocate,	read,	and	write	memory	on	behalf	of	the	child	process	by
calling	virtual	memory	services	and	passing	a	handle	to	the	child	process	as	an
argument.	This	feature	is	used	by	subsystems	to	manage	the	memory	of	their	client
processes.	It	is	also	essential	for	implementing	debuggers	because	debuggers	must
be	able	to	read	and	write	to	the	memory	of	the	process	being	debugged.

Most	of	these	services	are	exposed	through	the	Windows	API.	The	Windows	API
has	three	groups	of	functions	for	managing	memory	in	applications:	heap	functions
(Heapxxx	and	the	older	interfaces	Localxxx	and	Globalxxx,	which	internally	make
use	of	the	Heapxxx	APIs),	which	may	be	used	for	allocations	smaller	than	a	page;
virtual	memory	functions,	which	operate	with	page	granularity	(Virtualxxx);	and
memory	mapped	file	functions	(CreateFileMapping,	CreateFileMappingNuma,
MapViewOfFile,	MapViewOfFileEx,	and	MapViewOfFileExNuma).	(We’ll
describe	the	heap	manager	later	in	this	chapter.)

The	memory	manager	also	provides	a	number	of	services	(such	as	allocating	and
deallocating	physical	memory	and	locking	pages	in	physical	memory	for	direct
memory	access	[DMA]	transfers)	to	other	kernel-mode	components	inside	the
executive	as	well	as	to	device	drivers.	These	functions	begin	with	the	prefix	Mm.
In	addition,	though	not	strictly	part	of	the	memory	manager,	some	executive
support	routines	that	begin	with	Ex	are	used	to	allocate	and	deallocate	from	the
system	heaps	(paged	and	nonpaged	pool)	as	well	as	to	manipulate	look-aside	lists.
We’ll	touch	on	these	topics	later	in	this	chapter	in	the	section	Kernel-Mode	Heaps



(System	Memory	Pools)).

Large	and	Small	Pages
The	virtual	address	space	is	divided	into	units	called	pages.	That	is	because	the
hardware	memory	management	unit	translates	virtual	to	physical	addresses	at	the
granularity	of	a	page.	Hence,	a	page	is	the	smallest	unit	of	protection	at	the
hardware	level.	(The	various	page	protection	options	are	described	in	the	section
Protecting	Memory	later	in	the	chapter.)	The	processors	on	which	Windows	runs
support	two	page	sizes,	called	small	and	large.	The	actual	sizes	vary	based	on	the
processor	architecture,	and	they	are	listed	in	Table	10-1.

Table	10-1.	Page	Sizes

Architecture Small
Page
Size

Large	Page	Size Small	Pages
per	Large
Page

x86 4	KB 4	MB	(2	MB	if	Physical	Address	Extension	(PAE)
enabled	(PAE	is	described	later	in	the	chapter)

1,024	(512	with
PAE)

x64 4	KB 2	MB 512

IA64 8	KB 16	MB 2,048

NOTE

IA64	processors	support	a	variety	of	dynamically	configurable	page	sizes,	from	4	KB	up	to	256	MB.
Windows	on	Itanium	uses	8	KB	and	16	MB	for	small	and	large	pages,	respectively,	as	a	result	of
performance	tests	that	confirmed	these	values	as	optimal.	Additionally,	recent	x64	processors	support	a	size
of	1	GB	for	large	pages,	but	Windows	does	not	use	this	feature.

The	primary	advantage	of	large	pages	is	speed	of	address	translation	for	references
to	other	data	within	the	large	page.	This	advantage	exists	because	the	first
reference	to	any	byte	within	a	large	page	will	cause	the	hardware’s	translation	look-
aside	buffer	(TLB,	described	in	a	later	section)	to	have	in	its	cache	the	information
necessary	to	translate	references	to	any	other	byte	within	the	large	page.	If	small
pages	are	used,	more	TLB	entries	are	needed	for	the	same	range	of	virtual
addresses,	thus	increasing	recycling	of	entries	as	new	virtual	addresses	require
translation.	This,	in	turn,	means	having	to	go	back	to	the	page	table	structures



when	references	are	made	to	virtual	addresses	outside	the	scope	of	a	small	page
whose	translation	has	been	cached.	The	TLB	is	a	very	small	cache,	and	thus	large
pages	make	better	use	of	this	limited	resource.

To	take	advantage	of	large	pages	on	systems	with	more	than	2	GB	of	RAM,
Windows	maps	with	large	pages	the	core	operating	system	images	(Ntoskrnl.exe
and	Hal.dll)	as	well	as	core	operating	system	data	(such	as	the	initial	part	of
nonpaged	pool	and	the	data	structures	that	describe	the	state	of	each	physical
memory	page).	Windows	also	automatically	maps	I/O	space	requests	(calls	by
device	drivers	to	MmMapIoSpace)	with	large	pages	if	the	request	is	of	satisfactory
large	page	length	and	alignment.	In	addition,	Windows	allows	applications	to	map
their	images,	private	memory,	and	page-file-backed	sections	with	large	pages.	(See
the	MEM_LARGE_PAGE	flag	on	the	VirtualAlloc,	VirtualAllocEx,	and
VirtualAllocExNuma	functions.)	You	can	also	specify	other	device	drivers	to	be
mapped	with	large	pages	by	adding	a	multistring	registry	value	to
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\LargePageDrivers	and	specifying	the	names	of	the	drivers	as
separately	null-terminated	strings.

Attempts	to	allocate	large	pages	may	fail	after	the	operating	system	has	been
running	for	an	extended	period,	because	the	physical	memory	for	each	large	page
must	occupy	a	significant	number	(see	Table	10-1)	of	physically	contiguous	small
pages,	and	this	extent	of	physical	pages	must	furthermore	begin	on	a	large	page
boundary.	(For	example,	physical	pages	0	through	511	could	be	used	as	a	large
page	on	an	x64	system,	as	could	physical	pages	512	through	1,023,	but	pages	10
through	521	could	not.)	Free	physical	memory	does	become	fragmented	as	the
system	runs.	This	is	not	a	problem	for	allocations	using	small	pages	but	can	cause
large	page	allocations	to	fail.

It	is	not	possible	to	specify	anything	but	read/write	access	to	large	pages.	The
memory	is	also	always	nonpageable,	because	the	page	file	system	does	not	support
large	pages.	And,	because	the	memory	is	nonpageable,	it	is	not	considered	part	of
the	process	working	set	(described	later).	Nor	are	large	page	allocations	subject	to
job-wide	limits	on	virtual	memory	usage.

There	is	an	unfortunate	side	effect	of	large	pages.	Each	page	(whether	large	or
small)	must	be	mapped	with	a	single	protection	that	applies	to	the	entire	page



(because	hardware	memory	protection	is	on	a	per-page	basis).	If	a	large	page
contains,	for	example,	both	read-only	code	and	read/write	data,	the	page	must	be
marked	as	read/write,	which	means	that	the	code	will	be	writable.	This	means	that
device	drivers	or	other	kernel-mode	code	could,	as	a	result	of	a	bug,	modify	what
is	supposed	to	be	read-only	operating	system	or	driver	code	without	causing	a
memory	access	violation.	If	small	pages	are	used	to	map	the	operating	system’s
kernel-mode	code,	the	read-only	portions	of	Ntoskrnl.exe	and	Hal.dll	can	be
mapped	as	read-only	pages.	Using	small	pages	does	reduce	efficiency	of	address
translation,	but	if	a	device	driver	(or	other	kernel-mode	code)	attempts	to	modify	a
read-only	part	of	the	operating	system,	the	system	will	crash	immediately	with	the
exception	information	pointing	at	the	offending	instruction	in	the	driver.	If	the
write	was	allowed	to	occur,	the	system	would	likely	crash	later	(in	a	harder-to-
diagnose	way)	when	some	other	component	tried	to	use	the	corrupted	data.

If	you	suspect	you	are	experiencing	kernel	code	corruptions,	enable	Driver	Verifier
(described	later	in	this	chapter),	which	will	disable	the	use	of	large	pages.

Reserving	and	Committing	Pages
Pages	in	a	process	virtual	address	space	are	free,	reserved,	committed,	or	shareable.
Committed	and	shareable	pages	are	pages	that,	when	accessed,	ultimately	translate
to	valid	pages	in	physical	memory.

Committed	pages	are	also	referred	to	as	private	pages.	This	reflects	the	fact	that
committed	pages	cannot	be	shared	with	other	processes,	whereas	shareable	pages
can	be	(but,	of	course,	might	be	in	use	by	only	one	process).

Private	pages	are	allocated	through	the	Windows	VirtualAlloc,	VirtualAllocEx,
and	VirtualAllocExNuma	functions.	These	functions	allow	a	thread	to	reserve
address	space	and	then	commit	portions	of	the	reserved	space.	The	intermediate
“reserved”	state	allows	the	thread	to	set	aside	a	range	of	contiguous	virtual
addresses	for	possible	future	use	(such	as	an	array),	while	consuming	negligible
system	resources,	and	then	commit	portions	of	the	reserved	space	as	needed	as	the
application	runs.	Or,	if	the	size	requirements	are	known	in	advance,	a	thread	can
reserve	and	commit	in	the	same	function	call.	In	either	case,	the	resulting
committed	pages	can	then	be	accessed	by	the	thread.	Attempting	to	access	free	or
reserved	memory	results	in	an	exception	because	the	page	isn’t	mapped	to	any



storage	that	can	resolve	the	reference.

If	committed	(private)	pages	have	never	been	accessed	before,	they	are	created	at
the	time	of	first	access	as	zero-initialized	pages	(or	demand	zero).	Private
committed	pages	may	later	be	automatically	written	to	the	paging	file	by	the
operating	system	if	required	by	demand	for	physical	memory.	“Private”	refers	to
the	fact	that	these	pages	are	normally	inaccessible	to	any	other	process.

NOTE

There	are	functions,	such	as	ReadProcessMemory	and	WriteProcessMemory,	that	apparently	permit	cross-
process	memory	access,	but	these	are	implemented	by	running	kernel-mode	code	in	the	context	of	the
target	process	(this	is	referred	to	as	attaching	to	the	process).	They	also	require	that	either	the	security
descriptor	of	the	target	process	grant	the	accessor	the	PROCESS_VM_READ	or	PROCESS_VM_WRITE
right,	respectively,	or	that	the	accessor	holds	SeDebugPrivilege,	which	is	by	default	granted	only	to
members	of	the	Administrators	group.

Shared	pages	are	usually	mapped	to	a	view	of	a	section,	which	in	turn	is	part	or	all
of	a	file,	but	may	instead	represent	a	portion	of	page	file	space.	All	shared	pages
can	potentially	be	shared	with	other	processes.	Sections	are	exposed	in	the
Windows	API	as	file	mapping	objects.

When	a	shared	page	is	first	accessed	by	any	process,	it	will	be	read	in	from	the
associated	mapped	file	(unless	the	section	is	associated	with	the	paging	file,	in
which	case	it	is	created	as	a	zero-initialized	page).	Later,	if	it	is	still	resident	in
physical	memory,	the	second	and	subsequent	processes	accessing	it	can	simply	use
the	same	page	contents	that	are	already	in	memory.	Shared	pages	might	also	have
been	prefetched	by	the	system.

Two	upcoming	sections	of	this	chapter,	Shared	Memory	and	Mapped	Files	and
Section	Objects,	go	into	much	more	detail	about	shared	pages.	Pages	are	written	to
disk	through	a	mechanism	called	modified	page	writing.	This	occurs	as	pages	are
moved	from	a	process’s	working	set	to	a	systemwide	list	called	the	modified	page
list;	from	there,	they	are	written	to	disk	(or	remote	storage).	(Working	sets	and	the
modified	list	are	explained	later	in	this	chapter.)	Mapped	file	pages	can	also	be
written	back	to	their	original	files	on	disk	as	a	result	of	an	explicit	call	to
FlushViewOfFile	or	by	the	mapped	page	writer	as	memory	demands	dictate.

You	can	decommit	private	pages	and/or	release	address	space	with	the	VirtualFree



or	VirtualFreeEx	function.	The	difference	between	decommittal	and	release	is
similar	to	the	difference	between	reservation	and	committal—decommitted
memory	is	still	reserved,	but	released	memory	has	been	freed;	it	is	neither
committed	nor	reserved.

Using	the	two-step	process	of	reserving	and	then	committing	virtual	memory
defers	committing	pages—and,	thereby,	defers	adding	to	the	system	“commit
charge”	described	in	the	next	section—until	needed,	but	keeps	the	convenience	of
virtual	contiguity.	Reserving	memory	is	a	relatively	inexpensive	operation	because
it	consumes	very	little	actual	memory.	All	that	needs	to	be	updated	or	constructed
is	the	relatively	small	internal	data	structures	that	represent	the	state	of	the	process
address	space.	(We’ll	explain	these	data	structures,	called	page	tables	and	virtual
address	descriptors,	or	VADs,	later	in	the	chapter.)

One	extremely	common	use	for	reserving	a	large	space	and	committing	portions	of
it	as	needed	is	the	user-mode	stack	for	each	thread.	When	a	thread	is	created,	a
stack	is	created	by	reserving	a	contiguous	portion	of	the	process	address	space.	(1
MB	is	the	default;	you	can	override	this	size	with	the	CreateThread	and
CreateRemoteThread	function	calls	or	change	it	on	an	imagewide	basis	by	using
the	/STACK	linker	flag.)	By	default,	the	initial	page	in	the	stack	is	committed	and
the	next	page	is	marked	as	a	guard	page	(which	isn’t	committed)	that	traps
references	beyond	the	end	of	the	committed	portion	of	the	stack	and	expands	it.

EXPERIMENT:	RESERVED	VS.	COMMITTED	PAGES

The	TestLimit	utility	(which	you	can	download	from	the	Windows	Internals	book	webpage)	can	be	used	to
allocate	large	amounts	of	either	reserved	or	private	committed	virtual	memory,	and	the	difference	can	be
observed	via	Process	Explorer.	First,	open	two	Command	Prompt	windows.	Invoke	TestLimit	in	one	of
them	to	create	a	large	amount	of	reserved	memory:

C:\temp>testlimit -r 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 1544

Reserving private bytes 1 MB at a time ...
Leaked 800 MB of reserved memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

In	the	other	window,	create	a	similar	amount	of	committed	memory:

C:\temp>testlimit -m 1 -c 800



Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 2828

Leaking private bytes 1 KB at a time ...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

Now	run	Task	Manager,	go	to	the	Processes	tab,	and	use	the	Select	Columns	command	on	the	View	menu
to	include	Memory—Commit	Size	in	the	display.	Find	the	two	instances	of	TestLimit	in	the	list.	They
should	appear	something	like	the	following	figure.

Task	Manager	shows	the	committed	size,	but	it	has	no	counters	that	will	reveal	the	reserved	memory	in	the
other	TestLimit	process.

Finally,	invoke	Process	Explorer.	Choose	View,	Select	Columns,	select	the	Process	Memory	tab,	and	enable
the	Private	Bytes	and	Virtual	Size	counters.	Find	the	two	TestLimit	processes	in	the	main	display:



Notice	that	the	virtual	sizes	of	the	two	processes	are	identical,	but	only	one	shows	a	value	for	Private	Bytes
comparable	to	that	for	Virtual	Size.	The	large	difference	in	the	other	TestLimit	process	(process	ID	1544)	is
due	to	the	reserved	memory.	The	same	comparison	could	be	made	in	Performance	Monitor	by	looking	at
the	Process	|	Virtual	Bytes	and	Process	|	Private	Bytes	counters.

Commit	Limit
On	Task	Manager’s	Performance	tab,	there	are	two	numbers	following	the	legend
Commit.	The	memory	manager	keeps	track	of	private	committed	memory	usage
on	a	global	basis,	termed	commitment	or	commit	charge;	this	is	the	first	of	the	two
numbers,	which	represents	the	total	of	all	committed	virtual	memory	in	the	system.

There	is	a	systemwide	limit,	called	the	system	commit	limit	or	simply	the	commit
limit,	on	the	amount	of	committed	virtual	memory	that	can	exist	at	any	one	time.
This	limit	corresponds	to	the	current	total	size	of	all	paging	files,	plus	the	amount
of	RAM	that	is	usable	by	the	operating	system.	This	is	the	second	of	the	two
numbers	displayed	as	Commit	on	Task	Manager’s	Performance	tab.	The	memory
manager	can	increase	the	commit	limit	automatically	by	expanding	one	or	more	of
the	paging	files,	if	they	are	not	already	at	their	configured	maximum	size.

Commit	charge	and	the	system	commit	limit	will	be	explained	in	more	detail	in	a
later	section.

Locking	Memory
In	general,	it’s	better	to	let	the	memory	manager	decide	which	pages	remain	in
physical	memory.	However,	there	might	be	special	circumstances	where	it	might	be
necessary	for	an	application	or	device	driver	to	lock	pages	in	physical	memory.
Pages	can	be	locked	in	memory	in	two	ways:

Windows	applications	can	call	the	VirtualLock	function	to	lock	pages	in	their
process	working	set.	Pages	locked	using	this	mechanism	remain	in	memory
until	explicitly	unlocked	or	until	the	process	that	locked	them	terminates.	The
number	of	pages	a	process	can	lock	can’t	exceed	its	minimum	working	set	size
minus	eight	pages.	Therefore,	if	a	process	needs	to	lock	more	pages,	it	can
increase	its	working	set	minimum	with	the	SetProcessWorkingSetSizeEx
function	(referred	to	in	the	section	Working	Set	Management).

Device	drivers	can	call	the	kernel-mode	functions	MmProbeAndLockPages,



MmLockPagableCodeSection,	MmLockPagableDataSection,	or
MmLockPagableSectionByHandle.	Pages	locked	using	this	mechanism	remain
in	memory	until	explicitly	unlocked.	The	last	three	of	these	APIs	enforce	no
quota	on	the	number	of	pages	that	can	be	locked	in	memory	because	the
resident	available	page	charge	is	obtained	when	the	driver	first	loads;	this
ensures	that	it	can	never	cause	a	system	crash	due	to	overlocking.	For	the	first
API,	quota	charges	must	be	obtained	or	the	API	will	return	a	failure	status.

Allocation	Granularity
Windows	aligns	each	region	of	reserved	process	address	space	to	begin	on	an
integral	boundary	defined	by	the	value	of	the	system	allocation	granularity,	which
can	be	retrieved	from	the	Windows	GetSystemInfo	or	GetNativeSystemInfo
function.	This	value	is	64	KB,	a	granularity	that	is	used	by	the	memory	manager	to
efficiently	allocate	metadata	(for	example,	VADs,	bitmaps,	and	so	on)	to	support
various	process	operations.	In	addition,	if	support	were	added	for	future	processors
with	larger	page	sizes	(for	example,	up	to	64	KB)	or	virtually	indexed	caches	that
require	systemwide	physical-to-virtual	page	alignment,	the	risk	of	requiring
changes	to	applications	that	made	assumptions	about	allocation	alignment	would	be
reduced.

NOTE

Windows	kernel-mode	code	isn’t	subject	to	the	same	restrictions;	it	can	reserve	memory	on	a	single-page
granularity	(although	this	is	not	exposed	to	device	drivers	for	the	reasons	detailed	earlier).	This	level	of
granularity	is	primarily	used	to	pack	TEB	allocations	more	densely,	and	because	this	mechanism	is	internal
only,	this	code	can	easily	be	changed	if	a	future	platform	requires	different	values.	Also,	for	the	purposes	of
supporting	16-bit	and	MS-DOS	applications	on	x86	systems	only,	the	memory	manager	provides	the
MEM_DOS_LIM	flag	to	the	MapViewOfFileEx	API,	which	is	used	to	force	the	use	of	single-page
granularity.

Finally,	when	a	region	of	address	space	is	reserved,	Windows	ensures	that	the	size
and	base	of	the	region	is	a	multiple	of	the	system	page	size,	whatever	that	might	be.
For	example,	because	x86	systems	use	4-KB	pages,	if	you	tried	to	reserve	a	region
of	memory	18	KB	in	size,	the	actual	amount	reserved	on	an	x86	system	would	be
20	KB.	If	you	specified	a	base	address	of	3	KB	for	an	18-KB	region,	the	actual
amount	reserved	would	be	24	KB.	Note	that	the	VAD	for	the	allocation	would
then	also	be	rounded	to	64-KB	alignment/length,	thus	making	the	remainder	of	it



inaccessible.	(VADs	will	be	described	later	in	this	chapter.)

Shared	Memory	and	Mapped	Files
As	is	true	with	most	modern	operating	systems,	Windows	provides	a	mechanism	to
share	memory	among	processes	and	the	operating	system.	Shared	memory	can	be
defined	as	memory	that	is	visible	to	more	than	one	process	or	that	is	present	in
more	than	one	process	virtual	address	space.	For	example,	if	two	processes	use	the
same	DLL,	it	would	make	sense	to	load	the	referenced	code	pages	for	that	DLL
into	physical	memory	only	once	and	share	those	pages	between	all	processes	that
map	the	DLL,	as	illustrated	in	Figure	10-1.

Each	process	would	still	maintain	its	private	memory	areas	in	which	to	store
private	data,	but	the	DLL	code	and	unmodified	data	pages	could	be	shared	without
harm.	As	we’ll	explain	later,	this	kind	of	sharing	happens	automatically	because	the
code	pages	in	executable	images	(.exe	and	.dll	files,	and	several	other	types	like
screen	savers	(.scr),	which	are	essentially	DLLs	under	other	names)	are	mapped	as
execute-only	and	writable	pages	are	mapped	as	copy-on-write.	(See	the	section
Copy-on-Write	for	more	information.)

The	underlying	primitives	in	the	memory	manager	used	to	implement	shared
memory	are	called	section	objects,	which	are	exposed	as	file	mapping	objects	in
the	Windows	API.	The	internal	structure	and	implementation	of	section	objects	are
described	in	the	section	Section	Objects	later	in	this	chapter.

This	fundamental	primitive	in	the	memory	manager	is	used	to	map	virtual
addresses,	whether	in	main	memory,	in	the	page	file,	or	in	some	other	file	that	an
application	wants	to	access	as	if	it	were	in	memory.	A	section	can	be	opened	by
one	process	or	by	many;	in	other	words,	section	objects	don’t	necessarily	equate	to
shared	memory.



Figure	10-1.	Sharing	memory	between	processes

A	section	object	can	be	connected	to	an	open	file	on	disk	(called	a	mapped	file)	or
to	committed	memory	(to	provide	shared	memory).	Sections	mapped	to
committed	memory	are	called	page-file-backed	sections	because	the	pages	are
written	to	the	paging	file	(as	opposed	to	a	mapped	file)	if	demands	on	physical
memory	require	it.	(Because	Windows	can	run	with	no	paging	file,	page-file-
backed	sections	might	in	fact	be	“backed”	only	by	physical	memory.)	As	with	any
other	empty	page	that	is	made	visible	to	user	mode	(such	as	private	committed
pages),	shared	committed	pages	are	always	zero-filled	when	they	are	first	accessed
to	ensure	that	no	sensitive	data	is	ever	leaked.

To	create	a	section	object,	call	the	Windows	CreateFileMapping	or
CreateFileMappingNuma	function,	specifying	the	file	handle	to	map	it	to	(or
INVALID_HANDLE_VALUE	for	a	page-file-backed	section)	and	optionally	a
name	and	security	descriptor.	If	the	section	has	a	name,	other	processes	can	open	it
with	OpenFileMapping.	Or	you	can	grant	access	to	section	objects	through	either
handle	inheritance	(by	specifying	that	the	handle	be	inheritable	when	opening	or
creating	the	handle)	or	handle	duplication	(by	using	DuplicateHandle).	Device
drivers	can	also	manipulate	section	objects	with	the	ZwOpenSection,
ZwMapViewOfSection,	and	ZwUnmapViewOfSection	functions.



A	section	object	can	refer	to	files	that	are	much	larger	than	can	fit	in	the	address
space	of	a	process.	(If	the	paging	file	backs	a	section	object,	sufficient	space	must
exist	in	the	paging	file	and/or	RAM	to	contain	it.)	To	access	a	very	large	section
object,	a	process	can	map	only	the	portion	of	the	section	object	that	it	requires
(called	a	view	of	the	section)	by	calling	the	MapViewOfFile,	MapViewOfFileEx,
or	MapViewOfFileExNuma	function	and	then	specifying	the	range	to	map.
Mapping	views	permits	processes	to	conserve	address	space	because	only	the	views
of	the	section	object	needed	at	the	time	must	be	mapped	into	memory.

Windows	applications	can	use	mapped	files	to	conveniently	perform	I/O	to	files	by
simply	making	them	appear	in	their	address	space.	User	applications	aren’t	the	only
consumers	of	section	objects:	the	image	loader	uses	section	objects	to	map
executable	images,	DLLs,	and	device	drivers	into	memory,	and	the	cache	manager
uses	them	to	access	data	in	cached	files.	(For	information	on	how	the	cache
manager	integrates	with	the	memory	manager,	see	Chapter	11.)	The
implementation	of	shared	memory	sections,	both	in	terms	of	address	translation
and	the	internal	data	structures,	is	explained	later	in	this	chapter.

EXPERIMENT:	VIEWING	MEMORY	MAPPED	FILES

You	can	list	the	memory	mapped	files	in	a	process	by	using	Process	Explorer	from	Sysinternals.	To	view
the	memory	mapped	files	by	using	Process	Explorer,	configure	the	lower	pane	to	show	the	DLL	view.
(Click	on	View,	Lower	Pane	View,	DLLs.)	Note	that	this	is	more	than	just	a	list	of	DLLs—it	represents	all
memory	mapped	files	in	the	process	address	space.	Some	of	these	are	DLLs,	one	is	the	image	file	(EXE)
being	run,	and	additional	entries	might	represent	memory	mapped	data	files.

For	example,	the	following	display	from	Process	Explorer	shows	a	WinDbg	process	using	several	different
memory	mappings	to	access	the	memory	dump	file	being	examined.	Like	most	Windows	programs,	it	(or
one	of	the	Windows	DLLs	it	is	using)	is	also	using	memory	mapping	to	access	a	Windows	data	file	called
Locale.nls,	which	is	part	of	the	internationalization	support	in	Windows.



You	can	also	search	for	memory	mapped	files	by	clicking	Find,	DLL.	This	can	be	useful	when	trying	to
determine	which	process(es)	are	using	a	DLL	or	a	memory	mapped	file	that	you	are	trying	to	replace.

Protecting	Memory
As	explained	in	Chapter	1,	“Concepts	and	Tools,”	in	Part	1,	Windows	provides
memory	protection	so	that	no	user	process	can	inadvertently	or	deliberately	corrupt
the	address	space	of	another	process	or	of	the	operating	system.	Windows	provides
this	protection	in	four	primary	ways.

First,	all	systemwide	data	structures	and	memory	pools	used	by	kernel-mode
system	components	can	be	accessed	only	while	in	kernel	mode—user-mode
threads	can’t	access	these	pages.	If	they	attempt	to	do	so,	the	hardware	generates	a
fault,	which	in	turn	the	memory	manager	reports	to	the	thread	as	an	access
violation.

Second,	each	process	has	a	separate,	private	address	space,	protected	from	being
accessed	by	any	thread	belonging	to	another	process.	Even	shared	memory	is	not
really	an	exception	to	this	because	each	process	accesses	the	shared	regions	using
addresses	that	are	part	of	its	own	virtual	address	space.	The	only	exception	is	if
another	process	has	virtual	memory	read	or	write	access	to	the	process	object	(or
holds	SeDebugPrivilege)	and	thus	can	use	the	ReadProcessMemory	or
WriteProcessMemory	function.	Each	time	a	thread	references	an	address,	the
virtual	memory	hardware,	in	concert	with	the	memory	manager,	intervenes	and
translates	the	virtual	address	into	a	physical	one.	By	controlling	how	virtual
addresses	are	translated,	Windows	can	ensure	that	threads	running	in	one	process



don’t	inappropriately	access	a	page	belonging	to	another	process.

Third,	in	addition	to	the	implicit	protection	virtual-to-physical	address	translation
offers,	all	processors	supported	by	Windows	provide	some	form	of	hardware-
controlled	memory	protection	(such	as	read/write,	read-only,	and	so	on);	the	exact
details	of	such	protection	vary	according	to	the	processor.	For	example,	code	pages
in	the	address	space	of	a	process	are	marked	read-only	and	are	thus	protected	from
modification	by	user	threads.

Table	10-2	lists	the	memory	protection	options	defined	in	the	Windows	API.	(See
the	VirtualProtect,	VirtualProtectEx,	VirtualQuery,	and	VirtualQueryEx
functions.)

Table	10-2.	Memory	Protection	Options	Defined	in	the	Windows	API

Attribute Description

PAGE_NOACCESS Any	attempt	to	read	from,	write	to,	or	execute	code	in	this
region	causes	an	access	violation.

PAGE_READONLY Any	attempt	to	write	to	(and	on	processors	with	no	execute
support,	execute	code	in)	memory	causes	an	access
violation,	but	reads	are	permitted.

PAGE_READWRITE The	page	is	readable	and	writable	but	not	executable.

PAGE_EXECUTE Any	attempt	to	write	to	code	in	memory	in	this	region
causes	an	access	violation,	but	execution	(and	read
operations	on	all	existing	processors)	is	permitted.

PAGE_EXECUTE_READ[a] Any	attempt	to	write	to	memory	in	this	region	causes	an
access	violation,	but	executes	and	reads	are	permitted.

PAGE_EXECUTE_READWRITE[b] The	page	is	readable,	writable,	and	executable—any
attempted	access	will	succeed.

PAGE_WRITECOPY Any	attempt	to	write	to	memory	in	this	region	causes	the
system	to	give	the	process	a	private	copy	of	the	page.	On
processors	with	no-execute	support,	attempts	to	execute
code	in	memory	in	this	region	cause	an	access	violation.

PAGE_EXECUTE_WRITECOPY Any	attempt	to	write	to	memory	in	this	region	causes	the
system	to	give	the	process	a	private	copy	of	the	page.
Reading	and	executing	code	in	this	region	is	permitted.	(No



copy	is	made	in	this	case.)

PAGE_GUARD Any	attempt	to	read	from	or	write	to	a	guard	page	raises	an
EXCEPTION_GUARD_PAGE	exception	and	turns	off	the
guard	page	status.	Guard	pages	thus	act	as	a	one-shot
alarm.	Note	that	this	flag	can	be	specified	with	any	of	the
page	protections	listed	in	this	table	except
PAGE_NOACCESS.

PAGE_NOCACHE Uses	physical	memory	that	is	not	cached.	This	is	not
recommended	for	general	usage.	It	is	useful	for	device
drivers—for	example,	mapping	a	video	frame	buffer	with
no	caching.

PAGE_WRITECOMBINE Enables	write-combined	memory	accesses.	When	enabled,
the	processor	does	not	cache	memory	writes	(possibly
causing	significantly	more	memory	traffic	than	if	memory
writes	were	cached),	but	it	does	try	to	aggregate	write
requests	to	optimize	performance.	For	example,	if	multiple
writes	are	made	to	the	same	address,	only	the	most	recent
write	might	occur.	Separate	writes	to	adjacent	addresses
may	be	similarly	collapsed	into	a	single	large	write.	This	is
not	typically	used	for	general	applications,	but	it	is	useful
for	device	drivers—for	example,	mapping	a	video	frame
buffer	as	write	combined.

[a]	No	execute	protection	is	supported	on	processors	that	have	the	necessary	hardware	support	(for
example,	all	x64	and	IA64	processors)	but	not	in	older	x86	processors.
[b]	No	execute	protection	is	supported	on	processors	that	have	the	necessary	hardware	support	(for
example,	all	x64	and	IA64	processors)	but	not	in	older	x86	processors.

And	finally,	shared	memory	section	objects	have	standard	Windows	access	control
lists	(ACLs)	that	are	checked	when	processes	attempt	to	open	them,	thus	limiting
access	of	shared	memory	to	those	processes	with	the	proper	rights.	Access	control
also	comes	into	play	when	a	thread	creates	a	section	to	contain	a	mapped	file.	To
create	the	section,	the	thread	must	have	at	least	read	access	to	the	underlying	file
object	or	the	operation	will	fail.

Once	a	thread	has	successfully	opened	a	handle	to	a	section,	its	actions	are	still
subject	to	the	memory	manager	and	the	hardware-based	page	protections	described
earlier.	A	thread	can	change	the	page-level	protection	on	virtual	pages	in	a	section
if	the	change	doesn’t	violate	the	permissions	in	the	ACL	for	that	section	object.	For
example,	the	memory	manager	allows	a	thread	to	change	the	pages	of	a	read-only



section	to	have	copy-on-write	access	but	not	to	have	read/write	access.	The	copy-
on-write	access	is	permitted	because	it	has	no	effect	on	other	processes	sharing	the
data.

No	Execute	Page	Protection
No	execute	page	protection	(also	referred	to	as	data	execution	prevention,	or	DEP)
causes	an	attempt	to	transfer	control	to	an	instruction	in	a	page	marked	as	“no
execute”	to	generate	an	access	fault.	This	can	prevent	certain	types	of	malware
from	exploiting	bugs	in	the	system	through	the	execution	of	code	placed	in	a	data
page	such	as	the	stack.	DEP	can	also	catch	poorly	written	programs	that	don’t
correctly	set	permissions	on	pages	from	which	they	intend	to	execute	code.	If	an
attempt	is	made	in	kernel	mode	to	execute	code	in	a	page	marked	as	no	execute,
the	system	will	crash	with	the
ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY	bugcheck	code.	(See
Chapter	14,	for	an	explanation	of	these	codes.)	If	this	occurs	in	user	mode,	a
STATUS_ACCESS_VIOLATION	(0xc0000005)	exception	is	delivered	to	the
thread	attempting	the	illegal	reference.	If	a	process	allocates	memory	that	needs	to
be	executable,	it	must	explicitly	mark	such	pages	by	specifying	the
PAGE_EXECUTE,	PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE,	or	PAGE_EXECUTE_WRITECOPY	flags	on
the	page	granularity	memory	allocation	functions.

On	32-bit	x86	systems	that	support	DEP,	bit	63	in	the	page	table	entry	(PTE)	is
used	to	mark	a	page	as	nonexecutable.	Therefore,	the	DEP	feature	is	available	only
when	the	processor	is	running	in	Physical	Address	Extension	(PAE)	mode,	without
which	page	table	entries	are	only	32	bits	wide.	(See	the	section	Physical	Address
Extension	(PAE)	later	in	this	chapter.)	Thus,	support	for	hardware	DEP	on	32-bit
systems	requires	loading	the	PAE	kernel
(%SystemRoot%\System32\Ntkrnlpa.exe),	even	if	that	system	does	not	require
extended	physical	addressing	(for	example,	physical	addresses	greater	than	4	GB).
The	operating	system	loader	automatically	loads	the	PAE	kernel	on	32-bit	systems
that	support	hardware	DEP.	To	force	the	non-PAE	kernel	to	load	on	a	system	that
supports	hardware	DEP,	the	BCD	option	nx	must	be	set	to	AlwaysOff,	and	the	pae
option	must	be	set	to	ForceDisable.



On	64-bit	versions	of	Windows,	execution	protection	is	always	applied	to	all	64-bit
processes	and	device	drivers	and	can	be	disabled	only	by	setting	the	nx	BCD
option	to	AlwaysOff.	Execution	protection	for	32-bit	programs	depends	on	system
configuration	settings,	described	shortly.	On	64-bit	Windows,	execution	protection
is	applied	to	thread	stacks	(both	user	and	kernel	mode),	user-mode	pages	not
specifically	marked	as	executable,	kernel	paged	pool,	and	kernel	session	pool	(for	a
description	of	kernel	memory	pools,	see	the	section	Kernel-Mode	Heaps	(System
Memory	Pools).	However,	on	32-bit	Windows,	execution	protection	is	applied	only
to	thread	stacks	and	user-mode	pages,	not	to	paged	pool	and	session	pool.

The	application	of	execution	protection	for	32-bit	processes	depends	on	the	value
of	the	BCD	nx	option.	The	settings	can	be	changed	by	going	to	the	Data	Execution
Prevention	tab	under	Computer,	Properties,	Advanced	System	Settings,
Performance	Settings.	(See	Figure	10-2.)	When	you	configure	no	execute
protection	in	the	Performance	Options	dialog	box,	the	BCD	nx	option	is	set	to	the
appropriate	value.	Table	10-3	lists	the	variations	of	the	values	and	how	they
correspond	to	the	DEP	settings	tab.	The	registry	lists	32-bit	applications	that	are
excluded	from	execution	protection	under	the	key
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers,	with	the	value	name	being	the	full
path	of	the	executable	and	the	data	set	to	“DisableNXShowUI”.

On	Windows	client	versions	(both	64-bit	and	32-bit)	execution	protection	for	32-
bit	processes	is	configured	by	default	to	apply	only	to	core	Windows	operating
system	executables	(the	nx	BCD	option	is	set	to	OptIn)	so	as	not	to	break	32-bit
applications	that	might	rely	on	being	able	to	execute	code	in	pages	not	specifically
marked	as	executable,	such	as	self-extracting	or	packed	applications.	On	Windows
server	systems,	execution	protection	for	32-bit	applications	is	configured	by	default
to	apply	to	all	32-bit	programs	(the	nx	BCD	option	is	set	to	OptOut).

NOTE

To	obtain	a	complete	list	of	which	programs	are	protected,	install	the	Windows	Application	Compatibility
Toolkit	(downloadable	from	www.microsoft.com)	and	run	the	Compatibility	Administrator	Tool.	Click
System	Database,	Applications,	and	then	Windows	Components.	The	pane	at	the	right	shows	the	list	of
protected	executables.

http://www.microsoft.com


Figure	10-2.	Data	Execution	Prevention	tab	settings

Table	10-3.	BCD	nx	Values

BCD	nx
Value

Option	on	DEP
Settings	Tab

Meaning

OptIn Turn	on	DEP	for
essential	Windows
programs	and	services
only

Enables	DEP	for	core	Windows	system	images.	Enables	32-bit
processes	to	dynamically	configure	DEP	for	their	lifetime.

OptOut Turn	on	DEP	for	all
programs	and	services
except	those	I	select

Enables	DEP	for	all	executables	except	those	specified.
Enables	32-bit	processes	to	dynamically	configure	DEP	for
their	lifetime.	Enables	system	compatibility	fixes	for	DEP.

AlwaysOn No	dialog	box	option
for	this	setting

Enables	DEP	for	all	components	with	no	ability	to	exclude
certain	applications.	Disables	dynamic	configuration	for	32-bit
processes,	and	disables	system	compatibility	fixes.

AlwaysOff No	dialog	box	option
for	this	setting

Disables	DEP	(not	recommended).	Disables	dynamic
configuration	for	32-bit	processes.



Even	if	you	force	DEP	to	be	enabled,	there	are	still	other	methods	through	which
applications	can	disable	DEP	for	their	own	images.	For	example,	regardless	of	the
execution	protection	options	that	are	enabled,	the	image	loader	(see	Chapter	3	in
Part	1	for	more	information	about	the	image	loader)	will	verify	the	signature	of	the
executable	against	known	copy-protection	mechanisms	(such	as	SafeDisc	and
SecuROM)	and	disable	execution	protection	to	provide	compatibility	with	older
copy-protected	software	such	as	computer	games.

EXPERIMENT:	LOOKING	AT	DEP	PROTECTION	ON	PROCESSES

Process	Explorer	can	show	you	the	current	DEP	status	for	all	the	processes	on	your	system,	including
whether	the	process	is	opted	in	or	benefiting	from	permanent	protection.	To	look	at	the	DEP	status	for
processes,	right-click	any	column	in	the	process	tree,	choose	Select	Columns,	and	then	select	DEP	Status	on
the	Process	Image	tab.	Three	values	are	possible:

DEP	(permanent)	This	means	that	the	process	has	DEP	enabled	because	it	is	a	“necessary	Windows
program	or	service.”

DEP	This	means	that	the	process	opted	in	to	DEP.	This	may	be	due	to	a	systemwide	policy	to	opt	in	all
32-bit	processes,	an	API	call	such	as	SetProcessDEPPolicy,	or	setting	the	linker	flag	/NXCOMPAT
when	the	image	was	built.

Nothing	If	the	column	displays	no	information	for	this	process,	DEP	is	disabled,	either	because	of	a
systemwide	policy	or	an	explicit	API	call	or	shim.

The	following	Process	Explorer	window	shows	an	example	of	a	system	on	which	DEP	is	set	to	OptOut,
Turn	On	DEP	For	All	Programs	And	Services	Except	Those	That	I	Select.	Note	that	two	processes	running
in	the	user’s	login,	a	third-party	sound-card	manager	and	a	USB	port	monitor,	show	simply	DEP,	meaning
that	DEP	can	be	turned	off	for	them	via	the	dialog	box	shown	in	Figure	10-2.	The	other	processes	shown
are	running	Windows	in-box	programs	and	show	DEP	(Permanent),	indicating	that	DEP	cannot	be	disabled
for	them.



Additionally,	to	provide	compatibility	with	older	versions	of	the	Active	Template
Library	(ATL)	framework	(version	7.1	or	earlier),	the	Windows	kernel	provides	an
ATL	thunk	emulation	environment.	This	environment	detects	ATL	thunk	code
sequences	that	have	caused	the	DEP	exception	and	emulates	the	expected
operation.	Application	developers	can	request	that	ATL	thunk	emulation	not	be
applied	by	using	the	latest	Microsoft	C++	compiler	and	specifying	the
/NXCOMPAT	flag	(which	sets	the
IMAGE_DLLCHARACTERISTICS_NX_COMPAT	flag	in	the	PE	header),	which
tells	the	system	that	the	executable	fully	supports	DEP.	Note	that	ATL	thunk
emulation	is	permanently	disabled	if	the	AlwaysOn	value	is	set.

Finally,	if	the	system	is	in	OptIn	or	OptOut	mode	and	executing	a	32-bit	process,
the	SetProcessDEPPolicy	function	allows	a	process	to	dynamically	disable	DEP	or
to	permanently	enable	it.	(Once	enabled	through	this	API,	DEP	cannot	be	disabled
programmatically	for	the	lifetime	of	the	process.)	This	function	can	also	be	used	to
dynamically	disable	ATL	thunk	emulation	in	case	the	image	wasn’t	compiled	with
the	/NXCOMPAT	flag.	On	64-bit	processes	or	systems	booted	with	AlwaysOff	or
AlwaysOn,	the	function	always	returns	a	failure.	The	GetProcessDEPPolicy
function	returns	the	32-bit	per-process	DEP	policy	(it	fails	on	64-bit	systems,
where	the	policy	is	always	the	same—enabled),	while	GetSystemDEPPolicy	can	be
used	to	return	a	value	corresponding	to	the	policies	in	Table	10-3.

Software	Data	Execution	Prevention
For	older	processors	that	do	not	support	hardware	no	execute	protection,	Windows
supports	limited	software	data	execution	prevention	(DEP).	One	aspect	of	software
DEP	reduces	exploits	of	the	exception	handling	mechanism	in	Windows.	(See
Chapter	3	in	Part	1	for	a	description	of	structured	exception	handling.)	If	the
program’s	image	files	are	built	with	safe	structured	exception	handling	(a	feature	in
the	Microsoft	Visual	C++	compiler	that	is	enabled	with	the	/SAFESEH	flag),
before	an	exception	is	dispatched,	the	system	verifies	that	the	exception	handler	is
registered	in	the	function	table	(built	by	the	compiler)	located	within	the	image	file.

The	previous	mechanism	depends	on	the	program’s	image	files	being	built	with
safe	structured	exception	handling.	If	they	are	not,	software	DEP	guards	against
overwrites	of	the	structured	exception	handling	chain	on	the	stack	in	x86	processes
via	a	mechanism	known	as	Structured	Exception	Handler	Overwrite	Protection



(SEHOP).	A	new	symbolic	exception	registration	record	is	added	on	the	stack
when	a	thread	first	begins	user-mode	execution.	The	normal	exception	registration
chain	will	lead	to	this	record.	When	an	exception	occurs,	the	exception	dispatcher
will	first	walk	the	list	of	exception	handler	registration	records	to	ensure	that	the
chain	leads	to	this	symbolic	record.	If	it	does	not,	the	exception	chain	must	have
been	corrupted	(either	accidentally	or	deliberately),	and	the	exception	dispatcher
will	simply	terminate	the	process	without	calling	any	of	the	exception	handlers
described	on	the	stack.	Address	Space	Layout	Randomization	(ASLR)	contributes
to	the	robustness	of	this	method	by	making	it	more	difficult	for	attacking	code	to
know	the	location	of	the	function	pointed	to	by	the	symbolic	exception	registration
record,	and	so	to	construct	a	fake	symbolic	record	of	its	own.

To	further	validate	the	SEH	handler	when	/SAFESEH	is	not	present,	a	mechanism
called	Image	Dispatch	Mitigation	ensures	that	the	SEH	handler	is	located	within
the	same	image	section	as	the	function	that	raised	an	exception,	which	is	normally
the	case	for	most	programs	(although	not	necessarily,	since	some	DLLs	might	have
exception	handlers	that	were	set	up	by	the	main	executable,	which	is	why	this
mitigation	is	off	by	default).	Finally,	Executable	Dispatch	Mitigation	further	makes
sure	that	the	SEH	handler	is	located	within	an	executable	page—a	less	strong
requirement	than	Image	Dispatch	Mitigation,	but	one	with	fewer	compatibility
issues.

Two	other	methods	for	software	DEP	that	the	system	implements	are	stack	cookies
and	pointer	encoding.	The	first	relies	on	the	compiler	to	insert	special	code	at	the
beginning	and	end	of	each	potentially	exploitable	function.	The	code	saves	a
special	numerical	value	(the	cookie)	on	the	stack	on	entry	and	validates	the
cookie’s	value	before	returning	to	the	caller	saved	on	the	stack	(which	would	have
now	been	corrupted	to	point	to	a	piece	of	malicious	code).	If	the	cookie	value	is
mismatched,	the	application	is	terminated	and	not	allowed	to	continue	executing.
The	cookie	value	is	computed	for	each	boot	when	executing	the	first	user-mode
thread,	and	it	is	saved	in	the	KUSER_SHARED_DATA	structure.	The	image
loader	reads	this	value	and	initializes	it	when	a	process	starts	executing	in	user
mode.	(See	Chapter	3	in	Part	1	for	more	information	on	the	shared	data	section
and	the	image	loader.)

The	cookie	value	that	is	calculated	is	also	saved	for	use	with	the



EncodeSystemPointer	and	DecodeSystemPointer	APIs,	which	implement	pointer
encoding.	When	an	application	or	a	DLL	has	static	pointers	that	are	dynamically
called,	it	runs	the	risk	of	having	malicious	code	overwrite	the	pointer	values	with
code	that	the	malware	controls.	By	encoding	all	pointers	with	the	cookie	value	and
then	decoding	them,	when	malicious	code	sets	a	nonencoded	pointer,	the
application	will	still	attempt	to	decode	the	pointer,	resulting	in	a	corrupted	value
and	causing	the	program	to	crash.	The	EncodePointer	and	DecodePointer	APIs
provide	similar	protection	but	with	a	per-process	cookie	(created	on	demand)
instead	of	a	per-system	cookie.

NOTE

The	system	cookie	is	a	combination	of	the	system	time	at	generation,	the	stack	value	of	the	saved	system
time,	the	number	of	page	faults,	and	the	current	interrupt	time.

Copy-on-Write
Copy-on-write	page	protection	is	an	optimization	the	memory	manager	uses	to
conserve	physical	memory.	When	a	process	maps	a	copy-on-write	view	of	a
section	object	that	contains	read/write	pages,	instead	of	making	a	process	private
copy	at	the	time	the	view	is	mapped,	the	memory	manager	defers	making	a	copy
of	the	pages	until	the	page	is	written	to.	For	example,	as	shown	in	Figure	10-3,	two
processes	are	sharing	three	pages,	each	marked	copy-on-write,	but	neither	of	the
two	processes	has	attempted	to	modify	any	data	on	the	pages.

Figure	10-3.	The	“before”	of	copy-on-write

If	a	thread	in	either	process	writes	to	a	page,	a	memory	management	fault	is
generated.	The	memory	manager	sees	that	the	write	is	to	a	copy-on-write	page,	so
instead	of	reporting	the	fault	as	an	access	violation,	it	allocates	a	new	read/write



page	in	physical	memory,	copies	the	contents	of	the	original	page	to	the	new	page,
updates	the	corresponding	page-mapping	information	(explained	later	in	this
chapter)	in	this	process	to	point	to	the	new	location,	and	dismisses	the	exception,
thus	causing	the	instruction	that	generated	the	fault	to	be	reexecuted.	This	time,	the
write	operation	succeeds,	but	as	shown	in	Figure	10-4,	the	newly	copied	page	is
now	private	to	the	process	that	did	the	writing	and	isn’t	visible	to	the	other	process
still	sharing	the	copy-on-write	page.	Each	new	process	that	writes	to	that	same
shared	page	will	also	get	its	own	private	copy.

Figure	10-4.	The	“after”	of	copy-on-write

One	application	of	copy-on-write	is	to	implement	breakpoint	support	in	debuggers.
For	example,	by	default,	code	pages	start	out	as	execute-only.	If	a	programmer	sets
a	breakpoint	while	debugging	a	program,	however,	the	debugger	must	add	a
breakpoint	instruction	to	the	code.	It	does	this	by	first	changing	the	protection	on
the	page	to	PAGE_EXECUTE_READWRITE	and	then	changing	the	instruction
stream.	Because	the	code	page	is	part	of	a	mapped	section,	the	memory	manager
creates	a	private	copy	for	the	process	with	the	breakpoint	set,	while	other	processes
continue	using	the	unmodified	code	page.

Copy-on-write	is	one	example	of	an	evaluation	technique	known	as	lazy	evaluation
that	the	memory	manager	uses	as	often	as	possible.	Lazy-evaluation	algorithms
avoid	performing	an	expensive	operation	until	absolutely	required—if	the	operation
is	never	required,	no	time	is	wasted	on	it.

To	examine	the	rate	of	copy-on-write	faults,	see	the	performance	counter	Memory:
Write	Copies/sec.

Address	Windowing	Extensions
Although	the	32-bit	version	of	Windows	can	support	up	to	64	GB	of	physical



memory	(as	shown	in	Table	2-2	in	Part	1),	each	32-bit	user	process	has	by	default
only	a	2-GB	virtual	address	space.	(This	can	be	configured	up	to	3	GB	when	using
the	increaseuserva	BCD	option,	described	in	the	upcoming	section	User	Address
Space	Layout.)	An	application	that	needs	to	make	more	than	2	GB	(or	3	GB)	of
data	easily	available	in	a	single	process	could	do	so	via	file	mapping,	remapping	a
part	of	its	address	space	into	various	portions	of	a	large	file.	However,	significant
paging	would	be	involved	upon	each	remap.

For	higher	performance	(and	also	more	fine-grained	control),	Windows	provides	a
set	of	functions	called	Address	Windowing	Extensions	(AWE).	These	functions
allow	a	process	to	allocate	more	physical	memory	than	can	be	represented	in	its
virtual	address	space.	It	then	can	access	the	physical	memory	by	mapping	a	portion
of	its	virtual	address	space	into	selected	portions	of	the	physical	memory	at	various
times.

Allocating	and	using	memory	via	the	AWE	functions	is	done	in	three	steps:

1.	 Allocating	the	physical	memory	to	be	used.	The	application	uses	the
Windows	functions	AllocateUserPhysicalPages	or
AllocateUserPhysicalPagesNuma.	(These	require	the	Lock	Pages	In	Memory
user	right.)

2.	 Creating	one	or	more	regions	of	virtual	address	space	to	act	as	windows	to
map	views	of	the	physical	memory.	The	application	uses	the	Win32
VirtualAlloc,	VirtualAllocEx,	or	VirtualAllocExNuma	function	with	the
MEM_PHYSICAL	flag.

3.	 The	preceding	steps	are,	generally	speaking,	initialization	steps.	To	actually
use	the	memory,	the	application	uses	MapUserPhysicalPages	or
MapUserPhysicalPagesScatter	to	map	a	portion	of	the	physical	region
allocated	in	step	1	into	one	of	the	virtual	regions,	or	windows,	allocated	in
step	2.

Figure	10-5	shows	an	example.	The	application	has	created	a	256-MB	window	in
its	address	space	and	has	allocated	4	GB	of	physical	memory	(on	a	system	with
more	than	4	GB	of	physical	memory).	It	can	then	use	MapUserPhysicalPages	or
MapUserPhysicalPagesScatter	to	access	any	portion	of	the	physical	memory	by
mapping	the	desired	portion	of	memory	into	the	256-MB	window.	The	size	of	the



application’s	virtual	address	space	window	determines	the	amount	of	physical
memory	that	the	application	can	access	with	any	given	mapping.	To	access	another
portion	of	the	allocated	RAM,	the	application	can	simply	remap	the	area.

The	AWE	functions	exist	on	all	editions	of	Windows	and	are	usable	regardless	of
how	much	physical	memory	a	system	has.	However,	AWE	is	most	useful	on	32-bit
systems	with	more	than	2	GB	of	physical	memory	because	it	provides	a	way	for	a
32-bit	process	to	access	more	RAM	than	its	virtual	address	space	would	otherwise
allow.	Another	use	is	for	security	purposes:	because	AWE	memory	is	never	paged
out,	the	data	in	AWE	memory	can	never	have	a	copy	in	the	paging	file	that
someone	could	examine	by	rebooting	into	an	alternate	operating	system.
(VirtualLock	provides	the	same	guarantee	for	pages	in	general.)

Finally,	there	are	some	restrictions	on	memory	allocated	and	mapped	by	the	AWE
functions:

Pages	can’t	be	shared	between	processes.

The	same	physical	page	can’t	be	mapped	to	more	than	one	virtual	address	in	the
same	process.

Page	protection	is	limited	to	read/write,	read-only,	and	no	access.

Figure	10-5.	Using	AWE	to	map	physical	memory



AWE	is	less	useful	on	x64	or	IA64	Windows	systems	because	these	systems
support	8	TB	or	7	TB	(respectively)	of	virtual	address	space	per	process,	while
allowing	a	maximum	of	only	2	TB	of	RAM.	Therefore,	AWE	is	not	necessary	to
allow	an	application	to	use	more	RAM	than	it	has	virtual	address	space;	the
amount	of	RAM	on	the	system	will	always	be	smaller	than	the	process	virtual
address	space.	AWE	remains	useful,	however,	for	setting	up	nonpageable	regions	of
a	process	address	space.	It	provides	finer	granularity	than	the	file	mapping	APIs
(the	system	page	size,	4	KB	or	8	KB,	versus	64	KB).

For	a	description	of	the	page	table	data	structures	used	to	map	memory	on	systems
with	more	than	4	GB	of	physical	memory,	see	the	section	Physical	Address
Extension	(PAE).



Kernel-Mode	Heaps	(System	Memory	Pools)
At	system	initialization,	the	memory	manager	creates	two	dynamically	sized
memory	pools,	or	heaps,	that	most	kernel-mode	components	use	to	allocate	system
memory:

Nonpaged	pool	Consists	of	ranges	of	system	virtual	addresses	that	are
guaranteed	to	reside	in	physical	memory	at	all	times	and	thus	can	be	accessed	at
any	time	without	incurring	a	page	fault;	therefore,	they	can	be	accessed	from
any	IRQL.	One	of	the	reasons	nonpaged	pool	is	required	is	because	of	the	rule
described	in	Chapter	2	in	Part	1:	page	faults	can’t	be	satisfied	at	DPC/dispatch
level	or	above.	Therefore,	any	code	and	data	that	might	execute	or	be	accessed
at	or	above	DPC/dispatch	level	must	be	in	nonpageable	memory.

Paged	pool	A	region	of	virtual	memory	in	system	space	that	can	be	paged	into
and	out	of	the	system.	Device	drivers	that	don’t	need	to	access	the	memory
from	DPC/dispatch	level	or	above	can	use	paged	pool.	It	is	accessible	from	any
process	context.

Both	memory	pools	are	located	in	the	system	part	of	the	address	space	and	are
mapped	in	the	virtual	address	space	of	every	process.	The	executive	provides
routines	to	allocate	and	deallocate	from	these	pools;	for	information	on	these
routines,	see	the	functions	that	start	with	ExAllocatePool	and	ExFreePool	in	the
WDK	documentation.

Systems	start	with	four	paged	pools	(combined	to	make	the	overall	system	paged
pool)	and	one	nonpaged	pool;	more	are	created,	up	to	a	maximum	of	64,
depending	on	the	number	of	NUMA	nodes	on	the	system.	Having	more	than	one
paged	pool	reduces	the	frequency	of	system	code	blocking	on	simultaneous	calls	to
pool	routines.	Additionally,	the	different	pools	created	are	mapped	across	different
virtual	address	ranges	that	correspond	to	different	NUMA	nodes	on	the	system.
(The	different	data	structures,	such	as	the	large	page	lookaside	lists,	to	describe
pool	allocations	are	also	mapped	across	different	NUMA	nodes.	More	information
on	NUMA	optimizations	will	follow	later.)

In	addition	to	the	paged	and	nonpaged	pools,	there	are	a	few	other	pools	with
special	attributes	or	uses.	For	example,	there	is	a	pool	region	in	session	space,



which	is	used	for	data	that	is	common	to	all	processes	in	the	session.	(Sessions	are
described	in	Chapter	1	in	Part	1.)	There	is	a	pool	called,	quite	literally,	special
pool.	Allocations	from	special	pool	are	surrounded	by	pages	marked	as	no-access
to	help	isolate	problems	in	code	that	accesses	memory	before	or	after	the	region	of
pool	it	allocated.	Special	pool	is	described	in	Chapter	14.

Pool	Sizes
Nonpaged	pool	starts	at	an	initial	size	based	on	the	amount	of	physical	memory	on
the	system	and	then	grows	as	needed.	For	nonpaged	pool,	the	initial	size	is	3
percent	of	system	RAM.	If	this	is	less	than	40	MB,	the	system	will	instead	use	40
MB	as	long	as	10	percent	of	RAM	results	in	more	than	40	MB;	otherwise	10
percent	of	RAM	is	chosen	as	a	minimum.

Windows	dynamically	chooses	the	maximum	size	of	the	pools	and	allows	a	given
pool	to	grow	from	its	initial	size	to	the	maximums	shown	in	Table	10-4.

Table	10-4.	Maximum	Pool	Sizes

Pool
Type

Maximum	on	32-Bit	Systems Maximum	on	64-Bit	Systems

Nonpaged 75%	of	physical	memory	or	2	GB,
whichever	is	smaller

75%	of	physical	memory	or	128	GB,
whichever	is	smaller

Paged 2	GB 128	GB

Four	of	these	computed	sizes	are	stored	in	kernel	variables,	three	of	which	are
exposed	as	performance	counters,	and	one	is	computed	only	as	a	performance
counter	value.	These	variables	and	counters	are	listed	in	Table	10-5.

Table	10-5.	System	Pool	Size	Variables	and	Performance	Counters

Kernel	Variable Performance
Counter

Description

MmSizeOfNonPagedPoolInBytes Memory:	Pool
Nonpaged
Bytes

Size	of	the	initial	nonpaged	pool.	This	can
be	reduced	or	enlarged	automatically	by
the	system	if	memory	demands	dictate.
The	kernel	variable	will	not	show	these
changes,	but	the	performance	counter	will.



MmMaximumNonPagedPoolInBytes Not	available Maximum	size	of	nonpaged	pool

Not	available Memory:	Pool
Paged	Bytes

Current	total	virtual	size	of	paged	pool

WorkingSetSize	(number	of	pages)
in	the	MmPagedPoolWs	struct	(type
_MMSUPPORT)

Memory:	Pool
Paged	Resident
Bytes

Current	physical	(resident)	size	of	paged
pool

MmSizeOfPagedPoolInBytes Not	available Maximum	(virtual)	size	of	paged	pool

EXPERIMENT:	DETERMINING	THE	MAXIMUM	POOL	SIZES

You	can	obtain	the	pool	maximums	by	using	either	Process	Explorer	or	live	kernel	debugging	(explained	in
Chapter	1	in	Part	1).	To	view	pool	maximums	with	Process	Explorer,	click	on	View,	System	Information,
and	then	click	the	Memory	tab.	The	pool	limits	are	displayed	in	the	Kernel	Memory	middle	section,	as
shown	here:

Note	that	for	Process	Explorer	to	retrieve	this	information,	it	must	have	access	to	the	symbols	for	the	kernel
running	on	your	system.	(For	a	description	of	how	to	configure	Process	Explorer	to	use	symbols,	see	the
experiment	“Viewing	Process	Details	with	Process	Explorer”	in	Chapter	1	in	Part	1.)

To	view	the	same	information	by	using	the	kernel	debugger,	you	can	use	the	!vm	command	as	shown	here:

kd> !vm

1: kd> !vm

*** Virtual Memory Usage ***
        Physical Memory:      851757 (   3407028 Kb)
        Page File: \??\C:\pagefile.sys
          Current:   3407028 Kb  Free Space:   3407024 Kb



          Minimum:   3407028 Kb  Maximum:      4193280 Kb
        Available Pages:      699186 (   2796744 Kb)
        ResAvail Pages:       757454 (   3029816 Kb)
        Locked IO Pages:           0 (         0 Kb)
        Free System PTEs:     370673 (   1482692 Kb)
        Modified Pages:         9799 (     39196 Kb)
        Modified PF Pages:      9798 (     39192 Kb)
        NonPagedPool Usage:        0 (         0 Kb)
        NonPagedPoolNx Usage:   8735 (     34940 Kb)
        NonPagedPool Max:     522368 (   2089472 Kb)
        PagedPool 0 Usage:     17573 (     70292 Kb)
        PagedPool 1 Usage:      2417 (      9668 Kb)
        PagedPool 2 Usage:         0 (         0 Kb)
        PagedPool 3 Usage:         0 (         0 Kb)
        PagedPool 4 Usage:        28 (       112 Kb)
        PagedPool Usage:       20018 (     80072 Kb)
        PagedPool Maximum:    523264 (   2093056 Kb)
        ...

On	this	4-GB,	32-bit	system,	nonpaged	and	paged	pool	were	far	from	their	maximums.

You	can	also	examine	the	values	of	the	kernel	variables	listed	in	Table	10-5.	The	following	were	taken	from
a	32-bit	system:

lkd> ? poi(MmMaximumNonPagedPoolInBytes)
Evaluate expression: 2139619328 = 7f880000

lkd> ? poi(MmSizeOfPagedPoolInBytes)
Evaluate expression: 2143289344 = 7fc00000

From	this	example,	you	can	see	that	the	maximum	size	of	both	nonpaged	and	paged	pool	is	approximately
2	GB,	typical	values	on	32-bit	systems	with	large	amounts	of	RAM.	On	the	system	used	for	this	example,
current	nonpaged	pool	usage	was	35	MB	and	paged	pool	usage	was	80	MB,	so	both	pools	were	far	from
full.

Monitoring	Pool	Usage
The	Memory	performance	counter	object	has	separate	counters	for	the	size	of
nonpaged	pool	and	paged	pool	(both	virtual	and	physical).	In	addition,	the
Poolmon	utility	(in	the	WDK)	allows	you	to	monitor	the	detailed	usage	of
nonpaged	and	paged	pool.	When	you	run	Poolmon,	you	should	see	a	display	like
the	one	shown	in	Figure	10-6.



Figure	10-6.	Poolmon	output

The	highlighted	lines	you	might	see	represent	changes	to	the	display.	(You	can
disable	the	highlighting	feature	by	typing	a	slash	(/)	while	running	Poolmon.	Type	/
again	to	reenable	highlighting.)	Type	?	while	Poolmon	is	running	to	bring	up	its
help	screen.	You	can	configure	which	pools	you	want	to	monitor	(paged,
nonpaged,	or	both)	and	the	sort	order.	For	example,	by	pressing	the	P	key	until
only	nonpaged	allocations	are	shown,	and	then	the	D	key	to	sort	by	the	Diff
(differences)	column,	you	can	find	out	what	kind	of	structures	are	most	numerous
in	nonpaged	pool.	Also,	the	command-line	options	are	shown,	which	allow	you	to
monitor	specific	tags	(or	every	tag	but	one	tag).	For	example,	the	command
poolmon	–iCM	will	monitor	only	CM	tags	(allocations	from	the	configuration
manager,	which	manages	the	registry).	The	columns	have	the	meanings	shown	in
Table	10-6.

Table	10-6.	Poolmon	Columns

Column Explanation

Tag Four-byte	tag	given	to	the	pool	allocation

Type Pool	type	(paged	or	nonpaged	pool)

Allocs Count	of	all	allocations	(The	number	in	parentheses	shows	the	difference	in	the	Allocs
column	since	the	last	update.)

Frees Count	of	all	Frees	(The	number	in	parentheses	shows	the	difference	in	the	Frees
column	since	the	last	update.)



Diff Count	of	Allocs	minus	Frees

Bytes Total	bytes	consumed	by	this	tag	(The	number	in	parentheses	shows	the	difference	in
the	Bytes	column	since	the	last	update.)

Per	Alloc Size	in	bytes	of	a	single	instance	of	this	tag

For	a	description	of	the	meaning	of	the	pool	tags	used	by	Windows,	see	the	file
\Program	Files\Debugging	Tools	for	Windows\Triage\Pooltag.txt.	(This	file	is
installed	as	part	of	the	Debugging	Tools	for	Windows,	described	in	Chapter	1	in
Part	1.)	Because	third-party	device	driver	pool	tags	are	not	listed	in	this	file,	you
can	use	the	–c	switch	on	the	32-bit	version	of	Poolmon	that	comes	with	the	WDK
to	generate	a	local	pool	tag	file	(Localtag.txt).	This	file	will	contain	pool	tags	used
by	drivers	found	on	your	system,	including	third-party	drivers.	(Note	that	if	a
device	driver	binary	has	been	deleted	after	it	was	loaded,	its	pool	tags	will	not	be
recognized.)

Alternatively,	you	can	search	the	device	drivers	on	your	system	for	a	pool	tag	by
using	the	Strings.exe	tool	from	Sysinternals.	For	example,	the	command

strings %SYSTEMROOT%\system32\drivers\*.sys | findstr /i "abcd"

will	display	drivers	that	contain	the	string	“abcd”.	Note	that	device	drivers	do	not
necessarily	have	to	be	located	in	%SystemRoot%\System32\Drivers—they	can	be
in	any	folder.	To	list	the	full	path	of	all	loaded	drivers,	open	the	Run	dialog	box
from	the	Start	menu,	and	then	type	Msinfo32.	Click	Software	Environment,	and
then	click	System	Drivers.	As	already	noted,	if	a	device	driver	has	been	loaded	and
then	deleted	from	the	system,	it	will	not	be	listed	here.

An	alternative	to	view	pool	usage	by	device	driver	is	to	enable	the	pool	tracking
feature	of	Driver	Verifier,	explained	later	in	this	chapter.	While	this	makes	the
mapping	from	pool	tag	to	device	driver	unnecessary,	it	does	require	a	reboot	(to
enable	Driver	Verifier	on	the	desired	drivers).	After	rebooting	with	pool	tracking
enabled,	you	can	either	run	the	graphical	Driver	Verifier	Manager
(%SystemRoot%\System32\Verifier.exe)	or	use	the	Verifier	/Log	command	to
send	the	pool	usage	information	to	a	file.

Finally,	you	can	view	pool	usage	with	the	kernel	debugger	!poolused	command.
The	command	!poolused	2	shows	nonpaged	pool	usage	sorted	by	pool	tag	using
the	most	amount	of	pool.	The	command	!poolused	4	lists	paged	pool	usage,	again



sorted	by	pool	tag	using	the	most	amount	of	pool.	The	following	example	shows
the	partial	output	from	these	two	commands:

lkd> !poolused 2
   Sorting by  NonPaged Pool Consumed
  Pool Used:
            NonPaged            Paged
 Tag    Allocs     Used    Allocs     Used
 Cont     1669 15801344         0        0    Contiguous physical memory allocations
for
                                              device drivers
 Int2      414  5760072         0        0    UNKNOWN pooltag 'Int2', please update
                                              pooltag.txt
 LSwi        1  2623568         0        0    initial work context
 EtwB      117  2327832        10   409600    Etw Buffer , Binary: nt!etw
 Pool        5  1171880         0        0    Pool tables, etc.

lkd> !poolused 4
   Sorting by  Paged Pool Consumed
  Pool Used:
            NonPaged            Paged
 Tag    Allocs     Used    Allocs     Used
 CM25        0        0      3921 16777216    Internal Configuration manager 
allocations ,
                                              Binary: nt!cm
 MmRe        0        0       720 13508136    UNKNOWN pooltag 'MmRe', please update
                                              pooltag.txt
 MmSt        0        0      5369 10827440    Mm section object prototype ptes ,
                                              Binary: nt!mm
 Ntff        9     2232      4210  3738480    FCB_DATA , Binary: ntfs.sys
 AlMs        0        0       212  2450448    ALPC message , Binary: nt!alpc
 ViMm      469   440584       608  1468888    Video memory manager , Binary: 
dxgkrnl.sys

EXPERIMENT:	TROUBLESHOOTING	A	POOL	LEAK

In	this	experiment,	you	will	fix	a	real	paged	pool	leak	on	your	system	so	that	you	can	put	to	use	the
techniques	described	in	the	previous	section	to	track	down	the	leak.	The	leak	will	be	generated	by	the
Notmyfault	tool	from	Sysinternals.	When	you	run	Notmyfault.exe,	it	loads	the	device	driver	Myfault.sys	and
presents	the	following	dialog	box:



1.	 Click	the	Leak	tab,	ensure	that	Leak/Second	is	set	to	1000	KB,	and	click	the	Leak	Paged	button.
This	causes	Notmyfault	to	begin	sending	requests	to	the	Myfault	device	driver	to	allocate	paged	pool.
Notmyfault	will	continue	sending	requests	until	you	click	the	Stop	Paged	button.	Note	that	paged
pool	is	not	normally	released	even	when	you	close	a	program	that	has	caused	it	to	occur	(by
interacting	with	a	buggy	device	driver);	the	pool	is	permanently	leaked	until	you	reboot	the	system.
However,	to	make	testing	easier,	the	Myfault	device	driver	detects	that	the	process	was	closed	and
frees	its	allocations.

2.	 While	the	pool	is	leaking,	first	open	Task	Manager	and	click	on	the	Performance	tab.	You	should
notice	Kernel	Memory	(MB):	Paged	climbing.	You	can	also	check	this	with	Process	Explorer’s
System	Information	display.	(Click	View,	System	Information,	and	then	the	Memory	tab.)

3.	 To	determine	the	pool	tag	that	is	leaking,	run	Poolmon	and	press	the	B	key	to	sort	by	the	number	of
bytes.	Press	P	twice	so	that	Poolmon	is	showing	only	paged	pool.	You	should	notice	the	pool	tag
“Leak”	climbing	to	the	top	of	the	list.	(Poolmon	shows	changes	to	pool	allocations	by	highlighting
the	lines	that	change.)

4.	 Now	press	the	Stop	Paged	button	so	that	you	don’t	exhaust	paged	pool	on	your	system.

5.	 Using	the	technique	described	in	the	previous	section,	run	Strings	(from	Sysinternals)	to	look	for
driver	binaries	that	contain	the	pool	tag	“Leak”:

Strings %SystemRoot%\system32\drivers\*.sys  |  findstr Leak

This	should	display	a	match	on	the	file	Myfault.sys,	thus	confirming	it	as	the	driver	using	the	“Leak”
pool	tag.

LookAside	Lists
Windows	also	provides	a	fast	memory	allocation	mechanism	called	lookaside	lists.
The	basic	difference	between	pools	and	lookaside	lists	is	that	while	general	pool



allocations	can	vary	in	size,	a	lookaside	list	contains	only	fixed-sized	blocks.
Although	the	general	pools	are	more	flexible	in	terms	of	what	they	can	supply,
lookaside	lists	are	faster	because	they	don’t	use	any	spinlocks.

Executive	components	and	device	drivers	can	create	lookaside	lists	that	match	the
size	of	frequently	allocated	data	structures	by	using	the
ExInitializeNPagedLookasideList	and	ExInitializePagedLookasideList	functions
(documented	in	the	WDK).	To	minimize	the	overhead	of	multiprocessor
synchronization,	several	executive	subsystems	(such	as	the	I/O	manager,	cache
manager,	and	object	manager)	create	separate	lookaside	lists	for	each	processor	for
their	frequently	accessed	data	structures.	The	executive	also	creates	a	general	per-
processor	paged	and	nonpaged	lookaside	list	for	small	allocations	(256	bytes	or
less).

If	a	lookaside	list	is	empty	(as	it	is	when	it’s	first	created),	the	system	must	allocate
from	paged	or	nonpaged	pool.	But	if	it	contains	a	freed	block,	the	allocation	can	be
satisfied	very	quickly.	(The	list	grows	as	blocks	are	returned	to	it.)	The	pool
allocation	routines	automatically	tune	the	number	of	freed	buffers	that	lookaside
lists	store	according	to	how	often	a	device	driver	or	executive	subsystem	allocates
from	the	list—the	more	frequent	the	allocations,	the	more	blocks	are	stored	on	a
list.	Lookaside	lists	are	automatically	reduced	in	size	if	they	aren’t	being	allocated
from.	(This	check	happens	once	per	second	when	the	balance	set	manager	system
thread	wakes	up	and	calls	the	function	ExAdjustLookasideDepth.)

EXPERIMENT:	VIEWING	THE	SYSTEM	LOOKASIDE	LISTS

You	can	display	the	contents	and	sizes	of	the	various	system	lookaside	lists	with	the	kernel	debugger
!lookaside	command.	The	following	excerpt	is	from	the	output	of	this	command:

lkd> !lookaside

Lookaside "nt!IopSmallIrpLookasideList" @ 81f47c00 "Irps"
    Type     =     0000 NonPagedPool
    Current Depth  =        3   Max Depth  =        4
    Size           =      148   Max Alloc  =      592
    AllocateMisses =      930   FreeMisses =      780
    TotalAllocates =    13748   TotalFrees =    13601
    Hit Rate       =       93%  Hit Rate   =       94%

Lookaside "nt!IopLargeIrpLookasideList" @ 81f47c80 "Irpl"
    Type     =     0000 NonPagedPool
    Current Depth  =        4   Max Depth  =        4
    Size           =      472   Max Alloc  =     1888



    AllocateMisses =    16555   FreeMisses =    15636
    TotalAllocates =    59287   TotalFrees =    58372
    Hit Rate       =       72%  Hit Rate   =       73%

Lookaside "nt!IopMdlLookasideList" @ 81f47b80 "Mdl "
    Type     =     0000 NonPagedPool
    Current Depth  =        4   Max Depth  =        4
    Size           =       96   Max Alloc  =      384
    AllocateMisses =    16287   FreeMisses =    15474
    TotalAllocates =    72835   TotalFrees =    72026
    Hit Rate       =       77%  Hit Rate   =       78%
...

Total NonPaged currently allocated for above lists =        0
Total NonPaged potential for above lists           =     3280
Total Paged currently allocated for above lists    =      744
Total Paged potential for above lists              =     1536



Heap	Manager
Most	applications	allocate	smaller	blocks	than	the	64-KB	minimum	allocation
granularity	possible	using	page	granularity	functions	such	as	VirtualAlloc	and
VirtualAllocExNuma.	Allocating	such	a	large	area	for	relatively	small	allocations	is
not	optimal	from	a	memory	usage	and	performance	standpoint.	To	address	this
need,	Windows	provides	a	component	called	the	heap	manager,	which	manages
allocations	inside	larger	memory	areas	reserved	using	the	page	granularity	memory
allocation	functions.	The	allocation	granularity	in	the	heap	manager	is	relatively
small:	8	bytes	on	32-bit	systems,	and	16	bytes	on	64-bit	systems.	The	heap
manager	has	been	designed	to	optimize	memory	usage	and	performance	in	the	case
of	these	smaller	allocations.

The	heap	manager	exists	in	two	places:	Ntdll.dll	and	Ntoskrnl.exe.	The	subsystem
APIs	(such	as	the	Windows	heap	APIs)	call	the	functions	in	Ntdll,	and	various
executive	components	and	device	drivers	call	the	functions	in	Ntoskrnl.	Its	native
interfaces	(prefixed	with	Rtl)	are	available	only	for	use	in	internal	Windows
components	or	kernel-mode	device	drivers.	The	documented	Windows	API
interfaces	to	the	heap	(prefixed	with	Heap)	are	forwarders	to	the	native	functions
in	Ntdll.dll.	In	addition,	legacy	APIs	(prefixed	with	either	Local	or	Global)	are
provided	to	support	older	Windows	applications,	which	also	internally	call	the	heap
manager,	using	some	of	its	specialized	interfaces	to	support	legacy	behavior.	The	C
runtime	(CRT)	also	uses	the	heap	manager	when	using	functions	such	as	malloc,
free,	and	the	C++	new	operator.	The	most	common	Windows	heap	functions	are:

HeapCreate	or	HeapDestroy	Creates	or	deletes,	respectively,	a	heap.	The	initial
reserved	and	committed	size	can	be	specified	at	creation.

HeapAlloc	Allocates	a	heap	block.

HeapFree	Frees	a	block	previously	allocated	with	HeapAlloc.

HeapReAlloc	Changes	the	size	of	an	existing	allocation	(grows	or	shrinks	an
existing	block).

HeapLock	or	HeapUnlock	Controls	mutual	exclusion	to	the	heap	operations.

HeapWalk	Enumerates	the	entries	and	regions	in	a	heap.



Types	of	Heaps
Each	process	has	at	least	one	heap:	the	default	process	heap.	The	default	heap	is
created	at	process	startup	and	is	never	deleted	during	the	process’s	lifetime.	It
defaults	to	1	MB	in	size,	but	it	can	be	made	bigger	by	specifying	a	starting	size	in
the	image	file	by	using	the	/HEAP	linker	flag.	This	size	is	just	the	initial	reserve,
however—it	will	expand	automatically	as	needed.	(You	can	also	specify	the	initial
committed	size	in	the	image	file.)

The	default	heap	can	be	explicitly	used	by	a	program	or	implicitly	used	by	some
Windows	internal	functions.	An	application	can	query	the	default	process	heap	by
making	a	call	to	the	Windows	function	GetProcessHeap.	Processes	can	also	create
additional	private	heaps	with	the	HeapCreate	function.	When	a	process	no	longer
needs	a	private	heap,	it	can	recover	the	virtual	address	space	by	calling
HeapDestroy.	An	array	with	all	heaps	is	maintained	in	each	process,	and	a	thread
can	query	them	with	the	Windows	function	GetProcessHeaps.

A	heap	can	manage	allocations	either	in	large	memory	regions	reserved	from	the
memory	manager	via	VirtualAlloc	or	from	memory	mapped	file	objects	mapped	in
the	process	address	space.	The	latter	approach	is	rarely	used	in	practice,	but	it’s
suitable	for	scenarios	where	the	content	of	the	blocks	needs	to	be	shared	between
two	processes	or	between	a	kernel-mode	and	a	user-mode	component.	The	Win32
GUI	subsystem	driver	(Win32k.sys)	uses	such	a	heap	for	sharing	GDI	and	User
objects	with	user	mode.	If	a	heap	is	built	on	top	of	a	memory	mapped	file	region,
certain	constraints	apply	with	respect	to	the	component	that	can	call	heap
functions.	First,	the	internal	heap	structures	use	pointers,	and	therefore	do	not
allow	remapping	to	different	addresses	in	other	processes.	Second,	the
synchronization	across	multiple	processes	or	between	a	kernel	component	and	a
user	process	is	not	supported	by	the	heap	functions.	Also,	in	the	case	of	a	shared
heap	between	user	mode	and	kernel	mode,	the	user-mode	mapping	should	be	read-
only	to	prevent	user-mode	code	from	corrupting	the	heap’s	internal	structures,
which	would	result	in	a	system	crash.	The	kernel-mode	driver	is	also	responsible
for	not	putting	any	sensitive	data	in	a	shared	heap	to	avoid	leaking	it	to	user	mode.

Heap	Manager	Structure
As	shown	in	Figure	10-7,	the	heap	manager	is	structured	in	two	layers:	an	optional



front-end	layer	and	the	core	heap.	The	core	heap	handles	the	basic	functionality
and	is	mostly	common	across	the	user-mode	and	kernel-mode	heap
implementations.	The	core	functionality	includes	the	management	of	blocks	inside
segments,	the	management	of	the	segments,	policies	for	extending	the	heap,
committing	and	decommitting	memory,	and	management	of	the	large	blocks.

Figure	10-7.	Heap	manager	layers

For	user-mode	heaps	only,	an	optional	front-end	heap	layer	can	exist	on	top	of	the
existing	core	functionality.	The	only	front-end	supported	on	Windows	is	the	Low
Fragmentation	Heap	(LFH).	Only	one	front-end	layer	can	be	used	for	one	heap	at
one	time.

Heap	Synchronization
The	heap	manager	supports	concurrent	access	from	multiple	threads	by	default.
However,	if	a	process	is	single	threaded	or	uses	an	external	mechanism	for
synchronization,	it	can	tell	the	heap	manager	to	avoid	the	overhead	of
synchronization	by	specifying	HEAP_NO_SERIALIZE	either	at	heap	creation	or
on	a	per-allocation	basis.

A	process	can	also	lock	the	entire	heap	and	prevent	other	threads	from	performing
heap	operations	for	operations	that	would	require	consistent	states	across	multiple
heap	calls.	For	instance,	enumerating	the	heap	blocks	in	a	heap	with	the	Windows



function	HeapWalk	requires	locking	the	heap	if	multiple	threads	can	perform	heap
operations	simultaneously.

If	heap	synchronization	is	enabled,	there	is	one	lock	per	heap	that	protects	all
internal	heap	structures.	In	heavily	multithreaded	applications	(especially	when
running	on	multiprocessor	systems),	the	heap	lock	might	become	a	significant
contention	point.	In	that	case,	performance	might	be	improved	by	enabling	the
front-end	heap,	described	in	an	upcoming	section.

The	Low	Fragmentation	Heap
Many	applications	running	in	Windows	have	relatively	small	heap	memory	usage
(usually	less	than	1	MB).	For	this	class	of	applications,	the	heap	manager’s	best-fit
policy	helps	keep	a	low	memory	footprint	for	each	process.	However,	this	strategy
does	not	scale	for	large	processes	and	multiprocessor	machines.	In	these	cases,
memory	available	for	heap	usage	might	be	reduced	as	a	result	of	heap
fragmentation.	Performance	can	suffer	in	scenarios	where	only	certain	sizes	are
often	used	concurrently	from	different	threads	scheduled	to	run	on	different
processors.	This	happens	because	several	processors	need	to	modify	the	same
memory	location	(for	example,	the	head	of	the	look-aside	list	for	that	particular
size)	at	the	same	time,	thus	causing	significant	contention	for	the	corresponding
cache	line.

The	LFH	avoids	fragmentation	by	managing	allocated	blocks	in	predetermined
different	block-size	ranges	called	buckets.	When	a	process	allocates	memory	from
the	heap,	the	LFH	chooses	the	bucket	that	maps	to	the	smallest	block	large	enough
to	hold	the	required	size.	(The	smallest	block	is	8	bytes.)	The	first	bucket	is	used
for	allocations	between	1	and	8	bytes,	the	second	for	allocations	between	9	and	16
bytes,	and	so	on,	until	the	thirty-second	bucket,	which	is	used	for	allocations
between	249	and	256	bytes,	followed	by	the	thirty-third	bucket,	which	is	used	for
allocations	between	257	and	272	bytes,	and	so	on.	Finally,	the	one	hundred	twenty-
eighth	bucket,	which	is	the	last,	is	used	for	allocations	between	15,873	and	16,384
bytes.	(This	is	known	as	a	binary	buddy	system.)	Table	10-7	summarizes	the
different	buckets,	their	granularity,	and	the	range	of	sizes	they	map	to.

Table	10-7.	Buckets



Buckets Granularity Range

1–32 8 1–256

33–48 16 257–512

49–64 32 513–1,024

65–80 64 1,025–2,048

81–96 128 2,049–4,096

97–112 256 4,097–8,194

113–128 512 8,195–16,384

The	LFH	addresses	these	issues	by	using	the	core	heap	manager	and	look-aside
lists.	The	Windows	heap	manager	implements	an	automatic	tuning	algorithm	that
can	enable	the	LFH	by	default	under	certain	conditions,	such	as	lock	contention	or
the	presence	of	popular	size	allocations	that	have	shown	better	performance	with
the	LFH	enabled.	For	large	heaps,	a	significant	percentage	of	allocations	is
frequently	grouped	in	a	relatively	small	number	of	buckets	of	certain	sizes.	The
allocation	strategy	used	by	LFH	is	to	optimize	the	usage	for	these	patterns	by
efficiently	handling	same-size	blocks.

To	address	scalability,	the	LFH	expands	the	frequently	accessed	internal	structures
to	a	number	of	slots	that	is	two	times	larger	than	the	current	number	of	processors
on	the	machine.	The	assignment	of	threads	to	these	slots	is	done	by	an	LFH
component	called	the	affinity	manager.	Initially,	the	LFH	starts	using	the	first	slot
for	heap	allocations;	however,	if	a	contention	is	detected	when	accessing	some
internal	data,	the	LFH	switches	the	current	thread	to	use	a	different	slot.	Further
contentions	will	spread	threads	on	more	slots.	These	slots	are	controlled	for	each
size	bucket	to	improve	locality	and	minimize	the	overall	memory	consumption.

Even	if	the	LFH	is	enabled	as	a	front-end	heap,	the	less	frequent	allocation	sizes
may	still	continue	to	use	the	core	heap	functions	to	allocate	memory,	while	the
most	popular	allocation	classes	will	be	performed	from	the	LFH.	The	LFH	can
also	be	disabled	by	using	the	HeapSetInformation	API	with	the
HeapCompatibilityInformation	class.

Heap	Security	Features



As	the	heap	manager	has	evolved,	it	has	taken	an	increased	role	in	early	detection
of	heap	usage	errors	and	in	mitigating	effects	of	potential	heap-based	exploits.
These	measures	exist	to	lessen	the	security	effect	of	potential	vulnerabilities	in
applications.	The	metadata	used	by	the	heap	for	internal	management	is	packed
with	a	high	degree	of	randomization	to	make	it	difficult	for	an	attempted	exploit	to
patch	the	internal	structures	to	prevent	crashes	or	conceal	the	attack	attempt.	These
blocks	are	also	subject	to	an	integrity	check	mechanism	on	the	header	to	detect
simple	corruptions	such	as	buffer	overruns.	Finally,	the	heap	also	uses	a	small
degree	of	randomization	of	the	base	address	(or	handle).	By	using	the
HeapSetInformation	API	with	the	HeapEnableTerminationOnCorruption	class,
processes	can	opt	in	for	an	automatic	termination	in	case	of	detected
inconsistencies	to	avoid	executing	unknown	code.

As	an	effect	of	block	metadata	randomization,	using	the	debugger	to	simply	dump
a	block	header	as	an	area	of	memory	is	not	that	useful.	For	example,	the	size	of	the
block	and	whether	it	is	busy	or	not	are	not	easy	to	spot	from	a	regular	dump.	The
same	applies	to	LFH	blocks;	they	have	a	different	type	of	metadata	stored	in	the
header,	partially	randomized	as	well.	To	dump	these	details,	the	!heap	–i	command
in	the	debugger	does	all	the	work	to	retrieve	the	metadata	fields	from	a	block,
flagging	checksum	or	free	list	inconsistencies	as	well	if	they	exist.	The	command
works	for	both	the	LFH	and	regular	heap	blocks.	The	total	size	of	the	blocks,	the
user	requested	size,	the	segment	owning	the	block,	as	well	as	the	header	partial
checksum	are	available	in	the	output,	as	shown	in	the	following	sample.	Because
the	randomization	algorithm	uses	the	heap	granularity,	the	!heap	–i	command
should	be	used	only	in	the	proper	context	of	the	heap	containing	the	block.	In	the
example,	the	heap	handle	is	0x001a0000.	If	the	current	heap	context	was	different,
the	decoding	of	the	header	would	be	incorrect.	To	set	the	proper	context,	the	same
!heap	–i	command	with	the	heap	handle	as	an	argument	needs	to	be	executed	first.

0:000> !heap -i 001a0000
Heap context set to the heap 0x001a0000
0:000> !heap -i 1e2570
Detailed information for block entry 001e2570
Assumed heap       : 0x001a0000 (Use !heap -i NewHeapHandle to change)
Header content     : 0x1570F4EC 0x0C0015BE (decoded : 0x07010006 0x0C00000D)
Owning segment     : 0x001a0000 (offset 0)
Block flags        : 0x1 (busy )
Total block size   : 0x6 units (0x30 bytes)
Requested size     : 0x24 bytes (unused 0xc bytes)
Previous block size: 0xd units (0x68 bytes)
Block CRC          : OK - 0x7



Previous block     : 0x001e2508
Next block         : 0x001e25a0

Heap	Debugging	Features
The	heap	manager	leverages	the	8	bytes	used	to	store	internal	metadata	as	a
consistency	checkpoint,	which	makes	potential	heap	usage	errors	more	obvious,
and	also	includes	several	features	to	help	detect	bugs	by	using	the	following	heap
functions:

Enable	tail	checking	The	end	of	each	block	carries	a	signature	that	is	checked
when	the	block	is	released.	If	a	buffer	overrun	destroyed	the	signature	entirely
or	partially,	the	heap	will	report	this	error.

Enable	free	checking	A	free	block	is	filled	with	a	pattern	that	is	checked	at
various	points	when	the	heap	manager	needs	to	access	the	block	(such	as	at
removal	from	the	free	list	to	satisfy	an	allocate	request).	If	the	process
continued	to	write	to	the	block	after	freeing	it,	the	heap	manager	will	detect
changes	in	the	pattern	and	the	error	will	be	reported.

Parameter	checking	This	function	consists	of	extensive	checking	of	the
parameters	passed	to	the	heap	functions.

Heap	validation	The	entire	heap	is	validated	at	each	heap	call.

Heap	tagging	and	stack	traces	support	This	function	supports	specifying
tags	for	allocation	and/or	captures	user-mode	stack	traces	for	the	heap	calls	to
help	narrow	the	possible	causes	of	a	heap	error.

The	first	three	options	are	enabled	by	default	if	the	loader	detects	that	a	process	is
started	under	the	control	of	a	debugger.	(A	debugger	can	override	this	behavior	and
turn	off	these	features.)	The	heap	debugging	features	can	be	specified	for	an
executable	image	by	setting	various	debugging	flags	in	the	image	header	using	the
Gflags	tool.	(See	the	section	“Windows	Global	Flags”	in	Chapter	3	in	Part	1.)	Or,
heap	debugging	options	can	be	enabled	using	the	!heap	command	in	the	standard
Windows	debuggers.	(See	the	debugger	help	for	more	information.)

Enabling	heap	debugging	options	affects	all	heaps	in	the	process.	Also,	if	any	of
the	heap	debugging	options	are	enabled,	the	LFH	will	be	disabled	automatically
and	the	core	heap	will	be	used	(with	the	required	debugging	options	enabled).	The
LFH	is	also	not	used	for	heaps	that	are	not	expandable	(because	of	the	extra



overhead	added	to	the	existing	heap	structures)	or	for	heaps	that	do	not	allow
serialization.

Pageheap
Because	the	tail	and	free	checking	options	described	in	the	preceding	sections
might	be	discovering	corruptions	that	occurred	well	before	the	problem	was
detected,	an	additional	heap	debugging	capability,	called	pageheap,	is	provided	that
directs	all	or	part	of	the	heap	calls	to	a	different	heap	manager.	Pageheap	is	enabled
using	the	Gflags	tool	(which	is	part	of	the	Debugging	Tools	for	Windows).	When
enabled,	the	heap	manager	places	allocations	at	the	end	of	pages	and	reserves	the
immediately	following	page.	Since	reserved	pages	are	not	accessible,	if	a	buffer
overrun	occurs	it	will	cause	an	access	violation,	making	it	easier	to	detect	the
offending	code.	Optionally,	pageheap	allows	placing	the	blocks	at	the	beginning	of
the	pages,	with	the	preceding	page	reserved,	to	detect	buffer	underrun	problems.
(This	is	a	rare	occurrence.)	The	pageheap	also	can	protect	freed	pages	against	any
access	to	detect	references	to	heap	blocks	after	they	have	been	freed.

Note	that	using	the	pageheap	can	result	in	running	out	of	address	space	because	of
the	significant	overhead	added	for	small	allocations.	Also,	performance	can	suffer
as	a	result	of	the	increase	of	references	to	demand	zero	pages,	loss	of	locality,	and
additional	overhead	caused	by	frequent	calls	to	validate	heap	structures.	A	process
can	reduce	the	impact	by	specifying	that	the	pageheap	be	used	only	for	blocks	of
certain	sizes,	address	ranges,	and/or	originating	DLLs.

For	more	information	on	pageheap,	see	the	Debugging	Tools	for	Windows	Help
file.

Fault	Tolerant	Heap
Corruption	of	heap	metadata	has	been	identified	by	Microsoft	as	one	of	the	most
common	causes	of	application	failures.	Windows	includes	a	feature	called	the	fault
tolerant	heap,	or	FTH,	in	an	attempt	to	mitigate	these	problems	and	to	provide
better	problem-solving	resources	to	application	developers.	The	fault	tolerant	heap
is	implemented	in	two	primary	components:	the	detection	component,	or	FTH
server,	and	the	mitigation	component,	or	FTH	client.

The	detection	component	is	a	DLL,	Fthsvc.dll,	that	is	loaded	by	the	Windows



Security	Center	service	(Wscsvc.dll,	which	in	turn	runs	in	one	of	the	shared	service
processes	under	the	local	service	account).	It	is	notified	of	application	crashes	by
the	Windows	Error	Reporting	service.

When	an	application	crashes	in	Ntdll.dll,	with	an	error	status	indicating	either	an
access	violation	or	a	heap	corruption	exception,	if	it	is	not	already	on	the	FTH
service’s	list	of	“watched”	applications,	the	service	creates	a	“ticket”	for	the
application	to	hold	the	FTH	data.	If	the	application	subsequently	crashes	more	than
four	times	in	an	hour,	the	FTH	service	configures	the	application	to	use	the	FTH
client	in	the	future.

The	FTH	client	is	an	application	compatibility	shim.	This	mechanism	has	been
used	since	Windows	XP	to	allow	applications	that	depend	on	particular	behavior	of
older	Windows	systems	to	run	on	later	systems.	In	this	case,	the	shim	mechanism
intercepts	the	calls	to	the	heap	routines	and	redirects	them	to	its	own	code.	The
FTH	code	implements	a	number	of	“mitigations”	that	attempt	to	allow	the
application	to	survive	despite	various	heap-related	errors.

For	example,	to	protect	against	small	buffer	overrun	errors,	the	FTH	adds	8	bytes
of	padding	and	an	FTH	reserved	area	to	each	allocation.	To	address	a	common
scenario	in	which	a	block	of	heap	is	accessed	after	it	is	freed,	HeapFree	calls	are
implemented	only	after	a	delay:	“freed”	blocks	are	put	on	a	list,	and	only	freed
when	the	total	size	of	the	blocks	on	the	list	exceeds	4	MB.	Attempts	to	free	regions
that	are	not	actually	part	of	the	heap,	or	not	part	of	the	heap	identified	by	the	heap
handle	argument	to	HeapFree,	are	simply	ignored.	In	addition,	no	blocks	are
actually	freed	once	exit	or	RtlExitUserProcess	has	been	called.

The	FTH	server	continues	to	monitor	the	failure	rate	of	the	application	after	the
mitigations	have	been	installed.	If	the	failure	rate	does	not	improve,	the	mitigations
are	removed.

The	activity	of	the	fault	tolerant	heap	can	be	observed	in	the	Event	Viewer.	Type
eventvwr.msc	at	a	Run	prompt,	and	then	navigate	in	the	left	pane	to	Event
Viewer,	Applications	And	Services	Logs,	Microsoft,	Windows,	Fault-Tolerant-
Heap.	Click	on	the	Operational	log.	It	may	be	disabled	completely	in	the	registry:
in	the	key	HKLM\Software\Microsoft\FTH,	set	the	value	Enabled	to	0.

The	FTH	does	not	normally	operate	on	services,	only	applications,	and	it	is



disabled	on	Windows	server	systems	for	performance	reasons.	A	system
administrator	can	manually	apply	the	shim	to	an	application	or	service	executable
by	using	the	Application	Compatibility	Toolkit.



Virtual	Address	Space	Layouts
This	section	describes	the	components	in	the	user	and	system	address	space,
followed	by	the	specific	layouts	on	32-bit	and	64-bit	systems.	This	information
helps	you	to	understand	the	limits	on	process	and	system	virtual	memory	on	both
platforms.

Three	main	types	of	data	are	mapped	into	the	virtual	address	space	in	Windows:
per-process	private	code	and	data,	sessionwide	code	and	data,	and	systemwide
code	and	data.

As	explained	in	Chapter	1	in	Part	1,	each	process	has	a	private	address	space	that
cannot	be	accessed	by	other	processes.	That	is,	a	virtual	address	is	always	evaluated
in	the	context	of	the	current	process	and	cannot	refer	to	an	address	defined	by	any
other	process.	Threads	within	the	process	can	therefore	never	access	virtual
addresses	outside	this	private	address	space.	Even	shared	memory	is	not	an
exception	to	this	rule,	because	shared	memory	regions	are	mapped	into	each
participating	process,	and	so	are	accessed	by	each	process	using	per-process
addresses.	Similarly,	the	cross-process	memory	functions	(ReadProcessMemory
and	WriteProcessMemory)	operate	by	running	kernel-mode	code	in	the	context	of
the	target	process.

The	information	that	describes	the	process	virtual	address	space,	called	page	tables,
is	described	in	the	section	on	address	translation.	Each	process	has	its	own	set	of
page	tables.	They	are	stored	in	kernel-mode-only	accessible	pages	so	that	user-
mode	threads	in	a	process	cannot	modify	their	own	address	space	layout.

Session	space	contains	information	that	is	common	to	each	session.	(For	a
description	of	sessions,	see	Chapter	2	in	Part	1.)	A	session	consists	of	the	processes
and	other	system	objects	(such	as	the	window	station,	desktops,	and	windows)	that
represent	a	single	user’s	logon	session.	Each	session	has	a	session-specific	paged
pool	area	used	by	the	kernel-mode	portion	of	the	Windows	subsystem
(Win32k.sys)	to	allocate	session-private	GUI	data	structures.	In	addition,	each
session	has	its	own	copy	of	the	Windows	subsystem	process	(Csrss.exe)	and	logon
process	(Winlogon.exe).	The	session	manager	process	(Smss.exe)	is	responsible	for
creating	new	sessions,	which	includes	loading	a	session-private	copy	of
Win32k.sys,	creating	the	session-private	object	manager	namespace,	and	creating



the	session-specific	instances	of	the	Csrss	and	Winlogon	processes.	To	virtualize
sessions,	all	sessionwide	data	structures	are	mapped	into	a	region	of	system	space
called	session	space.	When	a	process	is	created,	this	range	of	addresses	is	mapped
to	the	pages	associated	with	the	session	that	the	process	belongs	to.

Finally,	system	space	contains	global	operating	system	code	and	data	structures
visible	by	kernel-mode	code	regardless	of	which	process	is	currently	executing.
System	space	consists	of	the	following	components:

System	code	Contains	the	operating	system	image,	HAL,	and	device	drivers
used	to	boot	the	system.

Nonpaged	pool	Nonpageable	system	memory	heap.

Paged	pool	Pageable	system	memory	heap.

System	cache	Virtual	address	space	used	to	map	files	open	in	the	system
cache.	(See	Chapter	11	for	detailed	information.)

System	page	table	entries	(PTEs)	Pool	of	system	PTEs	used	to	map	system
pages	such	as	I/O	space,	kernel	stacks,	and	memory	descriptor	lists.	You	can	see
how	many	system	PTEs	are	available	by	examining	the	value	of	the	Memory:
Free	System	Page	Table	Entries	counter	in	Performance	Monitor.

System	working	set	lists	The	working	set	list	data	structures	that	describe	the
three	system	working	sets	(the	system	cache	working	set,	the	paged	pool
working	set,	and	the	system	PTEs	working	set).

System	mapped	views	Used	to	map	Win32k.sys,	the	loadable	kernel-mode
part	of	the	Windows	subsystem,	as	well	as	kernel-mode	graphics	drivers	it	uses.
(See	Chapter	2	in	Part	1	for	more	information	on	Win32k.sys.)

Hyperspace	A	special	region	used	to	map	the	process	working	set	list	and
other	per-process	data	that	doesn’t	need	to	be	accessible	in	arbitrary	process
context.	Hyperspace	is	also	used	to	temporarily	map	physical	pages	into	the
system	space.	One	example	of	this	is	invalidating	page	table	entries	in	page
tables	of	processes	other	than	the	current	one	(such	as	when	a	page	is	removed
from	the	standby	list).

Crash	dump	information	Reserved	to	record	information	about	the	state	of	a
system	crash.



HAL	usage	System	memory	reserved	for	HAL-specific	structures.

Now	that	we’ve	described	the	basic	components	of	the	virtual	address	space	in
Windows,	let’s	examine	the	specific	layout	on	the	x86,	IA64,	and	x64	platforms.

x86	Address	Space	Layouts
By	default,	each	user	process	on	32-bit	versions	of	Windows	has	a	2-GB	private
address	space;	the	operating	system	takes	the	remaining	2	GB.	However,	the	system
can	be	configured	with	the	increaseuserva	BCD	boot	option	to	permit	user	address
spaces	up	to	3	GB.	Two	possible	address	space	layouts	are	shown	in	Figure	10-8.

The	ability	for	a	32-bit	process	to	grow	beyond	2	GB	was	added	to	accommodate
the	need	for	32-bit	applications	to	keep	more	data	in	memory	than	could	be	done
with	a	2-GB	address	space.	Of	course,	64-bit	systems	provide	a	much	larger
address	space.



Figure	10-8.	x86	virtual	address	space	layouts

For	a	process	to	grow	beyond	2	GB	of	address	space,	the	image	file	must	have	the
IMAGE_FILELARGEADDRESS_AWARE	flag	set	in	the	image	header.
Otherwise,	Windows	reserves	the	additional	address	space	for	that	process	so	that
the	application	won’t	see	virtual	addresses	greater	than	0x7FFFFFFF.	Access	to
the	additional	virtual	memory	is	opt-in	because	some	applications	have	assumed
that	they’d	be	given	at	most	2	GB	of	the	address	space.	Since	the	high	bit	of	a
pointer	referencing	an	address	below	2	GB	is	always	zero,	these	applications	would
use	the	high	bit	in	their	pointers	as	a	flag	for	their	own	data,	clearing	it,	of	course,
before	referencing	the	data.	If	they	ran	with	a	3-GB	address	space,	they	would
inadvertently	truncate	pointers	that	have	values	greater	than	2	GB,	causing	program



errors,	including	possible	data	corruption.	You	set	this	flag	by	specifying	the	linker
flag	/LARGEADDRESSAWARE	when	building	the	executable.	This	flag	has	no
effect	when	running	the	application	on	a	system	with	a	2-GB	user	address	space.

Several	system	images	are	marked	as	large	address	space	aware	so	that	they	can
take	advantage	of	systems	running	with	large	process	address	spaces.	These
include:

Lsass.exe	The	Local	Security	Authority	Subsystem

Inetinfo.exe	Internet	Information	Server

Chkdsk.exe	The	Check	Disk	utility

Smss.exe	The	Session	Manager

Dllhst3g.exe	A	special	version	of	Dllhost.exe	(for	COM+	applications)

Dispdiag.exe	The	display	diagnostic	dump	utility

Esentutl.exe	The	Active	Directory	Database	Utility	tool

EXPERIMENT:	CHECKING	IF	AN	APPLICATION	IS	LARGE	ADDRESS	AWARE

You	can	use	the	Dumpbin	utility	from	the	Windows	SDK	to	check	other	executables	to	see	if	they	support
large	address	spaces.	Use	the	/HEADERS	flag	to	display	the	results.	Here’s	a	sample	output	of	Dumpbin	on
the	Session	Manager:

C:\Program Files\Microsoft SDKs\Windows\v7.1>dumpbin headers 
c:\windows\system32\smss.exe
Microsoft (R) COFFPE Dumper Version 10.00.40219.01
Copyright (C) Microsoft Corporation.  All rights reserved.

Dump of file c:\windows\system32\smss.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
            8664 machine (x64)
               5 number of sections
        4A5BC116 time date stamp Mon Jul 13 16:19:50 2009
               0 file pointer to symbol table
               0 number of symbols
              F0 size of optional header
              22 characteristics
                   Executable
                   Application can handle large (>2GB) addresses



Finally,	because	memory	allocations	using	VirtualAlloc,	VirtualAllocEx,	and
VirtualAllocExNuma	start	with	low	virtual	addresses	and	grow	higher	by	default,
unless	a	process	allocates	a	lot	of	virtual	memory	or	it	has	a	very	fragmented
virtual	address	space,	it	will	never	get	back	very	high	virtual	addresses.	Therefore,
for	testing	purposes,	you	can	force	memory	allocations	to	start	from	high	addresses
by	using	the	MEM_TOP_DOWN	flag	or	by	adding	a	DWORD	registry	value,
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\AllocationPreference,	and	setting	it	to	0x100000.

Figure	10-9	shows	two	screen	shots	of	the	TestLimit	utility	(shown	in	previous
experiments)	leaking	memory	on	a	32-bit	Windows	machine	booted	with	and
without	the	increaseuserva	option	set	to	3	GB.

Note	that	in	the	second	screen	shot,	TestLimit	was	able	to	leak	almost	3	GB,	as
expected.	This	is	only	possible	because	TestLimit	was	linked	with
/LARGEADDRESSAWARE.	Had	it	not	been,	the	results	would	have	been
essentially	the	same	as	on	the	system	booted	without	increaseuserva.

Figure	10-9.	TestLimit	leaking	memory	on	a	32-bit	Windows	computer,	with	and	without	increaseuserva
set	to	3	GB

x86	System	Address	Space	Layout
The	32-bit	versions	of	Windows	implement	a	dynamic	system	address	space	layout
by	using	a	virtual	address	allocator	(we’ll	describe	this	functionality	later	in	this
section).	There	are	still	a	few	specifically	reserved	areas,	as	shown	in	Figure	10-8.
However,	many	kernel-mode	structures	use	dynamic	address	space	allocation.



These	structures	are	therefore	not	necessarily	virtually	contiguous	with	themselves.
Each	can	easily	exist	in	several	disjointed	pieces	in	various	areas	of	system	address
space.	The	uses	of	system	address	space	that	are	allocated	in	this	way	include:

Nonpaged	pool

Special	pool

Paged	pool

System	page	table	entries	(PTEs)

System	mapped	views

File	system	cache

File	system	structures	(metadata)

Session	space

x86	Session	Space
For	systems	with	multiple	sessions,	the	code	and	data	unique	to	each	session	are
mapped	into	system	address	space	but	shared	by	the	processes	in	that	session.
Figure	10-10	shows	the	general	layout	of	session	space.

Figure	10-10.	x86	session	space	layout	(not	proportional)

The	sizes	of	the	components	of	session	space,	just	like	the	rest	of	kernel	system
address	space,	are	dynamically	configured	and	resized	by	the	memory	manager	on
demand.

EXPERIMENT:	VIEWING	SESSIONS



You	can	display	which	processes	are	members	of	which	sessions	by	examining	the	session	ID.	This	can	be
viewed	with	Task	Manager,	Process	Explorer,	or	the	kernel	debugger.	Using	the	kernel	debugger,	you	can
list	the	active	sessions	with	the	!session	command	as	follows:

lkd> !session
Sessions on machine: 3
Valid Sessions: 0 1 3
Current Session 1

Then	you	can	set	the	active	session	using	the	!session	–s	command	and	display	the	address	of	the	session
data	structures	and	the	processes	in	that	session	with	the	!sprocess	command:

lkd> !session -s 3
Sessions on machine: 3
Implicit process is now 84173500
Using session 3

lkd> !sprocess
Dumping Session 3

MMSESSION_SPACE 9a83c000
_MMSESSION        9a83cd00
PROCESS 84173500  SessionId: 3  Cid: 0d78    Peb: 7ffde000  ParentCid: 0e80
    DirBase: 3ef53500  ObjectTable: 8588d820  HandleCount:  76.
    Image: csrss.exe

PROCESS 841a6030  SessionId: 3  Cid: 0c6c    Peb: 7ffdc000  ParentCid: 0e80
    DirBase: 3ef53520  ObjectTable: 85897208  HandleCount:  94.
    Image: winlogon.exe

PROCESS 841d9cf0  SessionId: 3  Cid: 0d38    Peb: 7ffd6000  ParentCid: 0c6c
    DirBase: 3ef53540  ObjectTable: 8589d248  HandleCount: 165.
    Image: LogonUI.exe

...

To	view	the	details	of	the	session,	dump	the	MM_SESSION_SPACE	structure	using	the	dt	command,	as
follows:

lkd> dt nt!MMSESSION_SPACE 9a83c000
   +0x000 ReferenceCount   : 0n3
   +0x004 u                : <unnamed-tag>
   +0x008 SessionId        : 3
   +0x00c ProcessReferenceToSession : 0n4
   +0x010 ProcessList      : LISTENTRY [ 0x841735e4 - 0x841d9dd4 ]
   +0x018 LastProcessSwappedOutTime : LARGEINTEGER 0x0
   +0x020 SessionPageDirectoryIndex : 0x31fa3
   +0x024 NonPagablePages  : 0x19
   +0x028 CommittedPages   : 0x867
   +0x02c PagedPoolStart   : 0x80000000 Void
   +0x030 PagedPoolEnd     : 0xffbfffff Void
   +0x034 SessionObject    : 0x854e2040 Void
   +0x038 SessionObjectHandle : 0x8000020c Void
   +0x03c ResidentProcessCount : 0n3
   +0x040 SessionPoolAllocationFailures : [4] 0
   +0x050 ImageList        : LISTENTRY [ 0x8519bef8 - 0x85296370 ]
   +0x058 LocaleId         : 0x409
   +0x05c AttachCount      : 0
   +0x060 AttachGate       : _KGATE



   +0x070 WsListEntry      : LISTENTRY [ 0x82772408 - 0x97044070 ]
   +0x080 Lookaside        : [25] GENERALLOOKASIDE
...

EXPERIMENT:	VIEWING	SESSION	SPACE	UTILIZATION

You	can	view	session	space	memory	utilization	with	the	!vm	4	command	in	the	kernel	debugger.	For
example,	the	following	output	was	taken	from	a	32-bit	Windows	client	system	with	the	default	two	sessions
created	at	system	startup:

lkd> !vm 4
.
.
     Terminal Server Memory Usage By Session:

     Session ID 0 @ 9a8c7000:
     Paged Pool Usage:        2372K
     Commit Usage:            4832K

     Session ID 1 @ 9a881000:
     Paged Pool Usage:       14120K
     Commit Usage:           16704K

System	Page	Table	Entries
System	page	table	entries	(PTEs)	are	used	to	dynamically	map	system	pages	such
as	I/O	space,	kernel	stacks,	and	the	mapping	for	memory	descriptor	lists.	System
PTEs	aren’t	an	infinite	resource.	On	32-bit	Windows,	the	number	of	available
system	PTEs	is	such	that	the	system	can	theoretically	describe	2	GB	of	contiguous
system	virtual	address	space.	On	64-bit	Windows,	system	PTEs	can	describe	up	to
128	GB	of	contiguous	virtual	address	space.

EXPERIMENT:	VIEWING	SYSTEM	PTE	INFORMATION

You	can	see	how	many	system	PTEs	are	available	by	examining	the	value	of	the	Memory:	Free	System
Page	Table	Entries	counter	in	Performance	Monitor	or	by	using	the	!sysptes	or	!vm	command	in	the
debugger.	You	can	also	dump	the	MISYSTEM_PTE_TYPE	structure	associated	with	the	MiSystemPteInfo
global	variable.	This	will	also	show	you	how	many	PTE	allocation	failures	occurred	on	the	system—a	high
count	indicates	a	problem	and	possibly	a	system	PTE	leak.

0: kd> !sysptes

System PTE Information
  Total System Ptes 307168

    starting PTE: c0200000

  free blocks: 32   total free: 3856    largest free block: 542



Kernel Stack PTE Information
Unable to get syspte index array - skipping bins

    starting PTE: c0200000

  free blocks: 165   total free: 1503    largest free block: 75

0: kd> ? nt!MiSystemPteInfo
Evaluate expression: -2100014016 = 82d45440

0: kd> dt MISYSTEM_PTE_TYPE 82d45440
nt!MISYSTEM_PTE_TYPE
   +0x000 Bitmap           : RTLBITMAP
   +0x008 Flags            : 3
   +0x00c Hint             : 0x2271f
   +0x010 BasePte          : 0xc0200000 MMPTE
   +0x014 FailureCount     : 0x82d45468  -> 0
   +0x018 Vm               : 0x82d67300 MMSUPPORT
   +0x01c TotalSystemPtes  : 0n7136
   +0x020 TotalFreeSystemPtes : 0n4113
   +0x024 CachedPteCount   : 0n0
   +0x028 PteFailures      : 0
   +0x02c SpinLock         : 0
   +0x02c GlobalMutex      : (null)

If	you	are	seeing	lots	of	system	PTE	failures,	you	can	enable	system	PTE	tracking	by	creating	a	new
DWORD	value	in	the	HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management	key	called	TrackPtes	and	setting	its	value	to	1.	You	can	then	use	!sysptes	4	to	show	a	list	of
allocators,	as	shown	here:

lkd>!sysptes 4
0x1ca2 System PTEs allocated to mapping locked pages

VA       MDL     PageCount  Caller/CallersCaller
ecbfdee8 f0ed0958        2 
netbt!DispatchIoctls+0x56a/netbt!NbtDispatchDevCtrl+0xcd
f0a8d050 f0ed0510        1 
netbt!DispatchIoctls+0x64e/netbt!NbtDispatchDevCtrl+0xcd
ecef5000        1       20 nt!MiFindContiguousMemory+0x63
ed447000        0        2 
Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
ee1ce000        0        2 
Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
ed9c4000        1       ca nt!MiFindContiguousMemory+0x63
eda8e000        1       ca nt!MiFindContiguousMemory+0x63
efb23d68 f8067888        2 mrxsmb!BowserMapUsersBuffer+0x28
efac5af4 f8b15b98        2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
f0ac688c f848ff88        1 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
efac7b7c f82fc2a8        2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
ee4d1000        1       38 nt!MiFindContiguousMemory+0x63
efa4f000        0        2 
Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
efa53000        0        2 
Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
eea89000        0        1 
TDI!DllInitialize+0x4f/nt!MiResolveImageReferences+0x4bc
ee798000        1       20 VIDEOPRT!pVideoPortGetDeviceBase+0x1f1
f0676000        1       10 
hal!HalpGrowMapBuffers+0x134/hal!HalpAllocateAdapterEx+0x1ff



f0b75000        1        1 cpqasm2+0x2af67/cpqasm2+0x7847
f0afa000        1        1 cpqasm2+0x2af67/cpqasm2+0x6d82

64-Bit	Address	Space	Layouts
The	theoretical	64-bit	virtual	address	space	is	16	exabytes
(18,446,744,073,709,551,616	bytes,	or	approximately	18.44	billion	billion	bytes).
Unlike	on	x86	systems,	where	the	default	address	space	is	divided	in	two	parts
(half	for	a	process	and	half	for	the	system),	the	64-bit	address	is	divided	into	a
number	of	different	size	regions	whose	components	match	conceptually	the
portions	of	user,	system,	and	session	space.	The	various	sizes	of	these	regions,
listed	in	Table	10-8,	represent	current	implementation	limits	that	could	easily	be
extended	in	future	releases.	Clearly,	64	bits	provides	a	tremendous	leap	in	terms	of
address	space	sizes.

Table	10-8.	64-Bit	Address	Space	Sizes

Region IA64 x64

Process	Address	Space 7,152	GB 8,192	GB

System	PTE	Space 128	GB 128	GB

System	Cache 1	TB 1	TB

Paged	Pool 128	GB 128	GB

Nonpaged	Pool 75%	of	physical	memory 75%	of	physical	memory

Also,	on	64-bit	Windows,	another	useful	feature	of	having	an	image	that	is	large
address	space	aware	is	that	while	running	on	64-bit	Windows	(under	Wow64),
such	an	image	will	actually	receive	all	4	GB	of	user	address	space	available—after
all,	if	the	image	can	support	3-GB	pointers,	4-GB	pointers	should	not	be	any
different,	because	unlike	the	switch	from	2	GB	to	3	GB,	there	are	no	additional	bits
involved.	Figure	10-11	shows	TestLimit,	running	as	a	32-bit	application,	reserving
address	space	on	a	64-bit	Windows	machine,	followed	by	the	64-bit	version	of
TestLimit	leaking	memory	on	the	same	machine.



Figure	10-11.	32-bit	and	64-bit	TestLimit	reserving	address	space	on	a	64-bit	Windows	computer

Note	that	these	results	depend	on	the	two	versions	of	TestLimit	having	been	linked
with	the	/LARGEADDRESSAWARE	option.	Had	they	not	been,	the	results	would
have	been	about	2	GB	for	each.	64-bit	applications	linked	without
/LARGEADDRESSAWARE	are	constrained	to	the	first	2	GB	of	the	process
virtual	address	space,	just	like	32-bit	applications.

The	detailed	IA64	and	x64	address	space	layouts	vary	slightly.	The	IA64	address
space	layout	is	shown	in	Figure	10-12,	and	the	x64	address	space	layout	is	shown
in	Figure	10-13.



Figure	10-12.	IA64	address	space	layout



Figure	10-13.	x64	address	space	layout

x64	Virtual	Addressing	Limitations
As	discussed	previously,	64	bits	of	virtual	address	space	allow	for	a	possible
maximum	of	16	exabytes	(EB)	of	virtual	memory,	a	notable	improvement	over	the
4	GB	offered	by	32-bit	addressing.	With	such	a	copious	amount	of	memory,	it	is
obvious	that	today’s	computers,	as	well	as	tomorrow’s	foreseeable	machines,	are



not	even	close	to	requiring	support	for	that	much	memory.

Accordingly,	to	simplify	chip	architecture	and	avoid	unnecessary	overhead,
particularly	in	address	translation	(to	be	described	later),	AMD’s	and	Intel’s	current
x64	processors	implement	only	256	TB	of	virtual	address	space.	That	is,	only	the
low-order	48	bits	of	a	64-bit	virtual	address	are	implemented.	However,	virtual
addresses	are	still	64	bits	wide,	occupying	8	bytes	in	registers	or	when	stored	in
memory.	The	high-order	16	bits	(bits	48	through	63)	must	be	set	to	the	same	value
as	the	highest	order	implemented	bit	(bit	47),	in	a	manner	similar	to	sign	extension
in	two’s	complement	arithmetic.	An	address	that	conforms	to	this	rule	is	said	to	be
a	“canonical”	address.

Under	these	rules,	the	bottom	half	of	the	address	space	thus	starts	at
0x0000000000000000,	as	expected,	but	it	ends	at	0x00007FFFFFFFFFFF.	The
top	half	of	the	address	space	starts	at	0xFFFF800000000000	and	ends	at
0xFFFFFFFFFFFFFFFF.	Each	“canonical”	portion	is	128	TB.	As	newer
processors	implement	more	of	the	address	bits,	the	lower	half	of	memory	will
expand	upward,	toward	0x7FFFFFFFFFFFFFFF,	while	the	upper	half	of	memory
will	expand	downward,	toward	0x8000000000000000	(a	similar	split	to	today’s
memory	space	but	with	32	more	bits).

Windows	x64	16-TB	Limitation
Windows	on	x64	has	a	further	limitation:	of	the	256	TB	of	virtual	address	space
available	on	x64	processors,	Windows	at	present	allows	only	the	use	of	a	little
more	than	16	TB.	This	is	split	into	two	8-TB	regions,	the	user	mode,	per-process
region	starting	at	0	and	working	toward	higher	addresses	(ending	at
0x000007FFFFFFFFFF),	and	a	kernel-mode,	systemwide	region	starting	at	“all
Fs”	and	working	toward	lower	addresses,	ending	at	0xFFFFF80000000000	for
most	purposes.	This	section	describes	the	origin	of	this	16-TB	limit.

A	number	of	Windows	mechanisms	have	made,	and	continue	to	make,	assumptions
about	usable	bits	in	addresses.	Pushlocks,	fast	references,	Patchguard	DPC
contexts,	and	singly	linked	lists	are	common	examples	of	data	structures	that	use
bits	within	a	pointer	for	nonaddressing	purposes.	Singly	linked	lists,	combined	with
the	lack	of	a	CPU	instruction	in	the	original	x64	CPUs	required	to	“port”	the	data
structure	to	64-bit	Windows,	are	responsible	for	this	memory	addressing	limit	on



Windows	for	x64.

Here	is	the	SLIST_HEADER,	the	data	structure	Windows	uses	to	represent	an
entry	inside	a	list:

typedef union SLISTHEADER {
    ULONGLONG Alignment;
    struct {
        SLIST_ENTRY Next;
        USHORT Depth;
        USHORT Sequence;
    } DUMMYSTRUCTNAME;
} SLIST_HEADER, *PSLIST_HEADER;

Note	that	this	is	an	8-byte	structure,	guaranteed	to	be	aligned	as	such,	composed	of
three	elements:	the	pointer	to	the	next	entry	(32	bits,	or	4	bytes)	and	depth	and
sequence	numbers,	each	16	bits	(or	2	bytes).	To	create	lock-free	push	and	pop
operations,	the	implementation	makes	use	of	an	instruction	present	on	Pentium
processors	or	higher—CMPXCHG8B	(Compare	and	Exchange	8	bytes),	which
allows	the	atomic	modification	of	8	bytes	of	data.	By	using	this	native	CPU
instruction,	which	also	supports	the	LOCK	prefix	(guaranteeing	atomicity	on	a
multiprocessor	system),	the	need	for	a	spinlock	to	combine	two	32-bit	accesses	is
eliminated,	and	all	operations	on	the	list	become	lock	free	(increasing	speed	and
scalability).

On	64-bit	computers,	addresses	are	64	bits,	so	the	pointer	to	the	next	entry	should
logically	be	64	bits.	If	the	depth	and	sequence	numbers	remain	within	the	same
parameters,	the	system	must	provide	a	way	to	modify	at	minimum	64+32	bits	of
data—or	better	yet,	128	bits,	in	order	to	increase	the	entropy	of	the	depth	and
sequence	numbers.	However,	the	first	x64	processors	did	not	implement	the
essential	CMPXCHG16B	instruction	to	allow	this.	The	implementation,	therefore,
was	written	to	pack	as	much	information	as	possible	into	only	64	bits,	which	was
the	most	that	could	be	modified	atomically	at	once.	The	64-bit	SLIST_HEADER
thus	looks	like	this:

struct {  // 8-byte header
        ULONGLONG Depth:16;
        ULONGLONG Sequence:9;
        ULONGLONG NextEntry:39;
} Header8;

The	first	change	is	the	reduction	of	the	space	for	the	sequence	number	to	9	bits
instead	of	16	bits,	reducing	the	maximum	sequence	number	the	list	can	achieve.



This	leaves	only	39	bits	for	the	pointer,	still	far	from	64	bits.	However,	by	forcing
the	structure	to	be	16-byte	aligned	when	allocated,	4	more	bits	can	be	used
because	the	bottom	bits	can	now	always	be	assumed	to	be	0.	This	gives	43	bits	for
addresses,	but	there	is	one	more	assumption	that	can	be	made.	Because	the
implementation	of	linked	lists	is	used	either	in	kernel	mode	or	user	mode	but
cannot	be	used	across	address	spaces,	the	top	bit	can	be	ignored,	just	as	on	32-bit
machines.	The	code	will	assume	the	address	to	be	kernel	mode	if	called	in	kernel
mode	and	vice	versa.	This	allows	us	to	address	up	to	44	bits	of	memory	in	the
NextEntry	pointer	and	is	the	defining	constraint	of	the	addressing	limit	in
Windows.

Forty-four	bits	is	a	much	better	number	than	32.	It	allows	16	TB	of	virtual	memory
to	be	described	and	thus	splits	Windows	into	two	even	chunks	of	8	TB	for	user-
mode	and	kernel-mode	memory.	Nevertheless,	this	is	still	16	times	smaller	than	the
CPU’s	own	limit	(48	bits	is	256	TB),	and	even	farther	still	from	the	maximum	that
64	bits	can	describe.	So,	with	scalability	in	mind,	some	other	bits	do	exist	in	the
SLIST_HEADER	that	define	the	type	of	header	being	dealt	with.	This	means	that
when	the	day	comes	when	all	x64	CPUs	support	128-bit	Compare	and	Exchange,
Windows	can	easily	take	advantage	of	it	(and	to	do	so	before	then	would	mean
distributing	two	different	kernel	images).	Here’s	a	look	at	the	full	8-byte	header:

struct {  // 8-byte header
       ULONGLONG Depth:16;
       ULONGLONG Sequence:9;
       ULONGLONG NextEntry:39;
       ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte
       ULONGLONG Init:1;       // 0: uninitialized; 1: initialized
       ULONGLONG Reserved:59;
       ULONGLONG Region:3;
} Header8;

Note	how	the	HeaderType	bit	is	overlaid	with	the	Depth	bits	and	allows	the
implementation	to	deal	with	16-byte	headers	whenever	support	becomes	available.
For	the	sake	of	completeness,	here	is	the	definition	of	the	16-byte	header:

struct {  // 16-byte header
       ULONGLONG Depth:16;
       ULONGLONG Sequence:48;
       ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte
       ULONGLONG Init:1;       // 0: uninitialized; 1: initialized
       ULONGLONG Reserved:2;
       ULONGLONG NextEntry:60; // last 4 bits are always 0's
} Header16;



Notice	how	the	NextEntry	pointer	has	now	become	60	bits,	and	because	the
structure	is	still	16-byte	aligned,	with	the	4	free	bits,	leads	to	the	full	64	bits	being
addressable.

Conversely,	kernel-mode	data	structures	that	do	not	involve	SLISTs	are	not	limited
to	the	8-TB	address	space	range.	System	page	table	entries,	hyperspace,	and	the
cache	working	set	all	occupy	virtual	addresses	below	0xFFFFF80000000000
because	these	structures	do	not	use	SLISTs.

Dynamic	System	Virtual	Address	Space
Management
Thirty-two-bit	versions	of	Windows	manage	the	system	address	space	through	an
internal	kernel	virtual	allocator	mechanism	that	we’ll	describe	in	this	section.
Currently,	64-bit	versions	of	Windows	have	no	need	to	use	the	allocator	for	virtual
address	space	management	(and	thus	bypass	the	cost),	because	each	region	is
statically	defined	as	shown	in	Table	10-8	earlier.

When	the	system	initializes,	the	MiInitializeDynamicVa	function	sets	up	the	basic
dynamic	ranges	(the	ranges	currently	supported	are	described	in	Table	10-9)	and
sets	the	available	virtual	address	to	all	available	kernel	space.	It	then	initializes	the
address	space	ranges	for	boot	loader	images,	process	space	(hyperspace),	and	the
HAL	through	the	MiIntializeSystemVaRange	function,	which	is	used	to	set
hardcoded	address	ranges.	Later,	when	nonpaged	pool	is	initialized,	this	function	is
used	again	to	reserve	the	virtual	address	ranges	for	it.	Finally,	whenever	a	driver
loads,	the	address	range	is	relabeled	to	a	driver	image	range	(instead	of	a	boot
loaded	range).

After	this	point,	the	rest	of	the	system	virtual	address	space	can	be	dynamically
requested	and	released	through	MiObtainSystemVa	(and	its	analogous
MiObtainSessionVa)	and	MiReturnSystemVa.	Operations	such	as	expanding	the
system	cache,	the	system	PTEs,	nonpaged	pool,	paged	pool,	and/or	special	pool;
mapping	memory	with	large	pages;	creating	the	PFN	database;	and	creating	a	new
session	all	result	in	dynamic	virtual	address	allocations	for	a	specific	range.	Each
time	the	kernel	virtual	address	space	allocator	obtains	virtual	memory	ranges	for
use	by	a	certain	type	of	virtual	address,	it	updates	the	MiSystemVaType	array,
which	contains	the	virtual	address	type	for	the	newly	allocated	range.	The	values



that	can	appear	in	MiSystemVaType	are	shown	in	Table	10-9.

Table	10-9.	System	Virtual	Address	Types

Region Description Limitable

MiVaSessionSpace	(0x1) Addresses	for	session	space Yes

MiVaProcessSpace	(0x2) Addresses	for	process	address	space No

MiVaBootLoaded	(0x3) Addresses	for	images	loaded	by	the	boot	loader No

MiVaPfnDatabase	(0x4) Addresses	for	the	PFN	database No

MiVaNonPagedPool	(0x5) Addresses	for	the	nonpaged	pool Yes

MiVaPagedPool	(0x6) Addresses	for	the	paged	pool Yes

MiVaSpecialPool	(0x7) Addresses	for	the	special	pool No

MiVaSystemCache	(0x8) Addresses	for	the	system	cache Yes

MiVaSystemPtes	(0x9) Addresses	for	system	PTEs Yes

MiVaHal	(0xA) Addresses	for	the	HAL No

MiVaSessionGlobalSpace	(0xB) Addresses	for	session	global	space No

MiVaDriverImages	(0xC) Addresses	for	loaded	driver	images No

Although	the	ability	to	dynamically	reserve	virtual	address	space	on	demand	allows
better	management	of	virtual	memory,	it	would	be	useless	without	the	ability	to
free	this	memory.	As	such,	when	paged	pool	or	the	system	cache	can	be	shrunk,	or
when	special	pool	and	large	page	mappings	are	freed,	the	associated	virtual	address
is	freed.	(Another	case	is	when	the	boot	registry	is	released.)	This	allows	dynamic
management	of	memory	depending	on	each	component’s	use.	Additionally,
components	can	reclaim	memory	through	MiReclaimSystemVa,	which	requests
virtual	addresses	associated	with	the	system	cache	to	be	flushed	out	(through	the
dereference	segment	thread)	if	available	virtual	address	space	has	dropped	below
128	MB.	(Reclaiming	can	also	be	satisfied	if	initial	nonpaged	pool	has	been	freed.)

In	addition	to	better	proportioning	and	better	management	of	virtual	addresses
dedicated	to	different	kernel	memory	consumers,	the	dynamic	virtual	address



allocator	also	has	advantages	when	it	comes	to	memory	footprint	reduction.
Instead	of	having	to	manually	preallocate	static	page	table	entries	and	page	tables,
paging-related	structures	are	allocated	on	demand.	On	both	32-bit	and	64-bit
systems,	this	reduces	boot-time	memory	usage	because	unused	addresses	won’t
have	their	page	tables	allocated.	It	also	means	that	on	64-bit	systems,	the	large
address	space	regions	that	are	reserved	don’t	need	to	have	their	page	tables	mapped
in	memory,	which	allows	them	to	have	arbitrarily	large	limits,	especially	on
systems	that	have	little	physical	RAM	to	back	the	resulting	paging	structures.

EXPERIMENT:	QUERYING	SYSTEM	VIRTUAL	ADDRESS	USAGE

You	can	look	at	the	current	usage	and	peak	usage	of	each	system	virtual	address	type	by	using	the	kernel
debugger.	For	each	system	virtual	address	type	described	in	Table	10-9,	the	MiSystemVaTypeCount,
MiSystemVaTypeCountFailures,	and	MiSystemVaTypeCountPeak	arrays	in	the	kernel	contain	the	sizes,
count	failures,	and	peak	sizes	for	each	type.	Here’s	how	you	can	dump	the	usage	for	the	system,	followed	by
the	peak	usage	(you	can	use	a	similar	technique	for	the	failure	counts):

lkd> dd /c 1 MiSystemVaTypeCount l c
81f4f880  00000000
81f4f884  00000028
81f4f888  00000008
81f4f88c  0000000c
81f4f890  0000000b
81f4f894  0000001a
81f4f898  0000002f
81f4f89c  00000000
81f4f8a0  000001b6
81f4f8a4  00000030
81f4f8a8  00000002
81f4f8ac  00000006
lkd> dd /c 1 MiSystemVaTypeCountPeak  l c
81f4f840  00000000
81f4f844  00000038
81f4f848  00000000
81f4f84c  00000000
81f4f850  0000003d
81f4f854  0000001e
81f4f858  00000032
81f4f85c  00000000
81f4f860  00000238
81f4f864  00000031
81f4f868  00000000
81f4f86c  00000006

Theoretically,	the	different	virtual	address	ranges	assigned	to	components	can	grow
arbitrarily	in	size	as	long	as	enough	system	virtual	address	space	is	available.	In
practice,	on	32-bit	systems,	the	kernel	allocator	implements	the	ability	to	set	limits
on	each	virtual	address	type	for	the	purposes	of	both	reliability	and	stability.	(On



64-bit	systems,	kernel	address	space	exhaustion	is	currently	not	a	concern.)
Although	no	limits	are	imposed	by	default,	system	administrators	can	use	the
registry	to	modify	these	limits	for	the	virtual	address	types	that	are	currently
marked	as	limitable	(see	Table	10-9).

If	the	current	request	during	the	MiObtainSystemVa	call	exceeds	the	available
limit,	a	failure	is	marked	(see	the	previous	experiment)	and	a	reclaim	operation	is
requested	regardless	of	available	memory.	This	should	help	alleviate	memory	load
and	might	allow	the	virtual	address	allocation	to	work	during	the	next	attempt.
(Recall,	however,	that	reclaiming	affects	only	system	cache	and	nonpaged	pool).

EXPERIMENT:	SETTING	SYSTEM	VIRTUAL	ADDRESS	LIMITS

The	MiSystemVaTypeCountLimit	array	contains	limitations	for	system	virtual	address	usage	that	can	be	set
for	each	type.	Currently,	the	memory	manager	allows	only	certain	virtual	address	types	to	be	limited,	and	it
provides	the	ability	to	use	an	undocumented	system	call	to	set	limits	for	the	system	dynamically	during	run
time.	(These	limits	can	also	be	set	through	the	registry,	as	described	at	http://msdn.microsoft.com/en-
us/library/bb870880(VS.85).aspx.)	These	limits	can	be	set	for	those	types	marked	in	Table	10-9.

You	can	use	the	MemLimit	utility	(http://www.winsiderss.com/tools/memlimit.html)	from	Winsider
Seminars	&	Solutions	to	query	and	set	the	different	limits	for	these	types,	and	also	to	see	the	current	and
peak	virtual	address	space	usage.	Here’s	how	you	can	query	the	current	limits	with	the	–q	flag:

C:\ >memlimit.exe -q

MemLimit v1.00 - Query and set hard limits on system VA space consumption
Copyright (C) 2008 Alex Ionescu
www.alex-ionescu.com

System Va Consumption:

Type                    Current            Peak            Limit
Non Paged Pool           102400 KB            0 KB            0 KB
Paged Pool                59392 KB        83968 KB            0 KB
System Cache             534528 KB       536576 KB            0 KB
System PTEs               73728 KB        75776 KB            0 KB
Session Space             75776 KB        90112 KB            0 KB

As	an	experiment,	use	the	following	command	to	set	a	limit	of	100	MB	for	paged	pool:

memlimit.exe -p 100M

And	now	try	running	the	testlimit	–h	experiment	from	Chapter	3	(in	Part	1)	again,	which	attempted	to
create	16	million	handles.	Instead	of	reaching	the	16	million	handle	count,	the	process	will	fail,	because	the
system	will	have	run	out	of	address	space	available	for	paged	pool	allocations.

System	Virtual	Address	Space	Quotas
The	system	virtual	address	space	limits	described	in	the	previous	section	allow	for

http://msdn.microsoft.com/en-us/library/bb870880(VS.85).aspx
http://www.winsiderss.com/tools/memlimit.html


limiting	systemwide	virtual	address	space	usage	of	certain	kernel	components,	but
they	work	only	on	32-bit	systems	when	applied	to	the	system	as	a	whole.	To
address	more	specific	quota	requirements	that	system	administrators	might	have,
the	memory	manager	also	collaborates	with	the	process	manager	to	enforce	either
systemwide	or	user-specific	quotas	for	each	process.

The	PagedPoolQuota,	NonPagedPoolQuota,	PagingFileQuota,	and
WorkingSetPagesQuota	values	in	the
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management	key	can	be	configured	to	specify	how	much	memory	of	each	type	a
given	process	can	use.	This	information	is	read	at	initialization,	and	the	default
system	quota	block	is	generated	and	then	assigned	to	all	system	processes	(user
processes	will	get	a	copy	of	the	default	system	quota	block	unless	per-user	quotas
have	been	configured	as	explained	next).

To	enable	per-user	quotas,	subkeys	under	the	registry	key
HKLM\SYSTEM\CurrentControlSet\Session	Manager\Quota	System	can	be
created,	each	one	representing	a	given	user	SID.	The	values	mentioned	previously
can	then	be	created	under	this	specific	SID	subkey,	enforcing	the	limits	only	for	the
processes	created	by	that	user.	Table	10-10	shows	how	to	configure	these	values,
which	can	be	configured	at	run	time	or	not,	and	which	privileges	are	required.

Table	10-10.	Process	Quota	Types

Value	Name Description Value
Type

Dynamic Privilege

PagedPoolQuota Maximum	size	of
paged	pool	that
can	be	allocated
by	this	process

Size	in
MB

Only	for
processes
running
with	the
system
token

SeIncreaseQuotaPrivilege

NonPagedPoolQuota Maximum	size	of
nonpaged	pool
that	can	be
allocated	by	this
process

Size	in
MB

Only	for
processes
running
with	the
system
token

SeIncreaseQuotaPrivilege



PagingFileQuota Maximum
number	of	pages
that	a	process	can
have	backed	by
the	page	file

Pages Only	for
processes
running
with	the
system
token

SeIncreaseQuotaPrivilege

WorkingSetPagesQuota Maximum
number	of	pages
that	a	process	can
have	in	its
working	set	(in
physical	memory)

Pages Yes SeIncreaseBasePriorityPrivilege
unless	operation	is	a	purge
request

User	Address	Space	Layout
Just	as	address	space	in	the	kernel	is	dynamic,	the	user	address	space	is	also	built
dynamically—the	addresses	of	the	thread	stacks,	process	heaps,	and	loaded	images
(such	as	DLLs	and	an	application’s	executable)	are	dynamically	computed	(if	the
application	and	its	images	support	it)	through	a	mechanism	known	as	Address
Space	Layout	Randomization,	or	ASLR.

At	the	operating	system	level,	user	address	space	is	divided	into	a	few	well-defined
regions	of	memory,	shown	in	Figure	10-14.	The	executable	and	DLLs	themselves
are	present	as	memory	mapped	image	files,	followed	by	the	heap(s)	of	the	process
and	the	stack(s)	of	its	thread(s).	Apart	from	these	regions	(and	some	reserved
system	structures	such	as	the	TEBs	and	PEB),	all	other	memory	allocations	are
run-time	dependent	and	generated.	ASLR	is	involved	with	the	location	of	all	these
run-time-dependent	regions	and,	combined	with	DEP,	provides	a	mechanism	for
making	remote	exploitation	of	a	system	through	memory	manipulation	harder	to
achieve.	Since	Windows	code	and	data	are	placed	at	dynamic	locations,	an	attacker
cannot	typically	hardcode	a	meaningful	offset	into	either	a	program	or	a	system-
supplied	DLL.



Figure	10-14.	User	address	space	layout	with	ASLR	enabled

EXPERIMENT:	ANALYZING	USER	VIRTUAL	ADDRESS	SPACE

The	VMMap	utility	from	Sysinternals	can	show	you	a	detailed	view	of	the	virtual	memory	being	utilized	by
any	process	on	your	machine,	divided	into	categories	for	each	type	of	allocation,	summarized	as	follows:

Image	Displays	memory	allocations	used	to	map	the	executable	and	its	dependencies	(such	as	dynamic
libraries)	and	any	other	memory	mapped	image	(portable	executable	format)	files

Private	Displays	memory	allocations	marked	as	private,	such	as	internal	data	structures,	other	than	the
stack	and	heap

Shareable	Displays	memory	allocations	marked	as	shareable,	typically	including	shared	memory	(but
not	memory	mapped	files,	which	are	either	Image	or	Mapped	File)

Mapped	File	Displays	memory	allocations	for	memory	mapped	data	files

Heap	Displays	memory	allocated	for	the	heap(s)	that	this	process	owns

Stack	Displays	memory	allocated	for	the	stack	of	each	thread	in	this	process

System	Displays	kernel	memory	allocated	for	the	process	(such	as	the	process	object)

The	following	screen	shot	shows	a	typical	view	of	Explorer	as	seen	through	VMMap.



Depending	on	the	type	of	memory	allocation,	VMMap	can	show	additional	information,	such	as	file	names
(for	mapped	files),	heap	IDs	(for	heap	allocations),	and	thread	IDs	(for	stack	allocations).	Furthermore,
each	allocation’s	cost	is	shown	both	in	committed	memory	and	working	set	memory.	The	size	and
protection	of	each	allocation	is	also	displayed.

ASLR	begins	at	the	image	level,	with	the	executable	for	the	process	and	its
dependent	DLLs.	Any	image	file	that	has	specified	ASLR	support	in	its	PE	header
(IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE),	typically	specified	by
using	the	/DYNAMICBASE	linker	flag	in	Microsoft	Visual	Studio,	and	contains	a
relocation	section	will	be	processed	by	ASLR.	When	such	an	image	is	found,	the
system	selects	an	image	offset	valid	globally	for	the	current	boot.	This	offset	is
selected	from	a	bucket	of	256	values,	all	of	which	are	64-KB	aligned.

Image	Randomization
For	executables,	the	load	offset	is	calculated	by	computing	a	delta	value	each	time
an	executable	is	loaded.	This	value	is	a	pseudo-random	8-bit	number	from
0x10000	to	0xFE0000,	calculated	by	taking	the	current	processor’s	time	stamp
counter	(TSC),	shifting	it	by	four	places,	and	then	performing	a	division	modulo
254	and	adding	1.	This	number	is	then	multiplied	by	the	allocation	granularity	of
64	KB	discussed	earlier.	By	adding	1,	the	memory	manager	ensures	that	the	value
can	never	be	0,	so	executables	will	never	load	at	the	address	in	the	PE	header	if
ASLR	is	being	used.	This	delta	is	then	added	to	the	executable’s	preferred	load



address,	creating	one	of	256	possible	locations	within	16	MB	of	the	image	address
in	the	PE	header.

For	DLLs,	computing	the	load	offset	begins	with	a	per-boot,	systemwide	value
called	the	image	bias,	which	is	computed	by	MiInitializeRelocations	and	stored	in
MiImageBias.	This	value	corresponds	to	the	time	stamp	counter	(TSC)	of	the
current	CPU	when	this	function	was	called	during	the	boot	cycle,	shifted	and
masked	into	an	8-bit	value,	which	provides	256	possible	values.	Unlike	executables,
this	value	is	computed	only	once	per	boot	and	shared	across	the	system	to	allow
DLLs	to	remain	shared	in	physical	memory	and	relocated	only	once.	If	DLLs	were
remapped	at	different	locations	inside	different	processes,	the	code	could	not	be
shared.	The	loader	would	have	to	fix	up	address	references	differently	for	each
process,	thus	turning	what	had	been	shareable	read-only	code	into	process-private
data.	Each	process	using	a	given	DLL	would	have	to	have	its	own	private	copy	of
the	DLL	in	physical	memory.

Once	the	offset	is	computed,	the	memory	manager	initializes	a	bitmap	called	the
MiImageBitMap.	This	bitmap	is	used	to	represent	ranges	from	0x50000000	to
0x78000000	(stored	in	MiImageBitMapHighVa),	and	each	bit	represents	one	unit
of	allocation	(64	KB,	as	mentioned	earlier).	Whenever	the	memory	manager	loads
a	DLL,	the	appropriate	bit	is	set	to	mark	its	location	in	the	system;	when	the	same
DLL	is	loaded	again,	the	memory	manager	shares	its	section	object	with	the
already	relocated	information.

As	each	DLL	is	loaded,	the	system	scans	the	bitmap	from	top	to	bottom	for	free
bits.	The	MiImageBias	value	computed	earlier	is	used	as	a	start	index	from	the	top
to	randomize	the	load	across	different	boots	as	suggested.	Because	the	bitmap	will
be	entirely	empty	when	the	first	DLL	(which	is	always	Ntdll.dll)	is	loaded,	its	load
address	can	easily	be	calculated:	0x78000000	–	MiImageBias	*	0x10000.	Each
subsequent	DLL	will	then	load	in	a	64-KB	chunk	below.	Because	of	this,	if	the
address	of	Ntdll.dll	is	known,	the	addresses	of	other	DLLs	could	easily	be
computed.	To	mitigate	this	possibility,	the	order	in	which	known	DLLs	are	mapped
by	the	Session	Manager	during	initialization	is	also	randomized	when	Smss	loads.

Finally,	if	no	free	space	is	available	in	the	bitmap	(which	would	mean	that	most	of
the	region	defined	for	ASLR	is	in	use,	the	DLL	relocation	code	defaults	back	to	the
executable	case,	loading	the	DLL	at	a	64-KB	chunk	within	16	MB	of	its	preferred



base	address.

Stack	Randomization
The	next	step	in	ASLR	is	to	randomize	the	location	of	the	initial	thread’s	stack
(and,	subsequently,	of	each	new	thread).	This	randomization	is	enabled	unless	the
flag	StackRandomizationDisabled	was	enabled	for	the	process	and	consists	of	first
selecting	one	of	32	possible	stack	locations	separated	by	either	64	KB	or	256	KB.
This	base	address	is	selected	by	finding	the	first	appropriate	free	memory	region
and	then	choosing	the	xth	available	region,	where	x	is	once	again	generated	based
on	the	current	processor’s	TSC	shifted	and	masked	into	a	5-bit	value	(which	allows
for	32	possible	locations).

Once	this	base	address	has	been	selected,	a	new	TSC-derived	value	is	calculated,
this	one	9	bits	long.	The	value	is	then	multiplied	by	4	to	maintain	alignment,	which
means	it	can	be	as	large	as	2,048	bytes	(half	a	page).	It	is	added	to	the	base	address
to	obtain	the	final	stack	base.

Heap	Randomization
Finally,	ASLR	randomizes	the	location	of	the	initial	process	heap	(and	subsequent
heaps)	when	created	in	user	mode.	The	RtlCreateHeap	function	uses	another
pseudo-random,	TSC-derived	value	to	determine	the	base	address	of	the	heap.	This
value,	5	bits	this	time,	is	multiplied	by	64	KB	to	generate	the	final	base	address,
starting	at	0,	giving	a	possible	range	of	0x00000000	to	0x001F0000	for	the	initial
heap.	Additionally,	the	range	before	the	heap	base	address	is	manually	deallocated
in	an	attempt	to	force	an	access	violation	if	an	attack	is	doing	a	brute-force	sweep
of	the	entire	possible	heap	address	range.

ASLR	in	Kernel	Address	Space
ASLR	is	also	active	in	kernel	address	space.	There	are	64	possible	load	addresses
for	32-bit	drivers	and	256	for	64-bit	drivers.	Relocating	user-space	images	requires
a	significant	amount	of	work	area	in	kernel	space,	but	if	kernel	space	is	tight,
ASLR	can	use	the	user-mode	address	space	of	the	System	process	for	this	work
area.

Controlling	Security	Mitigations
As	we’ve	seen,	ASLR	and	many	of	the	other	security	mitigations	in	Windows	are



optional	because	of	their	potential	compatibility	effects:	ASLR	applies	only	to
images	with	the	IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE	bit	in
their	image	headers,	hardware	no-execute	(data	execution	protection)	can	be
controlled	by	a	combination	of	boot	options	and	linker	options,	and	so	on.	To
allow	both	enterprise	customers	and	individual	users	more	visibility	and	control	of
these	features,	Microsoft	publishes	the	Enhanced	Mitigation	Experience	Toolkit
(EMET).	EMET	offers	centralized	control	of	the	mitigations	built	into	Windows
and	also	adds	several	more	mitigations	not	yet	part	of	the	Windows	product.
Additionally,	EMET	provides	notification	capabilities	through	the	Event	Log	to	let
administrators	know	when	certain	software	has	experienced	access	faults	because
mitigations	have	been	applied.	Finally,	EMET	also	enables	manual	opt-out	for
certain	applications	that	might	exhibit	compatibility	issues	in	certain	environments,
even	though	they	were	opted	in	by	the	developer.

EXPERIMENT:	LOOKING	AT	ASLR	PROTECTION	ON	PROCESSES

You	can	use	Process	Explorer	from	Sysinternals	to	look	over	your	processes	(and,	just	as	important,	the
DLLs	they	load)	to	see	if	they	support	ASLR.	Note	that	even	if	just	one	DLL	loaded	by	a	process	does	not
support	ASLR,	it	can	make	the	process	much	more	vulnerable	to	attacks.

To	look	at	the	ASLR	status	for	processes,	right-click	on	any	column	in	the	process	tree,	choose	Select
Columns,	and	then	check	ASLR	Enabled	on	the	Process	Image	tab.	Notice	that	not	all	in-box	Windows
programs	and	services	are	running	with	ASLR	enabled,	and	there	is	one	visible	example	of	a	third-party
application	that	does	not	have	ASLR	enabled	either.

In	the	example,	we	have	highlighted	the	Notepad.exe	process.	In	this	case,	its	load	address	is	0xFE0000.	If
you	were	to	close	all	instances	of	Notepad	and	then	start	another,	you	would	find	it	at	a	different	load
address.	If	you	shut	down	and	reboot	the	system	and	then	try	the	experiment	again,	you	would	find	that	the
ASLR-enabled	DLLs	are	at	different	load	addresses	after	each	boot.



Address	Translation
Now	that	you’ve	seen	how	Windows	structures	the	virtual	address	space,	let’s	look
at	how	it	maps	these	address	spaces	to	real	physical	pages.	User	applications	and
system	code	reference	virtual	addresses.	This	section	starts	with	a	detailed
description	of	32-bit	x86	address	translation	(in	both	non-PAE	and	PAE	modes)
and	continues	with	a	brief	description	of	the	differences	on	the	64-bit	IA64	and
x64	platforms.	In	the	next	section,	we’ll	describe	what	happens	when	such	a
translation	doesn’t	resolve	to	a	physical	memory	address	(paging)	and	explain	how
Windows	manages	physical	memory	via	working	sets	and	the	page	frame	database.

x86	Virtual	Address	Translation
Using	data	structures	the	memory	manager	creates	and	maintains	called	page
tables,	the	CPU	translates	virtual	addresses	into	physical	addresses.	Each	page	of
virtual	address	space	is	associated	with	a	system-space	structure	called	a	page	table
entry	(PTE),	which	contains	the	physical	address	to	which	the	virtual	one	is
mapped.	For	example,	Figure	10-15	shows	how	three	consecutive	virtual	pages
might	be	mapped	to	three	physically	discontiguous	pages	on	an	x86	system.	There
may	not	even	be	any	PTEs	for	regions	that	have	been	marked	as	reserved	or
committed	but	never	accessed,	because	the	page	table	itself	might	be	allocated	only
when	the	first	page	fault	occurs.



Figure	10-15.	Mapping	virtual	addresses	to	physical	memory	(x86)

The	dashed	line	connecting	the	virtual	pages	to	the	PTEs	in	Figure	10-15
represents	the	indirect	relationship	between	virtual	pages	and	physical	memory.

NOTE

Even	kernel-mode	code	(such	as	device	drivers)	cannot	reference	physical	memory	addresses	directly,	but	it
may	do	so	indirectly	by	first	creating	virtual	addresses	mapped	to	them.	For	more	information,	see	the
memory	descriptor	list	(MDL)	support	routines	described	in	the	WDK	documentation.

As	mentioned	previously,	Windows	on	x86	can	use	either	of	two	schemes	for
address	translation:	non-PAE	and	PAE.	We’ll	discuss	the	non-PAE	mode	first	and
cover	PAE	in	the	next	section.	The	PAE	material	does	depend	on	the	non-PAE
material,	so	even	if	you	are	primarily	interested	in	PAE,	you	should	study	this
section	first.	The	description	of	x64	address	translation	similarly	builds	on	the	PAE
information.



Non-PAE	x86	systems	use	a	two-level	page	table	structure	to	translate	virtual	to
physical	addresses.	A	32-bit	virtual	address	mapped	by	a	normal	4-KB	page	is
interpreted	as	two	fields:	the	virtual	page	number	and	the	byte	within	the	page,
called	the	byte	offset.	The	virtual	page	number	is	further	divided	into	two	subfields,
called	the	page	directory	index	and	the	page	table	index,	as	illustrated	in	Figure	10-
16.	These	two	fields	are	used	to	locate	entries	in	the	page	directory	and	in	a	page
table.

The	sizes	of	these	bit	fields	are	dictated	by	the	structures	they	reference.	For
example,	the	byte	offset	is	12	bits	because	it	denotes	a	byte	within	a	page,	and
pages	are	4,096	bytes	(212	=	4,096).	The	other	indexes	are	10	bits	because	the
structures	they	index	have	1,024	entries	(210	=	1,024).

Figure	10-16.	Components	of	a	32-bit	virtual	address	on	x86	systems

The	job	of	virtual	address	translation	is	to	convert	these	virtual	addresses	into
physical	addresses—that	is,	addresses	of	locations	in	RAM.	The	format	of	a
physical	address	on	an	x86	non-PAE	system	is	shown	in	Figure	10-17.

Figure	10-17.	Components	of	a	physical	address	on	x86	non-PAE	systems

As	you	can	see,	the	format	is	very	similar	to	that	of	a	virtual	address.	Furthermore,
the	byte	offset	value	from	a	virtual	address	will	be	the	same	in	the	resulting
physical	address.	We	can	say,	then,	that	address	translation	involves	converting
virtual	page	numbers	to	physical	page	numbers	(also	referred	to	as	page	frame
numbers,	or	PFNs).	The	byte	offset	does	not	participate	in,	and	does	not	change	as
a	result	of,	address	translation.	It	is	simply	copied	from	the	virtual	address	to	the



physical	address,

Figure	10-18	shows	the	relationship	of	these	three	values	and	how	they	are	used	to
perform	address	translation.

Figure	10-18.	Translating	a	valid	virtual	address	(x86	non-PAE)

The	following	basic	steps	are	involved	in	translating	a	virtual	address:

1.	 The	memory	management	unit	(MMU)	uses	a	privileged	CPU	register,	CR3,
to	obtain	the	physical	address	of	the	page	directory.

2.	 The	page	directory	index	portion	of	the	virtual	address	is	used	as	an	index
into	the	page	directory.	This	locates	the	page	directory	entry	(PDE)	that
contains	the	location	of	the	page	table	needed	to	map	the	virtual	address.	The
PDE	in	turn	contains	the	physical	page	number,	also	called	the	page	frame
number,	or	PFN,	of	the	desired	page	table,	provided	the	page	table	is	resident
—page	tables	can	be	paged	out	or	not	yet	created,	and	in	those	cases,	the
page	table	is	first	made	resident	before	proceeding.	If	a	flag	in	the	PDE
indicates	that	it	describes	a	large	page,	then	it	simply	contains	the	PFN	of	the
target	large	page,	and	the	rest	of	the	virtual	address	is	treated	as	the	byte
offset	within	the	large	page.

3.	 The	page	table	index	is	used	as	an	index	into	the	page	table	to	locate	the	PTE



that	describes	the	virtual	page	in	question.

4.	 If	the	PTE’s	valid	bit	is	clear,	this	triggers	a	page	fault	(memory	management
fault).	The	operating	system’s	memory	management	fault	handler	(pager)
locates	the	page	and	tries	to	make	it	valid;	after	doing	so,	this	sequence
continues	at	step	5.	(See	the	section	Page	Fault	Handling)	If	the	page	cannot
or	should	not	be	made	valid	(for	example,	because	of	a	protection	fault),	the
fault	handler	generates	an	access	violation	or	a	bug	check.

5.	 When	the	PTE	describes	a	valid	page	(whether	immediately	or	after	page
fault	resolution),	the	desired	physical	address	is	constructed	from	the	PFN
field	of	the	PTE,	followed	by	the	byte	offset	field	from	the	original	virtual
address.

Now	that	you	have	the	overall	picture,	let’s	look	at	the	detailed	structure	of	page
directories,	page	tables,	and	PTEs.

Page	Directories
On	non-PAE	x86	systems,	each	process	has	a	single	page	directory,	a	page	the
memory	manager	creates	to	map	the	location	of	all	page	tables	for	that	process.
The	physical	address	of	the	process	page	directory	is	stored	in	the	kernel	process
(KPROCESS)	block,	but	it	is	also	mapped	virtually	at	address	0xC0300000	on
x86	non-PAE	systems.	(For	more	detailed	information	about	the	KPROCESS	and
other	process	data	structures,	refer	to	Chapter	5,	“Processes,	Threads,	and	Jobs”	in
Part	1.)

The	CPU	obtains	the	location	of	the	page	directory	from	a	privileged	CPU	register
called	CR3.	It	contains	the	page	frame	number	of	the	page	directory.	(Since	the
page	directory	is	itself	always	page-aligned,	the	low-order	12	bits	of	its	address	are
always	zero,	so	there	is	no	need	for	CR3	to	supply	these.)	Each	time	a	context
switch	occurs	to	a	thread	that	is	in	a	different	process	than	that	of	the	currently
executing	thread,	the	context	switch	routine	in	the	kernel	loads	this	register	from	a
field	in	the	KPROCESS	block	of	the	new	process.	Context	switches	between
threads	in	the	same	process	don’t	result	in	reloading	the	physical	address	of	the
page	directory	because	all	threads	within	the	same	process	share	the	same	process
address	space	and	thus	use	the	same	page	directory	and	page	tables.

The	page	directory	is	composed	of	page	directory	entries	(PDEs),	each	of	which	is



4	bytes	long.	The	PDEs	in	the	page	directory	describe	the	state	and	location	of	all
the	possible	page	tables	for	the	process.	As	described	later	in	the	chapter,	page
tables	are	created	on	demand,	so	the	page	directory	for	most	processes	points	only
to	a	small	set	of	page	tables.	(If	a	page	table	does	not	yet	exist,	the	VAD	tree	is
consulted	to	determine	whether	an	access	should	materialize	it.)	The	format	of	a
PDE	isn’t	repeated	here	because	it’s	mostly	the	same	as	a	hardware	PTE,	which	is
described	shortly.

To	describe	the	full	4-GB	virtual	address	space,	1,024	page	tables	are	required.
The	process	page	directory	that	maps	these	page	tables	contains	1,024	PDEs.
Therefore,	the	page	directory	index	needs	to	be	10	bits	wide	(210	=	1,024).

EXPERIMENT:	EXAMINING	THE	PAGE	DIRECTORY	AND	PDES

You	can	see	the	physical	address	of	the	currently	running	process’s	page	directory	by	examining	the
DirBase	field	in	the	!process	kernel	debugger	output:

lkd> !process -1 0
PROCESS 857b3528  SessionId: 1  Cid: 0f70    Peb: 7ffdf000  ParentCid: 0818
    DirBase: 47c9b000  ObjectTable: b4c56c48  HandleCount: 226.
    Image: windbg.exe

You	can	see	the	page	directory’s	virtual	address	by	examining	the	kernel	debugger	output	for	the	PTE	of	a
particular	virtual	address,	as	shown	here:

lkd> !pte 10004
                 VA 00010004
PDE at C0300000         PTE at C0000040
contains 6F06B867       contains 3EF8C847
pfn 6f06b ---DA--UWEV   pfn 3ef8c ---D---UWEV

The	PTE	part	of	the	kernel	debugger	output	is	defined	in	the	section	Page	Tables	and	Page	Table	Entries.
We	will	describe	this	output	further	in	the	section	on	x86	PAE	translation.

Because	Windows	provides	a	private	address	space	for	each	process,	each	process
has	its	own	page	directory	and	page	tables	to	map	that	process’s	private	address
space.	However,	the	page	tables	that	describe	system	space	are	shared	among	all
processes	(and	session	space	is	shared	only	among	processes	in	a	session).	To
avoid	having	multiple	page	tables	describing	the	same	virtual	memory,	when	a
process	is	created,	the	page	directory	entries	that	describe	system	space	are
initialized	to	point	to	the	existing	system	page	tables.	If	the	process	is	part	of	a
session,	session	space	page	tables	are	also	shared	by	pointing	the	session	space
page	directory	entries	to	the	existing	session	page	tables.



Page	Tables	and	Page	Table	Entries
Each	page	directory	entry	points	to	a	page	table.	A	page	table	is	a	simple	array	of
PTEs.	The	virtual	address’s	page	table	index	field	(as	shown	in	Figure	10-18)
indicates	which	PTE	within	the	page	table	corresponds	to	and	describes	the	data
page	in	question.	The	page	table	index	is	10	bits	wide,	allowing	you	to	reference	up
to	1,024	4-byte	PTEs.	Of	course,	because	x86	provides	a	4-GB	virtual	address
space,	more	than	one	page	table	is	needed	to	map	the	entire	address	space.	To
calculate	the	number	of	page	tables	required	to	map	the	entire	4-GB	virtual	address
space,	divide	4	GB	by	the	virtual	memory	mapped	by	a	single	page	table.	Recall
that	each	page	table	on	an	x86	system	maps	4	MB	of	data	pages.	Thus,	1,024	page
tables	(4	GB	/	4	MB)	are	required	to	map	the	full	4-GB	address	space.	This
corresponds	with	the	1,024	entries	in	the	page	directory.

You	can	use	the	!pte	command	in	the	kernel	debugger	to	examine	PTEs.	(See	the
experiment	EXPERIMENT:	Translating	Addresses)	We’ll	discuss	valid	PTEs	here
and	invalid	PTEs	in	a	later	section.	Valid	PTEs	have	two	main	fields:	the	page
frame	number	(PFN)	of	the	physical	page	containing	the	data	or	of	the	physical
address	of	a	page	in	memory,	and	some	flags	that	describe	the	state	and	protection
of	the	page,	as	shown	in	Figure	10-19.

Figure	10-19.	Valid	x86	hardware	PTEs

As	you’ll	see	later,	the	bits	labeled	“Software	field”	and	“Reserved”	in	Figure	10-
19	are	ignored	by	the	MMU,	whether	or	not	the	PTE	is	valid.	These	bits	are	stored
and	interpreted	by	the	memory	manager.	Table	10-11	briefly	describes	the
hardware-defined	bits	in	a	valid	PTE.



Table	10-11.	PTE	Status	and	Protection	Bits

Name	of
Bit

Meaning

Accessed Page	has	been	accessed.

Cache
disabled

Disables	CPU	caching	for	that	page.

Copy-on-
write

Page	is	using	copy-on-write	(described	earlier).

Dirty Page	has	been	written	to.

Global Translation	applies	to	all	processes.	(For	example,	a	translation	buffer	flush	won’t	affect
this	PTE.)

Large
page

Indicates	that	the	PDE	maps	a	4-MB	page	(or	2	MB	on	PAE	systems).	See	the	section
Large	and	Small	Pages	earlier	in	the	chapter.

Owner Indicates	whether	user-mode	code	can	access	the	page	or	whether	the	page	is	limited
to	kernel-mode	access.

Prototype The	PTE	is	a	prototype	PTE,	which	is	used	as	a	template	to	describe	shared	memory
associated	with	section	objects.

Valid Indicates	whether	the	translation	maps	to	a	page	in	physical	memory.

Write
through

Marks	the	page	as	write-through	or	(if	the	processor	supports	the	page	attribute	table)
write-combined.	This	is	typically	used	to	map	video	frame	buffer	memory.

Write Indicates	to	the	MMU	whether	the	page	is	writable.

On	x86	systems,	a	hardware	PTE	contains	two	bits	that	can	be	changed	by	the
MMU,	the	Dirty	bit	and	the	Accessed	bit.	The	MMU	sets	the	Accessed	bit
whenever	the	page	is	read	or	written	(provided	it	is	not	already	set).	The	MMU
sets	the	Dirty	bit	whenever	a	write	operation	occurs	to	the	page.	The	operating
system	is	responsible	for	clearing	these	bits	at	the	appropriate	times;	they	are	never
cleared	by	the	MMU.

The	x86	MMU	uses	a	Write	bit	to	provide	page	protection.	When	this	bit	is	clear,
the	page	is	read-only;	when	it	is	set,	the	page	is	read/write.	If	a	thread	attempts	to
write	to	a	page	with	the	Write	bit	clear,	a	memory	management	exception	occurs,



and	the	memory	manager’s	access	fault	handler	(described	later	in	the	chapter)
must	determine	whether	the	thread	can	be	allowed	to	write	to	the	page	(for
example,	if	the	page	was	really	marked	copy-on-write)	or	whether	an	access
violation	should	be	generated.

Hardware	vs.	Software	Write	Bits	in	Page	Table	Entries
The	additional	Write	bit	implemented	in	software	(as	mentioned	in	Table	10-11)	is
used	to	force	updating	of	the	Dirty	bit	to	be	synchronized	with	updates	to
Windows	memory	management	data.	In	a	simple	implementation,	the	memory
manager	would	set	the	hardware	Write	bit	(bit	1)	for	any	writable	page,	and	a	write
to	any	such	page	will	cause	the	MMU	to	set	the	Dirty	bit	in	the	page	table	entry.
Later,	the	Dirty	bit	will	tell	the	memory	manager	that	the	contents	of	that	physical
page	must	be	written	to	backing	store	before	the	physical	page	can	be	used	for
something	else.

In	practice,	on	multiprocessor	systems,	this	can	lead	to	race	conditions	that	are
expensive	to	resolve.	The	MMUs	of	the	various	processors	can,	at	any	time,	set	the
Dirty	bit	of	any	PTE	that	has	its	hardware	Write	bit	set.	The	memory	manager
must,	at	various	times,	update	the	process	working	set	list	to	reflect	the	state	of	the
Dirty	bit	in	a	PTE.	The	memory	manager	uses	a	pushlock	to	synchronize	access	to
the	working	set	list.	But	on	a	multiprocessor	system,	even	while	one	processor	is
holding	the	lock,	the	Dirty	bit	might	be	changed	by	MMUs	of	other	CPUs.	This
raises	the	possibility	of	missing	an	update	to	a	Dirty	bit.

To	avoid	this,	the	Windows	memory	manager	initializes	both	read-only	and
writable	pages	with	the	hardware	Write	bit	(bit	1)	of	their	PTEs	set	to	0	and
records	the	true	writable	state	of	the	page	in	the	software	Write	bit	(bit	11).	On	the
first	write	access	to	such	a	page,	the	processor	will	raise	a	memory	management
exception	because	the	hardware	Write	bit	is	clear,	just	as	it	would	be	for	a	true
read-only	page.	In	this	case,	though,	the	memory	manager	learns	that	the	page
actually	is	writable	(via	the	software	Write	bit),	acquires	the	working	set	pushlock,
sets	the	Dirty	bit	and	the	hardware	Write	bit	in	the	PTE,	updates	the	working	set
list	to	note	that	the	page	has	been	changed,	releases	the	working	set	pushlock,	and
dismisses	the	exception.	The	hardware	write	operation	then	proceeds	as	usual,	but
the	setting	of	the	Dirty	bit	is	made	to	happen	with	the	working	set	list	pushlock
held.



On	subsequent	writes	to	the	page,	no	exceptions	occur	because	the	hardware	Write
bit	is	set.	The	MMU	will	redundantly	set	the	Dirty	bit,	but	this	is	benign	because
the	“written-to”	state	of	the	page	is	already	recorded	in	the	working	set	list.
Forcing	the	first	write	to	a	page	to	go	through	this	exception	handling	may	seem	to
be	excessive	overhead.	However,	it	happens	only	once	per	writable	page	as	long	as
the	page	remains	valid.	Furthermore,	the	first	access	to	almost	any	page	already
goes	through	memory	management	exception	handling	because	pages	are	usually
initialized	in	the	invalid	state	(PTE	bit	0	is	clear).	If	the	first	access	to	a	page	is	also
the	first	write	access	to	the	page,	the	Dirty	bit	handling	just	described	will	occur
within	the	handling	of	the	first-access	page	fault,	so	the	additional	overhead	is
small.	Finally,	on	both	uniprocessor	and	multiprocessor	systems,	this
implementation	allows	flushing	of	the	translation	look-aside	buffer	(described
later)	without	holding	a	lock	for	each	page	being	flushed.

Byte	Within	Page
Once	the	memory	manager	has	determined	the	physical	page	number,	it	must
locate	the	requested	data	within	that	page.	This	is	the	purpose	of	the	byte	offset
field.	The	byte	offset	from	the	original	virtual	address	is	simply	copied	to	the
corresponding	field	in	the	physical	address.	On	x86	systems,	the	byte	offset	is	12
bits	wide,	allowing	you	to	reference	up	to	4,096	bytes	of	data	(the	size	of	a	page).
Another	way	to	interpret	this	is	that	the	byte	offset	from	the	virtual	address	is
concatenated	to	the	physical	page	number	retrieved	from	the	PTE.	This	completes
the	translation	of	a	virtual	address	to	a	physical	address.

Translation	Look-Aside	Buffer
As	you’ve	learned	so	far,	each	hardware	address	translation	requires	two	lookups:
one	to	find	the	right	entry	in	the	page	directory	(which	provides	the	location	of	the
page	table)	and	one	to	find	the	right	entry	in	the	page	table.	Because	doing	two
additional	memory	lookups	for	every	reference	to	a	virtual	address	would	triple	the
required	bandwidth	to	memory,	resulting	in	poor	performance,	all	CPUs	cache
address	translations	so	that	repeated	accesses	to	the	same	addresses	don’t	have	to
be	repeatedly	translated.	This	cache	is	an	array	of	associative	memory	called	the
translation	look-aside	buffer,	or	TLB.	Associative	memory	is	a	vector	whose	cells
can	be	read	simultaneously	and	compared	to	a	target	value.	In	the	case	of	the	TLB,



the	vector	contains	the	virtual-to-physical	page	mappings	of	the	most	recently	used
pages,	as	shown	in	Figure	10-20,	and	the	type	of	page	protection,	size,	attributes,
and	so	on	applied	to	each	page.	Each	entry	in	the	TLB	is	like	a	cache	entry	whose
tag	holds	portions	of	the	virtual	address	and	whose	data	portion	holds	a	physical
page	number,	protection	field,	valid	bit,	and	usually	a	dirty	bit	indicating	the
condition	of	the	page	to	which	the	cached	PTE	corresponds.	If	a	PTE’s	global	bit	is
set	(as	is	done	by	Windows	for	system	space	pages	that	are	visible	to	all	processes),
the	TLB	entry	isn’t	invalidated	on	process	context	switches.

Figure	10-20.	Accessing	the	translation	look-aside	buffer

Virtual	addresses	that	are	used	frequently	are	likely	to	have	entries	in	the	TLB,
which	provides	extremely	fast	virtual-to-physical	address	translation	and,	therefore,
fast	memory	access.	If	a	virtual	address	isn’t	in	the	TLB,	it	might	still	be	in
memory,	but	multiple	memory	accesses	are	needed	to	find	it,	which	makes	the
access	time	slightly	slower.	If	a	virtual	page	has	been	paged	out	of	memory	or	if
the	memory	manager	changes	the	PTE,	the	memory	manager	is	required	to
explicitly	invalidate	the	TLB	entry.	If	a	process	accesses	it	again,	a	page	fault
occurs,	and	the	memory	manager	brings	the	page	back	into	memory	(if	needed)
and	re-creates	its	PTE	entry	(which	then	results	in	an	entry	for	it	in	the	TLB).

Physical	Address	Extension	(PAE)
The	Intel	x86	Pentium	Pro	processor	introduced	a	memory-mapping	mode	called



Physical	Address	Extension	(PAE).	With	the	proper	chipset,	the	PAE	mode	allows
32-bit	operating	systems	access	to	up	to	64	GB	of	physical	memory	on	current
Intel	x86	processors	(up	from	4	GB	without	PAE)	and	up	to	1,024	GB	of	physical
memory	when	running	on	x64	processors	in	legacy	mode	(although	Windows
currently	limits	this	to	64	GB	due	to	the	size	of	the	PFN	database	required	to
describe	so	much	memory).	When	the	processor	is	running	in	PAE	mode,	the
memory	management	unit	(MMU)	divides	virtual	addresses	mapped	by	normal
pages	into	four	fields,	as	shown	in	Figure	10-21.	The	MMU	still	implements	page
directories	and	page	tables,	but	under	PAE	a	third	level,	the	page	directory	pointer
table,	exists	above	them.

One	way	in	which	32-bit	applications	can	take	advantage	of	such	large	memory
configurations	is	described	in	the	earlier	section	Address	Windowing	Extensions.
However,	even	if	applications	are	not	using	such	functions,	the	memory	manager
will	use	all	available	physical	memory	for	multiple	processes’	working	sets,	file
cache,	and	trimmed	private	data	through	the	use	of	the	system	cache,	standby,	and
modified	lists	(described	in	the	section	Page	Frame	Number	Database).

PAE	mode	is	selected	at	boot	time	and	cannot	be	changed	without	rebooting.	As
explained	in	Chapter	2	in	Part	1,	there	is	a	special	version	of	the	32-bit	Windows
kernel	with	support	for	PAE	called	Ntkrnlpa.exe.	Thirty-two-bit	systems	that	have
hardware	support	for	nonexecutable	memory	(described	earlier,	in	the	section	No
Execute	Page	Protection)	are	booted	by	default	using	this	PAE	kernel,	because
PAE	mode	is	required	to	implement	the	no-execute	feature.	To	force	the	loading	of
the	PAE-enabled	kernel,	you	can	set	the	pae	BCD	option	to	ForceEnable.

Note	that	the	PAE	kernel	is	installed	on	the	disk	on	all	32-bit	Windows	systems,
even	systems	with	small	memory	and	without	hardware	no-execute	support.	This	is
to	allow	testing	of	PAE-related	code,	even	on	small	memory	systems,	and	to	avoid
the	need	for	reinstalling	Windows	should	more	RAM	be	added	later.	Another	BCD
option	relevant	to	PAE	is	nolowmem,	which	discards	memory	below	4	GB
(assuming	you	have	at	least	5	GB	of	physical	memory)	and	relocates	device	drivers
above	this	range.	This	guarantees	that	drivers	will	be	presented	with	physical
addresses	greater	than	32	bits,	which	makes	any	possible	driver	sign	extension	bugs
easier	to	find.



Figure	10-21.	Page	mappings	with	PAE

To	understand	PAE,	it	is	useful	to	understand	the	derivation	of	the	sizes	of	the
various	structures	and	bit	fields.	Recall	that	the	goal	of	PAE	is	to	allow	addressing
of	more	than	4	GB	of	RAM.	The	4-GB	limit	for	RAM	addresses	without	PAE
comes	from	the	12-bit	byte	offset	and	the	20-bit	page	frame	number	fields	of
physical	addresses:	12	+	20	=	32	bits	of	physical	address,	and	232bytes	=	4	GB.
(Note	that	this	is	due	to	a	limit	of	the	physical	address	format	and	the	number	of
bits	allocated	for	the	PFN	within	a	page	table	entry.	The	fact	that	virtual	addresses
are	32	bits	wide	on	x86,	with	or	without	PAE,	does	not	limit	the	physical	address
space.)

Under	PAE,	the	PFN	is	expanded	to	24	bits.	Combined	with	the	12-bit	byte	offset,
this	allows	addressing	of	224	+	12	bytes,	or	64	GB,	of	memory.

To	provide	the	24-bit	PFN,	PAE	expands	the	PFN	fields	of	page	table	and	page
directory	entries	from	20	to	24	bits.	To	allow	room	for	this	expansion,	the	page
table	and	page	directory	entries	are	8	bytes	wide	instead	of	4.	(This	would	seem	to
expand	the	PFN	field	of	the	PTE	and	PDE	by	32	bits	rather	than	just	4,	but	in	x86
processors,	PFNs	are	limited	to	24	bits.	This	does	leave	a	large	number	of	bits	in
the	PDE	unused—or,	rather,	available	for	future	expansion.)



Since	both	page	tables	and	page	directories	have	to	fit	in	one	page,	these	tables	can
then	have	only	512	entries	instead	of	1,024.	So	the	corresponding	index	fields	of
the	virtual	address	are	accordingly	reduced	from	10	to	9	bits.

This	then	leaves	the	two	high-order	bits	of	the	virtual	address	unaccounted	for.	So
PAE	expands	the	number	of	page	directories	from	one	to	four	and	adds	a	third-
level	address	translation	table,	called	the	page	directory	pointer	table,	or	PDPT.
This	table	contains	only	four	entries,	8	bytes	each,	which	provide	the	PFNs	of	the
four	page	directories.	The	two	high-order	bits	of	the	virtual	address	are	used	to
index	into	the	PDPT	and	are	called	the	page	directory	pointer	index.

As	before,	CR3	provides	the	location	of	the	top-level	table,	but	that	is	now	the
PDPT	rather	than	the	page	directory.	The	PDPT	must	be	aligned	on	a	32-byte
boundary	and	must	furthermore	reside	in	the	first	4	GB	of	RAM	(because	CR3	on
x86	is	only	a	32-bit	register,	even	with	PAE	enabled).

Note	that	PAE	mode	can	address	more	memory	than	the	standard	translation	mode
not	directly	because	of	the	extra	level	of	translation,	but	because	the	physical
address	format	has	been	expanded.	The	extra	level	of	translation	is	required	to
allow	processing	of	all	32	bits	of	a	virtual	address.

EXPERIMENT:	TRANSLATING	ADDRESSES

To	clarify	how	address	translation	works,	this	experiment	shows	a	real	example	of	translating	a	virtual
address	on	an	x86	PAE	system,	using	the	available	tools	in	the	kernel	debugger	to	examine	the	PDPT,	page
directories,	page	tables,	and	PTEs.	(It	is	common	for	Windows	on	today’s	x86	processors,	even	with	less
than	4	GB	of	RAM,	to	run	in	PAE	mode	because	PAE	mode	is	required	to	enable	no-execute	memory
access	protection.)	In	this	example,	we’ll	work	with	a	process	that	has	virtual	address	0x30004,	currently
mapped	to	a	valid	physical	address.	In	later	examples,	you’ll	see	how	to	follow	address	translation	for
invalid	addresses	with	the	kernel	debugger.

First	let’s	convert	0x30004	to	binary	and	break	it	into	the	three	fields	that	are	used	to	translate	an	address.
In	binary,	0x30004	is	11.0000.0000.0000.0100.	Breaking	it	into	the	component	fields	yields	the	following:

To	start	the	translation	process,	the	CPU	needs	the	physical	address	of	the	process’s	page	directory	pointer
table,	found	in	the	CR3	register	while	a	thread	in	that	process	is	running.	You	can	display	this	address	by
looking	at	the	DirBase	field	in	the	output	of	the	!process	command,	as	shown	here:

lkd> !process -1 0



PROCESS 852d1030  SessionId: 1  Cid: 0dec    Peb: 7ffdf000  ParentCid: 05e8
    DirBase: ced25440  ObjectTable: a2014a08  HandleCount: 221.
    Image: windbg.exe

The	DirBase	field	shows	that	the	page	directory	pointer	table	is	at	physical	address	0xced25440.	As	shown
in	the	preceding	illustration,	the	page	directory	pointer	table	index	field	in	our	example	virtual	address	is	0.
Therefore,	the	PDPT	entry	that	contains	the	physical	address	of	the	relevant	page	directory	is	the	first	entry
in	the	PDPT,	at	physical	address	0xced25440.

As	under	x86	non-PAE	systems,	the	kernel	debugger	!pte	command	displays	the	PDE	and	PTE	that
describe	a	virtual	address,	as	shown	here:

lkd> !pte 30004
                    VA 00030004
PDE at C0600000            PTE at C0000180
contains 000000002EBF3867  contains 800000005AF4D025
pfn 2ebf3     ---DA--UWEV   pfn 5af4d     ----A--UR-V

The	debugger	does	not	show	the	page	directory	pointer	table,	but	it	is	easy	to	display	given	its	physical
address:

lkd> !dq ced25440 L 4
#ced25440 00000000`2e8ff801 00000000`2c9d8801
#ced25450 00000000`2e6b1801 00000000`2e73a801

Here	we	have	used	the	debugger	extension	command	!dq.	This	is	similar	to	the	dq	command	(display	as
quadwords—“quadwords”	being	a	name	for	a	64-bit	field;	this	came	from	the	day	when	“words”	were	often
16	bits),	but	it	lets	us	examine	memory	by	physical	rather	than	virtual	address.	Since	we	know	that	the
PDPT	is	only	four	entries	long,	we	added	the	L	4	length	argument	to	keep	the	output	uncluttered.

As	illustrated	previously,	the	PDPT	index	(the	two	most	significant	bits)	from	our	example	virtual	address
equal	0,	so	the	PDPT	entry	we	want	is	the	first	displayed	quadword.	PDPT	entries	have	a	format	similar	to
PD	entries	and	PT	entries,	so	we	can	see	by	inspection	that	this	one	contains	a	PFN	of	0x2e8ff,	for	a
physical	address	of	2e8ff000.	That’s	the	physical	address	of	the	page	directory.

The	!pte	output	shows	the	PDE	address	as	a	virtual	address,	not	physical.	On	x86	systems	with	PAE,	the
first	process	page	directory	starts	at	virtual	address	0xC0600000.	The	page	directory	index	field	of	our
example	virtual	address	is	0,	so	we’re	looking	at	the	first	PDE	in	the	page	directory.	Therefore,	in	this	case,
the	PDE	address	is	the	same	as	the	page	directory	address.

As	with	non-PAE,	the	page	directory	entry	provides	the	PFN	of	the	needed	page	table;	in	this	example,	the
PFN	is	0x2ebf3.	So	the	page	table	starts	at	physical	address	0x2ebf3000.	To	this	the	MMU	will	add	the
page	table	index	field	(0x30)	from	the	virtual	address,	multiplied	by	8	(the	size	of	a	PTE	in	bytes;	this
would	be	4	on	a	non-PAE	system).	The	resulting	physical	address	of	the	PTE	is	then	0x2ebf3180.

The	debugger	shows	that	this	PTE	is	at	virtual	address	0xC0000180.	Notice	that	the	byte	offset	portion
(0x180)	is	the	same	as	that	from	the	physical	address,	as	is	always	the	case	in	address	translation.	Because
the	memory	manager	maps	page	tables	starting	at	0xC0000000,	adding	0x180	to	0xC0000000	yields	the
virtual	address	shown	in	the	kernel	debugger	output:	0xC0000180.	The	debugger	shows	that	the	PFN	field
of	the	PTE	is	0x5af4d.

Finally,	we	can	consider	the	byte	offset	from	the	original	address.	As	described	previously,	the	MMU	will
concatenate	the	byte	offset	to	the	PFN	from	the	PTE,	giving	a	physical	address	of	0x5af4d004.	This	is	the
physical	address	that	corresponds	to	the	original	virtual	address	of	0x30004—at	the	moment.

The	flags	bits	from	the	PTE	are	interpreted	to	the	right	of	the	PFN	number.	For	example,	the	PTE	that



describes	the	page	being	referenced	has	flags	of	--A--UR-V.	Here,	 A	stands	for	accessed	(the	page	has	been
read),	U	for	user-mode	accessible	(as	opposed	to	kernel-mode	accessible	only),	R	for	read-only	page	(rather
than	writable),	and	V	for	valid	(the	PTE	represents	a	valid	page	in	physical	memory).

To	confirm	our	calculation	of	the	physical	address,	we	can	look	at	the	memory	in	question	via	both	its
virtual	and	its	physical	addresses.	First,	using	the	debugger’s	dd	command	(display	dwords)	on	the	virtual
address,	we	see	the	following:

lkd> dd 30004
00030004  00000020 00000001 00003020 000000dc
00030014  00000000 00000020 00000000 00000014
00030024  00000001 00000007 00000034 0000017c
00030034  00000001 00000000 00000000 00000000
00030044  00000000 00000000 00000002 1a26ef4e
00030054  00000298 00000044 000002e0 00000260
00030064  00000000 f33271ba 00000540 0000004a
00030074  0000058c 0000031e 00000000 2d59495b

And	with	the	!dd	command	on	the	physical	address	just	computed,	we	see	the	same	contents:

lkd> !dd 5af4d004
#5af4d004 00000020 00000001 00003020 000000dc
#5af4d014 00000000 00000020 00000000 00000014
#5af4d024 00000001 00000007 00000034 0000017c
#5af4d034 00000001 00000000 00000000 00000000
#5af4d044 00000000 00000000 00000002 1a26ef4e
#5af4d054 00000298 00000044 000002e0 00000260
#5af4d064 00000000 f33271ba 00000540 0000004a
#5af4d074 0000058c 0000031e 00000000 2d59495b

We	could	similarly	compare	the	displays	from	the	virtual	and	physical	addresses	of	the	PTE	and	PDE.

x64	Virtual	Address	Translation
Address	translation	on	x64	is	similar	to	x86	PAE,	but	with	a	fourth	level	added.
Each	process	has	a	top-level	extended	page	directory	(called	the	page	map	level	4
table)	that	contains	the	physical	locations	of	512	third-level	structures,	called	page
parent	directories.	The	page	parent	directory	is	analogous	to	the	x86	PAE	page
directory	pointer	table,	but	there	are	512	of	them	instead	of	just	1,	and	each	page
parent	directory	is	an	entire	page,	containing	512	entries	instead	of	just	4.	Like	the
PDPT,	the	page	parent	directory’s	entries	contain	the	physical	locations	of	second-
level	page	directories,	each	of	which	in	turn	contains	512	entries	providing	the
locations	of	the	individual	page	tables.	Finally,	the	page	tables	(each	of	which
contain	512	page	table	entries)	contain	the	physical	locations	of	the	pages	in
memory.	(All	of	the	“physical	locations”	in	the	preceding	description	are	stored	in
these	structures	as	page	frame	numbers,	or	PFNs.)

Current	implementations	of	the	x64	architecture	limit	virtual	addresses	to	48	bits.



The	components	that	make	up	this	48-bit	virtual	address	are	shown	in	Figure	10-
22.	The	connections	between	these	structures	are	shown	in	Figure	10-23.	Finally,
the	format	of	an	x64	hardware	page	table	entry	is	shown	in	Figure	10-24.

Figure	10-22.	x64	virtual	address

Figure	10-23.	x64	address	translation	structures

Figure	10-24.	x64	hardware	page	table	entry



IA64	Virtual	Address	Translation
The	virtual	address	space	for	IA64	is	divided	into	eight	regions	by	the	hardware.
Each	region	can	have	its	own	set	of	page	tables.	Windows	uses	five	of	the	regions,
three	of	which	have	page	tables.	Table	10-12	lists	the	regions	and	how	they	are
used.

Table	10-12.	The	IA64	Regions

Region Use

0 User	code	and	data

1 Session	space	code	and	data

2 Unused

3 Unused

4 Kseg3,	which	is	a	cached,	1-to-1	mapping	of	physical	memory.	No	page	tables	are
needed	for	this	region	because	the	necessary	TLB	inserts	are	done	directly	by	the
memory	manager.

5 Kseg4,	which	is	a	noncached,	1-to-1	mapping	for	physical	memory.	This	is	used	only	in
a	few	places	for	accessing	I/O	locations	such	as	the	I/O	port	range.	There	are	no	page
tables	needed	for	this	region.

6 Unused

7 Kernel	code	and	data

Address	translation	by	64-bit	Windows	on	the	IA64	platform	uses	a	three-level
page	table	scheme.	Each	process	has	a	page	directory	pointer	structure	that
contains	1,024	pointers	to	page	directories.	Each	page	directory	contains	1,024
pointers	to	page	tables,	which	in	turn	point	to	physical	pages.	Figure	10-25	shows
the	format	of	an	IA64	hardware	PTE.



Figure	10-25.	IA64	page	table	entry



Page	Fault	Handling
Earlier,	you	saw	how	address	translations	are	resolved	when	the	PTE	is	valid.
When	the	PTE	valid	bit	is	clear,	this	indicates	that	the	desired	page	is	for	some
reason	not	currently	accessible	to	the	process.	This	section	describes	the	types	of
invalid	PTEs	and	how	references	to	them	are	resolved.

NOTE

Only	the	32-bit	x86	PTE	formats	are	detailed	in	this	section.	PTEs	for	64-bit	systems	contain	similar
information,	but	their	detailed	layout	is	not	presented.

A	reference	to	an	invalid	page	is	called	a	page	fault.	The	kernel	trap	handler
(introduced	in	the	section	“Trap	Dispatching”	in	Chapter	3	in	Part	1)	dispatches
this	kind	of	fault	to	the	memory	manager	fault	handler	(MmAccessFault)	to
resolve.	This	routine	runs	in	the	context	of	the	thread	that	incurred	the	fault	and	is
responsible	for	attempting	to	resolve	the	fault	(if	possible)	or	raise	an	appropriate
exception.	These	faults	can	be	caused	by	a	variety	of	conditions,	as	listed	in
Table	10-13.

Table	10-13.	Reasons	for	Access	Faults

Reason	for	Fault Result

Accessing	a	page	that	isn’t	resident	in	memory
but	is	on	disk	in	a	page	file	or	a	mapped	file

Allocate	a	physical	page,	and	read	the	desired
page	from	disk	and	into	the	relevant	working	set

Accessing	a	page	that	is	on	the	standby	or
modified	list

Transition	the	page	to	the	relevant	process,
session,	or	system	working	set

Accessing	a	page	that	isn’t	committed	(for
example,	reserved	address	space	or	address
space	that	isn’t	allocated)

Access	violation

Accessing	a	page	from	user	mode	that	can	be
accessed	only	in	kernel	mode

Access	violation

Writing	to	a	page	that	is	read-only Access	violation

Accessing	a	demand-zero	page Add	a	zero-filled	page	to	the	relevant	working	set



Writing	to	a	guard	page Guard-page	violation	(if	a	reference	to	a	user-
mode	stack,	perform	automatic	stack	expansion)

Writing	to	a	copy-on-write	page Make	process-private	(or	session-private)	copy	of
page,	and	replace	original	in	process,	session,	or
system	working	set

Writing	to	a	page	that	is	valid	but	hasn’t	been
written	to	the	current	backing	store	copy

Set	Dirty	bit	in	PTE

Executing	code	in	a	page	that	is	marked	as	no
execute

Access	violation	(supported	only	on	hardware
platforms	that	support	no	execute	protection)

The	following	section	describes	the	four	basic	kinds	of	invalid	PTEs	that	are
processed	by	the	access	fault	handler.	Following	that	is	an	explanation	of	a	special
case	of	invalid	PTEs,	prototype	PTEs,	which	are	used	to	implement	shareable
pages.

Invalid	PTEs
If	the	valid	bit	of	a	PTE	encountered	during	address	translation	is	zero,	the	PTE
represents	an	invalid	page—one	that	will	raise	a	memory	management	exception,
or	page	fault,	upon	reference.	The	MMU	ignores	the	remaining	bits	of	the	PTE,	so
the	operating	system	can	use	these	bits	to	store	information	about	the	page	that	will
assist	in	resolving	the	page	fault.

The	following	list	details	the	four	kinds	of	invalid	PTEs	and	their	structure.	These
are	often	referred	to	as	software	PTEs	because	they	are	interpreted	by	the	memory
manager	rather	than	the	MMU.	Some	of	the	flags	are	the	same	as	those	for	a
hardware	PTE	as	described	in	Table	10-11,	and	some	of	the	bit	fields	have	either
the	same	or	similar	meanings	to	corresponding	fields	in	the	hardware	PTE.

Page	file	The	desired	page	resides	within	a	paging	file.	As	illustrated	in
Figure	10-26,	4	bits	in	the	PTE	indicate	in	which	of	16	possible	page	files	the
page	resides,	and	20	bits	(in	x86	non-PAE;	more	in	other	modes)	provide	the
page	number	within	the	file.	The	pager	initiates	an	in-page	operation	to	bring
the	page	into	memory	and	make	it	valid.	The	page	file	offset	is	always	non-zero
and	never	all	1s	(that	is,	the	very	first	and	last	pages	in	the	page	file	are	not
used	for	paging)	in	order	to	allow	for	other	formats,	described	next.



Figure	10-26.	A	page	table	entry	representing	a	page	in	a	page	file

Demand	zero	This	PTE	format	is	the	same	as	the	page	file	PTE	shown	in	the
previous	entry,	but	the	page	file	offset	is	zero.	The	desired	page	must	be
satisfied	with	a	page	of	zeros.	The	pager	looks	at	the	zero	page	list.	If	the	list	is
empty,	the	pager	takes	a	page	from	the	free	list	and	zeroes	it.	If	the	free	list	is
also	empty,	it	takes	a	page	from	one	of	the	standby	lists	and	zeroes	it.

Virtual	address	descriptor	This	PTE	format	is	the	same	as	the	page	file	PTE
shown	previously,	but	in	this	case	the	page	file	offset	field	is	all	1s.	This
indicates	a	page	whose	definition	and	backing	store,	if	any,	can	be	found	in	the
process’s	virtual	address	descriptor	(VAD)	tree.	This	format	is	used	for	pages
that	are	backed	by	sections	in	mapped	files.	The	pager	finds	the	VAD	that
defines	the	virtual	address	range	encompassing	the	virtual	page	and	initiates	an
in-page	operation	from	the	mapped	file	referenced	by	the	VAD.	(VADs	are
described	in	more	detail	in	a	later	section.)

Transition	The	desired	page	is	in	memory	on	either	the	standby,	modified,	or
modified-no-write	list	or	not	on	any	list.	As	shown	in	Figure	10-27,	the	PTE
contains	the	page	frame	number	of	the	page.	The	pager	will	remove	the	page
from	the	list	(if	it	is	on	one)	and	add	it	to	the	process	working	set.

Figure	10-27.	A	page	table	entry	representing	a	page	in	transition



Unknown	The	PTE	is	zero,	or	the	page	table	doesn’t	yet	exist	(the	page
directory	entry	that	would	provide	the	physical	address	of	the	page	table
contains	zero).	In	both	cases,	the	memory	manager	pager	must	examine	the
virtual	address	descriptors	(VADs)	to	determine	whether	this	virtual	address
has	been	committed.	If	so,	page	tables	are	built	to	represent	the	newly
committed	address	space.	(See	the	discussion	of	VADs	later	in	the	chapter.)	If
not	(if	the	page	is	reserved	or	hasn’t	been	defined	at	all),	the	page	fault	is
reported	as	an	access	violation	exception.

Prototype	PTEs
If	a	page	can	be	shared	between	two	processes,	the	memory	manager	uses	a
software	structure	called	prototype	page	table	entries	(prototype	PTEs)	to	map
these	potentially	shared	pages.	For	page-file-backed	sections,	an	array	of	prototype
PTEs	is	created	when	a	section	object	is	first	created;	for	mapped	files,	portions	of
the	array	are	created	on	demand	as	each	view	is	mapped.	These	prototype	PTEs
are	part	of	the	segment	structure,	described	at	the	end	of	this	chapter.

When	a	process	first	references	a	page	mapped	to	a	view	of	a	section	object	(recall
that	the	VADs	are	created	only	when	the	view	is	mapped),	the	memory	manager
uses	the	information	in	the	prototype	PTE	to	fill	in	the	real	PTE	used	for	address
translation	in	the	process	page	table.	When	a	shared	page	is	made	valid,	both	the
process	PTE	and	the	prototype	PTE	point	to	the	physical	page	containing	the	data.
To	track	the	number	of	process	PTEs	that	reference	a	valid	shared	page,	a	counter
in	its	PFN	database	entry	is	incremented.	Thus,	the	memory	manager	can
determine	when	a	shared	page	is	no	longer	referenced	by	any	page	table	and	thus
can	be	made	invalid	and	moved	to	a	transition	list	or	written	out	to	disk.

When	a	shareable	page	is	invalidated,	the	PTE	in	the	process	page	table	is	filled	in
with	a	special	PTE	that	points	to	the	prototype	PTE	entry	that	describes	the	page,
as	shown	in	Figure	10-28.

Figure	10-28.	Structure	of	an	invalid	PTE	that	points	to	the	prototype	PTE



Thus,	when	the	page	is	later	accessed,	the	memory	manager	can	locate	the
prototype	PTE	using	the	information	encoded	in	this	PTE,	which	in	turn	describes
the	page	being	referenced.	A	shared	page	can	be	in	one	of	six	different	states	as
described	by	the	prototype	PTE	entry:

Active/valid	The	page	is	in	physical	memory	as	a	result	of	another	process	that
accessed	it.

Transition	The	desired	page	is	in	memory	on	the	standby	or	modified	list	(or
not	on	any	list).

Modified-no-write	The	desired	page	is	in	memory	and	on	the	modified-no-
write	list.	(See	Table	10-19.)

Demand	zero	The	desired	page	should	be	satisfied	with	a	page	of	zeros.

Page	file	The	desired	page	resides	within	a	page	file.

Mapped	file	The	desired	page	resides	within	a	mapped	file.

Although	the	format	of	these	prototype	PTE	entries	is	the	same	as	that	of	the	real
PTE	entries	described	earlier,	these	prototype	PTEs	aren’t	used	for	address
translation—they	are	a	layer	between	the	page	table	and	the	page	frame	number
database	and	never	appear	directly	in	page	tables.

By	having	all	the	accessors	of	a	potentially	shared	page	point	to	a	prototype	PTE	to
resolve	faults,	the	memory	manager	can	manage	shared	pages	without	needing	to
update	the	page	tables	of	each	process	sharing	the	page.	For	example,	a	shared
code	or	data	page	might	be	paged	out	to	disk	at	some	point.	When	the	memory
manager	retrieves	the	page	from	disk,	it	needs	only	to	update	the	prototype	PTE	to
point	to	the	page’s	new	physical	location—the	PTEs	in	each	of	the	processes
sharing	the	page	remain	the	same	(with	the	valid	bit	clear	and	still	pointing	to	the
prototype	PTE).	Later,	as	processes	reference	the	page,	the	real	PTE	will	get
updated.

Figure	10-29	illustrates	two	virtual	pages	in	a	mapped	view.	One	is	valid,	and	the
other	is	invalid.	As	shown,	the	first	page	is	valid	and	is	pointed	to	by	the	process
PTE	and	the	prototype	PTE.	The	second	page	is	in	the	paging	file—the	prototype
PTE	contains	its	exact	location.	The	process	PTE	(and	any	other	processes	with
that	page	mapped)	points	to	this	prototype	PTE.



Figure	10-29.	Prototype	page	table	entries

In-Paging	I/O
In-paging	I/O	occurs	when	a	read	operation	must	be	issued	to	a	file	(paging	or
mapped)	to	satisfy	a	page	fault.	Also,	because	page	tables	are	pageable,	the
processing	of	a	page	fault	can	incur	additional	I/O	if	necessary	when	the	system	is
loading	the	page	table	page	that	contains	the	PTE	or	the	prototype	PTE	that
describes	the	original	page	being	referenced.

The	in-page	I/O	operation	is	synchronous—that	is,	the	thread	waits	on	an	event
until	the	I/O	completes—and	isn’t	interruptible	by	asynchronous	procedure	call
(APC)	delivery.	The	pager	uses	a	special	modifier	in	the	I/O	request	function	to
indicate	paging	I/O.	Upon	completion	of	paging	I/O,	the	I/O	system	triggers	an
event,	which	wakes	up	the	pager	and	allows	it	to	continue	in-page	processing.

While	the	paging	I/O	operation	is	in	progress,	the	faulting	thread	doesn’t	own	any
critical	memory	management	synchronization	objects.	Other	threads	within	the
process	are	allowed	to	issue	virtual	memory	functions	and	handle	page	faults	while
the	paging	I/O	takes	place.	But	a	number	of	interesting	conditions	that	the	pager
must	recognize	when	the	I/O	completes	are	exposed:

Another	thread	in	the	same	process	or	a	different	process	could	have	faulted	the
same	page	(called	a	collided	page	fault	and	described	in	the	next	section).

The	page	could	have	been	deleted	(and	remapped)	from	the	virtual	address
space.



The	protection	on	the	page	could	have	changed.

The	fault	could	have	been	for	a	prototype	PTE,	and	the	page	that	maps	the
prototype	PTE	could	be	out	of	the	working	set.

The	pager	handles	these	conditions	by	saving	enough	state	on	the	thread’s	kernel
stack	before	the	paging	I/O	request	such	that	when	the	request	is	complete,	it	can
detect	these	conditions	and,	if	necessary,	dismiss	the	page	fault	without	making	the
page	valid.	When	and	if	the	faulting	instruction	is	reissued,	the	pager	is	again
invoked	and	the	PTE	is	reevaluated	in	its	new	state.

Collided	Page	Faults
The	case	when	another	thread	in	the	same	process	or	a	different	process	faults	a
page	that	is	currently	being	in-paged	is	known	as	a	collided	page	fault.	The	pager
detects	and	handles	collided	page	faults	optimally	because	they	are	common
occurrences	in	multithreaded	systems.	If	another	thread	or	process	faults	the	same
page,	the	pager	detects	the	collided	page	fault,	noticing	that	the	page	is	in	transition
and	that	a	read	is	in	progress.	(This	information	is	in	the	PFN	database	entry.)	In
this	case,	the	pager	may	issue	a	wait	operation	on	the	event	specified	in	the	PFN
database	entry,	or	it	can	choose	to	issue	a	parallel	I/O	to	protect	the	file	systems
from	deadlocks	(the	first	I/O	to	complete	“wins,”	and	the	others	are	discarded).
This	event	was	initialized	by	the	thread	that	first	issued	the	I/O	needed	to	resolve
the	fault.

When	the	I/O	operation	completes,	all	threads	waiting	on	the	event	have	their	wait
satisfied.	The	first	thread	to	acquire	the	PFN	database	lock	is	responsible	for
performing	the	in-page	completion	operations.	These	operations	consist	of
checking	I/O	status	to	ensure	that	the	I/O	operation	completed	successfully,
clearing	the	read-in-progress	bit	in	the	PFN	database,	and	updating	the	PTE.

When	subsequent	threads	acquire	the	PFN	database	lock	to	complete	the	collided
page	fault,	the	pager	recognizes	that	the	initial	updating	has	been	performed
because	the	read-in-progress	bit	is	clear	and	checks	the	in-page	error	flag	in	the
PFN	database	element	to	ensure	that	the	in-page	I/O	completed	successfully.	If	the
in-page	error	flag	is	set,	the	PTE	isn’t	updated	and	an	in-page	error	exception	is
raised	in	the	faulting	thread.



Clustered	Page	Faults
The	memory	manager	prefetches	large	clusters	of	pages	to	satisfy	page	faults	and
populate	the	system	cache.	The	prefetch	operations	read	data	directly	into	the
system’s	page	cache	instead	of	into	a	working	set	in	virtual	memory,	so	the
prefetched	data	does	not	consume	virtual	address	space,	and	the	size	of	the	fetch
operation	is	not	limited	to	the	amount	of	virtual	address	space	that	is	available.
(Also,	no	expensive	TLB-flushing	Inter-Processor	Interrupt	is	needed	if	the	page
will	be	repurposed.)	The	prefetched	pages	are	put	on	the	standby	list	and	marked
as	in	transition	in	the	PTE.	If	a	prefetched	page	is	subsequently	referenced,	the
memory	manager	adds	it	to	the	working	set.	However,	if	it	is	never	referenced,	no
system	resources	are	required	to	release	it.	If	any	pages	in	the	prefetched	cluster	are
already	in	memory,	the	memory	manager	does	not	read	them	again.	Instead,	it	uses
a	dummy	page	to	represent	them	so	that	an	efficient	single	large	I/O	can	still	be
issued,	as	Figure	10-30	shows.

Figure	10-30.	Usage	of	dummy	page	during	virtual	address	to	physical	address	mapping	in	an	MDL

In	the	figure,	the	file	offsets	and	virtual	addresses	that	correspond	to	pages	A,	Y,	Z,
and	B	are	logically	contiguous,	although	the	physical	pages	themselves	are	not
necessarily	contiguous.	Pages	A	and	B	are	nonresident,	so	the	memory	manager
must	read	them.	Pages	Y	and	Z	are	already	resident	in	memory,	so	it	is	not
necessary	to	read	them.	(In	fact,	they	might	already	have	been	modified	since	they
were	last	read	in	from	their	backing	store,	in	which	case	it	would	be	a	serious	error
to	overwrite	their	contents.)	However,	reading	pages	A	and	B	in	a	single	operation
is	more	efficient	than	performing	one	read	for	page	A	and	a	second	read	for	page



B.	Therefore,	the	memory	manager	issues	a	single	read	request	that	comprises	all
four	pages	(A,	Y,	Z,	and	B)	from	the	backing	store.	Such	a	read	request	includes	as
many	pages	as	make	sense	to	read,	based	on	the	amount	of	available	memory,	the
current	system	usage,	and	so	on.

When	the	memory	manager	builds	the	memory	descriptor	list	(MDL)	that
describes	the	request,	it	supplies	valid	pointers	to	pages	A	and	B.	However,	the
entries	for	pages	Y	and	Z	point	to	a	single	systemwide	dummy	page	X.	The
memory	manager	can	fill	the	dummy	page	X	with	the	potentially	stale	data	from
the	backing	store	because	it	does	not	make	X	visible.	However,	if	a	component
accesses	the	Y	and	Z	offsets	in	the	MDL,	it	sees	the	dummy	page	X	instead	of	Y
and	Z.

The	memory	manager	can	represent	any	number	of	discarded	pages	as	a	single
dummy	page,	and	that	page	can	be	embedded	multiple	times	in	the	same	MDL	or
even	in	multiple	concurrent	MDLs	that	are	being	used	for	different	drivers.
Consequently,	the	contents	of	the	locations	that	represent	the	discarded	pages	can
change	at	any	time.

Page	Files
Page	files	are	used	to	store	modified	pages	that	are	still	in	use	by	some	process	but
have	had	to	be	written	to	disk	(because	they	were	unmapped	or	memory	pressure
resulted	in	a	trim).	Page	file	space	is	reserved	when	the	pages	are	initially
committed,	but	the	actual	optimally	clustered	page	file	locations	cannot	be	chosen
until	pages	are	written	out	to	disk.

When	the	system	boots,	the	Session	Manager	process	(described	in	Chapter	13)
reads	the	list	of	page	files	to	open	by	examining	the	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\PagingFiles.	This	multistring	registry	value	contains	the	name,
minimum	size,	and	maximum	size	of	each	paging	file.	Windows	supports	up	to	16
paging	files.	On	x86	systems	running	the	normal	kernel,	each	page	file	can	be	a
maximum	of	4,095	MB.	On	x86	systems	running	the	PAE	kernel	and	x64	systems,
each	page	file	can	be	16	terabytes	(TB)	while	the	maximum	is	32	TB	on	IA64
systems.	Once	open,	the	page	files	can’t	be	deleted	while	the	system	is	running
because	the	System	process	(described	in	Chapter	2	in	Part	1)	maintains	an	open



handle	to	each	page	file.	The	fact	that	the	paging	files	are	open	explains	why	the
built-in	defragmentation	tool	cannot	defragment	the	paging	file	while	the	system	is
up.	To	defragment	your	paging	file,	use	the	freeware	Pagedefrag	tool	from
Sysinternals.	It	uses	the	same	approach	as	other	third-party	defragmentation	tools
—it	runs	its	defragmentation	process	early	in	the	boot	process	before	the	page	files
are	opened	by	the	Session	Manager.

Because	the	page	file	contains	parts	of	process	and	kernel	virtual	memory,	for
security	reasons	the	system	can	be	configured	to	clear	the	page	file	at	system
shutdown.	To	enable	this,	set	the	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\ClearPageFileAtShutdown	to	1.	Otherwise,	after	shutdown,	the	page
file	will	contain	whatever	data	happened	to	have	been	paged	out	while	the	system
was	up.	This	data	could	then	be	accessed	by	someone	who	gained	physical	access
to	the	machine.

If	the	minimum	and	maximum	paging	file	sizes	are	both	zero,	this	indicates	a
system-managed	paging	file,	which	causes	the	system	to	choose	the	page	file	size
as	follows:

Minimum	size:	set	to	the	amount	of	RAM	or	1	GB,	whichever	is	larger.

Maximum	size:	set	to	3	*	RAM	or	4	GB,	whichever	is	larger.

As	you	can	see,	by	default	the	initial	page	file	size	is	proportional	to	the	amount	of
RAM.	This	policy	is	based	on	the	assumption	that	machines	with	more	RAM	are
more	likely	to	be	running	workloads	that	commit	large	amounts	of	virtual	memory.

EXPERIMENT:	VIEWING	PAGE	FILES

To	view	the	list	of	page	files,	look	in	the	registry	at	HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory	Management\PagingFiles.	This	entry	contains	the	paging	file	configuration	settings
modified	through	the	Advanced	System	Settings	dialog	box.	Open	Control	Panel,	click	System	And
Security,	and	then	System.	This	is	the	System	Properties	dialog	box,	also	reachable	by	right-clicking	on
Computer	in	Explorer	and	selecting	Properties.	From	there,	click	Advanced	System	Settings,	then	Settings
in	the	Performance	area.	In	the	Performance	Options	dialog	box,	click	the	Advanced	tab,	and	then	click
Change	in	the	Virtual	Memory	area.

To	add	a	new	page	file,	Control	Panel	uses	the	(internal	only)	NtCreatePagingFile
system	service	defined	in	Ntdll.dll.	Page	files	are	always	created	as	noncompressed
files,	even	if	the	directory	they	are	in	is	compressed.	To	keep	new	page	files	from



being	deleted,	a	handle	is	duplicated	into	the	System	process	so	that	even	after	the
creating	process	closes	the	handle	to	the	new	page	file,	a	handle	is	nevertheless
always	open	to	it.

Commit	Charge	and	the	System	Commit	Limit
We	are	now	in	a	position	to	more	thoroughly	discuss	the	concepts	of	commit
charge	and	the	system	commit	limit.

Whenever	virtual	address	space	is	created,	for	example	by	a	VirtualAlloc	(for
committed	memory)	or	MapViewOfFile	call,	the	system	must	ensure	that	there	is
room	to	store	it,	either	in	RAM	or	in	backing	store,	before	successfully	completing
the	create	request.	For	mapped	memory	(other	than	sections	mapped	to	the	page
file),	the	file	associated	with	the	mapping	object	referenced	by	the	MapViewOfFile
call	provides	the	required	backing	store.

All	other	virtual	allocations	rely	for	storage	on	system-managed	shared	resources:
RAM	and	the	paging	file(s).	The	purpose	of	the	system	commit	limit	and	commit
charge	is	to	track	all	uses	of	these	resources	to	ensure	that	they	are	never
overcommitted—that	is,	that	there	is	never	more	virtual	address	space	defined	than
there	is	space	to	store	its	contents,	either	in	RAM	or	in	backing	store	(on	disk).

NOTE

This	section	makes	frequent	references	to	paging	files.	It	is	possible,	though	not	generally	recommended,	to
run	Windows	without	any	paging	files.	Every	reference	to	paging	files	here	may	be	considered	to	be
qualified	by	“if	one	or	more	paging	files	exist.”

Conceptually,	the	system	commit	limit	represents	the	total	virtual	address	space
that	can	be	created	in	addition	to	virtual	allocations	that	are	associated	with	their
own	backing	store—that	is,	in	addition	to	sections	mapped	to	files.	Its	numeric
value	is	simply	the	amount	of	RAM	available	to	Windows	plus	the	current	sizes	of
any	page	files.	If	a	page	file	is	expanded,	or	new	page	files	are	created,	the	commit
limit	increases	accordingly.	If	no	page	files	exist,	the	system	commit	limit	is	simply
the	total	amount	of	RAM	available	to	Windows.

Commit	charge	is	the	systemwide	total	of	all	“committed”	memory	allocations	that
must	be	kept	in	either	RAM	or	in	a	paging	file.	From	the	name,	it	should	be
apparent	that	one	contributor	to	commit	charge	is	process-private	committed



virtual	address	space.	However,	there	are	many	other	contributors,	some	of	them
not	so	obvious.

Windows	also	maintains	a	per-process	counter	called	the	process	page	file	quota.
Many	of	the	allocations	that	contribute	to	commit	charge	contribute	to	the	process
page	file	quota	as	well.	This	represents	each	process’s	private	contribution	to	the
system	commit	charge.	Note,	however,	that	this	does	not	represent	current	page	file
usage.	It	represents	the	potential	or	maximum	page	file	usage,	should	all	of	these
allocations	have	to	be	stored	there.

The	following	types	of	memory	allocations	contribute	to	the	system	commit	charge
and,	in	many	cases,	to	the	process	page	file	quota.	(Some	of	these	will	be
described	in	detail	in	later	sections	of	this	chapter.)

Private	committed	memory	is	memory	allocated	with	the	VirtualAlloc	call	with
the	COMMIT	option.	This	is	the	most	common	type	of	contributor	to	the
commit	charge.	These	allocations	are	also	charged	to	the	process	page	file
quota.

Page-file-backed	mapped	memory	is	memory	allocated	with	a	MapViewOfFile
call	that	references	a	section	object,	which	in	turn	is	not	associated	with	a	file.
The	system	uses	a	portion	of	the	page	file	as	the	backing	store	instead.	These
allocations	are	not	charged	to	the	process	page	file	quota.

Copy-on-write	regions	of	mapped	memory,	even	if	it	is	associated	with	ordinary
mapped	files.	The	mapped	file	provides	backing	store	for	its	own	unmodified
content,	but	should	a	page	in	the	copy-on-write	region	be	modified,	it	can	no
longer	use	the	original	mapped	file	for	backing	store.	It	must	be	kept	in	RAM
or	in	a	paging	file.	These	allocations	are	not	charged	to	the	process	page	file
quota.

Nonpaged	and	paged	pool	and	other	allocations	in	system	space	that	are	not
backed	by	explicitly	associated	files.	Note	that	even	the	currently	free	regions	of
the	system	memory	pools	contribute	to	commit	charge.	The	nonpageable
regions	are	counted	in	the	commit	charge,	even	though	they	will	never	be
written	to	the	page	file	because	they	permanently	reduce	the	amount	of	RAM
available	for	private	pageable	data.	These	allocations	are	not	charged	to	the
process	page	file	quota.



Kernel	stacks.

Page	tables,	most	of	which	are	themselves	pageable,	and	they	are	not	backed	by
mapped	files.	Even	if	not	pageable,	they	occupy	RAM.	Therefore,	the	space
required	for	them	contributes	to	commit	charge.

Space	for	page	tables	that	are	not	yet	actually	allocated.	As	we’ll	see	later,
where	large	areas	of	virtual	space	have	been	defined	but	not	yet	referenced	(for
example,	private	committed	virtual	space),	the	system	need	not	actually	create
page	tables	to	describe	it.	But	the	space	for	these	as-yet-nonexistent	page	tables
is	charged	to	commit	charge	to	ensure	that	the	page	tables	can	be	created	when
they	are	needed.

Allocations	of	physical	memory	made	via	the	Address	Windowing	Extension
(AWE)	APIs.

For	many	of	these	items,	the	commit	charge	may	represent	the	potential	use	of
storage	rather	than	the	actual.	For	example,	a	page	of	private	committed	memory
does	not	actually	occupy	either	a	physical	page	of	RAM	or	the	equivalent	page	file
space	until	it’s	been	referenced	at	least	once.	Until	then,	it	is	a	demand-zero	page
(described	later).	But	commit	charge	accounts	for	such	pages	when	the	virtual
space	is	first	created.	This	ensures	that	when	the	page	is	later	referenced,	actual
physical	storage	space	will	be	available	for	it.

A	region	of	a	file	mapped	as	copy-on-write	has	a	similar	requirement.	Until	the
process	writes	to	the	region,	all	pages	in	it	are	backed	by	the	mapped	file.	But	the
process	may	write	to	any	of	the	pages	in	the	region	at	any	time,	and	when	that
happens,	those	pages	are	thereafter	treated	as	private	to	the	process.	Their	backing
store	is,	thereafter,	the	page	file.	Charging	the	system	commit	for	them	when	the
region	is	first	created	ensures	that	there	will	be	private	storage	for	them	later,	if	and
when	the	write	accesses	occur.

A	particularly	interesting	case	occurs	when	reserving	private	memory	and	later
committing	it.	When	the	reserved	region	is	created	with	VirtualAlloc,	system
commit	charge	is	not	charged	for	the	actual	virtual	region.	It	is,	however,	charged
for	any	new	page	table	pages	that	will	be	required	to	describe	the	region,	even
though	these	might	not	yet	exist.	If	the	region	or	a	part	of	it	is	later	committed,
system	commit	is	charged	to	account	for	the	size	of	the	region	(as	is	the	process



page	file	quota).

To	put	it	another	way,	when	the	system	successfully	completes	(for	example)	a
VirtualAlloc	or	MapViewOfFile	call,	it	makes	a	“commitment”	that	the	needed
storage	will	be	available	when	needed,	even	if	it	wasn’t	needed	at	that	moment.
Thus,	a	later	memory	reference	to	the	allocated	region	can	never	fail	for	lack	of
storage	space.	(It	could	fail	for	other	reasons,	such	as	page	protection,	the	region
being	deallocated,	and	so	on.)	The	commit	charge	mechanism	allows	the	system	to
keep	this	commitment.

The	commit	charge	appears	in	the	Performance	Monitor	counters	as	Memory:
Committed	Bytes.	It	is	also	the	first	of	the	two	numbers	displayed	on	Task
Manager’s	Performance	tab	with	the	legend	Commit	(the	second	being	the	commit
limit),	and	it	is	displayed	by	Process	Explorer’s	System	Information	Memory	tab	as
Commit	Charge—Current.

The	process	page	file	quota	appears	in	the	performance	counters	as	Process:	Page
File	Bytes.	The	same	data	appears	in	the	Process:	Private	Bytes	performance
counter.	(Neither	term	exactly	describes	the	true	meaning	of	the	counter.)

If	the	commit	charge	ever	reaches	the	commit	limit,	the	memory	manager	will
attempt	to	increase	the	commit	limit	by	expanding	one	or	more	page	files.	If	that	is
not	possible,	subsequent	attempts	to	allocate	virtual	memory	that	uses	commit
charge	will	fail	until	some	existing	committed	memory	is	freed.	The	performance
counters	listed	in	Table	10-14	allow	you	to	examine	private	committed	memory
usage	on	a	systemwide,	per-process,	or	per-page-file,	basis.

Table	10-14.	Committed	Memory	and	Page	File	Performance	Counters

Performance
Counter

Description

Memory:
Committed
Bytes

Number	of	bytes	of	virtual	(not	reserved)	memory	that	has	been	committed.	This
number	doesn’t	necessarily	represent	page	file	usage	because	it	includes	private
committed	pages	in	physical	memory	that	have	never	been	paged	out.	Rather,	it
represents	the	charged	amount	that	must	be	backed	by	page	file	space	and/or
RAM.

Memory:
Commit	Limit

Number	of	bytes	of	virtual	memory	that	can	be	committed	without	having	to
extend	the	paging	files;	if	the	paging	files	can	be	extended,	this	limit	is	soft.



Process:	Page
File	Quota

The	process’s	contribution	to	Memory:	Committed	Bytes.

Process:
Private	Bytes

Same	as	Process:	Page	File	Quota

Process:
Working	Set—
Private

The	subset	of	Process:	Page	File	Quota	that	is	currently	in	RAM	and	can	be
referenced	without	a	page	fault.	Also	a	subset	of	Process:	Working	Set.

Process:
Working	Set

The	subset	of	Process:	Virtual	Bytes	that	is	currently	in	RAM	and	can	be
referenced	without	a	page	fault.

Process:
Virtual	Bytes

The	total	virtual	memory	allocation	of	the	process,	including	mapped	regions,
private	committed	regions,	and	private	reserved	regions.

Paging	File:	%
Usage

Percentage	of	the	page	file	space	that	is	currently	in	use.

Paging	File:	%
Usage	Peak

The	highest	observed	value	of	Paging	File:	%	Usage

Commit	Charge	and	Page	File	Size
The	counters	in	Table	10-14	can	assist	you	in	choosing	a	custom	page	file	size.	The
default	policy	based	on	the	amount	of	RAM	works	acceptably	for	most	machines,
but	depending	on	the	workload	it	can	result	in	a	page	file	that’s	unnecessarily	large,
or	not	large	enough.

To	determine	how	much	page	file	space	your	system	really	needs	based	on	the	mix
of	applications	that	have	run	since	the	system	booted,	examine	the	peak	commit
charge	in	the	Memory	tab	of	Process	Explorer’s	System	Information	display.	This
number	represents	the	peak	amount	of	page	file	space	since	the	system	booted	that
would	have	been	needed	if	the	system	had	to	page	out	the	majority	of	private
committed	virtual	memory	(which	rarely	happens).

If	the	page	file	on	your	system	is	too	big,	the	system	will	not	use	it	any	more	or
less—in	other	words,	increasing	the	size	of	the	page	file	does	not	change	system
performance,	it	simply	means	the	system	can	have	more	committed	virtual
memory.	If	the	page	file	is	too	small	for	the	mix	of	applications	you	are	running,
you	might	get	the	“system	running	low	on	virtual	memory”	error	message.	In	this
case,	first	check	to	see	whether	a	process	has	a	memory	leak	by	examining	the



process	private	bytes	count.	If	no	process	appears	to	have	a	leak,	check	the	system
paged	pool	size—if	a	device	driver	is	leaking	paged	pool,	this	might	also	explain
the	error.	(See	the	EXPERIMENT:	Troubleshooting	a	Pool	Leak	experiment	in	the
Kernel-Mode	Heaps	(System	Memory	Pools)	section	for	how	to	troubleshoot	a
pool	leak.)

EXPERIMENT:	VIEWING	PAGE	FILE	USAGE	WITH	TASK	MANAGER

You	can	also	view	committed	memory	usage	with	Task	Manager	by	clicking	its	Performance	tab.	You’ll	see
the	following	counters	related	to	page	files:

The	system	commit	total	is	displayed	in	the	lower-right	System	area	as	two	numbers.	The	first	number
represents	potential	page	file	usage,	not	actual	page	file	usage.	It	is	how	much	page	file	space	would	be	used
if	all	of	the	private	committed	virtual	memory	in	the	system	had	to	be	paged	out	all	at	once.	The	second
number	displayed	is	the	commit	limit,	which	displays	the	maximum	virtual	memory	usage	that	the	system
can	support	before	running	out	of	virtual	memory	(it	includes	virtual	memory	backed	in	physical	memory
as	well	as	by	the	paging	files).	The	commit	limit	is	essentially	the	size	of	RAM	plus	the	current	size	of	the
paging	files.	It	therefore	does	not	account	for	possible	page	file	expansion.

Process	Explorer’s	System	Information	display	shows	an	additional	item	of	information	about	system
commit	usage,	namely	the	percentage	of	the	peak	as	compared	to	the	limit	and	the	current	usage	as
compared	to	the	limit:





Stacks
Whenever	a	thread	runs,	it	must	have	access	to	a	temporary	storage	location	in
which	to	store	function	parameters,	local	variables,	and	the	return	address	after	a
function	call.	This	part	of	memory	is	called	a	stack.	On	Windows,	the	memory
manager	provides	two	stacks	for	each	thread,	the	user	stack	and	the	kernel	stack,	as
well	as	per-processor	stacks	called	DPC	stacks.	We	have	already	described	how	the
stack	can	be	used	to	generate	stack	traces	and	how	exceptions	and	interrupts	store
structures	on	the	stack,	and	we	have	also	talked	about	how	system	calls,	traps,	and
interrupts	cause	the	thread	to	switch	from	a	user	stack	to	its	kernel	stack.	Now,
we’ll	look	at	some	extra	services	the	memory	manager	provides	to	efficiently	use
stack	space.

User	Stacks
When	a	thread	is	created,	the	memory	manager	automatically	reserves	a
predetermined	amount	of	virtual	memory,	which	by	default	is	1	MB.	This	amount
can	be	configured	in	the	call	to	the	CreateThread	or	CreateRemoteThread	function
or	when	compiling	the	application,	by	using	the	STACK:reserve	switch	in	the
Microsoft	CC++	compiler,	which	will	store	the	information	in	the	image	header.
Although	1	MB	is	reserved,	only	the	first	page	of	the	stack	will	be	committed
(unless	the	PE	header	of	the	image	specifies	otherwise),	along	with	a	guard	page.
When	a	thread’s	stack	grows	large	enough	to	touch	the	guard	page,	an	exception
will	occur,	causing	an	attempt	to	allocate	another	guard.	Through	this	mechanism,
a	user	stack	doesn’t	immediately	consume	all	1	MB	of	committed	memory	but
instead	grows	with	demand.	(However,	it	will	never	shrink	back.)

EXPERIMENT:	CREATING	THE	MAXIMUM	NUMBER	OF	THREADS

With	only	2	GB	of	user	address	space	available	to	each	32-bit	process,	the	relatively	large	memory	that	is
reserved	for	each	thread’s	stack	allows	for	an	easy	calculation	of	the	maximum	number	of	threads	that	a
process	can	support:	a	little	less	than	2,048,	for	a	total	of	nearly	2	GB	of	memory	(unless	the	increaseuserva
BCD	option	is	used	and	the	image	is	large	address	space	aware).	By	forcing	each	new	thread	to	use	the
smallest	possible	stack	reservation	size,	64	KB,	the	limit	can	grow	to	about	30,400	threads,	which	you	can
test	for	yourself	by	using	the	TestLimit	utility	from	Sysinternals.	Here	is	some	sample	output:

C:\>testlimit -t
Testlimit - tests Windows limits
By Mark Russinovich



Creating threads ...
Created 30399 threads. Lasterror: 8

If	you	attempt	this	experiment	on	a	64-bit	Windows	installation	(with	8	TB	of	user	address	space	available),
you	would	expect	to	see	potentially	hundreds	of	thousands	of	threads	created	(as	long	as	sufficient	memory
were	available).	Interestingly,	however,	TestLimit	will	actually	create	fewer	threads	than	on	a	32-bit
machine,	which	has	to	do	with	the	fact	that	Testlimit.exe	is	a	32-bit	application	and	thus	runs	under	the
Wow64	environment.	(See	Chapter	3	in	Part	1	for	more	information	on	Wow64.)	Each	thread	will
therefore	have	not	only	its	32-bit	Wow64	stack	but	also	its	64-bit	stack,	thus	consuming	more	than	twice
the	memory,	while	still	keeping	only	2	GB	of	address	space.	To	properly	test	the	thread-creation	limit	on
64-bit	Windows,	use	the	Testlimit64.exe	binary	instead.

Note	that	you	will	need	to	terminate	TestLimit	with	Process	Explorer	or	Task	Manager—using	Ctrl+C	to
break	the	application	will	not	function	because	this	operation	itself	creates	a	new	thread,	which	will	not	be
possible	once	memory	is	exhausted.

Kernel	Stacks
Although	user	stack	sizes	are	typically	1	MB,	the	amount	of	memory	dedicated	to
the	kernel	stack	is	significantly	smaller:	12	KB	on	x86	and	16	KB	on	x64,
followed	by	another	guard	PTE	(for	a	total	of	16	or	20	KB	of	virtual	address
space).	Code	running	in	the	kernel	is	expected	to	have	less	recursion	than	user
code,	as	well	as	contain	more	efficient	variable	use	and	keep	stack	buffer	sizes	low.
Because	kernel	stacks	live	in	system	address	space	(which	is	shared	by	all
processes),	their	memory	usage	has	a	bigger	impact	of	the	system.

Although	kernel	code	is	usually	not	recursive,	interactions	between	graphics	system
calls	handled	by	Win32k.sys	and	its	subsequent	callbacks	into	user	mode	can	cause
recursive	re-entries	in	the	kernel	on	the	same	kernel	stack.	As	such,	Windows
provides	a	mechanism	for	dynamically	expanding	and	shrinking	the	kernel	stack
from	its	initial	size	of	16	KB.	As	each	additional	graphics	call	is	performed	from
the	same	thread,	another	16-KB	kernel	stack	is	allocated	(anywhere	in	system
address	space;	the	memory	manager	provides	the	ability	to	jump	stacks	when
nearing	the	guard	page).	Whenever	each	call	returns	to	the	caller	(unwinding),	the
memory	manager	frees	the	additional	kernel	stack	that	had	been	allocated,	as
shown	in	Figure	10-31.

This	mechanism	allows	reliable	support	for	recursive	system	calls,	as	well	as
efficient	use	of	system	address	space,	and	is	also	provided	for	use	by	driver
developers	when	performing	recursive	callouts	through	the



KeExpandKernelStackAndCallout	API,	as	necessary.

Figure	10-31.	Kernel	stack	jumping

EXPERIMENT:	VIEWING	KERNEL	STACK	USAGE

You	can	use	the	MemInfo	tool	from	Winsider	Seminars	&	Solutions	to	display	the	physical	memory
currently	being	occupied	by	kernel	stacks.	The	–u	flag	displays	physical	memory	usage	for	each	component,
as	shown	here:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"
        Kernel Stack:    980 (   3920 kb)

Note	the	kernel	stack	after	repeating	the	previous	TestLimit	experiment:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"
        Kernel Stack:  92169 ( 368676 kb)

Running	TestLimit	a	few	more	times	would	easily	exhaust	physical	memory	on	a	32-bit	system,	and	this
limitation	results	in	one	of	the	primary	limits	on	systemwide	32-bit	thread	count.

DPC	Stack
Finally,	Windows	keeps	a	per-processor	DPC	stack	available	for	use	by	the	system
whenever	DPCs	are	executing,	an	approach	that	isolates	the	DPC	code	from	the
current	thread’s	kernel	stack	(which	is	unrelated	to	the	DPC’s	actual	operation
because	DPCs	run	in	arbitrary	thread	context).	The	DPC	stack	is	also	configured
as	the	initial	stack	for	handling	the	SYSENTER	or	SYSCALL	instruction	during	a
system	call.	The	CPU	is	responsible	for	switching	the	stack	when	SYSENTER	or
SYSCALL	is	executed,	based	on	one	of	the	model-specific	registers	(MSRs),	but
Windows	does	not	want	to	reprogram	the	MSR	for	every	context	switch,	because
that	is	an	expensive	operation.	Windows	therefore	configures	the	per-processor
DPC	stack	pointer	in	the	MSR.



Virtual	Address	Descriptors
The	memory	manager	uses	a	demand-paging	algorithm	to	know	when	to	load
pages	into	memory,	waiting	until	a	thread	references	an	address	and	incurs	a	page
fault	before	retrieving	the	page	from	disk.	Like	copy-on-write,	demand	paging	is	a
form	of	lazy	evaluation—waiting	to	perform	a	task	until	it	is	required.

The	memory	manager	uses	lazy	evaluation	not	only	to	bring	pages	into	memory
but	also	to	construct	the	page	tables	required	to	describe	new	pages.	For	example,
when	a	thread	commits	a	large	region	of	virtual	memory	with	VirtualAlloc	or
VirtualAllocExNuma,	the	memory	manager	could	immediately	construct	the	page
tables	required	to	access	the	entire	range	of	allocated	memory.	But	what	if	some	of
that	range	is	never	accessed?	Creating	page	tables	for	the	entire	range	would	be	a
wasted	effort.	Instead,	the	memory	manager	waits	to	create	a	page	table	until	a
thread	incurs	a	page	fault,	and	then	it	creates	a	page	table	for	that	page.	This
method	significantly	improves	performance	for	processes	that	reserve	and/or
commit	a	lot	of	memory	but	access	it	sparsely.

The	virtual	address	space	that	would	be	occupied	by	such	as-yet-nonexistent	page
tables	is	charged	to	the	process	page	file	quota	and	to	the	system	commit	charge.
This	ensures	that	space	will	be	available	for	them	should	they	be	actually	created.
With	the	lazy-evaluation	algorithm,	allocating	even	large	blocks	of	memory	is	a	fast
operation.	When	a	thread	allocates	memory,	the	memory	manager	must	respond
with	a	range	of	addresses	for	the	thread	to	use.	To	do	this,	the	memory	manager
maintains	another	set	of	data	structures	to	keep	track	of	which	virtual	addresses
have	been	reserved	in	the	process’s	address	space	and	which	have	not.	These	data
structures	are	known	as	virtual	address	descriptors	(VADs).	VADs	are	allocated	in
nonpaged	pool.

Process	VADs
For	each	process,	the	memory	manager	maintains	a	set	of	VADs	that	describes	the
status	of	the	process’s	address	space.	VADs	are	organized	into	a	self-balancing
AVL	tree	(named	after	its	inventors,	Adelson-Velskii	and	Landis)	that	optimally
balances	the	tree.	This	results	in,	on	average,	the	fewest	number	of	comparisons
when	searching	for	a	VAD	corresponding	with	a	virtual	address.	There	is	one



virtual	address	descriptor	for	each	virtually	contiguous	range	of	not-free	virtual
addresses	that	all	have	the	same	characteristics	(reserved	versus	committed	versus
mapped,	memory	access	protection,	and	so	on).	A	diagram	of	a	VAD	tree	is
shown	in	Figure	10-32.

Figure	10-32.	Virtual	address	descriptors

When	a	process	reserves	address	space	or	maps	a	view	of	a	section,	the	memory
manager	creates	a	VAD	to	store	any	information	supplied	by	the	allocation	request,
such	as	the	range	of	addresses	being	reserved,	whether	the	range	will	be	shared	or
private,	whether	a	child	process	can	inherit	the	contents	of	the	range,	and	the	page
protection	applied	to	pages	in	the	range.

When	a	thread	first	accesses	an	address,	the	memory	manager	must	create	a	PTE
for	the	page	containing	the	address.	To	do	so,	it	finds	the	VAD	whose	address
range	contains	the	accessed	address	and	uses	the	information	it	finds	to	fill	in	the
PTE.	If	the	address	falls	outside	the	range	covered	by	the	VAD	or	in	a	range	of
addresses	that	are	reserved	but	not	committed,	the	memory	manager	knows	that
the	thread	didn’t	allocate	the	memory	before	attempting	to	use	it	and	therefore
generates	an	access	violation.

EXPERIMENT:	VIEWING	VIRTUAL	ADDRESS	DESCRIPTORS

You	can	use	the	kernel	debugger’s	!vad	command	to	view	the	VADs	for	a	given	process.	First	find	the
address	of	the	root	of	the	VAD	tree	with	the	!process	command.	Then	specify	that	address	to	the	!vad
command,	as	shown	in	the	following	example	of	the	VAD	tree	for	a	process	running	Notepad.exe:

lkd> !process 0 1 notepad.exe



PROCESS 8718ed90  SessionId: 1  Cid: 1ea68    Peb: 7ffdf000  ParentCid: 0680
    DirBase: ce2aa880  ObjectTable: ee6e01b0  HandleCount:  48.
    Image: notepad.exe
    VadRoot 865f10e0 Vads 51 Clone 0 Private 210. Modified 0. Locked 0.

lkd> !vad 865f10e0
VAD     level      start      end    commit
8a05bf88 ( 6)         10       1f         0 Mapped       READWRITE
88390ad8 ( 5)         20       20         1 Private      READWRITE
87333740 ( 6)         30       33         0 Mapped       READONLY
86d09d10 ( 4)         40       41         0 Mapped       READONLY
882b49a0 ( 6)         50       50         1 Private      READWRITE
...
Total VADs:    51  average level:    5  maximum depth: 6

Rotate	VADs
A	video	card	driver	must	typically	copy	data	from	the	user-mode	graphics
application	to	various	other	system	memory,	including	the	video	card	memory	and
the	AGP	port’s	memory,	both	of	which	have	different	caching	attributes	as	well	as
addresses.	In	order	to	quickly	allow	these	different	views	of	memory	to	be	mapped
into	a	process,	and	to	support	the	different	cache	attributes,	the	memory	manager
implements	rotate	VADs,	which	allow	video	drivers	to	transfer	data	directly	by
using	the	GPU	and	to	rotate	unneeded	memory	in	and	out	of	the	process	view
pages	on	demand.	Figure	10-33	shows	an	example	of	how	the	same	virtual	address
can	rotate	between	video	RAM	and	virtual	memory.

Figure	10-33.	Rotate	virtual	address	descriptors



NUMA
Each	new	release	of	Windows	provides	new	enhancements	to	the	memory
manager	to	better	make	use	of	Non	Uniform	Memory	Architecture	(NUMA)
machines,	such	as	large	server	systems	(but	also	Intel	i7	and	AMD	Opteron	SMP
workstations).	The	NUMA	support	in	the	memory	manager	adds	intelligent
knowledge	of	node	information	such	as	location,	topology,	and	access	costs	to
allow	applications	and	drivers	to	take	advantage	of	NUMA	capabilities,	while
abstracting	the	underlying	hardware	details.

When	the	memory	manager	is	initializing,	it	calls	the	MiComputeNumaCosts
function	to	perform	various	page	and	cache	operations	on	different	nodes	and	then
computes	the	time	it	took	for	those	operations	to	complete.	Based	on	this
information,	it	builds	a	node	graph	of	access	costs	(the	distance	between	a	node
and	any	other	node	on	the	system).	When	the	system	requires	pages	for	a	given
operation,	it	consults	the	graph	to	choose	the	most	optimal	node	(that	is,	the
closest).	If	no	memory	is	available	on	that	node,	it	chooses	the	next	closest	node,
and	so	on.

Although	the	memory	manager	ensures	that,	whenever	possible,	memory
allocations	come	from	the	ideal	processor’s	node	(the	ideal	node)	of	the	thread
making	the	allocation,	it	also	provides	functions	that	allow	applications	to	choose
their	own	node,	such	as	the	VirtualAllocExNuma,	CreateFileMappingNuma,
MapViewOfFileExNuma,	and	AllocateUserPhysicalPagesNuma	APIs.

The	ideal	node	isn’t	used	only	when	applications	allocate	memory	but	also	during
kernel	operation	and	page	faults.	For	example,	when	a	thread	is	running	on	a
nonideal	processor	and	takes	a	page	fault,	the	memory	manager	won’t	use	the
current	node	but	will	instead	allocate	memory	from	the	thread’s	ideal	node.
Although	this	might	result	in	slower	access	time	while	the	thread	is	still	running	on
this	CPU,	overall	memory	access	will	be	optimized	as	the	thread	migrates	back	to
its	ideal	node.	In	any	case,	if	the	ideal	node	is	out	of	resources,	the	closest	node	to
the	ideal	node	is	chosen	and	not	a	random	other	node.	Just	like	user-mode
applications,	however,	drivers	can	specify	their	own	node	when	using	APIs	such	as
MmAllocatePagesforMdlEx	or
MmAllocateContiguousMemorySpecifyCacheNode.



Various	memory	manager	pools	and	data	structures	are	also	optimized	to	take
advantage	of	NUMA	nodes.	The	memory	manager	tries	to	evenly	use	physical
memory	from	all	the	nodes	on	the	system	to	hold	the	nonpaged	pool.	When	a
nonpaged	pool	allocation	is	made,	the	memory	manager	looks	at	the	ideal	node
and	uses	it	as	an	index	to	choose	a	virtual	memory	address	range	inside	nonpaged
pool	that	corresponds	to	physical	memory	belonging	to	this	node.	In	addition,	per-
NUMA	node	pool	freelists	are	created	to	efficiently	leverage	these	types	of
memory	configurations.	Apart	from	nonpaged	pool,	the	system	cache	and	system
PTEs	are	also	similarly	allocated	across	all	nodes,	as	well	as	the	memory
manager’s	look-aside	lists.

Finally,	when	the	system	needs	to	zero	pages,	it	does	so	in	parallel	across	different
NUMA	nodes	by	creating	threads	with	NUMA	affinities	that	correspond	to	the
nodes	in	which	the	physical	memory	is	located.	The	logical	prefetcher	and
Superfetch	(described	later)	also	use	the	ideal	node	of	the	target	process	when
prefetching,	while	soft	page	faults	cause	pages	to	migrate	to	the	ideal	node	of	the
faulting	thread.



Section	Objects
As	you’ll	remember	from	the	section	on	shared	memory	earlier	in	the	chapter,	the
section	object,	which	the	Windows	subsystem	calls	a	file	mapping	object,
represents	a	block	of	memory	that	two	or	more	processes	can	share.	A	section
object	can	be	mapped	to	the	paging	file	or	to	another	file	on	disk.

The	executive	uses	sections	to	load	executable	images	into	memory,	and	the	cache
manager	uses	them	to	access	data	in	a	cached	file.	(See	Chapter	11	for	more
information	on	how	the	cache	manager	uses	section	objects.)	You	can	also	use
section	objects	to	map	a	file	into	a	process	address	space.	The	file	can	then	be
accessed	as	a	large	array	by	mapping	different	views	of	the	section	object	and
reading	or	writing	to	memory	rather	than	to	the	file	(an	activity	called	mapped	file
I/O).	When	the	program	accesses	an	invalid	page	(one	not	in	physical	memory),	a
page	fault	occurs	and	the	memory	manager	automatically	brings	the	page	into
memory	from	the	mapped	file	(or	page	file).	If	the	application	modifies	the	page,
the	memory	manager	writes	the	changes	back	to	the	file	during	its	normal	paging
operations	(or	the	application	can	flush	a	view	by	using	the	Windows
FlushViewOfFile	function).

Section	objects,	like	other	objects,	are	allocated	and	deallocated	by	the	object
manager.	The	object	manager	creates	and	initializes	an	object	header,	which	it	uses
to	manage	the	objects;	the	memory	manager	defines	the	body	of	the	section	object.
The	memory	manager	also	implements	services	that	user-mode	threads	can	call	to
retrieve	and	change	the	attributes	stored	in	the	body	of	section	objects.	The
structure	of	a	section	object	is	shown	in	Figure	10-34.

Figure	10-34.	A	section	object



Table	10-15	summarizes	the	unique	attributes	stored	in	section	objects.

Table	10-15.	Section	Object	Body	Attributes

Attribute Purpose

Maximum
size

The	largest	size	to	which	the	section	can	grow	in	bytes;	if	mapping	a	file,	the
maximum	size	is	the	size	of	the	file.

Page
protection

Page-based	memory	protection	assigned	to	all	pages	in	the	section	when	it	is
created.

Paging
file/Mapped
file

Indicates	whether	the	section	is	created	empty	(backed	by	the	paging	file—as
explained	earlier,	page-file-backed	sections	use	page-file	resources	only	when	the
pages	need	to	be	written	out	to	disk)	or	loaded	with	a	file	(backed	by	the	mapped
file).

Based/Not
based

Indicates	whether	a	section	is	a	based	section,	which	must	appear	at	the	same	virtual
address	for	all	processes	sharing	it,	or	a	nonbased	section,	which	can	appear	at
different	virtual	addresses	for	different	processes.

EXPERIMENT:	VIEWING	SECTION	OBJECTS

With	the	Object	Viewer	(Winobj.exe	from	Sysinternals),	you	can	see	the	list	of	sections	that	have	names.
You	can	list	the	open	handles	to	section	objects	with	any	of	the	tools	described	in	the	“Object	Manager”
section	in	Chapter	3	in	Part	1	that	list	the	open	handle	table.	(As	explained	in	Chapter	3,	these	names	are
stored	in	the	object	manager	directory	\Sessions\x\BaseNamed-Objects,	where	x	is	the	appropriate	Session
directory.	Unnamed	section	objects	are	not	visible.

As	mentioned	earlier,	you	can	use	Process	Explorer	from	Sysinternals	to	see	files	mapped	by	a	process.
Select	DLLs	from	the	Lower	Pane	View	entry	of	the	View	menu,	and	enable	the	Mapping	Type	column	in
the	DLL	section	of	View	|	Select	Columns.	Files	marked	as	“Data”	in	the	Mapping	column	are	mapped	files
(rather	than	DLLs	and	other	files	the	image	loader	loads	as	modules).	We	saw	this	example	earlier:



The	data	structures	maintained	by	the	memory	manager	that	describe	mapped
sections	are	shown	in	Figure	10-35.	These	structures	ensure	that	data	read	from
mapped	files	is	consistent,	regardless	of	the	type	of	access	(open	file,	mapped	file,
and	so	on).

For	each	open	file	(represented	by	a	file	object),	there	is	a	single	section	object
pointers	structure.	This	structure	is	the	key	to	maintaining	data	consistency	for	all
types	of	file	access	as	well	as	to	providing	caching	for	files.	The	section	object
pointers	structure	points	to	one	or	two	control	areas.	One	control	area	is	used	to
map	the	file	when	it	is	accessed	as	a	data	file,	and	one	is	used	to	map	the	file	when
it	is	run	as	an	executable	image.

A	control	area	in	turn	points	to	subsection	structures	that	describe	the	mapping
information	for	each	section	of	the	file	(read-only,	read/write,	copy-on-write,	and
so	on).	The	control	area	also	points	to	a	segment	structure	allocated	in	paged	pool,
which	in	turn	points	to	the	prototype	PTEs	used	to	map	to	the	actual	pages
mapped	by	the	section	object.	As	described	earlier	in	the	chapter,	process	page
tables	point	to	these	prototype	PTEs,	which	in	turn	map	the	pages	being
referenced.

Figure	10-35.	Internal	section	structures



Although	Windows	ensures	that	any	process	that	accesses	(reads	or	writes)	a	file
will	always	see	the	same,	consistent	data,	there	is	one	case	in	which	two	copies	of
pages	of	a	file	can	reside	in	physical	memory	(but	even	in	this	case,	all	accessors
get	the	latest	copy	and	data	consistency	is	maintained).	This	duplication	can
happen	when	an	image	file	has	been	accessed	as	a	data	file	(having	been	read	or
written)	and	then	run	as	an	executable	image	(for	example,	when	an	image	is
linked	and	then	run—the	linker	had	the	file	open	for	data	access,	and	then	when
the	image	was	run,	the	image	loader	mapped	it	as	an	executable).	Internally,	the
following	actions	occur:

1.	 If	the	executable	file	was	created	using	the	file	mapping	APIs	(or	the	cache
manager),	a	data	control	area	is	created	to	represent	the	data	pages	in	the
image	file	being	read	or	written.

2.	 When	the	image	is	run	and	the	section	object	is	created	to	map	the	image	as
an	executable,	the	memory	manager	finds	that	the	section	object	pointers	for
the	image	file	point	to	a	data	control	area	and	flushes	the	section.	This	step	is
necessary	to	ensure	that	any	modified	pages	have	been	written	to	disk	before
accessing	the	image	through	the	image	control	area.

3.	 The	memory	manager	then	creates	a	control	area	for	the	image	file.

4.	 As	the	image	begins	execution,	its	(read-only)	pages	are	faulted	in	from	the
image	file	(or	copied	directly	over	from	the	data	file	if	the	corresponding	data
page	is	resident).

Because	the	pages	mapped	by	the	data	control	area	might	still	be	resident	(on	the
standby	list),	this	is	the	one	case	in	which	two	copies	of	the	same	data	are	in	two
different	pages	in	memory.	However,	this	duplication	doesn’t	result	in	a	data
consistency	issue	because,	as	mentioned,	the	data	control	area	has	already	been
flushed	to	disk,	so	the	pages	read	from	the	image	are	up	to	date	(and	these	pages
are	never	written	back	to	disk).

EXPERIMENT:	VIEWING	CONTROL	AREAS

To	find	the	address	of	the	control	area	structures	for	a	file,	you	must	first	get	the	address	of	the	file	object	in
question.	You	can	obtain	this	address	through	the	kernel	debugger	by	dumping	the	process	handle	table	with
the	!handle	command	and	noting	the	object	address	of	a	file	object.	Although	the	kernel	debugger	!file
command	displays	the	basic	information	in	a	file	object,	it	doesn’t	display	the	pointer	to	the	section	object
pointers	structure.	Then,	using	the	dt	command,	format	the	file	object	to	get	the	address	of	the	section



object	pointers	structure.	This	structure	consists	of	three	pointers:	a	pointer	to	the	data	control	area,	a
pointer	to	the	shared	cache	map	(explained	in	Chapter	11),	and	a	pointer	to	the	image	control	area.	From
the	section	object	pointers	structure,	you	can	obtain	the	address	of	a	control	area	for	the	file	(if	one	exists)
and	feed	that	address	into	the	!ca	command.

For	example,	if	you	open	a	PowerPoint	file	and	display	the	handle	table	for	that	process	using	!handle,	you
will	find	an	open	handle	to	the	PowerPoint	file	as	shown	here.	(For	information	on	using	!handle,	see	the
“Object	Manager”	section	in	Chapter	3	in	Part	1.)

lkd> !handle 1 f 86f57d90 File
.
.
0324: Object: 865d2768  GrantedAccess: 00120089 Entry: c848e648
Object: 865d2768  Type: (8475a2c0) File
    ObjectHeader: 865d2750 (old version)
        HandleCount: 1  PointerCount: 1
        Directory Object: 00000000  Name: 
\Users\Administrator\Documents\Downloads\
SVR-T331_WH07 (1).pptx {HarddiskVolume3}

Taking	the	file	object	address	(865d2768	)	and	formatting	it	with	dt	results	in	this:

lkd> dt nt!_FILE_OBJECT 865d2768
   +0x000 Type             : 5
   +0x002 Size             : 128
   +0x004 DeviceObject     : 0x84a62320 DEVICEOBJECT
   +0x008 Vpb              : 0x84a60590 VPB
   +0x00c FsContext        : 0x8cee4390
   +0x010 FsContext2       : 0xbf910c80
   +0x014 SectionObjectPointer : 0x86c45584 SECTION_OBJECT_POINTERS

Then	taking	the	address	of	the	section	object	pointers	structure	(0x86c45584)	and	formatting	it	with	dt
results	in	this:

lkd> dt 0x86c45584 nt!_SECTION_OBJECT_POINTERS
   +0x000 DataSectionObject : 0x863d3b00
   +0x004 SharedCacheMap   : 0x86f10ec0
   +0x008 ImageSectionObject : (null)

Finally,	use	!ca	to	display	the	control	area	using	the	address:

lkd> !ca 0x863d3b00

ControlArea  @ 863d3b00
  Segment      b1de9d48  Flink      00000000  Blink        8731f80c
  Section Ref         1  Pfn Ref          48  Mapped Views        2
  User Ref            0  WaitForDel        0  Flush Count         0
  File Object  86cf6188  ModWriteCount     0  System Views        2
  WritableRefs        0
  Flags (c080) File WasPurged Accessed

      No name for file

Segment @ b1de9d48
  ControlArea     863d3b00  ExtendInfo    00000000
  Total Ptes           100
  Segment Size      100000  Committed            0
  Flags (c0000) ProtectionMask



Subsection 1 @ 863d3b48
  ControlArea  863d3b00  Starting Sector        0  Number Of Sectors  100
  Base Pte     bf85e008  Ptes In Subsect      100  Unused Ptes          0
  Flags               d  Sector Offset          0  Protection           6
  Accessed
  Flink        00000000  Blink           8731f87c  MappedViews          2

Another	technique	is	to	display	the	list	of	all	control	areas	with	the	!memusage	command.	The	following
excerpt	is	from	the	output	of	this	command:

lkd> !memusage
 loading PFN database
loading (100% complete)
Compiling memory usage data (99% Complete).
             Zeroed:   2654 ( 10616 kb)
               Free:    584 (  2336 kb)
            Standby: 402938 (1611752 kb)
           Modified:  12732 ( 50928 kb)
    ModifiedNoWrite:      3 (    12 kb)
       Active/Valid: 431478 (1725912 kb)
         Transition:   1186 (  4744 kb)
                Bad:      0 (     0 kb)
            Unknown:      0 (     0 kb)
              TOTAL: 851575 (3406300 kb)
  Building kernel map
  Finished building kernel map
Scanning PFN database - (100% complete)

  Usage Summary (in Kb):
Control Valid Standby Dirty Shared Locked PageTables  name
86d75f18     0     64     0     0     0     0  mapped_file( netcfgx.dll )
8a124ef8     0      4     0     0     0     0    No Name for File
8747af80     0     52     0     0     0     0  mapped_file( iebrshim.dll )
883a2e58    24      8     0     0     0     0  mapped_file( WINWORD.EXE )
86d6eae0     0     16     0     0     0     0  mapped_file( oem13.CAT )
84b19af8     8      0     0     0     0     0    No Name for File
b1672ab0     4      0     0     0     0     0    No Name for File
88319da8     0     20     0     0     0     0  mapped_file( Microsoft-Windows-
MediaPlayer-Package~31bf3856ad364e35~x86~en-US~6.0.6001.18000.cat )
8a04db00     0     48     0     0     0     0  mapped_file( eapahost.dll )

The	Control	column	points	to	the	control	area	structure	that	describes	the	mapped	file.	You	can	display
control	areas,	segments,	and	subsections	with	the	kernel	debugger	!ca	command.	For	example,	to	dump	the
control	area	for	the	mapped	file	Winword.exe	in	this	example,	type	the	!ca	command	followed	by	the
Control	number,	as	shown	here:

lkd> !ca 883a2e58

ControlArea  @ 883a2e58
  Segment      ee613998  Flink      00000000  Blink        88a985a4
  Section Ref         1  Pfn Ref           8  Mapped Views        1
  User Ref            2  WaitForDel        0  Flush Count         0
  File Object  88b45180  ModWriteCount     0  System Views     ffff
  WritableRefs 80000006
  Flags (40a0) Image File Accessed

      File: \PROGRA~1\MICROS~1\Office12\WINWORD.EXE

Segment @ ee613998



  ControlArea     883a2e58  BasedAddress  2f510000
  Total Ptes            57
  Segment Size       57000  Committed            0
  Image Commit           1  Image Info    ee613c80
  ProtoPtes       ee6139c8
  Flags (20000) ProtectionMask

Subsection 1 @ 883a2ea0
  ControlArea  883a2e58  Starting Sector        0  Number Of Sectors    2
  Base Pte     ee6139c8  Ptes In Subsect        1  Unused Ptes          0
  Flags               2  Sector Offset          0  Protection           1

Subsection 2 @ 883a2ec0
  ControlArea  883a2e58  Starting Sector        2  Number Of Sectors    a
  Base Pte     ee6139d0  Ptes In Subsect        2  Unused Ptes          0
  Flags               6  Sector Offset          0  Protection           3

Subsection 3 @ 883a2ee0
  ControlArea  883a2e58  Starting Sector        c  Number Of Sectors    1
  Base Pte     ee6139e0  Ptes In Subsect        1  Unused Ptes          0
  Flags               a  Sector Offset          0  Protection           5

Subsection 4 @ 883a2f00
  ControlArea  883a2e58  Starting Sector        d  Number Of Sectors  28b
  Base Pte     ee6139e8  Ptes In Subsect       52  Unused Ptes          0
  Flags               2  Sector Offset          0  Protection           1

Subsection 5 @ 883a2f20
  ControlArea  883a2e58  Starting Sector      298  Number Of Sectors    1
  Base Pte     ee613c78  Ptes In Subsect        1  Unused Ptes          0
  Flags               2  Sector Offset          0  Protection           1



Driver	Verifier
As	introduced	in	Chapter	8,	Driver	Verifier	is	a	mechanism	that	can	be	used	to
help	find	and	isolate	commonly	found	bugs	in	device	driver	or	other	kernel-mode
system	code.	This	section	describes	the	memory	management–related	verification
options	Driver	Verifier	provides	(the	options	related	to	device	drivers	are	described
in	Chapter	8).

The	verification	settings	are	stored	in	the	registry	under
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management.	The	value	VerifyDriverLevel	contains	a	bitmask	that	represents	the
verification	types	enabled.	The	VerifyDrivers	value	contains	the	names	of	the
drivers	to	validate.	(These	values	won’t	exist	in	the	registry	until	you	select	drivers
to	verify	in	the	Driver	Verifier	Manager.)	If	you	choose	to	verify	all	drivers,
VerifyDrivers	is	set	to	an	asterisk	(*)	character.	Depending	on	the	settings	you
have	made,	you	might	need	to	reboot	the	system	for	the	selected	verification	to
occur.

Early	in	the	boot	process,	the	memory	manager	reads	the	Driver	Verifier	registry
values	to	determine	which	drivers	to	verify	and	which	Driver	Verifier	options	you
enabled.	(Note	that	if	you	boot	in	safe	mode,	any	Driver	Verifier	settings	are
ignored.)	Subsequently,	if	you’ve	selected	at	least	one	driver	for	verification,	the
kernel	checks	the	name	of	every	device	driver	it	loads	into	memory	against	the	list
of	drivers	you’ve	selected	for	verification.	For	every	device	driver	that	appears	in
both	places,	the	kernel	invokes	the	VfLoadDriver	function,	which	calls	other
internal	Vf*	functions	to	replace	the	driver’s	references	to	a	number	of	kernel
functions	with	references	to	Driver	Verifier–equivalent	versions	of	those	functions.
For	example,	ExAllocatePool	is	replaced	with	a	call	to	VerifierAllocatePool.	The
windowing	system	driver	(Win32k.sys)	also	makes	similar	changes	to	use	Driver
Verifier–equivalent	functions.

Now	that	we’ve	reviewed	how	Driver	Verifier	is	set	up,	we’ll	examine	the	six
memory-related	verification	options	that	can	be	applied	to	device	drivers:	Special
Pool,	Pool	Tracking,	Force	IRQL	Checking,	Low	Resources	Simulation,
Miscellaneous	Checks,	and	Automatic	Checks

Special	Pool	The	Special	Pool	option	causes	the	pool	allocation	routines	to



bracket	pool	allocations	with	an	invalid	page	so	that	references	before	or	after	the
allocation	will	result	in	a	kernel-mode	access	violation,	thus	crashing	the	system
with	the	finger	pointed	at	the	buggy	driver.	Special	pool	also	causes	some
additional	validation	checks	to	be	performed	when	a	driver	allocates	or	frees
memory.

When	special	pool	is	enabled,	the	pool	allocation	routines	allocate	a	region	of
kernel	memory	for	Driver	Verifier	to	use.	Driver	Verifier	redirects	memory
allocation	requests	that	drivers	under	verification	make	to	the	special	pool	area
rather	than	to	the	standard	kernel-mode	memory	pools.	When	a	device	driver
allocates	memory	from	special	pool,	Driver	Verifier	rounds	up	the	allocation	to	an
even-page	boundary.	Because	Driver	Verifier	brackets	the	allocated	page	with
invalid	pages,	if	a	device	driver	attempts	to	read	or	write	past	the	end	of	the	buffer,
the	driver	will	access	an	invalid	page,	and	the	memory	manager	will	raise	a	kernel-
mode	access	violation.

Figure	10-36	shows	an	example	of	the	special	pool	buffer	that	Driver	Verifier
allocates	to	a	device	driver	when	Driver	Verifier	checks	for	overrun	errors.

Figure	10-36.	Layout	of	special	pool	allocations

By	default,	Driver	Verifier	performs	overrun	detection.	It	does	this	by	placing	the
buffer	that	the	device	driver	uses	at	the	end	of	the	allocated	page	and	fills	the
beginning	of	the	page	with	a	random	pattern.	Although	the	Driver	Verifier
Manager	doesn’t	let	you	specify	underrun	detection,	you	can	set	this	type	of
detection	manually	by	adding	the	DWORD	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\PoolTagOverruns	and	setting	it	to	0	(or	by	running	the	Gflags	utility



and	selecting	the	Verify	Start	option	instead	of	the	default	option,	Verify	End).
When	Windows	enforces	underrun	detection,	Driver	Verifier	allocates	the	driver’s
buffer	at	the	beginning	of	the	page	rather	than	at	the	end.

The	overrun-detection	configuration	includes	some	measure	of	underrun	detection
as	well.	When	the	driver	frees	its	buffer	to	return	the	memory	to	Driver	Verifier,
Driver	Verifier	ensures	that	the	pattern	preceding	the	buffer	hasn’t	changed.	If	the
pattern	is	modified,	the	device	driver	has	underrun	the	buffer	and	written	to
memory	outside	the	buffer.

Special	pool	allocations	also	check	to	ensure	that	the	processor	IRQL	at	the	time	of
an	allocation	and	deallocation	is	legal.	This	check	catches	an	error	that	some
device	drivers	make:	allocating	pageable	memory	from	an	IRQL	at	DPC/dispatch
level	or	above.

You	can	also	configure	special	pool	manually	by	adding	the	DWORD	registry
value	HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\PoolTag,	which	represents	the	allocation	tags	the	system	uses	for
special	pool.	Thus,	even	if	Driver	Verifier	isn’t	configured	to	verify	a	particular
device	driver,	if	the	tag	the	driver	associates	with	the	memory	it	allocates	matches
what	is	specified	in	the	PoolTag	registry	value,	the	pool	allocation	routines	will
allocate	the	memory	from	special	pool.	If	you	set	the	value	of	PoolTag	to
0x0000002a	or	to	the	wildcard	(*),	all	memory	that	drivers	allocate	is	from	special
pool,	provided	there’s	enough	virtual	and	physical	memory.	(The	drivers	will	revert
to	allocating	from	regular	pool	if	there	aren’t	enough	free	pages—bounding	exists,
but	each	allocation	uses	two	pages.)

Pool	Tracking	If	pool	tracking	is	enabled,	the	memory	manager	checks	at	driver
unload	time	whether	the	driver	freed	all	the	memory	allocations	it	made.	If	it
didn’t,	it	crashes	the	system,	indicating	the	buggy	driver.	Driver	Verifier	also	shows
general	pool	statistics	on	the	Driver	Verifier	Manager’s	Pool	Tracking	tab.	You	can
also	use	the	!verifier	kernel	debugger	command.	This	command	shows	more
information	than	Driver	Verifier	and	is	useful	to	driver	writers.

Pool	tracking	and	special	pool	cover	not	only	explicit	allocation	calls,	such	as
ExAllocatePoolWithTag,	but	also	calls	to	other	kernel	APIs	that	implicitly	allocate
pool:	IoAllocateMdl,	IoAllocateIrp,	and	other	IRP	allocation	calls;	various	Rtl
string	APIs;	and	IoSetCompletionRoutineEx.



Another	driver	verified	function	enabled	by	the	Pool	Tracking	option	has	to	do
with	pool	quota	charges.	The	call	ExAllocatePoolWithQuotaTag	charges	the
current	process’s	pool	quota	for	the	number	of	bytes	allocated.	If	such	a	call	is
made	from	a	deferred	procedure	call	(DPC)	routine,	the	process	that	is	charged	is
unpredictable	because	DPC	routines	may	execute	in	the	context	of	any	process.
The	Pool	Tracking	option	checks	for	calls	to	this	routine	from	DPC	routine
context.

Driver	Verifier	can	also	perform	locked	memory	page	tracking,	which	additionally
checks	for	pages	that	have	been	left	locked	after	an	I/O	operation	and	generates	the
DRIVER_LEFT_LOCKED_PAGES_IN_PROCESS	instead	of	the
PROCESS_HAS_LOCKED_PAGES	crash	code—the	former	indicates	the	driver
responsible	for	the	error	as	well	as	the	function	responsible	for	the	locking	of	the
pages.

Force	IRQL	Checking	One	of	the	most	common	device	driver	bugs	occurs	when
a	driver	accesses	pageable	data	or	code	when	the	processor	on	which	the	device
driver	is	executing	is	at	an	elevated	IRQL.	As	explained	in	Chapter	3	in	Part	1,	the
memory	manager	can’t	service	a	page	fault	when	the	IRQL	is	DPC/dispatch	level
or	above.	The	system	often	doesn’t	detect	instances	of	a	device	driver	accessing
pageable	data	when	the	processor	is	executing	at	a	high	IRQL	level	because	the
pageable	data	being	accessed	happens	to	be	physically	resident	at	the	time.	At	other
times,	however,	the	data	might	be	paged	out,	which	results	in	a	system	crash	with
the	stop	code	IRQL_NOT_LESS_OR_EQUAL	(that	is,	the	IRQL	wasn’t	less	than
or	equal	to	the	level	required	for	the	operation	attempted—in	this	case,	accessing
pageable	memory).

Although	testing	device	drivers	for	this	kind	of	bug	is	usually	difficult,	Driver
Verifier	makes	it	easy.	If	you	select	the	Force	IRQL	Checking	option,	Driver
Verifier	forces	all	kernel-mode	pageable	code	and	data	out	of	the	system	working
set	whenever	a	device	driver	under	verification	raises	the	IRQL.	The	internal
function	that	does	this	is	MiTrimAllSystemPagableMemory.	With	this	setting
enabled,	whenever	a	device	driver	under	verification	accesses	pageable	memory
when	the	IRQL	is	elevated,	the	system	instantly	detects	the	violation,	and	the
resulting	system	crash	identifies	the	faulty	driver.

Another	common	driver	crash	that	results	from	incorrect	IRQL	usage	occurs	when



synchronization	objects	are	part	of	data	structures	that	are	paged	and	then	waited
on.	Synchronization	objects	should	never	be	paged	because	the	dispatcher	needs	to
access	them	at	an	elevated	IRQL,	which	would	cause	a	crash.	Driver	Verifier
checks	whether	any	of	the	following	structures	are	present	in	pageable	memory:
KTIMER,	KMUTEX,	KSPIN_LOCK,	KEVENT,	KSEMAPHORE,
ERESOURCE,	FAST_MUTEX.

Low	Resources	Simulation	Enabling	Low	Resources	Simulation	causes	Driver
Verifier	to	randomly	fail	memory	allocations	that	verified	device	drivers	perform.
In	the	past,	developers	wrote	many	device	drivers	under	the	assumption	that	kernel
memory	would	always	be	available	and	that	if	memory	ran	out,	the	device	driver
didn’t	have	to	worry	about	it	because	the	system	would	crash	anyway.	However,
because	low-memory	conditions	can	occur	temporarily,	it’s	important	that	device
drivers	properly	handle	allocation	failures	that	indicate	kernel	memory	is
exhausted.

The	driver	calls	that	will	be	injected	with	random	failures	include	the
ExAllocatePool*,	MmProbeAndLockPages,	MmMapLockedPagesSpecifyCache,
MmMapIoSpace,	MmAllocateContiguousMemory,	MmAllocatePagesForMdl,
IoAllocateIrp,	IoAllocateMdl,	IoAllocateWorkItem,	IoAllocateErrorLogEntry,
IOSetCompletionRoutineEx,	and	various	Rtl	string	APIs	that	allocate	pool.
Additionally,	you	can	specify	the	probability	that	allocation	will	fail	(6	percent	by
default),	which	applications	should	be	subject	to	the	simulation	(all	are	by	default),
which	pool	tags	should	be	affected	(all	are	by	default),	and	what	delay	should	be
used	before	fault	injection	starts	(the	default	is	7	minutes	after	the	system	boots,
which	is	enough	time	to	get	past	the	critical	initialization	period	in	which	a	low-
memory	condition	might	prevent	a	device	driver	from	loading).

After	the	delay	period,	Driver	Verifier	starts	randomly	failing	allocation	calls	for
device	drivers	it	is	verifying.	If	a	driver	doesn’t	correctly	handle	allocation	failures,
this	will	likely	show	up	as	a	system	crash.

Miscellaneous	Checks	Some	of	the	checks	that	Driver	Verifier	calls
“miscellaneous”	allow	Driver	Verifier	to	detect	the	freeing	of	certain	system
structures	in	the	pool	that	are	still	active.	For	example,	Driver	Verifier	will	check
for:

Active	work	items	in	freed	memory	(a	driver	calls	ExFreePool	to	free	a	pool



block	in	which	one	or	more	work	items	queued	with	IoQueueWorkItem	are
present).

Active	resources	in	freed	memory	(a	driver	calls	ExFreePool	before	calling
ExDeleteResource	to	destroy	an	ERESOURCE	object).

Active	look-aside	lists	in	freed	memory	(a	driver	calls	ExFreePool	before
calling	ExDeleteNPagedLookasideList	or	ExDeletePagedLookasideList	to
delete	the	look-aside	list).

Finally,	when	verification	is	enabled,	Driver	Verifier	also	performs	certain
automatic	checks	that	cannot	be	individually	enabled	or	disabled.	These	include:

Calling	MmProbeAndLockPages	or	MmProbeAndLockProcessPages	on	a
memory	descriptor	list	(MDL)	having	incorrect	flags.	For	example,	it	is
incorrect	to	call	MmProbeAndLockPages	for	an	MDL	setup	by	calling
MmBuildMdlForNonPagedPool.

Calling	MmMapLockedPages	on	an	MDL	having	incorrect	flags.	For	example,
it	is	incorrect	to	call	MmMapLockedPages	for	an	MDL	that	is	already	mapped
to	a	system	address.	Another	example	of	incorrect	driver	behavior	is	calling
MmMapLockedPages	for	an	MDL	that	was	not	locked.

Calling	MmUnlockPages	or	MmUnmapLockedPages	on	a	partial	MDL
(created	by	using	IoBuildPartialMdl).

Calling	MmUnmapLockedPages	on	an	MDL	that	is	not	mapped	to	a	system
address.

Allocating	synchronization	objects	such	as	events	or	mutexes	from
NonPagedPoolSession	memory.

Driver	Verifier	is	a	valuable	addition	to	the	arsenal	of	verification	and	debugging
tools	available	to	device	driver	writers.	Many	device	drivers	that	first	ran	with
Driver	Verifier	had	bugs	that	Driver	Verifier	was	able	to	expose.	Thus,	Driver
Verifier	has	resulted	in	an	overall	improvement	in	the	quality	of	all	kernel-mode
code	running	in	Windows.



Page	Frame	Number	Database
In	several	previous	sections,	we’ve	concentrated	on	the	virtual	view	of	a	Windows
process—page	tables,	PTEs,	and	VADs.	In	the	remainder	of	this	chapter,	we’ll
explain	how	Windows	manages	physical	memory,	starting	with	how	Windows
keeps	track	of	physical	memory.	Whereas	working	sets	describe	the	resident	pages
owned	by	a	process	or	the	system,	the	page	frame	number	(PFN)	database
describes	the	state	of	each	page	in	physical	memory.	The	page	states	are	listed	in
Table	10-16.

Table	10-16.	Page	States

Status Description

Active
(also
called
Valid)

The	page	is	part	of	a	working	set	(either	a	process	working	set,	a	session	working	set,
or	a	system	working	set),	or	it’s	not	in	any	working	set	(for	example,	nonpaged	kernel
page)	and	a	valid	PTE	usually	points	to	it.

Transition A	temporary	state	for	a	page	that	isn’t	owned	by	a	working	set	and	isn’t	on	any	paging
list.	A	page	is	in	this	state	when	an	I/O	to	the	page	is	in	progress.	The	PTE	is	encoded
so	that	collided	page	faults	can	be	recognized	and	handled	properly.	(Note	that	this	use
of	the	term	“transition”	differs	from	the	use	of	the	word	in	the	section	on	invalid
PTEs;	an	invalid	transition	PTE	refers	to	a	page	on	the	standby	or	modified	list.)

Standby The	page	previously	belonged	to	a	working	set	but	was	removed	(or	was
prefetched/clustered	directly	into	the	standby	list).	The	page	wasn’t	modified	since	it
was	last	written	to	disk.	The	PTE	still	refers	to	the	physical	page	but	is	marked	invalid
and	in	transition.

Modified The	page	previously	belonged	to	a	working	set	but	was	removed.	However,	the	page
was	modified	while	it	was	in	use	and	its	current	contents	haven’t	yet	been	written	to
disk	or	remote	storage.	The	PTE	still	refers	to	the	physical	page	but	is	marked	invalid
and	in	transition.	It	must	be	written	to	the	backing	store	before	the	physical	page	can
be	reused.

Modified
no-write

Same	as	a	modified	page,	except	that	the	page	has	been	marked	so	that	the	memory
manager’s	modified	page	writer	won’t	write	it	to	disk.	The	cache	manager	marks	pages
as	modified	no-write	at	the	request	of	file	system	drivers.	For	example,	NTFS	uses	this
state	for	pages	containing	file	system	metadata	so	that	it	can	first	ensure	that
transaction	log	entries	are	flushed	to	disk	before	the	pages	they	are	protecting	are
written	to	disk.	(NTFS	transaction	logging	is	explained	in	Chapter	12.)



Free The	page	is	free	but	has	unspecified	dirty	data	in	it.	(These	pages	can’t	be	given	as	a
user	page	to	a	user	process	without	being	initialized	with	zeros,	for	security	reasons.)

Zeroed The	page	is	free	and	has	been	initialized	with	zeros	by	the	zero	page	thread	(or	was
determined	to	already	contain	zeros).

Rom The	page	represents	read-only	memory

Bad The	page	has	generated	parity	or	other	hardware	errors	and	can’t	be	used.

The	PFN	database	consists	of	an	array	of	structures	that	represent	each	physical
page	of	memory	on	the	system.	The	PFN	database	and	its	relationship	to	page
tables	are	shown	in	Figure	10-37.	As	this	figure	shows,	valid	PTEs	usually	point	to
entries	in	the	PFN	database,	and	the	PFN	database	entries	(for	nonprototype	PFNs)
point	back	to	the	page	table	that	is	using	them	(if	it	is	being	used	by	a	page	table).
For	prototype	PFNs,	they	point	back	to	the	prototype	PTE.



Figure	10-37.	Page	tables	and	the	page	frame	number	database

Of	the	page	states	listed	in	Table	10-16,	six	are	organized	into	linked	lists	so	that
the	memory	manager	can	quickly	locate	pages	of	a	specific	type.	(Active/valid
pages,	transition	pages,	and	overloaded	“bad”	pages	aren’t	in	any	systemwide	page
list.)	Additionally,	the	standby	state	is	actually	associated	with	eight	different	lists
ordered	by	priority	(we’ll	talk	about	page	priority	later	in	this	section).	Figure	10-
38	shows	an	example	of	how	these	entries	are	linked	together.



Figure	10-38.	Page	lists	in	the	PFN	database

In	the	next	section,	you’ll	find	out	how	these	linked	lists	are	used	to	satisfy	page
faults	and	how	pages	move	to	and	from	the	various	lists.

EXPERIMENT:	VIEWING	THE	PFN	DATABASE

You	can	use	the	MemInfo	tool	from	Winsider	Seminars	&	Solutions	to	dump	the	size	of	the	various	paging
lists	by	using	the	–s	flag.	The	following	is	the	output	from	this	command:

C:\>MemInfo.exe -s

MemInfo v2.10 - Show PFN database information
Copyright (C) 2007-2009 Alex Ionescu
www.alex-ionescu.com

Initializing PFN Database... Done

PFN Database List Statistics
              Zeroed:    487 (   1948 kb)
                Free:      0 (      0 kb)
             Standby: 379745 (1518980 kb)
            Modified:   1052 (   4208 kb)
     ModifiedNoWrite:      0 (      0 kb)



        Active/Valid: 142703 ( 570812 kb)
          Transition:    184 (    736 kb)
                 Bad:      0 (      0 kb)
             Unknown:      2 (      8 kb)
               TOTAL: 524173 (2096692 kb)

Using	the	kernel	debugger	!memusage	command,	you	can	obtain	similar	information,	although	this	will	take
considerably	longer	and	will	require	booting	into	debugging	mode.

Page	List	Dynamics
Figure	10-39	shows	a	state	diagram	for	page	frame	transitions.	For	simplicity,	the
modified-no-write	list	isn’t	shown.

Page	frames	move	between	the	paging	lists	in	the	following	ways:

When	the	memory	manager	needs	a	zero-initialized	page	to	service	a	demand-
zero	page	fault	(a	reference	to	a	page	that	is	defined	to	be	all	zeros	or	to	a	user-
mode	committed	private	page	that	has	never	been	accessed),	it	first	attempts	to
get	one	from	the	zero	page	list.	If	the	list	is	empty,	it	gets	one	from	the	free
page	list	and	zeroes	the	page.	If	the	free	list	is	empty,	it	goes	to	the	standby	list
and	zeroes	that	page.

One	reason	zero-initialized	pages	are	required	is	to	meet	various	security
requirements,	such	as	the	Common	Criteria.	Most	Common	Criteria	profiles
specify	that	user-mode	processes	must	be	given	initialized	page	frames	to
prevent	them	from	reading	a	previous	process’s	memory	contents.	Therefore,
the	memory	manager	gives	user-mode	processes	zeroed	page	frames	unless	the
page	is	being	read	in	from	a	backing	store.	If	that’s	the	case,	the	memory
manager	prefers	to	use	nonzeroed	page	frames,	initializing	them	with	the	data
off	the	disk	or	remote	storage.



Figure	10-39.	State	diagram	for	page	frames

The	zero	page	list	is	populated	from	the	free	list	by	a	system	thread	called	the
zero	page	thread	(thread	0	in	the	System	process).	The	zero	page	thread	waits
on	a	gate	object	to	signal	it	to	go	to	work.	When	the	free	list	has	eight	or	more
pages,	this	gate	is	signaled.	However,	the	zero	page	thread	will	run	only	if	at
least	one	processor	has	no	other	threads	running,	because	the	zero	page	thread
runs	at	priority	0	and	the	lowest	priority	that	a	user	thread	can	be	set	to	is	1.

NOTE

Because	the	zero	page	thread	actually	waits	on	an	event	dispatcher	object,	it	receives	a	priority	boost
(see	the	section	“Priority	Boosts”	in	Chapter	5	in	Part	1),	which	results	in	it	executing	at	priority	1	for
at	least	part	of	the	time.	This	is	a	bug	in	the	current	implementation.

NOTE

When	memory	needs	to	be	zeroed	as	a	result	of	a	physical	page	allocation	by	a	driver	that	calls
MmAllocatePagesForMdl	or	MmAllocatePagesForMdlEx,	by	a	Windows	application	that	calls
AllocateUserPhysicalPages	or	AllocateUserPhysicalPagesNuma,	or	when	an	application	allocates	large



pages,	the	memory	manager	zeroes	the	memory	by	using	a	higher	performing	function	called
MiZeroInParallel	that	maps	larger	regions	than	the	zero	page	thread,	which	only	zeroes	a	page	at	a
time.	In	addition,	on	multiprocessor	systems,	the	memory	manager	creates	additional	system	threads	to
perform	the	zeroing	in	parallel	(and	in	a	NUMA-optimized	fashion	on	NUMA	platforms).

When	the	memory	manager	doesn’t	require	a	zero-initialized	page,	it	goes	first
to	the	free	list.	If	that’s	empty,	it	goes	to	the	zeroed	list.	If	the	zeroed	list	is
empty,	it	goes	to	the	standby	lists.	Before	the	memory	manager	can	use	a	page
frame	from	the	standby	lists,	it	must	first	backtrack	and	remove	the	reference
from	the	invalid	PTE	(or	prototype	PTE)	that	still	points	to	the	page	frame.
Because	entries	in	the	PFN	database	contain	pointers	back	to	the	previous
user’s	page	table	page	(or	to	a	page	of	prototype	PTE	pool	for	shared	pages),
the	memory	manager	can	quickly	find	the	PTE	and	make	the	appropriate
change.

When	a	process	has	to	give	up	a	page	out	of	its	working	set	(either	because	it
referenced	a	new	page	and	its	working	set	was	full	or	the	memory	manager
trimmed	its	working	set),	the	page	goes	to	the	standby	lists	if	the	page	was
clean	(not	modified)	or	to	the	modified	list	if	the	page	was	modified	while	it
was	resident.

When	a	process	exits,	all	the	private	pages	go	to	the	free	list.	Also,	when	the
last	reference	to	a	page-file-backed	section	is	closed,	and	the	section	has	no
remaining	mapped	views,	these	pages	also	go	to	the	free	list.

EXPERIMENT:	THE	FREE	AND	ZERO	PAGE	LISTS

You	can	observe	the	release	of	private	pages	at	process	exit	with	Process	Explorer’s	System	Information
display.	Begin	by	creating	a	process	with	a	large	number	of	private	pages	in	its	working	set.	We	did	this	in
an	earlier	experiment	with	the	TestLimit	utility:

C:\temp>testlimit -d 1 -c 800

Testlimit v5.1 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Leaking private bytes 1 MB at a time ...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

The	–d	option	causes	TestLimit	to	not	only	allocate	the	memory	as	private	committed,	but	to	“touch”	it—
that	is,	to	access	it.	This	causes	physical	memory	to	be	allocated	and	assigned	to	the	process	to	realize	the
area	of	private	committed	virtual	memory.	If	there	is	sufficient	available	RAM	on	the	system,	the	entire	800



MB	should	be	in	RAM	for	the	process.

This	process	will	now	wait	until	you	cause	it	to	exit	or	terminate	(perhaps	by	using	Ctrl+C	in	its	command
window).	Open	Process	Explorer	and	select	View,	System	Information.	Observe	the	Free	and	Zeroed	list
sizes.

Now	terminate	or	exit	the	TestLimit	process.	You	may	see	the	free	page	list	briefly	increase	in	size:

We	say	“may”	because	the	zero	page	thread	is	awakened	as	soon	as	there	are	only	eight	pages	on	the	zero
list,	and	it	acts	very	quickly.	Notice	that	in	this	example,	we	freed	800	MB	of	private	memory	but	only
about	138	MB	appear	here	on	the	free	list.	Process	Explorer	updates	this	display	only	once	per	second,	and
it	is	likely	that	the	rest	of	the	pages	were	already	zeroed	and	moved	to	the	zeroed	page	list	before	it
happened	to	“catch”	this	state.

If	you	are	able	to	see	the	temporary	increase	in	the	free	list,	you	will	then	see	it	drop	to	zero,	and	a
corresponding	increase	will	occur	in	the	zeroed	page	list.	If	not,	you	will	simply	see	the	increase	in	the
zeroed	list.

EXPERIMENT:	THE	MODIFIED	AND	STANDBY	PAGE	LISTS

The	movement	of	pages	from	process	working	set	to	the	modified	page	list	and	then	to	the	standby	page	list
can	also	be	observed	with	the	Sysinternals	tools	VMMap	and	RAMMap	and	the	live	kernel	debugger.

The	first	step	is	to	open	RAMMap	and	observe	the	state	of	the	quiet	system:



This	is	an	x86	system	with	about	3.4	GB	of	RAM	usable	by	Windows.	The	columns	in	this	display
represent	the	various	page	states	shown	in	Figure	10-39.	(A	few	of	the	columns	not	important	to	this
discussion	have	been	narrowed	for	ease	of	reference.)

The	system	has	about	1.2	GB	of	RAM	free	(sum	of	the	free	and	zeroed	page	lists).	About	1,700	MB	is	on
the	standby	list	(hence	part	of	“available,”	but	likely	containing	data	recently	lost	from	processes	or	being
used	by	Superfetch).	About	448	MB	is	“active,”	being	mapped	directly	to	virtual	addresses	via	valid	page
table	entries.

Each	row	further	breaks	down	into	page	state	by	usage	or	origin	(process	private,	mapped	file,	and	so	on).
For	example,	at	the	moment,	of	the	active	448	MB,	about	138	MB	is	due	to	process	private	allocations.

Now,	as	in	the	previous	experiment,	use	the	TestLimit	utility	to	create	a	process	with	a	large	number	of
pages	in	its	working	set.	Again	we	will	use	the	–d	option	to	cause	TestLimit	to	write	to	each	page,	but	this
time	we	will	use	it	without	a	limit,	so	as	to	create	as	many	private	modified	pages	as	possible:

C:\Users\user1>testlimit -d

Testlimit v5.21 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - www.sysinternals.com

Process ID: 1000

Leaking private bytes with touch (MB) ...
Leaked 2017 MB of private memory (2017 MB total leaked). Lasterror: 8
Not enough storage is available to process this command.

TestLimit	has	now	created	2,017	allocations	of	1	MB	each.

In	RAMMap,	use	the	File,	Refresh	command	to	update	the	display	(because	of	the	cost	of	gathering	its
information,	RAMMap	does	not	update	continuously).



You	will	see	that	over	2	GB	are	now	active	and	in	the	Process	Private	row.	This	is	due	to	the	memory
allocated	and	accessed	by	the	TestLimit	process.	Note	also	that	the	standby,	zeroed,	and	free	lists	are	now
much	smaller.	Most	of	the	RAM	allocated	to	TestLimit	came	from	these	lists.

Next,	in	RAMMap,	check	the	process’s	physical	page	allocations.	Change	to	the	Physical	Pages	tab,	and	set
the	filter	at	the	bottom	to	the	column	Process	and	the	value	Testlimit.exe.	This	display	shows	all	the
physical	pages	that	are	part	of	the	process	working	set.

We	would	like	to	identify	a	physical	page	involved	in	the	allocation	of	virtual	address	space	done	by
TestLimit’s	–d	option.	RAMMap	does	not	give	an	indication	about	which	virtual	allocations	are	associated
with	RAMMap’s	VirtualAlloc	calls.	However,	we	can	get	a	good	hint	of	this	through	the	VMMap	tool.
Using	VMMap	on	the	same	process,	we	find	the	following:



In	the	lower	part	of	the	display,	we	find	hundreds	of	allocations	of	process	private	data,	each	1	MB	in	size
and	with	1	MB	committed.	These	match	the	size	of	the	allocations	done	by	TestLimit.	The	first	of	these	is
highlighted	in	the	preceding	screen	shot.	Note	the	starting	virtual	address,	0x580000.

Now	go	back	to	RAMMap’s	physical	memory	display.	Arrange	the	columns	to	make	the	Virtual	Address
column	easily	visible,	click	on	it	to	sort	by	that	value,	and	you	can	find	that	virtual	address:

This	shows	that	the	virtual	page	starting	at	0x01340000	is	currently	mapped	to	physical	address
0x97D78000.



TestLimit’s	–d	option	writes	the	program’s	own	name	to	the	first	bytes	of	each	allocation.	We	can
demonstrate	this	with	the	!dc	(display	characters	using	physical	address)	command	in	the	local	kernel
debugger:

lkd> !dc 0x97d78000
#97d78000 74736554 696d694c 00000074 00000000 TestLimit.......
#97d78010 00000000 00000000 00000000 00000000 ................
#97d78020 00000000 00000000 00000000 00000000 ................
...

For	the	final	leg	of	the	experiment,	we	will	demonstrate	that	this	data	remains	intact	(for	a	while,	anyway)
after	the	process	working	set	is	reduced	and	this	page	is	moved	to	the	modified	and	then	the	standby	page
list.

In	VMMap,	having	selected	the	TestLimit	process,	use	the	View,	Empty	Working	Set	command	to	reduce
the	process’s	working	set	to	the	bare	minimum.	VMMap’s	display	should	now	look	like	this:

Notice	that	the	Working	Set	bar	graph	is	practically	empty.	In	the	middle	section,	the	process	shows	a	total
working	set	of	only	9	MB,	and	almost	all	of	it	is	in	page	tables,	with	a	tiny	32	KB	total	paged	in	of	image
files	and	private	data.	Now	return	to	RAMMap.	On	the	Use	Counts	tab,	you	will	find	that	active	pages	have
been	reduced	tremendously,	with	a	large	number	of	pages	on	the	modified	list	and	a	significant	number	on
the	standby	list:



RAMMap’s	Processes	tab	confirms	that	the	TestLimit	process	contributed	most	of	those	pages	to	those
lists:

Still	in	RAMMap,	show	the	Physical	Pages	tab.	Sort	by	Physical	Address,	and	find	the	page	previously
examined	(in	this	case,	physical	address	0xc09fa000).	RAMMap	will	almost	certainly	show	that	it	is	on	the
standby	or	modified	list.



Note	that	the	page	is	still	associated	with	the	TestLimit	process	and	with	its	virtual	address.

Finally,	we	can	again	use	the	kernel	debugger	to	verify	the	page	has	not	been	overwritten:

lkd> !dc 0x97d78000
#97d78000 74736554 696d694c 00000074 00000000 TestLimit.......
#97d78010 00000000 00000000 00000000 00000000 ................
#97d78020 00000000 00000000 00000000 00000000 ................
...

We	can	also	use	the	local	kernel	debugger	to	show	the	page	frame	number,	or	PFN,	entry	for	the	page.	(The
PFN	database	is	described	earlier	in	the	chapter.)

lkd> !pfn 97d78
    PFN 00097D78 at address 84E9B920
    flink       000A0604  blink / share count 000A05C1  pteaddress C0002C00
    reference count 0000   Cached     color 0   Priority 5
    restore pte 00000080  containing page        097D60  Modified   M
    Modified

Note	that	the	page	is	still	associated	with	the	TestLimit	process	and	with	its	virtual	address.

Page	Priority
Every	physical	page	in	the	system	has	a	page	priority	value	assigned	to	it	by	the
memory	manager.	The	page	priority	is	a	number	in	the	range	0	to	7.	Its	main
purpose	is	to	determine	the	order	in	which	pages	are	consumed	from	the	standby
list.	The	memory	manager	divides	the	standby	list	into	eight	sublists	that	each	store
pages	of	a	particular	priority.	When	the	memory	manager	wants	to	take	a	page
from	the	standby	list,	it	takes	pages	from	low-priority	lists	first,	as	shown	in
Figure	10-40.



Figure	10-40.	Prioritized	standby	lists

Each	thread	and	process	in	the	system	is	also	assigned	a	page	priority.	A	page’s
priority	usually	reflects	the	page	priority	of	the	thread	that	first	causes	its
allocation.	(If	the	page	is	shared,	it	reflects	the	highest	page	priority	among	the
sharing	threads.)	A	thread	inherits	its	page-priority	value	from	the	process	to	which
it	belongs.	The	memory	manager	uses	low	priorities	for	pages	it	reads	from	disk
speculatively	when	anticipating	a	process’s	memory	accesses.

By	default,	processes	have	a	page-priority	value	of	5,	but	functions	allow
applications	and	the	system	to	change	process	and	thread	page-priority	values.	You
can	look	at	the	memory	priority	of	a	thread	with	Process	Explorer	(per-page
priority	can	be	displayed	by	looking	at	the	PFN	entries,	as	you’ll	see	in	an
experiment	later	in	the	chapter).	Figure	10-41	shows	Process	Explorer’s	Threads
tab	displaying	information	about	Winlogon’s	main	thread.	Although	the	thread
priority	itself	is	high,	the	memory	priority	is	still	the	standard	5.



Figure	10-41.	Process	Explorer’s	Threads	tab.

The	real	power	of	memory	priorities	is	realized	only	when	the	relative	priorities	of
pages	are	understood	at	a	high	level,	which	is	the	role	of	Superfetch,	covered	at	the
end	of	this	chapter.

EXPERIMENT:	VIEWING	THE	PRIORITIZED	STANDBY	LISTS

You	can	use	the	MemInfo	tool	from	Winsider	Seminars	&	Solutions	to	dump	the	size	of	each	standby
paging	list	by	using	the	–c	flag.	MemInfo	will	also	display	the	number	of	repurposed	pages	for	each	standby
list—this	corresponds	to	the	number	of	pages	in	each	list	that	had	to	be	reused	to	satisfy	a	memory
allocation,	and	thus	thrown	out	of	the	standby	page	lists.	The	following	is	the	relevant	output	from	the
following	command.

C:\Windows\system32>meminfo -c
MemInfo v2.10 - Show PFN database information
Copyright (C) 2007-2009 Alex Ionescu
www.alex-ionescu.com

Initializing PFN Database... Done

Priority               Standby            Repurposed
0 - Idle             0 (      0 KB)        0 (      0 KB)
1 - Very Low     41352 ( 165408 KB)        0 (      0 KB)
2 - Low           7201 (  28804 KB)        0 (      0 KB)
3 - Background    2043 (   8172 KB)        0 (      0 KB)



4 - Background   24715 (  98860 KB)        0 (      0 KB)
5 - Normal        7895 (  31580 KB)        0 (      0 KB)
6 - Superfetch   23877 (  95508 KB)        0 (      0 KB)
7 - Superfetch    8435 (  33740 KB)        0 (      0 KB)
TOTAL           115518 ( 462072 KB)        0 (      0 KB)

You	can	add	the	–i	flag	to	MemInfo	to	continuously	display	the	state	of	the	standby	page	lists	and
repurpose	counts,	which	is	useful	for	tracking	memory	usage	as	well	as	the	following	experiment.
Additionally,	the	System	Information	panel	in	Process	Explorer	(choose	View,	System	Information)	can	also
be	used	to	display	the	live	state	of	the	prioritized	standby	lists,	as	shown	in	this	screen	shot:

On	the	recently	started	x64	system	used	in	this	experiment	(see	the	previous	MemInfo	output),	there	is	no
data	cached	at	priority	0,	about	165	MB	at	priority	1,	and	about	29	MB	at	priority	2.	Your	system	probably
has	some	data	in	those	priorities	as	well.

The	following	shows	what	happens	when	we	use	the	TestLimit	tool	from	Sysinternals	to	commit	and	touch
1	GB	of	memory.	Here	is	the	command	you	use	(to	leak	and	touch	memory	in	20	chunks	of	50	MB):

testlimit -d 50 -c 20

Here	is	the	output	of	MemInfo	just	before	the	run:

Priority               Standby            Repurposed
0 - Idle             0 (      0 KB)    2554 (  10216 KB)
1 - Very Low     92915 ( 371660 KB)  141352 ( 565408 KB)
2 - Low          35783 ( 143132 KB)       0 (      0 KB)
3 - Background   50666 ( 202664 KB)       0 (      0 KB)
4 - Background   15236 (  60944 KB)       0 (      0 KB)
5 - Normal       34197 ( 136788 KB)       0 (      0 KB)
6 - Superfetch    2912 (  11648 KB)       0 (      0 KB)
7 - Superfetch    5876 (  23504 KB)       0 (      0 KB)
TOTAL           237585 ( 950340 KB)  143906 ( 575624 KB)

And	here	is	the	output	after	the	allocations	are	done	but	the	TestLimit	process	still	exists:

Priority               Standby            Repurposed
0 - Idle             0 (      0 KB)    2554 (  10216 KB)



1 - Very Low         5 (     20 KB)  234351 ( 937404 KB)
2 - Low              0 (      0 KB)   35830 ( 143320 KB)
3 - Background    9586 (  38344 KB)   41654 ( 166616 KB)
4 - Background   15371 (  61484 KB)       0 (      0 KB)
5 - Normal       34208 ( 136832 KB)       0 (      0 KB)
6 - Superfetch    2914 (  11656 KB)       0 (      0 KB)
7 - Superfetch    5881 (  23524 KB)       0 (      0 KB)
TOTAL            67965 ( 271860 KB)  314389 (1257556 KB)

Note	how	the	lower-priority	standby	page	lists	were	used	first	(shown	by	the	repurposed	count)	and	are
now	depleted,	while	the	higher	lists	still	contain	valuable	cached	data.

Modified	Page	Writer
The	memory	manager	employs	two	system	threads	to	write	pages	back	to	disk	and
move	those	pages	back	to	the	standby	lists	(based	on	their	priority).	One	system
thread	writes	out	modified	pages	(MiModifiedPageWriter)	to	the	paging	file,	and	a
second	one	writes	modified	pages	to	mapped	files	(MiMappedPageWriter).	Two
threads	are	required	to	avoid	creating	a	deadlock,	which	would	occur	if	the	writing
of	mapped	file	pages	caused	a	page	fault	that	in	turn	required	a	free	page	when	no
free	pages	were	available	(thus	requiring	the	modified	page	writer	to	create	more
free	pages).	By	having	the	modified	page	writer	perform	mapped	file	paging	I/Os
from	a	second	system	thread,	that	thread	can	wait	without	blocking	regular	page
file	I/O.

Both	threads	run	at	priority	17,	and	after	initialization	they	wait	for	separate
objects	to	trigger	their	operation.	The	mapped	page	writer	waits	on	an	event,
MmMappedPageWriterEvent.	It	can	be	signaled	in	the	following	cases:

During	a	page	list	operation	(MiInsertPageInLockedList	or
MiInsertPageInList).	These	routines	signal	this	event	if	the	number	of	file-
system-destined	pages	on	the	modified	page	list	has	reached	more	than	800	and
the	number	of	available	pages	has	fallen	below	1,024,	or	if	the	number	of
available	pages	is	less	than	256.

In	an	attempt	to	obtain	free	pages	(MiObtainFreePages).

By	the	memory	manager’s	working	set	manager	(MmWorkingSetManager),
which	runs	as	part	of	the	kernel’s	balance	set	manager	(once	every	second).	The
working	set	manager	signals	this	event	if	the	number	of	file-system-destined
pages	on	the	modified	page	list	has	reached	more	than	800.

Upon	a	request	to	flush	all	modified	pages	(MmFlushAllPages).



Upon	a	request	to	flush	all	file-system-destined	modified	pages
(MmFlushAllFilesystemPages).	Note	that	in	most	cases,	writing	modified
mapped	pages	to	their	backing	store	files	does	not	occur	if	the	number	of
mapped	pages	on	the	modified	page	list	is	less	than	the	maximum	“write
cluster”	size,	which	is	16	pages.	This	check	is	not	made	in
MmFlushAllFilesystemPages	or	MmFlushAllPages.

The	mapped	page	writer	also	waits	on	an	array	of	MiMappedPageListHeadEvent
events	associated	with	the	16	mapped	page	lists.	Each	time	a	mapped	page	is
dirtied,	it	is	inserted	into	one	of	these	16	mapped	page	lists	based	on	a	bucket
number	(MiCurrentMappedPageBucket).	This	bucket	number	is	updated	by	the
working	set	manager	whenever	the	system	considers	that	mapped	pages	have
gotten	old	enough,	which	is	currently	100	seconds	(the	MiWriteGapCounter
variable	controls	this	and	is	incremented	whenever	the	working	set	manager	runs).
The	reason	for	these	additional	events	is	to	reduce	data	loss	in	the	case	of	a	system
crash	or	power	failure	by	eventually	writing	out	modified	mapped	pages	even	if	the
modified	list	hasn’t	reached	its	threshold	of	800	pages.

The	modified	page	writer	waits	on	a	single	gate	object
(MmModifiedPageWriterGate),	which	can	be	signaled	in	the	following	scenarios:

A	request	to	flush	all	pages	has	been	received.

The	number	of	available	pages	(MmAvailablePages)	drops	below	128	pages.

The	total	size	of	the	zeroed	and	free	page	lists	has	dropped	below	20,000	pages,
and	the	number	of	modified	pages	destined	for	the	paging	file	is	greater	than
the	smaller	of	one-sixteenth	of	the	available	pages	or	64	MB	(16,384	pages).

When	a	working	set	is	being	trimmed	to	accommodate	additional	pages,	if	the
number	of	pages	available	is	less	than	15,000.

During	a	page	list	operation	(MiInsertPageInLockedList	or
MiInsertPageInList).	These	routines	signal	this	gate	if	the	number	of	page-file-
destined	pages	on	the	modified	page	list	has	reached	more	than	800	and	the
number	of	available	pages	has	fallen	below	1,024,	or	if	the	number	of	available
pages	is	less	than	256.

Additionally,	the	modified	page	writer	waits	on	an	event
(MiRescanPageFilesEvent)	and	an	internal	event	in	the	paging	file	header



(MmPagingFileHeader),	which	allows	the	system	to	manually	request	flushing	out
data	to	the	paging	file	when	needed.

When	invoked,	the	mapped	page	writer	attempts	to	write	as	many	pages	as
possible	to	disk	with	a	single	I/O	request.	It	accomplishes	this	by	examining	the
original	PTE	field	of	the	PFN	database	elements	for	pages	on	the	modified	page
list	to	locate	pages	in	contiguous	locations	on	the	disk.	Once	a	list	is	created,	the
pages	are	removed	from	the	modified	list,	an	I/O	request	is	issued,	and,	at
successful	completion	of	the	I/O	request,	the	pages	are	placed	at	the	tail	of	the
standby	list	corresponding	to	their	priority.

Pages	that	are	in	the	process	of	being	written	can	be	referenced	by	another	thread.
When	this	happens,	the	reference	count	and	the	share	count	in	the	PFN	entry	that
represents	the	physical	page	are	incremented	to	indicate	that	another	process	is
using	the	page.	When	the	I/O	operation	completes,	the	modified	page	writer
notices	that	the	reference	count	is	no	longer	0	and	doesn’t	place	the	page	on	any
standby	list.

PFN	Data	Structures
Although	PFN	database	entries	are	of	fixed	length,	they	can	be	in	several	different
states,	depending	on	the	state	of	the	page.	Thus,	individual	fields	have	different
meanings	depending	on	the	state.	Figure	10-42	shows	the	formats	of	PFN	entries
for	different	states.



Figure	10-42.	States	of	PFN	database	entries.	(Specific	layouts	are	conceptual)

Several	fields	are	the	same	for	several	PFN	types,	but	others	are	specific	to	a	given
type	of	PFN.	The	following	fields	appear	in	more	than	one	PFN	type:

PTE	address	Virtual	address	of	the	PTE	that	points	to	this	page.	Also,	since
PTE	addresses	will	always	be	aligned	on	a	4-byte	boundary	(8	bytes	on	64-bit
systems),	the	two	low-order	bits	are	used	as	a	locking	mechanism	to	serialize
access	to	the	PFN	entry.

Reference	count	The	number	of	references	to	this	page.	The	reference	count	is
incremented	when	a	page	is	first	added	to	a	working	set	and/or	when	the	page
is	locked	in	memory	for	I/O	(for	example,	by	a	device	driver).	The	reference
count	is	decremented	when	the	share	count	becomes	0	or	when	pages	are
unlocked	from	memory.	When	the	share	count	becomes	0,	the	page	is	no	longer
owned	by	a	working	set.	Then,	if	the	reference	count	is	also	zero,	the	PFN
database	entry	that	describes	the	page	is	updated	to	add	the	page	to	the	free,
standby,	or	modified	list.

Type	The	type	of	page	represented	by	this	PFN.	(Types	include	active/valid,
standby,	modified,	modified-no-write,	free,	zeroed,	bad,	and	transition.)



Flags	The	information	contained	in	the	flags	field	is	shown	in	Table	10-17.

Priority	The	priority	associated	with	this	PFN,	which	will	determine	on	which
standby	list	it	will	be	placed.

Original	PTE	contents	All	PFN	database	entries	contain	the	original	contents
of	the	PTE	that	pointed	to	the	page	(which	could	be	a	prototype	PTE).	Saving
the	contents	of	the	PTE	allows	it	to	be	restored	when	the	physical	page	is	no
longer	resident.	PFN	entries	for	AWE	allocations	are	exceptions;	they	store	the
AWE	reference	count	in	this	field	instead.

PFN	of	PTE	Physical	page	number	of	the	page	table	page	containing	the	PTE
that	points	to	this	page.

Color	Besides	being	linked	together	on	a	list,	PFN	database	entries	use	an
additional	field	to	link	physical	pages	by	“color,”	which	is	the	page’s	NUMA
node	number.

Flags	A	second	flags	field	is	used	to	encode	additional	information	on	the	PTE.
These	flags	are	described	in	Table	10-18.

Table	10-17.	Flags	Within	PFN	Database	Entries

Flag Meaning

Write	in
progress

Indicates	that	a	page	write	operation	is	in	progress.	The	first	DWORD	contains	the
address	of	the	event	object	that	will	be	signaled	when	the	I/O	is	complete.

Modified
state

Indicates	whether	the	page	was	modified.	(If	the	page	was	modified,	its	contents	must
be	saved	to	disk	before	removing	it	from	memory.)

Read	in
progress

Indicates	that	an	in-page	operation	is	in	progress	for	the	page.	The	first	DWORD
contains	the	address	of	the	event	object	that	will	be	signaled	when	the	I/O	is	complete.

Rom Indicates	that	this	page	comes	from	the	computer’s	firmware	or	another	piece	of	read-
only	memory	such	as	a	device	register.

In-page
error

Indicates	that	an	I/O	error	occurred	during	the	in-page	operation	on	this	page.	(In	this
case,	the	first	field	in	the	PFN	contains	the	error	code.)

Kernel
stack

Indicates	that	this	page	is	being	used	to	contain	a	kernel	stack.	In	this	case,	the	PFN
entry	contains	the	owner	of	the	stack	and	the	next	stack	PFN	for	this	thread.

Removal Indicates	that	the	page	is	the	target	of	a	remove	(due	to	ECC/scrubbing	or	hot	memory



requested removal).

Parity
error

Indicates	that	the	physical	page	contains	parity	or	error	correction	control	errors.

Table	10-18.	Secondary	Flags	Within	PFN	Database	Entries

Flag Meaning

PFN	image
verified

The	code	signature	for	this	PFN	(contained	in	the	cryptographic	signature	catalog	for
the	image	being	backed	by	this	PFN)	has	been	verified.

AWE
allocation

This	PFN	backs	an	AWE	allocation.

Prototype
PTE

Indicates	that	the	PTE	referenced	by	the	PFN	entry	is	a	prototype	PTE.	(For	example,
this	page	is	shareable.)

The	remaining	fields	are	specific	to	the	type	of	PFN.	For	example,	the	first	PFN	in
Figure	10-42	represents	a	page	that	is	active	and	part	of	a	working	set.	The	share
count	field	represents	the	number	of	PTEs	that	refer	to	this	page.	(Pages	marked
read-only,	copy-on-write,	or	shared	read/write	can	be	shared	by	multiple
processes.)	For	page	table	pages,	this	field	is	the	number	of	valid	and	transition
PTEs	in	the	page	table.	As	long	as	the	share	count	is	greater	than	0,	the	page	isn’t
eligible	for	removal	from	memory.

The	working	set	index	field	is	an	index	into	the	process	working	set	list	(or	the
system	or	session	working	set	list,	or	zero	if	not	in	any	working	set)	where	the
virtual	address	that	maps	this	physical	page	resides.	If	the	page	is	a	private	page,
the	working	set	index	field	refers	directly	to	the	entry	in	the	working	set	list
because	the	page	is	mapped	only	at	a	single	virtual	address.	In	the	case	of	a	shared
page,	the	working	set	index	is	a	hint	that	is	guaranteed	to	be	correct	only	for	the
first	process	that	made	the	page	valid.	(Other	processes	will	try	to	use	the	same
index	where	possible.)	The	process	that	initially	sets	this	field	is	guaranteed	to	refer
to	the	proper	index	and	doesn’t	need	to	add	a	working	set	list	hash	entry	referenced
by	the	virtual	address	into	its	working	set	hash	tree.	This	guarantee	reduces	the	size
of	the	working	set	hash	tree	and	makes	searches	faster	for	these	particular	direct
entries.

The	second	PFN	in	Figure	10-42	is	for	a	page	on	either	the	standby	or	the



modified	list.	In	this	case,	the	forward	and	backward	link	fields	link	the	elements
of	the	list	together	within	the	list.	This	linking	allows	pages	to	be	easily
manipulated	to	satisfy	page	faults.	When	a	page	is	on	one	of	the	lists,	the	share
count	is	by	definition	0	(because	no	working	set	is	using	the	page)	and	therefore
can	be	overlaid	with	the	backward	link.	The	reference	count	is	also	0	if	the	page	is
on	one	of	the	lists.	If	it	is	nonzero	(because	an	I/O	could	be	in	progress	for	this
page—for	example,	when	the	page	is	being	written	to	disk),	it	is	first	removed
from	the	list.

The	third	PFN	in	Figure	10-42	is	for	a	page	that	belongs	to	a	kernel	stack.	As
mentioned	earlier,	kernel	stacks	in	Windows	are	dynamically	allocated,	expanded,
and	freed	whenever	a	callback	to	user	mode	is	performed	and/or	returns,	or	when	a
driver	performs	a	callback	and	requests	stack	expansion.	For	these	PFNs,	the
memory	manager	must	keep	track	of	the	thread	actually	associated	with	the	kernel
stack,	or	if	it	is	free	it	keeps	a	link	to	the	next	free	look-aside	stack.

The	fourth	PFN	in	Figure	10-42	is	for	a	page	that	has	an	I/O	in	progress	(for
example,	a	page	read).	While	the	I/O	is	in	progress,	the	first	field	points	to	an	event
object	that	will	be	signaled	when	the	I/O	completes.	If	an	in-page	error	occurs,	this
field	contains	the	Windows	error	status	code	representing	the	I/O	error.	This	PFN
type	is	used	to	resolve	collided	page	faults.

In	addition	to	the	PFN	database,	the	system	variables	in	Table	10-19	describe	the
overall	state	of	physical	memory.

Table	10-19.	System	Variables	That	Describe	Physical	Memory

Variable Description

MmNumberOfPhysicalPages Total	number	of	physical	pages	available	on	the	system

MmAvailablePages Total	number	of	available	pages	on	the	system—the	sum	of	the
pages	on	the	zeroed,	free,	and	standby	lists

MmResidentAvailablePages Total	number	of	physical	pages	that	would	be	available	if	every
process	was	trimmed	to	its	minimum	working	set	size	and	all
modified	pages	were	flushed	to	disk

EXPERIMENT:	VIEWING	PFN	ENTRIES



You	can	examine	individual	PFN	entries	with	the	kernel	debugger	!pfn	command.	You	need	to	supply	the
PFN	as	an	argument.	(For	example,	!pfn	1	shows	the	first	entry,	!pfn	2	shows	the	second,	and	so	on.)	In	the
following	example,	the	PTE	for	virtual	address	0x50000	is	displayed,	followed	by	the	PFN	that	contains	the
page	directory,	and	then	the	actual	page:

lkd> !pte 50000
               VA 00050000
PDE at 00000000C0600000    PTE at 00000000C0000280
contains 000000002C9F7867  contains 800000002D6C1867
pfn 2c9f7      ---DA--UWEV    pfn 2d6c1      ---DA--UW-V

lkd> !pfn 2c9f7
    PFN 0002C9F7 at address 834E1704
    flink       00000026  blink  share count 00000091  pteaddress C0600000
    reference count 0001   Cached     color 0   Priority 5
    restore pte 00000080  containing page        02BAA5  Active     M
    Modified

lkd> !pfn 2d6c1
    PFN 0002D6C1 at address 834F7D1C
    flink       00000791  blink  share count 00000001  pteaddress C0000280
    reference count 0001   Cached     color 0   Priority 5
    restore pte 00000080  containing page        02C9F7  Active     M
    Modified

You	can	also	use	the	MemInfo	tool	to	obtain	information	about	a	PFN.	MemInfo	can	sometimes	give	you
more	information	than	the	debugger’s	output,	and	it	does	not	require	being	booted	into	debugging	mode.
Here’s	MemInfo’s	output	for	those	same	two	PFNs:

C:\>meminfo -p 2c9f7

PFN: 2c9f7
PFN List: Active and Valid
PFN Type: Page Table
PFN Priority: 5
Page Directory: 0x866168C8
Physical Address: 0x2C9F7000

C:\>meminfo -p 2d6c1

PFN: 2d6c1
PFN List: Active and Valid
PFN Type: Process Private
PFN Priority: 5
EPROCESS: 0x866168C8 [windbg.exe]
Physical Address: 0x2D6C1000

MemInfo	correctly	recognized	that	the	first	PFN	was	a	page	table	and	that	the	second	PFN	belongs	to
WinDbg,	which	was	the	active	process	when	the	!pte	50000	command	was	used	in	the	debugger.



Physical	Memory	Limits
Now	that	you’ve	learned	how	Windows	keeps	track	of	physical	memory,	we’ll
describe	how	much	of	it	Windows	can	actually	support.	Because	most	systems
access	more	code	and	data	than	can	fit	in	physical	memory	as	they	run,	physical
memory	is	in	essence	a	window	into	the	code	and	data	used	over	time.	The	amount
of	memory	can	therefore	affect	performance,	because	when	data	or	code	that	a
process	or	the	operating	system	needs	is	not	present,	the	memory	manager	must
bring	it	in	from	disk	or	remote	storage.

Besides	affecting	performance,	the	amount	of	physical	memory	impacts	other
resource	limits.	For	example,	the	amount	of	nonpaged	pool,	operating	system
buffers	backed	by	physical	memory,	is	obviously	constrained	by	physical	memory.
Physical	memory	also	contributes	to	the	system	virtual	memory	limit,	which	is	the
sum	of	roughly	the	size	of	physical	memory	plus	the	current	configured	size	of	any
paging	files.	Physical	memory	also	can	indirectly	limit	the	maximum	number	of
processes.

Windows	support	for	physical	memory	is	dictated	by	hardware	limitations,
licensing,	operating	system	data	structures,	and	driver	compatibility.	Table	10-20
lists	the	currently	supported	amounts	of	physical	memory	across	the	various
editions	of	Windows	along	with	the	limiting	factors.

Table	10-20.	Physical	Memory	Support

Version 32-Bit
Limit

64-Bit
Limit

Limiting	Factors

Ultimate,	Enterprise,	and
Professional

4	GB 192
GB

Licensing	on	64-bit;	licensing,	hardware
support,	and	driver	compatibility	on	32-bit

Home	Premium 4	GB 16	GB Licensing	on	64-bit;	licensing,	hardware
support,	and	driver	compatibility	on	32-bit

Home	Basic 4	GB 8	GB Licensing	on	64-bit;	licensing,	hardware
support,	and	driver	compatibility	on	32-bit

Starter 2	GB 2	GB Licensing

Server	Datacenter,	Enterprise, N/A 2	TB Testing	and	available	systems



and	Server	for	Itanium

Server	Foundation N/A 8	GB Licensing

Server	Standard	and	Web
Server

N/A 32	GB Licensing

Server	HPC	Edition N/A 128
GB

Licensing

The	maximum	2-TB	physical	memory	limit	doesn’t	come	from	any
implementation	or	hardware	limitation,	but	because	Microsoft	will	support	only
configurations	it	can	test.	As	of	this	writing,	the	largest	tested	and	supported
memory	configuration	was	2	TB.

Windows	Client	Memory	Limits
64-bit	Windows	client	editions	support	different	amounts	of	memory	as	a
differentiating	feature,	with	the	low	end	being	2	GB	for	Starter	Edition,	increasing
to	192	GB	for	the	Ultimate,	Enterprise,	and	Professional	editions.	All	32-bit
Windows	client	editions,	however,	support	a	maximum	of	4	GB	of	physical
memory,	which	is	the	highest	physical	address	accessible	with	the	standard	x86
memory	management	mode.

Although	client	SKUs	support	PAE	addressing	modes	on	x86	systems	in	order	to
provide	hardware	no-execute	protection	(which	would	also	enable	access	to	more
than	4	GB	of	physical	memory),	testing	revealed	that	systems	would	crash,	hang,	or
become	unbootable	because	some	device	drivers,	commonly	those	for	video	and
audio	devices	found	typically	on	clients	but	not	servers,	were	not	programmed	to
expect	physical	addresses	larger	than	4	GB.	As	a	result,	the	drivers	truncated	such
addresses,	resulting	in	memory	corruptions	and	corruption	side	effects.	Server
systems	commonly	have	more	generic	devices,	with	simpler	and	more	stable
drivers,	and	therefore	had	not	generally	revealed	these	problems.	The	problematic
client	driver	ecosystem	led	to	the	decision	for	client	editions	to	ignore	physical
memory	that	resides	above	4	GB,	even	though	they	can	theoretically	address	it.
Driver	developers	are	encouraged	to	test	their	systems	with	the	nolowmem	BCD
option,	which	will	force	the	kernel	to	use	physical	addresses	above	4	GB	only	if
sufficient	memory	exists	on	the	system	to	allow	it.	This	will	immediately	lead	to
the	detection	of	such	issues	in	faulty	drivers.



32-Bit	Client	Effective	Memory	Limits
While	4	GB	is	the	licensed	limit	for	32-bit	client	editions,	the	effective	limit	is
actually	lower	and	dependent	on	the	system’s	chipset	and	connected	devices.	The
reason	is	that	the	physical	address	map	includes	not	only	RAM	but	device	memory,
and	x86	and	x64	systems	typically	map	all	device	memory	below	the	4	GB	address
boundary	to	remain	compatible	with	32-bit	operating	systems	that	don’t	know	how
to	handle	addresses	larger	than	4	GB.	Newer	chipsets	do	support	PAE-based	device
remapping,	but	client	editions	of	Windows	do	not	support	this	feature	for	the	driver
compatibility	problems	explained	earlier	(otherwise,	drivers	would	receive	64-bit
pointers	to	their	device	memory).

If	a	system	has	4	GB	of	RAM	and	devices	such	as	video,	audio,	and	network
adapters	that	implement	windows	into	their	device	memory	that	sum	to	500	MB,
500	MB	of	the	4	GB	of	RAM	will	reside	above	the	4	GB	address	boundary,	as
seen	in	Figure	10-43.

The	result	is	that	if	you	have	a	system	with	3	GB	or	more	of	memory	and	you	are
running	a	32-bit	Windows	client,	you	may	not	be	getting	the	benefit	of	all	of	the
RAM.	You	can	see	how	much	RAM	Windows	has	detected	as	being	installed	in
the	System	Properties	dialog	box,	but	to	see	how	much	memory	is	actually
available	to	Windows,	you	need	to	look	at	Task	Manager’s	Performance	page	or
the	Msinfo32	and	Winver	utilities.	On	one	particular	4-GB	laptop,	when	booted
with	32-bit	Windows,	the	amount	of	physical	memory	available	is	3.5	GB,	as	seen
in	the	Msinfo32	utility:

Installed	Physical	Memory	(RAM) 4.00	GB

Total	Physical	Memory 3.50	GB



Figure	10-43.	Physical	memory	layout	on	a	4-GB	system

You	can	see	the	physical	memory	layout	with	the	MemInfo	tool	from	Winsider
Seminars	&	Solutions.	Figure	10-44	shows	the	output	of	MemInfo	when	run	on	a
32-bit	system,	using	the	–r	switch	to	dump	physical	memory	ranges:

Figure	10-44.	Memory	ranges	on	a	32-bit	Windows	system

Note	the	gap	in	the	memory	address	range	from	page	9F0000	to	page	100000,	and
another	gap	from	DFE6D000	to	FFFFFFFF	(4	GB).	When	the	system	is	booted
with	64-bit	Windows,	on	the	other	hand,	all	4	GB	show	up	as	available	(see
Figure	10-45),	and	you	can	see	how	Windows	uses	the	remaining	500	MB	of
RAM	that	are	above	the	4-GB	boundary.

Figure	10-45.	Memory	ranges	on	an	x64	Windows	system

You	can	use	Device	Manager	on	your	machine	to	see	what	is	occupying	the
various	reserved	memory	regions	that	can’t	be	used	by	Windows	(and	that	will



show	up	as	holes	in	MemInfo’s	output).	To	check	Device	Manager,	run
Devmgmt.msc,	select	Resources	By	Connection	on	the	View	menu,	and	then
expand	the	Memory	node.	On	the	laptop	computer	used	for	the	output	shown	in
Figure	10-46,	the	primary	consumer	of	mapped	device	memory	is,	unsurprisingly,
the	video	card,	which	consumes	256	MB	in	the	range	E0000000-EFFFFFFF.

Figure	10-46.	Hardware-reserved	memory	ranges	on	a	32-bit	Windows	system

Other	miscellaneous	devices	account	for	most	of	the	rest,	and	the	PCI	bus	reserves
additional	ranges	for	devices	as	part	of	the	conservative	estimation	the	firmware
uses	during	boot.

The	consumption	of	memory	addresses	below	4	GB	can	be	drastic	on	high-end
gaming	systems	with	large	video	cards.	For	example,	on	a	test	machine	with	8	GB
of	RAM	and	two	1-GB	video	cards,	only	2.2	GB	of	the	memory	was	accessible	by
32-bit	Windows.	A	large	memory	hole	from	8FEF0000	to	FFFFFFFF	is	visible	in
the	MemInfo	output	from	the	system	on	which	64-bit	Windows	is	installed,	shown
in	Figure	10-47.

Figure	10-47.	Memory	ranges	on	a	64-bit	Windows	system

Device	Manager	revealed	that	512	MB	of	the	more	than	2-GB	gap	is	for	the	video
cards	(256	MB	each)	and	that	the	PCI	bus	driver	had	reserved	more	either	for
dynamic	mappings	or	alignment	requirements,	or	perhaps	because	the	devices
claimed	larger	areas	than	they	actually	needed.	Finally,	even	systems	with	as	little
as	2	GB	can	be	prevented	from	having	all	their	memory	usable	under	32-bit



Windows	because	of	chipsets	that	aggressively	reserve	memory	regions	for	devices.



Working	Sets
Now	that	we’ve	looked	at	how	Windows	keeps	track	of	physical	memory,	and	how
much	memory	it	can	support,	we’ll	explain	how	Windows	keeps	a	subset	of	virtual
addresses	in	physical	memory.

As	you’ll	recall,	the	term	used	to	describe	a	subset	of	virtual	pages	resident	in
physical	memory	is	called	a	working	set.	There	are	three	kinds	of	working	sets:

Process	working	sets	contain	the	pages	referenced	by	threads	within	a	single
process.

System	working	sets	contains	the	resident	subset	of	the	pageable	system	code
(for	example,	Ntoskrnl.exe	and	drivers),	paged	pool,	and	the	system	cache.

Each	session	has	a	working	set	that	contains	the	resident	subset	of	the	kernel-
mode	session-specific	data	structures	allocated	by	the	kernel-mode	part	of	the
Windows	subsystem	(Win32k.sys),	session	paged	pool,	session	mapped	views,
and	other	session-space	device	drivers.

Before	examining	the	details	of	each	type	of	working	set,	let’s	look	at	the	overall
policy	for	deciding	which	pages	are	brought	into	physical	memory	and	how	long
they	remain.	After	that,	we’ll	explore	the	various	types	of	working	sets.

Demand	Paging
The	Windows	memory	manager	uses	a	demand-paging	algorithm	with	clustering	to
load	pages	into	memory.	When	a	thread	receives	a	page	fault,	the	memory
manager	loads	into	memory	the	faulted	page	plus	a	small	number	of	pages
preceding	and/or	following	it.	This	strategy	attempts	to	minimize	the	number	of
paging	I/Os	a	thread	will	incur.	Because	programs,	especially	large	ones,	tend	to
execute	in	small	regions	of	their	address	space	at	any	given	time,	loading	clusters	of
virtual	pages	reduces	the	number	of	disk	reads.	For	page	faults	that	reference	data
pages	in	images,	the	cluster	size	is	three	pages.	For	all	other	page	faults,	the	cluster
size	is	seven	pages.

However,	a	demand-paging	policy	can	result	in	a	process	incurring	many	page
faults	when	its	threads	first	begin	executing	or	when	they	resume	execution	at	a
later	point.	To	optimize	the	startup	of	a	process	(and	the	system),	Windows	has	an



intelligent	prefetch	engine	called	the	logical	prefetcher,	described	in	the	next
section.	Further	optimization	and	prefetching	is	performed	by	another	component,
called	Superfetch,	that	we’ll	describe	later	in	the	chapter.

Logical	Prefetcher
During	a	typical	system	boot	or	application	startup,	the	order	of	faults	is	such	that
some	pages	are	brought	in	from	one	part	of	a	file,	then	perhaps	from	a	distant	part
of	the	same	file,	then	from	a	different	file,	perhaps	from	a	directory,	and	then	again
from	the	first	file.	This	jumping	around	slows	down	each	access	considerably	and,
thus,	analysis	shows	that	disk	seek	times	are	a	dominant	factor	in	slowing	boot	and
application	startup	times.	By	prefetching	batches	of	pages	all	at	once,	a	more
sensible	ordering	of	access,	without	excessive	backtracking,	can	be	achieved,	thus
improving	the	overall	time	for	system	and	application	startup.	The	pages	that	are
needed	can	be	known	in	advance	because	of	the	high	correlation	in	accesses	across
boots	or	application	starts.

The	prefetcher	tries	to	speed	the	boot	process	and	application	startup	by
monitoring	the	data	and	code	accessed	by	boot	and	application	startups	and	using
that	information	at	the	beginning	of	a	subsequent	boot	or	application	startup	to
read	in	the	code	and	data.	When	the	prefetcher	is	active,	the	memory	manager
notifies	the	prefetcher	code	in	the	kernel	of	page	faults,	both	those	that	require	that
data	be	read	from	disk	(hard	faults)	and	those	that	simply	require	data	already	in
memory	be	added	to	a	process’s	working	set	(soft	faults).	The	prefetcher	monitors
the	first	10	seconds	of	application	startup.	For	boot,	the	prefetcher	by	default	traces
from	system	start	through	the	30	seconds	following	the	start	of	the	user’s	shell
(typically	Explorer)	or,	failing	that,	up	through	60	seconds	following	Windows
service	initialization	or	through	120	seconds,	whichever	comes	first.

The	trace	assembled	in	the	kernel	notes	faults	taken	on	the	NTFS	master	file	table
(MFT)	metadata	file	(if	the	application	accesses	files	or	directories	on	NTFS
volumes),	on	referenced	files,	and	on	referenced	directories.	With	the	trace
assembled,	the	kernel	prefetcher	code	waits	for	requests	from	the	prefetcher
component	of	the	Superfetch	service	(%SystemRoot%\System32\Sysmain.dll),
running	in	a	copy	of	Svchost.	The	Superfetch	service	is	responsible	for	both	the
logical	prefetching	component	in	the	kernel	and	for	the	Superfetch	component	that



we’ll	talk	about	later.	The	prefetcher	signals	the	event
\KernelObjects\PrefetchTracesReady	to	inform	the	Superfetch	service	that	it	can
now	query	trace	data.

NOTE

You	can	enable	or	disable	prefetching	of	the	boot	or	application	startups	by	editing	the	DWORD	registry
value	HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\PrefetchParameters\EnablePrefetcher.	Set	it	to	0	to	disable	prefetching	altogether,	1	to	enable
prefetching	of	only	applications,	2	for	prefetching	of	boot	only,	and	3	for	both	boot	and	applications.

The	Superfetch	service	(which	hosts	the	logical	prefetcher,	although	it	is	a
completely	separate	component	from	the	actual	Superfetch	functionality)	performs
a	call	to	the	internal	NtQuerySystemInformation	system	call	requesting	the	trace
data.	The	logical	prefetcher	post-processes	the	trace	data,	combining	it	with
previously	collected	data,	and	writes	it	to	a	file	in	the	%SystemRoot%\Prefetch
folder,	which	is	shown	in	Figure	10-48.	The	file’s	name	is	the	name	of	the
application	to	which	the	trace	applies	followed	by	a	dash	and	the	hexadecimal
representation	of	a	hash	of	the	file’s	path.	The	file	has	a	.pf	extension;	an	example
would	be	NOTEPAD.EXE-AF43252301.PF.

There	are	two	exceptions	to	the	file	name	rule.	The	first	is	for	images	that	host
other	components,	including	the	Microsoft	Management	Console
(%SystemRoot%\System32\Mmc.exe),	the	Service	Hosting	Process
(%SystemRoot%\System32\Svchost.exe),	the	Run	DLL	Component
(%SystemRoot%\System32\Rundll32.exe),	and	Dllhost
(%SystemRoot%\System32\Dllhost.exe).	Because	add-on	components	are
specified	on	the	command	line	for	these	applications,	the	prefetcher	includes	the
command	line	in	the	generated	hash.	Thus,	invocations	of	these	applications	with
different	components	on	the	command	line	will	result	in	different	traces.

The	other	exception	to	the	file	name	rule	is	the	file	that	stores	the	boot’s	trace,
which	is	always	named	NTOSBOOT-B00DFAAD.PF.	(If	read	as	a	word,
“boodfaad”	sounds	similar	to	the	English	words	boot	fast.)	Only	after	the
prefetcher	has	finished	the	boot	trace	(the	time	of	which	was	defined	earlier)	does
it	collect	page	fault	information	for	specific	applications.



Figure	10-48.	Prefetch	folder

EXPERIMENT:	LOOKING	INSIDE	A	PREFETCH	FILE

A	prefetch	file’s	contents	serve	as	a	record	of	files	and	directories	accessed	during	the	boot	or	an
application	startup,	and	you	can	use	the	Strings	utility	from	Sysinternals	to	see	the	record.	The	following
command	lists	all	the	files	and	directories	referenced	during	the	last	boot:

C:\Windows\Prefetch>Strings -n 5 ntosboot-b00dfaad.pf

Strings v2.4
Copyright (C) 1999-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

4NTOSBOOT
\DEVICE\HARDDISKVOLUME1\$MFT
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNNEL.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNMP.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\I8042PRT.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\KBDCLASS.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\VMMOUSE.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\MOUCLASS.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\PARPORT.SYS
...

When	the	system	boots	or	an	application	starts,	the	prefetcher	is	called	to	give	it	an



opportunity	to	perform	prefetching.	The	prefetcher	looks	in	the	prefetch	directory
to	see	if	a	trace	file	exists	for	the	prefetch	scenario	in	question.	If	it	does,	the
prefetcher	calls	NTFS	to	prefetch	any	MFT	metadata	file	references,	reads	in	the
contents	of	each	of	the	directories	referenced,	and	finally	opens	each	file
referenced.	It	then	calls	the	memory	manager	function	MmPrefetchPages	to	read	in
any	data	and	code	specified	in	the	trace	that’s	not	already	in	memory.	The	memory
manager	initiates	all	the	reads	asynchronously	and	then	waits	for	them	to	complete
before	letting	an	application’s	startup	continue.

EXPERIMENT:	WATCHING	PREFETCH	FILE	READS	AND	WRITES

If	you	capture	a	trace	of	application	startup	with	Process	Monitor	from	Sysinternals	on	a	client	edition	of
Windows	(Windows	Server	editions	disable	prefetching	by	default),	you	can	see	the	prefetcher	check	for
and	read	the	application’s	prefetch	file	(if	it	exists),	and	roughly	10	seconds	after	the	application	started,	see
the	prefetcher	write	out	a	new	copy	of	the	file.	Here	is	a	capture	of	Notepad	startup	with	an	Include	filter
set	to	“prefetch”	so	that	Process	Monitor	shows	only	accesses	to	the	%SystemRoot%\Prefetch	directory:

Lines	1	through	4	show	the	Notepad	prefetch	file	being	read	in	the	context	of	the	Notepad	process	during
its	startup.	Lines	5	through	11,	which	have	time	stamps	10	seconds	later	than	the	first	three	lines,	show	the
Superfetch	service,	which	is	running	in	the	context	of	a	Svchost	process,	write	out	the	updated	prefetch	file.

To	minimize	seeking	even	further,	every	three	days	or	so,	during	system	idle
periods,	the	Superfetch	service	organizes	a	list	of	files	and	directories	in	the	order
that	they	are	referenced	during	a	boot	or	application	start	and	stores	the	list	in	a	file
named	%SystemRoot%\Prefetch\Layout.ini,	shown	in	Figure	10-49.	This	list	also
includes	frequently	accessed	files	tracked	by	Superfetch.



Figure	10-49.	Prefetch	defragmentation	layout	file

Then	it	launches	the	system	defragmenter	with	a	command-line	option	that	tells	the
defragmenter	to	defragment	based	on	the	contents	of	the	file	instead	of	performing
a	full	defrag.	The	defragmenter	finds	a	contiguous	area	on	each	volume	large
enough	to	hold	all	the	listed	files	and	directories	that	reside	on	that	volume	and
then	moves	them	in	their	entirety	into	the	area	so	that	they	are	stored	one	after	the
other.	Thus,	future	prefetch	operations	will	even	be	more	efficient	because	all	the
data	read	in	is	now	stored	physically	on	the	disk	in	the	order	it	will	be	read.
Because	the	files	defragmented	for	prefetching	usually	number	only	in	the
hundreds,	this	defragmentation	is	much	faster	than	full	volume	defragmentations.
(See	Chapter	12	for	more	information	on	defragmentation.)

Placement	Policy
When	a	thread	receives	a	page	fault,	the	memory	manager	must	also	determine
where	in	physical	memory	to	put	the	virtual	page.	The	set	of	rules	it	uses	to
determine	the	best	position	is	called	a	placement	policy.	Windows	considers	the
size	of	CPU	memory	caches	when	choosing	page	frames	to	minimize	unnecessary
thrashing	of	the	cache.

If	physical	memory	is	full	when	a	page	fault	occurs,	a	replacement	policy	is	used	to
determine	which	virtual	page	must	be	removed	from	memory	to	make	room	for
the	new	page.	Common	replacement	policies	include	least	recently	used	(LRU)	and



first	in,	first	out	(FIFO).	The	LRU	algorithm	(also	known	as	the	clock	algorithm,
as	implemented	in	most	versions	of	UNIX)	requires	the	virtual	memory	system	to
track	when	a	page	in	memory	is	used.	When	a	new	page	frame	is	required,	the
page	that	hasn’t	been	used	for	the	greatest	amount	of	time	is	removed	from	the
working	set.	The	FIFO	algorithm	is	somewhat	simpler;	it	removes	the	page	that
has	been	in	physical	memory	for	the	greatest	amount	of	time,	regardless	of	how
often	it’s	been	used.

Replacement	policies	can	be	further	characterized	as	either	global	or	local.	A
global	replacement	policy	allows	a	page	fault	to	be	satisfied	by	any	page	frame,
whether	or	not	that	frame	is	owned	by	another	process.	For	example,	a	global
replacement	policy	using	the	FIFO	algorithm	would	locate	the	page	that	has	been
in	memory	the	longest	and	would	free	it	to	satisfy	a	page	fault;	a	local	replacement
policy	would	limit	its	search	for	the	oldest	page	to	the	set	of	pages	already	owned
by	the	process	that	incurred	the	page	fault.	Global	replacement	policies	make
processes	vulnerable	to	the	behavior	of	other	processes—an	ill-behaved	application
can	undermine	the	entire	operating	system	by	inducing	excessive	paging	activity	in
all	processes.

Windows	implements	a	combination	of	local	and	global	replacement	policy.	When
a	working	set	reaches	its	limit	and/or	needs	to	be	trimmed	because	of	demands	for
physical	memory,	the	memory	manager	removes	pages	from	working	sets	until	it
has	determined	there	are	enough	free	pages.

Working	Set	Management
Every	process	starts	with	a	default	working	set	minimum	of	50	pages	and	a
working	set	maximum	of	345	pages.	Although	it	has	little	effect,	you	can	change
the	process	working	set	limits	with	the	Windows	SetProcessWorkingSetSize
function,	though	you	must	have	the	“increase	scheduling	priority”	user	right	to	do
this.	However,	unless	you	have	configured	the	process	to	use	hard	working	set
limits,	these	limits	are	ignored,	in	that	the	memory	manager	will	permit	a	process
to	grow	beyond	its	maximum	if	it	is	paging	heavily	and	there	is	ample	memory
(and	conversely,	the	memory	manager	will	shrink	a	process	below	its	working	set
minimum	if	it	is	not	paging	and	there	is	a	high	demand	for	physical	memory	on	the
system).	Hard	working	set	limits	can	be	set	using	the	SetProcessWorkingSetSizeEx



function	along	with	the	QUOTA_LIMITS_HARDWS_MIN_ENABLE	flag,	but	it
is	almost	always	better	to	let	the	system	manage	your	working	set	instead	of	setting
your	own	hard	working	set	minimums.

The	maximum	working	set	size	can’t	exceed	the	systemwide	maximum	calculated
at	system	initialization	time	and	stored	in	the	kernel	variable
MiMaximumWorkingSet,	which	is	a	hard	upper	limit	based	on	the	working	set
maximums	listed	in	Table	10-21.

Table	10-21.	Upper	Limit	for	Working	Set	Maximums

Windows	Version Working	Set	Maximum

x86 2,047.9	MB

x86	versions	of	Windows	booted	with
increaseuserva

2,047.9	MB+	user	virtual	address	increase
(MB)

IA64 7,152	GB

x64 8,192	GB

When	a	page	fault	occurs,	the	process’s	working	set	limits	and	the	amount	of	free
memory	on	the	system	are	examined.	If	conditions	permit,	the	memory	manager
allows	a	process	to	grow	to	its	working	set	maximum	(or	beyond	if	the	process
does	not	have	a	hard	working	set	limit	and	there	are	enough	free	pages	available).
However,	if	memory	is	tight,	Windows	replaces	rather	than	adds	pages	in	a
working	set	when	a	fault	occurs.

Although	Windows	attempts	to	keep	memory	available	by	writing	modified	pages
to	disk,	when	modified	pages	are	being	generated	at	a	very	high	rate,	more
memory	is	required	in	order	to	meet	memory	demands.	Therefore,	when	physical
memory	runs	low,	the	working	set	manager,	a	routine	that	runs	in	the	context	of
the	balance	set	manager	system	thread	(described	in	the	next	section),	initiates
automatic	working	set	trimming	to	increase	the	amount	of	free	memory	available
in	the	system.	(With	the	Windows	SetProcessWorkingSetSizeEx	function
mentioned	earlier,	you	can	also	initiate	working	set	trimming	of	your	own	process
—for	example,	after	process	initialization.)

The	working	set	manager	examines	available	memory	and	decides	which,	if	any,



working	sets	need	to	be	trimmed.	If	there	is	ample	memory,	the	working	set
manager	calculates	how	many	pages	could	be	removed	from	working	sets	if
needed.	If	trimming	is	needed,	it	looks	at	working	sets	that	are	above	their
minimum	setting.	It	also	dynamically	adjusts	the	rate	at	which	it	examines	working
sets	as	well	as	arranges	the	list	of	processes	that	are	candidates	to	be	trimmed	into
an	optimal	order.	For	example,	processes	with	many	pages	that	have	not	been
accessed	recently	are	examined	first;	larger	processes	that	have	been	idle	longer	are
considered	before	smaller	processes	that	are	running	more	often;	the	process
running	the	foreground	application	is	considered	last;	and	so	on.

When	it	finds	processes	using	more	than	their	minimums,	the	working	set	manager
looks	for	pages	to	remove	from	their	working	sets,	making	the	pages	available	for
other	uses.	If	the	amount	of	free	memory	is	still	too	low,	the	working	set	manager
continues	removing	pages	from	processes’	working	sets	until	it	achieves	a
minimum	number	of	free	pages	on	the	system.

The	working	set	manager	tries	to	remove	pages	that	haven’t	been	accessed	recently.
It	does	this	by	checking	the	accessed	bit	in	the	hardware	PTE	to	see	whether	the
page	has	been	accessed.	If	the	bit	is	clear,	the	page	is	aged,	that	is,	a	count	is
incremented	indicating	that	the	page	hasn’t	been	referenced	since	the	last	working
set	trim	scan.	Later,	the	age	of	pages	is	used	to	locate	candidate	pages	to	remove
from	the	working	set.

If	the	hardware	PTE	accessed	bit	is	set,	the	working	set	manager	clears	it	and	goes
on	to	examine	the	next	page	in	the	working	set.	In	this	way,	if	the	accessed	bit	is
clear	the	next	time	the	working	set	manager	examines	the	page,	it	knows	that	the
page	hasn’t	been	accessed	since	the	last	time	it	was	examined.	This	scan	for	pages
to	remove	continues	through	the	working	set	list	until	either	the	number	of	desired
pages	has	been	removed	or	the	scan	has	returned	to	the	starting	point.	(The	next
time	the	working	set	is	trimmed,	the	scan	picks	up	where	it	left	off	last.)

EXPERIMENT:	VIEWING	PROCESS	WORKING	SET	SIZES

You	can	use	Performance	Monitor	to	examine	process	working	set	sizes	by	looking	at	the	performance
counters	shown	in	the	following	table.

Counter Description

Process:	Working	Set Current	size	of	the	selected	process’s	working	set	in	bytes



Process:	Working	Set	Peak Peak	size	of	the	selected	process’s	working	set	in	bytes

Process:	Page	Faults/sec Number	of	page	faults	for	the	process	that	occur	each	second

Several	other	process	viewer	utilities	(such	as	Task	Manager	and	Process	Explorer)	also	display	the	process
working	set	size.

You	can	also	get	the	total	of	all	the	process	working	sets	by	selecting	the	_Total	process	in	the	instance	box
in	Performance	Monitor.	This	process	isn’t	real—it’s	simply	a	total	of	the	process-specific	counters	for	all
processes	currently	running	on	the	system.	The	total	you	see	is	larger	than	the	actual	RAM	being	used,
however,	because	the	size	of	each	process	working	set	includes	pages	being	shared	by	other	processes.
Thus,	if	two	or	more	processes	share	a	page,	the	page	is	counted	in	each	process’s	working	set.

EXPERIMENT:	WORKING	SET	VS.	VIRTUAL	SIZE

Earlier	in	this	chapter,	we	used	the	TestLimit	utility	to	create	two	processes,	one	with	a	large	amount	of
memory	that	was	merely	reserved,	and	the	other	in	which	the	memory	was	private	committed,	and
examined	the	difference	between	them	with	Process	Explorer.	Now	we	will	create	a	third	TestLimit	process,
one	that	not	only	commits	the	memory	but	also	accesses	it,	thus	bringing	it	into	its	working	set:

C:\temp>testlimit -d 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 700

Leaking private bytes 1 MB at a time...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

Now,	invoke	Process	Explorer.	Under	View,	Select	Columns,	choose	the	Process	Memory	tab	and	enable
the	Private	Bytes,	Virtual	Size,	Working	Set	Size,	WS	Shareable	Bytes,	and	WS	Private	Bytes	counters.
Then	find	the	three	instances	of	TestLimit	as	shown	in	the	display.

The	new	TestLimit	process	is	the	third	one	shown,	PID	700.	It	is	the	only	one	of	the	three	that	actually
referenced	the	memory	allocated,	so	it	is	the	only	one	with	a	working	set	that	reflects	the	size	of	the	test
allocation.

Note	that	this	result	is	possible	only	on	a	system	with	enough	RAM	to	allow	the	process	to	grow	to	such	a



size.	Even	on	this	system,	not	quite	all	of	the	private	bytes	(822,064	K)	are	in	the	WS	Private	portion	of	the
working	set.	A	small	number	of	the	private	pages	have	either	been	pushed	out	of	the	process	working	set
due	to	replacement	or	have	not	been	paged	in	yet.

EXPERIMENT:	VIEWING	THE	WORKING	SET	LIST	IN	THE	DEBUGGER

You	can	view	the	individual	entries	in	the	working	set	by	using	the	kernel	debugger	!wsle	command.	The
following	example	shows	a	partial	output	of	the	working	set	list	of	WinDbg.

lkd> !wsle 7

Working Set @ c0802000
    FirstFree     209c  FirstDynamic        6
    LastEntry     242e  NextSlot            6  LastInitialized     24b9
    NonDirect        0  HashTable           0  HashTableSize         0

Reading the WSLE data 
................................................................

Virtual Address           Age  Locked  ReferenceCount
        c0600203          0        1        1
        c0601203          0        1        1
        c0602203          0        1        1
        c0603203          0        1        1
        c0604213          0        1        1
        c0802203          0        1        1
         2865201          0        0        1
         1a6d201          0        0        1
          3f4201          0        0        1
        707ed101          0        0        1
         2d27201          0        0        1
         2d28201          0        0        1
        772f5101          0        0        1
         2d2a201          0        0        1
         2d2b201          0        0        1
         2d2c201          0        0        1
        779c3101          0        0        1
        c0002201          0        0        1
        7794f101          0        0        1
        7ffd1109          0        0        1
        7ffd2109          0        0        1
        7ffc0009          0        0        1
        7ffb0009          0        0        1
        77940101          0        0        1
        77944101          0        0        1
          112109          0        0        1
          320109          0        0        1
          322109          0        0        1
        77949101          0        0        1
          110109          0        0        1
        77930101          0        0        1
          111109          0        0        1

Notice	that	some	entries	in	the	working	set	list	are	page	table	pages	(the	ones	with	addresses	greater	than
0xC0000000),	some	are	from	system	DLLs	(the	ones	in	the	0x7nnnnnnn	range),	and	some	are	from	the
code	of	Windbg.exe	itself.



Balance	Set	Manager	and	Swapper
Working	set	expansion	and	trimming	take	place	in	the	context	of	a	system	thread
called	the	balance	set	manager	(routine	KeBalanceSetManager).	The	balance	set
manager	is	created	during	system	initialization.	Although	the	balance	set	manager
is	technically	part	of	the	kernel,	it	calls	the	memory	manager’s	working	set
manager	(MmWorkingSetManager)	to	perform	working	set	analysis	and
adjustment.

The	balance	set	manager	waits	for	two	different	event	objects:	an	event	that	is
signaled	when	a	periodic	timer	set	to	fire	once	per	second	expires	and	an	internal
working	set	manager	event	that	the	memory	manager	signals	at	various	points
when	it	determines	that	working	sets	need	to	be	adjusted.	For	example,	if	the
system	is	experiencing	a	high	page	fault	rate	or	the	free	list	is	too	small,	the
memory	manager	wakes	up	the	balance	set	manager	so	that	it	will	call	the	working
set	manager	to	begin	trimming	working	sets.	When	memory	is	more	plentiful,	the
working	set	manager	will	permit	faulting	processes	to	gradually	increase	the	size	of
their	working	sets	by	faulting	pages	back	into	memory,	but	the	working	sets	will
grow	only	as	needed.

When	the	balance	set	manager	wakes	up	as	the	result	of	its	1-second	timer
expiring,	it	takes	the	following	five	steps:

1.	 It	queues	a	DPC	associated	to	a	1-second	timer.	The	DPC	routine	is	the
KiScanReadyQueues	routine,	which	looks	for	threads	that	might	warrant
having	their	priority	boosted	because	they	are	CPU	starved.	(See	the	section
“Priority	Boosts	for	CPU	Starvation”	in	Chapter	5	in	Part	1.)

2.	 Every	fourth	time	the	balance	set	manager	wakes	up	because	its	1-second
timer	has	expired,	it	signals	an	event	that	wakes	up	another	system	thread
called	the	swapper	(KiSwapperThread)	(routine	KeSwapProcessOrStack).

3.	 The	balance	set	manager	then	checks	the	look-aside	lists	and	adjusts	their
depths	if	necessary	(to	improve	access	time	and	to	reduce	pool	usage	and
pool	fragmentation).

4.	 It	adjusts	IRP	credits	to	optimize	the	usage	of	the	per-processor	look-aside
lists	used	in	IRP	completion.	This	allows	better	scalability	when	certain
processors	are	under	heavy	I/O	load.



5.	 It	calls	the	memory	manager’s	working	set	manager.	(The	working	set
manager	has	its	own	internal	counters	that	regulate	when	to	perform	working
set	trimming	and	how	aggressively	to	trim.)

The	swapper	is	also	awakened	by	the	scheduling	code	in	the	kernel	if	a	thread	that
needs	to	run	has	its	kernel	stack	swapped	out	or	if	the	process	has	been	swapped
out.	The	swapper	looks	for	threads	that	have	been	in	a	wait	state	for	15	seconds	(or
3	seconds	on	a	system	with	less	than	12	MB	of	RAM).	If	it	finds	one,	it	puts	the
thread’s	kernel	stack	in	transition	(moving	the	pages	to	the	modified	or	standby
lists)	so	as	to	reclaim	its	physical	memory,	operating	on	the	principle	that	if	a
thread’s	been	waiting	that	long,	it’s	going	to	be	waiting	even	longer.	When	the	last
thread	in	a	process	has	its	kernel	stack	removed	from	memory,	the	process	is
marked	to	be	entirely	outswapped.	That’s	why,	for	example,	processes	that	have
been	idle	for	a	long	time	(such	as	Winlogon	is	after	you	log	on)	can	have	a	zero
working	set	size.

System	Working	Sets
Just	as	processes	have	working	sets	that	manage	pageable	portions	of	the	process
address	space,	the	pageable	code	and	data	in	the	system	address	space	is	managed
using	three	global	working	sets,	collectively	known	as	the	system	working	sets:

The	system	cache	working	set	(MmSystemCacheWs)	contains	pages	that	are
resident	in	the	system	cache.

The	paged	pool	working	set	(MmPagedPoolWs)	contains	pages	that	are
resident	in	the	paged	pool.

The	system	PTEs	working	set	(MmSystemPtesWs)	contains	pageable	code	and
data	from	loaded	drivers	and	the	kernel	image,	as	well	as	pages	from	sections
that	have	been	mapped	into	the	system	space.

You	can	examine	the	sizes	of	these	working	sets	or	the	sizes	of	the	components
that	contribute	to	them	with	the	performance	counters	or	system	variables	shown
in	Table	10-22.	Keep	in	mind	that	the	performance	counter	values	are	in	bytes,
whereas	the	system	variables	are	measured	in	terms	of	pages.

(You	can	also	examine	the	paging	activity	in	the	system	cache	working	set	by
examining	the	Memory:	Cache	Faults/sec	performance	counter,	which	describes



page	faults	that	occur	in	the	system	cache	working	set	(both	hard	and	soft).
MmSystemCacheWs.PageFaultCount	is	the	system	variable	that	contains	the	value
for	this	counter.

Table	10-22.	System	Working	Set	Performance	Counters

Performance	Counter
(in	Bytes)

System	Variable	(in
Pages)

Description

Memory:	Cache	Bytes,	also

Memory:	System	Cache
Resident	Bytes

MmSystemCacheWs.

WorkingSetSize

Physical	memory	consumed	by	the	file
system	cache.

Memory:	Cache	Bytes	Peak MmSystemCacheWs.Peak Peak	system	working	set	size.

Memory:	System	Driver
Resident	Bytes

MmSystemDriverPage Physical	memory	consumed	by	pageable
device	driver	code.

Memory:	Pool	Paged
Resident	Bytes

MmPagedPoolWs.

WorkingSetSize

Physical	memory	consumed	by	paged
pool.

Memory	Notification	Events
Windows	provides	a	way	for	user-mode	processes	and	kernel-mode	drivers	to	be
notified	when	physical	memory,	paged	pool,	nonpaged	pool,	and	commit	charge
are	low	and/or	plentiful.	This	information	can	be	used	to	determine	memory	usage
as	appropriate.	For	example,	if	available	memory	is	low,	the	application	can	reduce
memory	consumption.	If	available	paged	pool	is	high,	the	driver	can	allocate	more
memory.	Finally,	the	memory	manager	also	provides	an	event	that	permits
notification	when	corrupted	pages	have	been	detected.

User-mode	processes	can	be	notified	only	of	low	or	high	memory	conditions.	An
application	can	call	the	CreateMemoryResourceNotification	function,	specifying
whether	low	or	high	memory	notification	is	desired.	The	returned	handle	can	be
provided	to	any	of	the	wait	functions.	When	memory	is	low	(or	high),	the	wait
completes,	thus	notifying	the	thread	of	the	condition.	Alternatively,	the
QueryMemoryResourceNotification	can	be	used	to	query	the	system	memory
condition	at	any	time	without	blocking	the	calling	thread.

Drivers,	on	the	other	hand,	use	the	specific	event	name	that	the	memory	manager



has	set	up	in	the	\KernelObjects	directory,	since	notification	is	implemented	by	the
memory	manager	signaling	one	of	the	globally	named	event	objects	it	defines,
shown	in	Table	10-23.

Table	10-23.	Memory	Manager	Notification	Events

Event	Name Description

HighCommitCondition This	event	is	set	when	the	commit	charge	is	near	the	maximum
commit	limit.	In	other	words,	memory	usage	is	very	high,	very
little	space	is	available	in	physical	memory	or	paging	files,	and	the
operating	system	cannot	increase	the	size	of	its	paging	files.

HighMemoryCondition This	event	is	set	whenever	the	amount	of	free	physical	memory
exceeds	the	defined	amount.

HighNonPagedPoolCondition This	event	is	set	whenever	the	amount	of	nonpaged	pool	exceeds
the	defined	amount.

HighPagedPoolCondition This	event	is	set	whenever	the	amount	of	paged	pool	exceeds	the
defined	amount.

LowCommitCondition This	event	is	set	when	the	commit	charge	is	low,	relative	to	the
current	commit	limit.	In	other	words,	memory	usage	is	low	and	a
lot	of	space	is	available	in	physical	memory	or	paging	files.

LowMemoryCondition This	event	is	set	whenever	the	amount	of	free	physical	memory
falls	below	the	defined	amount.

LowNonPagedPoolCondition This	event	is	set	whenever	the	amount	of	free	nonpaged	pool	falls
below	the	defined	amount.

LowPagedPoolCondition This	event	is	set	whenever	the	amount	of	free	paged	pool	falls
below	the	defined	amount.

MaximumCommitCondition This	event	is	set	when	the	commit	charge	is	near	the	maximum
commit	limit.	In	other	words,	memory	usage	is	very	high,	very
little	space	is	available	in	physical	memory	or	paging	files,	and	the
operating	system	cannot	increase	the	size	or	number	of	paging
files.

MemoryErrors A	bad	page	(non-zeroed	zero	page)	has	been	detected.

When	a	given	memory	condition	is	detected,	the	appropriate	event	is	signaled,	thus
waking	up	any	waiting	threads.



NOTE

The	high	and	low	memory	values	can	be	overridden	by	adding	a	DWORD	registry	value,
LowMemoryThreshold	or	HighMemoryThreshold,	under	HKLM\SYSTEM\CurrentControlSet\Session
Manager\Memory	Management	that	specifies	the	number	of	megabytes	to	use	as	the	low	or	high	threshold.
The	system	can	also	be	configured	to	crash	the	system	when	a	bad	page	is	detected,	instead	of	signaling	a
memory	error	event,	by	setting	the	PageValidationAction	DWORD	registry	value	in	the	same	key.

EXPERIMENT:	VIEWING	THE	MEMORY	RESOURCE	NOTIFICATION	EVENTS

To	see	the	memory	resource	notification	events,	run	Winobj	from	Sysinternals	and	click	on	the
KernelObjects	folder.	You	will	see	both	the	low	and	high	memory	condition	events	shown	in	the	right	pane:

If	you	double-click	either	event,	you	can	see	how	many	handles	and/or	references	have	been	made	to	the
objects.

To	see	whether	any	processes	in	the	system	have	requested	memory	resource	notification,	search	the	handle
table	for	references	to	“LowMemoryCondition”	or	“HighMemoryCondition.”	You	can	do	this	by	using
Process	Explorer’s	Find	menu	and	choosing	the	Handle	capability	or	by	using	WinDbg.	(For	a	description
of	the	handle	table,	see	the	section	“Object	Manager”	in	Chapter	3	in	Part	1.)



Proactive	Memory	Management	(Superfetch)
Traditional	memory	management	in	operating	systems	has	focused	on	the	demand-
paging	model	we’ve	shown	until	now,	with	some	advances	in	clustering	and
prefetching	so	that	disk	I/Os	can	be	optimized	at	the	time	of	the	demand-page
fault.	Client	versions	of	Windows,	however,	include	a	significant	improvement	in
the	management	of	physical	memory	with	the	implementation	of	Superfetch,	a
memory	management	scheme	that	enhances	the	least-recently	accessed	approach
with	historical	file	access	information	and	proactive	memory	management.

The	standby	list	management	of	previous	Windows	versions	has	had	two
limitations.	First,	the	prioritization	of	pages	relies	only	on	the	recent	past	behavior
of	processes	and	does	not	anticipate	their	future	memory	requirements.	Second,
the	data	used	for	prioritization	is	limited	to	the	list	of	pages	owned	by	a	process	at
any	given	point	in	time.	These	shortcomings	can	result	in	scenarios	in	which	the
computer	is	left	unattended	for	a	brief	period	of	time,	during	which	a	memory-
intensive	system	application	runs	(doing	work	such	as	an	antivirus	scan	or	a	disk
defragmentation)	and	then	causes	subsequent	interactive	application	use	(or	launch)
to	be	sluggish.	The	same	situation	can	happen	when	a	user	purposely	runs	a	data
and/or	memory	intensive	application	and	then	returns	to	use	other	programs,	which
appear	to	be	significantly	less	responsive.

This	decline	in	performance	occurs	because	the	memory-intensive	application
forces	the	code	and	data	that	active	applications	had	cached	in	memory	to	be
overwritten	by	the	memory-intensive	activities—applications	perform	sluggishly	as
they	have	to	request	their	data	and	code	from	disk.	Client	versions	of	Windows
take	a	big	step	toward	resolving	these	limitations	with	Superfetch.

Components
Superfetch	is	composed	of	several	components	in	the	system	that	work	hand	in
hand	to	proactively	manage	memory	and	limit	the	impact	on	user	activity	when
Superfetch	is	performing	its	work.	These	components	include:

Tracer	The	tracer	mechanisms	are	part	of	a	kernel	component	(Pf)	that	allows
Superfetch	to	query	detailed	page	usage,	session,	and	process	information	at	any
time.	Superfetch	also	makes	use	of	the	FileInfo	driver



(%SystemRoot%\System32\Drivers\Fileinfo.sys)	to	track	file	usage.

Trace	collector	and	processor	This	collector	works	with	the	tracing
components	to	provide	a	raw	log	based	on	the	tracing	data	that	has	been
acquired.	This	tracing	data	is	kept	in	memory	and	handed	off	to	the	processor.
The	processor	then	hands	the	log	entries	in	the	trace	to	the	agents,	which
maintain	history	files	(described	next)	in	memory	and	persist	them	to	disk	when
the	service	stops	(such	as	during	a	reboot).

Agents	Superfetch	keeps	file	page	access	information	in	history	files,	which
keep	track	of	virtual	offsets.	Agents	group	pages	by	attributes,	such	as:

—	Page	access	while	the	user	was	active

—	Page	access	by	a	foreground	process

—	Hard	fault	while	the	user	was	active

—	Page	access	during	an	application	launch

—	Page	access	upon	the	user	returning	after	a	long	idle	period

Scenario	manager	This	component,	also	called	the	context	agent,	manages	the
three	Superfetch	scenario	plans:	hibernation,	standby,	and	fast-user	switching
The	kernel-mode	part	of	the	scenario	manager	provides	APIs	for	initiating	and
terminating	scenarios,	managing	current	scenario	state,	and	associating	tracing
information	with	these	scenarios.

Rebalancer	Based	on	the	information	provided	by	the	Superfetch	agents,	as
well	as	the	current	state	of	the	system	(such	as	the	state	of	the	prioritized	page
lists),	the	rebalancer,	a	specialized	agent	that	is	located	in	the	Superfetch	user-
mode	service,	queries	the	PFN	database	and	reprioritizes	it	based	on	the
associated	score	of	each	page,	thus	building	the	prioritized	standby	lists.	The
rebalancer	can	also	issue	commands	to	the	memory	manager	that	modify	the
working	sets	of	processes	on	the	system,	and	it	is	the	only	agent	that	actually
takes	action	on	the	system—other	agents	merely	filter	information	for	the
rebalancer	to	use	in	its	decisions.	Other	than	reprioritization,	the	rebalancer	also
initiates	prefetching	through	the	prefetcher	thread,	which	makes	use	of	FileInfo
and	kernel	services	to	preload	memory	with	useful	pages.

Finally,	all	these	components	make	use	of	facilities	inside	the	memory	manager



that	allow	querying	detailed	information	about	the	state	of	each	page	in	the	PFN
database,	the	current	page	counts	for	each	page	list	and	prioritized	list,	and	more.
Figure	10-50	displays	an	architectural	diagram	of	Superfetch’s	multiple
components.	Superfetch	components	also	make	use	of	prioritized	I/O	(see
Chapter	8	for	more	information	on	I/O	priority)	to	minimize	user	impact.

Figure	10-50.	Superfetch	architectural	diagram

Tracing	and	Logging
Superfetch	makes	most	of	its	decisions	based	on	information	that	has	been
integrated,	parsed,	and	post-processed	from	raw	traces	and	logs,	making	these	two



components	among	the	most	critical.	Tracing	is	similar	to	ETW	in	some	ways
because	it	makes	use	of	certain	triggers	in	code	throughout	the	system	to	generate
events,	but	it	also	works	in	conjunction	with	facilities	already	provided	by	the
system,	such	as	power	manager	notification,	process	callbacks,	and	file	system
filtering.	The	tracer	also	makes	use	of	traditional	page	aging	mechanisms	that	exist
in	the	memory	manager,	as	well	as	newer	working	set	aging	and	access	tracking
implemented	for	Superfetch.

Superfetch	always	keeps	a	trace	running	and	continuously	queries	trace	data	from
the	system,	which	tracks	page	usage	and	access	through	the	memory	manager’s
access	bit	tracking	and	working	set	aging.	To	track	file-related	information,	which
is	as	critical	as	page	usage	because	it	allows	prioritization	of	file	data	in	the	cache,
Superfetch	leverages	existing	filtering	functionality	with	the	addition	of	the
FileInfo	driver.	(See	Chapter	8	for	more	information	on	filter	drivers.)	This	driver
sits	on	the	file	system	device	stack	and	monitors	access	and	changes	to	files	at	the
stream	level	(for	more	information	on	NTFS	data	streams,	see	Chapter	12),	which
provides	it	with	fine-grained	understanding	of	file	access.	The	main	job	of	the
FileInfo	driver	is	to	associate	streams	(identified	by	a	unique	key,	currently
implemented	as	the	FsContext	field	of	the	respective	file	object)	with	file	names	so
that	the	user-mode	Superfetch	service	can	identify	the	specific	file	steam	and	offset
with	which	a	page	in	the	standby	list	belonging	to	a	memory	mapped	section	is
associated.	It	also	provides	the	interface	for	prefetching	file	data	transparently,
without	interfering	with	locked	files	and	other	file	system	state.	The	rest	of	the
driver	ensures	that	the	information	stays	consistent	by	tracking	deletions,	renaming
operations,	truncations,	and	the	reuse	of	file	keys	by	implementing	sequence
numbers.

At	any	time	during	tracing,	the	rebalancer	might	be	invoked	to	repopulate	pages
differently.	These	decisions	are	made	by	analyzing	information	such	as	the
distribution	of	memory	within	working	sets,	the	zero	page	list,	the	modified	page
list	and	the	standby	page	lists,	the	number	of	faults,	the	state	of	PTE	access	bits,	the
per-page	usage	traces,	current	virtual	address	consumption,	and	working	set	size.

A	given	trace	can	be	either	a	page	access	trace,	in	which	the	tracer	keeps	track	(by
using	the	access	bit)	of	which	pages	were	accessed	by	the	process	(both	file	page
and	private	memory),	or	a	name	logging	trace,	which	monitors	the	file-name-to-



file-key-mapping	updates	(which	allow	Superfetch	to	map	a	page	associated	with	a
file	object)	to	the	actual	file	on	disk.

Although	a	Superfetch	trace	only	keeps	track	of	page	accesses,	the	Superfetch
service	processes	this	trace	in	user	mode	and	goes	much	deeper,	adding	its	own
richer	information	such	as	where	the	page	was	loaded	from	(such	as	resident
memory	or	a	hard	page	fault),	whether	this	was	the	initial	access	to	that	page,	and
what	the	rate	of	page	access	actually	is.	Additional	information,	such	as	the	system
state,	is	also	kept,	as	well	as	information	about	in	which	recent	scenarios	each
traced	page	was	last	referenced.	The	generated	trace	information	is	kept	in	memory
through	a	logger	into	data	structures,	which	identify,	in	the	case	of	page	access
traces,	a	virtual-address-to-working-set	pair	or,	in	the	case	of	a	name	logging	trace,
a	file-to-offset	pair.	Superfetch	can	thus	keep	track	of	which	range	of	virtual
addresses	for	a	given	process	have	page-related	events	and	which	range	of	offsets
for	a	given	file	have	similar	events.

Scenarios
One	aspect	of	Superfetch	that	is	distinct	from	its	primary	page	repriorization	and
prefetching	mechanisms	(covered	in	more	detail	in	the	next	section)	is	its	support
for	scenarios,	which	are	specific	actions	on	the	machine	for	which	Superfetch
strives	to	improve	the	user	experience.	These	scenarios	are	standby	and	hibernation
as	well	as	fast	user	switching.	Each	of	these	scenarios	has	different	goals,	but	all
are	centered	around	the	main	purpose	of	minimizing	or	removing	hard	faults.

For	hibernation,	the	goal	is	to	intelligently	decide	which	pages	are	saved	in	the
hibernation	file	other	than	the	existing	working	set	pages.	The	goal	is	to
minimize	the	amount	of	time	that	it	takes	for	the	system	to	become	responsive
after	a	resume.

For	standby,	the	goal	is	to	completely	remove	hard	faults	after	resume.	Because
a	typical	system	can	resume	in	less	than	2	seconds,	but	can	take	5	seconds	to
spin-up	the	hard	drive	after	a	long	sleep,	a	single	hard	fault	could	cause	such	a
delay	in	the	resume	cycle.	Superfetch	prioritizes	pages	needed	after	a	standby	to
remove	this	chance.

For	fast	user	switching,	the	goal	is	to	keep	an	accurate	priority	and
understanding	of	each	user’s	memory,	so	that	switching	to	another	user	will



cause	the	user’s	session	to	be	immediately	usable,	and	not	require	a	large
amount	of	lag	time	to	allow	pages	to	be	faulted	in.

Scenarios	are	hardcoded,	and	Superfetch	manages	them	through	the
NtSetSystemInformation	and	NtQuerySystemInformation	APIs	that	control	system
state.	For	Superfetch	purposes,	a	special	information	class,
SystemSuperfetchInformation,	is	used	to	control	the	kernel-mode	components	and
to	generate	requests	such	as	starting,	ending,	and	querying	a	scenario	or	associating
one	or	more	traces	with	a	scenario.

Each	scenario	is	defined	by	a	plan	file,	which	contains,	at	minimum,	a	list	of	pages
associated	with	the	scenario.	Page	priority	values	are	also	assigned	according	to
certain	rules	we’ll	describe	next.	When	a	scenario	starts,	the	scenario	manager	is
responsible	for	responding	to	the	event	by	generating	the	list	of	pages	that	should
be	brought	into	memory	and	at	which	priority.

Page	Priority	and	Rebalancing
We’ve	already	seen	that	the	memory	manager	implements	a	system	of	page
priorities	to	define	from	which	standby	list	pages	will	be	repurposed	for	a	given
operation	and	in	which	list	a	given	page	will	be	inserted.	This	mechanism	provides
benefits	when	processes	and	threads	can	have	associated	priorities—such	that	a
defragmenter	process	doesn’t	pollute	the	standby	page	list	and/or	steal	pages	from
an	interactive,	foreground	process—but	its	real	power	is	unleashed	through
Superfetch’s	page	prioritization	schemes	and	rebalancing,	which	don’t	require
manual	application	input	or	hardcoded	knowledge	of	process	importance.

Superfetch	assigns	page	priority	based	on	an	internal	score	it	keeps	for	each	page,
part	of	which	is	based	on	frequency-based	usage.	This	usage	counts	how	many
times	a	page	was	used	in	given	relative	time	intervals,	such	as	an	hour,	a	day,	or	a
week.	Time	of	use	is	also	kept	track	of,	which	records	for	how	long	a	given	page
has	not	been	accessed.	Finally,	data	such	as	where	this	page	comes	from	(which
list)	and	other	access	patterns	are	used	to	compute	this	final	score,	which	is	then
translated	into	a	priority	number,	which	can	be	anywhere	from	1	to	6	(7	is	used	for
another	purpose	described	later).	Going	down	each	level,	the	lower	standby	page
list	priorities	are	repurposed	first,	as	shown	in	the	Experiment	EXPERIMENT:
Viewing	the	Prioritized	Standby	Lists.	Priority	5	is	typically	used	for	normal



applications,	while	priority	1	is	meant	for	background	applications	that	third-party
developers	can	mark	as	such.	Finally,	priority	6	is	used	to	keep	a	certain	number	of
high-importance	pages	as	far	away	as	possible	from	repurposing.	The	other
priorities	are	a	result	of	the	score	associated	with	each	page.

Because	Superfetch	“learns”	a	user’s	system,	it	can	start	from	scratch	with	no
existing	historical	data	and	slowly	build	up	an	understanding	of	the	different	page
usage	accesses	associated	with	the	user.	However,	this	would	result	in	a	significant
learning	curve	whenever	a	new	application,	user,	or	service	pack	was	installed.
Instead,	by	using	an	internal	tool,	Microsoft	has	the	ability	to	pretrain	Superfetch	to
capture	Superfetch	data	and	then	turn	it	into	prebuilt	traces.	Before	Windows
shipped,	the	Superfetch	team	traced	common	usages	and	patterns	that	all	users	will
probably	encounter,	such	as	clicking	the	Start	menu,	opening	Control	Panel,	or
using	the	File	Open/Save	dialog	box.	This	trace	data	was	then	saved	to	history	files
(which	ship	as	resources	in	Sysmain.dll)	and	is	used	to	prepopulate	the	special
priority	7	list,	which	is	where	the	most	critical	data	is	placed	and	which	is	very
rarely	repurposed.	Pages	at	priority	7	are	file	pages	kept	in	memory	even	after	the
process	has	exited	and	even	across	reboots	(by	being	repopulated	at	the	next	boot).
Finally,	pages	with	priority	7	are	static,	in	that	they	are	never	reprioritized,	and
Superfetch	will	never	dynamically	load	pages	at	priority	7	other	than	the	static
pretrained	set.

The	prioritized	list	is	loaded	into	memory	(or	prepopulated)	by	the	rebalancer,	but
the	actual	act	of	rebalancing	is	actually	handled	by	both	Superfetch	and	the
memory	manager.	As	shown	earlier,	the	prioritized	standby	page	list	mechanism	is
internal	to	the	memory	manager,	and	decisions	as	to	which	pages	to	throw	out	first
and	which	to	protect	are	innate,	based	on	the	priority	number.	The	rebalancer
actually	does	its	job	not	by	manually	rebalancing	memory	but	by	reprioritizing	it,
which	will	cause	the	operation	of	the	memory	manager	to	perform	the	needed
tasks.	The	rebalancer	is	also	responsible	for	reading	the	actual	pages	from	disk,	if
needed,	so	that	they	are	present	in	memory	(prefetching).	It	then	assigns	the
priority	that	is	mapped	by	each	agent	to	the	score	for	each	page,	and	the	memory
manager	will	then	ensure	that	the	page	is	treated	according	to	its	importance.

The	rebalancer	can	also	take	action	without	relying	on	other	agents;	for	example,	if
it	notices	that	the	distribution	of	pages	across	paging	lists	is	suboptimal	or	that	the



number	of	repurposed	pages	across	different	priority	levels	is	detrimental.	The
rebalancer	also	has	the	ability	to	cause	working	set	trimming	if	needed,	which
might	be	required	for	creating	an	appropriate	budget	of	pages	that	will	be	used	for
Superfetch	prepopulated	cache	data.	The	rebalancer	will	typically	take	low-utility
pages—such	as	those	that	are	already	marked	as	low	priority,	pages	that	are
zeroed,	and	pages	with	valid	contents	but	not	in	any	working	set	and	have	been
unused—and	build	a	more	useful	set	of	pages	in	memory,	given	the	budget	it	has
allocated	itself.

Once	the	rebalancer	has	decided	which	pages	to	bring	into	memory	and	at	which
priority	level	they	need	to	be	loaded	(as	well	as	which	pages	can	be	thrown	out),	it
performs	the	required	disk	reads	to	prefetch	them.	It	also	works	in	conjunction
with	the	I/O	manager’s	prioritization	schemes	so	that	the	I/Os	are	performed	with
very	low	priority	and	do	not	interfere	with	the	user.	It	is	important	to	note	that	the
actual	memory	consumption	used	by	prefetching	is	all	backed	by	standby	pages—
as	described	earlier	in	the	discussion	of	page	dynamics,	standby	memory	is
available	memory	because	it	can	be	repurposed	as	free	memory	for	another
allocator	at	any	time.	In	other	words,	if	Superfetch	is	prefetching	the	“wrong	data,”
there	is	no	real	impact	to	the	user,	because	that	memory	can	be	reused	when
needed	and	doesn’t	actually	consume	resources.

Finally,	the	rebalancer	also	runs	periodically	to	ensure	that	pages	it	has	marked	as
high	priority	have	actually	been	recently	used.	Because	these	pages	will	rarely
(sometimes	never)	be	repurposed,	it	is	important	not	to	waste	them	on	data	that	is
rarely	accessed	but	may	have	appeared	to	be	frequently	accessed	during	a	certain
time	period.	If	such	a	situation	is	detected,	the	rebalancer	runs	again	to	push	those
pages	down	in	the	priority	lists.

In	addition	to	the	rebalancer,	a	special	agent	called	the	application	launch	agent	is
also	involved	in	a	different	kind	of	prefetching	mechanism,	which	attempts	to
predict	application	launches	and	builds	a	Markov	chain	model	that	describes	the
probability	of	certain	application	launches	given	the	existence	of	other	application
launches	within	a	time	segment.	These	time	segments	are	divided	across	four
different	periods—morning,	noon,	evening,	and	night;	roughly	6	hours	each—and
are	also	kept	track	of	separately	as	weekdays	or	weekends.	For	example,	if	on
Saturday	and	Sunday	evening	a	user	typically	launches	Outlook	(to	send	email)



after	having	launched	Word	(to	write	letters),	the	application	launch	agent	will
probably	have	prefetched	Outlook	based	on	the	high	probability	of	it	running	after
Word	during	weekend	evenings.

Because	systems	today	have	sufficiently	large	amounts	of	memory,	on	average
more	than	2	GB	(although	Superfetch	works	well	on	low-memory	systems,	too),
the	actual	real	amount	of	memory	that	frequently	used	processes	on	a	machine
need	resident	for	optimal	performance	ends	up	being	a	manageable	subset	of	their
entire	memory	footprint,	and	Superfetch	can	often	fit	all	the	pages	required	into
RAM.	When	it	can’t,	technologies	such	as	ReadyBoost	and	ReadyDrive	can	further
avoid	disk	usage.

Robust	Performance
A	final	performance	enhancing	functionality	of	Superfetch	is	called	robustness,	or
robust	performance.	This	component,	managed	by	the	user-mode	Superfetch
service,	but	ultimately	implemented	in	the	kernel	(Pf	routines),	watches	for	specific
file	I/O	access	that	might	harm	system	performance	by	populating	the	standby	lists
with	unneeded	data.	For	example,	if	a	process	were	to	copy	a	large	file	across	the
file	system,	the	standby	list	would	be	populated	with	the	file’s	contents,	even
though	that	file	might	never	be	accessed	again	(or	not	for	a	long	period	of	time).
This	would	throw	out	any	other	data	within	that	priority	(and	if	this	was	an
interactive	and	useful	program,	chances	are	its	priority	would’ve	been	at	least	5).

Superfetch	responds	to	two	specific	kinds	of	I/O	access	patterns:	sequential	file
access	(going	through	all	the	data	in	a	file)	and	sequential	directory	access	(going
through	every	file	in	a	directory).	When	Superfetch	detects	that	a	certain	amount
of	data	(past	an	internal	threshold)	has	been	populated	in	the	standby	list	as	a	result
of	this	kind	of	access,	it	applies	aggressive	deprioritization	(robustion)	to	the	pages
being	used	to	map	this	file,	within	the	targeted	process	only	(so	as	not	to	penalize
other	applications).	These	pages,	so-called	robusted,	essentially	become
reprioritized	to	priority	2.

Because	this	component	of	Superfetch	is	reactive	and	not	predictive,	it	does	take
some	time	for	the	robustion	to	kick	in.	Superfetch	will	therefore	keep	track	of	this
process	for	the	next	time	it	runs.	Once	Superfetch	has	determined	that	it	appears
that	this	process	always	performs	this	kind	of	sequential	access,	Superfetch



remembers	it	and	robusts	the	file	pages	as	soon	as	they’re	mapped,	instead	of
waiting	on	the	reactive	behavior.	At	this	point,	the	entire	process	is	now	considered
robusted	for	future	file	access.

Just	by	applying	this	logic,	however,	Superfetch	could	potentially	hurt	many
legitimate	applications	or	user	scenarios	that	perform	sequential	access	in	the
future.	For	example,	by	using	the	Sysinternals	Strings.exe	utility,	you	can	look	for	a
string	in	all	executables	that	are	part	of	a	directory.	If	there	are	many	files,
Superfetch	would	likely	perform	robustion.	Now,	next	time	you	run	Strings	with	a
different	search	parameter,	it	would	run	just	as	slowly	as	it	did	the	first	time,	even
though	you’d	expect	it	to	run	much	faster.	To	prevent	this,	Superfetch	keeps	a	list	of
processes	that	it	watches	into	the	future,	as	well	as	an	internal	hardcoded	list	of
exceptions.	If	a	process	is	detected	to	later	re-access	robusted	files,	robustion	is
disabled	on	the	process	in	order	to	restore	expected	behavior.

The	main	point	to	remember	when	thinking	about	robustion,	and	Superfetch
optimizations	in	general,	is	that	Superfetch	constantly	monitors	usage	patterns	and
updates	its	understanding	of	the	system,	so	that	it	can	avoid	fetching	useless	data.
Although	changes	in	a	user’s	daily	activities	or	application	startup	behavior	might
cause	Superfetch	to	incorrectly	“pollute”	the	cache	with	irrelevant	data	or	to	throw
out	data	that	Superfetch	might	think	is	useless,	it	will	quickly	adapt	to	any	pattern
changes.	If	the	user’s	actions	are	erratic	and	random,	the	worst	that	can	happen	is
that	the	system	behaves	in	a	similar	state	as	if	Superfetch	was	not	present	at	all.	If
Superfetch	is	ever	in	doubt	or	cannot	track	data	reliably,	it	quiets	itself	and	doesn’t
make	changes	to	a	given	process	or	page.

RAM	OPTIMIZATION	SOFTWARE

While	Superfetch	provides	valuable	and	realistic	optimization	of	memory	usage	for	the	various	scenarios	it
aims	to	support,	many	third-party	software	manufacturers	are	involved	in	the	distribution	of	so-called
“RAM	Optimization”	software,	which	aims	to	significantly	increase	available	memory	on	a	user’s	system.
These	memory	optimizers	typically	present	a	user	interface	that	shows	a	graph	labeled	“Available	Memory,”
and	a	line	typically	shows	the	amount	of	memory	that	the	optimizer	will	try	to	free	when	it	runs.	After	the
optimization	job	runs,	the	utility’s	available	memory	counter	often	goes	up,	sometimes	dramatically,
implying	that	the	tool	is	actually	freeing	up	memory	for	application	use.	RAM	optimizers	work	by
allocating	and	then	freeing	large	amounts	of	virtual	memory.	The	following	illustration	shows	the	effect	a
RAM	optimizer	has	on	a	system.



The	Before	bar	depicts	the	process	and	system	working	sets,	the	pages	in	standby	lists,	and	free	memory
before	optimization.	The	During	bar	shows	that	the	RAM	optimizer	creates	a	high	memory	demand,	which
it	does	by	incurring	many	page	faults	in	a	short	time.	In	response,	the	memory	manager	increases	the	RAM
optimizer’s	working	set.	This	working-set	expansion	occurs	at	the	expense	of	free	memory,	followed	by
standby	pages	and—when	available	memory	becomes	low—at	the	expense	of	other	process	working	sets.
The	After	bar	illustrates	how,	after	the	RAM	optimizer	frees	its	memory,	the	memory	manager	moves	all
the	pages	that	were	assigned	to	the	RAM	optimizer	to	the	free	page	list	(which	ultimately	get	zeroed	by	the
zero	page	thread	and	moved	to	the	zeroed	page	list),	thus	contributing	to	the	free	memory	value.

Although	gaining	more	free	memory	might	seem	like	a	good	thing,	gaining	free	memory	in	this	way	is	not.
As	RAM	optimizers	force	the	available	memory	counter	up,	they	force	other	processes’	data	and	code	out
of	memory.	If	you’re	running	Microsoft	Word,	for	example,	the	text	of	open	documents	and	the	program
code	that	was	part	of	Word’s	working	set	before	the	optimization	(and	was	therefore	present	in	physical
memory)	must	be	reread	from	disk	as	you	continue	to	edit	your	document.	Additionally,	by	depleting	the
standby	lists,	valuable	cached	data	is	lost,	including	much	of	Superfetch’s	cache.	The	performance
degradation	can	be	especially	severe	on	servers,	where	the	trimming	of	the	system	working	set	causes
cached	file	data	in	physical	memory	to	be	thrown	out,	causing	hard	faults	the	next	time	it	is	accessed.

ReadyBoost
Although	RAM	today	is	somewhat	easily	available	and	relatively	cheap	compared
to	a	decade	ago,	it	still	doesn’t	beat	the	cost	of	secondary	storage	such	as	hard	disk
drives.	Unfortunately,	hard	disks	today	contain	many	moving	parts,	are	fragile,	and,
more	importantly,	relatively	slow	compared	to	RAM,	especially	during	seeking,	so
storing	active	Superfetch	data	on	the	drive	would	be	as	bad	as	paging	out	a	page
and	hard	faulting	it	inside	memory.	(Solid	state	disks	offset	some	of	these
disadvantages,	but	they	are	pricier	and	still	slow	compared	to	RAM.)	On	the	other
hand,	portable	solid	state	media	such	as	USB	flash	disk	(UFD),	CompactFlash
cards,	and	Secure	Digital	cards	provide	a	useful	compromise.	(In	practice,
CompactFlash	cards	and	Secure	Digital	cards	are	almost	always	interfaced	through



a	USB	adapter,	so	they	all	appear	to	the	system	as	USB	flash	disks.)	They	are
cheaper	than	RAM	and	available	in	larger	sizes,	but	they	also	have	seek	times
much	shorter	than	hard	drives	because	of	the	lack	of	moving	parts.

Random	disk	I/O	is	especially	expensive	because	disk	head	seek	time	plus
rotational	latency	for	typical	desktop	hard	drives	total	about	13	milliseconds—an
eternity	for	today’s	3-GHz	processors.	Flash	memory,	however,	can	service	random
reads	up	to	10	times	faster	than	a	typical	hard	disk.	Windows	therefore	includes	a
feature	called	ReadyBoost	to	take	advantage	of	flash	memory	storage	devices	by
creating	an	intermediate	caching	layer	on	them	that	logically	sits	between	memory
and	disks.

ReadyBoost	is	implemented	with	the	aid	of	a	driver
(%SystemRoot%\System32\Drivers\Rdyboost.sys)	that	is	responsible	for	writing
the	cached	data	to	the	NVRAM	device.	When	you	insert	a	USB	flash	disk	into	a
system,	ReadyBoost	looks	at	the	device	to	determine	its	performance
characteristics	and	stores	the	results	of	its	test	in
HKLM\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\Emdmgmt,	as
shown	in	Figure	10-51.	(Emd	is	short	for	External	Memory	Device,	the	working
name	for	ReadyBoost	during	its	development.)

Figure	10-51.	ReadyBoost	device	test	results	in	the	registry

If	the	new	device	is	between	256	MB	and	32	GB	in	size,	has	a	transfer	rate	of	2.5
MB	per	second	or	higher	for	random	4-KB	reads,	and	has	a	transfer	rate	of	1.75
MB	per	second	or	higher	for	random	512-KB	writes,	then	ReadyBoost	will	ask	if
you’d	like	to	dedicate	some	of	the	space	for	disk	caching.	If	you	agree,	ReadyBoost



creates	a	file	named	ReadyBoost.sfcache	in	the	root	of	the	device,	which	it	will	use
to	store	cached	pages.

After	initializing	caching,	ReadyBoost	intercepts	all	reads	and	writes	to	local	hard
disk	volumes	(C:\,	for	example)	and	copies	any	data	being	read	or	written	into	the
caching	file	that	the	service	created.	There	are	exceptions	such	as	data	that	hasn’t
been	read	in	a	long	while,	or	data	that	belongs	to	Volume	Snapshot	requests.	Data
stored	on	the	cached	drive	is	compressed	and	typically	achieves	a	2:1	compression
ratio,	so	a	4-GB	cache	file	will	usually	contain	8	GB	of	data.	Each	block	is
encrypted	as	it	is	written	using	Advanced	Encryption	Standard	(AES)	encryption
with	a	randomly	generated	per-boot	session	key	in	order	to	guarantee	the	privacy
of	the	data	in	the	cache	if	the	device	is	removed	from	the	system.

When	ReadyBoost	sees	random	reads	that	can	be	satisfied	from	the	cache,	it
services	them	from	there,	but	because	hard	disks	have	better	sequential	read	access
than	flash	memory,	it	lets	reads	that	are	part	of	sequential	access	patterns	go
directly	to	the	disk	even	if	the	data	is	in	the	cache.	Likewise,	when	reading	the
cache,	if	large	I/Os	have	to	be	done,	the	on-disk	cache	will	be	read	instead.

One	disadvantage	of	depending	on	flash	media	is	that	the	user	can	remove	it	at	any
time,	which	means	the	system	can	never	solely	store	critical	data	on	the	media	(as
we’ve	seen,	writes	always	go	to	the	secondary	storage	first).	A	related	technology,
ReadyDrive,	covered	in	the	next	section,	offers	additional	benefits	and	solves	this
problem.

ReadyDrive
ReadyDrive	is	a	Windows	feature	that	takes	advantage	of	hybrid	hard	disk	drives
(H-HDDs).	An	H-HDD	is	a	disk	with	embedded	 nonvolatile	flash	memory	(also
known	as	NVRAM).	Typical	H-HDDs	include	between	50	MB	and	512	MB	of
cache,	but	the	Windows	cache	limit	is	2	TB.

Under	ReadyDrive,	the	drive’s	flash	memory	does	not	simply	act	as	an	automatic,
transparent	cache,	as	does	the	RAM	cache	common	on	most	hard	drives.	Instead,
Windows	uses	ATA-8	commands	to	define	the	disk	data	to	be	held	in	the	flash
memory.	For	example,	Windows	will	save	boot	data	to	the	cache	when	the	system
shuts	down,	allowing	for	faster	restarting.	It	also	stores	portions	of	hibernation	file
data	in	the	cache	when	the	system	hibernates	so	that	the	subsequent	resume	is



faster.	Because	the	cache	is	enabled	even	when	the	disk	is	spun	down,	Windows
can	use	the	flash	memory	as	a	disk-write	cache,	which	avoids	spinning	up	the	disk
when	the	system	is	running	on	battery	power.	Keeping	the	disk	spindle	turned	off
can	save	much	of	the	power	consumed	by	the	disk	drive	under	normal	usage.

Another	consumer	of	ReadyDrive	is	Superfetch,	since	it	offers	the	same
advantages	as	ReadyBoost	with	some	enhanced	functionality,	such	as	not	requiring
an	external	flash	device	and	having	the	ability	to	work	persistently.	Because	the
cache	is	on	the	actual	physical	hard	drive	(which	typically	a	user	cannot	remove
while	the	computer	is	running),	the	hard	drive	controller	typically	doesn’t	have	to
worry	about	the	data	disappearing	and	can	avoid	making	writes	to	the	actual	disk,
using	solely	the	cache.

Unified	Caching
For	simplicity,	we	have	described	the	conceptual	functionality	of	Superfetch,
ReadyBoost,	and	ReadyDrive	independently.	Their	storage	allocation	and	content
tracking	functions,	however,	are	implemented	in	unified	code	in	the	operating
system	and	are	integrated	with	each	other.	This	unified	caching	mechanism	is	often
referred	to	as	the	Store	Manager,	although	the	Store	Manager	is	really	only	one
component.

Unified	caching	was	developed	to	take	advantage	of	the	characteristics	of	the
various	types	of	storage	hardware	that	might	exist	on	a	system.	For	example,
Superfetch	can	use	either	the	flash	memory	of	a	hybrid	hard	disk	drive	(if
available)	or	a	USB	flash	disk	(if	available)	instead	of	using	system	RAM.	Since	an
H-HDD’s	flash	memory	can	be	better	expected	to	be	preserved	across	system
shutdown	and	bootstrap	cycles,	it	would	be	preferable	for	cache	data	that	could
help	optimize	boot	times,	while	system	RAM	might	be	a	better	choice	for	other
data.	(In	addition	to	optimizing	boot	times,	a	hybrid	hard	disk	drive’s	NVRAM,	if
present,	is	generally	preferred	as	a	cache	location	to	a	UFD.	A	UFD	may	be
unplugged	at	any	time,	hence	disappearing;	thus	cache	on	a	UFD	must	always	be
handled	as	write-through	to	the	actual	hard	drive.	The	NVRAM	in	an	H-HDD	can
be	allowed	to	work	in	write-back	mode	because	it	is	not	going	to	disappear	unless
the	hard	drive	itself	also	disappears.)

The	overall	architecture	of	the	unified	caching	mechanism	is	shown	in	Figure	10-



52.

Figure	10-52.	Architecture	of	the	unified	caching	mechanism

The	fundamental	component	that	implements	caching	is	called	a	“store.”	Each
store	implements	the	functions	of	adding	data	to	the	backing	storage	(which	may
be	in	system	RAM	or	in	NVRAM),	reading	data	from	it,	or	removing	data	from	it.

All	data	in	a	store	is	managed	in	terms	of	store	pages	(often	called	simply	pages).
The	size	of	a	store	page	is	the	system’s	physical	and	virtual	memory	page	size	(4
KB,	or	8KB	on	Itanium	platforms),	regardless	of	the	“block	size”	(sometimes
called	“sector	size”)	presented	by	the	underlying	storage	device.	This	allows	store
pages	to	be	mapped	and	moved	efficiently	between	the	store,	system	RAM,	and
page	files	(which	have	always	been	organized	in	blocks	of	the	same	size).	The
recent	move	toward	“advanced	format”	hard	drives,	which	export	a	block	size	of	4
KB,	is	a	good	fit	for	this	approach.	Store	pages	within	a	store	are	identified	by
“store	keys,”	whose	interpretation	is	up	to	the	individual	store.

When	writing	to	a	store,	the	store	is	responsible	for	buffering	data	so	that	the	I/O
to	the	actual	storage	device	uses	large	buffers.	This	improves	performance,	as



NVRAM	devices	as	well	as	physical	hard	drives	perform	poorly	with	small
random	writes.	The	store	may	also	perform	compression	and	encryption	before
writing	to	the	storage	device.

The	Store	Manager	component	manages	all	of	the	stores	and	their	contents.	It	is
implemented	as	a	component	of	the	Superfetch	service	in	Sysmain.dll,	a	set	of
executive	services	(SmXxx,	such	as	SmPageRead)	within	Ntoskrnl.exe,	and	a	filter
driver	in	the	disk	storage	stack,	Storemgr.sys.	Logically,	it	operates	at	the	level	just
above	all	of	the	stores.	Only	the	Store	Manager	communicates	with	stores;	all	other
components	interact	with	the	Store	Manager.	Requests	to	the	Store	Manager	look
much	like	requests	from	the	Store	Manager	to	a	store:	requests	to	store	data,
retrieve	data,	or	remove	data	from	a	store.	Requests	to	the	Store	Manager	to	store
data,	however,	include	a	parameter	indicating	which	stores	are	to	be	written	to.

The	Store	Manager	keeps	track	of	which	stores	contain	each	cached	page.	If	a
cached	page	is	in	one	or	more	stores,	requests	to	retrieve	that	page	are	routed	by
the	Store	Manager	to	one	store	or	another	according	to	which	stores	are	the	fastest
or	the	least	busy.

The	Store	Manager	categorizes	stores	in	the	following	ways.	First,	a	store	may
reside	in	system	RAM	or	in	some	form	of	nonvolatile	RAM	(either	a	UFD	or	the
NVRAM	of	an	H-HDD).	Second,	NVRAM	stores	are	further	divided	into
“virtual”	and	“physical”	portions,	while	a	store	in	system	RAM	acts	only	as	a
virtual	store.

Virtual	stores	contain	only	page-file-backed	information,	including	process-private
memory	and	page-file-backed	sections.	Physical	caches	contain	pages	from	disk,
with	the	exception	that	physical	caches	never	contain	pages	from	page	files.	A	store
in	system	RAM	can,	however,	contain	pages	from	page	files.

Physical	caches	are	further	divided	into	“static”	and	“volatile”	(or	“dynamic”)
regions.	The	contents	of	the	static	region	are	completely	determined	by	the	user-
mode	Store	Manager	service.	The	Store	Manager	uses	logs	of	historical	access	to
data	to	populate	the	static	region.	The	volatile	or	dynamic	region	of	each	store,	on
the	other	hand,	populates	itself	based	on	read	and	write	requests	that	pass	through
the	disk	storage	stack,	much	in	the	manner	of	the	automatic	RAM	cache	on	a
traditional	hard	drive.	Stores	that	implement	a	dynamic	region	are	responsible	for
reporting	to	the	Store	Manager	any	such	automatically	cached	(and	dropped)



contents.

This	section	has	provided	a	brief	description	of	the	organization	and	operation	of
the	unified	caching	mechanism.	As	of	this	writing,	there	are	no	Performance
Monitor	counters	or	other	means	in	the	operating	system	to	measure	the
mechanism’s	operation,	other	than	the	counters	under	the	Cache	object,	which	long
predate	the	Store	Manager.

Process	Reflection
There	are	often	cases	where	a	process	exhibits	problematic	behavior,	but	because
it’s	still	providing	service,	suspending	it	to	generate	a	full	memory	dump	or
interactively	debug	it	is	undesirable.	The	length	of	time	a	process	is	suspended	to
generate	a	dump	can	be	minimized	by	taking	a	minidump,	which	captures	thread
registers	and	stacks	along	with	pages	of	memory	referenced	by	registers,	but	that
dump	type	has	a	very	limited	amount	of	information,	which	many	times	is
sufficient	for	diagnosing	crashes	but	not	for	troubleshooting	general	problems.
With	process	reflection,	the	target	process	is	suspended	only	long	enough	to
generate	a	minidump	and	create	a	suspended	cloned	copy	of	the	target,	and	then
the	larger	dump	that	captures	all	of	a	process’s	valid	user-mode	memory	can	be
generated	from	the	clone	while	the	target	is	allowed	to	continue	executing.

Several	Windows	Diagnostic	Infrastructure	(WDI)	components	make	use	of
process	reflection	to	capture	minimally	intrusive	memory	dumps	of	processes	their
heuristics	identify	as	exhibiting	suspicious	behavior.	For	example,	the	Memory
Leak	Diagnoser	component	of	Windows	Resource	Exhaustion	Detection	and
Resolution	(also	known	as	RADAR),	generates	a	reflected	memory	dump	of	a
process	that	appears	to	be	leaking	private	virtual	memory	so	that	it	can	be	sent	to
Microsoft	via	Windows	Error	Reporting	(WER)	for	analysis.	WDI’s	hung	process
detection	heuristic	does	the	same	for	processes	that	appear	to	be	deadlocked	with
one	another.	Because	these	components	use	heuristics,	they	can’t	be	certain	the
processes	are	faulty	and	therefore	can’t	suspend	them	for	long	periods	of	time	or
terminate	them.

Process	reflection’s	implementation	is	driven	by	the	RtlCreateProcessReflection
function	in	Ntdll.dll.	Its	first	step	is	to	create	a	shared	memory	section,	populate	it
with	parameters,	and	map	it	into	the	current	and	target	processes.	It	then	creates



two	event	objects	and	duplicates	them	into	the	target	process	so	that	the	current
process	and	target	process	can	synchronize	their	operations.	Next,	it	injects	a	thread
into	the	target	process	via	a	call	to	RtlpCreateUserThreadEx.	The	thread	is	directed
to	begin	execution	in	Ntdll’s	RtlpProcessReflectionStartup	function.	Because
Ntdll.dll	is	mapped	at	the	same	address,	randomly	generated	at	boot,	into	every
process’s	address	space,	the	current	process	can	simply	pass	the	address	of	the
function	it	obtains	from	its	own	Ntdll.dll	mapping.	If	the	caller	of
RtlCreateProcessReflection	specified	that	it	wants	a	handle	to	the	cloned	process,
RtlCreateProcessReflection	waits	for	the	remote	thread	to	terminate,	otherwise	it
returns	to	the	caller.

The	injected	thread	in	the	target	process	allocates	an	additional	event	object	that	it
will	use	to	synchronize	with	the	cloned	process	once	it’s	created.	Then	it	calls
RtlCloneUserProcess,	passing	parameters	it	obtains	from	the	memory	mapping	it
shares	with	the	initiating	process.	If	the	RtlCreateProcessReflection	option	that
specifies	the	creation	of	the	clone	when	the	process	is	not	executing	in	the	loader,
performing	heap	operations,	modifying	the	process	environment	block	(PEB),	or
modifying	fiber-local	storage	is	present,	then	RtlCreateProcessReflection	acquires
the	associated	locks	before	continuing.	This	can	be	useful	for	debugging	because
the	memory	dump’s	copy	of	the	data	structures	will	be	in	a	consistent	state.

RtlCloneUserProcess	finishes	by	calling	RtlpCreateUserProcess,	the	user-mode
function	responsible	for	general	process	creation,	passing	flags	that	indicate	the
new	process	should	be	a	clone	of	the	current	one,	and	RtlpCreateUserProcess	in
turn	calls	ZwCreateUserProcess	to	request	the	kernel	to	create	the	process.

When	creating	a	cloned	process,	ZwCreateUserProcess	executes	most	of	the	same
code	paths	as	when	it	creates	a	new	process,	with	the	exception	that
PspAllocateProcess,	which	it	calls	to	create	the	process	object	and	initial	thread,
calls	MmInitializeProcessAddressSpace	with	a	flag	specifying	that	the	address
should	be	a	copy-on-write	copy	of	the	target	process	instead	of	an	initial	process
address	space.	The	memory	manager	uses	the	same	support	it	provides	for	the
Services	for	Unix	Applications	fork	API	to	efficiently	clone	the	address	space.
Once	the	target	process	continues	execution,	any	changes	it	makes	to	its	address
space	are	seen	only	by	it,	not	the	clone,	which	enables	the	clone’s	address	space	to
represent	a	consistent	point-in-time	view	of	the	target	process.



The	clone’s	execution	begins	at	the	point	just	after	the	return	from
RtlpCreateUserProcess.	If	the	clone’s	creation	is	successful,	its	thread	receives	the
STATUS_PROCESS_CLONED	return	code,	whereas	the	cloning	thread	receives
STATUS_SUCCESS.	The	cloned	process	then	synchronizes	with	the	target	and,	as
its	final	act,	calls	a	function	optionally	passed	to	RtlCreateProcessReflection,
which	must	be	implemented	in	Ntdll.dll.	RADAR,	for	instance,	specifies
RtlDetectHeapLeaks,	which	performs	heuristic	analysis	of	the	process	heaps	and
reports	the	results	back	to	the	thread	that	called	RtlCreateProcessReflection.	If	no
function	was	specified,	the	thread	suspends	itself	or	terminates,	depending	on	the
flags	passed	to	RtlCreateProcessReflection.

When	RADAR	and	WDI	use	process	reflection,	they	call
RtlCreateProcessReflection,	asking	for	the	function	to	return	a	handle	to	the
cloned	process	and	for	the	clone	to	suspend	itself	after	it	has	initialized.	Then	they
generate	a	minidump	of	the	target	process,	which	suspends	the	target	for	the
duration	of	the	dump	generation,	and	next	they	generate	a	more	comprehensive
dump	of	the	cloned	process.	After	they	finish	generating	the	dump	of	the	clone,
they	terminate	the	clone.	The	target	process	can	execute	during	the	time	window
between	the	minidump’s	completion	and	the	creation	of	the	clone,	but	for	most
scenarios	any	inconsistencies	do	not	interfere	with	troubleshooting.	The	Procdump
utility	from	Sysinternals	also	follows	these	steps	when	you	specify	the	–r	switch	to
have	it	create	a	reflected	dump	of	a	target	process.

EXPERIMENT:	USING	PREFLECT	TO	OBSERVE	THE	BEHAVIOR	OF	PROCESS
REFLECTION

You	can	use	the	Preflect	utility,	which	you	can	download	from	the	Windows	Internals	book	webpage,	to	see
the	effects	of	process	reflection.	First,	launch	Notepad.exe	and	obtain	its	process	ID	in	a	process
management	utility	like	Process	Explorer	or	Task	Manager.	Next,	open	a	command	prompt	and	execute
Preflect	with	the	process	ID	as	the	command-line	argument.	This	creates	a	cloned	copy	using	process
reflection.	In	Process	Explorer,	you	will	see	two	instances	of	Notepad:	the	one	you	launched	and	the	cloned
child	instance	that’s	highlighted	in	gray	(gray	indicates	that	all	the	process’s	threads	are	suspended):

Open	the	process	properties	for	each	instance,	switch	to	the	Performance	page,	and	put	them	side	by	side
for	comparison:



The	two	instances	are	easily	distinguishable	because	the	target	process	has	been	executing	and	therefore	has
a	significantly	higher	cycle	count	and	larger	working	set,	and	the	clone	has	no	references	to	any	kernel	or
window	manager	objects,	as	evidenced	by	its	zero	kernel	handle,	GDI	handle,	and	USER	handle	counts.
Further,	if	you	look	at	the	Threads	tab	and	have	configured	the	Process	Explorer	symbol	options	to	obtain
operating	system	symbols,	you’ll	see	that	the	target	process’s	thread	began	executing	in	Notepad.exe	code,
whereas	the	clone’s	thread	is	the	one	injected	by	the	target	to	execute	RtlpProcessReflectionStartup.



Conclusion
In	this	chapter,	we’ve	examined	how	the	Windows	memory	manager	implements
virtual	memory	management.	As	with	most	modern	operating	systems,	each
process	is	given	access	to	a	private	address	space,	protecting	one	process’s	memory
from	another’s	but	allowing	processes	to	share	memory	efficiently	and	securely.
Advanced	capabilities,	such	as	the	inclusion	of	mapped	files	and	the	ability	to
sparsely	allocate	memory,	are	also	available.	The	Windows	environment	subsystem
makes	most	of	the	memory	manager’s	capabilities	available	to	applications	through
the	Windows	API.

The	next	chapter	covers	a	component	tightly	integrated	with	the	memory	manager,
the	cache	manager.



Chapter	11.	Cache	Manager
The	cache	manager	is	a	set	of	kernel-mode	functions	and	system	threads	that
cooperate	with	the	memory	manager	to	provide	data	caching	for	all	Windows	file
system	drivers	(both	local	and	network).	In	this	chapter,	we’ll	explain	how	the
cache	manager,	including	its	key	internal	data	structures	and	functions,	works;	how
it	is	sized	at	system	initialization	time;	how	it	interacts	with	other	elements	of	the
operating	system;	and	how	you	can	observe	its	activity	through	performance
counters.	We’ll	also	describe	the	five	flags	on	the	Windows	CreateFile	function
that	affect	file	caching.

NOTE

None	of	the	cache	manager’s	internal	functions	are	outlined	in	this	chapter	beyond	the	depth	required	to
explain	how	the	cache	manager	works.	The	programming	interfaces	to	the	cache	manager	are	documented
in	the	Windows	Driver	Kit	(WDK).	For	more	information	about	the	WDK,	see
http://www.microsoft.com/whdc/devtools/wdk/default.mspx.

http://www.microsoft.com/whdc/devtools/wdk/default.mspx


Key	Features	of	the	Cache	Manager
The	cache	manager	has	several	key	features:

Supports	all	file	system	types	(both	local	and	network),	thus	removing	the	need
for	each	file	system	to	implement	its	own	cache	management	code

Uses	the	memory	manager	to	control	which	parts	of	which	files	are	in	physical
memory	(trading	off	demands	for	physical	memory	between	user	processes	and
the	operating	system)

Caches	data	on	a	virtual	block	basis	(offsets	within	a	file)—in	contrast	to	many
caching	systems,	which	cache	on	a	logical	block	basis	(offsets	within	a	disk
volume)—allowing	for	intelligent	read-ahead	and	high-speed	access	to	the	cache
without	involving	file	system	drivers	(This	method	of	caching,	called	fast	I/O,	is
described	later	in	this	chapter.)

Supports	“hints”	passed	by	applications	at	file	open	time	(such	as	random
versus	sequential	access,	temporary	file	creation,	and	so	on)

Supports	recoverable	file	systems	(for	example,	those	that	use	transaction
logging)	to	recover	data	after	a	system	failure

Although	we’ll	talk	more	throughout	this	chapter	about	how	these	features	are	used
in	the	cache	manager,	in	this	section	we’ll	introduce	you	to	the	concepts	behind
these	features.

Single,	Centralized	System	Cache
Some	operating	systems	rely	on	each	individual	file	system	to	cache	data,	a	practice
that	results	either	in	duplicated	caching	and	memory	management	code	in	the
operating	system	or	in	limitations	on	the	kinds	of	data	that	can	be	cached.	In
contrast,	Windows	offers	a	centralized	caching	facility	that	caches	all	externally
stored	data,	whether	on	local	hard	disks,	floppy	disks,	network	file	servers,	or	CD-
ROMs.	Any	data	can	be	cached,	whether	it’s	user	data	streams	(the	contents	of	a
file	and	the	ongoing	read	and	write	activity	to	that	file)	or	file	system	metadata
(such	as	directory	and	file	headers).	As	you’ll	discover	in	this	chapter,	the	method
Windows	uses	to	access	the	cache	depends	on	the	type	of	data	being	cached.



The	Memory	Manager
One	unusual	aspect	of	the	cache	manager	is	that	it	never	knows	how	much	cached
data	is	actually	in	physical	memory.	This	statement	might	sound	strange	because
the	purpose	of	a	cache	is	to	keep	a	subset	of	frequently	accessed	data	in	physical
memory	as	a	way	to	improve	I/O	performance.	The	reason	the	cache	manager
doesn’t	know	how	much	data	is	in	physical	memory	is	that	it	accesses	data	by
mapping	views	of	files	into	system	virtual	address	spaces,	using	standard	section
objects	(file	mapping	objects	in	Windows	API	terminology).	(Section	objects	are
the	basic	primitive	of	the	memory	manager	and	are	explained	in	detail	in
Chapter	10.)	As	addresses	in	these	mapped	views	are	accessed,	the	memory
manager	pages	in	blocks	that	aren’t	in	physical	memory.	And	when	memory
demands	dictate,	the	memory	manager	unmaps	these	pages	out	of	the	cache	and,	if
the	data	has	changed,	pages	the	data	back	to	the	files.

By	caching	on	the	basis	of	a	virtual	address	space	using	mapped	files,	the	cache
manager	avoids	generating	read	or	write	I/O	request	packets	(IRPs)	to	access	the
data	for	files	it’s	caching.	Instead,	it	simply	copies	data	to	or	from	the	virtual
addresses	where	the	portion	of	the	cached	file	is	mapped	and	relies	on	the	memory
manager	to	fault	in	(or	out)	the	data	into	(or	out	of)	memory	as	needed.	This
process	allows	the	memory	manager	to	make	global	trade-offs	on	how	much
memory	to	give	to	the	system	cache	versus	how	much	to	give	to	user	processes.
(The	cache	manager	also	initiates	I/O,	such	as	lazy	writing,	which	is	described	later
in	this	chapter;	however,	it	calls	the	memory	manager	to	write	the	pages.)	Also,	as
you’ll	learn	in	the	next	section,	this	design	makes	it	possible	for	processes	that	open
cached	files	to	see	the	same	data	as	do	processes	that	are	mapping	the	same	files
into	their	user	address	spaces.

Cache	Coherency
One	important	function	of	a	cache	manager	is	to	ensure	that	any	process	accessing
cached	data	will	get	the	most	recent	version	of	that	data.	A	problem	can	arise	when
one	process	opens	a	file	(and	hence	the	file	is	cached)	while	another	process	maps
the	file	into	its	address	space	directly	(using	the	Windows	MapViewOfFile
function).	This	potential	problem	doesn’t	occur	under	Windows	because	both	the
cache	manager	and	the	user	applications	that	map	files	into	their	address	spaces	use



the	same	memory	management	file	mapping	services.	Because	the	memory
manager	guarantees	that	it	has	only	one	representation	of	each	unique	mapped	file
(regardless	of	the	number	of	section	objects	or	mapped	views),	it	maps	all	views	of
a	file	(even	if	they	overlap)	to	a	single	set	of	pages	in	physical	memory,	as	shown
in	Figure	11-1.	(For	more	information	on	how	the	memory	manager	works	with
mapped	files,	see	Chapter	10.)

Figure	11-1.	Coherent	caching	scheme

So,	for	example,	if	Process	1	has	a	view	(View	1)	of	the	file	mapped	into	its	user
address	space,	and	Process	2	is	accessing	the	same	view	via	the	system	cache,
Process	2	will	see	any	changes	that	Process	1	makes	as	they’re	made,	not	as	they’re
flushed.	The	memory	manager	won’t	flush	all	user-mapped	pages—only	those	that
it	knows	have	been	written	to	(because	they	have	the	modified	bit	set).	Therefore,
any	process	accessing	a	file	under	Windows	always	sees	the	most	up-to-date
version	of	that	file,	even	if	some	processes	have	the	file	open	through	the	I/O



system	and	others	have	the	file	mapped	into	their	address	space	using	the	Windows
file	mapping	functions.

NOTE

Cache	coherency	in	this	case	refers	to	coherency	between	user-mapped	data	and	cached	I/O	and	not
between	noncached	and	cached	hardware	access	and	I/Os,	which	are	almost	guaranteed	to	be	incoherent.
Also,	cache	coherency	is	somewhat	more	difficult	for	network	redirectors	than	for	local	file	systems
because	network	redirectors	must	implement	additional	flushing	and	purge	operations	to	ensure	cache
coherency	when	accessing	network	data.	See	Chapter	12,	for	a	description	of	opportunistic	locking,	the
Windows	distributed	cache	coherency	mechanism.

Virtual	Block	Caching
The	Windows	cache	manager	uses	a	method	known	as	virtual	block	caching,	in
which	the	cache	manager	keeps	track	of	which	parts	of	which	files	are	in	the	cache.
The	cache	manager	is	able	to	monitor	these	file	portions	by	mapping	256-KB
views	of	files	into	system	virtual	address	spaces,	using	special	system	cache
routines	located	in	the	memory	manager.	This	approach	has	the	following	key
benefits:

It	opens	up	the	possibility	of	doing	intelligent	read-ahead;	because	the	cache
tracks	which	parts	of	which	files	are	in	the	cache,	it	can	predict	where	the	caller
might	be	going	next.

It	allows	the	I/O	system	to	bypass	going	to	the	file	system	for	requests	for	data
that	is	already	in	the	cache	(fast	I/O).	Because	the	cache	manager	knows	which
parts	of	which	files	are	in	the	cache,	it	can	return	the	address	of	cached	data	to
satisfy	an	I/O	request	without	having	to	call	the	file	system.

Details	of	how	intelligent	read-ahead	and	fast	I/O	work	are	provided	later	in	this
chapter.

Stream-Based	Caching
The	cache	manager	is	also	designed	to	do	stream	caching,	as	opposed	to	file
caching.	A	stream	is	a	sequence	of	bytes	within	a	file.	Some	file	systems,	such	as
NTFS,	allow	a	file	to	contain	more	than	one	stream;	the	cache	manager
accommodates	such	file	systems	by	caching	each	stream	independently.	NTFS	can
exploit	this	feature	by	organizing	its	master	file	table	(described	in	Chapter	12)	into



streams	and	by	caching	these	streams	as	well.	In	fact,	although	the	cache	manager
might	be	said	to	cache	files,	it	actually	caches	streams	(all	files	have	at	least	one
stream	of	data)	identified	by	both	a	file	name	and,	if	more	than	one	stream	exists
in	the	file,	a	stream	name.

NOTE

Internally,	the	cache	manager	is	not	aware	of	file	or	stream	names	but	uses	pointers	to	these	objects.

Recoverable	File	System	Support
Recoverable	file	systems	such	as	NTFS	are	designed	to	reconstruct	the	disk	volume
structure	after	a	system	failure.	This	capability	means	that	I/O	operations	in
progress	at	the	time	of	a	system	failure	must	be	either	entirely	completed	or
entirely	backed	out	from	the	disk	when	the	system	is	restarted.	Half-completed	I/O
operations	can	corrupt	a	disk	volume	and	even	render	an	entire	volume
inaccessible.	To	avoid	this	problem,	a	recoverable	file	system	maintains	a	log	file	in
which	it	records	every	update	it	intends	to	make	to	the	file	system	structure	(the
file	system’s	metadata)	before	it	writes	the	change	to	the	volume.	If	the	system
fails,	interrupting	volume	modifications	in	progress,	the	recoverable	file	system
uses	information	stored	in	the	log	to	reissue	the	volume	updates.

NOTE

The	term	metadata	applies	only	to	changes	in	the	file	system	structure:	file	and	directory	creation,
renaming,	and	deletion.

To	guarantee	a	successful	volume	recovery,	every	log	file	record	documenting	a
volume	update	must	be	completely	written	to	disk	before	the	update	itself	is
applied	to	the	volume.	Because	disk	writes	are	cached,	the	cache	manager	and	the
file	system	must	coordinate	metadata	updates	by	ensuring	that	the	log	file	is
flushed	ahead	of	metadata	updates.	Overall,	the	following	actions	occur	in
sequence:

1.	 The	file	system	writes	a	log	file	record	documenting	the	metadata	update	it
intends	to	make.

2.	 The	file	system	calls	the	cache	manager	to	flush	the	log	file	record	to	disk.



3.	 The	file	system	writes	the	volume	update	to	the	cache—that	is,	it	modifies	its
cached	metadata.

4.	 The	cache	manager	flushes	the	altered	metadata	to	disk,	updating	the	volume
structure.	(Actually,	log	file	records	are	batched	before	being	flushed	to	disk,
as	are	volume	modifications.)

When	a	file	system	writes	data	to	the	cache,	it	can	supply	a	logical	sequence
number	(LSN)	that	identifies	the	record	in	its	log	file,	which	corresponds	to	the
cache	update.	The	cache	manager	keeps	track	of	these	numbers,	recording	the
lowest	and	highest	LSNs	(representing	the	oldest	and	newest	log	file	records)
associated	with	each	page	in	the	cache.	In	addition,	data	streams	that	are	protected
by	transaction	log	records	are	marked	as	“no	write”	by	NTFS	so	that	the	mapped
page	writer	won’t	inadvertently	write	out	these	pages	before	the	corresponding	log
records	are	written.	(When	the	mapped	page	writer	sees	a	page	marked	this	way,	it
moves	the	page	to	a	special	list	that	the	cache	manager	then	flushes	at	the
appropriate	time,	such	as	when	lazy	writer	activity	takes	place.)

When	it	prepares	to	flush	a	group	of	dirty	pages	to	disk,	the	cache	manager
determines	the	highest	LSN	associated	with	the	pages	to	be	flushed	and	reports
that	number	to	the	file	system.	The	file	system	can	then	call	the	cache	manager
back,	directing	it	to	flush	log	file	data	up	to	the	point	represented	by	the	reported
LSN.	After	the	cache	manager	flushes	the	log	file	up	to	that	LSN,	it	flushes	the
corresponding	volume	structure	updates	to	disk,	thus	ensuring	that	it	records	what
it’s	going	to	do	before	actually	doing	it.	These	interactions	between	the	file	system
and	the	cache	manager	guarantee	the	recoverability	of	the	disk	volume	after	a
system	failure.



Cache	Virtual	Memory	Management
Because	the	Windows	system	cache	manager	caches	data	on	a	virtual	basis,	it	uses
up	regions	of	system	virtual	address	space	(instead	of	physical	memory)	and
manages	them	in	structures	called	virtual	address	control	blocks,	or	VACBs.
VACBs	define	these	regions	of	address	space	into	256-KB	slots	called	views.
When	the	cache	manager	initializes	during	the	bootup	process,	it	allocates	an	initial
array	of	VACBs	to	describe	cached	memory.	As	caching	requirements	grow	and
more	memory	is	required,	the	cache	manager	allocates	more	VACB	arrays,	as
needed.	It	can	also	shrink	virtual	address	space	as	other	demands	put	pressure	on
the	system.

At	a	file’s	first	I/O	(read	or	write)	operation,	the	cache	manager	maps	a	256-KB
view	of	the	256-KB-aligned	region	of	the	file	that	contains	the	requested	data	into
a	free	slot	in	the	system	cache	address	space.	For	example,	if	10	bytes	starting	at	an
offset	of	300,000	bytes	were	read	into	a	file,	the	view	that	would	be	mapped	would
begin	at	offset	262144	(the	second	256-KB-aligned	region	of	the	file)	and	extend
for	256	KB.

The	cache	manager	maps	views	of	files	into	slots	in	the	cache’s	address	space	on	a
round-robin	basis,	mapping	the	first	requested	view	into	the	first	256-KB	slot,	the
second	view	into	the	second	256-KB	slot,	and	so	forth,	as	shown	in	Figure	11-2.
In	this	example,	File	B	was	mapped	first,	File	A	second,	and	File	C	third,	so	File
B’s	mapped	chunk	occupies	the	first	slot	in	the	cache.	Notice	that	only	the	first
256-KB	portion	of	File	B	has	been	mapped,	which	is	due	to	the	fact	that	only	part
of	the	file	has	been	accessed	and	because	although	File	C	is	only	100	KB	(and	thus
smaller	than	one	of	the	views	in	the	system	cache),	it	requires	its	own	256-KB	slot
in	the	cache.

The	cache	manager	guarantees	that	a	view	is	mapped	as	long	as	it’s	active
(although	views	can	remain	mapped	after	they	become	inactive).	A	view	is	marked
active,	however,	only	during	a	read	or	write	operation	to	or	from	the	file.	Unless	a
process	opens	a	file	by	specifying	the	FILE_FLAG_RANDOM_ACCESS	flag	in
the	call	to	CreateFile,	the	cache	manager	unmaps	inactive	views	of	a	file	as	it	maps
new	views	for	the	file	if	it	detects	that	the	file	is	being	accessed	sequentially.	Pages
for	unmapped	views	are	sent	to	the	standby	or	modified	lists	(depending	on



whether	they	have	been	changed),	and	because	the	memory	manager	exports	a
special	interface	for	the	cache	manager,	the	cache	manager	can	direct	the	pages	to
be	placed	at	the	end	or	front	of	these	lists.	Pages	that	correspond	to	views	of	files
opened	with	the	FILE_FLAG_SEQUENTIAL_SCAN	flag	are	moved	to	the	front
of	the	lists,	whereas	all	others	are	moved	to	the	end.	This	scheme	encourages	the
reuse	of	pages	belonging	to	sequentially	read	files	and	specifically	prevents	a	large
file	copy	operation	from	affecting	more	than	a	small	part	of	physical	memory.	The
flag	also	affects	unmapping:	the	cache	manager	will	aggressively	unmap	views
when	this	flag	is	supplied.

If	the	cache	manager	needs	to	map	a	view	of	a	file	and	there	are	no	more	free	slots
in	the	cache,	it	will	unmap	the	least	recently	mapped	inactive	view	and	use	that
slot.	If	no	views	are	available,	an	I/O	error	is	returned,	indicating	that	insufficient
system	resources	are	available	to	perform	the	operation.	Given	that	views	are
marked	active	only	during	a	read	or	write	operation,	however,	this	scenario	is
extremely	unlikely	because	thousands	of	files	would	have	to	be	accessed
simultaneously	for	this	situation	to	occur.

Figure	11-2.	Files	of	varying	sizes	mapped	into	the	system	cache



Cache	Size
In	the	following	sections,	we’ll	explain	how	Windows	computes	the	size	of	the
system	cache,	both	virtually	and	physically.	As	with	most	calculations	related	to
memory	management,	the	size	of	the	system	cache	depends	on	a	number	of
factors.

Cache	Virtual	Size
On	a	32-bit	Windows	system,	the	virtual	size	of	the	system	cache	is	limited	solely
by	the	amount	of	kernel-mode	virtual	address	space	and	the	SystemCacheLimit
registry	key	that	can	be	optionally	configured.	(See	Chapter	10	for	more
information	on	limiting	the	size	of	the	kernel	virtual	address	space.)	This	means
that	the	cache	size	is	capped	by	the	2-GB	system	address	space,	but	it	is	typically
significantly	smaller	because	the	system	address	space	is	shared	with	other
resources,	including	system	paged	table	entries	(PTEs),	nonpaged	and	paged	pool,
and	page	tables.	The	maximum	virtual	cache	size	is	1,024	GB	(1	TB)	on	64-bit
Windows.

Cache	Working	Set	Size
As	mentioned	earlier,	one	of	the	key	differences	in	the	design	of	the	cache	manager
in	Windows	from	that	of	other	operating	systems	is	the	delegation	of	physical
memory	management	to	the	global	memory	manager.	Because	of	this,	the	existing
code	that	handles	working	set	expansion	and	trimming,	as	well	as	managing	the
modified	and	standby	lists,	is	also	used	to	control	the	size	of	the	system	cache,
dynamically	balancing	demands	for	physical	memory	between	processes	and	the
operating	system.

The	system	cache	doesn’t	have	its	own	working	set	but	rather	shares	a	single
system	set	that	includes	cache	data,	paged	pool,	pageable	Ntoskrnl	code,	and
pageable	driver	code.	As	explained	in	the	section	System	Working	Sets	in
Chapter	10,	this	single	working	set	is	called	internally	the	system	cache	working	set
even	though	the	system	cache	is	just	one	of	the	components	that	contribute	to	it.
For	the	purposes	of	this	book,	we’ll	refer	to	this	working	set	simply	as	the	system
working	set.	Also	explained	in	Chapter	10	is	the	fact	that	if	the	LargeSystemCache



registry	value	is	1,	the	memory	manager	favors	the	system	working	set	over	that	of
processes	running	on	the	system.

EXPERIMENT:	LOOKING	AT	THE	CACHE’S	WORKING	SET

The	!filecache	debugger	command	dumps	information	about	the	physical	memory	the	cache	is	using,	the
current	and	peak	working	set	sizes,	the	number	of	valid	pages	associated	with	views,	and	the	names	of	files
mapped	into	views,	where	applicable,	as	you	can	see	in	the	following	output.	(File	system	drivers	cache
metadata,	such	as	directory	structures	and	volume	bitmaps,	by	using	unnamed	file	streams.)

lkd> !filecache
***** Dump file cache******
  Reading and sorting 999 VACBs ...
ReadVirtual: 85b77038 not properly sign extended
ReadVirtual: 85ba7010 not properly sign extended
  Processing 998 active VACBs ...
File Cache Information
  Current size 30528 kb
  Peak size    65752 kb
  461 Control Areas
Skipping view @ 91980000 - no VACB, but PTE is a prototype!
  Loading file cache database (100% of 523264 PTEs)
  SkippedPageTableReads = 882
  File cache has 7668 valid pages

  Usage Summary (in Kb):
Control Valid Standby/Dirty Shared Locked FsContext Name
85fa5be0     0      4     0     0 add0dbf8  $Directory
85f971b8     0      8     0     0 ad9bc918  $Directory
87c489f0     4      4     0     0 93b390f8  $Directory
87c4a9c0     4      0     0     0 93b38c30  $Directory
87c451a8     0      4     0     0 93b35780  $Directory
86a83710  4512  45432     0     0 86a90168  $Mft
85f96770     0      8     0     0 ad9c00f8    No Name for File
85e90998     0    512     0     0 abb83510    No Name for File
88062008     4      0     0     0 9e6c40f8  $Directory
87c291e8    44    164     0     0 93b400f8  $Directory
87c27e10     0     16     0     0 93b4bd08  $Directory
87b4bc88   236     84     0     0 93b28d08  $Directory
86ce23a8    12      0     0     0 a2051528  $Directory
87c2bb20     4      0     0     0 93b3b850  $Directory
87d51480     0      4     0     0 824f9830  $Directory
87c8c900     0      4     0     0 825b06d0  utmpx
87c2aa30    44    216     0     0 93b3fc70  $Directory
86ecc168    12   4088     0     0 9c3c5c50  Microsoft-Windows-
                                               GroupPolicy%4Operational.evtx
...

Cache	Physical	Size
While	the	system	working	set	includes	the	amount	of	physical	memory	that	is
mapped	into	views	in	the	cache’s	virtual	address	space,	it	does	not	necessarily



reflect	the	total	amount	of	file	data	that	is	cached	in	physical	memory.	There	can
be	a	discrepancy	between	the	two	values	because	additional	file	data	might	be	in
the	memory	manager’s	standby	or	modified	page	lists.

Recall	from	Chapter	10	that	during	the	course	of	working	set	trimming	or	page
replacement	the	memory	manager	can	move	dirty	pages	from	a	working	set	to
either	the	standby	list	or	modified	page	list,	depending	on	whether	the	page
contains	data	that	needs	to	be	written	to	the	paging	file	or	another	file	before	the
page	can	be	reused.	If	the	memory	manager	didn’t	implement	these	lists,	any	time
a	process	accessed	data	previously	removed	from	its	working	set,	the	memory
manager	would	have	to	hard-fault	it	in	from	disk.	Instead,	if	the	accessed	data	is
present	on	either	of	these	lists,	the	memory	manager	simply	soft-faults	the	page
back	into	the	process’s	working	set.	Thus,	the	lists	serve	as	in-memory	caches	of
data	that’s	stored	in	the	paging	file,	executable	images,	or	data	files.	Thus,	the	total
amount	of	file	data	cached	on	a	system	includes	not	only	the	system	working	set
but	the	combined	sizes	of	the	standby	and	modified	page	lists	as	well.

An	example	illustrates	how	the	cache	manager	can	cause	much	more	file	data	than
that	containable	in	the	system	working	set	to	be	cached	in	physical	memory.
Consider	a	system	that	acts	as	a	dedicated	file	server.	A	client	application	accesses
file	data	from	across	the	network,	while	a	server,	such	as	the	file	server	driver
(%SystemRoot%\System32\Drivers\Srv2.sys,	described	in	Chapter	12),	uses	cache
manager	interfaces	to	read	and	write	file	data	on	behalf	of	the	client.	If	the	client
reads	through	several	thousand	files	of	1	MB	each,	the	cache	manager	will	have	to
start	reusing	views	when	it	runs	out	of	mapping	space	(and	can’t	enlarge	the	VACB
mapping	area).	For	each	file	read	thereafter,	the	cache	manager	unmaps	views	and
remaps	them	for	new	files.	When	the	cache	manager	unmaps	a	view,	the	memory
manager	doesn’t	discard	the	file	data	in	the	cache’s	working	set	that	corresponds	to
the	view,	it	moves	the	data	to	the	standby	list.	In	the	absence	of	any	other	demand
for	physical	memory,	the	standby	list	can	consume	almost	all	the	physical	memory
that	remains	outside	the	system	working	set.	In	other	words,	virtually	all	the
server’s	physical	memory	will	be	used	to	cache	file	data,	as	shown	in	Figure	11-3.



Figure	11-3.	Example	in	which	most	of	physical	memory	is	being	used	by	the	file	cache

Because	the	total	amount	of	file	data	cached	includes	the	system	working	set,
modified	page	list,	and	standby	list—the	sizes	of	which	are	all	controlled	by	the
memory	manager—it	is	in	a	sense	the	real	cache	manager.	The	cache	manager
subsystem	simply	provides	convenient	interfaces	for	accessing	file	data	through	the
memory	manager.	It	also	plays	an	important	role	with	its	read-ahead	and	write-
behind	policies	in	influencing	what	data	the	memory	manager	keeps	present	in
physical	memory,	as	well	as	with	managing	system	virtual	address	views	of	the
space.

To	try	to	accurately	reflect	the	total	amount	of	file	data	that’s	cached	on	a	system,
Task	Manager	shows	a	value	named	Cache	in	its	performance	view	that	reflects	the
combined	size	of	the	system	working	set,	standby	list,	and	modified	page	list.
Process	Explorer,	on	the	other	hand,	breaks	up	these	values	into	Cache	WS	(system
cache	working	set),	Standby,	and	Modified.	Figure	11-4	shows	the	system
information	view	in	Process	Explorer	and	the	Cache	WS	value	in	the	Physical
Memory	area	in	the	lower	left	of	the	figure,	as	well	as	the	size	of	the	standby	and
modified	lists	in	the	Paging	Lists	area	near	the	middle	of	the	figure.	Note	that	the
Cache	value	in	Task	Manager	also	includes	the	Paged	WS,	Kernel	WS,	and	Driver
WS	values	shown	in	Process	Explorer.	When	these	values	were	chosen,	the	vast
majority	of	System	WS	came	from	the	Cache	WS.	This	is	no	longer	the	case	today,
but	the	anachronism	remains	in	Task	Manager.



Figure	11-4.	Process	Explorer’s	System	Information	dialog	box



Cache	Data	Structures
The	cache	manager	uses	the	following	data	structures	to	keep	track	of	cached	files:

Each	256-KB	slot	in	the	system	cache	is	described	by	a	VACB.

Each	separately	opened	cached	file	has	a	private	cache	map,	which	contains
information	used	to	control	read-ahead	(discussed	later	in	the	chapter).

Each	cached	file	has	a	single	shared	cache	map	structure,	which	points	to	slots
in	the	system	cache	that	contain	mapped	views	of	the	file.

These	structures	and	their	relationships	are	described	in	the	next	sections.

Systemwide	Cache	Data	Structures
As	previously	described,	the	cache	manager	keeps	track	of	the	state	of	the	views	in
the	system	cache	by	using	an	array	of	data	structures	called	virtual	address	control
block	(VACB)	arrays	that	are	stored	in	nonpaged	pool.	On	a	32-bit	system,	each
VACB	is	32	bytes	in	size	and	a	VACB	array	is	128	KB,	resulting	in	4,096	VACBs
per	array.	On	a	64-bit	system,	a	VACB	is	64	bytes,	resulting	in	2,048	VACBs	per
array.	The	cache	manager	allocates	the	initial	VACB	array	during	system
initialization	and	links	it	into	the	systemwide	list	of	VACB	arrays	called
CcVacbArrays.	Each	VACB	represents	one	256-KB	view	in	the	system	cache,	as
shown	in	Figure	11-5.	The	structure	of	a	VACB	is	shown	in	Figure	11-6.



Figure	11-5.	System	VACB	array

Figure	11-6.	VACB	structure

Additionally,	each	VACB	array	is	composed	of	two	kinds	of	VACB:	low	priority
mapping	VACBs	and	high	priority	mapping	VACBs.	The	system	allocates	64	initial
high	priority	VACBs	for	each	VACB	array.	High	priority	VACBs	have	the
distinction	of	having	their	views	preallocated	from	system	address	space.	When	the
memory	manager	has	no	views	to	give	to	the	cache	manager	at	the	time	of



mapping	some	data,	and	if	the	mapping	request	is	marked	as	high	priority,	the
cache	manager	will	use	one	of	the	preallocated	views	present	in	a	high	priority
VACB.	It	uses	these	high	priority	VACBs,	for	example,	for	critical	file	system
metadata	as	well	as	for	purging	data	from	the	cache.	After	high	priority	VACBs	are
gone,	however,	any	operation	requiring	a	VACB	view	will	fail	with	insufficient
resources.	Typically,	the	mapping	priority	is	set	to	the	default	of	low,	but	by	using
the	PIN_HIGH_PRIORITY	flag	when	pinning	(described	later)	cached	data,	file
systems	can	request	a	high	priority	VACB	to	be	used	instead,	if	one	is	needed.

As	you	can	see	in	Figure	11-6,	the	first	field	in	a	VACB	is	the	virtual	address	of
the	data	in	the	system	cache.	The	second	field	is	a	pointer	to	the	shared	cache	map
structure,	which	identifies	which	file	is	cached.	The	third	field	identifies	the	offset
within	the	file	at	which	the	view	begins	(always	based	on	256-KB	granularity).
Given	this	granularity,	the	bottom	16	bits	of	the	file	offset	will	always	be	zero,	so
those	bits	are	reused	to	store	the	number	of	references	to	the	view—that	is,	how
many	active	reads	or	writes	are	accessing	the	view.	The	fourth	field	links	the
VACB	into	a	list	of	least-recently-used	(LRU)	VACBs	when	the	cache	manager
frees	the	VACB;	the	cache	manager	first	checks	this	list	when	allocating	a	new
VACB.	Finally,	the	fifth	field	links	this	VACB	to	the	VACB	array	header
representing	the	array	in	which	the	VACB	is	stored.

During	an	I/O	operation	on	a	file,	the	file’s	VACB	reference	count	is	incremented,
and	then	it’s	decremented	when	the	I/O	operation	is	over.	When	the	reference
count	is	nonzero	the	VACB	is	active.	For	access	to	file	system	metadata,	the	active
count	represents	how	many	file	system	drivers	have	the	pages	in	that	view	locked
into	memory.

EXPERIMENT:	LOOKING	AT	VACBS	AND	VACB	STATISTICS

The	cache	manager	internally	keeps	track	of	various	values	that	are	useful	to	developers	and	support
engineers	when	debugging	crash	dumps.	All	these	debugging	variables	start	with	the	CcDbg	prefix,	which
makes	it	easy	to	see	the	whole	list,	thanks	to	the	x	command:

lkd> x nt!*ccdbg*
8194ba84          nt!CcDbgNumberOfCcUnmapInactiveViews = <no type information>
8197c740          nt!CcDbgNumberOfFailedMappingsDueToVacbSpace = <no type 
information>
8197c730          nt!CcDbgNumberOfFailedBitmapAllocations = <no type information>
8197c73c          nt!CcDbgNumberOfFailedHighPriorityMappingsDueToMmResources =
                          <no type information>
...



Some	systems	may	show	differences	in	variable	names	due	to	32-bit	versus	64-bit	implementations.	The
exact	variable	names	are	irrelevant	in	this	experiment—focus	instead	on	the	methodology	that	is	explained.
Using	these	variables	and	your	knowledge	of	the	VACB	array	header	data	structures,	you	can	use	the	kernel
debugger	to	list	all	the	VACB	array	headers.	The	CcVacbArrays	variable	is	an	array	of	pointers	to	VACB
array	headers,	which	you	dereference	in	order	to	dump	the	contents	of	the	VACBARRAY_HEADERs.
First,	obtain	the	highest	array	index:

lkd> dd nt!CcVacbArraysHighestUsedIndex l 1
8194ba7c  00000000

And	now	you	can	dereference	each	index	until	the	maximum	index.	On	this	system	(and	this	is	the	norm),
the	highest	index	is	0,	which	means	there’s	only	one	header	to	dereference:

lkd> ?? (*((nt!VACBARRAY_HEADER***)@@(nt!CcVacbArrays)))[0]
struct VACBARRAY_HEADER * 0x8315b000
   +0x000 VacbArrayIndex   : 0
   +0x004 MappingCount     : 0x5ab
   +0x008 HighestMappedIndex : 0x9a9
   +0x00c Reserved         : 0

If	there	were	more,	you	could	change	the	array	index	at	the	end	of	the	command	with	a	higher	number,
until	you	reached	the	highest	used	index.	The	output	shows	that	the	system	has	only	one	VACB	array	with
1,451	(0x5ab)	active	VACBs.

Finally,	the	CcNumberOfFreeVacbs	variable	stores	the	number	of	VACBs	on	the	free	VACB	list.	Dumping
this	variable	on	the	system	used	for	the	experiment	results	in	2,645	(0xa55):

lkd> dd nt!CcNumberOfFreeVacbs  l 1
8197c768  00000a55

As	expected,	the	sum	of	the	free	(0x5ab—1,451	decimal)	and	active	VACBs	(0xa55—2,645	decimal)	on	a
32-bit	system	with	one	VACB	array	equals	4,096,	the	number	of	VACBs	in	one	VACB	array.	If	the	system
were	to	run	out	of	free	VACBs,	the	cache	manager	would	try	to	allocate	a	new	VACB	array.	Because	of	the
volatile	nature	of	this	experiment,	your	system	may	create	and/or	free	additional	VACBs	between	the	two
steps	(dumping	the	active	and	then	the	free	VACBs).	This	might	cause	your	total	of	free	and	active	VACBs
to	not	match	exactly	4,096.	Try	quickly	repeating	the	experiment	a	couple	of	times	if	this	happens,	although
you	may	never	get	stale	numbers,	especially	if	there	is	lots	of	file	system	activity	on	the	system.

Per-File	Cache	Data	Structures
Each	open	handle	to	a	file	has	a	corresponding	file	object.	(File	objects	are
explained	in	detail	in	Chapter	8.)	If	the	file	is	cached,	the	file	object	points	to	a
private	cache	map	structure	that	contains	the	location	of	the	last	two	reads	so	that
the	cache	manager	can	perform	intelligent	read-ahead	(described	later,	in	the
section	Intelligent	ReadAhead).	In	addition,	all	the	private	cache	maps	for	open
instances	of	a	file	are	linked	together.

Each	cached	file	(as	opposed	to	file	object)	has	a	shared	cache	map	structure	that
describes	the	state	of	the	cached	file,	including	its	size	and	its	valid	data	length.



(The	function	of	the	valid	data	length	field	is	explained	in	the	section	Write-Back
Caching	and	Lazy	Writing.)	The	shared	cache	map	also	points	to	the	section	object
(maintained	by	the	memory	manager	and	which	describes	the	file’s	mapping	into
virtual	memory),	the	list	of	private	cache	maps	associated	with	that	file,	and	any
VACBs	that	describe	currently	mapped	views	of	the	file	in	the	system	cache.	(See
Chapter	10	for	more	about	section	object	pointers.)	The	relationships	among	these
per-file	cache	data	structures	are	illustrated	in	Figure	11-7.

When	asked	to	read	from	a	particular	file,	the	cache	manager	must	determine	the
answers	to	two	questions:

1.	 Is	the	file	in	the	cache?

2.	 If	so,	which	VACB,	if	any,	refers	to	the	requested	location?

In	other	words,	the	cache	manager	must	find	out	whether	a	view	of	the	file	at	the
desired	address	is	mapped	into	the	system	cache.	If	no	VACB	contains	the	desired
file	offset,	the	requested	data	isn’t	currently	mapped	into	the	system	cache.

To	keep	track	of	which	views	for	a	given	file	are	mapped	into	the	system	cache,	the
cache	manager	maintains	an	array	of	pointers	to	VACBs,	which	is	known	as	the
VACB	index	array.	The	first	entry	in	the	VACB	index	array	refers	to	the	first	256
KB	of	the	file,	the	second	entry	to	the	second	256	KB,	and	so	on.	The	diagram	in
Figure	11-8	shows	four	different	sections	from	three	different	files	that	are
currently	mapped	into	the	system	cache.

When	a	process	accesses	a	particular	file	in	a	given	location,	the	cache	manager
looks	in	the	appropriate	entry	in	the	file’s	VACB	index	array	to	see	whether	the
requested	data	has	been	mapped	into	the	cache.	If	the	array	entry	is	nonzero	(and
hence	contains	a	pointer	to	a	VACB),	the	area	of	the	file	being	referenced	is	in	the
cache.	The	VACB,	in	turn,	points	to	the	location	in	the	system	cache	where	the
view	of	the	file	is	mapped.	If	the	entry	is	zero,	the	cache	manager	must	find	a	free
slot	in	the	system	cache	(and	therefore	a	free	VACB)	to	map	the	required	view.

As	a	size	optimization,	the	shared	cache	map	contains	a	VACB	index	array	that	is
four	entries	in	size.	Because	each	VACB	describes	256	KB,	the	entries	in	this
small,	fixed-size	index	array	can	point	to	VACB	array	entries	that	together	describe
a	file	of	up	to	1	MB.	If	a	file	is	larger	than	1	MB,	a	separate	VACB	index	array	is
allocated	from	nonpaged	pool,	based	on	the	size	of	the	file	divided	by	256	KB	and



rounded	up	in	the	case	of	a	remainder.	The	shared	cache	map	then	points	to	this
separate	structure.

Figure	11-7.	Per-file	cache	data	structures

Figure	11-8.	VACB	index	arrays



As	a	further	optimization,	the	VACB	index	array	allocated	from	nonpaged	pool
becomes	a	sparse	multilevel	index	array	if	the	file	is	larger	than	32	MB,	where
each	index	array	consists	of	128	entries.	You	can	calculate	the	number	of	levels
required	for	a	file	with	the	following	formula:
(Number	of	bits	required	to	represent	file	size	–	18)	/	7

Round	the	result	of	the	equation	up	to	the	next	whole	number.	The	value	18	in	the
equation	comes	from	the	fact	that	a	VACB	represents	256	KB,	and	256	KB	is
2^18.	The	value	7	comes	from	the	fact	that	each	level	in	the	array	has	128	entries
and	2^7	is	128.	Thus,	a	file	that	has	a	size	that	is	the	maximum	that	can	be
described	with	63	bits	(the	largest	size	the	cache	manager	supports)	would	require
only	seven	levels.	The	array	is	sparse	because	the	only	branches	that	the	cache
manager	allocates	are	ones	for	which	there	are	active	views	at	the	lowest-level
index	array.	Figure	11-9	shows	an	example	of	a	multilevel	VACB	array	for	a	sparse
file	that	is	large	enough	to	require	three	levels.



Figure	11-9.	Multilevel	VACB	arrays

This	scheme	is	required	to	efficiently	handle	sparse	files	that	might	have	extremely
large	file	sizes	with	only	a	small	fraction	of	valid	data	because	only	enough	of	the
array	is	allocated	to	handle	the	currently	mapped	views	of	a	file.	For	example,	a
32-GB	sparse	file	for	which	only	256	KB	is	mapped	into	the	cache’s	virtual
address	space	would	require	a	VACB	array	with	three	allocated	index	arrays
because	only	one	branch	of	the	array	has	a	mapping	and	a	32-GB	(235	bytes)	file
requires	a	three-level	array.	If	the	cache	manager	didn’t	use	the	multilevel	VACB
index	array	optimization	for	this	file,	it	would	have	to	allocate	a	VACB	index	array
with	128,000	entries,	or	the	equivalent	of	1,000	VACB	index	arrays.

EXPERIMENT:	LOOKING	AT	SHARED	AND	PRIVATE	CACHE	MAPS

You	can	use	the	kernel	debugger’s	dt	command	to	look	at	the	shared	and	private	cache	map	data	structure



definitions	and	examine	the	structures	on	a	live	system.	First,	execute	the	!filecache	command	and	locate	an
entry	in	the	VACB	output	with	a	file	name	you	recognize.	In	this	example,	the	file	is	the	System	event	log:

8742a008  120  160   0   0 System.evtx

The	first	address	is	that	of	a	control	area	data	structure,	which	the	memory	manager	uses	to	keep	track	of
an	address	range.	(See	Chapter	10	for	more	information.)	The	control	area	stores	the	pointer	to	the	file
object	that	corresponds	to	the	view	in	the	cache.	A	file	object	identifies	an	instance	of	an	open	file.	Execute
the	following	command	using	the	address	of	the	control	area	of	the	entry	you	identified	to	see	the	control
area	structure:

lkd> !ca 8742a008
ControlArea  @ 87cd7248
  Segment      824157e0  Flink      00000000  Blink        00000000
  Section Ref         1  Pfn Ref        1117  Mapped Views        3
  User Ref            0  WaitForDel        0  Flush Count         0
  File Object  87bcab60  ModWriteCount     0  System Views        3
  WritableRefs        0
  Flags (c080) File WasPurged Accessed

      \Windows\System32\winevt\Logs\System.evtx

...

Next	look	at	the	file	object	referenced	by	the	control	area	with	this	command:

lkd> dt nt!FILEOBJECT 87bcab60
   +0x000 Type             : 0n5
   +0x002 Size             : 0n128
   +0x004 DeviceObject     : 0x86a4c4d0 DEVICEOBJECT
   +0x008 Vpb              : 0x86a0c270 VPB
   +0x00c FsContext        : 0x93b2a8e0 Void
   +0x010 FsContext2       : 0x93b2aa38 Void
   +0x014 SectionObjectPointer : 0x87c1b6f0 SECTION_OBJECT_POINTERS
   +0x018 PrivateCacheMap  : 0x87cd59e8 Void
   +0x01c FinalStatus      : 0n0
   +0x020 RelatedFileObject : (null)
   +0x024 LockOperation    : 0 ''

...

The	private	cache	map	is	at	offset	0x18:

lkd> dt nt!PRIVATECACHE_MAP 0x87cd59e8
   +0x000 NodeTypeCode     : 0n766
   +0x000 Flags            : PRIVATECACHE_MAP_FLAGS
   +0x000 UlongFlags       : 0x1402fe
   +0x004 ReadAheadMask    : 0xffff
   +0x008 FileObject       : 0x87bcab60 FILEOBJECT
   +0x010 FileOffset1      : LARGEINTEGER 0x1000
   +0x018 BeyondLastByte1  : LARGEINTEGER 0x1080
   +0x020 FileOffset2      : LARGEINTEGER 0x1000
   +0x028 BeyondLastByte2  : LARGEINTEGER 0x1080
...

Finally,	you	can	locate	the	shared	cache	map	in	the	SectionObjectPointer	field	of	the	file	object	and	then
view	its	contents:

lkd> dt nt!_SECTION_OBJECT_POINTERS  0x87c1b6f0
   +0x000 DataSectionObject : 0x87cd7248



   +0x004 SharedCacheMap   : 0x87cd58f8
   +0x008 ImageSectionObject : (null)

lkd> dt nt!_SHARED_CACHE_MAP 0x87cd58f8
   +0x000 NodeTypeCode     : 767
   +0x002 NodeByteSize     : 0n352
   +0x004 OpenCount        : 1
   +0x008 FileSize         : LARGEINTEGER 0x1211000
   +0x010 BcbList          : LISTENTRY [ 0x87cd5908   - 0x87cd5908 ]
   +0x018 SectionSize      : LARGEINTEGER 0x1300000
   +0x020 ValidDataLength  : LARGEINTEGER 0x1116200
   +0x028 ValidDataGoal    : LARGEINTEGER 0x1116200
   +0x030 InitialVacbs     : [4] (null)
   +0x040 Vacbs            : 0x87dc3a20    -> 0x85ba9df0  VACB
   +0x044 FileObjectFastRef : EX_FAST_REF
   +0x048 VacbLock          : EXPUSH_LOCK
...

Alternatively,	you	can	use	the	!fileobj	command	to	look	up	and	display	much	of	this	information
automatically.	For	example,	using	this	command	on	the	same	file	object	referenced	earlier	results	in	the
following	output:

lkd> !fileobj 87bcab60

\Windows\System32\winevt\Logs\System.evtx

Device Object: 0x86a4c4d0   \Driver\volmgr
Vpb: 0x86a0c270
Event signalled
Access: Read Write SharedRead

Flags:  0xc3042
         Synchronous IO
         Cache Supported
         Modified
         Size Changed
         Handle Created
         Fast IO Read

FsContext: 0x93b2a8e0     FsContext2: 0x93b2aa38
Private Cache Map: 0x87cd59e8
CurrentByteOffset: 1116180
Cache Data:
  Section Object Pointers: 87c1b6f0
  Shared Cache Map: 87cd58f8         File Offset: 1116180 in VACB number 44
  Vacb: 85ba9d90
  Your data is at: 82756180



File	System	Interfaces
The	first	time	a	file’s	data	is	accessed	for	a	read	or	write	operation,	the	file	system
driver	is	responsible	for	determining	whether	some	part	of	the	file	is	mapped	in	the
system	cache.	If	it’s	not,	the	file	system	driver	must	call	the	CcInitializeCacheMap
function	to	set	up	the	per-file	data	structures	described	in	the	preceding	section.

Once	a	file	is	set	up	for	cached	access,	the	file	system	driver	calls	one	of	several
functions	to	access	the	data	in	the	file.	There	are	three	primary	methods	for
accessing	cached	data,	each	intended	for	a	specific	situation:

The	copy	method	copies	user	data	between	cache	buffers	in	system	space	and	a
process	buffer	in	user	space.

The	mapping	and	pinning	method	uses	virtual	addresses	to	read	and	write	data
directly	from	and	to	cache	buffers.

The	physical	memory	access	method	uses	physical	addresses	to	read	and	write
data	directly	from	and	to	cache	buffers.

File	system	drivers	must	provide	two	versions	of	the	file	read	operation—cached
and	noncached—to	prevent	an	infinite	loop	when	the	memory	manager	processes
a	page	fault.	When	the	memory	manager	resolves	a	page	fault	by	calling	the	file
system	to	retrieve	data	from	the	file	(via	the	device	driver,	of	course),	it	must
specify	this	noncached	read	operation	by	setting	the	“no	cache”	flag	in	the	IRP.

Figure	11-10	illustrates	the	typical	interactions	between	the	cache	manager,	the
memory	manager,	and	file	system	drivers	in	response	to	user	read	or	write	file	I/O.
The	cache	manager	is	invoked	by	a	file	system	through	the	copy	interfaces	(the
CcCopyRead	and	CcCopyWrite	paths).	To	process	a	CcFastCopyRead	or
CcCopyRead	read,	for	example,	the	cache	manager	creates	a	view	in	the	cache	to
map	a	portion	of	the	file	being	read	and	reads	the	file	data	into	the	user	buffer	by
copying	from	the	view.	The	copy	operation	generates	page	faults	as	it	accesses	each
previously	invalid	page	in	the	view,	and	in	response	the	memory	manager	initiates
noncached	I/O	into	the	file	system	driver	to	retrieve	the	data	corresponding	to	the
part	of	the	file	mapped	to	the	page	that	faulted.



Figure	11-10.	File	system	interaction	with	cache	and	memory	managers

The	next	three	sections	explain	these	cache	access	mechanisms,	their	purpose,	and
how	they’re	used.

Copying	to	and	from	the	Cache
Because	the	system	cache	is	in	system	space,	it	is	mapped	into	the	address	space	of
every	process.	As	with	all	system	space	pages,	however,	cache	pages	aren’t
accessible	from	user	mode	because	that	would	be	a	potential	security	hole.	(For
example,	a	process	might	not	have	the	rights	to	read	a	file	whose	data	is	currently
contained	in	some	part	of	the	system	cache.)	Thus,	user	application	file	reads	and
writes	to	cached	files	must	be	serviced	by	kernel-mode	routines	that	copy	data
between	the	cache’s	buffers	in	system	space	and	the	application’s	buffers	residing	in
the	process	address	space.

Caching	with	the	Mapping	and	Pinning	Interfaces
Just	as	user	applications	read	and	write	data	in	files	on	a	disk,	file	system	drivers
need	to	read	and	write	the	data	that	describes	the	files	themselves	(the	metadata,	or
volume	structure	data).	Because	the	file	system	drivers	run	in	kernel	mode,
however,	they	could,	if	the	cache	manager	were	properly	informed,	modify	data
directly	in	the	system	cache.	To	permit	this	optimization,	the	cache	manager
provides	functions	that	permit	the	file	system	drivers	to	find	where	in	virtual
memory	the	file	system	metadata	resides,	thus	allowing	direct	modification	without



the	use	of	intermediary	buffers.

If	a	file	system	driver	needs	to	read	file	system	metadata	in	the	cache,	it	calls	the
cache	manager’s	mapping	interface	to	obtain	the	virtual	address	of	the	desired	data.
The	cache	manager	touches	all	the	requested	pages	to	bring	them	into	memory	and
then	returns	control	to	the	file	system	driver.	The	file	system	driver	can	then	access
the	data	directly.

If	the	file	system	driver	needs	to	modify	cache	pages,	it	calls	the	cache	manager’s
pinning	services,	which	keep	the	pages	active	in	virtual	memory	so	that	they
cannot	be	reclaimed.	The	pages	aren’t	actually	locked	into	memory	(such	as	when
a	device	driver	locks	pages	for	direct	memory	access	transfers).	Most	of	the	time,	a
file	system	driver	will	mark	its	metadata	stream	“no	write”,	which	instructs	the
memory	manager’s	mapped	page	writer	(explained	in	Chapter	10)	to	not	write	the
pages	to	disk	until	explicitly	told	to	do	so.	When	the	file	system	driver	unpins
(releases)	them,	the	cache	manager	releases	its	resources	so	that	it	can	lazily	flush
any	changes	to	disk	and	release	the	cache	view	that	the	metadata	occupied.

The	mapping	and	pinning	interfaces	solve	one	thorny	problem	of	implementing	a
file	system:	buffer	management.	Without	directly	manipulating	cached	metadata,	a
file	system	must	predict	the	maximum	number	of	buffers	it	will	need	when
updating	a	volume’s	structure.	By	allowing	the	file	system	to	access	and	update	its
metadata	directly	in	the	cache,	the	cache	manager	eliminates	the	need	for	buffers,
simply	updating	the	volume	structure	in	the	virtual	memory	the	memory	manager
provides.	The	only	limitation	the	file	system	encounters	is	the	amount	of	available
memory.

Caching	with	the	Direct	Memory	Access
Interfaces
In	addition	to	the	mapping	and	pinning	interfaces	used	to	access	metadata	directly
in	the	cache,	the	cache	manager	provides	a	third	interface	to	cached	data:	direct
memory	access	(DMA).	The	DMA	functions	are	used	to	read	from	or	write	to
cache	pages	without	intervening	buffers,	such	as	when	a	network	file	system	is
doing	a	transfer	over	the	network.

The	DMA	interface	returns	to	the	file	system	the	physical	addresses	of	cached	user



data	(rather	than	the	virtual	addresses,	which	the	mapping	and	pinning	interfaces
return),	which	can	then	be	used	to	transfer	data	directly	from	physical	memory	to	a
network	device.	Although	small	amounts	of	data	(1	KB	to	2	KB)	can	use	the	usual
buffer-based	copying	interfaces,	for	larger	transfers	the	DMA	interface	can	result	in
significant	performance	improvements	for	a	network	server	processing	file	requests
from	remote	systems.	To	describe	these	references	to	physical	memory,	a	memory
descriptor	list	(MDL)	is	used.	(MDLs	are	introduced	in	Chapter	10.)



Fast	I/O
Whenever	possible,	reads	and	writes	to	cached	files	are	handled	by	a	high-speed
mechanism	named	fast	I/O.	Fast	I/O	is	a	means	of	reading	or	writing	a	cached	file
without	going	through	the	work	of	generating	an	IRP,	as	described	in	Chapter	8.
With	fast	I/O,	the	I/O	manager	calls	the	file	system	driver’s	fast	I/O	routine	to	see
whether	I/O	can	be	satisfied	directly	from	the	cache	manager	without	generating
an	IRP.

Because	the	cache	manager	is	architected	on	top	of	the	virtual	memory	subsystem,
file	system	drivers	can	use	the	cache	manager	to	access	file	data	simply	by	copying
to	or	from	pages	mapped	to	the	actual	file	being	referenced	without	going	through
the	overhead	of	generating	an	IRP.

Fast	I/O	doesn’t	always	occur.	For	example,	the	first	read	or	write	to	a	file	requires
setting	up	the	file	for	caching	(mapping	the	file	into	the	cache	and	setting	up	the
cache	data	structures,	as	explained	earlier	in	the	section	Cache	Data	Structures).
Also,	if	the	caller	specified	an	asynchronous	read	or	write,	fast	I/O	isn’t	used
because	the	caller	might	be	stalled	during	paging	I/O	operations	required	to	satisfy
the	buffer	copy	to	or	from	the	system	cache	and	thus	not	really	providing	the
requested	asynchronous	I/O	operation.	But	even	on	a	synchronous	I/O,	the	file
system	driver	might	decide	that	it	can’t	process	the	I/O	operation	by	using	the	fast
I/O	mechanism,	say,	for	example,	if	the	file	in	question	has	a	locked	range	of	bytes
(as	a	result	of	calls	to	the	Windows	LockFile	and	UnlockFile	functions).	Because
the	cache	manager	doesn’t	know	what	parts	of	which	files	are	locked,	the	file
system	driver	must	check	the	validity	of	the	read	or	write,	which	requires
generating	an	IRP.	The	decision	tree	for	fast	I/O	is	shown	in	Figure	11-11.



Figure	11-11.	Fast	I/O	decision	tree

These	steps	are	involved	in	servicing	a	read	or	a	write	with	fast	I/O:

1.	 A	thread	performs	a	read	or	write	operation.

2.	 If	the	file	is	cached	and	the	I/O	is	synchronous,	the	request	passes	to	the	fast
I/O	entry	point	of	the	file	system	driver	stack.	If	the	file	isn’t	cached,	the	file
system	driver	sets	up	the	file	for	caching	so	that	the	next	time,	fast	I/O	can	be
used	to	satisfy	a	read	or	write	request.

3.	 If	the	file	system	driver’s	fast	I/O	routine	determines	that	fast	I/O	is	possible,
it	calls	the	cache	manager’s	read	or	write	routine	to	access	the	file	data
directly	in	the	cache.	(If	fast	I/O	isn’t	possible,	the	file	system	driver	returns
to	the	I/O	system,	which	then	generates	an	IRP	for	the	I/O	and	eventually
calls	the	file	system’s	regular	read	routine.)

4.	 The	cache	manager	translates	the	supplied	file	offset	into	a	virtual	address	in
the	cache.



5.	 For	reads,	the	cache	manager	copies	the	data	from	the	cache	into	the	buffer
of	the	process	requesting	it;	for	writes,	it	copies	the	data	from	the	buffer	to
the	cache.

6.	 One	of	the	following	actions	occurs:

For	reads	where	FILE_FLAG_RANDOM_ACCESS	wasn’t	specified
when	the	file	was	opened,	the	read-ahead	information	in	the	caller’s
private	cache	map	is	updated.	Read-ahead	may	also	be	queued	for	files	for
which	the	FO_RANDOM_ACCESS	flag	is	not	specified.

For	writes,	the	dirty	bit	of	any	modified	page	in	the	cache	is	set	so	that
the	lazy	writer	will	know	to	flush	it	to	disk.

For	write-through	files,	any	modifications	are	flushed	to	disk.



ReadAhead	and	WriteBehind
In	this	section,	you’ll	see	how	the	cache	manager	implements	reading	and	writing
file	data	on	behalf	of	file	system	drivers.	Keep	in	mind	that	the	cache	manager	is
involved	in	file	I/O	only	when	a	file	is	opened	without	the
FILE_FLAG_NO_BUFFERING	flag	and	then	read	from	or	written	to	using	the
Windows	I/O	functions	(for	example,	using	the	Windows	ReadFile	and	WriteFile
functions).	Mapped	files	don’t	go	through	the	cache	manager,	nor	do	files	opened
with	the	FILE_FLAG_NO_BUFFERING	flag	set.

NOTE

When	an	application	uses	the	FILE_FLAG_NO_BUFFERING	flag	to	open	a	file,	its	file	I/O	must	start	at
device-aligned	offsets	and	be	of	sizes	that	are	a	multiple	of	the	alignment	size;	its	input	and	output	buffers
must	also	be	device-aligned	virtual	addresses.	For	file	systems,	this	usually	corresponds	to	the	sector	size
(512	bytes	on	NTFS,	typically,	and	2,048	bytes	on	CDFS).	One	of	the	benefits	of	the	cache	manager,	apart
from	the	actual	caching	performance,	is	the	fact	that	it	performs	intermediate	buffering	to	allow	arbitrarily
aligned	and	sized	I/O.

Intelligent	ReadAhead
The	cache	manager	uses	the	principle	of	spatial	locality	to	perform	intelligent	read-
ahead	by	predicting	what	data	the	calling	process	is	likely	to	read	next	based	on	the
data	that	it	is	reading	currently.	Because	the	system	cache	is	based	on	virtual
addresses,	which	are	contiguous	for	a	particular	file,	it	doesn’t	matter	whether
they’re	juxtaposed	in	physical	memory.	File	read-ahead	for	logical	block	caching	is
more	complex	and	requires	tight	cooperation	between	file	system	drivers	and	the
block	cache	because	that	cache	system	is	based	on	the	relative	positions	of	the
accessed	data	on	the	disk,	and,	of	course,	files	aren’t	necessarily	stored
contiguously	on	disk.	You	can	examine	read-ahead	activity	by	using	the	Cache:
Read	Aheads/sec	performance	counter	or	the	CcReadAheadIos	system	variable.

Reading	the	next	block	of	a	file	that	is	being	accessed	sequentially	provides	an
obvious	performance	improvement,	with	the	disadvantage	that	it	will	cause	head
seeks.	To	extend	read-ahead	benefits	to	cases	of	strided	data	accesses	(both
forward	and	backward	through	a	file),	the	cache	manager	maintains	a	history	of
the	last	two	read	requests	in	the	private	cache	map	for	the	file	handle	being



accessed,	a	method	known	as	asynchronous	read-ahead	with	history.	If	a	pattern
can	be	determined	from	the	caller’s	apparently	random	reads,	the	cache	manager
extrapolates	it.	For	example,	if	the	caller	reads	page	4000	and	then	page	3000,	the
cache	manager	assumes	that	the	next	page	the	caller	will	require	is	page	2000	and
prereads	it.

NOTE

Although	a	caller	must	issue	a	minimum	of	three	read	operations	to	establish	a	predictable	sequence,	only
two	are	stored	in	the	private	cache	map.

To	make	read-ahead	even	more	efficient,	the	Win32	CreateFile	function	provides	a
flag	indicating	forward	sequential	file	access:
FILE_FLAG_SEQUENTIAL_SCAN.	If	this	flag	is	set,	the	cache	manager	doesn’t
keep	a	read	history	for	the	caller	for	prediction	but	instead	performs	sequential
read-ahead.	However,	as	the	file	is	read	into	the	cache’s	working	set,	the	cache
manager	unmaps	views	of	the	file	that	are	no	longer	active	and,	if	they	are
unmodified,	directs	the	memory	manager	to	place	the	pages	belonging	to	the
unmapped	views	at	the	front	of	the	standby	list	so	that	they	will	be	quickly	reused.
It	also	reads	ahead	two	times	as	much	data	(2	MB	instead	of	1	MB,	for	example).
As	the	caller	continues	reading,	the	cache	manager	prereads	additional	blocks	of
data,	always	staying	about	one	read	(of	the	size	of	the	current	read)	ahead	of	the
caller.

The	cache	manager’s	read-ahead	is	asynchronous	because	it	is	performed	in	a
thread	separate	from	the	caller’s	thread	and	proceeds	concurrently	with	the	caller’s
execution.	When	called	to	retrieve	cached	data,	the	cache	manager	first	accesses
the	requested	virtual	page	to	satisfy	the	request	and	then	queues	an	additional	I/O
request	to	retrieve	additional	data	to	a	system	worker	thread.	The	worker	thread
then	executes	in	the	background,	reading	additional	data	in	anticipation	of	the
caller’s	next	read	request.	The	preread	pages	are	faulted	into	memory	while	the
program	continues	executing	so	that	when	the	caller	requests	the	data	it’s	already	in
memory.

For	applications	that	have	no	predictable	read	pattern,	the
FILE_FLAG_RANDOM_ACCESS	flag	can	be	specified	when	the	CreateFile
function	is	called.	This	flag	instructs	the	cache	manager	not	to	attempt	to	predict



where	the	application	is	reading	next	and	thus	disables	read-ahead.	The	flag	also
stops	the	cache	manager	from	aggressively	unmapping	views	of	the	file	as	the	file
is	accessed	so	as	to	minimize	the	mapping/unmapping	activity	for	the	file	when	the
application	revisits	portions	of	the	file.

Write-Back	Caching	and	Lazy	Writing
The	cache	manager	implements	a	write-back	cache	with	lazy	write.	This	means
that	data	written	to	files	is	first	stored	in	memory	in	cache	pages	and	then	written
to	disk	later.	Thus,	write	operations	are	allowed	to	accumulate	for	a	short	time	and
are	then	flushed	to	disk	all	at	once,	reducing	the	overall	number	of	disk	I/O
operations.

The	cache	manager	must	explicitly	call	the	memory	manager	to	flush	cache	pages
because	otherwise	the	memory	manager	writes	memory	contents	to	disk	only
when	demand	for	physical	memory	exceeds	supply,	as	is	appropriate	for	volatile
data.	Cached	file	data,	however,	represents	nonvolatile	disk	data.	If	a	process
modifies	cached	data,	the	user	expects	the	contents	to	be	reflected	on	disk	in	a
timely	manner.

Additionally,	the	cache	manager	has	the	ability	to	veto	the	memory	manager’s
mapped	writer	thread.	Since	the	modified	list	(see	Chapter	10	for	more
information)	is	not	sorted	in	logical	block	address	(LBA)	order,	the	cache
manager’s	attempts	to	cluster	pages	for	larger	sequential	I/Os	to	the	disk	are	not
always	successful	and	actually	cause	repeated	seeks.	To	combat	this	effect,	the
cache	manager	has	the	ability	to	aggressively	veto	the	mapped	writer	thread	and
stream	out	writes	in	virtual	byte	offset	(VBO)	order,	which	is	much	closer	to	the
LBA	order	on	disk.	Since	the	cache	manager	now	owns	these	writes,	it	can	also
apply	its	own	scheduling	and	throttling	algorithms	to	prefer	read-ahead	over	write-
behind	and	impact	the	system	less.

The	decision	about	how	often	to	flush	the	cache	is	an	important	one.	If	the	cache	is
flushed	too	frequently,	system	performance	will	be	slowed	by	unnecessary	I/O.	If
the	cache	is	flushed	too	rarely,	you	risk	losing	modified	file	data	in	the	cases	of	a
system	failure	(a	loss	especially	irritating	to	users	who	know	that	they	asked	the
application	to	save	the	changes)	and	running	out	of	physical	memory	(because	it’s
being	used	by	an	excess	of	modified	pages).



To	balance	these	concerns,	once	per	second	the	cache	manager’s	lazy	writer
function	executes	on	a	system	worker	thread	and	queues	one-eighth	of	the	dirty
pages	in	the	system	cache	to	be	written	to	disk.	If	the	rate	at	which	dirty	pages	are
being	produced	is	greater	than	the	amount	the	lazy	writer	had	determined	it	should
write,	the	lazy	writer	writes	an	additional	number	of	dirty	pages	that	it	calculates
are	necessary	to	match	that	rate.	System	worker	threads	from	the	systemwide
critical	worker	thread	pool	actually	perform	the	I/O	operations.	The	lazy	writer	is
also	aware	of	when	the	memory	manager’s	mapped	page	writer	is	already
performing	a	flush.	In	these	cases,	it	delays	its	write-back	capabilities	to	the	same
stream	to	avoid	a	situation	where	two	flushers	are	writing	to	the	same	file.

NOTE

The	cache	manager	provides	a	means	for	file	system	drivers	to	track	when	and	how	much	data	has	been
written	to	a	file.	After	the	lazy	writer	flushes	dirty	pages	to	the	disk,	the	cache	manager	notifies	the	file
system,	instructing	it	to	update	its	view	of	the	valid	data	length	for	the	file.	(The	cache	manager	and	file
systems	separately	track	in	memory	the	valid	data	length	for	a	file.)

EXPERIMENT:	WATCHING	THE	CACHE	MANAGER	IN	ACTION

In	this	experiment,	we’ll	use	Process	Monitor	to	view	the	underlying	file	system	activity,	including	cache
manager	read-ahead	and	write-behind,	when	Windows	Explorer	copies	a	large	file	(in	this	example,	a	CD-
ROM	image)	from	one	local	directory	to	another.

First,	configure	Process	Monitor’s	filter	to	include	the	source	and	destination	file	paths,	the	Explorer.exe
and	System	processes,	and	the	ReadFile	and	WriteFile	operations.	In	this	example,	the
C:\Users\Administrator\Downloads\dump.dmp	file	was	copied	to	C:\dump.dmp,	so	the	filter	is	configured
as	follows:

You	should	see	a	Process	Monitor	trace	like	the	one	shown	here	after	you	copy	the	file:



The	first	few	entries	show	the	initial	I/O	processing	performed	by	the	copy	engine	and	the	first	cache
manager	operations.	Here	are	some	of	the	things	that	you	can	see:

The	initial	1-MB	cached	read	from	Explorer	at	the	first	entry.	The	size	of	this	read	depends	on	an
internal	matrix	calculation	based	on	the	file	size	and	can	vary	from	128	KB	to	1	MB.	Because	this	file
was	large,	the	copy	engine	chose	1	MB.

The	1-MB	read	is	followed	by	another	1-MB	 noncached	read.	Noncached	reads	typically	indicate
activity	due	to	page	faults	or	cache	manager	access.	A	closer	look	at	the	stack	trace	for	these	events,
which	you	can	see	by	double-clicking	an	entry	and	choosing	the	Stack	tab,	reveals	that	indeed	the
CcCopyRead	cache	manager	routine,	which	is	called	by	the	NTFS	driver’s	read	routine,	causes	the
memory	manager	to	fault	the	source	data	into	physical	memory:



After	this	1-MB	page	fault	I/O,	the	cache	manager’s	read-ahead	mechanism	starts	reading	the	file,
which	includes	the	System	process’s	subsequent	noncached	1-MB	read	at	the	1-MB	offset.	Because	of
the	file	size	and	Explorer’s	read	I/O	sizes,	the	cache	manager	chose	1	MB	as	the	optimal	read-ahead
size.	The	stack	trace	for	one	of	the	read-ahead	operations,	shown	next,	confirms	that	one	of	the	cache
manager’s	worker	threads	is	performing	the	read-ahead.



After	this	point,	Explorer’s	1-MB	reads	aren’t	followed	by	page	faults,	because	the	read-ahead	thread	stays
ahead	of	Explorer,	prefetching	the	file	data	with	its	1-MB	noncached	reads.	However,	every	once	in	a	while,
the	read-ahead	thread	is	not	able	to	pick	up	enough	data	in	time,	and	clustered	page	faults	do	occur,	which
appear	as	Synchronous	Paging	I/O.

If	you	look	at	the	stack	for	these	entries,	you’ll	see	that	instead	of	MmPrefetchForCacheManager,	the
MmAccessFault/MiIssueHardFault	routines	are	called.



As	soon	as	it	starts	reading,	Explorer	also	starts	performing	writes	to	the	destination	file.	These	are
sequential,	cached	64-KB	writes.	After	about	132	MB	of	reads,	the	first	WriteFile	operation	from	the
System	process	occurs,	shown	here:

The	write	operation’s	stack	trace,	shown	here,	indicates	that	the	memory	manager’s	mapped	page	writer
thread	was	actually	responsible	for	the	write:



This	occurs	because	for	the	first	couple	of	megabytes	of	data,	the	cache	manager	hadn’t	started	performing
write-behind,	so	the	memory	manager’s	mapped	page	writer	began	flushing	the	modified	destination	file
data.	(See	Chapter	10	for	more	information	on	the	mapped	page	writer.)

To	get	a	clearer	view	of	the	cache	manager	operations,	remove	Explorer	from	the	Process	Monitor’s	filter	so
that	only	the	System	process	operations	are	visible,	as	shown	next.

With	this	view,	it’s	much	easier	to	see	the	cache	manager’s	1-MB	write-behind	operations	(the	maximum
write	sizes	are	1	MB	on	client	versions	of	Windows	and	32	MB	on	server	versions;	this	experiment	was
performed	on	a	client	system).	The	stack	trace	for	one	of	the	write-behind	operations,	shown	here,	verifies
that	a	cache	manager	worker	thread	is	performing	write-behind:



As	an	added	experiment,	try	repeating	this	process	with	a	remote	copy	instead	(from	one	Windows	system
to	another)	and	by	copying	files	of	varying	sizes.	You’ll	notice	some	different	behaviors	by	the	copy	engine
and	the	cache	manager,	both	on	the	receiving	and	sending	sides.

Disabling	Lazy	Writing	for	a	File
If	you	create	a	temporary	file	by	specifying	the	flag
FILE_ATTRIBUTE_TEMPORARY	in	a	call	to	the	Windows	CreateFile	function,
the	lazy	writer	won’t	write	dirty	pages	to	the	disk	unless	there	is	a	severe	shortage
of	physical	memory	or	the	file	is	explicitly	flushed.	This	characteristic	of	the	lazy
writer	improves	system	performance—the	lazy	writer	doesn’t	immediately	write
data	to	a	disk	that	might	ultimately	be	discarded.	Applications	usually	delete
temporary	files	soon	after	closing	them.

Forcing	the	Cache	to	Write	Through	to	Disk
Because	some	applications	can’t	tolerate	even	momentary	delays	between	writing	a
file	and	seeing	the	updates	on	disk,	the	cache	manager	also	supports	write-through
caching	on	a	per–file	object	basis;	changes	are	written	to	disk	as	soon	as	they’re
made.	To	turn	on	write-through	caching,	set	the
FILE_FLAG_WRITE_THROUGH	flag	in	the	call	to	the	CreateFile	function.



Alternatively,	a	thread	can	explicitly	flush	an	open	file,	by	using	the	Windows
FlushFileBuffers	function,	when	it	reaches	a	point	at	which	the	data	needs	to	be
written	to	disk.

Flushing	Mapped	Files
If	the	lazy	writer	must	write	data	to	disk	from	a	view	that’s	also	mapped	into
another	process’s	address	space,	the	situation	becomes	a	little	more	complicated,
because	the	cache	manager	will	only	know	about	the	pages	it	has	modified.	(Pages
modified	by	another	process	are	known	only	to	that	process	because	the	modified
bit	in	the	page	table	entries	for	modified	pages	is	kept	in	the	process	private	page
tables.)	To	address	this	situation,	the	memory	manager	informs	the	cache	manager
when	a	user	maps	a	file.	When	such	a	file	is	flushed	in	the	cache	(for	example,	as	a
result	of	a	call	to	the	Windows	FlushFileBuffers	function),	the	cache	manager
writes	the	dirty	pages	in	the	cache	and	then	checks	to	see	whether	the	file	is	also
mapped	by	another	process.	When	the	cache	manager	sees	that	the	file	is,	the
cache	manager	then	flushes	the	entire	view	of	the	section	to	write	out	pages	that
the	second	process	might	have	modified.	If	a	user	maps	a	view	of	a	file	that	is	also
open	in	the	cache,	when	the	view	is	unmapped,	the	modified	pages	are	marked	as
dirty	so	that	when	the	lazy	writer	thread	later	flushes	the	view,	those	dirty	pages
will	be	written	to	disk.	This	procedure	works	as	long	as	the	sequence	occurs	in	the
following	order:

1.	 A	user	unmaps	the	view.

2.	 A	process	flushes	file	buffers.

If	this	sequence	isn’t	followed,	you	can’t	predict	which	pages	will	be	written	to
disk.

EXPERIMENT:	WATCHING	CACHE	FLUSHES

You	can	see	the	cache	manager	map	views	into	the	system	cache	and	flush	pages	to	disk	by	running	the
Performance	Monitor	and	adding	the	Data	Maps/sec	and	Lazy	Write	Flushes/sec	counters	and	then	copying
a	large	file	from	one	location	to	another.	The	generally	higher	line	in	the	following	screen	shot	shows	Data
Maps/sec	and	the	other	shows	Lazy	Write	Flushes/sec.	During	the	file	copy,	Lazy	Write	Flushes/sec
significantly	increased.



Write	Throttling
The	file	system	and	cache	manager	must	determine	whether	a	cached	write	request
will	affect	system	performance	and	then	schedule	any	delayed	writes.	First	the	file
system	asks	the	cache	manager	whether	a	certain	number	of	bytes	can	be	written
right	now	without	hurting	performance	by	using	the	CcCanIWrite	function	and
blocking	that	write	if	necessary.	For	asynchronous	I/O,	the	file	system	sets	up	a
callback	with	the	cache	manager	for	automatically	writing	the	bytes	when	writes
are	again	permitted	by	calling	CcDeferWrite.	Otherwise,	it	just	blocks	and	waits	on
CcCanIWrite	to	continue.	Once	it’s	notified	of	an	impending	write	operation,	the
cache	manager	determines	how	many	dirty	pages	are	in	the	cache	and	how	much
physical	memory	is	available.	If	few	physical	pages	are	free,	the	cache	manager
momentarily	blocks	the	file	system	thread	that’s	requesting	to	write	data	to	the
cache.	The	cache	manager’s	lazy	writer	flushes	some	of	the	dirty	pages	to	disk	and
then	allows	the	blocked	file	system	thread	to	continue.	This	write	throttling
prevents	system	performance	from	degrading	because	of	a	lack	of	memory	when	a
file	system	or	network	server	issues	a	large	write	operation.

NOTE

The	effects	of	write	throttling	are	volume-aware,	such	that	if	a	user	is	copying	a	large	file	on,	say,	a	RAID-0



SSD	while	also	transferring	a	document	to	a	portable	USB	thumb	drive,	writes	to	the	USB	disk	will	not
cause	write	throttling	to	occur	on	the	SSD	transfer.

The	dirty	page	threshold	is	the	number	of	pages	that	the	system	cache	will	allow	to
be	dirty	before	throttling	cached	writers.	This	value	is	computed	at	system
initialization	time	and	depends	on	the	product	type	(client	or	server).	Two	other
values	are	also	computed—the	top	dirty	page	threshold	and	the	bottom	dirty	page
threshold.	Depending	on	memory	consumption	and	the	rate	at	which	dirty	pages
are	being	processed,	the	lazy	writer	calls	the	internal	function	CcAdjustThrottle,
which,	on	server	systems,	performs	dynamic	adjustment	of	the	current	threshold
based	on	the	calculated	top	and	bottom	values.	This	adjustment	is	made	to	preserve
the	read	cache	in	cases	of	a	heavy	write	load	that	will	inevitably	overrun	the	cache
and	become	throttled.	Table	11-1	lists	the	algorithms	used	to	calculate	the	dirty
page	thresholds.

Table	11-1.	Algorithms	for	Calculating	the	Dirty	Page	Thresholds

Product
Type

Dirty	Page
Threshold

Top	Dirty	Page
Threshold

Bottom	Dirty	Page
Threshold

Client Physical	pages	/	8 Physical	pages	/	8 Physical	pages	/	8

Server Physical	pages	/	2 Physical	pages	/	2 Physical	pages	/	8

Write	throttling	is	also	useful	for	network	redirectors	transmitting	data	over	slow
communication	lines.	For	example,	suppose	a	local	process	writes	a	large	amount
of	data	to	a	remote	file	system	over	a	9600-baud	line.	The	data	isn’t	written	to	the
remote	disk	until	the	cache	manager’s	lazy	writer	flushes	the	cache.	If	the
redirector	has	accumulated	lots	of	dirty	pages	that	are	flushed	to	disk	at	once,	the
recipient	could	receive	a	network	timeout	before	the	data	transfer	completes.	By
using	the	CcSetDirtyPageThreshold	function,	the	cache	manager	allows	network
redirectors	to	set	a	limit	on	the	number	of	dirty	cache	pages	they	can	tolerate	(for
each	stream),	thus	preventing	this	scenario.	By	limiting	the	number	of	dirty	pages,
the	redirector	ensures	that	a	cache	flush	operation	won’t	cause	a	network	timeout.

EXPERIMENT:	VIEWING	THE	WRITE-THROTTLE	PARAMETERS

The	!defwrites	kernel	debugger	command	dumps	the	values	of	the	kernel	variables	the	cache	manager	uses,



including	the	number	of	dirty	pages	in	the	file	cache	(CcTotalDirtyPages),	when	determining	whether	it
should	throttle	write	operations:

lkd>
!defwrites
*** Cache Write Throttle Analysis ***

         CcTotalDirtyPages:                    39 (     156 Kb)
         CcDirtyPageThreshold:              32753 (  131012 Kb)
         MmAvailablePages:                  81569 (  326276 Kb)
         MmThrottleTop:                       450 (    1800 Kb)
         MmThrottleBottom:                     80 (     320 Kb)
         MmModifiedPageListHead.Total:       4337 (   17348 Kb)

Write throttles not engaged

This	output	shows	that	the	number	of	dirty	pages	is	far	from	the	number	that	triggers	write	throttling
(CcDirtyPageThreshold),	so	the	system	has	not	engaged	in	any	write	throttling.

System	Threads
As	mentioned	earlier,	the	cache	manager	performs	lazy	write	and	read-ahead	I/O
operations	by	submitting	requests	to	the	common	critical	system	worker	thread
pool.	However,	it	does	limit	the	use	of	these	threads	to	one	less	than	the	total
number	of	critical	system	worker	threads	for	small	and	medium	memory	systems
(two	less	than	the	total	for	large	memory	systems).

Internally,	the	cache	manager	organizes	its	work	requests	into	four	lists	(though
these	are	serviced	by	the	same	set	of	executive	worker	threads):

The	express	queue	is	used	for	read-ahead	operations.

The	regular	queue	is	used	for	lazy	write	scans	(for	dirty	data	to	flush),	write-
behinds,	and	lazy	closes.

The	fast	teardown	queue	is	used	when	the	memory	manager	is	waiting	for	the
data	section	owned	by	the	cache	manager	to	be	freed	so	that	the	file	can	be
opened	with	an	image	section	instead,	which	causes	CcWriteBehind	to	flush	the
entire	file	and	tear	down	the	shared	cache	map.

The	post	tick	queue	is	used	for	the	cache	manager	to	internally	register	for	a
notification	after	each	“tick”	of	the	lazy	writer	thread—in	other	words,	at	the
end	of	each	pass.

To	keep	track	of	the	work	items	the	worker	threads	need	to	perform,	the	cache
manager	creates	its	own	internal	per-processor	look-aside	list,	a	fixed-length	list—



one	for	each	processor—of	worker	queue	item	structures.	(Look-aside	lists	are
discussed	in	Chapter	10.)	The	number	of	worker	queue	items	depends	on	system
size:	32	for	small-memory	systems,	64	for	medium-memory	systems,	128	for
large-memory	client	systems,	and	256	for	large-memory	server	systems.	For	cross-
processor	performance,	the	cache	manager	also	allocates	a	global	look-aside	list	at
the	same	sizes	as	just	described.



Conclusion
The	cache	manager	provides	a	high-speed,	intelligent	mechanism	for	reducing	disk
I/O	and	increasing	overall	system	throughput.	By	caching	on	the	basis	of	virtual
blocks,	the	cache	manager	can	perform	intelligent	read-ahead.	By	relying	on	the
global	memory	manager’s	mapped	file	primitive	to	access	file	data,	the	cache
manager	can	provide	the	special	fast	I/O	mechanism	to	reduce	the	CPU	time
required	for	read	and	write	operations	and	also	leave	all	matters	related	to	physical
memory	management	to	the	single	Windows	global	memory	manager,	thus
reducing	code	duplication	and	increasing	efficiency.



Chapter	12.	File	Systems
In	this	chapter,	we	present	an	overview	of	the	file	system	formats	supported	by
Windows.	We	then	describe	the	types	of	file	system	drivers	and	their	basic
operation,	including	how	they	interact	with	other	system	components,	such	as	the
memory	manager	and	the	cache	manager.	Following	that	is	a	description	of	how	to
use	Process	Monitor	from	Windows	Sysinternals	(at
http://www.microsoft.com/technet/sysinternals)	to	troubleshoot	a	wide	variety	of
file	system	access	problems.

In	the	balance	of	the	chapter,	we	first	describe	the	Common	Log	File	System
(CLFS),	a	transactional	logging	virtual	file	system	implemented	on	the	native
Windows	file	system	format,	NTFS.	Then	we	focus	on	the	on-disk	layout	of	NTFS
and	its	advanced	features,	such	as	compression,	recoverability,	quotas,	symbolic
links,	transactions	(which	use	the	services	provided	by	CLFS),	and	encryption.

To	fully	understand	this	chapter,	you	should	be	familiar	with	the	terminology
introduced	in	Chapter	9,	including	the	terms	volume	and	partition.	You’ll	also	need
to	be	acquainted	with	these	additional	terms:

Sectors	are	hardware-addressable	blocks	on	a	storage	medium.	Hard	disks
usually	define	a	512-byte	sector	size,	but	they	are	moving	to	4,096-byte	sectors.
(See	Chapter	9.)	Thus,	if	the	sector	size	is	512	bytes	and	the	operating	system
wants	to	modify	the	632nd	byte	on	a	disk,	it	must	write	a	512-byte	block	of
data	to	the	second	sector	on	the	disk.

File	system	formats	define	the	way	that	file	data	is	stored	on	storage	media,	and
they	affect	a	file	system’s	features.	For	example,	a	format	that	doesn’t	allow	user
permissions	to	be	associated	with	files	and	directories	can’t	support	security.	A
file	system	format	can	also	impose	limits	on	the	sizes	of	files	and	storage
devices	that	the	file	system	supports.	Finally,	some	file	system	formats
efficiently	implement	support	for	either	large	or	small	files	or	for	large	or	small
disks.	NTFS	and	exFAT	are	examples	of	file	system	formats	that	offer	a
different	set	of	features	and	usage	scenarios.

Clusters	are	the	addressable	blocks	that	many	file	system	formats	use.	Cluster

http://www.microsoft.com/technet/sysinternals


size	is	always	a	multiple	of	the	sector	size,	as	shown	in	Figure	12-1.	File	system
formats	use	clusters	to	manage	disk	space	more	efficiently;	a	cluster	size	that	is
larger	than	the	sector	size	divides	a	disk	into	more	manageable	blocks.	The
potential	trade-off	of	a	larger	cluster	size	is	wasted	disk	space,	or	internal
fragmentation,	that	results	when	file	sizes	aren’t	exact	multiples	of	the	cluster
size.

Figure	12-1.	Sectors	and	a	cluster	on	a	disk

Metadata	is	data	stored	on	a	volume	in	support	of	file	system	format
management.	It	isn’t	typically	made	accessible	to	applications.	Metadata
includes	the	data	that	defines	the	placement	of	files	and	directories	on	a	volume,
for	example.



Windows	File	System	Formats
Windows	includes	support	for	the	following	file	system	formats:

CDFS

UDF

FAT12,	FAT16,	and	FAT32

exFAT

NTFS

Each	of	these	formats	is	best	suited	for	certain	environments,	as	you’ll	see	in	the
following	sections.

CDFS
CDFS	(%SystemRoot%\System32\Drivers\Cdfs.sys),	or	CD-ROM	file	system,	is	a
read-only	file	system	driver	that	supports	a	superset	of	the	ISO-9660	format	as	well
as	a	superset	of	the	Joliet	disk	format.	While	the	ISO-9660	format	is	relatively
simple	and	has	limitations	such	as	ASCII	uppercase	names	with	a	maximum	length
of	32	characters,	Joliet	is	more	flexible	and	supports	Unicode	names	of	arbitrary
length.	If	structures	for	both	formats	are	present	on	a	disk	(to	offer	maximum
compatibility),	CDFS	uses	the	Joliet	format.	CDFS	has	a	couple	of	restrictions:

A	maximum	file	size	of	4	GB

A	maximum	of	65,535	directories

CDFS	is	considered	a	legacy	format	because	the	industry	has	adopted	the	Universal
Disk	Format	(UDF)	as	the	standard	for	optical	media.

UDF
The	Windows	UDF	file	system	implementation	is	OSTA	(Optical	Storage
Technology	Association)	UDF-compliant.	(UDF	is	a	subset	of	the	ISO-13346
format	with	extensions	for	formats	such	as	CD-R	and	DVD-R/RW.)	OSTA	defined
UDF	in	1995	as	a	format	to	replace	the	ISO-9660	format	for	magneto-optical
storage	media,	mainly	DVD-ROM.	UDF	is	included	in	the	DVD	specification	and
is	more	flexible	than	CDFS.	The	UDF	file	system	format	has	the	following	traits:



Directory	and	file	names	can	be	254	ASCII	or	127	Unicode	characters	long.

Files	can	be	sparse.	(Sparse	files	are	defined	later	in	this	chapter.)

File	sizes	are	specified	with	64	bits.

Support	for	access	control	lists	(ACLs).

Support	for	alternate	data	streams.

The	UDF	driver	supports	UDF	versions	up	to	2.60.	The	UDF	format	was	designed
with	rewritable	media	in	mind.	The	Windows	UDF	driver
(%SystemRoot%\System32\Drivers\Udfs.sys)	provides	read-write	support	for	Blu-
ray,	DVD-RAM,	CD-R/RW,	and	DVD+-R/RW	drives	when	using	UDF	2.50	and
read-only	support	when	using	UDF	2.60.	However,	Windows	does	not	implement
support	for	certain	UDF	features	such	as	named	streams	and	access	control	lists.

FAT12,	FAT16,	and	FAT32
Windows	supports	the	FAT	file	system	primarily	for	compatibility	with	other
operating	systems	in	multiboot	systems,	and	as	a	format	for	flash	drives	or	memory
cards.	The	Windows	FAT	file	system	driver	is	implemented	in
%SystemRoot%\System32\Drivers\Fastfat.sys.

The	name	of	each	FAT	format	includes	a	number	that	indicates	the	number	of	bits
that	the	particular	format	uses	to	identify	clusters	on	a	disk.	FAT12’s	12-bit	cluster
identifier	limits	a	partition	to	storing	a	maximum	of	212	(4,096)	clusters.	Windows
permits	cluster	sizes	from	512	bytes	to	8	KB,	which	limits	a	FAT12	volume	size	to
32	MB.

NOTE

All	FAT	file	system	types	reserve	the	first	two	clusters	and	the	last	16	clusters	of	a	volume,	so	the	number
of	usable	clusters	for	a	FAT12	volume,	for	instance,	is	slightly	less	than	4,096.

FAT16,	with	a	16-bit	cluster	identifier,	can	address	216	(65,536)	clusters.	On
Windows,	FAT16	cluster	sizes	range	from	512	bytes	(the	sector	size)	to	64	KB	(on
disks	with	a	512-byte	sector	size),	which	limits	FAT16	volume	sizes	to	4	GB.
Disks	with	a	sector	size	of	4,096	bytes	allow	for	clusters	of	256	KB.	The	cluster
size	Windows	uses	depends	on	the	size	of	a	volume.	The	various	sizes	are	listed	in



Table	12-1.	If	you	format	a	volume	that	is	less	than	16	MB	as	FAT	by	using	the
format	command	or	the	Disk	Management	snap-in,	Windows	uses	the	FAT12
format	instead	of	FAT16.

Table	12-1.	Default	FAT16	Cluster	Sizes	in	Windows

Volume	Size Default	Cluster	Size

<8	MB Not	supported

8	MB–32	MB 512	bytes

32	MB–64	MB 1	KB

64	MB–128	MB 2	KB

128	MB–256	MB 4	KB

256	MB–512	MB 8	KB

512	MB–1,024	MB 16	KB

1	GB–2	GB 32	KB

2	GB–4	GB 64	KB

>16	GB Not	supported

A	FAT	volume	is	divided	into	several	regions,	which	are	shown	in	Figure	12-2.
The	file	allocation	table,	which	gives	the	FAT	file	system	format	its	name,	has	one
entry	for	each	cluster	on	a	volume.	Because	the	file	allocation	table	is	critical	to	the
successful	interpretation	of	a	volume’s	contents,	the	FAT	format	maintains	two
copies	of	the	table	so	that	if	a	file	system	driver	or	consistency-checking	program
(such	as	Chkdsk)	can’t	access	one	(because	of	a	bad	disk	sector,	for	example),	it
can	read	from	the	other.

Figure	12-2.	FAT	format	organization

Entries	in	the	file	allocation	table	define	file-allocation	chains	(shown	in	Figure	12-



3)	for	files	and	directories,	where	the	links	in	the	chain	are	indexes	to	the	next
cluster	of	a	file’s	data.	A	file’s	directory	entry	stores	the	starting	cluster	of	the	file.
The	last	entry	of	the	file’s	allocation	chain	is	the	reserved	value	of	0xFFFF	for
FAT16	and	0xFFF	for	FAT12.	The	FAT	entries	for	unused	clusters	have	a	value	of
0.	You	can	see	in	Figure	12-3	that	FILE1	is	assigned	clusters	2,	3,	and	4;	FILE2	is
fragmented	and	uses	clusters	5,	6,	and	8;	and	FILE3	uses	only	cluster	7.	Reading	a
file	from	a	FAT	volume	can	involve	reading	large	portions	of	a	file	allocation	table
to	traverse	the	file’s	allocation	chains.

Figure	12-3.	Sample	FAT	file-allocation	chains

The	root	directory	of	FAT12	and	FAT16	volumes	is	preassigned	enough	space	at
the	start	of	a	volume	to	store	256	directory	entries,	which	places	an	upper	limit	on
the	number	of	files	and	directories	that	can	be	stored	in	the	root	directory.	(There’s
no	preassigned	space	or	size	limit	on	FAT32	root	directories.)	A	FAT	directory
entry	is	32	bytes	and	stores	a	file’s	name,	size,	starting	cluster,	and	time	stamp	(last-
accessed,	created,	and	so	on)	information.	If	a	file	has	a	name	that	is	Unicode	or
that	doesn’t	follow	the	MS-DOS	8.3	naming	convention,	additional	directory
entries	are	allocated	to	store	the	long	file	name.	The	supplementary	entries	precede
the	file’s	main	entry.	Figure	12-4	shows	a	sample	directory	entry	for	a	file	named
“The	quick	brown	fox.”	The	system	has	created	a	THEQUI~1.FOX	8.3
representation	of	the	name	(that	is,	you	don’t	see	a	“.”	in	the	directory	entry
because	it	is	assumed	to	come	after	the	eighth	character)	and	used	two	more
directory	entries	to	store	the	Unicode	long	file	name.	Each	row	in	the	figure	is
made	up	of	16	bytes.



Figure	12-4.	FAT	directory	entry

FAT32	uses	32-bit	cluster	identifiers	but	reserves	the	high	4	bits,	so	in	effect	it	has
28-bit	cluster	identifiers.	Because	FAT32	cluster	sizes	can	be	as	large	as	64	KB,
FAT32	has	a	theoretical	ability	to	address	16-terabyte	(TB)	volumes.	Although
Windows	works	with	existing	FAT32	volumes	of	larger	sizes	(created	in	other
operating	systems),	it	limits	new	FAT32	volumes	to	a	maximum	of	32	GB.
FAT32’s	higher	potential	cluster	numbers	let	it	manage	disks	more	efficiently	than
FAT16;	it	can	handle	up	to	128-GB	volumes	with	512-byte	clusters.	Table	12-2
shows	default	cluster	sizes	for	FAT32	volumes.

Table	12-2.	Default	Cluster	Sizes	for	FAT32	Volumes

Partition	Size Default	Cluster	Size

<32	MB Not	supported

32	MB–64	MB 512	bytes

64	MB–128	MB 1	KB

128	MB–256	MB 2	KB

256	MB–8	GB 4	KB

8	GB–16	GB 8	KB

16	GB–32	GB 16	KB

>32	GB Not	supported



Besides	the	higher	limit	on	cluster	numbers,	other	advantages	FAT32	has	over
FAT12	and	FAT16	include	the	fact	that	the	FAT32	root	directory	isn’t	stored	at	a
predefined	location	on	the	volume,	the	root	directory	doesn’t	have	an	upper	limit
on	its	size,	and	FAT32	stores	a	second	copy	of	the	boot	sector	for	reliability.	A
limitation	FAT32	shares	with	FAT16	is	that	the	maximum	file	size	is	4	GB	because
directories	store	file	sizes	as	32-bit	values.

exFAT
Designed	by	Microsoft,	the	Extended	File	Allocation	Table	file	system	(exFAT,
also	called	FAT64)	is	an	improvement	over	the	traditional	FAT	file	systems	and	is
specifically	designed	for	flash	drives.	The	main	goal	of	exFAT	is	to	provide	some
of	the	advanced	functionality	offered	by	NTFS,	but	without	the	metadata	structure
overhead	and	metadata	logging	that	create	write	patterns	not	suited	for	many	flash
media	devices.	(See	the	description	of	flash	media	in	Chapter	9).	Table	12-3	lists
the	default	cluster	sizes	for	exFAT.

As	the	FAT64	name	implies,	the	file	size	limit	is	increased	to	264,	allowing	files	up
to	16	exabytes.	This	change	is	also	matched	by	an	increase	in	the	maximum	cluster
size,	which	is	currently	implemented	as	32	MB	but	can	be	as	large	as	2255	sectors.
exFAT	also	adds	a	bitmap	that	tracks	free	clusters,	which	improves	the
performance	of	allocation	and	deletion	operations.	Finally,	exFAT	allows	more
than	1,000	files	in	a	single	directory.	These	characteristics	result	in	increased
scalability	and	support	for	large	disk	sizes.

Table	12-3.	Default	Cluster	Sizes	for	exFAT	Volumes

Volume	Size Default	Cluster	Size

<7	MB Not	supported

7	MB–256	MB 4	KB

256	MB–32	GB 32	KB

32	GB–256	TB 128	KB

>256	TB Not	supported

Additionally,	exFAT	implements	certain	features	previously	available	only	in



NTFS,	such	as	support	for	access	control	lists	(ACLs)	and	transactions	(called
Transaction-Safe	FAT,	or	TFAT).	While	the	Windows	Embedded	CE
implementation	of	exFAT	includes	these	features,	the	version	of	exFAT	in
Windows	does	not.

NOTE

ReadyBoost	(described	in	Chapter	10)	can	work	with	exFAT-formatted	flash	drives	to	support	cache	files
much	larger	than	4	GB.

NTFS
As	noted	at	the	beginning	of	the	chapter,	the	NTFS	file	system	is	the	native	file
system	format	of	Windows.	NTFS	uses	64-bit	cluster	numbers.	This	capacity	gives
NTFS	the	ability	to	address	volumes	of	up	to	16	exaclusters;	however,	Windows
limits	the	size	of	an	NTFS	volume	to	that	addressable	with	32-bit	clusters,	which	is
slightly	less	than	256	TB	(using	64-KB	clusters).	Table	12-4	shows	the	default
cluster	sizes	for	NTFS	volumes.	(You	can	override	the	default	when	you	format	an
NTFS	volume.)	NTFS	also	supports	232–1	files	per	volume.	The	NTFS	format
allows	for	files	that	are	16	exabytes	in	size,	but	the	implementation	limits	the
maximum	file	size	to	16	TB.

Table	12-4.	Default	Cluster	Sizes	for	NTFS	Volumes

Volume	Size Default	Cluster	Size

<7	MB Not	supported

7	MB–16	TB 4	KB

16	TB–32	TB 8	KB

32	TB–64	TB 16	KB

64	TB–128	TB 32	KB

128	TB–256	TB 64	KB

NTFS	includes	a	number	of	advanced	features,	such	as	file	and	directory	security,
alternate	data	streams,	disk	quotas,	sparse	files,	file	compression,	symbolic	(soft)



and	hard	links,	support	for	transactional	semantics,	junction	points,	and	encryption.
One	of	its	most	significant	features	is	recoverability.	If	a	system	is	halted
unexpectedly,	the	metadata	of	a	FAT	volume	can	be	left	in	an	inconsistent	state,
leading	to	the	corruption	of	large	amounts	of	file	and	directory	data.	NTFS	logs
changes	to	metadata	in	a	transactional	manner	so	that	file	system	structures	can	be
repaired	to	a	consistent	state	with	no	loss	of	file	or	directory	structure	information.
(File	data	can	be	lost	unless	the	user	is	using	TxF,	which	is	covered	later	in	this
chapter.)	Additionally,	the	NTFS	driver	in	Windows	also	implements	self-healing,	a
mechanism	through	which	it	makes	most	minor	repairs	to	corruption	of	file	system
on-disk	structures	while	Windows	is	running	and	without	requiring	a	reboot.

We’ll	describe	NTFS	data	structures	and	advanced	features	in	detail	later	in	this
chapter.



File	System	Driver	Architecture
File	system	drivers	(FSDs)	manage	file	system	formats.	Although	FSDs	run	in
kernel	mode,	they	differ	in	a	number	of	ways	from	standard	kernel-mode	drivers.
Perhaps	most	significant,	they	must	register	as	an	FSD	with	the	I/O	manager	and
they	interact	more	extensively	with	the	memory	manager.	For	enhanced
performance,	file	system	drivers	also	usually	rely	on	the	services	of	the	cache
manager.	Thus,	they	use	a	superset	of	the	exported	Ntoskrnl.exe	functions	that
standard	drivers	use.	Just	as	for	standard	kernel-mode	drivers,	you	must	have	the
Windows	Driver	Kit	(WDK)	to	build	file	system	drivers.	(See	Chapter	1,
“Concepts	and	Tools,”	in	Part	1	and	http://www.microsoft.com/whdc/devtools/wdk
for	more	information	on	the	WDK.)

Windows	has	two	different	types	of	file	system	drivers:

Local	FSDs	manage	volumes	directly	connected	to	the	computer.

Network	FSDs	allow	users	to	access	data	volumes	connected	to	remote
computers.

Local	FSDs
Local	FSDs	include	Ntfs.sys,	Fastfat.sys,	Exfat.sys,	Udfs.sys,	Cdfs.sys,	and	the
RAW	FSD	(integrated	in	Ntoskrnl.exe).	Figure	12-5	shows	a	simplified	view	of
how	local	FSDs	interact	with	the	I/O	manager	and	storage	device	drivers.	As	we
described	in	the	section	Volume	Mounting	in	Chapter	9,	a	local	FSD	is	responsible
for	registering	with	the	I/O	manager.	Once	the	FSD	is	registered,	the	I/O	manager
can	call	on	it	to	perform	volume	recognition	when	applications	or	the	system
initially	access	the	volumes.	Volume	recognition	involves	an	examination	of	a
volume’s	boot	sector	and	often,	as	a	consistency	check,	the	file	system	metadata.	If
none	of	the	registered	file	systems	recognizes	the	volume,	the	system	assigns	the
RAW	file	system	driver	to	the	volume	and	then	displays	a	dialog	box	to	the	user
asking	if	the	volume	should	be	formatted.	If	the	user	chooses	not	to	format	the
volume,	the	RAW	file	system	driver	provides	access	to	the	volume,	but	only	at	the
sector	level—in	other	words,	the	user	can	only	read	or	write	complete	sectors.

The	goal	of	file	system	recognition	is	to	allow	the	system	to	have	an	additional

http://www.microsoft.com/whdc/devtools/wdk


option	for	a	valid	but	unrecognized	file	system	other	than	RAW.	To	achieve	this,
the	system	defines	a	fixed	data	structure	type
(FILE_SYSTEM_RECOGNITION_STRUCTURE)	that	is	written	to	the	first
sector	on	the	volume.	This	data	structure,	if	present,	would	then	be	recognized	by
the	operating	system,	which	would	then	notify	the	user	that	the	volume	contains	a
valid	but	unrecognized	file	system.	The	system	will	still	load	the	RAW	file	system
on	the	volume,	but	it	will	not	prompt	the	user	to	format	the	volume.	A	user
application	or	kernel-mode	driver	might	ask	for	a	copy	of	the
FILE_SYSTEM_RECOGNITION_STRUCTURE	by	using	the	new	file	system
I/O	control	code	FSCTL_QUERY_FILE_SYSTEM_RECOGNITION.

The	first	sector	of	every	Windows-supported	file	system	format	is	reserved	as	the
volume’s	boot	sector.	A	boot	sector	contains	enough	information	so	that	a	local
FSD	can	both	identify	the	volume	on	which	the	sector	resides	as	containing	a
format	that	the	FSD	manages	and	locate	any	other	metadata	necessary	to	identify
where	metadata	is	stored	on	the	volume.

When	a	local	FSD	recognizes	a	volume,	it	creates	a	device	object	that	represents
the	mounted	file	system	format.	The	I/O	manager	makes	a	connection	through	the
volume	parameter	block	(VPB)	between	the	volume’s	device	object	(which	is
created	by	a	storage	device	driver)	and	the	device	object	that	the	FSD	created.	The
VPB’s	connection	results	in	the	I/O	manager	redirecting	I/O	requests	targeted	at
the	volume	device	object	to	the	FSD	device	object.	(See	Chapter	9	for	more
information	on	VPBs.)

Figure	12-5.	Local	FSD



To	improve	performance,	local	FSDs	usually	use	the	cache	manager	to	cache	file
system	data,	including	metadata.	(For	more	information,	see	Chapter	11.)	FSDs
also	integrate	with	the	memory	manager	so	that	mapped	files	are	implemented
correctly.	For	example,	FSDs	must	query	the	memory	manager	whenever	an
application	attempts	to	truncate	a	file	in	order	to	verify	that	no	processes	have
mapped	the	part	of	the	file	beyond	the	truncation	point.	(See	Chapter	10	for	more
information	on	the	memory	manager.)	Windows	doesn’t	permit	file	data	that	is
mapped	by	an	application	to	be	deleted	either	through	truncation	or	file	deletion.

Local	FSDs	also	support	file	system	dismount	operations,	which	permit	the	system
to	disconnect	the	FSD	from	the	volume	object.	A	dismount	occurs	whenever	an
application	requires	raw	access	to	the	on-disk	contents	of	a	volume	or	the	media
associated	with	a	volume	is	changed.	The	first	time	an	application	accesses	the
media	after	a	dismount,	the	I/O	manager	reinitiates	a	volume	mount	operation	for
the	media.

Remote	FSDs
Each	remote	FSD	consists	of	two	components:	a	client	and	a	server.	A	client-side
remote	FSD	allows	applications	to	access	remote	files	and	directories.	The	client
FSD	component	accepts	I/O	requests	from	applications	and	translates	them	into
network	file	system	protocol	commands	(such	as	SMB)	that	the	FSD	sends	across
the	network	to	a	server-side	component,	which	is	a	remote	FSD.	A	server-side
FSD	listens	for	commands	coming	from	a	network	connection	and	fulfills	them	by
issuing	I/O	requests	to	the	local	FSD	that	manages	the	volume	on	which	the	file	or
directory	that	the	command	is	intended	for	resides.

Windows	includes	a	client-side	remote	FSD	named	LANMan	Redirector	(usually
referred	to	as	just	the	redirector)	and	a	server-side	remote	FSD	named	LANMan
Server	(%SystemRoot%\System32\Drivers\Srv2.sys).	Figure	12-6	shows	the
relationship	between	a	client	accessing	files	remotely	from	a	server	through	the
redirector	and	server	FSDs.	See	Chapter	7,	“Networking,”	in	Part	1	for	more
information	on	the	redirectors	and	RDBSS.



Figure	12-6.	Common	Internet	File	System	file	sharing

Windows	relies	on	the	Common	Internet	File	System	(CIFS)	protocol	to	format
messages	exchanged	between	the	redirector	and	the	server.l	CIFS	is	a	version	of
Microsoft’s	Server	Message	Block	(SMB)	protocol.	(For	more	information	on
SMB,	go	to	http://msdn.microsoft.com/en-
us/library/windows/desktop/aa365233(v=vs.85).aspx.)

Like	local	FSDs,	client-side	remote	FSDs	usually	use	cache	manager	services	to
locally	cache	file	data	belonging	to	remote	files	and	directories,	and	in	such	cases
both	must	implement	a	distributed	locking	mechanism	on	the	client	as	well	as	the
server.	SMB	client-side	remote	FSDs	implement	a	distributed	cache	coherency
protocol,	called	oplock	(opportunistic	locking),	so	that	the	data	an	application	sees
when	it	accesses	a	remote	file	is	the	same	as	the	data	applications	running	on	other
computers	that	are	accessing	the	same	file	see.	Third-party	file	systems	may
choose	to	use	the	oplock	protocol,	or	they	may	implement	their	own	protocol.
Although	server-side	remote	FSDs	participate	in	maintaining	cache	coherency
across	their	clients,	they	don’t	cache	data	from	the	local	FSDs	because	local	FSDs
cache	their	own	data.

Locking

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx


It	is	fundamental	that	whenever	a	resource	can	be	shared	between	multiple,
simultaneous	accessors,	a	serialization	mechanism	must	be	provided	to	arbitrate
writes	to	that	resource	to	ensure	that	only	one	accessor	is	writing	to	the	resource	at
any	given	time.	Without	this	mechanism,	the	resource	may	be	corrupted.	The
locking	mechanisms	used	by	all	file	servers	implementing	the	SMB	protocol	are
the	oplock	and	the	lease.	Which	mechanism	is	used	depends	on	the	capabilities	of
both	the	server	and	the	client,	with	the	lease	being	the	preferred	mechanism.

Oplocks	The	oplock	functionality	is	implemented	in	the	file	system	run-time
library	(FsRtlXxx	functions)	and	may	be	used	by	any	file	system	driver.	The	client
of	a	remote	file	server	uses	an	oplock	to	dynamically	determine	which	client-side
caching	strategy	to	use	to	minimize	network	traffic.	An	oplock	is	requested	on	a
file	residing	on	a	share,	by	the	file	system	driver	or	redirector,	on	behalf	of	an
application	when	it	attempts	to	open	a	file.	The	granting	of	an	oplock	allows	the
client	to	cache	the	file	rather	than	send	every	read	or	write	to	the	file	server	across
the	network.	For	example,	a	client	could	open	a	file	for	exclusive	access,	allowing
the	client	to	cache	all	reads	and	writes	to	the	file,	and	then	copy	the	updates	to	the
file	server	when	the	file	is	closed.	In	contrast,	if	the	server	does	not	grant	an
oplock	to	a	client,	all	reads	and	writes	must	be	sent	to	the	server.

Once	an	oplock	has	been	granted,	a	client	may	then	start	caching	the	file,	with	the
type	of	oplock	determining	what	type	of	caching	is	allowed.	An	oplock	is	not
necessarily	held	until	a	client	is	finished	with	the	file,	and	it	may	be	broken	at	any
time	if	the	server	receives	an	operation	that	is	incompatible	with	the	existing
granted	locks.	This	implies	that	the	client	must	be	able	to	quickly	react	to	the	break
of	the	oplock	and	change	its	caching	strategy	dynamically.

Prior	to	SMB	2.1,	there	were	four	types	of	oplocks:

Level	1,	exclusive	access	This	lock	allows	a	client	to	open	a	file	for	exclusive
access.	The	client	may	perform	read-ahead	buffering	and	read	or	write	caching.

Level	2,	shared	access	This	lock	allows	multiple,	simultaneous	readers	of	a	file
and	no	writers.	The	client	may	perform	read-ahead	buffering	and	read	caching
of	file	data	and	attributes.	A	write	to	the	file	will	cause	the	holders	of	the	lock
to	be	notified	that	the	lock	has	been	broken.

Batch,	exclusive	access	This	lock	takes	its	name	from	the	locking	used	when



processing	batch	(.bat)	files,	which	are	opened	and	closed	to	process	each	line
within	the	file.	The	client	may	keep	a	file	open	on	the	server,	even	though	the
application	has	(perhaps	temporarily)	closed	the	file.	This	lock	supports	read,
write,	and	handle	caching.

Filter,	exclusive	access	This	lock	provides	applications	and	file	system	filters
with	a	mechanism	to	give	up	the	lock	when	other	clients	try	to	access	the	same
file,	but	unlike	a	Level	2	lock,	the	file	cannot	be	opened	for	delete	access,	and
the	other	client	will	not	receive	a	sharing	violation.	This	lock	supports	read	and
write	caching.

In	the	simplest	terms,	if	multiple	client	systems	are	all	caching	the	same	file	shared
by	a	server,	then	as	long	as	every	application	accessing	the	file	(from	any	client	or
the	server)	tries	only	to	read	the	file,	those	reads	can	be	satisfied	from	each
system’s	local	cache.	This	drastically	reduces	the	network	traffic	because	the
contents	of	the	file	are	not	sent	to	each	system	from	the	server.	Locking
information	must	still	be	exchanged	between	the	client	systems	and	the	server,	but
this	requires	very	low	network	bandwidth.	However,	if	even	one	of	the	clients
opens	the	file	for	read	and	write	access	(or	exclusive	write),	then	none	of	the
clients	can	use	their	local	caches	and	all	I/O	to	the	file	must	go	immediately	to	the
server,	even	if	the	file	is	never	written.	(Lock	modes	are	based	upon	how	the	file	is
opened,	not	individual	I/O	requests.)

An	example,	shown	in	Figure	12-7,	will	help	illustrate	oplock	operation.	The	server
automatically	grants	a	Level	1	oplock	to	the	first	client	to	open	a	server	file	for
access.	The	redirector	on	the	client	caches	the	file	data	for	both	reads	and	writes	in
the	file	cache	of	the	client	machine.	If	a	second	client	opens	the	file,	it	too	requests
a	Level	1	oplock.	However,	because	there	are	now	two	clients	accessing	the	same
file,	the	server	must	take	steps	to	present	a	consistent	view	of	the	file’s	data	to	both
clients.	If	the	first	client	has	written	to	the	file,	as	is	the	case	in	Figure	12-7,	the
server	revokes	its	oplock	and	grants	neither	client	an	oplock.	When	the	first	client’s
oplock	is	revoked,	or	broken,	the	client	flushes	any	data	it	has	cached	for	the	file
back	to	the	server.



Figure	12-7.	Oplock	example

If	the	first	client	hadn’t	written	to	the	file,	the	first	client’s	oplock	would	have	been
broken	to	a	Level	2	oplock,	which	is	the	same	type	of	oplock	the	server	would
grant	to	the	second	client.	Now	both	clients	can	cache	reads,	but	if	either	writes	to
the	file,	the	server	revokes	their	oplocks	so	that	noncached	operation	commences.
Once	oplocks	are	broken,	they	aren’t	granted	again	for	the	same	open	instance	of	a
file.	However,	if	a	client	closes	a	file	and	then	reopens	it,	the	server	reassesses	what
level	of	oplock	to	grant	the	client	based	on	which	other	clients	have	the	file	open
and	whether	or	not	at	least	one	of	them	has	written	to	the	file.

EXPERIMENT:	VIEWING	THE	LIST	OF	REGISTERED	FILE	SYSTEMS

When	the	I/O	manager	loads	a	device	driver	into	memory,	it	typically	names	the	driver	object	it	creates	to
represent	the	driver	so	that	it’s	placed	in	the	\Driver	object	manager	directory.	The	driver	objects	for	any
driver	the	I/O	manager	loads	that	have	a	Type	attribute	value	of	SERVICE_FILE_SYSTEM_DRIVER	(2)
are	placed	in	the	\FileSystem	directory	by	the	I/O	manager.	Thus,	using	a	tool	such	as	WinObj	(from
Sysinternals),	you	can	see	the	file	systems	that	have	registered	on	a	system,	as	shown	in	the	following	screen
shot.	(Note	that	some	file	system	drivers	also	place	device	objects	in	the	\FileSystem	directory.)



Another	way	to	see	registered	file	systems	is	to	run	the	System	Information	viewer.	Run	Msinfo32	from	the
Start	menu’s	Run	dialog	box	and	select	System	Drivers	under	Software	Environment.	Sort	the	list	of	drivers
by	clicking	the	Type	column,	and	drivers	with	a	Type	attribute	of	SERVICE_FILE_SYSTEM_DRIVER
group	together.



Note	that	just	because	a	driver	registers	as	a	file	system	driver	type	doesn’t	mean	that	it	is	a	local	or	remote
FSD.	For	example,	Npfs	(Named	Pipe	File	System)	is	a	network	API	driver	that	supports	named	pipes	but
implements	a	private	namespace,	and	therefore	is	in	some	ways	like	a	file	system	driver.	See	Chapter	7	in
Part	1	for	an	experiment	that	reveals	the	Npfs	namespace.

Leases	Prior	to	SMB	2.1,	the	SMB	protocol	assumed	an	error-free	network
connection	between	the	client	and	the	server	and	did	not	tolerate	network
disconnections	caused	by	transient	network	failures,	server	reboot,	or	cluster
failovers.	When	a	network	disconnect	event	was	received	by	the	client,	it	orphaned
all	handles	opened	to	the	affected	server(s),	and	all	subsequent	I/O	operations	on
the	orphaned	handles	were	failed.	Similarly,	the	server	would	release	all	opened
handles	and	resources	associated	with	the	disconnected	user	session.	This	behavior
resulted	in	applications	losing	state	and	in	unnecessary	network	traffic.

In	SMB	2.1,	the	concept	of	a	lease	is	introduced	as	a	new	type	of	client	caching
mechanism,	similar	to	an	oplock.	The	purpose	of	a	lease	and	an	oplock	is	the	same,
but	a	lease	provides	greater	flexibility	and	much	better	performance.

Read	(R),	shared	access	Allows	multiple	simultaneous	readers	of	a	file,	and
no	writers.	This	lease	allows	the	client	to	perform	read-ahead	buffering	and	read
caching.

Read-Handle	(RH),	shared	access	This	is	similar	to	the	Level	2	oplock,	with
the	added	benefit	of	allowing	the	client	to	keep	a	file	open	on	the	server	even
though	the	accessor	on	the	client	has	closed	the	file.	(The	cache	manager	will
lazily	flush	the	unwritten	data	and	purge	the	unmodified	cache	pages	based	on
memory	availability.)	This	is	superior	to	a	Level	2	oplock	because	the	lease
does	not	need	to	be	broken	between	opens	and	closes	of	the	file	handle.	(In	this
respect,	it	provides	semantics	similar	to	the	Batch	oplock.)	This	type	of	lease	is
especially	useful	for	files	that	are	repeatedly	opened	and	closed	because	the
cache	is	not	invalidated	when	the	file	is	closed	and	refilled	when	the	file	is
opened	again,	providing	a	big	improvement	in	performance	for	complex	I/O
intensive	applications.

Read-Write	(RW),	exclusive	access	This	lease	allows	a	client	to	open	a	file
for	exclusive	access.	This	lock	allows	the	client	to	perform	read-ahead	buffering
and	read	or	write	caching.



Read-Write-Handle	(RWH),	exclusive	access	This	lock	allows	a	client	to
open	a	file	for	exclusive	access.	This	lease	supports	read,	write,	and	handle
caching	(similar	to	the	Read-Handle	lease).

Another	advantage	that	a	lease	has	over	an	oplock	is	that	a	file	may	be	cached,
even	when	there	are	multiple	handles	opened	to	the	file	on	the	client.	(This	is	a
common	behavior	in	many	applications.)	This	is	implemented	through	the	use	of	a
lease	key	(implemented	using	a	GUID),	which	is	created	by	the	client	and
associated	with	the	File	Control	Block	(FCB)	for	the	cached	file,	allowing	all
handles	to	the	same	file	to	share	the	same	lease	state,	which	provides	caching	by
file	rather	than	caching	by	handle.	Prior	to	the	introduction	of	the	lease,	the	oplock
was	broken	whenever	a	new	handle	was	opened	to	the	file,	even	from	the	same
client.	Figure	12-8	shows	the	oplock	behavior,	and	Figure	12-9	shows	the	new
lease	behavior.

Prior	to	SMB	2.1,	oplocks	could	only	be	granted	or	broken,	but	leases	can	also	be
converted.	For	example,	a	Read	lease	may	be	converted	to	a	Read-Write	lease,
which	greatly	reduces	network	traffic	because	the	cache	for	a	particular	file	does
not	need	to	be	invalidated	and	refilled,	as	would	be	the	case	with	an	oplock	break
(of	the	Level	2	oplock),	followed	by	the	request	and	grant	of	a	Level	1	oplock.



Figure	12-8.	Oplock	with	multiple	handles	from	the	same	client



Figure	12-9.	Lease	with	multiple	handles	from	the	same	client

File	System	Operation
Applications	and	the	system	access	files	in	two	ways:	directly,	via	file	I/O	functions
(such	as	ReadFile	and	WriteFile),	and	indirectly,	by	reading	or	writing	a	portion	of
their	address	space	that	represents	a	mapped	file	section.	(See	Chapter	10	for	more
information	on	mapped	files.)	Figure	12-10	is	a	simplified	diagram	that	shows	the
components	involved	in	these	file	system	operations	and	the	ways	in	which	they
interact.	As	you	can	see,	an	FSD	can	be	invoked	through	several	paths:

From	a	user	or	system	thread	performing	explicit	file	I/O

From	the	memory	manager’s	modified	and	mapped	page	writers



Indirectly	from	the	cache	manager’s	lazy	writer

Indirectly	from	the	cache	manager’s	read-ahead	thread

From	the	memory	manager’s	page	fault	handler

Figure	12-10.	Components	involved	in	file	system	I/O

The	following	sections	describe	the	circumstances	surrounding	each	of	these
scenarios	and	the	steps	FSDs	typically	take	in	response	to	each	one.	You’ll	see	how
much	FSDs	rely	on	the	memory	manager	and	the	cache	manager.

Explicit	File	I/O
The	most	obvious	way	an	application	accesses	files	is	by	calling	Windows	I/O
functions	such	as	CreateFile,	ReadFile,	and	WriteFile.	An	application	opens	a	file
with	CreateFile	and	then	reads,	writes,	or	deletes	the	file	by	passing	the	handle
returned	from	CreateFile	to	other	Windows	functions.	The	CreateFile	function,
which	is	implemented	in	the	Kernel32.dll	Windows	client-side	DLL,	invokes	the
native	function	NtCreateFile,	forming	a	complete	root-relative	path	name	for	the
path	that	the	application	passed	to	it	(processing	“.”	and	“..”	symbols	in	the	path



name)	and	prefixing	the	path	with	“\??”	(for	example,	\??\C:\Daryl\Todo.txt).

The	NtCreateFile	system	service	uses	ObOpenObjectByName	to	open	the	file,
which	parses	the	name	starting	with	the	object	manager	root	directory	and	the	first
component	of	the	path	name	(“??”).	Chapter	3,	“System	Mechanisms,”	in	Part	1
includes	a	thorough	description	of	object	manager	name	resolution	and	its	use	of
process	device	maps,	but	we’ll	review	the	steps	it	follows	here	with	a	focus	on
volume	drive	letter	lookup.

The	first	step	the	object	manager	takes	is	to	translate	\??	to	the	process’s	per-
session	namespace	directory	that	the	DosDevicesDirectory	field	of	the	device	map
structure	in	the	process	object	references	(which	was	propagated	from	the	first
process	in	the	logon	session	by	using	the	logon	session	references	field	in	the	logon
session’s	token).	Only	volume	names	for	network	shares	and	drive	letters	mapped
by	the	Subst.exe	utility	are	typically	stored	in	the	per-session	directory,	so	on	those
systems	when	a	name	(C:	in	this	example)	is	not	present	in	the	per-session
directory,	the	object	manager	restarts	its	search	in	the	directory	referenced	by	the
GlobalDosDevicesDirectory	field	of	the	device	map	associated	with	the	per-
session	directory.	The	GlobalDosDevicesDirectory	always	points	at	the	\Global??
directory,	which	is	where	Windows	stores	volume	drive	letters	for	local	volumes.
(See	the	section	“Session	Namespace”	in	Chapter	3	in	Part	1	for	more
information.)

The	symbolic	link	for	a	volume	drive	letter	points	to	a	volume	device	object	under
\Device,	so	when	the	object	manager	encounters	the	volume	object,	the	object
manager	hands	the	rest	of	the	path	name	to	the	parse	function	that	the	I/O	manager
has	registered	for	device	objects,	IopParseDevice.	(In	volumes	on	dynamic	disks,	a
symbolic	link	points	to	an	intermediary	symbolic	link,	which	points	to	a	volume
device	object.)	Figure	12-11	shows	how	volume	objects	are	accessed	through	the
object	manager	namespace.	The	figure	shows	how	the	\GLOBAL??\C:	symbolic
link	points	to	the	\Device\HarddiskVolume1	volume	device	object.

After	locking	the	caller’s	security	context	and	obtaining	security	information	from
the	caller’s	token,	IopParseDevice	creates	an	I/O	request	packet	(IRP)	of	type
IRP_MJ_CREATE,	creates	a	file	object	that	stores	the	name	of	the	file	being
opened,	follows	the	VPB	of	the	volume	device	object	to	find	the	volume’s	mounted
file	system	device	object,	and	uses	IoCallDriver	to	pass	the	IRP	to	the	file	system



driver	that	owns	the	file	system	device	object.

When	an	FSD	receives	an	IRP_MJ_CREATE	IRP,	it	looks	up	the	specified	file,
performs	security	validation,	and	if	the	file	exists	and	the	user	has	permission	to
access	the	file	in	the	way	requested,	returns	a	success	status	code.	The	object
manager	creates	a	handle	for	the	file	object	in	the	process’s	handle	table,	and	the
handle	propagates	back	through	the	calling	chain,	finally	reaching	the	application
as	a	return	parameter	from	CreateFile.	If	the	file	system	fails	the	create	operation,
the	I/O	manager	deletes	the	file	object	it	created	for	the	file.

We’ve	skipped	over	the	details	of	how	the	FSD	locates	the	file	being	opened	on	the
volume,	but	a	ReadFile	function	call	operation	shares	many	of	the	FSD’s
interactions	with	the	cache	manager	and	storage	driver.	Both	ReadFile	and
CreateFile	are	system	calls	that	map	to	I/O	manager	functions,	but	the	NtReadFile
system	service	doesn’t	need	to	perform	a	name	lookup—it	calls	on	the	object
manager	to	translate	the	handle	passed	from	ReadFile	into	a	file	object	pointer.	If
the	handle	indicates	that	the	caller	obtained	permission	to	read	the	file	when	the
file	was	opened,	NtReadFile	proceeds	to	create	an	IRP	of	type	IRP_MJ_READ
and	sends	it	to	the	FSD	for	the	volume	on	which	the	file	resides.	NtReadFile
obtains	the	FSD’s	device	object,	which	is	stored	in	the	file	object,	and	calls
IoCallDriver,	and	the	I/O	manager	locates	the	FSD	from	the	device	object	and
gives	the	IRP	to	the	FSD.



Figure	12-11.	Drive-letter	name	resolution

If	the	file	being	read	can	be	cached	(that	is,	the	FILE_FLAG_NO_BUFFERING
flag	wasn’t	passed	to	CreateFile	when	the	file	was	opened),	the	FSD	checks	to	see
whether	caching	has	already	been	initiated	for	the	file	object.	The
PrivateCacheMap	field	in	a	file	object	points	to	a	private	cache	map	data	structure
(which	we	described	in	Chapter	11)	if	caching	is	initiated	for	a	file	object.	If	the
FSD	hasn’t	initialized	caching	for	the	file	object	(which	it	does	the	first	time	a	file
object	is	read	from	or	written	to),	the	PrivateCacheMap	field	will	be	null.	The	FSD
calls	the	cache	manager’s	CcInitializeCacheMap	function	to	initialize	caching,
which	involves	the	cache	manager	creating	a	private	cache	map	and,	if	another	file
object	referring	to	the	same	file	hasn’t	initiated	caching,	a	shared	cache	map	and	a
section	object.

After	it	has	verified	that	caching	is	enabled	for	the	file,	the	FSD	copies	the
requested	file	data	from	the	cache	manager’s	virtual	memory	to	the	buffer	that	the
thread	passed	to	the	ReadFile	function.	The	file	system	performs	the	copy	within	a



try/except	block	so	that	it	catches	any	faults	that	are	the	result	of	an	invalid
application	buffer.	The	function	the	file	system	uses	to	perform	the	copy	is	the
cache	manager’s	CcCopyRead	function.	CcCopyRead	takes	as	parameters	a	file
object,	file	offset,	and	length.

When	the	cache	manager	executes	CcCopyRead,	it	retrieves	a	pointer	to	a	shared
cache	map,	which	is	stored	in	the	file	object.	Recall	from	Chapter	11	that	a	shared
cache	map	stores	pointers	to	virtual	address	control	blocks	(VACBs),	with	one
VACB	entry	for	each	256-KB	block	of	the	file.	If	the	VACB	pointer	for	a	portion
of	a	file	being	read	is	null,	CcCopyRead	allocates	a	VACB,	reserving	a	256-KB
view	in	the	cache	manager’s	virtual	address	space,	and	maps	(using
MmMapViewInSystemCache)	the	specified	portion	of	the	file	into	the	view.	Then
CcCopyRead	simply	copies	the	file	data	from	the	mapped	view	to	the	buffer	it	was
passed	(the	buffer	originally	passed	to	ReadFile).	If	the	file	data	isn’t	in	physical
memory,	the	copy	operation	generates	page	faults,	which	are	serviced	by
MmAccessFault.

When	a	page	fault	occurs,	MmAccessFault	examines	the	virtual	address	that
caused	the	fault	and	locates	the	virtual	address	descriptor	(VAD)	in	the	VAD	tree
of	the	process	that	caused	the	fault.	(See	Chapter	10	for	more	information	on	VAD
trees.)	In	this	scenario,	the	VAD	describes	the	cache	manager’s	mapped	view	of
the	file	being	read,	so	MmAccessFault	calls	MiDispatchFault	to	handle	a	page	fault
on	a	valid	virtual	memory	address.	MiDispatchFault	locates	the	control	area	(which
the	VAD	points	to)	and	through	the	control	area	finds	a	file	object	representing	the
open	file.	(If	the	file	has	been	opened	more	than	once,	there	might	be	a	list	of	file
objects	linked	through	pointers	in	their	private	cache	maps.)

With	the	file	object	in	hand,	MiDispatchFault	calls	the	I/O	manager	function
IoPageRead	to	build	an	IRP	(of	type	IRP_MJ_READ)	and	sends	the	IRP	to	the
FSD	that	owns	the	device	object	the	file	object	points	to.	Thus,	the	file	system	is
reentered	to	read	the	data	that	it	requested	via	CcCopyRead,	but	this	time	the	IRP
is	marked	as	noncached	and	paging	I/O.	These	flags	signal	the	FSD	that	it	should
retrieve	file	data	directly	from	disk,	and	it	does	so	by	determining	which	clusters
on	disk	contain	the	requested	data	(the	exact	mechanism	is	file-system	dependent)
and	sending	IRPs	to	the	volume	manager	that	owns	the	volume	device	object	on
which	the	file	resides.	The	volume	parameter	block	(VPB)	field	in	the	FSD’s



device	object	points	to	the	volume	device	object.

The	memory	manager	waits	for	the	FSD	to	complete	the	IRP	read	and	then	returns
control	to	the	cache	manager,	which	continues	the	copy	operation	that	was
interrupted	by	a	page	fault.	When	CcCopyRead	completes,	the	FSD	returns	control
to	the	thread	that	called	NtReadFile,	having	copied	the	requested	file	data—with
the	aid	of	the	cache	manager	and	the	memory	manager—to	the	thread’s	buffer.

The	path	for	WriteFile	is	similar	except	that	the	NtWriteFile	system	service
generates	an	IRP	of	type	IRP_MJ_WRITE	and	the	FSD	calls	CcCopyWrite
instead	of	CcCopyRead.	CcCopyWrite,	like	CcCopyRead,	ensures	that	the	portions
of	the	file	being	written	are	mapped	into	the	cache	and	then	copies	to	the	cache	the
buffer	passed	to	WriteFile.

If	a	file’s	data	is	already	cached	(in	the	system’s	working	set),	there	are	several
variants	on	the	scenario	we’ve	just	described.	If	a	file’s	data	is	already	stored	in	the
cache,	CcCopyRead	doesn’t	incur	page	faults.	Also,	under	certain	conditions,
NtReadFile	and	NtWriteFile	call	an	FSD’s	fast	I/O	entry	point	instead	of
immediately	building	and	sending	an	IRP	to	the	FSD.	Some	of	these	conditions
follow:	the	portion	of	the	file	being	read	must	reside	in	the	first	4	GB	of	the	file,
the	file	can	have	no	locks,	and	the	portion	of	the	file	being	read	or	written	must	fall
within	the	file’s	currently	allocated	size.

The	fast	I/O	read	and	write	entry	points	for	most	FSDs	call	the	cache	manager’s
CcFastCopyRead	and	CcFastCopyWrite	functions.	These	variants	on	the	standard
copy	routines	ensure	that	the	file’s	data	is	mapped	in	the	file	system	cache	before
performing	a	copy	operation.	If	this	condition	isn’t	met,	CcFastCopyRead	and
CcFastCopyWrite	indicate	that	fast	I/O	isn’t	possible.	When	fast	I/O	isn’t	possible,
NtReadFile	and	NtWriteFile	fall	back	on	creating	an	IRP.	(See	the	section	Fast	I/O
in	Chapter	11	for	a	more	complete	description	of	fast	I/O.)

Memory	Manager’s	Modified	and	Mapped	Page	Writer
The	memory	manager’s	modified	and	mapped	page	writer	threads	wake	up
periodically	(and	when	available	memory	runs	low)	to	flush	modified	pages	to
their	backing	store	on	disk.	The	threads	call	IoAsynchronousPageWrite	to	create
IRPs	of	type	IRP_MJ_WRITE	and	write	pages	to	either	a	paging	file	or	a	file	that
was	modified	after	being	mapped.	Like	the	IRPs	that	MiDispatchFault	creates,



these	IRPs	are	flagged	as	noncached	and	paging	I/O.	Thus,	an	FSD	bypasses	the
file	system	cache	and	issues	IRPs	directly	to	a	storage	driver	to	write	the	memory
to	disk.

Cache	Manager’s	Lazy	Writer
The	cache	manager’s	lazy	writer	thread	also	plays	a	role	in	writing	modified	pages
because	it	periodically	flushes	views	of	file	sections	mapped	in	the	cache	that	it
knows	are	dirty.	The	flush	operation,	which	the	cache	manager	performs	by	calling
MmFlushSection,	triggers	the	memory	manager	to	write	any	modified	pages	in	the
portion	of	the	section	being	flushed	to	disk.	Like	the	modified	and	mapped	page
writers,	MmFlushSection	uses	IoSynchronousPageWrite	to	send	the	data	to	the
FSD.

Cache	Manager’s	Read-Ahead	Thread
A	cache	utilizes	two	artifacts	of	how	programs	reference	code	and	data:	temporal
locality	and	spatial	locality.	The	underlying	concept	behind	temporal	locality	is	that
if	a	memory	location	is	referenced,	it	is	likely	to	be	referenced	again	soon.	The
idea	behind	spatial	locality	is	that	if	a	memory	location	is	referenced,	other	nearby
locations	are	also	likely	to	be	referenced	soon.	Thus	a	cache	typically	is	very	good
at	speeding	up	access	to	memory	locations	that	have	been	accessed	in	the	near
past,	but	it	is	terrible	at	speeding	up	access	to	areas	of	memory	that	have	not	yet
been	accessed	(it	has	zero	lookahead	capability).	In	an	attempt	to	populate	the
cache	with	data	that	will	likely	be	used	soon,	the	cache	manager	implements	two
mechanisms:	a	read-ahead	thread,	and	Superfetch.

The	cache	manager	includes	a	thread	that	is	responsible	for	attempting	to	read	data
from	files	before	an	application,	a	driver,	or	a	system	thread	explicitly	requests	it.
The	read-ahead	thread	uses	the	history	of	read	operations	that	were	performed	on	a
file,	which	are	stored	in	a	file	object’s	private	cache	map,	to	determine	how	much
data	to	read.	When	the	thread	performs	a	read-ahead,	it	simply	maps	the	portion	of
the	file	it	wants	to	read	into	the	cache	(allocating	VACBs	as	necessary)	and	touches
the	mapped	data.	The	page	faults	caused	by	the	memory	accesses	invoke	the	page
fault	handler,	which	reads	the	pages	into	the	system’s	working	set.

A	limitation	of	the	read-ahead	thread	is	that	it	works	only	on	open	files.	Superfetch
was	added	to	Windows	to	proactively	add	files	to	the	cache	before	they	are	even



opened.	Specifically,	the	memory	manager	sends	page-usage	information	to	the
Superfetch	service	(%SystemRoot%\System32\Sysmain.dll),	and	a	file	system
minifilter	provides	file	name	resolution	data.	The	Superfetch	service	attempts	to
find	file-usage	patterns—for	example,	payroll	is	run	every	Friday	at	12:00,	or
Outlook	is	run	every	morning	at	8:00.	When	these	patterns	are	derived,	the
information	is	stored	in	a	database	and	timers	are	requested.	Just	prior	to	the	time
the	file	would	most	likely	be	used,	a	timer	fires	and	wakes	up	the	Superfetch
service,	which	then	tells	the	memory	manager	to	read	the	file	into	low-priority
memory	(using	low-priority	disk	I/O).	If	the	file	is	then	opened,	the	data	is	already
in	memory	and	there	is	no	need	to	wait	for	the	data	to	be	read	from	disk.	If	the	file
is	not	opened,	the	low-priority	memory	will	be	reclaimed	by	the	system.

Memory	Manager’s	Page	Fault	Handler
We	described	how	the	page	fault	handler	is	used	in	the	context	of	explicit	file	I/O
and	cache	manager	read-ahead,	but	it	is	also	invoked	whenever	any	application
accesses	virtual	memory	that	is	a	view	of	a	mapped	file	and	encounters	pages	that
represent	portions	of	a	file	that	are	not	yet	in	memory.	The	memory	manager’s
MmAccessFault	handler	follows	the	same	steps	it	does	when	the	cache	manager
generates	a	page	fault	from	CcCopyRead	or	CcCopyWrite,	sending	IRPs	via
IoPageRead	to	the	file	system	on	which	the	file	is	stored.

File	System	Filter	Drivers
A	filter	driver	that	layers	over	a	file	system	driver	is	called	a	file	system	filter
driver.	(See	Chapter	8,	for	more	information	on	filter	drivers.)	The	ability	to	see	all
file	system	requests	and	optionally	modify	or	complete	them	enables	a	range	of
applications,	including	remote	file	replication	services,	file	encryption,	efficient
backup,	and	licensing.	Every	commercial	on-access	virus	scanner	includes	a	file
system	filter	driver	that	intercepts	IRPs	that	deliver	IRP_MJ_CREATE	commands
that	issue	whenever	an	application	opens	a	file.	Before	propagating	the	IRP	to	the
file	system	driver	to	which	the	command	is	directed,	the	virus	scanner	examines
the	file	being	opened	to	ensure	that	it’s	clean	of	a	virus.	If	the	file	is	clean,	the	virus
scanner	passes	the	IRP	on,	but	if	the	file	is	infected	the	virus	scanner
communicates	with	its	associated	Windows	service	process	to	quarantine	or	clean
the	file.	If	the	file	can’t	be	cleaned,	the	driver	fails	the	IRP	(typically	with	an



access-denied	error)	so	that	the	virus	cannot	become	active.

Process	Monitor
Process	Monitor	(Procmon),	a	system	activity	monitoring	utility	from	Sysinternals
that	has	been	used	throughout	this	book,	is	an	example	of	a	passive	filter	driver,
which	is	one	that	does	not	modify	the	flow	of	IRPs	between	applications	and	file
system	drivers.	Windows	includes	the	file	system	Filter	Manager
(%SystemRoot%\System32\Drivers\Fltmgr.sys)	as	part	of	a	port/miniport	model
for	file	system	filter	drivers.	The	file	system	Filter	Manager	greatly	simplifies	the
development	of	filter	drivers	by	interfacing	a	filter	miniport	driver	to	the	Windows
I/O	system	and	providing	services	for	querying	file	names,	attaching	to	volumes,
and	interacting	with	other	filters.	Process	Monitor’s	file	system	monitoring	is
implemented	as	a	minifilter	driver.

Process	Monitor	works	by	extracting	a	file	system	filter	device	driver	from	its
executable	image	(stored	as	a	resource	inside	Procmon.exe)	the	first	time	you	run	it
after	a	boot,	installing	the	driver	in	memory,	and	then	deleting	the	driver	image
from	disk.	Through	the	Process	Monitor	GUI,	you	can	direct	the	driver	to	monitor
file	system	activity	on	local	volumes	that	have	assigned	drive	letters,	network
shares,	named	pipes,	and	mail	slots.	When	the	driver	receives	a	command	to	start
monitoring	a	volume,	it	registers	filtering	callbacks	with	the	Filter	Manager,	which
is	attached	to	the	device	object	that	represents	a	mounted	file	system	on	the
volume.	After	an	attach	operation,	the	I/O	manager	redirects	an	IRP	targeted	at	the
underlying	device	object	to	the	driver	owning	the	attached	device,	in	this	case	the
Filter	Manager,	which	sends	the	event	to	registered	minifilter	drivers,	in	this	case
Process	Monitor.

When	the	Process	Monitor	driver	intercepts	an	IRP,	it	records	information	about
the	IRP’s	command,	including	target	file	name	and	other	parameters	specific	to	the
command	(such	as	read	and	write	lengths	and	offsets)	to	a	nonpaged	kernel	buffer.
Every	500	milliseconds,	the	Process	Monitor	GUI	program	sends	an	IRP	to
Process	Monitor’s	interface	device	object,	which	requests	a	copy	of	the	buffer
containing	the	latest	activity,	and	then	displays	the	activity	in	its	output	window.
Process	Monitor’s	use	is	described	further	in	the	next	section,	Troubleshooting	File
System	Problems.



EXPERIMENT:	VIEWING	PROCESS	MONITOR’S	FILTER	DRIVER

To	see	which	file	system	filter	drivers	are	loaded,	start	an	Administrative	command	prompt,	and	run	the
Filter	Manager	control	program	(%SystemRoot%\System32\Fltmc.exe).	Start	Process	Monitor
(ProcMon.exe)	and	run	Fltmc	again.	You’ll	see	that	the	Process	Monitor’s	filter	driver	(PROCMON20)	is
loaded	and	has	a	nonzero	value	in	the	Instances	column.	Now,	exit	Process	Monitor	and	run	Fltmc	again.
This	time,	you’ll	see	that	the	Process	Monitor’s	filter	driver	is	still	loaded,	but	now	its	instance	count	is	zero.



Troubleshooting	File	System	Problems
Chapter	4,	“Management	Mechanisms,”	in	Part	1	describes	the	way	that	the	system
and	applications	store	data	in	the	registry.	Registry-related	problems	such	as
misconfigured	security	and	missing	registry	values	and	keys	are	the	source	of	many
system	and	application	failures.	The	system	and	applications	also	use	files	to	store
data,	and	they	access	executable	and	DLL	image	files.	Misconfigured	NTFS
security	and	missing	files	or	directories	are	therefore	also	a	common	source	of
system	and	application	failures	because	the	system	and	applications	often	make
assumptions	about	what	they	should	be	able	to	access	and	then	misbehave	in
unexpected	ways	when	the	assumptions	are	violated.

Process	Monitor	shows	all	file	activity	as	it	occurs,	which	makes	it	an	ideal	tool	for
troubleshooting	file	system–related	system	and	application	failures.	To	run	Process
Monitor	the	first	time	on	a	system,	an	account	must	have	the	Load	Driver	and
Debug	privileges.	After	loading,	the	driver	remains	resident,	so	subsequent
executions	require	only	the	Debug	privilege.

Process	Monitor	Basic	vs.	Advanced	Modes
When	you	run	Process	Monitor,	it	starts	in	basic	mode,	which	shows	the	file
system	activity	most	often	useful	for	troubleshooting.	When	in	basic	mode,	Process
Monitor	omits	certain	file	system	operations	from	being	displayed,	including:

I/O	to	NTFS	metadata	files

I/O	to	the	paging	file

I/O	generated	by	the	System	process

I/O	generated	by	the	Process	Monitor	process

While	in	basic	mode,	Process	Monitor	also	reports	file	I/O	operations	with	friendly
names	rather	than	with	the	IRP	types	used	to	represent	them.	For	example,	both
IRP_MJ_WRITE	and	FASTIO_WRITE	operations	display	as	WriteFile,	and
IRP_MJ_CREATE	operations	show	as	Open	if	they	represent	an	open	operation
and	as	Create	for	the	creation	of	new	files.

EXPERIMENT:	VIEWING	FILE	SYSTEM	ACTIVITY	ON	AN	IDLE	SYSTEM



Windows	file	system	drivers	implement	support	for	file	change	notification,	which	enables	applications	to
request	notifications	of	file	system	changes	without	polling	for	them.	The	Windows	functions	for	doing	so
include	ReadDirectoryChangesW	and	the	FindFirstChangeNotification,	FindNextChangeNotification	pair.
When	you	run	Process	Monitor	on	a	system	that’s	idle,	you	should	therefore	not	see	the	repeated	accesses
to	files	or	directories	because	that	activity	unnecessarily	negatively	affects	a	system’s	overall	performance.

Run	Process	Monitor,	and	after	several	seconds	examine	the	output	log	to	see	whether	you	can	spot	polling
behavior.	Right-click	on	an	output	line	associated	with	polling,	click	Properties	on	the	context	menu,	and
then	click	the	Process	tab	in	the	Properties	dialog	box	to	view	details	of	the	process	performing	the	activity.

Process	Monitor	Troubleshooting	Techniques
The	two	basic	Process	Monitor	troubleshooting	techniques	for	file	system	problems
are	identical	to	those	for	registry-related	problems:	look	in	a	Process	Monitor	trace
at	the	last	thing	an	application	did	before	it	failed,	or	compare	a	Process	Monitor
trace	of	a	failing	application	with	a	trace	from	a	working	system.	See	the	section
Process	Monitor	Troubleshooting	Techniques	in	Chapter	4	in	Part	1	for	more
information	on	these	techniques.

Entries	in	a	Process	Monitor	trace	that	have	values	of	NAME	NOT	FOUND,	NO
SUCH	FILE,	PATH	NOT	FOUND,	SHARING	VIOLATION,	and	ACCESS
DENIED	in	the	Result	column	are	ones	that	you	should	investigate.	The	first	three
are	reported	when	an	application	or	the	system	attempts	to	open	a	nonexistent	file
or	directory.	In	many	cases,	these	errors	do	not	indicate	a	serious	problem.	When
you	execute	a	program	from	the	Start	menu’s	Run	dialog	box	without	specifying	its
full	path,	for	instance,	Windows	Explorer	will	search	the	directories	listed	in	the
system	PATH	environment	variable	for	the	image	file	until	it	locates	the	file	or	has
searched	all	the	listed	directories.	Each	attempt	to	find	the	image	in	a	directory	that
does	not	contain	it	results	in	a	Process	Monitor	output	line	similar	to	this:

25314     7:44:27.4180943 PM     Explorer.EXE     1640   CreateFile
C:\Program Files\Microsoft Windows Performance Toolkit\test.exe NAME NOT FOUND
Desired Access: Read Attributes, Disposition: Open, Options: Open    Reparse Point,
Attributes: n/a, ShareMode: Read, Write, Delete, AllocationSize: n/a

Access-denied	errors	are	a	common	source	of	file	system–related	application
failures,	and	they	occur	when	an	application	does	not	have	permission	to	open	the
file	or	directory	for	the	access	types	it	desires.	Some	applications	do	not	check
error	codes	or	perform	error	recovery,	and	they	fail	by	crashing	or	terminating;
others	often	display	misleading	error	messages	that	mask	the	root	cause	of	the
error.



Buffer-overflow	exploits	are	a	serious	security	concern,	but	a	code	result	of
BUFFER	OVERFLOW	is	simply	a	file	system	driver’s	way	to	indicate	to	an
application	that	the	buffer	it	specified	to	store	requested	result	data	was	too	small
to	hold	the	data.	Application	developers	use	this	behavior	to	determine	how	large	a
buffer	should	be	because	the	file	system	driver	also	returns	the	size	of	the	buffer
required	to	store	the	data.	Operations	with	a	buffer	overflow	result	are	usually
followed	by	the	same	operation	with	a	successful	result.

Process	Monitor	has	been	used	extensively	within	Microsoft	and	other
organizations	to	solve	difficult	or	nearly	impossible-to-diagnose	problems.



Common	Log	File	System
Transactional	semantics	for	a	database	or	a	journaled	file	system	often	require
keeping	track	of	changes	made	to	the	data	and	metadata	contained	in	the	files	or
entries.	Typically,	these	changes	are	stored	in	data	structures	called	log	records
through	an	operation	called	logging.	These	log	records	can	then	be	used	to	undo
(roll	back),	redo,	or	validate	the	changes	at	a	later	time,	even	across	system	reboots.

Windows	provides	this	kind	of	logging	service	through	the	Common	Log	File
System	(CLFS)	to	support	the	transactional	features	built	into	Windows,	including
transactional	NTFS	(TxF)	and	transactional	registry	(TxR),	and	to	enable	third-
party	developers	to	take	advantage	of	similar	technology.	CLFS	provides	user-
mode	and	kernel-mode	APIs	for	creating,	reading,	and	writing	CLFS	log	files.	The
APIs	are	flexible	and	extensible,	which	allows	the	implementation	details	and
structure	of	the	log	records	stored	in	a	log	file	to	be	defined	by	a	caller.	CLFS	can
be	used	by	a	variety	of	applications,	such	as	databases;	for	store	and	forward
message	queues	and	replication	agents;	and	for	operations	such	as	event	logging,
compliance	logging,	or	even	maintaining	undo/redo	history	in	an	editor.	The	CLFS
APIs	provide	a	consistent	view	of	a	log	and	allow	the	sharing	of	a	log	between
user-mode	and	kernel-mode	components.

Although	CLFS	calls	itself	a	file	system,	it	actually	provides	a	virtual	abstraction
layer	on	top	of	NTFS	by	using	streams	and	containers,	described	later.	What	CLFS
exposes	as	a	single	virtual	log	file	could	actually	be	a	single	physical	log	file,	a
single	log	file	divided	into	multiple	physical	files,	or	even	different	log	files	each
divided	into	multiple	physical	files.	Later,	we’ll	describe	how	NTFS	interacts	with
CLFS	to	provide	transactional	support.

Marshalling
Marshalling
Internally,	CLFS	encapsulates	the	functionality	of	the	Algorithm	for	Recovery	and
Isolation	Exploiting	Semantics	(ARIES),	which	allows	it	to	provide	reliable
recovery	and	replication	of	operations	by	using	an	industry-approved	standard.
However,	CLFS	is	not	limited	to	supporting	ARIES;	it	is	well	suited	to	a	variety	of
logging	scenarios.	You	can	find	the	full	ARIES	specification	at



www.sai.msu.su/~megera/postgres/gist/papers/concurrency/p94-mohan.pdf.

The	primary	job	of	any	high-performance	transactional	log	is	to	allow	log	clients
to	accurately	repeat	history.	CLFS	does	this	by	marshalling	client	log	records	into
memory	buffers,	forcing	them	to	stable	storage	(a	disk	volume),	and	reading
records	back	on	request.	After	a	record	makes	it	to	stable	storage	and	the	storage
media	is	intact,	CLFS	is	able	to	read	the	record	across	system	failures.

Both	user-mode	and	kernel-mode	clients	marshal	data	buffers	into	log	records	that
are	part	of	a	marshalling	area	maintained	in	the	client’s	address	space.	When
creating	a	marshalling	area,	a	client	must	specify	the	number	and	size	of	the	log
I/O	buffers	it	wants	to	maintain	in	its	marshaling	area.	The	marshalling	runtime
implements	policy	on	allocating	log	I/O	buffers,	appending	them	to	the	log	internal
queue	and	flushing	them	to	disk.	Clients	can	override	the	default	marshalling	code
policy	by	forcing	queue	appends	and	flushes	to	disk	via	API	calls.

One	of	the	design	goals	of	the	CLFS	marshalling	runtime	is	to	minimize	kernel
transitions,	which	it	achieves,	among	other	things,	through	log-space	reservation,	a
requirement	for	supporting	scenarios	such	as	transaction	rollbacks.	Every	time	the
log	marshalling	area	talks	to	the	CLFS	driver	(which	implies	a	kernel	transition	for
user-mode	clients),	the	marshalling	area	tries	to	negotiate	a	desired	amount	of
reserved	space,	usually	larger	than	what	is	currently	required.	This	means	that	if
the	client	requires	more	space	in	the	future,	the	marshalling	area	can	immediately
satisfy	the	new	request	without	issuing	a	new	kernel	transition.	Note,	however,	that
if	the	amount	of	the	reservation	cannot	be	satisfied,	the	marshalling	area	will	try	to
get	just	enough	of	the	reservation	to	satisfy	the	user’s	request	(without	extra
reserved	space),	which	could	potentially	lead	to	additional	kernel	transitions.

Log	Types
CLFS	supports	two	types	of	logs:	dedicated	logs	and	multiplexed	logs	(also	called
common	logs).	A	dedicated	log	has	a	single	stream	of	log	records	that	is	used	by
all	the	log’s	clients.	A	multiplexed	log	has	several	streams:	each	stream	has	its	own
clients	and	its	own	memory	buffers	for	marshalling	log	records,	but	the	records
from	all	those	buffers	are	multiplexed	into	a	single	queue	and	written	to	a	single
log	on	stable	storage.	Multiplexing	allows	the	I/O	operations	of	several	streams	to
be	consolidated.	When	a	log	is	created	or	opened,	CLFS	determines	whether	the
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log	is	dedicated	or	multiplexed	depending	on	whether	a	dedicated	log	path	or	a
multiplexed	log	path	is	specified.

If	the	request	is	for	a	client	on	a	dedicated	log	(called	a	physical	client),	CLFS
locates	the	physical	file	control	block	(FCB)	object	for	the	file	proper	and	handles
the	request.

If	the	request	is	for	a	client	on	a	multiplexed	log	(called	a	virtual	client),	CLFS
locates	the	corresponding	virtual	FCB	and	context	control	block	(CCB)	objects	to
translate	the	request	into	an	operation	on	the	physical	FCB	object.	CLFS	then
handles	the	operation	on	the	CLFS	physical	FCB	object	as	just	described.

In	either	case,	if	the	request	is	a	cached	read,	CLFS	uses	the	cache	manager’s
services	for	accessing	cached	data.	(For	more	information	on	the	cache	manager,
see	Chapter	11.)	Just	as	it	does	for	requests	from	other	file	system	drivers,	the
cache	manager	maps	a	view	of	the	file	and	references	the	view,	which	might	cause
the	memory	manager	to	issue	noncached	reads	to	CLFS	against	the	physical	log.
For	flushes	and	noncached	reads,	CLFS	finds	the	target	container	object	through
the	log	metadata	and	issues	IRPs	to	NTFS	directly.	Figure	12-12	shows	the
possible	CLFS	paths	for	a	request	coming	from	user	mode	or	kernel	mode.

Because	each	stream	of	a	multiplexed	log	provides	its	clients	with	the	illusion	that
their	stream	is	the	entire	log,	CLFS	must	include	metadata	in	the	physical	log	that
identifies	which	client	each	data	block	belongs	to.	This	data	is	called	the	owner
page	and	is	always	exactly	one	page	(4	KB)	in	size.	Each	512	KB	of	client	data
results	in	an	owner	page	to	describe	it.	Since	dedicated	logs	require	no	tracking	of
client	and	data	mapping,	they	don’t	include	owner	pages.	Figure	12-13	shows	two
clients	writing	log	records	to	a	multiplexed	log	and	how	the	writes	are	kept
together	in	a	unified	flush	queue	that	can	then	be	uniformly	flushed	to	physical
storage	through	a	single	I/O	operation.

The	flush	queue	will	be	emptied	in	the	following	conditions:

The	amount	of	data	in	the	flush	queue	exceeds	a	certain	threshold.	(The	default
is	40,000	bytes.)

The	CLFS	flush	API	is	called.

A	restart	area	is	being	written,	and	the	log	needs	to	be	flushed	beyond	the
restart	area.	(For	more	information	on	the	restart	area,	see	the	section	Log	File



Service	later	in	this	chapter.)

When	flushing,	CLFS	scans	the	flush	queue	and	determines	how	many	entries
need	to	be	flushed.	It	then	issues	IRPs	to	NTFS	for	the	corresponding	log	files	of
each	of	the	entries	and	waits	for	all	the	IRPs	to	complete.	If	some	IRPs	fail,	CLFS
may	re-issue	IRPs	(failures	such	as	low	memory	condition,	lack	of	quota,	and	so
on	are	subject	to	retry)	to	redo	the	work	and	wait	again.

Figure	12-12.	CLFS	request	paths



Figure	12-13.	CLFS	multiplexing

Log	Layout
A	log	file	is	made	up	of	a	base	log	file	(BLF)	that	contains	metadata	and	up	to
1,023	containers	that	hold	the	actual	data.	The	base	log	file	is	initially	64	KB	in
size	and	grows	as	needed.	The	log	metadata	stores	information	about	the	log,
including	the	beginning	of	the	log,	the	container	size,	the	container	path,	the
location	from	which	restart	operations	should	be	performed,	the	log	state,	the	log
name,	and	the	log	clients.	For	consistency	in	case	a	system	failure	occurs	during	a
log	update,	the	base	log	file	stores	two	copies	of	the	log	metadata,	and	when	it
makes	updates	it	overwrites	the	older	copy.	The	BLF	stores	a	value,	the	dump
count,	that	indicates	which	copy	is	newer.

A	container	is	the	unit	of	allocation	for	an	active	physical	log	stream.	All	the
containers	in	a	log	have	the	same	size,	which	is	a	multiple	of	512	KB	with	a	4-GB
maximum	size.	A	CLFS	client	grows	or	shrinks	a	log	stream	by	adding	or	deleting
containers	from	the	log	file.	CLFS	implements	containers	as	contiguous	files	on	the
volume	on	which	the	BLF	resides.	Figure	12-14	shows	the	relationship	between	a
base	log	file	and	the	associated	log	data	stored	in	containers.



Figure	12-14.	CLFS	base	log	file	and	containers

Internally,	the	CLFS	driver	places	the	containers	in	a	container	queue	to	give
clients	a	logical	view	of	a	single	contiguous	physical	log	stream;	in	doing	so,	the
CLFS	driver	maps	the	physical	container	identifier	to	a	logical	container	identifier.
Containers	are	recycled	when	the	tail	of	the	active	log	migrates	beyond	the	last
sector	of	the	container.	Recycling	a	container	involves	moving	it	from	the	tail	to	the
head	of	the	container	queue	and	appropriately	updating	its	logical	container
identifier.

Log	Sequence	Numbers
When	a	client	writes	a	record	to	a	stream,	CLFS	returns	a	log	sequence	number
(LSN)	that	identifies	the	log	record	for	future	reference.	The	LSNs	assigned	to	the
records	that	are	written	to	a	particular	stream	form	an	increasing	sequence.	That	is,
the	LSN	assigned	to	a	record	that	is	written	to	a	stream	is	always	greater	than	the
LSN	assigned	to	the	previous	record	written	to	that	same	stream.	Two	critical
LSNs	that	the	base	log	file	keeps	track	of	are	the	log	start	LSN	and	the	restart
LSN,	which,	as	described	earlier,	are	stored	in	the	BLF	metadata.

An	LSN	is	64	bits	wide	and	consists	of	three	parts,	as	shown	in	Figure	12-15:

A	32-bit	container	index	that	identifies	the	log	container	where	the	log	record
resides

A	23-bit	block	offset	that	identifies	an	offset	within	a	container

A	9-bit	record	offset	that	identifies	a	record	within	a	block



Figure	12-15.	CLFS	LSN	structure

Log	Blocks
Because	it	is	possible	that	a	write	to	a	log	might	fail,	which	is	called	a	torn	write,
CLFS	uses	log	blocks	to	track	whether	log	records	are	fully	committed	to	storage.
CLFS	stores	log	records	within	log	blocks,	which	correspond	to	512-byte	sectors,
and	reads	and	writes	data	to	a	log	using	log	blocks.	Each	log	block	includes	a	2-
byte	sector	signature	at	the	end	of	each	sector	in	the	block	that	stores	a	sequence
number	and	flags,	as	well	as	a	copy	of	the	most	recently	committed	signatures	in	a
signature	array	at	the	end	of	the	block,	as	shown	in	Figure	12-16.	Only	if	all	the
sector	signatures	in	a	log	block	are	valid	and	match	the	signatures	in	the	array,	does
CLFS	consider	the	block	valid.	If	a	log	block	is	partially	written	and	a	system
failure	occurs,	for	example,	the	signatures	won’t	match,	and	CLFS	considers	the	log
block	invalid.

Figure	12-16.	CLFS	log	blocks

Owner	Pages
As	mentioned	previously,	each	512-KB	block	of	data	in	a	multiplexed	log	(called	a
region)	is	correlated	with	its	virtual	log	through	an	owner	page.	Each	region
consists	of	4-KB	pages,	and	each	page	contains	one	or	more	sectors,	which	contain
log	blocks.	The	owner	page	is	the	last	page	of	a	region,	as	shown	in	Figure	12-17.
Because	the	owner	page	is	itself	a	log	block,	CLFS	can	detect	torn	writes	on	the
owner	page,	just	as	for	a	log	record,	by	using	the	log	block	signature	array.



Figure	12-17.	CLFS	regions	and	owner	pages

An	owner	page	contains	two	kinds	of	information:

For	each	sector	in	the	region,	the	virtual	log	to	which	the	sector	belongs	as	well
as	the	sector’s	serial	number	(starting	from	0).	There	can	be	at	most	1,024
sectors	in	a	region.

For	each	virtual	log,	the	minimum	and	maximum	virtual	log	LSN	for	the
region.	These	values	give	the	range	of	valid	virtual	LSNs	for	the	region.

CLFS	can	tell	by	looking	at	the	owner	page	of	a	virtual	log	LSN	whether	the
record	specified	by	the	LSN	resides	in	the	current	region	or	not.	If	the	record	does
not	reside	in	the	current	region,	CLFS	can	decide	whether	it	should	search	the
previous	region	or	the	next	region	by	comparing	the	virtual	log	LSN	with	the
virtual	log	LSN	range	for	the	region.

When	CLFS	inserts	log	blocks	into	a	multiplexed	log’s	physical	FCB	flush	queue,	if
it	finds	that	the	current	log	block	will	overlap	the	owner	page	of	the	current	region,
it	splits	the	current	log	block	and	inserts	an	owner	page	log	block	after	the	first	half
of	the	split	log	block	(as	shown	in	Figure	12-17).	In	other	words,	the	owner	page	is
written	to	disk	only	after	the	region	that	it	describes	becomes	full.	When	a	client
reopens	a	multiplexed	log	file,	CLFS	scans	the	regions	and	rebuilds	an	in-memory
owner	page	describing	the	latest	region	for	which	it	hasn’t	written	an	owner	page
log	block.

Note	that	when	reopening	the	log	file,	CLFS	doesn’t	know	exactly	where	the	log
end	LSN	is,	so	it	must	find	the	LSN	to	avoid	losing	data	or	using	corrupted	data.
For	a	dedicated	log,	CLFS	reads	the	log	blocks	sequentially	until	an	invalid	log
block	is	found	and	then	sets	the	end	of	the	log	there.	For	a	multiplexed	log,	CLFS
reads	the	last	owner	page	(the	base	log	file	saves	a	copy	of	the	last	flushed	owner
page’s	LSN	when	the	log	metadata	is	last	flushed)	and	verifies	it	is	indeed	valid.
CLFS	then	reads	the	next	region’s	owner	page	repeatedly	until	an	invalid	owner



page	is	found.	After	that,	CLFS	scans	backward	to	find	the	first	region	with	only
valid	log	data	blocks.	CLFS	then	assumes	the	end	of	the	log	must	fall	within	the
next	region.	It	will	scan	log	block	by	log	block	until	an	invalid	log	block	is	found
and	then	set	the	end	of	the	log	there.

Translating	Virtual	LSNs	to	Physical	LSNs
CLFS	relies	on	physical	LSNs	to	identify	log	blocks	within	a	physical	log.
However,	CLFS	combines	several	virtual	logs	in	a	physical	log	for	multiplexed	logs
and	uses	virtual	LSNs	to	locate	log	blocks	in	a	virtual	log.	Therefore,	for	a	virtual
log	client,	a	log	block	can	be	addressed	both	by	a	physical	LSN	and	by	a	virtual
LSN.

To	translate	a	virtual	log	LSN	to	a	physical	log	LSN,	CLFS	follows	these	steps:

1.	 Reads	the	owner	page	for	the	region	indicated	by	the	virtual	log	LSN.

2.	 Checks	the	owner	page’s	virtual	LSN	region	to	see	whether	the	virtual	LSN
is	actually	in	the	region	or	not.	Most	of	the	time	the	log	block	will	be	in	the
region.

3.	 If	the	virtual	LSN	is	in	the	region,	CLFS	refers	to	the	sector	to	client
mapping	in	the	owner	page	to	find	the	physical	LSN’s	block	offset.	Given	a
client’s	virtual	LSN	and	its	size,	CLFS	can	calculate	the	virtual	LSN	of	the
next	log	block.	Applying	this	rule,	CLFS	can	deterministically	calculate	the
physical	LSN	of	every	virtual	log	block	in	the	region,	as	shown	in	Figure	12-
18.

4.	 If	the	virtual	LSN	is	not	in	the	region,	CLFS	searches	either	the	previous
region	or	the	next	region	depending	on	whether	the	virtual	LSN	is	smaller	or
larger	than	the	current	region’s	virtual	LSN	range.



Figure	12-18.	CLFS	virtual	to	physical	LSN	translation

Management	Policies
Each	CLFS	log	can	be	defined	by	a	set	of	management	policies	that	are
configurable	by	the	client.	Table	12-5	lists	these	policies	and	their	usage.

Table	12-5.	CLFS	Management	Policies

Policy	Name Description

ClfsMgmtPolicyMaximumSize Specifies	the	maximum	size	of	a	log.

ClfsMgmtPolicyMinimumSize Specifies	the	minimum	size	of	a	log.

ClfsMgmtPolicyNewContainerSize Specifies	the	size	of	new	containers	that	are	created.

ClfsMgmtPolicyGrowthRate Specifies	how	many	new	containers	will	be	added	to	the	log
each	time	the	log	grows.	Can	be	specified	as	either	a
relative	percentage	or	an	absolute	number.

ClfsMgmtPolicyLogTail Specifies	how	much	free	space	will	be	requested	when	a
client	is	notified	to	move	its	log	tail.	Can	be	specified	as
either	a	minimum	percentage	of	free	space	or	a	minimum
number	of	containers.



ClfsMgmtPolicyAutoShrink Specifies	when	the	log	will	shrink	based	on	the	percentage
of	the	log	that	is	free.

ClfsMgmtPolicyAutoGrow Specifies	whether	the	log	should	grow	when	fewer	than	two
containers	are	free.

ClfsMgmtPolicyNewContainerPrefix Specifies	a	prefix	for	the	file	name	of	each	container,	as
well	as	the	full	path	to	the	directory	where	the	containers
are	located.



NTFS	Design	Goals	and	Features
In	the	following	section,	we’ll	look	at	the	requirements	that	drove	the	design	of
NTFS.	Then,	in	the	subsequent	section,	we’ll	examine	the	advanced	features	of
NTFS.

High-End	File	System	Requirements
From	the	start,	NTFS	was	designed	to	include	features	required	of	an	enterprise-
class	file	system.	To	minimize	data	loss	in	the	face	of	an	unexpected	system	outage
or	crash,	a	file	system	must	ensure	that	the	integrity	of	its	metadata	is	guaranteed	at
all	times;	and	to	protect	sensitive	data	from	unauthorized	access,	a	file	system	must
have	an	integrated	security	model.	Finally,	a	file	system	must	allow	for	software-
based	data	redundancy	as	a	low-cost	alternative	to	hardware-redundant	solutions
for	protecting	user	data.	In	this	section,	you’ll	find	out	how	NTFS	implements	each
of	these	capabilities.

Recoverability
To	address	the	requirement	for	reliable	data	storage	and	data	access,	NTFS
provides	file	system	recovery	based	on	the	concept	of	an	atomic	transaction.
Atomic	transactions	are	a	technique	for	handling	modifications	to	a	database	so
that	system	failures	don’t	affect	the	correctness	or	integrity	of	the	database.	The
basic	tenet	of	atomic	transactions	is	that	some	database	operations,	called
transactions,	are	all-or-nothing	propositions.	(A	transaction	is	defined	as	an	I/O
operation	that	alters	file	system	data	or	changes	the	volume’s	directory	structure.)
The	separate	disk	updates	that	make	up	the	transaction	must	be	executed
atomically—that	is,	once	the	transaction	begins	to	execute,	all	its	disk	updates	must
be	completed.	If	a	system	failure	interrupts	the	transaction,	the	part	that	has	been
completed	must	be	undone,	or	rolled	back.	The	rollback	operation	returns	the
database	to	a	previously	known	and	consistent	state,	as	if	the	transaction	had	never
occurred.

NTFS	uses	atomic	transactions	to	implement	its	file	system	recovery	feature.	If	a
program	initiates	an	I/O	operation	that	alters	the	structure	of	an	NTFS	volume—
that	is,	changes	the	directory	structure,	extends	a	file,	allocates	space	for	a	new	file,
and	so	on—NTFS	treats	that	operation	as	an	atomic	transaction.	It	guarantees	that



the	transaction	is	either	completed	or,	if	the	system	fails	while	executing	the
transaction,	rolled	back.	The	details	of	how	NTFS	does	this	are	explained	in	the
section	NTFS	Recovery	Support	later	in	the	chapter.	In	addition,	NTFS	uses
redundant	storage	for	vital	file	system	information	so	that	if	a	sector	on	the	disk
goes	bad,	NTFS	can	still	access	the	volume’s	critical	file	system	data.

Security
Security	in	NTFS	is	derived	directly	from	the	Windows	object	model.	Files	and
directories	are	protected	from	being	accessed	by	unauthorized	users.	(For	more
information	on	Windows	security,	see	Chapter	6,	“Security,”	in	Part	1.)	An	open
file	is	implemented	as	a	file	object	with	a	security	descriptor	stored	on	disk	in	the
hidden	$Secure	metafile,	in	a	stream	named	$SDS	(Security	Descriptor	Stream).
Before	a	process	can	open	a	handle	to	any	object,	including	a	file	object,	the
Windows	security	system	verifies	that	the	process	has	appropriate	authorization	to
do	so.	The	security	descriptor,	combined	with	the	requirement	that	a	user	log	on	to
the	system	and	provide	an	identifying	password,	ensures	that	no	process	can	access
a	file	unless	it	is	given	specific	permission	to	do	so	by	a	system	administrator	or	by
the	file’s	owner.	(For	more	information	about	security	descriptors,	see	the	section
“Security	Descriptors	and	Access	Control”	in	Chapter	6	in	Part	1,	and	for	more
details	about	file	objects,	see	the	section	Opening	Devices	in	Chapter	8.)

Data	Redundancy	and	Fault	Tolerance
In	addition	to	recoverability	of	file	system	data,	some	customers	require	that	their
own	data	not	be	endangered	by	a	power	outage	or	catastrophic	disk	failure.	The
NTFS	recovery	capabilities	do	ensure	that	the	file	system	on	a	volume	remains
accessible,	but	they	make	no	guarantees	for	complete	recovery	of	user	files.
Protection	for	applications	that	can’t	risk	losing	file	data	is	provided	through	data
redundancy.

Data	redundancy	for	user	files	is	implemented	via	the	Windows	layered	driver
model	(explained	in	Chapter	8),	which	provides	fault-tolerant	disk	support.	NTFS
communicates	with	a	volume	manager,	which	in	turn	communicates	with	a	disk
driver	to	write	data	to	a	disk.	A	volume	manager	can	mirror,	or	duplicate,	data
from	one	disk	onto	another	disk	so	that	a	redundant	copy	can	always	be	retrieved.
This	support	is	commonly	called	RAID	level	1.	Volume	managers	also	allow	data



to	be	written	in	stripes	across	three	or	more	disks,	using	the	equivalent	of	one	disk
to	maintain	parity	information.	If	the	data	on	one	disk	is	lost	or	becomes
inaccessible,	the	driver	can	reconstruct	the	disk’s	contents	by	means	of	exclusive-
OR	operations.	This	support	is	called	RAID	level	5.	(See	Chapter	9	for	more
information	on	striped	volumes,	mirrored	volumes,	and	RAID-5	volumes.)

Advanced	Features	of	NTFS
In	addition	to	NTFS	being	recoverable,	secure,	reliable,	and	efficient	for	mission-
critical	systems,	it	includes	the	following	advanced	features	that	allow	it	to	support
a	broad	range	of	applications.	Some	of	these	features	are	exposed	as	APIs	for
applications	to	leverage,	and	others	are	internal	features:

Multiple	data	streams

Unicode-based	names

General	indexing	facility

Dynamic	bad-cluster	remapping

Hard	links

Symbolic	(soft)	links	and	junctions

Compression	and	sparse	files

Change	logging

Per-user	volume	quotas

Link	tracking

Encryption

POSIX	support

Defragmentation

Read-only	support	and	dynamic	partitioning

The	following	sections	provide	an	overview	of	these	features.

Multiple	Data	Streams
In	NTFS,	each	unit	of	information	associated	with	a	file—including	its	name,	its
owner,	its	time	stamps,	its	contents,	and	so	on—is	implemented	as	a	file	attribute



(NTFS	object	attribute).	Each	attribute	consists	of	a	single	stream—that	is,	a
simple	sequence	of	bytes.	This	generic	implementation	makes	it	easy	to	add	more
attributes	(and	therefore	more	streams)	to	a	file.	Because	a	file’s	data	is	“just
another	attribute”	of	the	file	and	because	new	attributes	can	be	added,	NTFS	files
(and	file	directories)	can	contain	multiple	data	streams.

An	NTFS	file	has	one	default	data	stream,	which	has	no	name.	An	application	can
create	additional,	named	data	streams	and	access	them	by	referring	to	their	names.
To	avoid	altering	the	Windows	I/O	APIs,	which	take	a	string	as	a	file	name
argument,	the	name	of	the	data	stream	is	specified	by	appending	a	colon	(:)	to	the
file	name.	Because	the	colon	is	a	reserved	character,	it	can	serve	as	a	separator
between	the	file	name	and	the	data	stream	name,	as	illustrated	in	this	example:

myfile.dat:stream2

Each	stream	has	a	separate	allocation	size	(which	defines	how	much	disk	space	has
been	reserved	for	it),	actual	size	(which	is	how	many	bytes	the	caller	has	used),
and	valid	data	length	(which	is	how	much	of	the	stream	has	been	initialized).	In
addition,	each	stream	is	given	a	separate	file	lock	that	is	used	to	lock	byte	ranges
and	to	allow	concurrent	access.

One	component	in	Windows	that	uses	multiple	data	streams	is	the	Attachment
Execution	Service,	which	is	invoked	whenever	the	standard	Windows	API	for
saving	Internet-based	attachments	is	used	by	applications	such	as	Internet	Explorer
or	Outlook.	Depending	on	which	zone	the	file	was	downloaded	from	(such	as	the
My	Computer	zone,	the	Intranet	zone,	or	the	Untrusted	zone),	Windows	Explorer
might	warn	the	user	that	the	file	came	from	a	possibly	untrusted	location	or	even
completely	block	access	to	the	file.	For	example,	Figure	12-19	shows	the	dialog
box	that’s	displayed	when	executing	Process	Explorer	after	it	was	downloaded	from
the	Sysinternals	site.

NOTE

If	you	clear	the	check	box	for	Always	Ask	Before	Opening	This	File,	the	zone	identifier	data	stream	will	be
removed	from	the	file.



Figure	12-19.	Security	warning	for	files	downloaded	from	the	Internet

Other	applications	can	use	the	multiple	data	stream	feature	as	well.	A	backup
utility,	for	example,	might	use	an	extra	data	stream	to	store	backup-specific	time
stamps	on	files.	Or	an	archival	utility	might	implement	hierarchical	storage	in
which	files	that	are	older	than	a	certain	date	or	that	haven’t	been	accessed	for	a
specified	period	of	time	are	moved	to	offline	storage.	The	utility	could	copy	the
file	to	offline	storage,	set	the	file’s	default	data	stream	to	0,	and	add	a	data	stream
that	specifies	where	the	file	is	stored.

EXPERIMENT:	LOOKING	AT	STREAMS

Most	Windows	applications	aren’t	designed	to	work	with	alternate	named	streams,	but	both	the	echo	and
more	commands	are.	Thus,	a	simple	way	to	view	streams	in	action	is	to	create	a	named	stream	using	echo
and	then	display	it	using	more.	The	following	command	sequence	creates	a	file	named	test	with	a	stream
named	stream:

C:\>echo hello > test:stream
C:\>more < test:stream
hello
C:\>

If	you	perform	a	directory	listing,	Test’s	file	size	doesn’t	reflect	the	data	stored	in	the	alternate	stream
because	NTFS	returns	the	size	of	only	the	unnamed	data	stream	for	file	query	operations,	including
directory	listings.

C:\>dir test
 Volume in drive C is WINDOWS
 Volume Serial Number is 3991-3040

 Directory of C:\

08/01/00  02:37p                    0 test
               1 File(s)             0 bytes



                            112,558,080 bytes free

You	can	determine	what	files	and	directories	on	your	system	have	alternate	data	streams	with	the	Streams
utility	from	Sysinternals	(see	the	following	output)	or	by	using	the	/r	switch	in	the	dir	command.

C:\>streams test

Streams v1.56 - Enumerate alternate NTFS data streams
Copyright (C) 1999-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

 C:\test:
          :stream:$DATA 8

Unicode-Based	Names
Like	Windows	as	a	whole,	NTFS	supports	16-bit	Unicode	1.0/UTF-16	characters
to	store	names	of	files,	directories,	and	volumes.	(The	current	version	of	the
Unicode	standard,	version	6.1,	from	February	2012,	supports	up	to	4	bytes	per
character	and	is	not	supported	in	kernel	mode.)	Unicode	allows	each	character	in
each	of	the	world’s	major	languages	to	be	uniquely	represented,	which	aids	in
moving	data	easily	from	one	country	to	another.	Unicode	is	an	improvement	over
the	traditional	representation	of	international	characters—using	a	double-byte
coding	scheme	that	stores	some	characters	in	8	bits	and	others	in	16	bits,	a
technique	that	requires	loading	various	code	pages	to	establish	the	available
characters.	Because	Unicode	has	a	unique	representation	for	each	character,	it
doesn’t	depend	on	which	code	page	is	loaded.	Each	directory	and	file	name	in	a
path	can	be	as	many	as	255	characters	long	and	can	contain	Unicode	characters,
embedded	spaces,	and	multiple	periods.

General	Indexing	Facility
The	NTFS	architecture	is	structured	to	allow	indexing	of	any	file	attribute	on	a
disk	volume	using	a	B-tree	structure.	(Creating	indexes	on	arbitrary	attributes	is	not
exported	to	users.)	This	structure	enables	the	file	system	to	efficiently	locate	files
that	match	certain	criteria—for	example,	all	the	files	in	a	particular	directory.	In
contrast,	the	FAT	file	system	indexes	file	names	but	doesn’t	sort	them,	making
lookups	in	large	directories	slow.

Several	NTFS	features	take	advantage	of	general	indexing,	including	consolidated
security	descriptors,	in	which	the	security	descriptors	of	a	volume’s	files	and
directories	are	stored	in	a	single	internal	stream,	have	duplicates	removed,	and	are



indexed	using	an	internal	security	identifier	that	NTFS	defines.	The	use	of
indexing	by	these	features	is	described	in	the	section	NTFS	On-Disk	Structure
later	in	this	chapter.

Dynamic	Bad-Cluster	Remapping
Ordinarily,	if	a	program	tries	to	read	data	from	a	bad	disk	sector,	the	read
operation	fails	and	the	data	in	the	allocated	cluster	becomes	inaccessible.	If	the	disk
is	formatted	as	a	fault-tolerant	NTFS	volume,	however,	the	Windows	volume
manager	dynamically	retrieves	a	good	copy	of	the	data	that	was	stored	on	the	bad
sector	and	then	sends	NTFS	a	warning	that	the	sector	is	bad.	NTFS	will	then
allocate	a	new	cluster,	replacing	the	cluster	in	which	the	bad	sector	resides,	and
copies	the	data	to	the	new	cluster.	It	adds	the	bad	cluster	to	the	list	of	bad	clusters
on	that	volume	(stored	in	the	hidden	metadata	file	$BadClus)	and	no	longer	uses	it.
This	data	recovery	and	dynamic	bad-cluster	remapping	is	an	especially	useful
feature	for	file	servers	and	fault-tolerant	systems	or	for	any	application	that	can’t
afford	to	lose	data.	If	the	volume	manager	isn’t	loaded	when	a	sector	goes	bad
(such	as	early	in	the	boot	sequence),	NTFS	still	replaces	the	cluster	and	doesn’t
reuse	it,	but	it	can’t	recover	the	data	that	was	on	the	bad	sector.

Hard	Links
A	hard	link	allows	multiple	paths	to	refer	to	the	same	file.	(Hard	links	are	not
supported	on	directories.)	If	you	create	a	hard	link	named	C:\Documents\Spec.doc
that	refers	to	the	existing	file	C:\Users\Administrator\Documents\Spec.doc,	the
two	paths	link	to	the	same	on-disk	file,	and	you	can	make	changes	to	the	file	using
either	path.	Processes	can	create	hard	links	with	the	Windows	CreateHardLink
function	or	the	ln	POSIX	function.

NTFS	implements	hard	links	by	keeping	a	reference	count	on	the	actual	data,
where	each	time	a	hard	link	is	created	for	the	file,	an	additional	file	name	reference
is	made	to	the	data.	This	means	that	if	you	have	multiple	hard	links	for	a	file,	you
can	delete	the	original	file	name	that	referenced	the	data
(C:\Users\Administrator\Documents\Spec.doc	in	our	example),	and	the	other	hard
links	(C:\Documents\Spec.doc)	will	remain	and	point	to	the	data.	However,
because	hard	links	are	on-disk	local	references	to	data	(represented	by	a	file	record
number),	they	can	exist	only	within	the	same	volume	and	can’t	span	volumes	or



computers.

EXPERIMENT:	CREATING	A	HARD	LINK

There	are	two	ways	you	can	create	a	hard	link:	the	fsutil	hardlink	create	command	or	the	mklink	utility
with	the	/H	option.	In	this	experiment	we’ll	use	mklink	because	we’ll	use	this	utility	later	to	create	a
symbolic	link	as	well.	First,	create	a	file	called	test.txt	and	add	some	text	to	it,	as	shown	here.

C:\>echo hello > test.txt

Now	create	a	hard	link	called	hard.txt	as	shown	here:

C:\>mklink hard.txt test.txt /H
Hardlink created for hard.txt <<===>> test.txt

If	you	list	the	directory’s	contents,	you’ll	notice	that	the	two	files	will	be	identical	in	every	way,	with	the
same	creation	date,	permissions,	and	file	size;	only	the	file	names	differ.

C:\>dir *.txt
 Volume in drive C is OS
 Volume Serial Number is 38D4-EA71
 Directory of C:\
05/12/2012  11:55 PM                 8 hard.txt
05/12/2012  11:55 PM                 8 test.txt
               2 File(s)             16 bytes
               0 Dir(s)  10,646,011,904 bytes free

Symbolic	(Soft)	Links	and	Junctions
In	addition	to	hard	links,	NTFS	supports	another	type	of	file-name	aliasing	called
symbolic	links	or	soft	links.	Unlike	hard	links,	symbolic	links	are	strings	that	are
interpreted	dynamically	and	can	be	relative	or	absolute	paths	that	refer	to	locations
on	any	storage	device,	including	ones	on	a	different	local	volume	or	even	a	share
on	a	different	system.	This	means	that	symbolic	links	don’t	actually	increase	the
reference	count	of	the	original	file,	so	deleting	the	original	file	will	result	in	the	loss
of	the	data,	and	a	symbolic	link	that	points	to	a	nonexisting	file	will	be	left	behind.
Finally,	unlike	hard	links,	symbolic	links	can	point	to	directories,	not	just	files,
which	gives	them	an	added	advantage.

For	example,	if	the	path	C:\Drivers	is	a	directory	symbolic	link	that	redirects	to
%SystemRoot%\System32\Drivers,	an	application	reading	C:\Drivers\Ntfs.sys
actually	reads	%SystemRoot%\System\Drivers\Ntfs.sys.	Directory	symbolic	links
are	a	useful	way	to	lift	directories	that	are	deep	in	a	directory	tree	to	a	more
convenient	depth	without	disturbing	the	original	tree’s	structure	or	contents.	The
example	just	cited	lifts	the	Drivers	directory	to	the	volume’s	root	directory,
reducing	the	directory	depth	of	Ntfs.sys	from	three	levels	to	one	when	Ntfs.sys	is



accessed	through	the	directory	symbolic	link.	File	symbolic	links	work	much	the
same	way—you	can	think	of	them	as	shortcuts,	except	they	are	actually
implemented	on	the	file	system	instead	of	being	.lnk	files	managed	by	Windows
Explorer.	Just	like	hard	links,	symbolic	links	can	be	created	with	the	mklink	utility
(without	the	/H	option)	or	through	the	CreateSymbolicLink	API.

Because	certain	legacy	applications	might	not	behave	securely	in	the	presence	of
symbolic	links,	especially	across	different	machines,	the	creation	of	symbolic	links
requires	the	SeCreateSymbolicLink	privilege,	which	is	typically	granted	only	to
administrators.	The	file	system	also	has	a	behavior	option	called
SymLinkEvaluation	that	can	be	configured	with	the	following	command:

fsutil behavior set SymLinkEvaluation

By	default,	the	Windows	default	symbolic	link	evaluation	policy	allows	only	local-
to-local	and	local-to-remote	symbolic	links	but	not	the	opposite,	as	shown	here:

C:\>fsutil behavior query SymLinkEvaluation
Local to local symbolic links are enabled
Local to remote symbolic links are enabled.
Remote to local symbolic links are disabled.
Remote to Remote symbolic links are disabled.

Symbolic	links	are	implemented	using	an	NTFS	mechanism	called	reparse	points.
(Reparse	points	are	discussed	further	in	the	section	Reparse	Points	later	in	this
chapter.)	A	reparse	point	is	a	file	or	directory	that	has	a	block	of	data	called
reparse	data	associated	with	it.	Reparse	data	is	user-defined	data	about	the	file	or
directory,	such	as	its	state	or	location	that	can	be	read	from	the	reparse	point	by	the
application	that	created	the	data,	a	file	system	filter	driver,	or	the	I/O	manager.
When	NTFS	encounters	a	reparse	point	during	a	file	or	directory	lookup,	it	returns
the	STATUS_REPARSE	status	code,	which	signals	file	system	filter	drivers	that
are	attached	to	the	volume	and	the	I/O	manager	to	examine	the	reparse	data.	Each
reparse	point	type	has	a	unique	reparse	tag.	The	reparse	tag	allows	the	component
responsible	for	interpreting	the	reparse	point’s	reparse	data	to	recognize	the	reparse
point	without	having	to	check	the	reparse	data.	A	reparse	tag	owner,	either	a	file
system	filter	driver	or	the	I/O	manager,	can	choose	one	of	the	following	options
when	it	recognizes	reparse	data:

The	reparse	tag	owner	can	manipulate	the	path	name	specified	in	the	file	I/O
operation	that	crosses	the	reparse	point	and	let	the	I/O	operation	reissue	with
the	altered	path	name.	Junctions	(described	shortly)	take	this	approach	to



redirect	a	directory	lookup,	for	example.

The	reparse	tag	owner	can	remove	the	reparse	point	from	the	file,	alter	the	file
in	some	way,	and	then	reissue	the	file	I/O	operation.

There	are	no	Windows	functions	for	creating	reparse	points.	Instead,	processes
must	use	the	FSCTL_SET_REPARSE_POINT	file	system	control	code	with	the
Windows	DeviceIoControl	function.	A	process	can	query	a	reparse	point’s	contents
with	the	FSCTL_GET_REPARSE_POINT	file	system	control	code.	The
FILE_ATTRIBUTE_REPARSE_POINT	flag	is	set	in	a	reparse	point’s	file
attributes,	so	applications	can	check	for	reparse	points	by	using	the	Windows
GetFileAttributes	function.

Another	type	of	reparse	point	that	NTFS	supports	is	the	junction.	Junctions	are	a
legacy	NTFS	concept	and	work	almost	identically	to	directory	symbolic	links,
except	they	can	only	be	local	to	a	volume.	There	is	no	advantage	to	using	a
junction	instead	of	a	directory	symbolic	link,	except	that	junctions	are	compatible
with	older	versions	of	Windows,	while	directory	symbolic	links	are	not.

EXPERIMENT:	CREATING	A	SYMBOLIC	LINK

This	experiment	shows	you	the	main	difference	between	a	symbolic	link	and	a	hard	link,	even	when	dealing
with	files	on	the	same	volume.	Create	a	symbolic	link	called	soft.txt	as	shown	here,	pointing	to	the	test.txt
file	created	in	the	previous	experiment:

C:\>mklink soft.txt test.txt
symbolic link created for soft.txt <<===>> test.txt

If	you	list	the	directory’s	contents,	you’ll	notice	that	the	symbolic	link	doesn’t	have	a	file	size	and	is
identified	by	the	<SYMLINK>	type.	Furthermore,	you’ll	note	that	the	creation	time	is	that	of	the	symbolic
link,	not	of	the	target	file.	The	symbolic	link	can	also	have	security	permissions	that	are	different	from	the
permissions	on	the	target	file.

C:\>dir *.txt
 Volume in drive C is OS
 Volume Serial Number is 38D4-EA71

 Directory of C:\

05/12/2012  11:55 PM                 8 hard.txt
05/13/2012  12:28 AM    <SYMLINK>      soft.txt [test.txt]
05/12/2012  11:55 PM                 8 test.txt
               3 File(s)             16 bytes
               0 Dir(s)  10,636,480,512 bytes free

Finally,	if	you	delete	the	original	test.txt	file,	you	can	verify	that	both	the	hard	link	and	symbolic	link	still
exist	but	that	the	symbolic	link	does	not	point	to	a	valid	file	anymore,	while	the	hard	link	references	the	file
data.



Compression	and	Sparse	Files
NTFS	supports	compression	of	file	data.	Because	NTFS	performs	compression	and
decompression	procedures	transparently,	applications	don’t	have	to	be	modified	to
take	advantage	of	this	feature.	Directories	can	also	be	compressed,	which	means
that	any	files	subsequently	created	in	the	directory	are	compressed.

Applications	compress	and	decompress	files	by	passing	DeviceIoControl	the
FSCTL_SET_COMPRESSION	file	system	control	code.	They	query	the
compression	state	of	a	file	or	directory	with	the	FSCTL_GET_COMPRESSION
file	system	control	code.	A	file	or	directory	that	is	compressed	has	the
FILE_ATTRIBUTE_COMPRESSED	flag	set	in	its	attributes,	so	applications	can
also	determine	a	file	or	directory’s	compression	state	with	GetFileAttributes.

A	second	type	of	compression	is	known	as	sparse	files.	If	a	file	is	marked	as
sparse,	NTFS	doesn’t	allocate	space	on	a	volume	for	portions	of	the	file	that	an
application	designates	as	empty.	NTFS	returns	0-filled	buffers	when	an	application
reads	from	empty	areas	of	a	sparse	file.	This	type	of	compression	can	be	useful	for
client/server	applications	that	implement	circular-buffer	logging,	in	which	the
server	records	information	to	a	file	and	clients	asynchronously	read	the
information.	Because	the	information	that	the	server	writes	isn’t	needed	after	a
client	has	read	it,	there’s	no	need	to	store	the	information	in	the	file.	By	making
such	a	file	sparse,	the	client	can	specify	the	portions	of	the	file	it	reads	as	empty,
freeing	up	space	on	the	volume.	The	server	can	continue	to	append	new
information	to	the	file	without	fear	that	the	file	will	grow	to	consume	all	available
space	on	the	volume.

As	with	compressed	files,	NTFS	manages	sparse	files	transparently.	Applications
specify	a	file’s	sparseness	state	by	passing	the	FSCTL_SET_SPARSE	file	system
control	code	to	DeviceIoControl.	To	set	a	range	of	a	file	to	empty,	applications	use
the	FSCTL_SET_ZERO_DATA	code,	and	they	can	ask	NTFS	for	a	description	of
what	parts	of	a	file	are	sparse	by	using	the	control	code
FSCTL_QUERY_ALLOCATED_RANGES.	One	application	of	sparse	files	is	the
NTFS	change	journal,	described	next.

Change	Logging
Many	types	of	applications	need	to	monitor	volumes	for	file	and	directory	changes.



For	example,	an	automatic	backup	program	might	perform	an	initial	full	backup
and	then	incremental	backups	based	on	file	changes.	An	obvious	way	for	an
application	to	monitor	a	volume	for	changes	is	for	it	to	scan	the	volume,	recording
the	state	of	files	and	directories,	and	on	a	subsequent	scan	detect	differences.	This
process	can	adversely	affect	system	performance,	however,	especially	on	computers
with	thousands	or	tens	of	thousands	of	files.

An	alternate	approach	is	for	an	application	to	register	a	directory	notification	by
using	the	FindFirstChangeNotification	or	ReadDirectoryChangesW	Windows
function.	As	an	input	parameter,	the	application	specifies	the	name	of	a	directory	it
wants	to	monitor,	and	the	function	returns	whenever	the	contents	of	the	directory
change.	Although	this	approach	is	more	efficient	than	volume	scanning,	it	requires
the	application	to	be	running	at	all	times.	Using	these	functions	can	also	require	an
application	to	scan	directories	because	FindFirstChangeNotification	doesn’t
indicate	what	changed—just	that	something	in	the	directory	has	changed.	An
application	can	pass	a	buffer	to	ReadDirectoryChangesW	that	the	FSD	fills	in	with
change	records.	If	the	buffer	overflows,	however,	the	application	must	be	prepared
to	fall	back	on	scanning	the	directory.

NTFS	provides	a	third	approach	that	overcomes	the	drawbacks	of	the	first	two:	an
application	can	configure	the	NTFS	change	journal	facility	by	using	the
DeviceIoControl	function’s	FSCTL_CREATE_USN_JOURNAL	file	system
control	code	(USN	is	update	sequence	number)	to	have	NTFS	record	information
about	file	and	directory	changes	to	an	internal	file	called	the	change	journal.	A
change	journal	is	usually	large	enough	to	virtually	guarantee	that	applications	get	a
chance	to	process	changes	without	missing	any.	Applications	use	the
FSCTL_QUERY_USN_JOURNAL	file	system	control	code	to	read	records	from
a	change	journal,	and	they	can	specify	that	the	DeviceIoControl	function	not
complete	until	new	records	are	available.

Per-User	Volume	Quotas
Systems	administrators	often	need	to	track	or	limit	user	disk	space	usage	on	shared
storage	volumes,	so	NTFS	includes	quota-management	support.	NTFS	quota-
management	support	allows	for	per-user	specification	of	quota	enforcement,	which
is	useful	for	usage	tracking	and	tracking	when	a	user	reaches	warning	and	limit
thresholds.	NTFS	can	be	configured	to	log	an	event	indicating	the	occurrence	to



the	System	event	log	if	a	user	surpasses	his	warning	limit.	Similarly,	if	a	user
attempts	to	use	more	volume	storage	then	her	quota	limit	permits,	NTFS	can	log	an
event	to	the	System	event	log	and	fail	the	application	file	I/O	that	would	have
caused	the	quota	violation	with	a	“disk	full”	error	code.

NTFS	tracks	a	user’s	volume	usage	by	relying	on	the	fact	that	it	tags	files	and
directories	with	the	security	ID	(SID)	of	the	user	who	created	them.	(See	Chapter
6	in	Part	1	for	a	definition	of	SIDs.)	The	logical	sizes	of	files	and	directories	a	user
owns	count	against	the	user’s	administrator-defined	quota	limit.	Thus,	a	user	can’t
circumvent	his	or	her	quota	limit	by	creating	an	empty	sparse	file	that	is	larger	than
the	quota	would	allow	and	then	fill	the	file	with	nonzero	data.	Similarly,	whereas	a
50-KB	file	might	compress	to	10	KB,	the	full	50	KB	is	used	for	quota	accounting.

By	default,	volumes	don’t	have	quota	tracking	enabled.	You	need	to	use	the	Quota
tab	of	a	volume’s	Properties	dialog	box,	shown	in	Figure	12-20,	to	enable	quotas,
to	specify	default	warning	and	limit	thresholds,	and	to	configure	the	NTFS
behavior	that	occurs	when	a	user	hits	the	warning	or	limit	threshold.	The	Quota
Entries	tool,	which	you	can	launch	from	this	dialog	box,	enables	an	administrator
to	specify	different	limits	and	behavior	for	each	user.	Applications	that	want	to
interact	with	NTFS	quota	management	use	COM	quota	interfaces,	including
IDiskQuotaControl,	IDiskQuotaUser,	and	IDiskQuotaEvents.

Figure	12-20.	Volume	Properties	dialog	box



Link	Tracking
Shell	shortcuts	allow	users	to	place	files	in	their	shell	namespace	(on	their	desktop,
for	example)	that	link	to	files	located	in	the	file	system	namespace.	The	Windows
Start	menu	uses	shell	shortcuts	extensively.	Similarly,	object	linking	and	embedding
(OLE)	links	allow	documents	from	one	application	to	be	transparently	embedded
in	the	documents	of	other	applications.	The	products	of	the	Microsoft	Office	suite,
including	PowerPoint,	Excel,	and	Word,	use	OLE	linking.

Although	shell	and	OLE	links	provide	an	easy	way	to	connect	files	with	one
another	and	with	the	shell	namespace,	they	can	be	difficult	to	manage	if	a	user
moves	the	source	of	a	shell	or	OLE	link	(a	link	source	is	the	file	or	directory	to
which	a	link	points).	NTFS	in	Windows	includes	support	for	a	service	application
called	distributed	link-tracking,	which	maintains	the	integrity	of	shell	and	OLE
links	when	link	targets	move.	Using	the	NTFS	link-tracking	support,	if	a	link	target
located	on	an	NTFS	volume	moves	to	any	other	NTFS	volume	within	the
originating	volume’s	domain,	the	link-tracking	service	can	transparently	follow	the
movement	and	update	the	link	to	reflect	the	change.

NTFS	link-tracking	support	is	based	on	an	optional	file	attribute	known	as	an
object	ID.	An	application	can	assign	an	object	ID	to	a	file	by	using	the
FSCTL_CREATE_OR_GET_OBJECT_ID	(which	assigns	an	ID	if	one	isn’t
already	assigned)	and	FSCTL_SET_OBJECT_ID	file	system	control	codes.	Object
IDs	are	queried	with	the	FSCTL_CREATE_OR_GET_OBJECT_ID	and
FSCTL_GET_OBJECT_ID	file	system	control	codes.	The
FSCTL_DELETE_OBJECT_ID	file	system	control	code	lets	applications	delete
object	IDs	from	files.

Encryption
Corporate	users	often	store	sensitive	information	on	their	computers.	Although
data	stored	on	company	servers	is	usually	safely	protected	with	proper	network
security	settings	and	physical	access	control,	data	stored	on	laptops	can	be	exposed
when	a	laptop	is	lost	or	stolen.	NTFS	file	permissions	don’t	offer	protection
because	NTFS	volumes	can	be	fully	accessed	without	regard	to	security	by	using
NTFS	file-reading	software	that	doesn’t	require	Windows	to	be	running.
Furthermore,	NTFS	file	permissions	are	rendered	useless	when	an	alternate



Windows	installation	is	used	to	access	files	from	an	administrator	account.	Recall
from	Chapter	6	in	Part	1	that	the	administrator	account	has	the	take-ownership	and
backup	privileges,	both	of	which	allow	it	to	access	any	secured	object	by	overriding
the	object’s	security	settings.

NTFS	includes	a	facility	called	Encrypting	File	System	(EFS),	which	users	can	use
to	encrypt	sensitive	data.	The	operation	of	EFS,	as	that	of	file	compression,	is
completely	transparent	to	applications,	which	means	that	file	data	is	automatically
decrypted	when	an	application	running	in	the	account	of	a	user	authorized	to	view
the	data	reads	it	and	is	automatically	encrypted	when	an	authorized	application
changes	the	data.

NOTE

NTFS	doesn’t	permit	the	encryption	of	files	located	in	the	system	volume’s	root	directory	or	in	the
\Windows	directory	because	many	files	in	these	locations	are	required	during	the	boot	process	and	EFS
isn’t	active	during	the	boot	process.	BitLocker,	described	in	Chapter	9,	is	a	technology	much	better	suited
for	environments	in	which	this	is	a	requirement	because	it	supports	full-volume	encryption.

EFS	relies	on	cryptographic	services	supplied	by	Windows	in	user	mode,	so	it
consists	of	both	a	kernel-mode	component	that	tightly	integrates	with	NTFS	as
well	as	user-mode	DLLs	that	communicate	with	the	Local	Security	Authority
Subsystem	(LSASS)	and	cryptographic	DLLs.

Files	that	are	encrypted	can	be	accessed	only	by	using	the	private	key	of	an
account’s	EFS	private/public	key	pair,	and	private	keys	are	locked	using	an
account’s	password.	Thus,	EFS-encrypted	files	on	lost	or	stolen	laptops	can’t	be
accessed	using	any	means	(other	than	a	brute-force	cryptographic	attack)	without
the	password	of	an	account	that	is	authorized	to	view	the	data.

Applications	can	use	the	EncryptFile	and	DecryptFile	Windows	API	functions	to
encrypt	and	decrypt	files,	and	FileEncryptionStatus	to	retrieve	a	file	or	directory’s
EFS-related	attributes,	such	as	whether	the	file	or	directory	is	encrypted.	A	file	or
directory	that	is	encrypted	has	the	FILE_ATTRIBUTE_ENCRYPTED	flag	set	in
its	attributes,	so	applications	can	also	determine	a	file	or	directory’s	encryption
state	with	GetFileAttributes.

POSIX	Support



As	explained	in	Chapter	2,	“System	Architecture,”	in	Part	1,	one	of	the	mandates
for	Windows	was	to	fully	support	the	POSIX	1003.1	standard.	In	the	file	system
area,	the	POSIX	standard	requires	support	for	case-sensitive	file	and	directory
names,	traversal	permissions	(where	security	for	each	directory	of	a	path	is	used
when	determining	whether	a	user	has	access	to	a	file	or	directory),	a	“file-change-
time”	time	stamp	(which	is	different	from	the	MS-DOS	“time-last-modified”
stamp),	and	hard	links.	NTFS	implements	each	of	these	features.

Defragmentation
Even	though	NTFS	makes	efforts	to	keep	files	contiguous	when	allocating	blocks
to	extend	a	file,	a	volume’s	files	can	still	become	fragmented	over	time,	especially
if	the	file	is	extended	multiple	times	or	when	there	is	limited	free	space.	A	file	is
fragmented	if	its	data	occupies	discontiguous	clusters.	For	example,	Figure	12-21
shows	a	fragmented	file	consisting	of	five	fragments.	However,	like	most	file
systems	(including	versions	of	FAT	on	Windows),	NTFS	makes	no	special	efforts
to	keep	files	contiguous	(this	is	handled	by	the	built-in	defragmenter),	other	than	to
reserve	a	region	of	disk	space	known	as	the	master	file	table	(MFT)	zone	for	the
MFT.	(NTFS	lets	other	files	allocate	from	the	MFT	zone	when	volume	free	space
runs	low.)	Keeping	an	area	free	for	the	MFT	can	help	it	stay	contiguous,	but	it,	too,
can	become	fragmented.	(See	the	section	Master	File	Table	later	in	this	chapter	for
more	information	on	MFTs.)

Figure	12-21.	Fragmented	and	contiguous	files

To	facilitate	the	development	of	third-party	disk	defragmentation	tools,	Windows
includes	a	defragmentation	API	that	such	tools	can	use	to	move	file	data	so	that
files	occupy	contiguous	clusters.	The	API	consists	of	file	system	controls	that	let
applications	obtain	a	map	of	a	volume’s	free	and	in-use	clusters
(FSCTL_GET_VOLUME_BITMAP),	obtain	a	map	of	a	file’s	cluster	usage
(FSCTL_GET_RETRIEVAL_POINTERS),	and	move	a	file



(FSCTL_MOVE_FILE).

Windows	includes	a	built-in	defragmentation	tool	that	is	accessible	by	using	the
Disk	Defragmenter	utility	(%SystemRoot%\System32\Dfrgui.exe),	shown	in
Figure	12-22,	as	well	as	a	command-line	interface,
%SystemRoot%\System32\Defrag.exe,	that	you	can	run	interactively	or	schedule
but	that	does	not	produce	detailed	reports	or	offer	control—such	as	excluding	files
or	directories—over	the	defragmentation	process.

Figure	12-22.	Disk	Defragmenter

The	only	limitation	imposed	by	the	defragmentation	implementation	in	NTFS	is
that	paging	files	and	NTFS	log	files	cannot	be	defragmented.

Dynamic	Partitioning
The	NTFS	driver	allows	users	to	dynamically	resize	any	partition,	including	the
system	partition,	either	shrinking	or	expanding	it	(if	enough	space	is	available).
Expanding	a	partition	is	easy	if	enough	space	exists	on	the	disk	and	is	performed
through	the	FSCTL_EXPAND_VOLUME	file	system	control	code.	Shrinking	a
partition	is	a	more	complicated	process,	because	it	requires	moving	any	file	system
data	that	is	currently	in	the	area	to	be	thrown	away	to	the	region	that	will	still
remain	after	the	shrinking	process	(a	mechanism	similar	to	defragmentation).



Shrinking	is	implemented	by	two	components:	the	shrinking	engine	and	the	file
system	driver.

The	shrinking	engine	is	implemented	in	user	mode.	It	communicates	with	NTFS	to
determine	the	maximum	number	of	reclaimable	bytes—that	is,	how	much	data	can
be	moved	from	the	region	that	will	be	resized	into	the	region	that	will	remain.	The
shrinking	engine	uses	the	standard	defragmentation	mechanism	shown	earlier,
which	doesn’t	support	relocating	page	file	fragments	that	are	in	use	or	any	other
files	that	have	been	marked	as	unmovable	with	the	FSCTL_MARK_HANDLE	file
system	control	code	(like	the	hibernation	file).	The	master	file	table	backup
($MftMirr),	the	NTFS	metadata	transaction	log	($LogFile),	and	the	volume	label
file	($Volume)	cannot	be	moved,	which	limits	the	minimum	size	of	the	shrunk
volume	and	causes	wasted	space.

The	file	system	driver	shrinking	code	is	responsible	for	ensuring	that	the	volume
remains	in	a	consistent	state	throughout	the	shrinking	process.	To	do	so,	it	exposes
an	interface	that	uses	three	requests	that	describe	the	current	operation,	which	are
sent	through	the	FSCTL_SHRINK_VOLUME	control	code:

The	ShrinkPrepare	request,	which	must	be	issued	before	any	other	operation.
This	request	takes	the	desired	size	of	the	new	volume	in	sectors	and	is	used	so
that	the	file	system	can	block	further	allocations	outside	the	new	volume
boundary.	The	ShrinkPrepare	request	doesn’t	verify	whether	the	volume	can
actually	be	shrunk	by	the	specified	amount,	but	it	does	ensure	that	the	amount
is	numerically	valid	and	that	there	aren’t	any	other	shrinking	operations
ongoing.	Note	that	after	a	prepare	operation,	the	file	handle	to	the	volume
becomes	associated	with	the	shrink	request.	If	the	file	handle	is	closed,	the
operation	is	assumed	to	be	aborted.

The	ShrinkCommit	request,	which	the	shrinking	engine	issues	after	a
ShrinkPrepare	request.	In	this	state,	the	file	system	attempts	the	removal	of	the
requested	number	of	clusters	in	the	most	recent	prepare	request.	(If	multiple
prepare	requests	have	been	sent	with	different	sizes,	the	last	one	is	the
determining	one.)	The	ShrinkCommit	request	assumes	that	the	shrinking	engine
has	completed	and	will	fail	if	any	allocated	blocks	remain	in	the	area	to	be
shrunk.

The	ShrinkAbort	request,	which	can	be	issued	by	the	shrinking	engine	or



caused	by	events	such	as	the	closure	of	the	file	handle	to	the	volume.	This
request	undoes	the	ShrinkCommit	operation	by	returning	the	partition	to	its
original	size	and	allows	new	allocations	outside	the	shrunk	region	to	occur
again.	However,	defragmentation	changes	made	by	the	shrinking	engine	remain.

If	a	system	is	rebooted	during	a	shrinking	operation,	NTFS	restores	the	file	system
to	a	consistent	state	via	its	metadata	recovery	mechanism,	explained	later	in	the
chapter.	Because	the	actual	shrink	operation	isn’t	executed	until	all	other	operations
have	been	completed,	the	volume	retains	its	original	size	and	only	defragmentation
operations	that	had	already	been	flushed	out	to	disk	persist.

Finally,	shrinking	a	volume	has	several	effects	on	the	volume	shadow	copy
mechanism	(for	more	information	on	VSS,	see	Chapter	9).	Recall	that	the	copy-on-
write	mechanism	allows	VSS	to	simply	retain	parts	of	the	file	that	were	actually
modified	while	still	linking	to	the	original	file	data.	For	deleted	files,	this	file	data
will	not	be	associated	with	visible	files	but	appear	as	free	space	instead—free	space
that	will	likely	be	located	in	the	area	that	is	about	to	be	shrunk.	The	shrinking
engine	therefore	communicates	with	VSS	to	engage	it	in	the	shrinking	process.	In
summary,	the	VSS	mechanism’s	job	is	to	copy	deleted	file	data	into	its	differencing
area	and	to	increase	the	differencing	area	as	required	to	accommodate	additional
data.	This	detail	is	important	because	it	poses	another	constraint	on	the	size	to
which	even	volumes	with	ample	free	space	can	shrink.



NTFS	File	System	Driver
As	described	in	Chapter	8,	in	the	framework	of	the	Windows	I/O	system,	NTFS
and	other	file	systems	are	loadable	device	drivers	that	run	in	kernel	mode.	They	are
invoked	indirectly	by	applications	that	use	Windows	or	other	I/O	APIs	(such	as
POSIX).	As	Figure	12-23	shows,	the	Windows	environment	subsystems	call
Windows	system	services,	which	in	turn	locate	the	appropriate	loaded	drivers	and
call	them.	(For	a	description	of	system	service	dispatching,	see	the	section	“System
Service	Dispatching”	in	Chapter	3	in	Part	1.)

Figure	12-23.	Components	of	the	Windows	I/O	system

The	layered	drivers	pass	I/O	requests	to	one	another	by	calling	the	Windows
executive’s	I/O	manager.	Relying	on	the	I/O	manager	as	an	intermediary	allows
each	driver	to	maintain	independence	so	that	it	can	be	loaded	or	unloaded	without
affecting	other	drivers.	In	addition,	the	NTFS	driver	interacts	with	the	three	other
Windows	executive	components,	shown	in	the	left	side	of	Figure	12-24,	that	are
closely	related	to	file	systems.

The	log	file	service	(LFS)	is	the	part	of	NTFS	that	provides	services	for
maintaining	a	log	of	disk	writes.	The	log	file	that	LFS	writes	is	used	to	recover	an



NTFS-formatted	volume	in	the	case	of	a	system	failure.	(See	the	section	Log	File
Service	later	in	the	chapter.)

Figure	12-24.	NTFS	and	related	components

The	cache	manager	is	the	component	of	the	Windows	executive	that	provides
systemwide	caching	services	for	NTFS	and	other	file	system	drivers,	including
network	file	system	drivers	(servers	and	redirectors).	All	file	systems	implemented
for	Windows	access	cached	files	by	mapping	them	into	system	address	space	and
then	accessing	the	virtual	memory.	The	cache	manager	provides	a	specialized	file
system	interface	to	the	Windows	memory	manager	for	this	purpose.	When	a
program	tries	to	access	a	part	of	a	file	that	isn’t	loaded	into	the	cache	(a	cache
miss),	the	memory	manager	calls	NTFS	to	access	the	disk	driver	and	obtain	the	file
contents	from	disk.	The	cache	manager	optimizes	disk	I/O	by	using	its	lazy	writer
threads	to	call	the	memory	manager	to	flush	cache	contents	to	disk	as	a
background	activity	(asynchronous	disk	writing).	(For	a	complete	description	of
the	cache	manager,	see	Chapter	11.)

NTFS	participates	in	the	Windows	object	model	by	implementing	files	as	objects.
This	implementation	allows	files	to	be	shared	and	protected	by	the	object	manager,
the	component	of	Windows	that	manages	all	executive-level	objects.	(The	object
manager	is	described	in	the	section	“Object	Manager”	in	Chapter	3	in	Part	1.)



An	application	creates	and	accesses	files	just	as	it	does	other	Windows	objects:	by
means	of	object	handles.	By	the	time	an	I/O	request	reaches	NTFS,	the	Windows
object	manager	and	security	system	have	already	verified	that	the	calling	process
has	the	authority	to	access	the	file	object	in	the	way	it	is	attempting	to.	The
security	system	has	compared	the	caller’s	access	token	to	the	entries	in	the	access
control	list	for	the	file	object.	(See	Chapter	6	in	Part	1	for	more	information	about
access	control	lists.)	The	I/O	manager	has	also	transformed	the	file	handle	into	a
pointer	to	a	file	object.	NTFS	uses	the	information	in	the	file	object	to	access	the
file	on	disk.

Figure	12-25	shows	the	data	structures	that	link	a	file	handle	to	the	file	system’s
on-disk	structure.

Figure	12-25.	NTFS	data	structures

NTFS	follows	several	pointers	to	get	from	the	file	object	to	the	location	of	the	file
on	disk.	As	Figure	12-25	shows,	a	file	object,	which	represents	a	single	call	to	the
open-file	system	service,	points	to	a	stream	control	block	(SCB)	for	the	file
attribute	that	the	caller	is	trying	to	read	or	write.	In	Figure	12-25,	a	process	has



opened	both	the	unnamed	data	attribute	and	a	named	stream	(alternate	data
attribute)	for	the	file.	The	SCBs	represent	individual	file	attributes	and	contain
information	about	how	to	find	specific	attributes	within	a	file.	All	the	SCBs	for	a
file	point	to	a	common	data	structure	called	a	file	control	block	(FCB).	The	FCB
contains	a	pointer	(actually,	an	index	into	the	MFT,	as	explained	in	the	section	File
Record	Numbers	later	in	this	chapter)	to	the	file’s	record	in	the	disk-based	master
file	table	(MFT),	which	is	described	in	detail	in	the	following	section.



NTFS	On-Disk	Structure
This	section	describes	the	on-disk	structure	of	an	NTFS	volume,	including	how
disk	space	is	divided	and	organized	into	clusters,	how	files	are	organized	into
directories,	how	the	actual	file	data	and	attribute	information	is	stored	on	disk,	and
finally,	how	NTFS	data	compression	works.

Volumes
The	structure	of	NTFS	begins	with	a	volume.	A	volume	corresponds	to	a	logical
partition	on	a	disk,	and	it	is	created	when	you	format	a	disk	or	part	of	a	disk	for
NTFS.	You	can	also	create	a	RAID	volume	that	spans	multiple	disks	by	using	the
Windows	Disk	Management	MMC	snap-in	or	the	diskpart
(%SystemRoot%\System32\Diskpart.exe)	command	available	from	the	Windows
command	prompt.

A	disk	can	have	one	volume	or	several.	NTFS	handles	each	volume	independently
of	the	others.	Three	sample	disk	configurations	for	a	150-GB	hard	disk	are
illustrated	in	Figure	12-26.

Figure	12-26.	Sample	disk	configurations

A	volume	consists	of	a	series	of	files	plus	any	additional	unallocated	space
remaining	on	the	disk	partition.	In	the	FAT	file	system,	a	volume	also	contains
areas	specially	formatted	for	use	by	the	file	system.	An	NTFS	volume,	however,
stores	all	file	system	data,	such	as	bitmaps	and	directories,	and	even	the	system
bootstrap,	as	ordinary	files.

NOTE

The	on-disk	format	of	NTFS	volumes	on	Windows	7	and	Windows	Server	2008	R2	is	version	3.1,	the
same	as	it	has	been	since	Windows	XP	and	Windows	Server	2003.	The	version	number	of	a	volume	is
stored	in	its	$Volume	metadata	file.



Clusters
The	cluster	size	on	an	NTFS	volume,	or	the	cluster	factor,	is	established	when	a
user	formats	the	volume	with	either	the	format	command	or	the	Disk	Management
MMC	snap-in.	The	default	cluster	factor	varies	with	the	size	of	the	volume,	but	it	is
an	integral	number	of	physical	sectors,	always	a	power	of	2	(1	sector,	2	sectors,	4
sectors,	8	sectors,	and	so	on).	The	cluster	factor	is	expressed	as	the	number	of
bytes	in	the	cluster,	such	as	512	bytes,	1	KB,	2	KB,	and	so	on.

Internally,	NTFS	refers	only	to	clusters.	(However,	NTFS	forms	low-level	volume
I/O	operations	such	that	clusters	are	sector-aligned	and	have	a	length	that	is	a
multiple	of	the	sector	size.)	NTFS	uses	the	cluster	as	its	unit	of	allocation	to
maintain	its	independence	from	physical	sector	sizes.	This	independence	allows
NTFS	to	efficiently	support	very	large	disks	by	using	a	larger	cluster	factor	or	to
support	newer	disks	that	have	a	sector	size	other	than	512	bytes.	(See	Chapter	9	for
more	information	on	disks	with	sectors	larger	than	512	bytes.)	On	a	larger	volume,
use	of	a	larger	cluster	factor	can	reduce	fragmentation	and	speed	allocation,	at	the
cost	of	wasted	disk	space.	(If	the	cluster	size	is	4,096,	and	a	file	is	only	1,024
bytes,	then	3,072	bytes	are	wasted.	See	Chapter	9	for	more	information	on	default
cluster	sizes.)	Both	the	format	command	available	from	the	command	prompt	and
the	Format	menu	option	under	the	All	Tasks	option	on	the	Action	menu	in	the
Disk	Management	MMC	snap-in	choose	a	default	cluster	factor	based	on	the
volume	size,	but	you	can	override	this	size.

NTFS	refers	to	physical	locations	on	a	disk	by	means	of	logical	cluster	numbers
(LCNs).	LCNs	are	simply	the	numbering	of	all	clusters	from	the	beginning	of	the
volume	to	the	end.	To	convert	an	LCN	to	a	physical	disk	address,	NTFS	multiplies
the	LCN	by	the	cluster	factor	to	get	the	physical	byte	offset	on	the	volume,	as	the
disk	driver	interface	requires.	NTFS	refers	to	the	data	within	a	file	by	means	of
virtual	cluster	numbers	(VCNs).	VCNs	number	the	clusters	belonging	to	a
particular	file	from	0	through	m.	VCNs	aren’t	necessarily	physically	contiguous,
however;	they	can	be	mapped	to	any	number	of	LCNs	on	the	volume.

Master	File	Table
In	NTFS,	all	data	stored	on	a	volume	is	contained	in	files,	including	the	data



structures	used	to	locate	and	retrieve	files,	the	bootstrap	data,	and	the	bitmap	that
records	the	allocation	state	of	the	entire	volume	(the	NTFS	metadata).	Storing
everything	in	files	allows	the	file	system	to	easily	locate	and	maintain	the	data,	and
each	separate	file	can	be	protected	by	a	security	descriptor.	In	addition,	if	a
particular	part	of	the	disk	goes	bad,	NTFS	can	relocate	the	metadata	files	to
prevent	the	disk	from	becoming	inaccessible.

The	MFT	is	the	heart	of	the	NTFS	volume	structure.	The	MFT	is	implemented	as
an	array	of	file	records.	The	size	of	each	file	record	is	fixed	at	1	KB,	regardless	of
cluster	size.	(The	structure	of	a	file	record	is	described	in	the	File	Records	section
later	in	this	chapter.)	Logically,	the	MFT	contains	one	record	for	each	file	on	the
volume,	including	a	record	for	the	MFT	itself.	In	addition	to	the	MFT,	each	NTFS
volume	includes	a	set	of	metadata	files	containing	the	information	that	is	used	to
implement	the	file	system	structure.	Each	of	these	NTFS	metadata	files	has	a	name
that	begins	with	a	dollar	sign	($),	and	is	hidden.	For	example,	the	file	name	of	the
MFT	is	$MFT.	The	rest	of	the	files	on	an	NTFS	volume	are	normal	user	files	and
directories,	as	shown	in	Figure	12-27.

Usually,	each	MFT	record	corresponds	to	a	different	file.	If	a	file	has	a	large
number	of	attributes	or	becomes	highly	fragmented,	however,	more	than	one
record	might	be	needed	for	a	single	file.	In	such	cases,	the	first	MFT	record,	which
stores	the	locations	of	the	others,	is	called	the	base	file	record.



Figure	12-27.	File	records	for	NTFS	metadata	files	in	the	MFT

When	it	first	accesses	a	volume,	NTFS	must	mount	it—that	is,	read	metadata	from
the	disk	and	construct	internal	data	structures	so	that	it	can	process	application	file
system	accesses.	To	mount	the	volume,	NTFS	looks	in	the	volume	boot	record
(VBR)	(located	at	LCN	0),	which	contains	a	data	structure	call	the	boot	parameter
block	(BPB),	to	find	the	physical	disk	address	of	the	MFT.	The	MFT’s	own	file
record	is	the	first	entry	in	the	table;	the	second	file	record	points	to	a	file	located	in
the	middle	of	the	disk	called	the	MFT	mirror	(file	name	$MFTMirr)	that	contains
a	copy	of	the	first	four	rows	of	the	MFT.	This	partial	copy	of	the	MFT	is	used	to
locate	metadata	files	if	part	of	the	MFT	file	can’t	be	read	for	some	reason.

Once	NTFS	finds	the	file	record	for	the	MFT,	it	obtains	the	VCN-to-LCN
mapping	information	in	the	file	record’s	data	attribute	and	stores	it	into	memory.



Each	run	(runs	are	explained	later	in	this	chapter	in	the	section	Resident	and
Nonresident	Attributes)	has	a	VCN-to-LCN	mapping	and	a	run	length	because
that’s	all	the	information	necessary	to	locate	the	LCN	for	any	VCN.	This	mapping
information	tells	NTFS	where	the	runs	containing	the	MFT	are	located	on	the	disk.
NTFS	then	processes	the	MFT	records	for	several	more	metadata	files	and	opens
the	files.	Next,	NTFS	performs	its	file	system	recovery	operation	(described	in	the
section	Recovery	later	in	this	chapter),	and	finally,	it	opens	its	remaining	metadata
files.	The	volume	is	now	ready	for	user	access.

NOTE

For	the	sake	of	clarity,	the	text	and	diagrams	in	this	chapter	depict	a	run	as	including	a	VCN,	an	LCN,	and	a
run	length.	NTFS	actually	compresses	this	information	on	disk	into	an	LCN/next-VCN	pair.	Given	a
starting	VCN,	NTFS	can	determine	the	length	of	a	run	by	subtracting	the	starting	VCN	from	the	next	VCN.

As	the	system	runs,	NTFS	writes	to	another	important	metadata	file,	the	log	file
(file	name	$LogFile).	NTFS	uses	the	log	file	to	record	all	operations	that	affect	the
NTFS	volume	structure,	including	file	creation	or	any	commands,	such	as	copy,
that	alter	the	directory	structure.	The	log	file	is	used	to	recover	an	NTFS	volume
after	a	system	failure	and	is	also	described	in	the	Recovery	section.

Another	entry	in	the	MFT	is	reserved	for	the	root	directory	(also	known	as	“\”;	for
example,	C:\).	Its	file	record	contains	an	index	of	the	files	and	directories	stored	in
the	root	of	the	NTFS	directory	structure.	When	NTFS	is	first	asked	to	open	a	file,
it	begins	its	search	for	the	file	in	the	root	directory’s	file	record.	After	opening	a
file,	NTFS	stores	the	file’s	MFT	record	number	so	that	it	can	directly	access	the
file’s	MFT	record	when	it	reads	and	writes	the	file	later.

NTFS	records	the	allocation	state	of	the	volume	in	the	bitmap	file	(file	name
$BitMap).	The	data	attribute	for	the	bitmap	file	contains	a	bitmap,	each	of	whose
bits	represents	a	cluster	on	the	volume,	identifying	whether	the	cluster	is	free	or	has
been	allocated	to	a	file.

The	security	file	(file	name	$Secure)	stores	the	volume-wide	security	descriptor
database.	NTFS	files	and	directories	have	individually	settable	security	descriptors,
but	to	conserve	space,	NTFS	stores	the	settings	in	a	common	file,	which	allows
files	and	directories	that	have	the	same	security	settings	to	reference	the	same
security	descriptor.	In	most	environments,	entire	directory	trees	have	the	same



security	settings,	so	this	optimization	provides	a	significant	saving	of	disk	space.

Another	system	file,	the	boot	file	(file	name	$Boot),	stores	the	Windows	bootstrap
code	if	the	volume	is	a	system	volume.	On	non-system	volumes,	there	is	code	that
displays	an	error	message	on	the	screen	if	an	attempt	is	made	to	boot	from	that
volume.	For	the	system	to	boot,	the	bootstrap	code	must	be	located	at	a	specific
disk	address	so	that	the	BIOS	can	find	it.	During	formatting,	the	format	command
defines	this	area	as	a	file	by	creating	a	file	record	for	it.	All	files	are	in	the	MFT,
and	all	clusters	are	either	free	or	allocated	to	a	file—there	are	no	hidden	files	or
clusters	in	NTFS,	although	some	files	(metadata)	are	not	visible	to	users.	The	boot
file	as	well	as	NTFS	metadata	files	can	be	individually	protected	by	means	of	the
security	descriptors	that	are	applied	to	all	Windows	objects.	Using	this	“everything
on	the	disk	is	a	file”	model	also	means	that	the	bootstrap	can	be	modified	by
normal	file	I/O,	although	the	boot	file	is	protected	from	editing.

NTFS	also	maintains	a	bad-cluster	file	(file	name	$BadClus)	for	recording	any	bad
spots	on	the	disk	volume	and	a	file	known	as	the	volume	file	(file	name	$Volume),
which	contains	the	volume	name,	the	version	of	NTFS	for	which	the	volume	is
formatted,	and	a	number	of	flag	bits	that	indicate	the	state	and	health	of	the
volume,	such	as	a	bit	that	indicates	that	the	volume	is	corrupt	and	must	be	repaired
by	the	Chkdsk	utility.	(The	Chkdsk	utility	is	covered	in	more	detail	later	in	the
chapter.)	The	uppercase	file	(file	name	$UpCase)	includes	a	translation	table
between	lowercase	and	uppercase	characters.	NTFS	maintains	a	file	containing	an
attribute	definition	table	(file	name	$AttrDef)	that	defines	the	attribute	types
supported	on	the	volume	and	indicates	whether	they	can	be	indexed,	recovered
during	a	system	recovery	operation,	and	so	on.

NTFS	stores	several	metadata	files	in	the	extensions	(directory	name	$Extend)
metadata	directory,	including	the	object	identifier	file	(file	name	$ObjId),	the	quota
file	(file	name	$Quota),	the	change	journal	file	(file	name	$UsnJrnl),	the	reparse
point	file	(file	name	$Reparse),	and	the	default	resource	manager	directory
(directory	name	$RmMetadata).	These	files	store	information	related	to	extended
features	of	NTFS.	The	object	identifier	file	stores	file	object	IDs,	the	quota	file
stores	quota	limit	and	behavior	information	on	volumes	that	have	quotas	enabled,
the	change	journal	file	records	file	and	directory	changes,	and	the	reparse	point	file
stores	information	about	which	files	and	directories	on	the	volume	include	reparse



point	data.

The	default	resource	manager	directory	contains	directories	related	to	transactional
NTFS	(TxF)	support,	including	the	transaction	log	directory	(directory	name
$TxfLog),	the	transaction	isolation	directory	(directory	name	$Txf),	and	the
transaction	repair	directory	(file	name	$Repair).	The	transaction	log	directory
contains	the	TxF	base	log	file	(file	name	$TxfLog.blf)	and	any	number	of	log
container	files,	depending	on	the	size	of	the	transaction	log,	but	it	always	contains
at	least	two:	one	for	the	Kernel	Transaction	Manager	(KTM)	log	stream	(file	name
$TxfLogContainer00000000000000000001),	and	one	for	the	TxF	log	stream	(file
name	$TxfLogContainer00000000000000000002).	The	transaction	log	directory
also	contains	the	TxF	old	page	stream	(file	name	$Tops),	which	we’ll	describe
later.

EXPERIMENT:	VIEWING	NTFS	INFORMATION

You	can	use	the	built-in	Fsutil.exe	command-line	program	to	view	information	about	an	NTFS	volume,
including	the	placement	and	size	of	the	MFT	and	MFT	zone:

C:\>fsutil fsinfo ntfsinfo c:
NTFS Volume Serial Number :       0x9a38d50e38d4ea71
Version :                         3.1
Number Sectors :                  0x0000000015c82ff0
Total Clusters :                  0x0000000002b905fe
Free Clusters  :                  0x000000000013c332
Total Reserved :                  0x0000000000000780
Bytes Per Sector  :               512
Bytes Per Cluster :               4096
Bytes Per FileRecord Segment    : 1024
Clusters Per FileRecord Segment : 0
Mft Valid Data Length :           0x0000000023db0000
Mft Start Lcn  :                  0x00000000000c0000
Mft2 Start Lcn :                  0x00000000016082ff
Mft Zone Start :                  0x0000000002751f60
Mft Zone End   :                  0x000000000275cd60
RM Identifier:        CF7234E7-39E3-11DC-BDCE-00188BDD5F49

File	Record	Numbers
A	file	on	an	NTFS	volume	is	identified	by	a	64-bit	value	called	a	file	record
number,	which	consists	of	a	file	number	and	a	sequence	number.	The	file	number
corresponds	to	the	position	of	the	file’s	file	record	in	the	MFT	minus	1	(or	to	the
position	of	the	base	file	record	minus	1	if	the	file	has	more	than	one	file	record).
The	sequence	number,	which	is	incremented	each	time	an	MFT	file	record	position



is	reused,	enables	NTFS	to	perform	internal	consistency	checks.	A	file	record
number	is	illustrated	in	Figure	12-28.

Figure	12-28.	File	record	number

File	Records
Instead	of	viewing	a	file	as	just	a	repository	for	textual	or	binary	data,	NTFS	stores
files	as	a	collection	of	attribute/value	pairs,	one	of	which	is	the	data	it	contains
(called	the	unnamed	data	attribute).	Other	attributes	that	comprise	a	file	include
the	file	name,	time	stamp	information,	and	possibly	additional	named	data
attributes.	Figure	12-29	illustrates	an	MFT	record	for	a	small	file.

Figure	12-29.	MFT	record	for	a	small	file

Each	file	attribute	is	stored	as	a	separate	stream	of	bytes	within	a	file.	Strictly
speaking,	NTFS	doesn’t	read	and	write	files—it	reads	and	writes	attribute	streams.
NTFS	supplies	these	attribute	operations:	create,	delete,	read	(byte	range),	and
write	(byte	range).	The	read	and	write	services	normally	operate	on	the	file’s
unnamed	data	attribute.	However,	a	caller	can	specify	a	different	data	attribute	by
using	the	named	data	stream	syntax.

Table	12-6	lists	the	attributes	for	files	on	an	NTFS	volume.	(Not	all	attributes	are
present	for	every	file.)



Table	12-6.	Attributes	for	NTFS	Files

Attribute Attribute	Type	Name Resident? Description

Volume
information

$VOLUME_INFORMATION,
$VOLUME_NAME

Always,
Always

These	attributes	are	present	only	in
the	$Volume	metadata	file.	They
store	volume	version	and	label
information.

Standard
information

$STANDARD_INFORMATION Always File	attributes	such	as	read-only,
archive,	and	so	on;	time	stamps,
including	when	the	file	was	created
or	last	modified.

Filename $FILE_NAME Maybe The	file’s	name	in	Unicode	1.0
characters.	A	file	can	have	multiple
filename	attributes,	as	it	does	when
a	hard	link	to	a	file	exists	or	when
a	file	with	a	long	name	has	an
automatically	generated	“short
name”	for	access	by	MS-DOS	and
16-bit	Windows	applications.

Security
descriptor

$SECURITY_DESCRIPTOR Maybe This	attribute	is	present	for
backward	compatibility	with
previous	versions	of	NTFS	and	is
rarely	used	in	the	current	version	of
NTFS	(3.1).	NTFS	stores	almost
all	security	descriptors	in	the
$Secure	metadata	file,	sharing
descriptors	among	files	and
directories	that	have	the	same
settings.	Previous	versions	of	NTFS
stored	private	security	descriptor
information	with	each	file	and
directory.	Some	files	still	include	a
$SECURITY_DESCRIPTOR
attribute,	such	as	$Boot.

Data $DATA 	 The	contents	of	the	file.	In	NTFS,	a
file	has	one	default	unnamed	data
attribute	and	can	have	additional
named	data	attributes—that	is,	a
file	can	have	multiple	data	streams.
A	directory	has	no	default	data
attribute	but	can	have	optional
named	data	attributes.



Index	root,
index
allocation,
and	index
bitmap

$INDEX_ROOT,
$INDEX_ALLOCATION,
$BITMAP

Always,
Never,
Maybe

Three	attributes	used	to	implement
B-tree	data	structures	used	by
directories,	security,	quota,	and
other	metadata	files.

Attribute
list

$ATTRIBUTE_LIST Maybe A	list	of	the	attributes	that	make	up
the	file	and	the	file	record	number
of	the	MFT	entry	where	each
attribute	is	located.	This	attribute	is
present	when	a	file	requires	more
than	one	MFT	file	record.

Object	ID $OBJECT_ID Always A	16-byte	identifier	(GUID)	for	a
file	or	directory.	The	link-tracking
service	assigns	object	IDs	to	shell
shortcut	and	OLE	link	source	files.
NTFS	provides	APIs	so	that	files
and	directories	can	be	opened	with
their	object	ID	rather	than	their	file
name.

Reparse
information

$REPARSE_POINT Maybe This	attribute	stores	a	file’s	reparse
point	data.	NTFS	junctions	and
mount	points	include	this	attribute.

Extended
attributes

$EA,	$EA_INFORMATION Maybe,
Always

Extended	attributes	are	name/value
pairs	and	aren’t	normally	used	but
are	provided	for	backward
compatibility	with	OS/2
applications.

Logged
utility
stream

$LOGGED_UTILITY_STREAM Maybe EFS	stores	data	in	this	attribute
($EFS)	that’s	used	to	manage	a
file’s	encryption,	such	as	the
encrypted	version	of	the	key
needed	to	decrypt	the	file	and	a	list
of	users	who	are	authorized	to
access	the	file.	When	a	file	or
directory	becomes	part	of	a
transaction,	TxF	also	stores
transaction	data	in	the
$TXF_DATA	attribute,	such	as	the
file’s	unique	transaction	ID.

Table	12-6	shows	attribute	names;	however,	attributes	actually	correspond	to



numeric	type	codes,	which	NTFS	uses	to	order	the	attributes	within	a	file	record.
The	file	attributes	in	an	MFT	record	are	ordered	by	these	type	codes	(numerically
in	ascending	order),	with	some	attribute	types	appearing	more	than	once—if	a	file
has	multiple	data	attributes,	for	example,	or	multiple	file	names.	All	possible
attribute	types	(and	their	names)	are	listed	in	the	$AttrDef	metadata	file.

Each	attribute	in	a	file	record	is	identified	with	its	attribute	type	code	and	has	a
value	and	an	optional	name.	An	attribute’s	value	is	the	byte	stream	composing	the
attribute.	For	example,	the	value	of	the	$FILE_NAME	attribute	is	the	file’s	name;
the	value	of	the	$DATA	attribute	is	whatever	bytes	the	user	stored	in	the	file.

Most	attributes	never	have	names,	although	the	index-related	attributes	and	the
$DATA	attribute	often	do.	Names	distinguish	between	multiple	attributes	of	the
same	type	that	a	file	can	include.	For	example,	a	file	that	has	a	named	data	stream
has	two	$DATA	attributes:	an	unnamed	$DATA	attribute	storing	the	default
unnamed	data	stream	and	a	named	$DATA	attribute	having	the	name	of	the
alternate	stream	and	storing	the	named	stream’s	data.

File	Names
Both	NTFS	and	FAT	allow	each	file	name	in	a	path	to	be	as	many	as	255
characters	long.	File	names	can	contain	Unicode	characters	as	well	as	multiple
periods	and	embedded	spaces.	However,	the	FAT	file	system	supplied	with	MS-
DOS	is	limited	to	8	(non-Unicode)	characters	for	its	file	names,	followed	by	a
period	and	a	3-character	extension.	Figure	12-30	provides	a	visual	representation
of	the	different	file	namespaces	Windows	supports	and	shows	how	they	intersect.

The	POSIX	subsystem	requires	the	biggest	namespace	of	all	the	application
execution	environments	that	Windows	supports,	and	therefore	the	NTFS
namespace	is	equivalent	to	the	POSIX	namespace.	The	POSIX	subsystem	can
create	names	that	aren’t	visible	to	Windows	and	MS-DOS	applications,	including
names	with	trailing	periods	and	trailing	spaces.	Ordinarily,	creating	a	file	using	the
large	POSIX	namespace	isn’t	a	problem	because	you	would	do	that	only	if	you
intended	the	POSIX	subsystem	or	POSIX	client	systems	to	use	that	file.



Figure	12-30.	Windows	file	namespaces

The	relationship	between	32-bit	Windows	(Windows)	applications	and	MS-DOS
and	16-bit	Windows	applications	is	a	much	closer	one,	however.	The	Windows
area	in	Figure	12-30	represents	file	names	that	the	Windows	subsystem	can	create
on	an	NTFS	volume	but	that	MS-DOS	and	16-bit	Windows	applications	can’t	see.
This	group	includes	file	names	longer	than	the	8.3	format	of	MS-DOS	names,
those	containing	Unicode	(international)	characters,	those	with	multiple	period
characters	or	a	beginning	period,	and	those	with	embedded	spaces.	When	a	file	is
created	with	such	a	name,	NTFS	automatically	generates	an	alternate,	MS-DOS-
style	file	name	for	the	file.	Windows	displays	these	short	names	when	you	use	the
/x	option	with	the	dir	command.

The	MS-DOS	file	names	are	fully	functional	aliases	for	the	NTFS	files	and	are
stored	in	the	same	directory	as	the	long	file	names.	The	MFT	record	for	a	file	with
an	autogenerated	MS-DOS	file	name	is	shown	in	Figure	12-31.

Figure	12-31.	MFT	file	record	with	an	MS-DOS	filename	attribute

The	NTFS	name	and	the	generated	MS-DOS	name	are	stored	in	the	same	file
record	and	therefore	refer	to	the	same	file.	The	MS-DOS	name	can	be	used	to
open,	read	from,	write	to,	or	copy	the	file.	If	a	user	renames	the	file	using	either	the
long	file	name	or	the	short	file	name,	the	new	name	replaces	both	the	existing



names.	If	the	new	name	isn’t	a	valid	MS-DOS	name,	NTFS	generates	another	MS-
DOS	name	for	the	file	(note	that	NTFS	only	generates	MS-DOS-style	file	names
for	the	first	file	name).

NOTE

Hard	links	are	implemented	in	a	similar	way.	When	a	hard	link	to	a	file	is	created,	NTFS	adds	another	file
name	attribute	to	the	file’s	MFT	file	record.	The	two	situations	differ	in	one	regard,	however.	When	a	user
deletes	a	file	that	has	multiple	names	(hard	links),	the	file	record	and	the	file	remain	in	place.	The	file	and
its	record	are	deleted	only	when	the	last	file	name	(hard	link)	is	deleted.	If	a	file	has	both	an	NTFS	name
and	an	autogenerated	MS-DOS	name,	however,	a	user	can	delete	the	file	using	either	name.

Here’s	the	algorithm	NTFS	uses	(the	algorithm	is	actually	implemented	in	the
kernel	function	RtlGenerate8dot3Name	and	is	also	used	by	other	drivers,	such	as
CDFS,	FAT,	and	third-party	file	systems)	to	generate	an	MS-DOS	name	from	a
long	file	name:

1.	 Remove	from	the	long	name	any	characters	that	are	illegal	in	MS-DOS
names,	including	spaces	and	Unicode	characters.	Remove	preceding	and
trailing	periods.	Remove	all	other	embedded	periods,	except	the	last	one.

2.	 Truncate	the	string	before	the	period	(if	present)	to	six	characters	(it	may
already	be	six	or	fewer	because	this	algorithm	is	applied	when	any	character
that	is	illegal	in	MS-DOS	is	present	in	the	name);	if	it	is	two	or	fewer
characters,	generate	and	concatenate	a	four-character	hex	checksum	string.
Append	the	string	~n	(where	n	is	a	number,	starting	with	1,	that	is	used	to
distinguish	different	files	that	truncate	to	the	same	name).	Truncate	the	string
after	the	period	(if	present)	to	three	characters.

3.	 Put	the	result	in	uppercase	letters.	MS-DOS	is	case-insensitive,	and	this	step
guarantees	that	NTFS	won’t	generate	a	new	name	that	differs	from	the	old
only	in	case.

4.	 If	the	generated	name	duplicates	an	existing	name	in	the	directory,	increment
the	~n	string.	If	n	is	greater	than	4,	and	a	checksum	was	not	concatenated
already,	truncate	the	string	before	the	period	to	two	characters	and	generate
and	concatenate	a	four-character	hex	checksum	string.

Table	12-7	shows	the	long	Windows	file	names	from	Figure	12-30	and	their
NTFS-generated	MS-DOS	versions.	The	current	algorithm	and	the	examples	in



Figure	12-30	should	give	you	an	idea	of	what	NTFS-generated	MS-DOS-style	 file
names	look	like.

NOTE

Although	not	generally	recommended	because	it	can	cause	incompatibilities	with	applications	that	rely	on
them,	you	can	disable	short	name	generation	by	setting
HKLM\SYSTEM\CurrentControlSet\Control\FileSystem\NtfsDisable8dot3NameCreation	in	the	registry	to
a	DWORD	value	of	1	and	restarting	the	machine.

TUNNELING

NTFS	uses	the	concept	of	tunneling	to	allow	compatibility	with	older	programs	that	depend	on	the	file
system	to	cache	certain	file	metadata	for	a	period	of	time	even	after	the	file	is	gone,	such	as	when	it	has
been	deleted	or	renamed.	With	tunneling,	any	new	file	created	with	the	same	name	as	the	original	file,	and
within	a	certain	period	of	time,	will	keep	some	of	the	same	metadata.	The	idea	is	to	replicate	behavior
expected	by	MS-DOS	programs	when	using	the	safe	save	programming	method,	in	which	modified	data	is
copied	to	a	temporary	file,	the	original	file	is	deleted,	and	then	the	temporary	file	is	renamed	to	the	original
name.	The	expected	behavior	in	this	case	is	that	the	renamed	temporary	file	should	appear	to	be	the	same
as	the	original	file,	otherwise	the	creation	time	would	continuously	update	itself	with	each	modification
(which	is	how	the	modified	time	is	used).

NTFS	uses	tunneling	so	that	when	a	file	name	is	removed	from	a	directory,	its	long	name	and	short	name,
as	well	as	its	creation	time,	are	saved	into	a	cache.	When	a	new	file	is	added	to	a	directory,	the	cache	is
searched	to	see	whether	there	is	any	tunneled	data	to	restore.	Because	these	operations	apply	to	directories,
each	directory	instance	has	its	own	cache,	which	is	deleted	if	the	directory	is	removed.	NTFS	will	use
tunneling	for	the	following	series	of	operations	if	the	names	used	result	in	the	deletion	and	re-creation	of
the	same	file	name:

Delete	+	Create

Delete	+	Rename

Rename	+	Create

Rename	+	Rename

By	default,	NTFS	keeps	the	tunneling	cache	for	15	seconds,	although	you	can	modify	this	timeout	by
creating	a	new	value	called	MaximumTunnelEntryAgeInSeconds	in	the
HKLM\SYSTEM\CurrentControlSet\Control\FileSystem	registry	key.	Tunneling	can	also	be	completely
disabled	by	creating	a	new	value	called	MaximumTunnelEntries	and	setting	it	to	0;	however,	this	will	cause
older	applications	to	break	if	they	rely	on	the	compatibility	behavior.

You	can	see	tunneling	in	action	with	the	following	simple	experiment	in	the	command	prompt:

1.	 Create	a	file	called	file1.

2.	 Wait	for	more	than	15	seconds	(the	default	tunnel	cache	timeout).

3.	 Create	a	file	called	file2.

4.	 Perform	a	dir	/TC.	Note	the	creation	times.



5.	 Rename	file1	to	file.

6.	 Rename	file2	to	file1.

7.	 Perform	a	dir	/TC.	Note	that	the	creation	times	are	identical.

Table	12-7.	NTFS-Generated	File	Names

Windows	Long	Name NTFS-Generated	Short	Name

LongFileName LONGFI~1

UnicodeName.ΦDΠΛ UNICOD~1

File.Name.With.Dots FILENA~1.DOT

File.Name2.With.Dots FILENA~2.DOT

File.Name3.With.Dots FILENA~3.DOT

File.Name4.With.Dots FILENA~4.DOT

File.Name5.With.Dots FIF596~1.DOT

Name	With	Embedded	Spaces NAMEWI~1

.BeginningDot BEGINN~1

25¢.two	characters 255440~1.TWO

© 6E2D~1

Resident	and	Nonresident	Attributes
If	a	file	is	small,	all	its	attributes	and	their	values	(its	data,	for	example)	fit	within
the	file	record	that	describes	the	file.	When	the	value	of	an	attribute	is	stored	in	the
MFT	(either	in	the	file’s	main	file	record	or	an	extension	record	located	elsewhere
within	the	MFT),	the	attribute	is	called	a	resident	attribute.	(In	Figure	12-31,	for
example,	all	attributes	are	resident.)	Several	attributes	are	defined	as	always	being
resident	so	that	NTFS	can	locate	nonresident	attributes.	The	standard	information
and	index	root	attributes	are	always	resident,	for	example.

Each	attribute	begins	with	a	standard	header	containing	information	about	the



attribute,	information	that	NTFS	uses	to	manage	the	attributes	in	a	generic	way.
The	header,	which	is	always	resident,	records	whether	the	attribute’s	value	is
resident	or	nonresident.	For	resident	attributes,	the	header	also	contains	the	offset
from	the	header	to	the	attribute’s	value	and	the	length	of	the	attribute’s	value,	as
Figure	12-32	illustrates	for	the	filename	attribute.

Figure	12-32.	Resident	attribute	header	and	value

When	an	attribute’s	value	is	stored	directly	in	the	MFT,	the	time	it	takes	NTFS	to
access	the	value	is	greatly	reduced.	Instead	of	looking	up	a	file	in	a	table	and	then
reading	a	succession	of	allocation	units	to	find	the	file’s	data	(as	the	FAT	file
system	does,	for	example),	NTFS	accesses	the	disk	once	and	retrieves	the	data
immediately.

The	attributes	for	a	small	directory,	as	well	as	for	a	small	file,	can	be	resident	in	the
MFT,	as	Figure	12-33	shows.	For	a	small	directory,	the	index	root	attribute
contains	an	index	(organized	as	a	B-tree)	of	file	record	numbers	for	the	files	(and
the	subdirectories)	within	the	directory.

Figure	12-33.	MFT	file	record	for	a	small	directory

Of	course,	many	files	and	directories	can’t	be	squeezed	into	a	1-KB,	fixed-size
MFT	record.	If	a	particular	attribute’s	value,	such	as	a	file’s	data	attribute,	is	too
large	to	be	contained	in	an	MFT	file	record,	NTFS	allocates	clusters	for	the
attribute’s	value	outside	the	MFT.	A	contiguous	group	of	clusters	is	called	a	run	(or
an	extent).	If	the	attribute’s	value	later	grows	(if	a	user	appends	data	to	the	file,	for



example),	NTFS	allocates	another	run	for	the	additional	data.	Attributes	whose
values	are	stored	in	runs	(rather	than	within	the	MFT)	are	called	nonresident
attributes.	The	file	system	decides	whether	a	particular	attribute	is	resident	or
nonresident;	the	location	of	the	data	is	transparent	to	the	process	accessing	it.

When	an	attribute	is	nonresident,	as	the	data	attribute	for	a	large	file	will	certainly
be,	its	header	contains	the	information	NTFS	needs	to	locate	the	attribute’s	value
on	the	disk.	Figure	12-34	shows	a	nonresident	data	attribute	stored	in	two	runs.

Figure	12-34.	MFT	file	record	for	a	large	file	with	two	data	runs

Among	the	standard	attributes,	only	those	that	can	grow	can	be	nonresident.	For
files,	the	attributes	that	can	grow	are	the	data	and	the	attribute	list	(not	shown	in
Figure	12-34).	The	standard	information	and	filename	attributes	are	always
resident.

A	large	directory	can	also	have	nonresident	attributes	(or	parts	of	attributes),	as
Figure	12-35	shows.	In	this	example,	the	MFT	file	record	doesn’t	have	enough
room	to	store	the	B-tree	that	contains	the	index	of	files	that	are	within	this	large
directory.	A	part	of	the	index	is	stored	in	the	index	root	attribute,	and	the	rest	of
the	index	is	stored	in	nonresident	runs	called	index	allocations.	The	index	root,
index	allocation,	and	bitmap	attributes	are	shown	here	in	a	simplified	form.	They
are	described	in	more	detail	in	the	next	section.	The	standard	information	and
filename	attributes	are	always	resident.	The	header	and	at	least	part	of	the	value	of
the	index	root	attribute	are	also	resident	for	directories.



Figure	12-35.	MFT	file	record	for	a	large	directory	with	a	nonresident	file	name	index

When	an	attribute’s	value	can’t	fit	in	an	MFT	file	record	and	separate	allocations
are	needed,	NTFS	keeps	track	of	the	runs	by	means	of	VCN-to-LCN	mapping
pairs.	LCNs	represent	the	sequence	of	clusters	on	an	entire	volume	from	0	through
n.	VCNs	number	the	clusters	belonging	to	a	particular	file	from	0	through	m.	For
example,	the	clusters	in	the	runs	of	a	nonresident	data	attribute	are	numbered	as
shown	in	Figure	12-36.

Figure	12-36.	VCNs	for	a	nonresident	data	attribute

If	this	file	had	more	than	two	runs,	the	numbering	of	the	third	run	would	start	with
VCN	8.	As	Figure	12-37	shows,	the	data	attribute	header	contains	VCN-to-LCN
mappings	for	the	two	runs	here,	which	allows	NTFS	to	easily	find	the	allocations
on	the	disk.

Figure	12-37.	VCN-to-LCN	mappings	for	a	nonresident	data	attribute

Although	Figure	12-36	shows	just	data	runs,	other	attributes	can	be	stored	in	runs
if	there	isn’t	enough	room	in	the	MFT	file	record	to	contain	them.	And	if	a
particular	file	has	too	many	attributes	to	fit	in	the	MFT	record,	a	second	MFT
record	is	used	to	contain	the	additional	attributes	(or	attribute	headers	for



nonresident	attributes).	In	this	case,	an	attribute	called	the	attribute	list	is	added.
The	attribute	list	attribute	contains	the	name	and	type	code	of	each	of	the	file’s
attributes	and	the	file	number	of	the	MFT	record	where	the	attribute	is	located.
The	attribute	list	attribute	is	provided	for	those	cases	where	all	of	a	file’s	attributes
will	not	fit	within	the	file’s	file	record	or	when	a	file	grows	so	large	or	so
fragmented	that	a	single	MFT	record	can’t	contain	the	multitude	of	VCN-to-LCN
mappings	needed	to	find	all	its	runs.	Files	with	more	than	200	runs	typically
require	an	attribute	list.	In	summary,	attribute	headers	are	always	contained	within
file	records	in	the	MFT,	but	an	attribute’s	value	may	be	located	outside	the	MFT	in
one	or	more	extents.

Data	Compression	and	Sparse	Files
NTFS	supports	compression	on	a	per-file,	per-directory,	or	per-volume	basis	using
a	variant	of	the	LZ77	algorithm,	known	as	LZNT1.	(NTFS	compression	is
performed	only	on	user	data,	not	file	system	metadata.)	You	can	tell	whether	a
volume	is	compressed	by	using	the	Windows	GetVolumeInformation	function.	To
retrieve	the	actual	compressed	size	of	a	file,	use	the	Windows
GetCompressedFileSize	function.	Finally,	to	examine	or	change	the	compression
setting	for	a	file	or	directory,	use	the	Windows	DeviceIoControl	function.	(See	the
FSCTL_GET_COMPRESSION	and	FSCTL_SET_COMPRESSION	file	system
control	codes.)	Keep	in	mind	that	although	setting	a	file’s	compression	state
compresses	(or	decompresses)	the	file	right	away,	setting	a	directory’s	or	volume’s
compression	state	doesn’t	cause	any	immediate	compression	or	decompression.
Instead,	setting	a	directory’s	or	volume’s	compression	state	sets	a	default
compression	state	that	will	be	given	to	all	newly	created	files	and	subdirectories
within	that	directory	or	volume	(although,	if	you	were	to	set	directory	compression
using	the	directory’s	property	page	within	Explorer,	the	contents	of	the	entire
directory	tree	will	be	compressed	immediately).

The	following	section	introduces	NTFS	compression	by	examining	the	simple	case
of	compressing	sparse	data.	The	subsequent	sections	extend	the	discussion	to	the
compression	of	ordinary	files	and	sparse	files.

Compressing	Sparse	Data
Sparse	data	is	often	large	but	contains	only	a	small	amount	of	nonzero	data	relative



to	its	size.	A	sparse	matrix	is	one	example	of	sparse	data.	As	described	earlier,
NTFS	uses	VCNs,	from	0	through	m,	to	enumerate	the	clusters	of	a	file.	Each
VCN	maps	to	a	corresponding	LCN,	which	identifies	the	disk	location	of	the
cluster.	Figure	12-38	illustrates	the	runs	(disk	allocations)	of	a	normal,
noncompressed	file,	including	its	VCNs	and	the	LCNs	they	map	to.

Figure	12-38.	Runs	of	a	noncompressed	file

This	file	is	stored	in	three	runs,	each	of	which	is	4	clusters	long,	for	a	total	of	12
clusters.	Figure	12-39	shows	the	MFT	record	for	this	file.	As	described	earlier,	to
save	space	the	MFT	record’s	data	attribute,	which	contains	VCN-to-LCN
mappings,	records	only	one	mapping	for	each	run,	rather	than	one	for	each	cluster.
Notice,	however,	that	each	VCN	from	0	through	11	has	a	corresponding	LCN
associated	with	it.	The	first	entry	starts	at	VCN	0	and	covers	4	clusters,	the	second
entry	starts	at	VCN	4	and	covers	4	clusters,	and	so	on.	This	entry	format	is	typical
for	a	noncompressed	file.

Figure	12-39.	MFT	record	for	a	noncompressed	file

When	a	user	selects	a	file	on	an	NTFS	volume	for	compression,	one	NTFS
compression	technique	is	to	remove	long	strings	of	zeros	from	the	file.	If	the	file’s
data	is	sparse,	it	typically	shrinks	to	occupy	a	fraction	of	the	disk	space	it	would
otherwise	require.	On	subsequent	writes	to	the	file,	NTFS	allocates	space	only	for
runs	that	contain	nonzero	data.

Figure	12-40	depicts	the	runs	of	a	compressed	file	containing	sparse	data.	Notice
that	certain	ranges	of	the	file’s	VCNs	(16–31	and	64–127)	have	no	disk
allocations.



Figure	12-40.	Runs	of	a	compressed	file	containing	sparse	data

The	MFT	record	for	this	compressed	file	omits	blocks	of	VCNs	that	contain	zeros
and	therefore	have	no	physical	storage	allocated	to	them.	The	first	data	entry	in
Figure	12-41,	for	example,	starts	at	VCN	0	and	covers	16	clusters.	The	second
entry	jumps	to	VCN	32	and	covers	16	clusters.

Figure	12-41.	MFT	record	for	a	compressed	file	containing	sparse	data

When	a	program	reads	data	from	a	compressed	file,	NTFS	checks	the	MFT	record
to	determine	whether	a	VCN-to-LCN	mapping	covers	the	location	being	read.	If
the	program	is	reading	from	an	unallocated	“hole”	in	the	file,	it	means	that	the	data
in	that	part	of	the	file	consists	of	zeros,	so	NTFS	returns	zeros	without	further
accessing	the	disk.	If	a	program	writes	nonzero	data	to	a	“hole,”	NTFS	quietly
allocates	disk	space	and	then	writes	the	data.	This	technique	is	very	efficient	for
sparse	file	data	that	contains	a	lot	of	zero	data.

Compressing	Nonsparse	Data



The	preceding	example	of	compressing	a	sparse	file	is	somewhat	contrived.	It
describes	“compression”	for	a	case	in	which	whole	sections	of	a	file	were	filled
with	zeros	but	the	remaining	data	in	the	file	wasn’t	affected	by	the	compression.
The	data	in	most	files	isn’t	sparse,	but	it	can	still	be	compressed	by	the	application
of	a	compression	algorithm.

In	NTFS,	users	can	specify	compression	for	individual	files	or	for	all	the	files	in	a
directory.	(New	files	created	in	a	directory	marked	for	compression	are
automatically	compressed—existing	files	must	be	compressed	individually	when
programmatically	enabling	compression	with	FSCTL_SET_COMPRESSION.)
When	it	compresses	a	file,	NTFS	divides	the	file’s	unprocessed	data	into
compression	units	16	clusters	long	(equal	to	8	KB	for	a	512-byte	cluster,	for
example).	Certain	sequences	of	data	in	a	file	might	not	compress	much,	if	at	all;	so
for	each	compression	unit	in	the	file,	NTFS	determines	whether	compressing	the
unit	will	save	at	least	1	cluster	of	storage.	If	compressing	the	unit	won’t	free	up	at
least	1	cluster,	NTFS	allocates	a	16-cluster	run	and	writes	the	data	in	that	unit	to
disk	without	compressing	it.	If	the	data	in	a	16-cluster	unit	will	compress	to	15	or
fewer	clusters,	NTFS	allocates	only	the	number	of	clusters	needed	to	contain	the
compressed	data	and	then	writes	it	to	disk.	Figure	12-42	illustrates	the	compression
of	a	file	with	four	runs.	The	unshaded	areas	in	this	figure	represent	the	actual
storage	locations	that	the	file	occupies	after	compression.	The	first,	second,	and
fourth	runs	were	compressed;	the	third	run	wasn’t.	Even	with	one	noncompressed
run,	compressing	this	file	saved	26	clusters	of	disk	space,	or	41	percent.



Figure	12-42.	Data	runs	of	a	compressed	file

NOTE

Although	the	diagrams	in	this	chapter	show	contiguous	LCNs,	a	compression	unit	need	not	be	stored	in
physically	contiguous	clusters.	Runs	that	occupy	noncontiguous	clusters	produce	slightly	more	complicated
MFT	records	than	the	one	shown	in	Figure	12-42.

When	it	writes	data	to	a	compressed	file,	NTFS	ensures	that	each	run	begins	on	a
virtual	16-cluster	boundary.	Thus	the	starting	VCN	of	each	run	is	a	multiple	of	16,
and	the	runs	are	no	longer	than	16	clusters.	NTFS	reads	and	writes	at	least	one
compression	unit	at	a	time	when	it	accesses	compressed	files.	When	it	writes
compressed	data,	however,	NTFS	tries	to	store	compression	units	in	physically
contiguous	locations	so	that	it	can	read	them	all	in	a	single	I/O	operation.	The	16-
cluster	size	of	the	NTFS	compression	unit	was	chosen	to	reduce	internal
fragmentation:	the	larger	the	compression	unit,	the	less	the	overall	disk	space
needed	to	store	the	data.	This	16-cluster	compression	unit	size	represents	a	trade-
off	between	producing	smaller	compressed	files	and	slowing	read	operations	for
programs	that	randomly	access	files.	The	equivalent	of	16	clusters	must	be
decompressed	for	each	cache	miss.	(A	cache	miss	is	more	likely	to	occur	during
random	file	access.)	Figure	12-43	shows	the	MFT	record	for	the	compressed	file
shown	in	Figure	12-42.

Figure	12-43.	MFT	record	for	a	compressed	file

One	difference	between	this	compressed	file	and	the	earlier	example	of	a
compressed	file	containing	sparse	data	is	that	three	of	the	compressed	runs	in	this
file	are	less	than	16	clusters	long.	Reading	this	information	from	a	file’s	MFT	file
record	enables	NTFS	to	know	whether	data	in	the	file	is	compressed.	Any	run



shorter	than	16	clusters	contains	compressed	data	that	NTFS	must	decompress
when	it	first	reads	the	data	into	the	cache.	A	run	that	is	exactly	16	clusters	long
doesn’t	contain	compressed	data	and	therefore	requires	no	decompression.

If	the	data	in	a	run	has	been	compressed,	NTFS	decompresses	the	data	into	a
scratch	buffer	and	then	copies	it	to	the	caller’s	buffer.	NTFS	also	loads	the
decompressed	data	into	the	cache,	which	makes	subsequent	reads	from	the	same
run	as	fast	as	any	other	cached	read.	NTFS	writes	any	updates	to	the	file	to	the
cache,	leaving	the	lazy	writer	to	compress	and	write	the	modified	data	to	disk
asynchronously.	This	strategy	ensures	that	writing	to	a	compressed	file	produces	no
more	significant	delay	than	writing	to	a	noncompressed	file	would.

NTFS	keeps	disk	allocations	for	a	compressed	file	contiguous	whenever	possible.
As	the	LCNs	indicate,	the	first	two	runs	of	the	compressed	file	shown	in
Figure	12-42	are	physically	contiguous,	as	are	the	last	two.	When	two	or	more	runs
are	contiguous,	NTFS	performs	disk	read-ahead,	as	it	does	with	the	data	in	other
files.	Because	the	reading	and	decompression	of	contiguous	file	data	take	place
asynchronously	before	the	program	requests	the	data,	subsequent	read	operations
obtain	the	data	directly	from	the	cache,	which	greatly	enhances	read	performance.

Sparse	Files
Sparse	files	(the	NTFS	file	type,	as	opposed	to	files	that	consist	of	sparse	data,
described	earlier)	are	essentially	compressed	files	for	which	NTFS	doesn’t	apply
compression	to	the	file’s	nonsparse	data.	However,	NTFS	manages	the	run	data	of
a	sparse	file’s	MFT	record	the	same	way	it	does	for	compressed	files	that	consist	of
sparse	and	nonsparse	data.

The	Change	Journal	File
The	change	journal	file,	\$Extend\$UsnJrnl,	is	a	sparse	file	in	which	NTFS	stores
records	of	changes	to	files	and	directories.	Applications	like	the	Windows	File
Replication	Service	(FRS)	and	the	Windows	Search	service	make	use	of	the
journal	to	respond	to	file	and	directory	changes	as	they	occur.

The	journal	stores	change	entries	in	the	$J	data	stream	and	the	maximum	size	of
the	journal	in	the	$Max	data	stream.	Entries	are	versioned	and	include	the
following	information	about	a	file	or	directory	change:



The	time	of	the	change

The	reason	for	the	change	(see	Table	12-8)

The	file	or	directory’s	attributes

The	file	or	directory’s	name

The	file	or	directory’s	MFT	file	record	number

The	file	record	number	of	the	file’s	parent	directory

The	security	ID

The	update	sequence	number	(USN)	of	the	record

Additional	information	about	the	source	of	the	change	(a	user,	the	FRS,	and	so
on)

Table	12-8.	Change	Journal	Change	Reasons

Identifier Reason

USN_REASON_DATA_OVERWRITE The	data	in	the	file	or	directory	was
overwritten

USN_REASON_DATA_EXTEND Data	was	added	to	the	file	or	directory

USN_REASON_DATA_TRUNCATION The	data	in	the	file	or	directory	was
truncated

USN_REASON_NAMED_DATA_OVERWRITE The	data	in	a	file’s	data	stream	was
overwritten

USN_REASON_NAMED_DATA_EXTEND The	data	in	a	file’s	data	stream	was	extended

USN_REASON_NAMED_DATA_TRUNCATION The	data	in	a	file’s	data	stream	was	truncated

USN_REASON_FILE_CREATE A	new	file	or	directory	was	created

USN_REASON_FILE_DELETE A	file	or	directory	was	deleted

USN_REASON_EA_CHANGE The	extended	attributes	for	a	file	or	directory
changed

USN_REASON_SECURITY_CHANGE The	security	descriptor	for	a	file	or	directory
was	changed



USN_REASON_RENAME_OLD_NAME A	file	or	directory	was	renamed;	this	is	the
old	name

USN_REASON_RENAME_NEW_NAME A	file	or	directory	was	renamed;	this	is	the
new	name

USN_REASON_INDEXABLE_CHANGE The	indexing	state	for	the	file	or	directory
was	changed	(whether	or	not	the	Indexing
service	will	process	this	file	or	directory)

USN_REASON_BASIC_INFO_CHANGE The	file	or	directory	attributes	and/or	the
time	stamps	were	changed

USN_REASON_HARD_LINK_CHANGE A	hard	link	was	added	or	removed	from	the
file	or	directory

USN_REASON_COMPRESSION_CHANGE The	compression	state	for	the	file	or
directory	was	changed

USN_REASON_ENCRYPTION_CHANGE The	encryption	state	(EFS)	was	enabled	or
disabled	for	this	file	or	directory

USN_REASON_OBJECT_ID_CHANGE The	object	ID	for	this	file	or	directory	was
changed

USN_REASON_REPARSE_POINT_CHANGE The	reparse	point	for	a	file	or	directory	was
changed,	or	a	new	reparse	point	(such	as	a
symbolic	link)	was	added	or	deleted	from	a
file	or	directory

USN_REASON_STREAM_CHANGE A	new	data	stream	was	added	to	or	removed
from	a	file	or	renamed

USN_REASON_TRANSACTED_CHANGE This	value	is	added	(ORed)	to	the	change
reason	to	indicate	that	the	change	was	the
result	of	a	recent	commit	of	a	TxF
transaction

USN_REASON_CLOSE The	handle	to	a	file	or	directory	was	closed,
indicating	that	this	is	the	final	modification
made	to	the	file	in	this	series	of	operations

EXPERIMENT:	READING	THE	CHANGE	JOURNAL

You	can	use	the	Usndump.exe	command-line	program	from	Winsider	Seminars	&	Solutions
(www.winsiderss.com/tools/usndump/usndump.htm)	to	dump	the	contents	of	the	change	journal	if	the
current	volume	has	one.	You	can	also	create,	delete,	or	query	journal	information	with	the	built-in	Fsutil.exe
utility,	as	shown	here:

http://www.winsiderss.com/tools/usndump/usndump.htm


C:\>fsutil usn queryjournal c:
Usn Journal ID   : 0x01c89ddaec1b9648
First Usn        : 0x0000000038140000
Next Usn         : 0x000000003a22fa50
Lowest Valid Usn : 0x0000000000000000
Max Usn          : 0x00000fffffff0000
Maximum Size     : 0x0000000002000000
Allocation Delta : 0x0000000000400000

The	output	indicates	the	maximum	size	of	the	change	journal	on	the	volume	and	its	current	state.	As	a
simple	experiment	to	see	how	NTFS	records	changes	in	the	journal,	create	a	file	called	Usn.txt	in	the
current	directory,	rename	it	to	UsnNew.txt,	and	then	dump	the	journal	with	Usndump,	as	shown	here:

C:\>echo hello > Usn.txt
C:\>ren Usn.txt UsnNew.txt
C:\>Usndump.exe
...
File Ref#       : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN             : 0xfc54d8
SecurityId      : 0x00000000
Reason          : 0x00000100 (USN_REASON_FILE_CREATE)
Name (014)      : Usn.txt

File Ref#       : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN             : 0xfc5528
SecurityId      : 0x00000000
Reason          : 0x00000102 (USN_REASON_DATA_EXTEND USN_REASON_FILE_CREATE)
Name (014)      : Usn.txt

File Ref#       : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN             : 0xfc5578
SecurityId      : 0x00000000
Reason          : 0x80000102 (USN_REASON_DATA_EXTEND USN_REASON_FILE_CREATE)
Name (014)      : Usn.txt

File Ref#       : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN             : 0xfc55c8
SecurityId      : 0x00000000
Reason          : 0x00001000 (USN_REASON_RENAME_OLD_NAME)
Name (014)      : Usn.txt

File Ref#       : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN             : 0xfc5618
SecurityId      : 0x00000000
Reason          : 0x00002000 (USN_REASON_RENAME_NEW_NAME)
Name (020)      : UsnNew.txt

File Ref#       : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN             : 0xfc5668
SecurityId      : 0x00000000
Reason          : 0x80002000 (USN_REASON_RENAME_NEW_NAME)
Name (020)      : UsnNew.txt



The	entries	reflect	the	individual	modification	operations	involved	in	the	operations	underlying	the
command-line	operations.

The	journal	is	sparse	so	that	it	never	overflows;	when	the	journal’s	on-disk	size
exceeds	the	maximum	defined	for	the	file,	NTFS	simply	begins	zeroing	the	file
data	that	precedes	the	window	of	change	information	having	a	size	equal	to	the
maximum	journal	size,	as	shown	in	Figure	12-44.	To	prevent	constant	resizing
when	an	application	is	continuously	exceeding	the	journal’s	size,	NTFS	shrinks	the
journal	only	when	its	size	is	twice	an	application-defined	value	over	the	maximum
configured	size.

Figure	12-44.	Change	journal	($UsnJrnl)	space	allocation

Indexing
In	NTFS,	a	file	directory	is	simply	an	index	of	file	names—that	is,	a	collection	of
file	names	(along	with	their	file	record	numbers)	organized	as	a	B-tree.	To	create	a
directory,	NTFS	indexes	the	filename	attributes	of	the	files	in	the	directory.	The
MFT	record	for	the	root	directory	of	a	volume	is	shown	in	Figure	12-45.



Figure	12-45.	File	name	index	for	a	volume’s	root	directory

Conceptually,	an	MFT	entry	for	a	directory	contains	in	its	index	root	attribute	a
sorted	list	of	the	files	in	the	directory.	For	large	directories,	however,	the	file	names
are	actually	stored	in	4-KB,	fixed-size	 index	buffers	(which	are	the	nonresident
value	of	the	index	allocation	attribute)	that	contain	and	organize	the	file	names.
Index	buffers	implement	a	B-tree	data	structure,	which	minimizes	the	number	of
disk	accesses	needed	to	find	a	particular	file,	especially	for	large	directories.	The
index	root	attribute	contains	the	first	level	of	the	B-tree	(root	subdirectories)	and
points	to	index	buffers	containing	the	next	level	(more	subdirectories,	perhaps,	or
files).

Figure	12-45	shows	only	file	names	in	the	index	root	attribute	and	the	index
buffers	(file6,	for	example),	but	each	entry	in	an	index	also	contains	the	record
number	in	the	MFT	where	the	file	is	described	and	time	stamp	and	file	size
information	for	the	file.	NTFS	duplicates	the	time	stamps	and	file	size	information
from	the	file’s	MFT	record.	This	technique,	which	is	used	by	FAT	and	NTFS,
requires	updated	information	to	be	written	in	two	places.	Even	so,	it’s	a	significant
speed	optimization	for	directory	browsing	because	it	enables	the	file	system	to
display	each	file’s	time	stamps	and	size	without	opening	every	file	in	the	directory.

The	index	allocation	attribute	maps	the	VCNs	of	the	index	buffer	runs	to	the	LCNs
that	indicate	where	the	index	buffers	reside	on	the	disk,	and	the	bitmap	attribute
keeps	track	of	which	VCNs	in	the	index	buffers	are	in	use	and	which	are	free.



Figure	12-45	shows	one	file	entry	per	VCN	(that	is,	per	cluster),	but	file	name
entries	are	actually	packed	into	each	cluster.	Each	4-KB	index	buffer	will	typically
contain	about	20	to	30	file	name	entries	(depending	on	the	lengths	of	the	file
names	within	the	directory).

The	B-tree	data	structure	is	a	type	of	balanced	tree	that	is	ideal	for	organizing
sorted	data	stored	on	a	disk	because	it	minimizes	the	number	of	disk	accesses
needed	to	find	an	entry.	In	the	MFT,	a	directory’s	index	root	attribute	contains
several	file	names	that	act	as	indexes	into	the	second	level	of	the	B-tree.	Each	file
name	in	the	index	root	attribute	has	an	optional	pointer	associated	with	it	that
points	to	an	index	buffer.	The	index	buffer	it	points	to	contains	file	names	with
lexicographic	values	less	than	its	own.	In	Figure	12-45,	for	example,	file4	is	a	first-
level	entry	in	the	B-tree.	It	points	to	an	index	buffer	containing	file	names	that	are
(lexicographically)	less	than	itself—the	file	names	file0,	file1,	and	file3.	Note	that
the	names	file1,	file3,	and	so	on	that	are	used	in	this	example	are	not	literal	file
names	but	names	intended	to	show	the	relative	placement	of	files	that	are
lexicographically	ordered	according	to	the	displayed	sequence.

Storing	the	file	names	in	B-trees	provides	several	benefits.	Directory	lookups	are
fast	because	the	file	names	are	stored	in	a	sorted	order.	And	when	higher-level
software	enumerates	the	files	in	a	directory,	NTFS	returns	already-sorted	names.
Finally,	because	B-trees	tend	to	grow	wide	rather	than	deep,	NTFS’s	fast	lookup
times	don’t	degrade	as	directories	grow.

NTFS	also	provides	general	support	for	indexing	data	besides	file	names,	and
several	NTFS	features—including	object	IDs,	quota	tracking,	and	consolidated
security—use	indexing	to	manage	internal	data.

The	B-tree	indexes	are	a	generic	capability	of	NTFS	and	are	used	for	organizing
security	descriptors,	security	IDs,	object	IDs,	disk	quota	records,	and	reparse
points.	Directories	are	referred	to	as	file	name	indexes,	while	other	types	of
indexes	are	known	as	view	indexes.

Object	IDs
In	addition	to	storing	the	object	ID	assigned	to	a	file	or	directory	in	the
$OBJECT_ID	attribute	of	its	MFT	record,	NTFS	also	keeps	the	correspondence
between	object	IDs	and	their	file	record	numbers	in	the	$O	index	of	the



\$Extend\$ObjId	metadata	file.	The	index	collates	entries	by	object	ID	(which	is	a
GUID),	making	it	easy	for	NTFS	to	quickly	locate	a	file	based	on	its	ID.	This
feature	allows	applications,	using	undocumented	native	API	functionality,	to	open	a
file	or	directory	using	its	object	ID.	Figure	12-46	demonstrates	the	correspondence
of	the	$ObjId	metadata	file	and	$OBJECT_ID	attributes	in	MFT	records.

Figure	12-46.	$ObjId	and	$OBJECT_ID	relationships

Quota	Tracking
NTFS	stores	quota	information	in	the	\$Extend\$Quota	metadata	file,	which
consists	of	the	named	index	root	attributes	$O	and	$Q.	Figure	12-47	shows	the
organization	of	these	indexes.	Just	as	NTFS	assigns	each	security	descriptor	a
unique	internal	security	ID,	NTFS	assigns	each	user	a	unique	user	ID.	When	an
administrator	defines	quota	information	for	a	user,	NTFS	allocates	a	user	ID	that
corresponds	to	the	user’s	SID.	In	the	$O	index,	NTFS	creates	an	entry	that	maps
an	SID	to	a	user	ID	and	sorts	the	index	by	SID;	in	the	$Q	index,	NTFS	creates	a
quota	control	entry.	A	quota	control	entry	contains	the	value	of	the	user’s	quota
limits,	as	well	as	the	amount	of	disk	space	the	user	consumes	on	the	volume.



Figure	12-47.	$Quota	indexing

When	an	application	creates	a	file	or	directory,	NTFS	obtains	the	application	user’s
SID	and	looks	up	the	associated	user	ID	in	the	$O	index.	NTFS	records	the	user
ID	in	the	new	file	or	directory’s	$STANDARD_INFORMATION	attribute,	which
counts	all	disk	space	allocated	to	the	file	or	directory	against	that	user’s	quota.
Then	NTFS	looks	up	the	quota	entry	in	the	$Q	index	and	determines	whether	the
new	allocation	causes	the	user	to	exceed	his	or	her	warning	or	limit	threshold.
When	a	new	allocation	causes	the	user	to	exceed	a	threshold,	NTFS	takes
appropriate	steps,	such	as	logging	an	event	to	the	System	event	log	or	not	letting
the	user	create	the	file	or	directory.	As	a	file	or	directory	changes	size,	NTFS
updates	the	quota	control	entry	associated	with	the	user	ID	stored	in	the
$STANDARD_INFORMATION	attribute.	NTFS	uses	the	NTFS	generic	B-tree
indexing	to	efficiently	correlate	user	IDs	with	account	SIDs	and,	given	a	user	ID,
to	efficiently	look	up	a	user’s	quota	control	information.

Consolidated	Security
NTFS	has	always	supported	security,	which	lets	an	administrator	specify	which
users	can	and	can’t	access	individual	files	and	directories.	NTFS	optimizes	disk
utilization	for	security	descriptors	by	using	a	central	metadata	file	named	$Secure
to	store	only	one	instance	of	each	security	descriptor	on	a	volume.

The	$Secure	file	contains	two	index	attributes—$SDH	(Security	Descriptor	Hash)
and	$SII	(Security	ID	Index)—and	a	data-stream	attribute	named	$SDS	(Security
Descriptor	Stream),	as	Figure	12-48	shows.	NTFS	assigns	every	unique	security



descriptor	on	a	volume	an	internal	NTFS	security	ID	(not	to	be	confused	with	a
Windows	SID,	which	uniquely	identifies	computers	and	user	accounts)	and	hashes
the	security	descriptor	according	to	a	simple	hash	algorithm.	A	hash	is	a	potentially
nonunique	shorthand	representation	of	a	descriptor.	Entries	in	the	$SDH	index
map	the	security	descriptor	hashes	to	the	security	descriptor’s	storage	location
within	the	$SDS	data	attribute,	and	the	$SII	index	entries	map	NTFS	security	IDs
to	the	security	descriptor’s	location	in	the	$SDS	data	attribute.

When	you	apply	a	security	descriptor	to	a	file	or	directory,	NTFS	obtains	a	hash	of
the	descriptor	and	looks	through	the	$SDH	index	for	a	match.	NTFS	sorts	the
$SDH	index	entries	according	to	the	hash	of	their	corresponding	security
descriptor	and	stores	the	entries	in	a	B-tree.	If	NTFS	finds	a	match	for	the
descriptor	in	the	$SDH	index,	NTFS	locates	the	offset	of	the	entry’s	security
descriptor	from	the	entry’s	offset	value	and	reads	the	security	descriptor	from	the
$SDS	attribute.	If	the	hashes	match	but	the	security	descriptors	don’t,	NTFS	looks
for	another	matching	entry	in	the	$SDH	index.	When	NTFS	finds	a	precise	match,
the	file	or	directory	to	which	you’re	applying	the	security	descriptor	can	reference
the	existing	security	descriptor	in	the	$SDS	attribute.	NTFS	makes	the	reference	by
reading	the	NTFS	security	identifier	from	the	$SDH	entry	and	storing	it	in	the	file
or	directory’s	$STANDARD_INFORMATION	attribute.	The	NTFS
$STANDARD_INFORMATION	attribute,	which	all	files	and	directories	have,
stores	basic	information	about	a	file,	including	its	attributes,	time	stamp
information,	and	security	identifier.



Figure	12-48.	$Secure	indexing

If	NTFS	doesn’t	find	in	the	$SDH	index	an	entry	that	has	a	security	descriptor	that
matches	the	descriptor	you’re	applying,	the	descriptor	you’re	applying	is	unique	to
the	volume	and	NTFS	assigns	the	descriptor	a	new	internal	security	ID.	NTFS
internal	security	IDs	are	32-bit	values,	whereas	SIDs	are	typically	several	times
larger,	so	representing	SIDs	with	NTFS	security	IDs	saves	space	in	the
$STANDARD_INFORMATION	attribute.	NTFS	then	adds	the	security	descriptor
to	the	end	of	the	$SDS	data	attribute,	and	it	adds	to	the	$SDH	and	$SII	indexes
entries	that	reference	the	descriptor’s	offset	in	the	$SDS	data.

When	an	application	attempts	to	open	a	file	or	directory,	NTFS	uses	the	$SII	index
to	look	up	the	file	or	directory’s	security	descriptor.	NTFS	reads	the	file	or
directory’s	internal	security	ID	from	the	MFT	entry’s
$STANDARD_INFORMATION	attribute.	It	then	uses	the	$Secure	file’s	$SII
index	to	locate	the	ID’s	entry	in	the	$SDS	data	attribute.	The	offset	into	the	$SDS
attribute	lets	NTFS	read	the	security	descriptor	and	complete	the	security	check.
NTFS	stores	the	32	most	recently	accessed	security	descriptors	with	their	$SII
index	entries	in	a	cache	so	that	it	will	access	the	$Secure	file	only	when	the	$SII
isn’t	cached.

NTFS	doesn’t	delete	entries	in	the	$Secure	file,	even	if	no	file	or	directory	on	a
volume	references	the	entry.	Not	deleting	these	entries	doesn’t	significantly
decrease	disk	space	because	most	volumes,	even	those	used	for	long	periods,	have
relatively	few	unique	security	descriptors.

NTFS’s	use	of	generic	B-tree	indexing	lets	files	and	directories	that	have	the	same
security	settings	efficiently	share	security	descriptors.	The	$SII	index	lets	NTFS
quickly	look	up	a	security	descriptor	in	the	$Secure	file	while	performing	security
checks,	and	the	$SDH	index	lets	NTFS	quickly	determine	whether	a	security
descriptor	being	applied	to	a	file	or	directory	is	already	stored	in	the	$Secure	file
and	can	be	shared.

Reparse	Points
As	described	earlier	in	the	chapter,	a	reparse	point	is	a	block	of	up	to	16	KB	of
application-defined	reparse	data	and	a	32-bit	reparse	tag	that	are	stored	in	the



$REPARSE_POINT	attribute	of	a	file	or	directory.	Whenever	an	application
creates	or	deletes	a	reparse	point,	NTFS	updates	the	\$Extend\$Reparse	metadata
file,	in	which	NTFS	stores	entries	that	identify	the	file	record	numbers	of	files	and
directories	that	contain	reparse	points.	Storing	the	records	in	a	central	location
enables	NTFS	to	provide	interfaces	for	applications	to	enumerate	all	a	volume’s
reparse	points	or	just	specific	types	of	reparse	points,	such	as	mount	points.	(See
Chapter	9	for	more	information	on	mount	points.)	The	\$Extend\$Reparse	file
uses	the	generic	B-tree	indexing	facility	of	NTFS	by	collating	the	file’s	entries	(in
an	index	named	$R)	by	reparse	point	tags	and	file	record	numbers.

Transaction	Support
By	leveraging	the	Kernel	Transaction	Manager	(KTM)	support	in	the	kernel,	as
well	as	the	facilities	provided	by	the	Common	Log	File	System	that	were	described
earlier,	NTFS	implements	a	transactional	model	called	transactional	NTFS	or	TxF.
TxF	provides	a	set	of	user-mode	APIs	that	applications	can	use	for	transacted
operations	on	their	files	and	directories	and	also	a	file	system	control	(FSCTL)
interface	for	managing	its	resource	managers.

NOTE

Support	for	TxF	was	added	to	the	NTFS	driver	without	actually	changing	the	format	of	the	NTFS	data
structures,	which	is	why	the	NTFS	format	version	number,	3.1,	is	the	same	as	it	has	been	since	Windows
XP	and	Windows	Server	2003.	TxF	achieves	backward	compatibility	by	reusing	the	attribute	type
($LOGGED_UTILITY_STREAM)	that	was	previously	used	only	for	EFS	support	instead	of	adding	a	new
one.

The	overall	architecture	for	TxF,	shown	in	Figure	12-49,	uses	several	components:

Transacted	APIs	implemented	in	the	Kernel32.dll	library

A	library	for	reading	TxF	logs	(%SystemRoot%\System32\Txfw32.dll)

A	COM	component	for	TxF	logging	functionality
(%SystemRoot\System32\Txflog.dll)

The	transactional	NTFS	library	inside	the	NTFS	driver

The	CLFS	infrastructure	for	reading	and	writing	log	records



Figure	12-49.	TxF	architecture

Isolation
Although	transactional	file	operations	are	opt-in,	just	like	the	transactional	registry
(TxR)	operations	described	in	Chapter	4	in	Part	1,	TxF	has	an	impact	on	regular
applications	that	are	not	transaction-aware	because	it	ensures	that	the	transactional
operations	are	isolated.	For	example,	if	an	antivirus	program	is	scanning	a	file
that’s	currently	being	modified	by	another	application	via	a	transacted	operation,
TxF	must	ensure	that	the	scanner	reads	the	pretransaction	data,	while	applications
that	access	the	file	within	the	transaction	work	with	the	modified	data.	This	model
is	called	read-committed	isolation.

Read-committed	isolation	involves	the	concept	of	transacted	writers	and	transacted
readers.	The	former	always	view	the	most	up-to-date	version	of	a	file,	including	all
changes	made	by	the	transaction	that	is	currently	associated	with	the	file.	At	any
given	time,	there	can	be	only	one	transacted	writer	for	a	file,	which	means	that	its
write	access	is	exclusive.	Transacted	readers,	on	the	other	hand,	have	access	only	to
the	committed	version	of	the	file	at	the	time	they	open	the	file.	They	are	therefore
isolated	from	changes	made	by	transacted	writers.	This	allows	for	readers	to	have	a
consistent	view	of	a	file,	even	when	a	transacted	writer	commits	its	changes.	To	see
the	updated	data,	the	transacted	reader	must	open	a	new	handle	to	the	modified
file.

Nontransacted	writers,	on	the	other	hand,	are	prevented	from	opening	the	file	by
both	transacted	writers	and	transacted	readers,	so	they	cannot	make	changes	to	the
file	without	being	part	of	the	transaction.	Nontransacted	readers	act	similarly	to



transacted	readers	in	that	they	see	only	the	file	contents	that	were	last	committed
when	the	file	handle	was	open.	Unlike	transacted	readers,	however,	they	do	not
receive	read-committed	isolation,	and	as	such	they	always	receive	the	updated	view
of	the	latest	committed	version	of	a	transacted	file	without	having	to	open	a	new
file	handle.	This	allows	nontransaction-aware	applications	to	behave	as	expected.

To	summarize,	TxF’s	read-committed	isolation	model	has	the	following
characteristics:

Changes	are	isolated	from	transacted	readers

Changes	are	rolled	back	(undone)	if	the	associated	transaction	is	rolled	back,	if
the	machine	crashes,	or	if	the	volume	is	forcibly	dismounted.

Changes	are	flushed	to	disk	if	the	associated	transaction	is	committed.

EXPERIMENT:	UNDERSTANDING	AND	MANAGING	TRANSACTIONS

In	this	experiment	we’ll	use	the	Transactdemo.exe	tool	to	create	a	new	file,	add	some	data	to	it	as	part	of	a
transaction,	and	see	how	nontransacted	clients	interact	with	the	file	while	the	transaction	is	active.	First,
open	a	Command	Prompt	window	and	run	Transactdemo.exe:

C:\>Transactdemo.exe

Transaction Demo v1.0
by Mark Russinovich

Transaction created: {5CD5E900-9DA8-11DD-8379-005056C00008}

Created C:\TransactionDemo.txt.
Pass TransDemo the GUID listed above to see the transacted file.

Rollback or commit transaction? (r/c):

Transactdemo	creates	C:\TransactionDemo.txt	within	a	transaction	that	it	has	not	committed.	Open	a
second	Command	Prompt	window,	and	use	the	dir	command	to	look	for	the	presence	of	the
TransactionDemo.txt	file:

C:\>dir transactiondemo.txt
 Volume in drive C is OS
 Volume Serial Number is 0C30-686E

 Directory of C:\
File Not Found

According	to	this	second	command	prompt,	the	file	doesn’t	even	exist.	Now	simulate	a	nontransacted	writer
by	trying	to	add	data	to	the	file	via	the	echo	command:

C:\>echo Hello > TransactionDemo.txt
The function attempted to use a name that is reserved for use by another 
transaction.



As	expected,	nontransacted	writers	are	blocked	from	modifying	the	file.

The	%SystemRoot%\System32\Ktmutil.exe	and	%SystemRoot%\System32\Fsutil.exe	built-in	applications
can	be	very	useful	for	dealing	with	transactional	operations	on	the	file	system.	For	example,	you	can	get	a
list	of	all	current	transactions	on	the	system	with	the	following	command:

C:\>ktmutil tx list
TxGuid                                 Description
-------------------------------------- ------------------------------------------
-----
{5cd5e900-9da8-11dd-8379-005056c00008}  Demo Transaction?

Note	that	the	GUID	matches	what	Transactdemo	returned.	With	the	GUID,	you	can	now	use	the	Fsutil
command	to	query	information	about	the	transaction	and	to	commit	it	or	roll	it	back.	For	example,	here’s
how	to	list	the	files	part	of	the	transaction	and	the	owner	account:

C:\>fsutil transaction query all {5cd5e900-9da8-11dd-8379-005056c00008}
dwOutcome:        1
dwIsolationLevel: 0
dwIsolationFlags: 0
dwTimeout:        -1
Owner:            BUILTIN\Administrators
Number of Files:  1
---- \TransactionDemo.txt

Although	the	Transactdemo	tool	presents	you	with	the	option	to	roll	back	or	commit	the	current	transaction,
the	Fsutil	utility	allows	commits	or	rollbacks	to	any	ongoing	transaction	your	account	has	access	to.	Go
back	to	the	command	prompt	where	you	ran	Transactdemo	and	press	C	to	commit	the	transaction,	after
which	the	file	becomes	a	standard	nontransacted	file.

Transactional	APIs
TxF	implements	transacted	versions	of	the	Windows	file	I/O	APIs,	which	use	the
suffix	Transacted:

Create	APIs	CreateDirectoryTransacted,	CreateFileTransacted,
CreateHardLinkTransacted,	CreateSymbolicLinkTransacted

Find	APIs	FindFirstFileNameTransacted,	FindFirstFileTransacted,
FindFirstStreamTransacted

Query	APIs	GetCompressedFileSizeTransacted,	GetFileAttributesTransacted,
GetFullPathNameTransacted,	GetLongPathNameTransacted

Delete	APIs	DeleteFileTransacted,	RemoveDirectoryTransacted

Copy	and	Move/Rename	APIs	CopyFileTransacted,	MoveFileTransacted

Set	APIs	SetFileAttributesTransacted

In	addition,	some	APIs	automatically	participate	in	transacted	operations	when	the



file	handle	they	are	passed	is	part	of	a	transaction,	like	one	created	by	the
CreateFileTransacted	API.	Table	12-9	lists	Windows	APIs	that	have	modified
behavior	when	dealing	with	a	transacted	file	handle.

Table	12-9.	API	Behavior	Changed	by	TxF

API	Name Change

CloseHandle Transactions	will	not	be	committed	until	all	applications	close
transacted	handles	to	the	file.

CreateFileMapping,
MapViewOfFile

Modifications	to	mapped	views	of	a	file	part	of	a	transaction	will	be
associated	with	the	transaction	themselves.

FindNextFile,
ReadDirectoryChanges,
GetInformationByHandle,
GetFileSize

If	the	file	handle	is	part	of	a	transaction,	read-isolation	rules	will	be
applied	to	these	operations.

GetVolumeInformation Function	will	return	FILE_SUPPORTS_TRANSACTIONS	if	the
volume	supports	TxF.

ReadFile,	WriteFile Read	and	write	operations	to	a	transacted	file	handle	will	be	part	of
the	transaction.

SetFileInformationByHandle Changes	to	the	FileBasicInfo,	FileRenameInfo,	FileAllocationInfo,
FileEndOfFileInfo,	and	FileDispositionInfo	classes	will	be
transacted	if	the	file	handle	is	part	of	a	transaction.

SetEndOfFile,
SetFileShortName,
SetFileTime

Changes	will	be	transacted	if	the	file	handle	is	part	of	a	transaction.

Resource	Managers
Just	like	TxR	uses	a	resource	manager	(RM)	to	keep	track	of	transactional
metadata	and	log	files,	TxF	uses	a	default	resource	manager,	one	for	each	volume,
to	keep	track	of	its	transactional	state.	TxF,	however,	also	supports	additional
resource	managers	called	secondary	resource	managers.	These	resource	managers
can	be	defined	by	application	writers	and	have	their	metadata	located	in	any
directory	of	the	application’s	choosing,	defining	their	own	transactional	work	units
for	undo,	backup,	restore,	and	redo	operations.	TxF	uses	the	default	resource
manager	for	transacted	APIs,	and	applications	that	use	transactions	with	the



Distributed	Transaction	Coordinator	or	the	.NET	Framework’s	System.Transaction
classes	create	and	manage	secondary	TxF	resource	managers	with	TxF	resource
manager	file	system	control	commands.	Applications	can	create	and	manage
secondary	RMs	by	using	file	system	control	codes	defined	for	TxF,	such	as
FSCTL_TXFS_CREATE_SECONDARY_RM,	FSCTL_TXFS_START_RM,	and
FSCTL_TXFS_SHUTDOWN_RM.	When	a	secondary	RM	is	created,	it	must	be
made	consistent	by	one	or	more	FSCTL_TXFS_ROLLFORWARD_REDO	calls
followed	by	FSCTL_TXFS_ROLLFORWARD_UNDO,	which	redo	and/or	undo
operations	that	were	stored	in	the	log	but	never	committed	(such	as	in	the	case	of	a
machine	crash).	We’ll	cover	the	recovery	procedure	for	resource	managers	shortly.
Both	the	default	resource	manager	and	secondary	resource	managers	contain	a
number	of	metadata	files	and	directories	that	describe	their	current	state:

The	$Txf	directory,	which	is	where	files	are	linked	when	they	are	deleted	or
overwritten	by	transactional	operations.	If	a	file	is	deleted	in	a	transaction,	read-
isolation	rules	specify	that	nontransacted	readers	should	still	be	able	to	access
the	file	before	the	delete	operation	is	actually	committed.	This	isolation	is
achieved	by	moving	the	transaction-deleted	file	into	the	$Txf	directory.	The
NTFS	driver	will	then	keep	track	of	the	isolation	by	inserting	a	temporary
structure	in	the	SCB	of	the	parent	directory	where	the	deleted	file	was
originally	located.	In	this	way,	the	file	will	continue	to	show	up	if	the	parent	is
enumerated,	and	it	will	store	the	file	record	number,	allowing	the	file	to	be
opened.	When	the	transaction	is	committed,	NTFS	deletes	the	temporary
structure	and	deletes	the	file	from	the	$Txf	directory.	On	the	other	hand,	if	the
transaction	is	rolled	back,	NTFS	moves	the	file	back	to	its	original	directory.

The	$Tops,	or	TxF	Old	Page	Stream	(TOPS)	file,	which	contains	a	default	data
stream	and	an	alternate	data	stream	called	$T.	The	default	stream	for	the	TOPS
file	contains	metadata	about	the	resource	manager,	such	as	its	GUID,	its	CLFS
log	policy,	and	the	LSN	at	which	recovery	should	start.	The	$T	stream	contains
file	data	that	is	partially	overwritten	by	a	transactional	writer	(as	opposed	to	a
full	overwrite,	which	would	move	the	file	into	the	$Txf	directory).	NTFS	keeps
a	structure	in	memory	that	keeps	track	of	which	parts	of	a	file	are	being
modified	under	a	transaction	so	that	nontransacted	readers	can	still	access	the
noncommitted	data	by	having	their	reads	forwarded	to	$Tops:$T.	When	the
transaction	is	committed	or	aborted,	the	pages	are	either	moved	from	the	$T



stream	into	the	original	file	or	simply	thrown	out	in	the	case	of	an	abort.

The	TxF	log	files,	which	are	CLFS	log	files	storing	transaction	records.	For	the
default	resource	manager,	these	files	are	part	of	the	$TxfLog	directory,	but
secondary	resource	managers	can	store	them	anywhere.	TxF	uses	a	multiplexed
base	log	file	called	$TxfLog.blf.	The	file
\$Extend\$RmMetadata\$TxfLog\$TxfLog	contains	two	streams:	the	KtmLog
stream	used	for	Kernel	Transaction	Manager	metadata	records,	and	the	TxfLog
stream,	which	contains	the	TxF	log	records.	Each	stream	is	stored	in	CLFS	log
containers	that	start	with	$TxfLogContainer	and	are	followed	by	a	unique,
increasing	ID,	such	as	00000000000000000001.	As	the	TxF	log	grows,	more
container	files	are	created.

As	described	earlier,	the	default	resource	manager	stores	its	files	in	the
\$Extend\$RmMetadata	directory	on	each	NTFS-formatted	volume	on	the
machine.

EXPERIMENT:	QUERYING	RESOURCE	MANAGER	INFORMATION

You	can	use	the	built-in	%SystemRoot%\System32\Fsutil.exe	command-line	program	to	query	information
about	the	default	resource	manager,	as	well	as	to	create,	start,	and	stop	secondary	resource	managers	and
configure	their	logging	policies	and	behaviors.	The	following	command	queries	information	about	the
default	resource	manager,	which	is	identified	by	the	root	directory	(\):

C:\>fsutil resource info \
RM Identifier:        CF7234E7-39E3-11DC-BDCE-00188BDD5F49
KTM Log Path for RM:  \Device\HarddiskVolume3\$Extend\$RmMetadata\$TxfLog\
                      $TxfLog::KtmLog
Space used by TOPS:   79 Mb
TOPS free space:      100%
RM State:             Active
Running transactions: 0
One phase commits:    0
Two phase commits:    1
System initiated rollbacks: 0
Age of oldest transaction:  00:00:00
Logging Mode:         Simple
Number of containers: 2
Container size:       10 Mb
Total log capacity:   20 Mb
Total free log space: 14 Mb
Minimum containers:   2
Maximum containers:   20
Log growth increment: 2 container(s)
Auto shrink:          Not enabled

RM prefers availability over consistency.

As	mentioned,	the	fsutil	resource	command	has	many	options	for	configuring	TxF	resource	managers,



including	the	ability	to	create	a	secondary	resource	manager	in	any	directory	of	your	choice.	For	example,
you	can	use	the	fsutil	resource	create	c:\rmtest	command	to	create	a	secondary	resource	manager	in	the
Rmtest	directory,	followed	by	the	fsutil	resource	start	c:\rmtest	command	to	initiate	it.	Note	the	presence	of
the	$Tops	and	$TxfLogContainer*	files	and	of	the	TxfLog	and	$Txf	directories	in	this	folder.

On-Disk	Implementation
As	shown	earlier	in	Table	12-6,	TxF	uses	the	$LOGGED_UTILITY_STREAM
attribute	type	to	store	additional	data	for	files	and	directories	that	are	or	have	been
part	of	a	transaction.	This	attribute	is	called	$TXF_DATA	and	contains	important
information	that	allows	TxF	to	keep	active	offline	data	for	a	file	part	of	a
transaction.	The	attribute	is	permanently	stored	in	the	MFT;	that	is,	even	after	the
file	is	not	part	of	a	transaction	anymore,	the	stream	remains,	for	reasons	we’ll
explain	shortly.	The	major	components	of	the	attribute	are	shown	in	Figure	12-50.

Figure	12-50.	$TXF_DATA	attribute

The	first	field	shown	is	the	file	record	number	of	the	root	of	the	resource	manager
responsible	for	the	transaction	associated	with	this	file.	For	the	default	resource
manager,	the	file	record	number	is	5,	which	is	the	file	record	number	for	the	root
directory	(\)	in	the	MFT,	as	shown	earlier	in	Figure	12-27.	TxF	needs	this
information	when	it	creates	an	FCB	for	the	file	so	that	it	can	link	it	to	the	correct
resource	manager,	which	in	turn	needs	to	create	an	enlistment	for	the	transaction
when	a	transacted	file	request	is	received	by	NTFS.	(For	more	information	on
enlistments	and	transactions,	see	the	KTM	section	in	Chapter	3	in	Part	1.)

Another	important	piece	of	data	stored	in	the	$TXF_DATA	attribute	is	the	TxF
file	ID,	or	TxID,	and	this	explains	why	$TXF_DATA	attributes	are	never	deleted.
Because	NTFS	writes	file	names	to	its	records	when	writing	to	the	transaction	log,
it	needs	a	way	to	uniquely	identify	files	in	the	same	directory	that	may	have	had
the	same	name.	For	example,	if	sample.txt	is	deleted	from	a	directory	in	a



transaction	and	later	a	new	file	with	the	same	name	is	created	in	the	same
directory	(and	as	part	of	the	same	transaction),	TxF	needs	a	way	to	uniquely
identify	the	two	instances	of	sample.txt.	This	identification	is	provided	by	a	64-bit
unique	number,	the	TxID,	that	TxF	increments	when	a	new	file	(or	an	instance	of	a
file)	becomes	part	of	a	transaction.	Because	they	can	never	be	reused,	TxIDs	are
permanent,	so	the	$TXF_DATA	attribute	will	never	be	removed	from	a	file.

Last	but	not	least,	three	CLFS	LSNs	are	stored	for	each	file	part	of	a	transaction.
Whenever	a	transaction	is	active,	such	as	during	create,	rename,	or	write
operations,	TxF	writes	a	log	record	to	its	CLFS	log.	Each	record	is	assigned	an
LSN,	and	that	LSN	gets	written	to	the	appropriate	field	in	the	$TXF_DATA
attribute.	The	first	LSN	is	used	to	store	the	log	record	that	identifies	the	changes	to
NTFS	metadata	in	relation	to	this	file.	For	example,	if	the	standard	attributes	of	a
file	are	changed	as	part	of	a	transacted	operation,	TxF	must	update	the	relevant
MFT	file	record,	and	the	LSN	for	the	log	record	describing	the	change	is	stored.
TxF	uses	the	second	LSN	when	the	file’s	data	is	modified.	Finally,	TxF	uses	the
third	LSN	when	the	file	name	index	for	the	directory	requires	a	change	related	to	a
transaction	the	file	took	part	in,	or	when	a	directory	was	part	of	a	transaction	and
received	a	TxID.

The	$TXF_DATA	attribute	also	stores	internal	flags	that	describe	the	state
information	to	TxF	and	the	index	of	the	USN	record	that	was	applied	to	the	file	on
commit.	A	TxF	transaction	can	span	multiple	USN	records	that	may	have	been
partly	updated	by	NTFS’s	recovery	mechanism	(described	shortly),	so	the	index
tells	TxF	how	many	more	USN	records	must	be	applied	after	a	recovery.

Logging	Implementation
As	mentioned	earlier,	each	time	a	change	is	made	to	the	disk	because	of	an
ongoing	transaction,	TxF	writes	a	record	of	the	change	to	its	log.	TxF	uses	a
variety	of	log	record	types	to	keep	track	of	transactional	changes,	but	regardless	of
the	record	type,	all	TxF	log	records	have	a	generic	header	that	contains
information	identifying	the	type	of	the	record,	the	action	related	to	the	record,	the
TxID	that	the	record	applies	to,	and	the	GUID	of	the	KTM	transaction	that	the
record	is	associated	with.

A	redo	record	specifies	how	to	reapply	a	change	part	of	a	transaction	that’s	already



been	committed	to	the	volume	if	the	transaction	has	actually	never	been	flushed
from	cache	to	disk.	An	undo	record,	on	the	other	hand,	specifies	how	to	reverse	a
change	part	of	a	transaction	that	hasn’t	been	committed	at	the	time	of	a	rollback.
Some	records	are	redo-only,	meaning	they	don’t	contain	any	equivalent	undo	data,
while	other	records	contain	both	redo	and	undo	information.

Through	the	TOPS	file,	TxF	maintains	two	critical	pieces	of	data,	the	base	LSN
and	the	restart	LSN.	The	base	LSN	determines	the	LSN	of	the	first	valid	record	in
the	log,	while	the	restart	LSN	indicates	at	which	LSN	recovery	should	begin	when
starting	the	resource	manager.	When	TxF	writes	a	restart	rec-ord,	it	updates	these
two	values,	indicating	that	changes	have	been	made	to	the	volume	and	flushed	out
to	disk—meaning	that	the	file	system	is	fully	consistent	up	to	the	new	restart	LSN.

TxF	also	writes	compensating	log	records,	or	CLRs.	These	records	store	the
actions	that	are	being	performed	during	transaction	rollback	(explained	next).
They’re	primarily	used	to	store	the	undo-next	LSN,	which	allows	the	recovery
process	to	avoid	repeated	undo	operations	by	bypassing	undo	records	that	have
already	been	processed,	a	situation	that	can	happen	if	the	system	fails	during	the
recovery	phase	and	has	already	performed	part	of	the	undo	pass.	Finally,	TxF	also
deals	with	prepare	records,	abort	records,	and	commit	records,	which	describe	the
state	of	the	KTM	transactions	related	to	TxF.

Recovery	Implementation
When	a	resource	manager	starts	because	of	an	FSCTL_TXFS_START_RM	call
(or,	for	the	default	resource	manager,	as	soon	as	the	volume	is	mounted),	TxF	runs
the	recovery	process.	It	reads	the	TOPS	file	to	determine	the	restart	LSN,	where
the	recovery	process	should	start,	and	then	reads	each	record	forward	through	the
log	(called	the	redo	pass).	As	each	record	is	being	processed,	TxF	opens	the	file
referenced	by	the	record	and	compares	the	LSN	in	the	$TXF_DATA	attribute	with
the	LSN	in	the	record.	If	the	LSN	stored	in	the	attribute	is	greater	than	or	equal	to
the	LSN	of	the	log	record,	the	action	is	not	applied	because	the	on-disk	copy	of	the
file	is	as	new	or	newer	than	that	of	the	log	record	action.	If	the	LSN	is	not	greater
than	or	equal	to	the	LSN	in	the	record,	the	log	contains	information	about	the	file
that	was	never	written	to	the	file	itself.	In	this	case,	TxF	applies	whichever	action
was	recorded	in	the	log	record	and	updates	the	LSN	in	the	$TXF_DATA	attribute
with	the	LSN	from	the	record.



As	TxF	is	processing	its	redo	pass,	it	builds	its	transaction	table,	which	describes
the	operations	that	it	has	completed;	if	it	encounters	an	abort	or	commit	record
along	the	way,	TxF	discards	the	related	transactions.	By	the	end	of	the	redo	pass,
TxF	parses	the	final	transaction	table	and	connects	to	the	KTM	to	see	whether	the
KTM	recorded	a	commit	or	an	abort	for	the	transactions.	(KTM	stores	this
information	in	the	KtmLog	stream	of	the	TxF	multiplexed	log,	as	explained
earlier.)

After	TxF	has	finished	communicating	with	the	KTM,	it	looks	at	any	leftover
transactions	in	the	transaction	table	and	begins	the	undo	pass.	In	the	undo	pass,
TxF	aborts	all	the	remaining	transactions	in	the	transaction	table	by	traversing	each
transaction’s	undo	LSN	chain	and	applying	the	undo	action	for	each	log	record.	At
the	end	of	the	undo	pass,	the	resource	manager	is	consistent	and	initialized.

This	process	is	very	similar	to	the	log	file	service’s	recovery	procedure,	which	is
described	later	in	more	detail.	You	should	refer	to	this	description	for	a	complete
picture	of	the	standard	transactional	recovery	mechanisms.



NTFS	Recovery	Support
NTFS	recovery	support	ensures	that	if	a	power	failure	or	a	system	failure	occurs,
no	file	system	operations	(transactions)	will	be	left	incomplete	and	the	structure	of
the	disk	volume	will	remain	intact	without	the	need	to	run	a	disk	repair	utility.	The
NTFS	Chkdsk	utility	is	used	to	repair	catastrophic	disk	corruption	caused	by	I/O
errors	(bad	disk	sectors,	electrical	anomalies,	or	disk	failures,	for	example)	or
software	bugs.	But	with	the	NTFS	recovery	capabilities	in	place,	Chkdsk	is	rarely
needed.

As	mentioned	earlier	(in	the	section	Recoverability),	NTFS	uses	a	transaction-
processing	scheme	to	implement	recoverability.	This	strategy	ensures	a	full	disk
recovery	that	is	also	extremely	fast	(on	the	order	of	seconds)	for	even	the	largest
disks.	NTFS	limits	its	recovery	procedures	to	file	system	data	to	ensure	that	at	the
very	least	the	user	will	never	lose	a	volume	because	of	a	corrupted	file	system;
however,	unless	an	application	takes	specific	action	(such	as	flushing	cached	files
to	disk),	NTFS’s	recovery	support	doesn’t	guarantee	user	data	to	be	fully	updated	if
a	crash	occurs.	This	is	the	job	of	transactional	NTFS	(TxF).

The	following	sections	detail	the	transaction-logging	scheme	NTFS	uses	to	record
modifications	to	file	system	data	structures	and	explain	how	NTFS	recovers	a
volume	if	the	system	fails.

Design
NTFS	implements	the	design	of	a	recoverable	file	system.	These	file	systems
ensure	volume	consistency	by	using	logging	techniques	(sometimes	called
journaling)	originally	developed	for	transaction	processing.	If	the	operating	system
crashes,	the	recoverable	file	system	restores	consistency	by	executing	a	recovery
procedure	that	accesses	information	that	has	been	stored	in	a	log	file.	Because	the
file	system	has	logged	its	disk	writes,	the	recovery	procedure	takes	only	seconds,
regardless	of	the	size	of	the	volume	(unlike	in	the	FAT	file	system,	where	the	repair
time	is	related	to	the	volume	size).	The	recovery	procedure	for	a	recoverable	file
system	is	exact,	guaranteeing	that	the	volume	will	be	restored	to	a	consistent	state.

A	recoverable	file	system	incurs	some	costs	for	the	safety	it	provides.	Every
transaction	that	alters	the	volume	structure	requires	that	one	record	be	written	to



the	log	file	for	each	of	the	transaction’s	suboperations.	This	logging	overhead	is
ameliorated	by	the	file	system’s	batching	of	log	records—writing	many	records	to
the	log	file	in	a	single	I/O	operation.	In	addition,	the	recoverable	file	system	can
employ	the	optimization	techniques	of	a	lazy	write	file	system.	It	can	even	increase
the	length	of	the	intervals	between	cache	flushes	because	the	file	system	metadata
can	be	recovered	if	the	system	crashes	before	the	cache	changes	have	been	flushed
to	disk.	This	gain	over	the	caching	performance	of	lazy	write	file	systems	makes	up
for,	and	often	exceeds,	the	overhead	of	the	recoverable	file	system’s	logging
activity.

Neither	careful	write	nor	lazy	write	file	systems	guarantee	protection	of	user	file
data.	If	the	system	crashes	while	an	application	is	writing	a	file,	the	file	can	be	lost
or	corrupted.	Worse,	the	crash	can	corrupt	a	lazy	write	file	system,	destroying
existing	files	or	even	rendering	an	entire	volume	inaccessible.

The	NTFS	recoverable	file	system	implements	several	strategies	that	improve	its
reliability	over	that	of	the	traditional	file	systems.	First,	NTFS	recoverability
guarantees	that	the	volume	structure	won’t	be	corrupted,	so	all	files	will	remain
accessible	after	a	system	failure.	Second,	although	NTFS	doesn’t	guarantee
protection	of	user	data	in	the	event	of	a	system	crash—some	changes	can	be	lost
from	the	cache—applications	can	take	advantage	of	the	NTFS	write-through	and
cache-flushing	capabilities	to	ensure	that	file	modifications	are	recorded	on	disk	at
appropriate	intervals.

Both	cache	write-through—forcing	write	operations	to	be	immediately	recorded	on
disk—and	cache	flushing—forcing	cache	contents	to	be	written	to	disk—are
efficient	operations.	NTFS	doesn’t	have	to	do	extra	disk	I/O	to	flush	modifications
to	several	different	file	system	data	structures	because	changes	to	the	data
structures	are	recorded—in	a	single	write	operation—in	the	log	file;	if	a	failure
occurs	and	cache	contents	are	lost,	the	file	system	modifications	can	be	recovered
from	the	log.	Furthermore,	unlike	the	FAT	file	system,	NTFS	guarantees	that	user
data	will	be	consistent	and	available	immediately	after	a	write-through	operation	or
a	cache	flush,	even	if	the	system	subsequently	fails.

Metadata	Logging
NTFS	provides	file	system	recoverability	by	using	the	same	logging	technique	used



by	TxF,	which	consists	of	recording	all	operations	that	modify	file	system	metadata
to	a	log	file.	Unlike	TxF,	however,	NTFS’s	built-in	file	system	recovery	support
doesn’t	make	use	of	CLFS	but	uses	an	internal	logging	implementation	called	the
log	file	service	(which	is	not	a	background	service	process	as	described	in	Chapter
4	in	Part	1).	Another	difference	is	that	while	TxF	is	used	only	when	callers	opt	in
for	transacted	operations,	NTFS	records	all	metadata	changes	so	that	the	file
system	can	be	made	consistent	in	the	face	of	a	system	failure.

Log	File	Service
The	log	file	service	(LFS)	is	a	series	of	kernel-mode	routines	inside	the	NTFS
driver	that	NTFS	uses	to	access	the	log	file.	NTFS	passes	the	LFS	a	pointer	to	an
open	file	object,	which	specifies	a	log	file	to	be	accessed.	The	LFS	either	initializes
a	new	log	file	or	calls	the	Windows	cache	manager	to	access	the	existing	log	file
through	the	cache,	as	shown	in	Figure	12-51.	Note	that	although	LFS	and	CLFS
have	similar	sounding	names,	they	are	separate	logging	implementations	used	for
different	purposes,	although	their	operation	is	similar	in	many	ways.

Figure	12-51.	Log	file	service	(LFS)

The	LFS	divides	the	log	file	into	two	regions:	a	restart	area	and	an	“infinite”
logging	area,	as	shown	in	Figure	12-52.



Figure	12-52.	Log	file	regions

NTFS	calls	the	LFS	to	read	and	write	the	restart	area.	NTFS	uses	the	restart	area	to
store	context	information	such	as	the	location	in	the	logging	area	at	which	NTFS
will	begin	to	read	during	recovery	after	a	system	failure.	The	LFS	maintains	a
second	copy	of	the	restart	data	in	case	the	first	becomes	corrupted	or	otherwise
inaccessible.	The	remainder	of	the	log	file	is	the	logging	area,	which	contains
transaction	records	NTFS	writes	to	recover	a	volume	in	the	event	of	a	system
failure.	The	LFS	makes	the	log	file	appear	infinite	by	reusing	it	circularly	(while
guaranteeing	that	it	doesn’t	overwrite	information	it	needs).	Just	like	CLFS,	the
LFS	uses	LSNs	to	identify	records	written	to	the	log	file.	As	the	LFS	cycles
through	the	file,	it	increases	the	values	of	the	LSNs.	NTFS	uses	64	bits	to	represent
LSNs,	so	the	number	of	possible	LSNs	is	so	large	as	to	be	virtually	infinite.

NTFS	never	reads	transactions	from	or	writes	transactions	to	the	log	file	directly.
The	LFS	provides	services	that	NTFS	calls	to	open	the	log	file,	write	log	records,
read	log	records	in	forward	or	backward	order,	flush	log	records	up	to	a	specified
LSN,	or	set	the	beginning	of	the	log	file	to	a	higher	LSN.	During	recovery,	NTFS
calls	the	LFS	to	perform	the	same	actions	as	described	in	the	TxF	recovery
section:	a	redo	pass	for	nonflushed	committed	changes,	followed	by	an	undo	pass
for	noncommitted	changes.

Here’s	how	the	system	guarantees	that	the	volume	can	be	recovered:

1.	 NTFS	first	calls	the	LFS	to	record	in	the	(cached)	log	file	any	transactions
that	will	modify	the	volume	structure.

2.	 NTFS	modifies	the	volume	(also	in	the	cache).

3.	 The	cache	manager	prompts	the	LFS	to	flush	the	log	file	to	disk.	(The	LFS
implements	the	flush	by	calling	the	cache	manager	back,	telling	it	which
pages	of	memory	to	flush.	Refer	back	to	the	calling	sequence	shown	in
Figure	12-51.)



4.	 After	the	cache	manager	flushes	the	log	file	to	disk,	it	flushes	the	volume
changes	(the	metadata	operations	themselves)	to	disk.

These	steps	ensure	that	if	the	file	system	modifications	are	ultimately	unsuccessful,
the	corresponding	transactions	can	be	retrieved	from	the	log	file	and	can	be	either
redone	or	undone	as	part	of	the	file	system	recovery	procedure.

File	system	recovery	begins	automatically	the	first	time	the	volume	is	used	after	the
system	is	rebooted.	NTFS	checks	whether	the	transactions	that	were	recorded	in
the	log	file	before	the	crash	were	applied	to	the	volume,	and	if	they	weren’t,	it
redoes	them.	NTFS	also	guarantees	that	transactions	not	completely	logged	before
the	crash	are	undone	so	that	they	don’t	appear	on	the	volume.

Log	Record	Types
The	NTFS	recovery	mechanism	uses	similar	log	record	types	as	the	TxF	recovery
mechanism:	update	records,	which	correspond	to	the	redo	and	undo	records	that
TxF	uses,	and	checkpoint	records,	which	are	similar	to	the	restart	records	used	by
TxF.	Figure	12-53	shows	three	update	records	in	the	log	file.	Each	record
represents	one	suboperation	of	a	transaction,	creating	a	new	file.	The	redo	entry	in
each	update	record	tells	NTFS	how	to	reapply	the	suboperation	to	the	volume,	and
the	undo	entry	tells	NTFS	how	to	roll	back	(undo)	the	suboperation.

Figure	12-53.	Update	records	in	the	log	file

After	logging	a	transaction	(in	this	example,	by	calling	the	LFS	to	write	the	three
update	records	to	the	log	file),	NTFS	performs	the	suboperations	on	the	volume
itself,	in	the	cache.	When	it	has	finished	updating	the	cache,	NTFS	writes	another
record	to	the	log	file,	recording	the	entire	transaction	as	complete—a	suboperation
known	as	committing	a	transaction.	Once	a	transaction	is	committed,	NTFS
guarantees	that	the	entire	transaction	will	appear	on	the	volume,	even	if	the



operating	system	subsequently	fails.

When	recovering	after	a	system	failure,	NTFS	reads	through	the	log	file	and	redoes
each	committed	transaction.	Although	NTFS	completed	the	committed	transactions
from	before	the	system	failure,	it	doesn’t	know	whether	the	cache	manager	flushed
the	volume	modifications	to	disk	in	time.	The	updates	might	have	been	lost	from
the	cache	when	the	system	failed.	Therefore,	NTFS	executes	the	committed
transactions	again	just	to	be	sure	that	the	disk	is	up	to	date.

After	redoing	the	committed	transactions	during	a	file	system	recovery,	NTFS
locates	all	the	transactions	in	the	log	file	that	weren’t	committed	at	failure	and	rolls
back	each	suboperation	that	had	been	logged.	In	Figure	12-53,	NTFS	would	first
undo	the	T1	c	suboperation	and	then	follow	the	backward	pointer	to	T1	b	and
undo	that	suboperation.	It	would	continue	to	follow	the	backward	pointers,
undoing	suboperations,	until	it	reached	the	first	suboperation	in	the	transaction.	By
following	the	pointers,	NTFS	knows	how	many	and	which	update	records	it	must
undo	to	roll	back	a	transaction.

Redo	and	undo	information	can	be	expressed	either	physically	or	logically.	As	the
lowest	layer	of	software	maintaining	the	file	system	structure,	NTFS	writes	update
records	with	physical	descriptions	that	specify	volume	updates	in	terms	of
particular	byte	ranges	on	the	disk	that	are	to	be	changed,	moved,	and	so	on,	unlike
TxF,	which	uses	logical	descriptions	that	express	updates	in	terms	of	operations
such	as	“delete	file	A.dat.”	NTFS	writes	update	records	(usually	several)	for	each
of	the	following	transactions:

Creating	a	file

Deleting	a	file

Extending	a	file

Truncating	a	file

Setting	file	information

Renaming	a	file

Changing	the	security	applied	to	a	file

The	redo	and	undo	information	in	an	update	record	must	be	carefully	designed
because	although	NTFS	undoes	a	transaction,	recovers	from	a	system	failure,	or



even	operates	normally,	it	might	try	to	redo	a	transaction	that	has	already	been
done	or,	conversely,	to	undo	a	transaction	that	never	occurred	or	that	has	already
been	undone.	Similarly,	NTFS	might	try	to	redo	or	undo	a	transaction	consisting	of
several	update	records,	only	some	of	which	are	complete	on	disk.	The	format	of
the	update	records	must	ensure	that	executing	redundant	redo	or	undo	operations	is
idempotent,	that	is,	has	a	neutral	effect.	For	example,	setting	a	bit	that	is	already	set
has	no	effect,	but	toggling	a	bit	that	has	already	been	toggled	does.	The	file	system
must	also	handle	intermediate	volume	states	correctly.

In	addition	to	update	records,	NTFS	periodically	writes	a	checkpoint	record	to	the
log	file,	as	illustrated	in	Figure	12-54.

Figure	12-54.	Checkpoint	record	in	the	log	file

A	checkpoint	record	helps	NTFS	determine	what	processing	would	be	needed	to
recover	a	volume	if	a	crash	were	to	occur	immediately.	Using	information	stored	in
the	checkpoint	record,	NTFS	knows,	for	example,	how	far	back	in	the	log	file	it
must	go	to	begin	its	recovery.	After	writing	a	checkpoint	record,	NTFS	stores	the
LSN	of	the	record	in	the	restart	area	so	that	it	can	quickly	find	its	most	recently
written	checkpoint	record	when	it	begins	file	system	recovery	after	a	crash	occurs
—this	is	similar	to	the	restart	LSN	used	by	TxF	for	the	same	reason.

Although	the	LFS	presents	the	log	file	to	NTFS	as	if	it	were	infinitely	large,	it	isn’t.
The	generous	size	of	the	log	file	and	the	frequent	writing	of	checkpoint	records	(an
operation	that	usually	frees	up	space	in	the	log	file)	make	the	possibility	of	the	log
file	filling	up	a	remote	one.	Nevertheless,	the	LFS,	just	like	CLFS,	accounts	for	this
possibility	by	tracking	several	operational	parameters:

The	available	log	space

The	amount	of	space	needed	to	write	an	incoming	log	record	and	to	undo	the
write,	should	that	be	necessary



The	amount	of	space	needed	to	roll	back	all	active	(noncommitted)
transactions,	should	that	be	necessary

If	the	log	file	doesn’t	contain	enough	available	space	to	accommodate	the	total	of
the	last	two	items,	the	LFS	returns	a	“log	file	full”	error,	and	NTFS	raises	an
exception.	The	NTFS	exception	handler	rolls	back	the	current	transaction	and
places	it	in	a	queue	to	be	restarted	later.

To	free	up	space	in	the	log	file,	NTFS	must	momentarily	prevent	further
transactions	on	files.	To	do	so,	NTFS	blocks	file	creation	and	deletion	and	then
requests	exclusive	access	to	all	system	files	and	shared	access	to	all	user	files.
Gradually,	active	transactions	either	are	completed	successfully	or	receive	the	“log
file	full”	exception.	NTFS	rolls	back	and	queues	the	transactions	that	receive	the
exception.

Once	it	has	blocked	transaction	activity	on	files	as	just	described,	NTFS	calls	the
cache	manager	to	flush	unwritten	data	to	disk,	including	unwritten	log	file	data.
After	everything	is	safely	flushed	to	disk,	NTFS	no	longer	needs	the	data	in	the	log
file.	It	resets	the	beginning	of	the	log	file	to	the	current	position,	making	the	log
file	“empty.”	Then	it	restarts	the	queued	transactions.	Beyond	the	short	pause	in
I/O	processing,	the	“log	file	full”	error	has	no	effect	on	executing	programs.

This	scenario	is	one	example	of	how	NTFS	uses	the	log	file	not	only	for	file
system	recovery	but	also	for	error	recovery	during	normal	operation.	You’ll	find
out	more	about	error	recovery	in	the	following	section.

Recovery
NTFS	automatically	performs	a	disk	recovery	the	first	time	a	program	accesses	an
NTFS	volume	after	the	system	has	been	booted.	(If	no	recovery	is	needed,	the
process	is	trivial.)	Recovery	depends	on	two	tables	NTFS	maintains	in	memory:	a
transaction	table,	which	behaves	just	like	the	one	TxF	maintains,	and	a	dirty	page
table,	which	records	which	pages	in	the	cache	contain	modifications	to	the	file
system	structure	that	haven’t	yet	been	written	to	disk.	This	data	must	be	flushed	to
disk	during	recovery.

NTFS	writes	a	checkpoint	record	to	the	log	file	once	every	5	seconds.	Just	before	it
does,	it	calls	the	LFS	to	store	a	current	copy	of	the	transaction	table	and	of	the



dirty	page	table	in	the	log	file.	NTFS	then	records	in	the	checkpoint	record	the
LSNs	of	the	log	records	containing	the	copied	tables.	When	recovery	begins	after	a
system	failure,	NTFS	calls	the	LFS	to	locate	the	log	records	containing	the	most
recent	checkpoint	record	and	the	most	recent	copies	of	the	transaction	and	dirty
page	tables.	It	then	copies	the	tables	to	memory.

The	log	file	usually	contains	more	update	records	following	the	last	checkpoint
record.	These	update	records	represent	volume	modifications	that	occurred	after
the	last	checkpoint	record	was	written.	NTFS	must	update	the	transaction	and	dirty
page	tables	to	include	these	operations.	After	updating	the	tables,	NTFS	uses	the
tables	and	the	contents	of	the	log	file	to	update	the	volume	itself.

To	perform	its	volume	recovery,	NTFS	scans	the	log	file	three	times,	loading	the
file	into	memory	during	the	first	pass	to	minimize	disk	I/O.	Each	pass	has	a
particular	purpose:

1.	 Analysis

2.	 Redoing	transactions

3.	 Undoing	transactions

Analysis	Pass
During	the	analysis	pass,	as	shown	in	Figure	12-55,	NTFS	scans	forward	in	the	log
file	from	the	beginning	of	the	last	checkpoint	operation	to	find	update	records	and
use	them	to	update	the	transaction	and	dirty	page	tables	it	copied	to	memory.
Notice	in	the	figure	that	the	checkpoint	operation	stores	three	records	in	the	log
file	and	that	update	records	might	be	interspersed	among	these	records.	NTFS
therefore	must	start	its	scan	at	the	beginning	of	the	checkpoint	operation.

Figure	12-55.	Analysis	pass

Most	update	records	that	appear	in	the	log	file	after	the	checkpoint	operation
begins	represent	a	modification	to	either	the	transaction	table	or	the	dirty	page



table.	If	an	update	record	is	a	“transaction	committed”	record,	for	example,	the
transaction	the	record	represents	must	be	removed	from	the	transaction	table.
Similarly,	if	the	update	record	is	a	“page	update”	record	that	modifies	a	file	system
data	structure,	the	dirty	page	table	must	be	updated	to	reflect	that	change.

Once	the	tables	are	up	to	date	in	memory,	NTFS	scans	the	tables	to	determine	the
LSN	of	the	oldest	update	record	that	logs	an	operation	that	hasn’t	been	carried	out
on	disk.	The	transaction	table	contains	the	LSNs	of	the	noncommitted	(incomplete)
transactions,	and	the	dirty	page	table	contains	the	LSNs	of	records	in	the	cache	that
haven’t	been	flushed	to	disk.	The	LSN	of	the	oldest	update	record	that	NTFS	finds
in	these	two	tables	determines	where	the	redo	pass	will	begin.	If	the	last	checkpoint
record	is	older,	however,	NTFS	will	start	the	redo	pass	there	instead.

NOTE

In	the	TxF	recovery	model,	there	is	no	distinct	analysis	pass.	Instead,	as	described	in	the	TxF	recovery
section,	TxF	performs	the	equivalent	work	in	the	redo	pass.

Redo	Pass
During	the	redo	pass,	as	shown	in	Figure	12-56,	NTFS	scans	forward	in	the	log
file	from	the	LSN	of	the	oldest	update	record,	which	it	found	during	the	analysis
pass.	It	looks	for	“page	update”	records,	which	contain	volume	modifications	that
were	written	before	the	system	failure	but	that	might	not	have	been	flushed	to	disk.
NTFS	redoes	these	updates	in	the	cache.

Figure	12-56.	Redo	pass

When	NTFS	reaches	the	end	of	the	log	file,	it	has	updated	the	cache	with	the
necessary	volume	modifications,	and	the	cache	manager’s	lazy	writer	can	begin
writing	cache	contents	to	disk	in	the	background.



Undo	Pass
After	it	completes	the	redo	pass,	NTFS	begins	its	undo	pass,	in	which	it	rolls	back
any	transactions	that	weren’t	committed	when	the	system	failed.	Figure	12-57
shows	two	transactions	in	the	log	file;	transaction	1	was	committed	before	the
power	failure,	but	transaction	2	wasn’t.	NTFS	must	undo	transaction	2.

Figure	12-57.	Undo	pass

Suppose	that	transaction	2	created	a	file,	an	operation	that	comprises	three
suboperations,	each	with	its	own	update	record.	The	update	records	of	a
transaction	are	linked	by	backward	pointers	in	the	log	file	because	they	are	usually
not	contiguous.

The	NTFS	transaction	table	lists	the	LSN	of	the	last-logged	update	record	for	each
noncommitted	transaction.	In	this	example,	the	transaction	table	identifies	LSN
4049	as	the	last	update	record	logged	for	transaction	2.	As	shown	from	right	to	left
in	Figure	12-58,	NTFS	rolls	back	transaction	2.

Figure	12-58.	Undoing	a	transaction

After	locating	LSN	4049,	NTFS	finds	the	undo	information	and	executes	it,



clearing	bits	3	through	9	in	its	allocation	bitmap.	NTFS	then	follows	the	backward
pointer	to	LSN	4048,	which	directs	it	to	remove	the	new	file	name	from	the
appropriate	file	name	index.	Finally,	it	follows	the	last	backward	pointer	and
deallocates	the	MFT	file	record	reserved	for	the	file,	as	the	update	record	with
LSN	4046	specifies.	Transaction	2	is	now	rolled	back.	If	there	are	other
noncommitted	transactions	to	undo,	NTFS	follows	the	same	procedure	to	roll	them
back.	Because	undoing	transactions	affects	the	volume’s	file	system	structure,
NTFS	must	log	the	undo	operations	in	the	log	file.	After	all,	the	power	might	fail
again	during	the	recovery,	and	NTFS	would	have	to	redo	its	undo	operations!

When	the	undo	pass	of	the	recovery	is	finished,	the	volume	has	been	restored	to	a
consistent	state.	At	this	point,	NTFS	is	prepared	to	flush	the	cache	changes	to	disk
to	ensure	that	the	volume	is	up	to	date.	Before	doing	so,	however,	it	executes	a
callback	that	TxF	registers	for	notifications	of	LFS	flushes.	Because	TxF	and
NTFS	both	use	write-ahead	logging,	TxF	must	flush	its	log	through	CLFS	before
the	NTFS	log	is	flushed	to	ensure	consistency	of	its	own	metadata.	(And	similarly,
the	TOPS	file	must	be	flushed	before	the	CLFS-managed	log	files.)	NTFS	then
writes	an	“empty”	LFS	restart	area	to	indicate	that	the	volume	is	consistent	and
that	no	recovery	need	be	done	if	the	system	should	fail	again	immediately.
Recovery	is	complete.

NTFS	guarantees	that	recovery	will	return	the	volume	to	some	preexisting
consistent	state,	but	not	necessarily	to	the	state	that	existed	just	before	the	system
crash.	NTFS	can’t	make	that	guarantee	because,	for	performance,	it	uses	a	“lazy
commit”	algorithm,	which	means	that	the	log	file	isn’t	immediately	flushed	to	disk
each	time	a	“transaction	committed”	record	is	written.	Instead,	numerous
“transaction	committed”	records	are	batched	and	written	together,	either	when	the
cache	manager	calls	the	LFS	to	flush	the	log	file	to	disk	or	when	the	LFS	writes	a
checkpoint	record	(once	every	5	seconds)	to	the	log	file.	Another	reason	the
recovered	volume	might	not	be	completely	up	to	date	is	that	several	parallel
transactions	might	be	active	when	the	system	crashes	and	some	of	their
“transaction	committed”	records	might	make	it	to	disk	whereas	others	might	not.
The	consistent	volume	that	recovery	produces	includes	all	the	volume	updates
whose	“transaction	committed”	records	made	it	to	disk	and	none	of	the	updates
whose	“transaction	committed”	records	didn’t	make	it	to	disk.



NTFS	uses	the	log	file	to	recover	a	volume	after	the	system	fails,	but	it	also	takes
advantage	of	an	important	“freebie”	it	gets	from	logging	transactions.	File	systems
necessarily	contain	a	lot	of	code	devoted	to	recovering	from	file	system	errors	that
occur	during	the	course	of	normal	file	I/O.	Because	NTFS	logs	each	transaction
that	modifies	the	volume	structure,	it	can	use	the	log	file	to	recover	when	a	file
system	error	occurs	and	thus	can	greatly	simplify	its	error	handling	code.	The	“log
file	full”	error	described	earlier	is	one	example	of	using	the	log	file	for	error
recovery.

Most	I/O	errors	that	a	program	receives	aren’t	file	system	errors	and	therefore	can’t
be	resolved	entirely	by	NTFS.	When	called	to	create	a	file,	for	example,	NTFS
might	begin	by	creating	a	file	record	in	the	MFT	and	then	enter	the	new	file’s
name	in	a	directory	index.	When	it	tries	to	allocate	space	for	the	file	in	its	bitmap,
however,	it	could	discover	that	the	disk	is	full	and	the	create	request	can’t	be
completed.	In	such	a	case,	NTFS	uses	the	information	in	the	log	file	to	undo	the
part	of	the	operation	it	has	already	completed	and	to	deallocate	the	data	structures
it	reserved	for	the	file.	Then	it	returns	a	“disk	full”	error	to	the	caller,	which	in	turn
must	respond	appropriately	to	the	error.

NTFS	Bad-Cluster	Recovery
The	volume	manager	included	with	Windows	(VolMgr)	can	recover	data	from	a
bad	sector	on	a	fault-tolerant	volume,	but	if	the	hard	disk	doesn’t	perform	bad-
sector	remapping	or	runs	out	of	spare	sectors,	the	volume	manager	can’t	perform
bad-sector	replacement	to	replace	the	bad	sector.	(See	Chapter	9	for	more
information	on	the	volume	manager.)	When	the	file	system	reads	from	the	sector,
the	volume	manager	instead	recovers	the	data	and	returns	the	warning	to	the	file
system	that	there	is	only	one	copy	of	the	data.

The	FAT	file	system	doesn’t	respond	to	this	volume	manager	warning.	Moreover,
neither	FAT	nor	the	volume	manager	keeps	track	of	the	bad	sectors,	so	a	user	must
run	the	Chkdsk	or	Format	utility	to	prevent	the	volume	manager	from	repeatedly
recovering	data	for	the	file	system.	Both	Chkdsk	and	Format	are	less	than	ideal	for
removing	bad	sectors	from	use.	Chkdsk	can	take	a	long	time	to	find	and	remove
bad	sectors,	and	Format	wipes	all	the	data	off	the	partition	it’s	formatting.

In	the	file	system	equivalent	of	a	volume	manager’s	bad-sector	replacement,	NTFS



dynamically	replaces	the	cluster	containing	a	bad	sector	and	keeps	track	of	the	bad
cluster	so	that	it	won’t	be	reused.	(Recall	that	NTFS	maintains	portability	by
addressing	logical	clusters	rather	than	physical	sectors.)	NTFS	performs	these
functions	when	the	volume	manager	can’t	perform	bad-sector	replacement.	When	a
volume	manager	returns	a	bad-sector	warning	or	when	the	hard	disk	driver	returns
a	bad-sector	error,	NTFS	allocates	a	new	cluster	to	replace	the	one	containing	the
bad	sector.	NTFS	copies	the	data	that	the	volume	manager	has	recovered	into	the
new	cluster	to	reestablish	data	redundancy.

Figure	12-59	shows	an	MFT	record	for	a	user	file	with	a	bad	cluster	in	one	of	its
data	runs	as	it	existed	before	the	cluster	went	bad.	When	it	receives	a	bad-sector
error,	NTFS	reassigns	the	cluster	containing	the	sector	to	its	bad-cluster	file,
$BadClus.	This	prevents	the	bad	cluster	from	being	allocated	to	another	file.	NTFS
then	allocates	a	new	cluster	for	the	file	and	changes	the	file’s	VCN-to-LCN
mappings	to	point	to	the	new	cluster.	This	bad-cluster	remapping	(introduced
earlier	in	this	chapter)	is	illustrated	in	Figure	12-59.	Cluster	number	1357,	which
contains	the	bad	sector,	must	be	replaced	by	a	good	cluster.

Figure	12-59.	MFT	record	for	a	user	file	with	a	bad	cluster

Bad-sector	errors	are	undesirable,	but	when	they	do	occur,	the	combination	of
NTFS	and	the	volume	manager	provides	the	best	possible	solution.	If	the	bad
sector	is	on	a	redundant	volume,	the	volume	manager	recovers	the	data	and
replaces	the	sector	if	it	can.	If	it	can’t	replace	the	sector,	it	returns	a	warning	to
NTFS,	and	NTFS	replaces	the	cluster	containing	the	bad	sector.

If	the	volume	isn’t	configured	as	a	redundant	volume,	the	data	in	the	bad	sector
can’t	be	recovered.	When	the	volume	is	formatted	as	a	FAT	volume	and	the



volume	manager	can’t	recover	the	data,	reading	from	the	bad	sector	yields
indeterminate	results.	If	some	of	the	file	system’s	control	structures	reside	in	the
bad	sector,	an	entire	file	or	group	of	files	(or	potentially,	the	whole	disk)	can	be
lost.	At	best,	some	data	in	the	affected	file	(often,	all	the	data	in	the	file	beyond	the
bad	sector)	is	lost.	Moreover,	the	FAT	file	system	is	likely	to	reallocate	the	bad
sector	to	the	same	or	another	file	on	the	volume,	causing	the	problem	to	resurface.

Like	the	other	file	systems,	NTFS	can’t	recover	data	from	a	bad	sector	without	help
from	a	volume	manager.	However,	NTFS	greatly	contains	the	damage	a	bad	sector
can	cause.	If	NTFS	discovers	the	bad	sector	during	a	read	operation,	it	remaps	the
cluster	the	sector	is	in,	as	shown	in	Figure	12-60.	If	the	volume	isn’t	configured	as
a	redundant	volume,	NTFS	returns	a	“data	read”	error	to	the	calling	program.
Although	the	data	that	was	in	that	cluster	is	lost,	the	rest	of	the	file—and	the	file
system—remains	intact;	the	calling	program	can	respond	appropriately	to	the	data
loss,	and	the	bad	cluster	won’t	be	reused	in	future	allocations.	If	NTFS	discovers
the	bad	cluster	on	a	write	operation	rather	than	a	read,	NTFS	remaps	the	cluster
before	writing	and	thus	loses	no	data	and	generates	no	error.

The	same	recovery	procedures	are	followed	if	file	system	data	is	stored	in	a	sector
that	goes	bad.	If	the	bad	sector	is	on	a	redundant	volume,	NTFS	replaces	the
cluster	dynamically,	using	the	data	recovered	by	the	volume	manager.	If	the	volume
isn’t	redundant,	the	data	can’t	be	recovered,	so	NTFS	sets	a	bit	in	the	$Volume
metadata	file	that	indicates	corruption	on	the	volume.	The	NTFS	Chkdsk	utility
checks	this	bit	when	the	system	is	next	rebooted,	and	if	the	bit	is	set,	Chkdsk
executes,	repairing	the	file	system	corruption	by	reconstructing	the	NTFS
metadata.



Figure	12-60.	Bad-cluster	remapping

In	rare	instances,	file	system	corruption	can	occur	even	on	a	fault-tolerant	disk
configuration.	A	double	error	can	destroy	both	file	system	data	and	the	means	to
reconstruct	it.	If	the	system	crashes	while	NTFS	is	writing	the	mirror	copy	of	an
MFT	file	record—of	a	file	name	index	or	of	the	log	file,	for	example—the	mirror
copy	of	such	file	system	data	might	not	be	fully	updated.	If	the	system	were
rebooted	and	a	bad-sector	error	occurred	on	the	primary	disk	at	exactly	the	same
location	as	the	incomplete	write	on	the	disk	mirror,	NTFS	would	be	unable	to
recover	the	correct	data	from	the	disk	mirror.	NTFS	implements	a	special	scheme
for	detecting	such	corruptions	in	file	system	data.	If	it	ever	finds	an	inconsistency,	it
sets	the	corruption	bit	in	the	volume	file,	which	causes	Chkdsk	to	reconstruct	the
NTFS	metadata	when	the	system	is	next	rebooted.	Because	file	system	corruption
is	rare	on	a	fault-tolerant	disk	configuration,	Chkdsk	is	seldom	needed.	It	is
supplied	as	a	safety	precaution	rather	than	as	a	first-line	data	recovery	strategy.

The	use	of	Chkdsk	on	NTFS	is	vastly	different	from	its	use	on	the	FAT	file	system.
Before	writing	anything	to	disk,	FAT	sets	the	volume’s	dirty	bit	and	then	resets	the
bit	after	the	modification	is	complete.	If	any	I/O	operation	is	in	progress	when	the



system	crashes,	the	dirty	bit	is	left	set	and	Chkdsk	runs	when	the	system	is
rebooted.	On	NTFS,	Chkdsk	runs	only	when	unexpected	or	unreadable	file	system
data	is	found	and	NTFS	can’t	recover	the	data	from	a	redundant	volume	or	from
redundant	file	system	structures	on	a	single	volume.	(The	system	boot	sector	is
duplicated—in	the	last	sector	of	a	volume—as	are	the	parts	of	the	MFT
[$MftMirr]	required	for	booting	the	system	and	running	the	NTFS	recovery
procedure.	This	redundancy	ensures	that	NTFS	will	always	be	able	to	boot	and
recover	itself.)

Table	12-10	summarizes	what	happens	when	a	sector	goes	bad	on	a	disk	volume
formatted	for	one	of	the	Windows-supported	file	systems	according	to	various
conditions	we’ve	described	in	this	section.

Table	12-10.	Summary	of	NTFS	Data	Recovery	Scenarios

Scenario With	a	Disk	That	Supports	Bad-
Sector	Remapping	and	Has
Spare	Sectors

With	a	Disk	That	Does	Not	Perform
Bad-Sector	Remapping	or	Has	No
Spare	Sectors

Fault-
tolerant
volume[a].

1.	 Volume	manager	recovers	the
data.

2.	 Volume	manager	performs
bad-sector	replacement.

3.	 File	system	remains	unaware	of
the	error.

1.	 Volume	manager	recovers	the	data.

2.	 Volume	manager	sends	the	data	and
a	bad-sector	error	to	the	file	system.

3.	 NTFS	performs	cluster	remapping.

Non-fault-
tolerant
volume

1.	 Volume	manager	can’t	recover
the	data.

2.	 Volume	manager	sends	a	bad-
sector	error	to	the	file	system.

3.	 NTFS	performs	cluster
remapping.	Data	is	lost.[b]

1.	 Volume	manager	can’t	recover	the
data.

2.	 Volume	manager	sends	a	bad-sector
error	to	the	file	system.

3.	 NTFS	performs	cluster	remapping.
Data	is	lost.

[a]	A	fault-tolerant	volume	is	one	of	the	following:	a	mirror	set	(RAID-1)	or	a	RAID-5	set
[b]	In	a	write	operation,	no	data	is	lost:	NTFS	remaps	the	cluster	before	the	write.

If	the	volume	on	which	the	bad	sector	appears	is	a	fault-tolerant	volume—a
mirrored	(RAID-1)	or	RAID-5	volume—and	if	the	hard	disk	is	one	that	supports



bad-sector	replacement	(and	that	hasn’t	run	out	of	spare	sectors),	it	doesn’t	matter
which	file	system	you’re	using	(FAT	or	NTFS).	The	volume	manager	replaces	the
bad	sector	without	the	need	for	user	or	file	system	intervention.

If	a	bad	sector	is	located	on	a	hard	disk	that	doesn’t	support	bad	sector
replacement,	the	file	system	is	responsible	for	replacing	(remapping)	the	bad	sector
or—in	the	case	of	NTFS—the	cluster	in	which	the	bad	sector	resides.	The	FAT	file
system	doesn’t	provide	sector	or	cluster	remapping.	The	benefits	of	NTFS	cluster
remapping	are	that	bad	spots	in	a	file	can	be	fixed	without	harm	to	the	file	(or
harm	to	the	file	system,	as	the	case	may	be)	and	that	the	bad	cluster	will	not	be
used	ever	again.

Self-Healing
With	today’s	multiterabyte	storage	devices,	taking	a	volume	offline	for	a
consistency	check	can	result	in	a	service	outage	of	many	hours.	Recognizing	that
many	disk	corruptions	are	localized	to	a	single	file	or	portion	of	metadata,	NTFS
implements	a	self-healing	feature	to	repair	damage	while	a	volume	remains	online.
When	NTFS	detects	corruption,	it	prevents	access	to	the	damaged	file	or	files	and
creates	a	system	worker	thread	that	performs	Chkdsk-like	corrections	to	the
corrupted	data	structures,	allowing	access	to	the	repaired	files	when	it	has	finished.
Access	to	other	files	continues	normally	during	this	operation,	minimizing	service
disruption.

You	can	use	the	fsutil	repair	set	command	to	view	and	set	a	volume’s	repair
options,	which	are	summarized	in	Table	12-11.	The	Fsutil	utility	uses	the
FSCTL_SET_REPAIR	file	system	control	code	to	set	these	settings,	which	are
saved	in	the	VCB	for	the	volume.

Table	12-11.	NTFS	Self-Healing	Behaviors

Flag Behavior

SET_REPAIR_ENABLED Enable	self-healing	for
the	volume.

SET_REPAIR_WARN_ABOUT_DATA_LOSS If	the	self-healing	process
is	unable	to	fully	recover
a	file,	specifies	whether



the	user	should	be
visually	warned.

SET_REPAIR_DISABLED_AND_BUGCHECK_ON_CORRUPTION If	the
NtfsBugCheckOnCorrupt
NTFS	registry	value	was
set	by	using	fsutil
behavior	set
NtfsBugCheckOnCorrupt
1	and	this	flag	is	set,	the
system	will	crash	with	a
STOP	error	0x24,
indicating	file	system
corruption.	This	setting	is
automatically	cleared
during	boot	time	to	avoid
repeated	reboot	cycles.

In	all	cases,	including	when	the	visual	warning	is	disabled	(the	default),	NTFS	will
log	any	self-healing	operation	it	undertook	in	the	System	event	log.

Apart	from	periodic	automatic	self-healing,	NTFS	also	supports	manually	initiated
self-healing	cycles	through	the	FSCTL_INITIATE_REPAIR	and
FSCTL_WAIT_FOR_REPAIR	control	codes,	which	can	be	initiated	with	the	fsutil
repair	initiate	and	fsutil	repair	wait	commands.	This	allows	the	user	to	force	the
repair	of	a	specific	file	and	to	wait	until	repair	of	that	file	is	complete.

To	check	the	status	of	the	self-healing	mechanism,	the	FSCTL_QUERY_REPAIR
control	code	or	the	fsutil	repair	query	command	can	be	used,	as	shown	here:

C:\>fsutil repair query c:
Self healing is enabled for volume c: with flags 0x1.
 flags: 0x01 - enable general repair
        0x08 - warn about potential data loss
        0x10 - disable general repair and bugcheck once on first corruption



Encrypting	File	System	Security
As	covered	in	Chapter	9,	BitLocker	encrypts	and	protects	volumes	from	offline
attacks,	but	once	a	system	is	booted	BitLocker’s	job	is	done.	The	Encrypting	File
System	(EFS)	protects	individual	files	and	directories	from	other	authenticated
users	on	a	system.	When	choosing	how	to	protect	your	data,	it	is	not	an	“either/or”
choice	between	BitLocker	and	EFS;	each	provides	protection	from	specific—and
nonoverlapping—threats.	Together	BitLocker	and	EFS	provide	a	“defense	in
depth”	for	the	data	on	your	system.

The	paradigm	used	by	EFS	is	to	encrypt	files	and	directories	using	symmetric
encryption	(a	single	key	that	is	used	for	encrypting	and	decrypting	the	file).	The
symmetric	encryption	key	is	then	encrypted	using	asymmetric	encryption	(one	key
for	encryption—often	referred	to	as	the	“public”	key—and	a	different	key	for
decryption—often	referred	to	as	the	“private”	key)	for	each	user	who	is	granted
access	to	the	file.	The	details	and	theory	behind	these	encryption	methods	is
beyond	the	scope	of	this	book;	however,	a	good	primer	is	available	at
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa380251(v=vs.85).aspx.

EFS	works	with	the	Windows	Cryptography	Next	Generation	(CNG)	APIs,	and
thus	may	be	configured	to	use	any	algorithm	supported	by	(or	added	to)	CNG.	By
default,	EFS	will	use	the	Advanced	Encryption	Standard	(AES)	for	symmetric
encryption	(256-bit	key)	and	the	Rivest-Shamir-Adleman	(RSA)	public	key
algorithm	for	asymmetric	encryption	(2,048-bit	keys).

Users	can	encrypt	files	via	Windows	Explorer	by	opening	a	file’s	Properties	dialog
box,	clicking	Advanced,	and	then	selecting	the	Encrypt	Contents	To	Secure	Data
option,	as	shown	in	Figure	12-61.	(A	file	may	be	encrypted	or	compressed,	but	not
both.)	Users	can	also	encrypt	files	via	a	command-line	utility	named	Cipher
(%SystemRoot%\System32\Cipher.exe)	or	programmatically	using	Windows	APIs
such	as	EncryptFile	and	AddUsersToEncryptedFile.

Windows	automatically	encrypts	files	that	reside	in	directories	that	are	designated
as	encrypted	directories.	When	a	file	is	encrypted,	EFS	generates	a	random	number
for	the	file	that	EFS	calls	the	file’s	File	Encryption	Key	(FEK).	EFS	uses	the	FEK
to	encrypt	the	file’s	contents	using	symmetric	encryption.	EFS	then	encrypts	the

http://msdn.microsoft.com/en-us/library/windows/desktop/aa380251(v=vs.85).aspx


FEK	using	the	user’s	asymmetric	public	key	and	stores	the	encrypted	FEK	in	the
$EFS	alternate	data	stream	for	the	file.	The	source	of	the	public	key	may	be
administratively	specified	to	come	from	an	assigned	X.509	certificate	or	a
smartcard	or	randomly	generated	(which	would	then	be	added	to	the	user’s
certificate	store,	which	can	be	viewed	using	the	Certificate	Manager
(%SystemRoot%\System32\Certmgr.msc).	After	EFS	completes	these	steps,	the
file	is	secure:	other	users	can’t	decrypt	the	data	without	the	file’s	decrypted	FEK,
and	they	can’t	decrypt	the	FEK	without	the	private	key.

Figure	12-61.	Encrypt	files	by	using	the	Advanced	Attributes	dialog	box

Symmetric	encryption	algorithms	are	typically	very	fast,	which	makes	them
suitable	for	encrypting	large	amounts	of	data,	such	as	file	data.	However,
symmetric	encryption	algorithms	have	a	weakness:	you	can	bypass	their	security	if
you	obtain	the	key.	If	multiple	users	want	to	share	one	encrypted	file	protected
only	using	symmetric	encryption,	each	user	would	require	access	to	the	file’s	FEK.
Leaving	the	FEK	unencrypted	would	obviously	be	a	security	problem,	but
encrypting	the	FEK	once	would	require	all	the	users	to	share	the	same	FEK
decryption	key—another	potential	security	problem.

Keeping	the	FEK	secure	is	a	difficult	problem,	which	EFS	addresses	with	the
public	key–based	half	of	its	encryption	architecture.	Encrypting	a	file’s	FEK	for
individual	users	who	access	the	file	lets	multiple	users	share	an	encrypted	file.	EFS
can	encrypt	a	file’s	FEK	with	each	user’s	public	key	and	can	store	each	user’s
encrypted	FEK	in	the	file’s	$EFS	data	stream.	Anyone	can	access	a	user’s	public
key,	but	no	one	can	use	a	public	key	to	decrypt	the	data	that	the	public	key



encrypted.	The	only	way	users	can	decrypt	a	file	is	with	their	private	key,	which
the	operating	system	must	access.	A	user’s	private	key	decrypts	the	user’s
encrypted	copy	of	a	file’s	FEK.	Public	key–based	algorithms	are	usually	slow,	but
EFS	uses	these	algorithms	only	to	encrypt	FEKs.	Splitting	key	management
between	a	publicly	available	key	and	a	private	key	makes	key	management	a	little
easier	than	symmetric	encryption	algorithms	do	and	solves	the	dilemma	of	keeping
the	FEK	secure.

Several	components	work	together	to	make	EFS	work,	as	the	diagram	of	EFS
architecture	in	Figure	12-62	shows.	EFS	support	is	merged	into	the	NTFS	driver.
Whenever	NTFS	encounters	an	encrypted	file,	NTFS	executes	EFS	functions	that
it	contains.	The	EFS	functions	encrypt	and	decrypt	file	data	as	applications	access
encrypted	files.	Although	EFS	stores	an	FEK	with	a	file’s	data,	users’	public	keys
encrypt	the	FEK.	To	encrypt	or	decrypt	file	data,	EFS	must	decrypt	the	file’s	FEK
with	the	aid	of	CNG	key	management	services	that	reside	in	user	mode.

Figure	12-62.	EFS	architecture



The	Local	Security	Authority	Subsystem	(LSASS;
%SystemRoot%\System32\Lsass.exe)	manages	logon	sessions	but	also	hosts	the
EFS	service.	For	example,	when	EFS	needs	to	decrypt	an	FEK	to	decrypt	file	data
a	user	wants	to	access,	NTFS	sends	a	request	to	the	EFS	service	inside	LSASS.

Encrypting	a	File	for	the	First	Time
The	NTFS	driver	calls	its	EFS	helper	functions	when	it	encounters	an	encrypted
file.	A	file’s	attributes	record	that	the	file	is	encrypted	in	the	same	way	that	a	file
records	that	it	is	compressed	(discussed	earlier	in	this	chapter).	NTFS	has	specific
interfaces	for	converting	a	file	from	nonencrypted	to	encrypted	form,	but	user-
mode	components	primarily	drive	the	process.	As	described	earlier,	Windows	lets
you	encrypt	a	file	in	two	ways:	by	using	the	cipher	command-line	utility	or	by
checking	the	Encrypt	Contents	To	Secure	Data	check	box	in	the	Advanced
Attributes	dialog	box	for	a	file	in	Windows	Explorer.	Both	Windows	Explorer	and
the	cipher	command	rely	on	the	EncryptFile	Windows	API	that	Advapi32.dll
(Advanced	Windows	APIs	DLL)	exports.

EFS	stores	only	one	block	of	information	in	an	encrypted	file,	and	that	block
contains	an	entry	for	each	user	sharing	the	file.	These	entries	are	called	key	entries,
and	EFS	stores	them	in	the	data	decryption	field	(DDF)	portion	of	the	file’s	EFS
data.	A	collection	of	multiple	key	entries	is	called	a	key	ring	because,	as	mentioned
earlier,	EFS	lets	multiple	users	share	encrypted	files.

Figure	12-63	shows	a	file’s	EFS	information	format	and	key	entry	format.	EFS
stores	enough	information	in	the	first	part	of	a	key	entry	to	precisely	describe	a
user’s	public	key.	This	data	includes	the	user’s	security	ID	(SID)	(note	that	the	SID
is	not	guaranteed	to	be	present),	the	container	name	in	which	the	key	is	stored,	the
cryptographic	provider	name,	and	the	asymmetric	key	pair	certificate	hash.	Only
the	asymmetric	key	pair	certificate	hash	is	used	by	the	decryption	process.	The
second	part	of	the	key	entry	contains	an	encrypted	version	of	the	FEK.	EFS	uses
the	CNG	to	encrypt	the	FEK	with	the	selected	asymmetric	encryption	algorithm
and	the	user’s	public	key.



Figure	12-63.	Format	of	EFS	information	and	key	entries

EFS	stores	information	about	recovery	key	entries	in	a	file’s	data	recovery	field
(DRF).	The	format	of	DRF	entries	is	identical	to	the	format	of	DDF	entries.	The
DRF’s	purpose	is	to	let	designated	accounts,	or	recovery	agents,	decrypt	a	user’s
file	when	administrative	authority	must	have	access	to	the	user’s	data.	For	example,
suppose	a	company	employee	forgot	his	or	her	logon	password.	An	administrator
can	reset	the	user’s	password,	but	without	recovery	agents,	no	one	can	recover	the
user’s	encrypted	data.

Recovery	agents	are	defined	with	the	Encrypted	Data	Recovery	Agents	security
policy	of	the	local	computer	or	domain.	This	policy	is	available	from	the	Local
Security	Policy	MMC	snap-in,	as	shown	in	Figure	12-64.	When	you	use	the	Add
Recovery	Agent	Wizard	(by	right-clicking	Encrypting	File	System	and	then
clicking	Add	Data	Recovery	Agent),	you	can	add	recovery	agents	and	specify
which	private/public	key	pairs	(designated	by	their	certificates)	the	recovery	agents
use	for	EFS	recovery.	Lsasrv	interprets	the	recovery	policy	when	it	initializes	and
when	it	receives	notification	that	the	recovery	policy	has	changed.	EFS	creates	a
DRF	key	entry	for	each	recovery	agent	by	using	the	cryptographic	provider
registered	for	EFS	recovery.



Figure	12-64.	Encrypted	Data	Recovery	Agents	group	policy

In	the	final	step	in	creating	EFS	information	for	a	file,	Lsasrv	calculates	a
checksum	for	the	DDF	and	DRF	by	using	the	MD5	hash	facility	of	Base
Cryptographic	Provider	1.0.	Lsasrv	stores	the	checksum’s	result	in	the	EFS
information	header.	EFS	references	this	checksum	during	decryption	to	ensure	that
the	contents	of	a	file’s	EFS	information	haven’t	become	corrupted	or	been
tampered	with.

Encrypting	File	Data
When	a	user	encrypts	an	existing	file,	the	following	process	occurs:

1.	 The	EFS	service	opens	the	file	for	exclusive	access.

2.	 All	data	streams	in	the	file	are	copied	to	a	plaintext	temporary	file	in	the
system’s	temporary	directory.

3.	 An	FEK	is	randomly	generated	and	used	to	encrypt	the	file	by	using	DESX
or	3DES,	depending	on	the	effective	security	policy.

4.	 A	DDF	is	created	to	contain	the	FEK	encrypted	by	using	the	user’s	public
key.	EFS	automatically	obtains	the	user’s	public	key	from	the	user’s	X.509
version	3	file	encryption	certificate.

5.	 If	a	recovery	agent	has	been	designated	through	Group	Policy,	a	DRF	is
created	to	contain	the	FEK	encrypted	by	using	RSA	and	the	recovery	agent’s
public	key.

EFS	automatically	obtains	the	recovery	agent’s	public	key	for	file	recovery
from	the	recovery	agent’s	X.509	version	3	certificate,	which	is	stored	in	the



EFS	recovery	policy.	If	there	are	multiple	recovery	agents,	a	copy	of	the	FEK
is	encrypted	by	using	each	agent’s	public	key,	and	a	DRF	is	created	to	store
each	encrypted	FEK.

NOTE

The	file	recovery	property	in	the	certificate	is	an	example	of	an	enhanced	key	usage	(EKU)	field.
An	EKU	extension	and	extended	property	specify	and	limit	the	valid	uses	of	a	certificate.	File
Recovery	is	one	of	the	EKU	fields	defined	by	Microsoft	as	part	of	the	Microsoft	public	key
infrastructure	(PKI).

6.	 EFS	writes	the	encrypted	data,	along	with	the	DDF	and	the	DRF,	back	to	the
file.	Because	symmetric	encryption	does	not	add	additional	data,	file	size
increase	is	minimal	after	encryption.	The	metadata,	consisting	primarily	of
encrypted	FEKs,	is	usually	less	than	1	KB.	File	size	in	bytes	before	and	after
encryption	is	normally	reported	to	be	the	same.

7.	 The	plaintext	temporary	file	is	deleted.

When	a	user	saves	a	file	to	a	folder	that	has	been	configured	for	encryption,	the
process	is	similar	except	that	no	temporary	file	is	created.

The	Decryption	Process
When	an	application	accesses	an	encrypted	file,	decryption	proceeds	as	follows:

1.	 NTFS	recognizes	that	the	file	is	encrypted	and	sends	a	request	to	the	EFS
driver.

2.	 The	EFS	driver	retrieves	the	DDF	and	passes	it	to	the	EFS	service.

3.	 The	EFS	service	retrieves	the	user’s	private	key	from	the	user’s	profile	and
uses	it	to	decrypt	the	DDF	and	obtain	the	FEK.

4.	 The	EFS	service	passes	the	FEK	back	to	the	EFS	driver.

5.	 The	EFS	driver	uses	the	FEK	to	decrypt	sections	of	the	file	as	needed	for	the
application.

NOTE

When	an	application	opens	a	file,	only	those	sections	of	the	file	that	the	application	is	using	are
decrypted	because	EFS	uses	cipher	block	chaining.	The	behavior	is	different	if	the	user	removes	the



encryption	attribute	from	the	file.	In	this	case,	the	entire	file	is	decrypted	and	rewritten	as	plaintext.

6.	 The	EFS	driver	returns	the	decrypted	data	to	NTFS,	which	then	sends	the
data	to	the	requesting	application.

Backing	Up	Encrypted	Files
An	important	aspect	of	any	file	encryption	facility’s	design	is	that	file	data	is	never
available	in	unencrypted	form	except	to	applications	that	access	the	file	via	the
encryption	facility.	This	restriction	particularly	affects	backup	utilities,	in	which
archival	media	store	files.	EFS	addresses	this	problem	by	providing	a	facility	for
backup	utilities	so	that	the	utilities	can	back	up	and	restore	files	in	their	encrypted
states.	Thus,	backup	utilities	don’t	have	to	be	able	to	decrypt	file	data,	nor	do	they
need	to	encrypt	file	data	in	their	backup	procedures.

Backup	utilities	use	the	EFS	API	functions	OpenEncryptedFileRaw,
ReadEncryptedFileRaw,	WriteEncryptedFileRaw,	and	CloseEncryptedFileRaw	in
Windows	to	access	a	file’s	encrypted	contents.	After	a	backup	utility	opens	a	file
for	raw	access	during	a	backup	operation,	the	utility	calls	ReadEncryptedFileRaw
to	obtain	the	file	data.

EXPERIMENT:	VIEWING	EFS	INFORMATION

EFS	has	a	handful	of	other	API	functions	that	applications	can	use	to	manipulate	encrypted	files.	For
example,	applications	use	the	AddUsersToEncryptedFile	API	function	to	give	additional	users	access	to	an
encrypted	file	and	RemoveUsersFromEncryptedFile	to	revoke	users’	access	to	an	encrypted	file.
Applications	use	the	QueryUsersOnEncryptedFile	function	to	obtain	information	about	a	file’s	associated
DDF	and	DRF	key	fields.	QueryUsersOnEncryptedFile	returns	the	SID,	certificate	hash	value,	and	display
information	that	each	DDF	and	DRF	key	field	contains.	The	following	output	is	from	the	EFSDump	utility,
from	Sysinternals,	when	an	encrypted	file	is	specified	as	a	command-line	argument:

C:\>efsdump test.txt
EFS Information Dumper v1.02
Copyright (C) 1999 Mark Russinovich
Systems Internals - http://www.sysinternals.com

test.txt:
DDF Entry:
    DARYL\Mark:
         CN=Mark,L=EFS,OU=EFS File Encryption Certificate
DRF Entry:
    Unknown user:
        EFS Data Recovery

You	can	see	that	the	file	test.txt	has	one	DDF	entry	for	user	Mark	and	one	DRF	entry	for	the	EFS	Data



Recovery	agent,	which	is	the	only	recovery	agent	currently	registered	on	the	system.

Copying	Encrypted	Files
When	an	encrypted	file	is	copied,	the	system	does	not	decrypt	the	file	and	re-
encrypt	it	at	its	destination;	it	just	copies	the	encrypted	data	and	the	EFS	alternate
data	streams	to	the	specified	destination.	However,	if	the	destination	does	not
support	alternate	data	streams—if	it	is	not	an	NTFS	volume	(such	as	a	FAT
volume)	or	is	a	network	share	(even	if	the	network	share	is	an	NTFS	volume)—the
copy	cannot	proceed	normally	because	the	alternate	data	streams	would	be	lost.	If
the	copy	is	done	with	Explorer,	a	dialog	box	informs	the	user	that	the	destination
volume	does	not	support	encryption	and	asks	the	user	whether	the	file	should	be
copied	to	the	destination	unencrypted.	If	the	user	agrees,	the	file	will	be	decrypted
and	copied	to	the	specified	destination.	If	the	copy	is	done	from	a	command
prompt,	the	copy	command	will	fail	and	return	the	error	message	“The	specified
file	could	not	be	encrypted”.



Conclusion
Windows	supports	a	wide	variety	of	file	system	formats	accessible	to	both	the	local
system	and	remote	clients.	The	file	system	filter	driver	architecture	provides	a	clean
way	to	extend	and	augment	file	system	access,	and	NTFS	provides	a	reliable,
secure,	scalable	file	system	format	for	local	file	system	storage.	In	the	next	chapter,
we’ll	look	at	startup	and	shutdown	in	Windows.



Chapter	13.	Startup	and	Shutdown
In	this	chapter,	we’ll	describe	the	steps	required	to	boot	Windows	and	the	options
that	can	affect	system	startup.	Understanding	the	details	of	the	boot	process	will
help	you	diagnose	problems	that	can	arise	during	a	boot.	Then	we’ll	explain	the
kinds	of	things	that	can	go	wrong	during	the	boot	process	and	how	to	resolve
them.	Finally,	we’ll	explain	what	occurs	on	an	orderly	system	shutdown.



Boot	Process
In	describing	the	Windows	boot	process,	we’ll	start	with	the	installation	of
Windows	and	proceed	through	the	execution	of	boot	support	files.	Device	drivers
are	a	crucial	part	of	the	boot	process,	so	we’ll	explain	the	way	that	they	control	the
point	in	the	boot	process	at	which	they	load	and	initialize.	Then	we’ll	describe	how
the	executive	subsystems	initialize	and	how	the	kernel	launches	the	user-mode
portion	of	Windows	by	starting	the	Session	Manager	process	(Smss.exe),	which
starts	the	initial	two	sessions	(session	0	and	session	1).	Along	the	way,	we’ll
highlight	the	points	at	which	various	on-screen	messages	appear	to	help	you
correlate	the	internal	process	with	what	you	see	when	you	watch	Windows	boot.

The	early	phases	of	the	boot	process	differ	significantly	on	systems	with	a	BIOS
(basic	input	output	system)	versus	systems	with	an	EFI	(Extensible	Firmware
Interface).	EFI	is	a	newer	standard	that	does	away	with	much	of	the	legacy	16-bit
code	that	BIOS	systems	use	and	allows	the	loading	of	preboot	programs	and
drivers	to	support	the	operating	system	loading	phase.	The	next	sections	describe
the	portions	of	the	boot	process	specific	to	BIOS-based	systems	and	are	followed
with	a	section	describing	the	EFI-specific	portions	of	the	boot	process.

To	support	these	different	firmware	implementations	(as	well	as	EFI	2.0,	which	is
known	as	Unified	EFI,	or	UEFI),	Windows	provides	a	boot	architecture	that
abstracts	many	of	the	differences	away	from	users	and	developers	in	order	to
provide	a	consistent	environment	and	experience	regardless	of	the	type	of	firmware
used	on	the	installed	system.

BIOS	Preboot
The	Windows	boot	process	doesn’t	begin	when	you	power	on	your	computer	or
press	the	reset	button.	It	begins	when	you	install	Windows	on	your	computer.	At
some	point	during	the	execution	of	the	Windows	Setup	program,	the	system’s
primary	hard	disk	is	prepared	with	code	that	takes	part	in	the	boot	process.	Before
we	get	into	what	this	code	does,	let’s	look	at	how	and	where	Windows	places	the
code	on	a	disk.	Since	the	early	days	of	MS-DOS,	a	standard	has	existed	on	x86
systems	for	the	way	physical	hard	disks	are	divided	into	volumes.

Microsoft	operating	systems	split	hard	disks	into	discrete	areas	known	as	partitions



and	use	file	systems	(such	as	FAT	and	NTFS)	to	format	each	partition	into	a
volume.	A	hard	disk	can	contain	up	to	four	primary	partitions.	Because	this
apportioning	scheme	would	limit	a	disk	to	four	volumes,	a	special	partition	type,
called	an	extended	partition,	further	allocates	up	to	four	additional	partitions	within
each	extended	partition.	Extended	partitions	can	contain	extended	partitions,	which
can	contain	extended	partitions,	and	so	on,	making	the	number	of	volumes	an
operating	system	can	place	on	a	disk	effectively	infinite.	Figure	13-1	shows	an
example	of	a	hard	disk	layout,	and	Table	13-1	summarizes	the	files	involved	in	the
BIOS	boot	process.	(You	can	learn	more	about	Windows	partitioning	in
Chapter	9.)

Table	13-1.	Bios	Boot	Process	Components

Component Processor
Execution

Responsibilities Location

Master	Boot
Record	(MBR)

16-bit	real
mode

Reads	and	loads	the	volume	boot	record	(VBR) Per	storage
device

Boot	sector
(also	called
volume	boot
record)

16-bit	real
mode

Understands	the	file	system	on	the	partition	and
locates	Bootmgr	by	name,	loading	it	into	memory

Per	active
(bootable)
partition

Bootmgr 16-bit	real
mode	and	32-
bit	without
paging

Reads	the	Boot	Configuration	Database	(BCD),
presents	boot	menu,	and	allows	execution	of
preboot	programs	such	as	the	Memory	Test
application	(Memtest.exe).	If	a	64-bit	installation	is
booted,	switches	to	64-bit	long	mode	before	loading
Winload.

Per	system

Winload.exe 32-bit
protected
mode	with
paging,	64-bit
protected
mode	if
booting	a
Win64
installation

Loads	Ntoskrnl.exe	and	its	dependencies
(Bootvid.dll	on	32-bit	systems,	Hal.dll,	Kdcom.dll,
Ci.dll,	Clfs.sys,	Pshed.dll)	and	boot-start	device
drivers.

Per
Windows
installation

Winresume.exe 32-bit
protected

If	resuming	after	a	hibernation	state,	resumes	from
the	hibernation	file	(Hiberfil.sys)	instead	of	typical

Per
Windows



mode,	64-bit
protected
mode	if
resuming	a
Win64
installation

Windows	loading. installation

Memtest.exe 32-bit
protected
mode

If	selected	from	the	Boot	Manager,	starts	up	and
provides	a	graphical	interface	for	scanning	memory
and	detecting	damaged	RAM.

Per	system

Ntoskrnl.exe Protected
mode	with
paging

Initializes	executive	subsystems	and	boot	and
system-start	device	drivers,	prepares	the	system	for
running	native	applications,	and	runs	Smss.exe.

Per
Windows
installation

Hal.dll Protected
mode	with
paging

Kernel-mode	DLL	that	interfaces	Ntoskrnl	and
drivers	to	the	hardware.	It	also	acts	as	a	driver	for
the	motherboard	itself,	supporting	soldered
components	that	are	not	otherwise	managed	by
another	driver.

Per
Windows
installation

Smss.exe Native
application

Initial	instance	starts	a	copy	of	itself	to	initialize
each	session.	The	session	0	instance	loads	the
Windows	subsystem	driver	(Win32k.sys)	and	starts
the	Windows	subsystem	process	(Csrss.exe)	and
Windows	initialization	process	(Wininit.exe).	All
other	per-session	instances	start	a	Csrss	and
Winlogon	process.

Per
Windows
installation

Wininit.exe Windows
application

Starts	the	service	control	manager	(SCM),	the	Local
Security	Authority	process	(LSASS),	and	the	local
session	manager	(LSM).	Initializes	the	rest	of	the
registry	and	performs	user-mode	initialization	tasks.

Per
Windows
installation

Winlogon.exe Windows
application

Coordinates	logon	and	user	security,	launches
LogonUI.

Per
Windows
installation

Logonui.exe Windows
application

Presents	interactive	logon	dialog	box. Per
Windows
installation

Services.exe Windows
application

Loads	and	initializes	auto-start	device	drivers	and
Windows	services.

Per
Windows
installation



Figure	13-1.	Sample	hard	disk	layout

Physical	disks	are	addressed	in	units	known	as	sectors.	A	hard	disk	sector	on	a
BIOS	PC	is	typically	512	bytes	(but	moving	to	4,096	bytes;	see	Chapter	9	for	more
information).	Utilities	that	prepare	hard	disks	for	the	definition	of	volumes,	such	as
the	Windows	Setup	program,	write	a	sector	of	data	called	a	Master	Boot	Record
(MBR)	to	the	first	sector	on	a	hard	disk.	(MBR	partitioning	is	described	in
Chapter	9.)	The	MBR	includes	a	fixed	amount	of	space	that	contains	executable
instructions	(called	boot	code)	and	a	table	(called	a	partition	table)	with	four
entries	that	define	the	locations	of	the	primary	partitions	on	the	disk.	When	a
BIOS-based	computer	boots,	the	first	code	it	executes	is	called	the	BIOS,	which	is
encoded	into	the	computer’s	flash	memory.	The	BIOS	selects	a	boot	device,	reads
that	device’s	MBR	into	memory,	and	transfers	control	to	the	code	in	the	MBR.

The	MBRs	written	by	Microsoft	partitioning	tools,	such	as	the	one	integrated	into
Windows	Setup	and	the	Disk	Management	MMC	snap-in,	go	through	a	similar
process	of	reading	and	transferring	control.	First,	an	MBR’s	code	scans	the	primary
partition	table	until	it	locates	a	partition	containing	a	flag	(Active)	that	signals	the
partition	is	bootable.	When	the	MBR	finds	at	least	one	such	flag,	it	reads	the	first
sector	from	the	flagged	partition	into	memory	and	transfers	control	to	code	within
the	partition.	This	type	of	partition	is	called	a	system	partition,	and	the	first	sector



of	such	a	partition	is	called	a	boot	sectoror	volume	boot	record(VBR).	The	volume
defined	for	this	partition	is	called	the	system	volume.

Operating	systems	generally	write	boot	sectors	to	disk	without	a	user’s
involvement.	For	example,	when	Windows	Setup	writes	the	MBR	to	a	hard	disk,	it
also	writes	the	file	system	boot	code	(part	of	the	boot	sector)	to	a	100-MB
bootable	partition	of	the	disk,	marked	as	hidden	to	prevent	accidental	modification
after	the	operating	system	has	loaded.	This	is	the	system	volume	described	earlier.

Before	writing	to	a	partition’s	boot	sector,	Windows	Setup	ensures	that	the	boot
partition	(the	boot	partition	is	the	partition	on	which	Windows	is	installed,	which	is
typically	not	the	same	as	the	system	partition,	where	the	boot	files	are	located)	is
formatted	with	NTFS,	the	only	supported	file	system	that	Windows	can	boot	from
when	installed	on	a	fixed	disk,	or	formats	the	boot	partition	(and	any	other
partition)	with	NTFS.	Note	that	the	format	of	the	system	partition	can	be	any
format	that	Windows	supports	(such	as	FAT32).	If	partitions	are	already	formatted
appropriately,	you	can	instruct	Setup	to	skip	this	step.	After	Setup	formats	the
system	partition,	Setup	copies	the	Boot	Manager	program	(Bootmgr)	that
Windows	uses	to	the	system	partition	(the	system	volume).

Another	of	Setup’s	roles	is	to	prepare	the	Boot	Configuration	Database	(BCD),
which	on	BIOS	systems	is	stored	in	the	\Boot\BCD	file	on	the	root	directory	of	the
system	volume.	This	file	contains	options	for	starting	the	version	of	Windows	that
Setup	installs	and	any	preexisting	Windows	installations.	If	the	BCD	already	exists,
the	Setup	program	simply	adds	new	entries	relevant	to	the	new	installation.	For
more	information	on	the	BCD,	see	Chapter	3,	“System	Mechanisms,”	in	Part	1.

The	BIOS	Boot	Sector	and	Bootmgr
Setup	must	know	the	partition	format	before	it	writes	a	boot	sector	because	the
contents	of	the	boot	sector	vary	depending	on	the	format.	For	a	partition	that	is	in
NTFS	format,	Windows	writes	NTFS-capable	code.	The	role	of	the	boot-sector
code	is	to	give	Windows	information	about	the	structure	and	format	of	a	volume
and	to	read	in	the	Bootmgr	file	from	the	root	directory	of	the	volume.	Thus,	the
boot-sector	code	contains	just	enough	read-only	file	system	code	to	accomplish	this
task.	After	the	boot-sector	code	loads	Bootmgr	into	memory,	it	transfers	control	to
Bootmgr’s	entry	point.	If	the	boot-sector	code	can’t	find	Bootmgr	in	the	volume’s



root	directory,	it	displays	the	error	message	“BOOTMGR	is	missing”.

Bootmgr	is	actually	a	concatenation	of	a	.com	file	(Startup.com)	and	an	.exe	file
(Bootmgr.exe),	so	it	begins	its	existence	while	a	system	is	executing	in	an	x86
operating	mode	called	real	mode,	associated	with	.com	files.	In	real	mode,	no
virtual-to-physical	translation	of	memory	addresses	occurs,	which	means	that
programs	that	use	the	memory	addresses	interpret	them	as	physical	addresses	and
that	only	the	first	1	MB	of	the	computer’s	physical	memory	is	accessible.	Simple
MS-DOS	programs	execute	in	a	real-mode	environment.	However,	the	first	action
Bootmgr	takes	is	to	switch	the	system	to	protected	mode.	Still	no	virtual-to-
physical	translation	occurs	at	this	point	in	the	boot	process,	but	a	full	32	bits	of
memory	becomes	accessible.	After	the	system	is	in	protected	mode,	Bootmgr	can
access	all	of	physical	memory.	After	creating	enough	page	tables	to	make	memory
below	16	MB	accessible	with	paging	turned	on,	Bootmgr	enables	paging.	Protected
mode	with	paging	enabled	is	the	mode	in	which	Windows	executes	in	normal
operation.

After	Bootmgr	enables	protected	mode,	it	is	fully	operational.	However,	it	still
relies	on	functions	supplied	by	BIOS	to	access	IDE-based	system	and	boot	disks	as
well	as	the	display.	Bootmgr’s	BIOS-interfacing	functions	briefly	switch	the
processor	back	to	real	mode	so	that	services	provided	by	the	BIOS	can	be
executed.	Bootmgr	next	reads	the	BCD	file	from	the	\Boot	directory	using	built-in
file	system	code.	Like	the	boot	sector’s	code,	Bootmgr	contains	a	lightweight
NTFS	file	system	library	(Bootmgr	also	supports	other	file	systems,	such	as	FAT,
El	Torito	CDFS,	and	UDFS,	as	well	as	WIM	and	VHD	files);	unlike	the	boot
sector’s	code,	Bootmgr’s	file	system	code	can	also	read	subdirectories.

NOTE

Bootmgr	and	other	boot	applications	can	still	write	to	preallocated	files	on	NTFS	volumes,	because	only	the
data	needs	to	be	written,	instead	of	performing	all	the	complex	allocation	work	that	is	typically	required	on
an	NTFS	volume.	This	is	how	these	applications	can	write	to	bootsect.dat,	for	example.

Bootmgr	next	clears	the	screen.	If	Windows	enabled	the	BCD	setting	to	inform
Bootmgr	of	a	hibernation	resume,	this	shortcuts	the	boot	process	by	launching
Winresume.exe,	which	will	read	the	contents	of	the	hibernation	file	into	memory
and	transfer	control	to	code	in	the	kernel	that	resumes	a	hibernated	system.	That



code	is	responsible	for	restarting	drivers	that	were	active	when	the	system	was	shut
down.	Hiberfil.sys	is	only	valid	if	the	last	computer	shutdown	was	hibernation,
since	the	hibernation	file	is	invalidated	after	a	resume,	to	avoid	multiple	resumes
from	the	same	point.	(See	the	section	The	Power	Manager	in	Chapter	8,	for
information	on	hibernation.)

If	there	is	more	than	one	boot-selection	entry	in	the	BCD,	Bootmgr	presents	the
user	with	the	boot-selection	menu	(if	there	is	only	one	entry,	Bootmgr	bypasses	the
menu	and	proceeds	to	launch	Winload.exe).	Selection	entries	in	the	BCD	direct
Bootmgr	to	the	partition	on	which	the	Windows	system	directory	(typically
\Windows)	of	the	selected	installation	resides.	If	Windows	was	upgraded	from	an
older	version,	this	partition	might	be	the	same	as	the	system	partition,	or,	on	a
clean	install,	it	will	always	be	the	100-MB	hidden	partition	described	earlier.

Entries	in	the	BCD	can	include	optional	arguments	that	Bootmgr,	Winload,	and
other	components	involved	in	the	boot	process	interpret.	Table	13-2	contains	a	list
of	these	options	and	their	effects	for	Bootmgr,	Table	13-3	shows	a	list	of	BCD
options	for	boot	applications,	and	Table	13-4	shows	BCD	options	for	the	Windows
boot	loader.

The	Bcdedit.exe	tool	provides	a	convenient	interface	for	setting	a	number	of	the
switches.	Some	options	that	are	included	in	the	BCD	are	stored	as	command-line
switches	(“/DEBUG”,	for	example)	to	the	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions;	otherwise,	they
are	stored	only	in	the	BCD	binary	format	in	the	BCD	hive.

Table	13-2.	BCD	Options	for	the	Windows	Boot	Manager	(Bootmgr)

BCD	Element Values Meaning

bcdfilepath Path Points	to	the	Boot	Configuration	Database	(usually	\Boot\BCD)	file
on	the	disk.

displaybootmenu Boolean Determines	whether	the	Boot	Manager	shows	the	boot	menu	or	picks
the	default	entry	automatically.

keyringaddress Physical
address

Specifies	the	physical	address	where	the	BitLocker	key	ring	is	located.

noerrordisplay Boolean Silences	the	output	of	errors	encountered	by	the	Boot	Manager.



Resume Boolean Specifies	whether	or	not	resuming	from	hibernation	should	be
attempted.	This	option	is	automatically	set	when	Windows	hibernates.

Timeout Seconds Number	of	seconds	that	the	Boot	Manager	should	wait	before
choosing	the	default	entry.

resumeobject GUID Identifier	for	which	boot	application	should	be	used	to	resume	the
system	after	hibernation.

displayorder List Definition	of	the	Boot	Manager’s	display	order	list.

toolsdisplayorder List Definition	of	the	Boot	Manager’s	tool	display	order	list.

bootsequence List Definition	of	the	one-time	boot	sequence.

Default GUID The	default	boot	entry	to	launch.

customactions List Definition	of	custom	actions	to	take	when	a	specific	keyboard
sequence	has	been	entered.

bcddevice GUID Device	ID	of	where	the	BCD	store	is	located.

Table	13-3.	BCD	Options	for	Boot	Applications

BCD	Element Values Meaning

avoidlowmemory Integer Forces	physical	addresses	below	the	specified	value
to	be	avoided	by	the	boot	loader	as	much	as
possible.	Sometimes	required	on	legacy	devices
(such	as	ISA)	where	only	memory	below	16	MB	is
usable	or	visible.

badmemoryaccess Boolean Forces	usage	of	memory	pages	in	the	Bad	Page
List	(see	Chapter	10,	for	more	information	on	the
page	lists).

badmemorylist Array	of	page
frame	numbers
(PFNs)

Specifies	a	list	of	physical	pages	on	the	system	that
are	known	to	be	bad	because	of	faulty	RAM.

baudrate Baud	rate	in	bps Specifies	an	override	for	the	default	baud	rate
(19200)	at	which	a	remote	kernel	debugger	host
will	connect	through	a	serial	port.

bootdebug Boolean Enables	remote	boot	debugging	for	the	boot	loader.
With	this	option	enabled,	you	can	use	Kd.exe	or
Windbg.exe	to	connect	to	the	boot	loader.



bootems Boolean Used	to	cause	Windows	to	enable	Emergency
Management	Services	(EMS)	for	boot	applications,
which	reports	boot	information	and	accepts	system
management	commands	through	a	serial	port.

busparams String If	a	physical	PCI	debugging	device	is	used	to
provide	FireWire	or	serial	debugging,	specifies	the
PCI	bus,	function,	and	device	number	for	the
device.

channel Channel	between	0
and	62

Used	in	conjunction	with	{debugtype,	1394}	to
specify	the	IEEE	1394	channel	through	which
kernel	debugging	communications	will	flow.

configaccesspolicy Default,
DisallowMmConfig

Configures	whether	the	system	uses	memory
mapped	I/O	to	access	the	PCI	manufacturer’s
configuration	space	or	falls	back	to	using	the
HAL’s	I/O	port	access	routines.	Can	sometimes	be
helpful	in	solving	platform	device	problems.

debugaddress Hardware	address Specifies	the	hardware	address	of	the	serial	(COM)
port	used	for	debugging.

debugport COM	port	number Specifies	an	override	for	the	default	serial	port
(usually	COM2	on	systems	with	at	least	two	serial
ports)	to	which	a	remote	kernel	debugger	host	is
connected.

debugstart Active,	AutoEnable,
Disable

Specifies	settings	for	the	debugger	when	kernel
debugging	is	enabled.	AutoEnable	enables	the
debugger	when	a	breakpoint	or	kernel	exception,
including	kernel	crashes,	occurs.

debugtype Serial,	1394,	USB Specifies	whether	kernel	debugging	will	be
communicated	through	a	serial,	FireWire	(IEEE
1394),	or	USB	2.0	port.	(The	default	is	serial.)

emsbaudrate Baud	rate	in	bps Specifies	the	baud	rate	to	use	for	EMS.

emsport COM	port	number Specifies	the	serial	(COM)	port	to	use	for	EMS.

extendedinput Boolean Enables	boot	applications	to	leverage	BIOS	support
for	extended	console	input.

firstmegabytepolicy UseNone,	UseAll,
UsePrivate

Specifies	how	the	low	1	MB	of	physical	memory	is
consumed	by	the	HAL	to	mitigate	corruptions	by
the	BIOS	during	power	transitions.



fontpath String Specifies	the	path	of	the	OEM	font	that	should	be
used	by	the	boot	application.

graphicsmodedisabled Boolean Disables	graphics	mode	for	boot	applications.

graphicsresolution Resolution Sets	the	graphics	resolution	for	boot	applications.

initialconsoleinput Boolean Specifies	an	initial	character	that	the	system	inserts
into	the	PC/AT	keyboard	input	buffer.

integrityservices Default,	Disable,
Enable

Enables	or	disables	code	integrity	services,	which
are	used	by	Kernel	Mode	Code	Signing.	Default	is
Enabled.

locale Localization	string Sets	the	locale	for	the	boot	application	(such	as
EN-US).

noumex Boolean Disables	user-mode	exceptions	when	kernel
debugging	is	enabled.	If	you	experience	system
hangs	(freezes)	when	booting	in	debugging	mode,
try	enabling	this	option.

novesa Boolean Disables	the	usage	of	VESA	display	modes.

recoveryenabled Boolean Enables	the	recovery	sequence,	if	any.	Used	by
fresh	installations	of	Windows	to	present	the
Windows	PE-based	Startup	And	Recovery
interface.

recoverysequence List Defines	the	recovery	sequence	(described	above).

relocatephysical Physical	address Relocates	an	automatically	selected	NUMA	node’s
physical	memory	to	the	specified	physical	address.

targetname String Defines	the	target	name	for	the	USB	debugger
when	used	with	USB2	debugging	{debugtype,
usb}.

testsigning Boolean Enables	testsigning	mode,	which	allows	driver
developers	to	load	locally	signed	64-bit	drivers.
This	option	results	in	a	watermarked	desktop.

traditionalksegmappings Boolean Determines	whether	the	kernel	will	honor	the
traditional	KSEG0	mapping	that	was	originally
required	for	MIPS	support.	With	KSEG0
mappings,	the	bottom	24	bits	of	the	kernel’s	initial
virtual	address	space	will	map	to	the	same	physical
address	(that	is,	0x80800000	virtual	is	0x800000



in	RAM).	Disabling	this	requirement	allows	more
low	memory	to	be	available,	which	can	help	with
some	hardware.

truncatememory Address	in	bytes Disregards	physical	memory	above	the	specified
physical	address.

Table	13-4.	BCD	Options	for	the	Windows	Boot	Loader	(Winload)

BCD	Element Values Meaning

advancedoptions Boolean If	false,	executes	the	default	behavior	of	launching	the	
command	boot	entry	when	the	boot	fails;	otherwise,	displays	the	
error	and	offers	the	user	the	advanced	boot	option	menu	associated
with	the	boot	entry.	This	is	equivalent	to	pressing	F8.

bootlog Boolean Causes	Windows	to	write	a	log	of	the	boot	to	the	file
%SystemRoot%\Ntbtlog.txt.

bootstatuspolicy DisplayAllFailures,
IgnoreAllFailures,
IgnoreShutdownFailures,
IgnoreBootFailures

Overrides	the	system’s	default	behavior	of	offering	the	user	a
troubleshooting	boot	menu	if	the	system	did	not	complete	the	previous
boot	or	shutdown.

bootux Disabled,	Basic,
Standard

Defines	the	boot	graphics	user	experience	that	the	user	will	see.
Disabled	means	that	no	graphics	will	be	seen	during	boot	time	(only	a
black	screen),	while	Basic	will	display	only	a	progress	bar	during	load.
Standard	displays	the	usual	Windows	logo	animation	during	boot.

clustermodeaddressing Number	of	processors Defines	the	maximum	number	of	processors	to	include	in	a	single
Advanced	Programmable	Interrupt	Controller	(APIC)	cluster.

configflags Flags Specifies	processor-specific	configuration	flags.

dbgtransport Transport	image	name Overrides	using	one	of	the	default	kernel	debugging	transports
(Kdcom.dll,	Kd1394,	Kdusb.dll)	and	instead	uses	the	given	file,
permitting	specialized	debugging	transports	to	be	used	that	are	not
typically	supported	by	Windows.

debug Boolean Enables	kernel-mode	debugging.

detecthal Boolean Enables	the	dynamic	detection	of	the	HAL.

driverloadfailurepolicy Fatal,	UseErrorControl Describes	the	loader	behavior	to	use	when	a	boot	driver	has	failed	to
load.	Fatal	will	prevent	booting,	while	UseErrorControl	causes	the
system	to	honor	a	driver’s	default	error	behavior,	specified	in	its
service	key.



ems Boolean Instructs	the	kernel	to	use	EMS	as	well.	(If	only	bootems	is	used,	only
the	boot	loader	will	use	EMS.)

evstore String Stores	the	location	of	a	boot	preloaded	hive.

exportascd Boolean If	this	option	is	set,	the	kernel	will	treat	the	ramdisk	file	specified	as
an	ISO	image	and	not	a	Windows	Installation	Media	(
System	Deployment	Image	(SDI)	file.

groupaware Boolean Forces	the	system	to	use	groups	other	than	zero	when	associating	the
group	seed	to	new	processes.	Used	only	on	64-bit	Windows.

groupsize Integer Forces	the	maximum	number	of	logical	processors	that	can	be	part	of
a	group	(maximum	of	64).	Can	be	used	to	force	groups	to	be	created
on	a	system	that	would	normally	not	require	them	to	exist.	Must	be	a
power	of	2,	and	is	used	only	on	64-bit	Windows.

hal HAL	image	name Overrides	the	default	file	name	for	the	HAL	image	(hal.dll).	This
option	can	be	useful	when	booting	a	combination	of	a	checked	HAL
and	checked	kernel	(requires	specifying	the	kernel	element	as	well).

halbreakpoint Boolean Causes	the	HAL	to	stop	at	a	breakpoint	early	in	HAL	initialization.
The	first	thing	the	Windows	kernel	does	when	it	initializes	is	to
initialize	the	HAL,	so	this	breakpoint	is	the	earliest	one	possible
(unless	boot	debugging	is	used).	If	the	switch	is	used	without	the
/DEBUG	switch,	the	system	will	elicit	a	blue	screen	with	a	STOP	code
of	0x00000078	(PHASE0_	EXCEPTION).

hypervisorbaudrate Baud	rate	in	bps If	using	serial	hypervisor	debugging,	specifies	the	baud	rate	to	use.

hypervisorchannel Channel	number	from	0
to	62

If	using	FireWire	(IEEE	1394)	hypervisor	debugging,	specifies	the
channel	number	to	use.

hypervisordebug Boolean Enables	debugging	the	hypervisor.

hypervisordebugport COM	port	number If	using	serial	hypervisor	debugging,	specifies	the	COM	port	to	use.

hypervisordebugtype Serial,	1394 Specifies	which	hardware	port	to	use	for	hypervisor	debugging.

hypervisordisableslat Boolean Forces	the	hypervisor	to	ignore	the	presence	of	the	Second	Layer
Address	Translation	(SLAT)	feature	if	supported	by	the	processor.

hypervisorlaunchtype Off,	Auto Enables	loading	of	the	hypervisor	on	a	Hyper-V	system,	or	forces	it	to
be	disabled.

hypervisorpath Hypervisor	binary	image
name

Specifies	the	path	of	the	hypervisor	binary.



hypervisoruselargevtlb Boolean Enables	the	hypervisor	to	use	a	larger	amount	of	virtual	

increaseuserva Size	in	MB Increases	the	size	of	the	user	process	address	space	from	2	GB	to	the
specified	size,	up	to	3	GB	(and	therefore	reduces	the	size	of	system
space).	Giving	virtual-memory-intensive	applications	such	as	database
servers	a	larger	address	space	can	improve	their	performance.	(See	the
section	“Address	Space	Layout”	in	Chapter	9	for	more	information.)

kernel Kernel	image	name Overrides	the	default	file	name	for	the	kernel	image	(Ntoskrnl.exe).
This	option	can	be	useful	when	booting	a	combination	of	a	checked
HAL	and	checked	kernel	(requires	specifying	the	hal	element	to	be
used	as	well).

lastknowngood Boolean Boots	the	last	known	good	configuration,	instead	of	the	current
control	set.

loadoptions Extra	command-line
parameters

This	option	is	used	to	add	other	command-line	parameters	that	are	not
defined	by	BCD	elements.	These	parameters	could	be	used	to
configure	or	define	the	operation	of	other	components	on	the	system
that	might	not	be	able	to	use	the	BCD	(such	as	legacy	components).

maxgroup Boolean Maximizes	the	number	of	processor	groups	that	are	created	during
processor	topology	configuration.	See	Chapter	3	in	Part	1	for	more
information	about	group	selection	and	its	relationship	to	NUMA.

maxproc Boolean Forces	the	maximum	number	of	supported	processors	that	Windows
will	report	to	drivers	and	applications	to	accommodate	the	arrival	of
additional	CPUs	via	dynamic	processor	support.

msi Default,	ForceDisable Allows	disabling	support	for	message	signaled	interrupts.

nocrashautoreboot Boolean Disables	the	automatic	reboot	after	a	system	crash	(blue	screen).

nointegritychecks Boolean Disables	integrity	checks	performed	by	Windows	when	loading
drivers.	Automatically	removed	at	the	next	reboot.

nolowmem Boolean Requires	that	PAE	be	enabled	and	that	the	system	have	more	than	4
GB	of	physical	memory.	If	these	conditions	are	met,	the	PAE-enabled
version	of	the	Windows	kernel,	Ntkrnlpa.exe,	won’t	use	the	first	4	GB
of	physical	memory.	Instead,	it	will	load	all	applications	and	device
drivers	and	allocate	all	memory	pools	from	above	that	boundary.	This
switch	is	useful	only	to	test	device-driver	compatibility	with	large
memory	systems.

numproc Number	of	processors Specifies	the	number	of	CPUs	that	can	be	used	on	a	multiprocessor
system.	Example:	/NUMPROC=2	on	a	four-way	system	will	prevent
Windows	from	using	two	of	the	four	processors.



nx OptIn,	OptOut,
AlwaysOff,	AlwaysOn

This	option	is	available	only	on	32-bit	versions	of	Windows	when
running	on	processors	that	support	no-execute	memory	and	only	when
PAE	(explained	further	in	the	pae	entry)	is	also	enabled.	It	enables	no-
execute	protection.	No-execute	protection	is	always	enabled	on	64-bit
versions	of	Windows	on	x64	processors.	See	Chapter	9
description	of	this	behavior.

onecpu Boolean Causes	Windows	to	use	only	one	CPU	on	a	multiprocessor	system.

optionsedit Boolean Enables	the	options	editor	in	the	Boot	Manager.	With	this	option,
Boot	Manager	allows	the	user	to	interactively	set	on-demand
command-line	options	and	switches	for	the	current	boot.	This	is
equivalent	to	pressing	F10.

osdevice GUID Specifies	the	device	on	which	the	operating	system	is	installed.

pae Default,	ForceEnable,
ForceDisable

Default	allows	the	boot	loader	to	determine	whether	the	system
supports	PAE	and	loads	the	PAE	kernel.	ForceEnable	forces	this
behavior,	while	ForceDisable	forces	the	loader	to	load	the	non–PAE
version	of	the	Windows	kernel,	even	if	the	system	is	detected	as
supporting	x86	PAEs	and	has	more	than	4	GB	of	physical	memory.

pciexpress Default,	ForceDisable Can	be	used	to	disable	support	for	PCI	Express	buses	and	devices.

perfmem Size	in	MB Size	of	the	buffer	to	allocate	for	performance	data	logging.	This	option
acts	similarly	to	the	removememory	element,	since	it	prevents
Windows	from	seeing	the	size	specified	as	available	memory.

quietboot Boolean Instructs	Windows	not	to	initialize	the	VGA	video	driver	responsible
for	presenting	bitmapped	graphics	during	the	boot	process.	The	driver
is	used	to	display	boot	progress	information,	so	disabling	it	will	disable
the	ability	of	Windows	to	show	this	information.

ramdiskimagelength Length	in	bytes Size	of	the	ramdisk	specified.

ramdiskimageoffset Offset	in	bytes If	the	ramdisk	contains	other	data	(such	as	a	header)	before	the	virtual
file	system,	instructs	the	boot	loader	where	to	start	reading	the
ramdisk	file	from.

ramdisksdipath Image	file	name Specifies	the	name	of	the	SDI	ramdisk	to	load.

ramdisktftpblocksize Block	size If	loading	a	WIM	ramdisk	from	a	network	Trivial	FTP	(
specifies	the	block	size	to	use.

ramdisktftpclientport Port	number If	loading	a	WIM	ramdisk	from	a	network	TFTP	server,	specifies	the
port.

ramdisktftpwindowsize Window	size If	loading	a	WIM	ramdisk	from	a	network	TFTP	server,	specifies	the



window	size	to	use.

removememory Size	in	bytes Specifies	an	amount	of	memory	Windows	won’t	use.

restrictapiccluster Cluster	number Defines	the	largest	APIC	cluster	number	to	be	used	by	the	system.

resumeobject Object	GUID Describes	which	application	to	use	for	resuming	from	hibernation,
typically	Winresume.exe.

safeboot Minimal,	Network,
DsRepair

Specifies	options	for	a	safe-mode	boot.	Minimal	corresponds	to	safe
mode	without	networking,	Network	to	safe	mode	with	networking,
and	DsRepair	to	safe	mode	with	Directory	Services	Restore	mode.
(Safe	mode	is	described	later	in	this	chapter.)

safebootalternateshell Boolean Tells	Windows	to	use	the	program	specified	by	the
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell
value	as	the	graphical	shell	rather	than	the	default,	which	is	Windows
Explorer.	This	option	is	referred	to	as	Safe	Mode	With	Command
Prompt	in	the	alternate	boot	menu.

sos Boolean Causes	Windows	to	list	the	device	drivers	marked	to	load	at	
and	then	to	display	the	system	version	number	(including	the	build
number),	amount	of	physical	memory,	and	number	of	processors.

stampdisks Boolean Specifies	that	Winload	will	write	an	MBR	disk	signature	to	a	
disk	when	booting	Windows	PE	(Preinstallation	Environment).	This
can	be	required	in	deployment	environments	in	order	to	create	a
mapping	from	operating	system–enumerated	hard	disks	to	BIOS-
enumerated	hard	disks	to	know	which	disk	should	be	the	system	disk.

systemroot String Specifies	the	path,	relative	to	osdevice,	in	which	the	operating	system
is	installed.

targetname Name For	USB	2.0	debugging,	assigns	a	name	to	the	machine	that	is	being
debugged.

tpmbootentropy Default,	ForceDisable,
ForceEnable

Forces	a	specific	TPM	Boot	Entropy	policy	to	be	selected	by	the	boot
loader	and	passed	on	to	the	kernel.	TPM	Boot	Entropy,	when	used,
seeds	the	kernel’s	random	number	generator	(RNG)	with	data
obtained	from	the	TPM	(if	present).

usefirmwarepcisettings Boolean Stops	Windows	from	dynamically	assigning	IO/IRQ	resources	to	PCI
devices	and	leaves	the	devices	configured	by	the	BIOS.	See	Microsoft
Knowledge	Base	article	148501	for	more	information.

uselegacyapicmode Boolean Forces	usage	of	basic	APIC	functionality	even	though	the	chipset
reports	extended	APIC	functionality	as	present.	Used	in	cases	of
hardware	errata	and/or	incompatibility.



usephysicaldestination Boolean Forces	the	use	of	the	APIC	in	physical	destination	mode.

useplatformclock Boolean Forces	usage	of	the	platforms’s	clock	source	as	the	system’s
performance	counter.

vga Boolean Forces	Windows	to	use	the	VGA	display	driver	instead	of	the	third-
party	high-performance	driver.

winpe Boolean Used	by	Windows	PE,	this	option	causes	the	configuration	manager	to
load	the	registry	SYSTEM	hive	as	a	volatile	hive	such	that	changes
made	to	it	in	memory	are	not	saved	back	to	the	hive	image.

x2apicpolicy Disabled,	Enabled,
Default

Specifies	whether	extended	APIC	functionality	should	be	used	if	the
chipset	supports	it.	Disabled	is	equivalent	to	setting
uselegacyapicmode,	while	Enabled	forces	ACPI	functionality	on	even
if	errata	are	detected.	Default	uses	the	chipset’s	reported	capabilities
(unless	errata	are	present).

xsavepolicy Integer Forces	the	given	XSAVE	policy	to	be	loaded	from	the	
Resource	Driver	(Hwpolicy.sys).

xsaveaddfeature0-7 Integer Used	while	testing	support	for	XSAVE	on	modern	Intel	processors;
allows	for	faking	that	certain	processor	features	are	present	when,	in
fact,	they	are	not.	This	helps	increase	the	size	of	the	CONTEXT
structure	and	confirms	that	applications	work	correctly	with	extended
features	that	might	appear	in	the	future.	No	actual	extra	functionality
will	be	present,	however.

xsaveremovefeature Integer Forces	the	entered	XSAVE	feature	not	to	be	reported	to	the	kernel,
even	though	the	processor	supports	it.

xsaveprocessorsmask Integer Bitmask	of	which	processors	the	XSAVE	policy	should	apply	to.

xsavedisable Boolean Turns	off	support	for	the	XSAVE	functionality	even	though	the
processor	supports	it.

If	the	user	doesn’t	select	an	entry	from	the	selection	menu	within	the	timeout
period	the	BCD	specifies,	Bootmgr	chooses	the	default	selection	specified	in	the
BCD	(if	there	is	only	one	entry,	it	immediately	chooses	this	one).	Once	the	boot
selection	has	been	made,	Bootmgr	loads	the	boot	loader	associated	with	that	entry,
which	will	be	Winload.exe	for	Windows	installations.

Winload.exe	also	contains	code	that	queries	the	system’s	ACPI	BIOS	to	retrieve
basic	device	and	configuration	information.	This	information	includes	the
following:



The	time	and	date	information	stored	in	the	system’s	CMOS	(nonvolatile
memory)

The	number,	size,	and	type	of	disk	drives	on	the	system

Legacy	device	information,	such	as	buses	(for	example,	ISA,	PCI,	EISA,	Micro
Channel	Architecture	[MCA]),	mice,	parallel	ports,	and	video	adapters	are	not
queried	and	instead	faked	out

This	information	is	gathered	into	internal	data	structures	that	will	be	stored	under
the	HKLM\HARDWARE\DESCRIPTION	registry	key	later	in	the	boot.	This	is
mostly	a	legacy	key	as	CMOS	settings	and	BIOS-detected	disk	drive	configuration
settings,	as	well	as	legacy	buses,	are	no	longer	supported	by	Windows,	and	this
information	is	mainly	stored	for	compatibility	reasons.	Today,	it	is	the	Plug	and
Play	manager	database	that	stores	the	true	information	on	hardware.

Next,	Winload	begins	loading	the	files	from	the	boot	volume	needed	to	start	the
kernel	initialization.	The	boot	volume	is	the	volume	that	corresponds	to	the
partition	on	which	the	system	directory	(usually	\Windows)	of	the	installation
being	booted	is	located.	The	steps	Winload	follows	here	include:

1.	 Loads	the	appropriate	kernel	and	HAL	images	(Ntoskrnl.exe	and	Hal.dll	by
default)	as	well	as	any	of	their	dependencies.	If	Winload	fails	to	load	either	of
these	files,	it	prints	the	message	“Windows	could	not	start	because	the
following	file	was	missing	or	corrupt”,	followed	by	the	name	of	the	file.

2.	 Reads	in	the	VGA	font	file	(by	default,	vgaoem.fon).	If	this	file	fails,	the
same	error	message	as	described	in	step	1	will	be	shown.

3.	 Reads	in	the	NLS	(National	Language	System)	files	used	for
internationalization.	By	default,	these	are	l_intl.nls,	c_1252.nls,	and
c_437.nls.

4.	 Reads	in	the	SYSTEM	registry	hive,	\Windows\System32\Config\System,	so
that	it	can	determine	which	device	drivers	need	to	be	loaded	to	accomplish
the	boot.	(A	hive	is	a	file	that	contains	a	registry	subtree.	You’ll	find	more
details	about	the	registry	in	Chapter	4,	“Management	Mechanisms,”	in	Part
1.)

5.	 Scans	the	in-memory	SYSTEM	registry	hive	and	locates	all	the	boot	device



drivers.	Boot	device	drivers	are	drivers	necessary	to	boot	the	system.	These
drivers	are	indicated	in	the	registry	by	a	start	value	of
SERVICE_BOOT_START	(0).	Every	device	driver	has	a	registry	subkey
under	HKLM\SYSTEM\CurrentControlSet\Services.	For	example,	Services
has	a	subkey	named	fvevol	for	the	BitLocker	driver,	which	you	can	see	in
Figure	13-2.	(For	a	detailed	description	of	the	Services	registry	entries,	see
the	section	“Services”	in	Chapter	4	in	Part	1.)

Figure	13-2.	BitLocker	driver	service	settings

6.	 Adds	the	file	system	driver	that’s	responsible	for	implementing	the	code	for
the	type	of	partition	(NTFS)	on	which	the	installation	directory	resides	to	the
list	of	boot	drivers	to	load.	Winload	must	load	this	driver	at	this	time;	if	it
didn’t,	the	kernel	would	require	the	drivers	to	load	themselves,	a	requirement
that	would	introduce	a	circular	dependency.

7.	 Loads	the	boot	drivers,	which	should	only	be	drivers	that,	like	the	file	system
driver	for	the	boot	volume,	would	introduce	a	circular	dependency	if	the
kernel	was	required	to	load	them.	To	indicate	the	progress	of	the	loading,
Winload	updates	a	progress	bar	displayed	below	the	text	“Starting	Windows”.
If	the	sos	option	is	specified	in	the	BCD,	Winload	doesn’t	display	the
progress	bar	but	instead	displays	the	file	names	of	each	boot	driver.	Keep	in
mind	that	the	drivers	are	loaded	but	not	initialized	at	this	time—they
initialize	later	in	the	boot	sequence.

8.	 Prepares	CPU	registers	for	the	execution	of	Ntoskrnl.exe.

For	steps	1	and	8,	Winload	also	implements	part	of	the	Kernel	Mode	Code	Signing
(KMCS)	infrastructure,	which	was	described	in	Chapter	3	in	Part	1,	by	enforcing
that	all	boot	drivers	are	signed	on	64-bit	Windows.	Additionally,	the	system	will



crash	if	the	signature	of	the	early	boot	files	is	incorrect.

This	action	is	the	end	of	Winload’s	role	in	the	boot	process.	At	this	point,	Winload
calls	the	main	function	in	Ntoskrnl.exe	(KiSystemStartup)	to	perform	the	rest	of
the	system	initialization.

The	UEFI	Boot	Process
A	UEFI-compliant	system	has	firmware	that	runs	boot	loader	code	that’s	been
programmed	into	the	system’s	nonvolatile	RAM	(NVRAM)	by	Windows	Setup.
The	boot	code	reads	the	BCD’s	contents,	which	are	also	stored	in	NVRAM.	The
Bcdedit.exe	tool	mentioned	earlier	also	has	the	ability	to	abstract	the	firmware’s
NVRAM	variables	in	the	BCD,	allowing	for	full	transparency	of	this	mechanism.

The	UEFI	standard	defines	the	ability	to	prompt	the	user	with	an	EFI	Boot
Manager	that	can	be	used	to	select	an	operating	system	or	additional	applications	to
load.	However,	to	provide	a	consistent	user	interface	between	BIOS	systems	and
UEFI	systems,	Windows	sets	a	2-second	timeout	for	selecting	the	EFI	Boot
Manager,	after	which	the	EFI-version	of	Bootmgr	(Bootmgfw.efi)	loads	instead.

Hardware	detection	occurs	next,	where	the	boot	loader	uses	UEFI	interfaces	to
determine	the	number	and	type	of	the	following	devices:

Network	adapters

Video	adapters

Keyboards

Disk	controllers

Storage	devices

On	UEFI	systems,	all	operations	and	programs	execute	in	the	native	CPU	mode
with	paging	enabled	and	no	part	of	the	Windows	boot	process	executes	in	16-bit
mode.	Note	that	although	EFI	is	supported	on	both	32-bit	and	64-bit	systems,
Windows	provides	support	for	EFI	only	on	64-bit	platforms.

Just	as	Bootmgr	does	on	x86	and	x64	systems,	the	EFI	Boot	Manager	presents	a
menu	of	boot	selections	with	an	optional	timeout.	Once	a	boot	selection	is	made,
the	loader	navigates	to	the	subdirectory	on	the	EFI	System	partition	corresponding
to	the	selection	and	loads	the	EFI	version	of	the	Windows	boot	loader



(Winload.efi).

The	UEFI	specification	requires	that	the	system	have	a	partition	designated	as	the
EFI	System	partition	that	is	formatted	with	the	FAT	file	system	and	is	between	100
MB	and	1	GB	in	size	or	up	to	1	percent	of	the	size	of	the	disk,	and	each	Windows
installation	has	a	subdirectory	on	the	EFI	System	partition	under	EFI\Microsoft.

Note	that	thanks	to	the	unified	boot	process	and	model	present	in	Windows,	the
components	in	Table	13-1	apply	almost	identically	to	UEFI	systems,	except	that
those	ending	in	.exe	end	in	.efi,	and	they	use	EFI	APIs	and	services	instead	of
BIOS	interrupts.	Another	difference	is	that	to	avoid	limitations	of	the	MBR
partition	format	(including	a	maximum	of	four	partitions	per	disk),	UEFI	systems
use	the	GPT	(GUID	Partition	Table)	format,	which	uses	GUIDs	to	identify
different	partitions	and	their	roles	on	the	system.

NOTE

Although	the	EFI	standard	has	been	available	since	early	2001,	and	UEFI	since	2005,	very	few	computer
manufacturers	have	started	using	this	technology	because	of	backward	compatibility	concerns	and	the
difficulty	of	moving	from	an	entrenched	20-year-old	technology	to	a	new	one.	Two	notable	exceptions	are
Itanium	machines	and	Apple’s	Intel	Macintosh	computers.

Booting	from	iSCSI
Internet	SCSI	(iSCSI)	devices	are	a	kind	of	network-attached	storage,	in	that
remote	physical	disks	are	connected	to	an	iSCSI	Host	Bus	Adapter	(HBA)	or
through	Ethernet.	These	devices,	however,	are	different	from	traditional	network-
attached	storage	(NAS)	because	they	provide	block-level	access	to	disks,	unlike	the
logical-based	access	over	a	network	file	system	that	NAS	employs.	Therefore,	an
iSCSI-connected	disk	appears	as	any	other	disk	drive,	both	to	the	boot	loader	as
well	as	to	the	OS,	as	long	as	the	Microsoft	iSCSI	Initiator	is	used	to	provide	access
over	an	Ethernet	connection.	By	using	iSCSI-enabled	disks	instead	of	local	storage,
companies	can	save	on	space,	power	consumption,	and	cooling.

Although	Windows	has	traditionally	supported	booting	only	from	locally
connected	disks,	or	network	booting	through	PXE,	modern	versions	of	Windows
are	also	capable	of	natively	booting	from	iSCSI	devices	through	a	mechanism
called	iSCSI	Boot.	The	boot	loader	(Winload.exe)	contains	a	minimalistic	network



stack	conforming	to	the	Universal	Network	Device	Interface	(UNDI)	standard,
which	allows	compatible	NIC	ROMs	to	respond	to	Interrupt	13h	(the	legacy	BIOS
disk	I/O	interrupt)	and	convert	the	requests	to	network	I/O.	On	EFI	systems,	the
network	interface	driver	provided	by	the	manufacturer	is	used	instead,	and	EFI
Device	APIs	are	used	instead	of	interrupts.

Finally,	to	know	the	location,	path,	and	authentication	information	for	the	remote
disk,	the	boot	loader	also	reads	an	iSCSI	Boot	Firmware	Table	(iBFT)	that	must	be
present	in	physical	memory	(typically	exposed	through	ACPI).	Additionally,
Windows	Setup	also	has	the	capability	of	reading	this	table	to	determine	bootable
iSCSI	devices	and	allow	direct	installation	on	such	a	device,	such	that	no	imaging
is	required.	Combined	with	the	Microsoft	iSCSI	Initiator,	this	is	all	that’s	required
for	Windows	to	boot	from	iSCSI,	as	shown	in	Figure	13-3.

Figure	13-3.	iSCSI	boot	architecture

Initializing	the	Kernel	and	Executive	Subsystems
When	Winload	calls	Ntoskrnl,	it	passes	a	data	structure	called	the	loader	parameter
block	that	contains	the	system	and	boot	partition	paths,	a	pointer	to	the	memory
tables	Winload	generated	to	describe	the	physical	memory	on	the	system,	a
physical	hardware	tree	that	is	later	used	to	build	the	volatile	HARDWARE	registry
hive,	an	in-memory	copy	of	the	SYSTEM	registry	hive,	and	a	pointer	to	the	list	of
boot	drivers	Winload	loaded,	as	well	as	various	other	information	related	to	the
boot	processing	performed	until	this	point.

EXPERIMENT:	LOADER	PARAMETER	BLOCK



While	booting,	the	kernel	keeps	a	pointer	to	the	loader	parameter	block	in	the	KeLoaderBlock	variable.	The
kernel	discards	the	parameter	block	after	the	first	boot	phase,	so	the	only	way	to	see	the	contents	of	the
structure	is	to	attach	a	kernel	debugger	before	booting	and	break	at	the	initial	kernel	debugger	breakpoint.	If
you	are	able	to	do	so,	you	can	use	the	dt	command	to	dump	the	block,	as	shown:

0: kd> dt poi(nt!KeLoaderBlock) nt!LOADERPARAMETER_BLOCK
   +0x000 OsMajorVersion      : 6
   +0x004 OsMinorVersion      : 1
   +0x008 Size                : 0x88
   +0x00c Reserved            : 0
   +0x010 LoadOrderListHead   : LISTENTRY [ 0x8085b4c8 - 0x80869c70 ]
   +0x018 MemoryDescriptorListHead : LISTENTRY [ 0x80a00000 - 0x80a00de8 ]
   +0x020 BootDriverListHead  : LISTENTRY [ 0x80860d10 - 0x8085eba0 ]
   +0x028 KernelStack         : 0x88e7c000
   +0x02c Prcb                : 0
   +0x030 Process             : 0
   +0x034 Thread              : 0x88e64800
   +0x038 RegistryLength      : 0x2940000
   +0x03c RegistryBase        : 0x80adf000 Void
   +0x040 ConfigurationRoot   : 0x8082d450 CONFIGURATIONCOMPONENT_DATA
   +0x044 ArcBootDeviceName   : 0x8082d9a0  "multi(0)disk(0)rdisk(0)partition(4)"
   +0x048 ArcHalDeviceName    : 0x8082d788  "multi(0)disk(0)rdisk(0)partition(4)"
   +0x04c NtBootPathName      : 0x8082d828  "\Windows\"
   +0x050 NtHalPathName       : 0x80826358  "\"
   +0x054 LoadOptions         : 0x8080e1b0  "NOEXECUTE=ALWAYSON DEBUGPORT=COM1
                                    BAUDRATE=115200"
   +0x058 NlsData             : 0x808691e0 NLSDATA_BLOCK
   +0x05c ArcDiskInformation  : 0x80821408 ARCDISK_INFORMATION
   +0x060 OemFontFile         : 0x84a551d0 Void
   +0x064 Extension           : 0x8082d9d8 LOADERPARAMETER_EXTENSION
   +0x068 u                   : <unnamed-tag>
   +0x074 FirmwareInformation : FIRMWAREINFORMATIONLOADERBLOCK

Additionally,	the	!loadermemorylist	command	can	be	used	on	the	MemoryDescriptorListHead	field	to
dump	the	physical	memory	ranges:

0: kd> !loadermemorylist 0x80a00000
Base Length      Type
1    00000001    HALCachedMemory
2    00000004    HALCachedMemory
...
4a32    00000023    NlsData
4a55    00000002    BootDriver
4a57    00000026    BootDriver
4a7d    00000014    BootDriver
4a91    0000016f    Free
4c00    0001b3f0    Free
1fff0    00000001    FirmwarePermanent
1fff1    00000002    FirmwarePermanent
1fff3    00000001    FirmwarePermanent
1fff4    0000000b    FirmwarePermanent
1ffff    00000001    FirmwarePermanent
fd000    00000800    FirmwarePermanent
fec00    00000001    FirmwarePermanent
fee00    00000001    FirmwarePermanent
ffc00    00000400    FirmwarePermanent

Summary
Memory Type         Pages



Free                0001bc50   (  113744)
LoadedProgram       0000013d   (     317)
FirmwareTemporary   000006dd   (    1757)
FirmwarePermanent   00000c37   (    3127)
OsloaderHeap        0000022a   (     554)
SystemCode          000005dc   (    1500)
BootDriver          00000968   (    2408)
RegistryData        00002940   (   10560)
MemoryData          00000035   (      53)
NlsData             00000023   (      35)
HALCachedMemory     0000001e   (      30)
                    ========    ========
Total               00020bc5   (  134085) = ~523MB

Ntoskrnl	then	begins	phase	0,	the	first	of	its	two-phase	initialization	process	(phase
1	is	the	second).	Most	executive	subsystems	have	an	initialization	function	that
takes	a	parameter	that	identifies	which	phase	is	executing.

During	phase	0,	interrupts	are	disabled.	The	purpose	of	this	phase	is	to	build	the
rudimentary	structures	required	to	allow	the	services	needed	in	phase	1	to	be
invoked.	Ntoskrnl’s	main	function	calls	KiSystemStartup,	which	in	turn	calls
HalInitializeProcessor	and	KiInitializeKernel	for	each	CPU.	KiInitializeKernel,	if
running	on	the	boot	CPU,	performs	systemwide	kernel	initialization,	such	as
initializing	internal	lists	and	other	data	structures	that	all	CPUs	share.	It	also	checks
whether	virtualization	was	specified	as	a	BCD	option	(hypervisorlaunchtype),	and
whether	the	CPU	supports	hardware	virtualization	technology.	The	first	instance	of
KiInitializeKernel	then	calls	the	function	responsible	for	orchestrating	phase	0,
InitBootProcessor,	while	subsequent	processors	only	call	HalInitSystem.

InitBootProcessor	starts	by	initializing	the	pool	look-aside	pointers	for	the	initial
CPU	and	by	checking	for	and	honoring	the	BCD	burnmemory	boot	option,	where
it	discards	the	amount	of	physical	memory	the	value	specifies.	It	then	performs
enough	initialization	of	the	NLS	files	that	were	loaded	by	Winload	(described
earlier)	to	allow	Unicode	to	ANSI	and	OEM	translation	to	work.	Next,	it	continues
by	calling	the	HAL	function	HalInitSystem,	which	gives	the	HAL	a	chance	to	gain
system	control	before	Windows	performs	significant	further	initialization.	One
responsibility	of	HalInitSystem	is	to	prepare	the	system	interrupt	controller	of	each
CPU	for	interrupts	and	to	configure	the	interval	clock	timer	interrupt,	which	is
used	for	CPU	time	accounting.	(See	the	section	“Quantum	Accounting”	in	Chapter
5,	“Processes,	Threads,	and	Jobs,”	in	Part	1	for	more	on	CPU	time	accounting.)

When	HalInitSystem	returns	control,	InitBootProcessor	proceeds	by	computing	the



reciprocal	for	timer	expiration.	Reciprocals	are	used	for	optimizing	divisions	on
most	modern	processors.	They	can	perform	multiplications	faster,	and	because
Windows	must	divide	the	current	64-bit	time	value	in	order	to	find	out	which
timers	need	to	expire,	this	static	calculation	reduces	interrupt	latency	when	the
clock	interval	fires.	InitBootProcessor	then	continues	by	setting	up	the	system	root
path	and	searching	the	kernel	image	for	the	location	of	the	crash	message	strings	it
displays	on	blue	screens,	caching	their	location	to	avoid	looking	up	the	strings
during	a	crash,	which	could	be	dangerous	and	unreliable.	Next,	InitBootProcessor
initializes	the	quota	functionality	part	of	the	process	manager	and	reads	the	control
vector.	This	data	structure	contains	more	than	150	kernel-tuning	options	that	are
part	of	the	HKLM\SYSTEM\CurrentControlSet\Control	registry	key,	including
information	such	as	the	licensing	data	and	version	information	for	the	installation.

InitBootProcessor	is	now	ready	to	call	the	phase	0	initialization	routines	for	the
executive,	Driver	Verifier,	and	the	memory	manager.	These	components	perform
the	following	initialization	steps:

1.	 The	executive	initializes	various	internal	locks,	resources,	lists,	and	variables
and	validates	that	the	product	suite	type	in	the	registry	is	valid,	discouraging
casual	modification	of	the	registry	in	order	to	“upgrade”	to	an	SKU	of
Windows	that	was	not	actually	purchased.	This	is	only	one	of	the	many	such
checks	in	the	kernel.

2.	 Driver	Verifier,	if	enabled,	initializes	various	settings	and	behaviors	based	on
the	current	state	of	the	system	(such	as	whether	safe	mode	is	enabled)	and
verification	options.	It	also	picks	which	drivers	to	target	for	tests	that	target
randomly	chosen	drivers.

3.	 The	memory	manager	constructs	page	tables	and	internal	data	structures	that
are	necessary	to	provide	basic	memory	services.	It	also	builds	and	reserves
an	area	for	the	system	file	cache	and	creates	memory	areas	for	the	paged	and
nonpaged	pools	(described	in	Chapter	10).	The	other	executive	subsystems,
the	kernel,	and	device	drivers	use	these	two	memory	pools	for	allocating
their	data	structures.

Next,	InitBootProcessor	calls	HalInitializeBios	to	set	up	the	BIOS	emulation	code
part	of	the	HAL.	This	code	is	used	both	on	real	BIOS	systems	as	well	as	on	EFI
systems	to	allow	access	(or	to	emulate	access)	to	16-bit	real	mode	interrupts	and



memory,	which	are	used	mainly	by	Bootvid	to	display	the	early	VGA	boot	screen
and	bugcheck	screen.	After	the	function	returns,	the	kernel	initializes	the	Bootvid
library	and	displays	early	boot	status	messages	by	calling	InbvEnableBootDriver
and	InbvDriverInitailize.

At	this	point,	InitBootProcessor	enumerates	the	boot-start	drivers	that	were	loaded
by	Winload	and	calls	DbgLoadImageSymbols	to	inform	the	kernel	debugger	(if
attached)	to	load	symbols	for	each	of	these	drivers.	If	the	host	debugger	has
configured	the	break	on	symbol	load	option,	this	will	be	the	earliest	point	for	a
kernel	debugger	to	gain	control	of	the	system.	InitBootProcessor	now	calls
HvlInitSystem,	which	attempts	to	connect	to	the	hypervisor	in	case	Windows	might
be	running	inside	a	Hyper-V	host	system’s	child	partition.	When	the	function
returns,	it	calls	HeadlessInit	to	initialize	the	serial	console	if	the	machine	was
configured	for	Emergency	Management	Services	(EMS).

Next,	InitBootProcessor	builds	the	versioning	information	that	will	be	used	later	in
the	boot	process,	such	as	the	build	number,	service	pack	version,	and	beta	version
status.	Then	it	copies	the	NLS	tables	that	Winload	previously	loaded	into	paged
pool,	re-initializes	them,	and	creates	the	kernel	stack	trace	database	if	the	global
flags	specify	creating	one.	(For	more	information	on	the	global	flags,	see	Chapter	3
in	Part	1.)

Finally,	InitBootProcessor	calls	the	object	manager,	security	reference	monitor,
process	manager,	user-mode	debugging	framework,	and	the	Plug	and	Play
manager.	These	components	perform	the	following	initialization	steps:

1.	 During	the	object	manager	initialization,	the	objects	that	are	necessary	to
construct	the	object	manager	namespace	are	defined	so	that	other	subsystems
can	insert	objects	into	it.	A	handle	table	is	created	so	that	resource	tracking
can	begin.

2.	 The	security	reference	monitor	initializes	the	token	type	object	and	then	uses
the	object	to	create	and	prepare	the	first	local	system	account	token	for
assignment	to	the	initial	process.	(See	Chapter	6,	“Security,”	in	Part	1	for	a
description	of	the	local	system	account.)

3.	 The	process	manager	performs	most	of	its	initialization	in	phase	0,	defining
the	process	and	thread	object	types	and	setting	up	lists	to	track	active



processes	and	threads.	The	process	manager	also	creates	a	process	object	for
the	initial	process	and	names	it	Idle.	As	its	last	step,	the	process	manager
creates	the	System	process	and	a	system	thread	to	execute	the	routine
Phase1Initialization.	This	thread	doesn’t	start	running	right	away	because
interrupts	are	still	disabled.

4.	 The	user-mode	debugging	framework	creates	the	definition	of	the	debug
object	type	that	is	used	for	attaching	a	debugger	to	a	process	and	receiving
debugger	events.	For	more	information	on	user-mode	debugging,	see	Chapter
3	in	Part	1.

5.	 The	Plug	and	Play	manager’s	phase	0	initialization	then	takes	place,	which
involves	simply	initializing	an	executive	resource	used	to	synchronize	access
to	bus	resources.

When	control	returns	to	KiInitializeKernel,	the	last	step	is	to	allocate	the	DPC
stack	for	the	current	processor	and	the	I/O	privilege	map	save	area	(on	x86	systems
only),	after	which	control	proceeds	to	the	Idle	loop,	which	then	causes	the	system
thread	created	in	step	3	of	the	previous	process	description	to	begin	executing
phase	1.	(Secondary	processors	wait	to	begin	their	initialization	until	step	8	of
phase	1,	described	in	the	following	list.)

Phase	1	consists	of	the	following	steps:

1.	 Phase1InitializationDiscard,	which,	as	the	name	implies,	discards	the	code
that	is	part	of	the	INIT	section	of	the	kernel	image	in	order	to	preserve
memory.

2.	 The	initialization	thread	sets	its	priority	to	31,	the	highest	possible,	in	order	to
prevent	preemption.

3.	 The	NUMA/group	topology	relationships	are	created,	in	which	the	system
tries	to	come	up	with	the	most	optimized	mapping	between	logical	processors
and	processor	groups,	taking	into	account	NUMA	localities	and	distances,
unless	overridden	by	the	relevant	BCD	settings.

4.	 HalInitSystem	prepares	the	system	to	accept	interrupts	from	devices	and	to
enable	interrupts.

5.	 The	boot	video	driver	is	called,	which	in	turn	displays	the	Windows	startup



screen,	which	by	default	consists	of	a	black	screen	and	a	progress	bar.	If	the
quietboot	boot	option	was	used,	this	step	will	not	occur.

6.	 The	kernel	builds	various	strings	and	version	information,	which	are
displayed	on	the	boot	screen	through	Bootvid	if	the	sos	boot	option	was
enabled.	This	includes	the	full	version	information,	number	of	processors
supported,	and	amount	of	memory	supported.

7.	 The	power	manager’s	initialization	is	called.

8.	 The	system	time	is	initialized	(by	calling	HalQueryRealTimeClock)	and	then
stored	as	the	time	the	system	booted.

9.	 On	a	multiprocessor	system,	the	remaining	processors	are	initialized	by
KeStartAllProcessors	and	HalAllProcessorsStarted.	The	number	of
processors	that	will	be	initialized	and	supported	depends	on	a	combination	of
the	actual	physical	count,	the	licensing	information	for	the	installed	SKU	of
Windows,	boot	options	such	as	numproc	and	onecpu,	and	whether	dynamic
partitioning	is	enabled	(server	systems	only).	After	all	the	available
processors	have	initialized,	the	affinity	of	the	system	process	is	updated	to
include	all	processors.

10.	 The	object	manager	creates	the	namespace	root	directory	(\),	\ObjectTypes
directory,	and	the	DOS	device	name	mapping	directory	(\Global??).	It	then
creates	the	\DosDevices	symbolic	link	that	points	at	the	Windows	subsystem
device	name	mapping	directory.

11.	 The	executive	is	called	to	create	the	executive	object	types,	including
semaphore,	mutex,	event,	and	timer.

12.	 The	I/O	manager	is	called	to	create	the	I/O	manager	object	types,	including
device,	driver,	controller,	adapter,	and	file	objects.

13.	 The	kernel	debugger	library	finalizes	initialization	of	debugging	settings	and
parameters	if	the	debugger	has	not	been	triggered	prior	to	this	point.

14.	 The	transaction	manager	also	creates	its	object	types,	such	as	the	enlistment,
resource	manager,	and	transaction	manager	types.

15.	 The	kernel	initializes	scheduler	(dispatcher)	data	structures	and	the	system
service	dispatch	table.



16.	 The	user-mode	debugging	library	(Dbgk)	data	structures	are	initialized.

17.	 If	Driver	Verifier	is	enabled	and,	depending	on	verification	options,	pool
verification	is	enabled,	object	handle	tracing	is	started	for	the	system	process.

18.	 The	security	reference	monitor	creates	the	\Security	directory	in	the	object
manager	namespace	and	initializes	auditing	data	structures	if	auditing	is
enabled.

19.	 The	\SystemRoot	symbolic	link	is	created.

20.	 The	memory	manager	is	called	to	create	the	\Device\PhysicalMemory
section	object	and	the	memory	manager’s	system	worker	threads	(which	are
explained	in	Chapter	10).

21.	 NLS	tables	are	mapped	into	system	space	so	that	they	can	be	easily	mapped
by	user-mode	processes.

22.	 Ntdll.dll	is	mapped	into	the	system	address	space.

23.	 The	cache	manager	initializes	the	file	system	cache	data	structures	and
creates	its	worker	threads.

24.	 The	configuration	manager	creates	the	\Registry	key	object	in	the	object
manager	namespace	and	opens	the	in-memory	SYSTEM	hive	as	a	proper
hive	file.	It	then	copies	the	initial	hardware	tree	data	passed	by	Winload	into
the	volatile	HARDWARE	hive.

25.	 The	high-resolution	boot	graphics	library	initializes,	unless	it	has	been
disabled	through	the	BCD	or	the	system	is	booting	headless.

26.	 The	errata	manager	initializes	and	scans	the	registry	for	errata	information,	as
well	as	the	INF	(driver	installation	file,	described	in	Chapter	8)	database
containing	errata	for	various	drivers.

27.	 Superfetch	and	the	prefetcher	are	initialized.

28.	 The	Store	Manager	is	initialized.

29.	 The	current	time	zone	information	is	initialized.

30.	 Global	file	system	driver	data	structures	are	initialized.

31.	 Phase	1	of	debugger-transport-specific	information	is	performed	by	calling
the	KdDebuggerInitialize1	routine	in	the	registered	transport,	such	as



Kdcom.dll.

32.	 The	Plug	and	Play	manager	calls	the	Plug	and	Play	BIOS.

33.	 The	advanced	local	procedure	call	(ALPC)	subsystem	initializes	the	ALPC
port	type	and	ALPC	waitable	port	type	objects.	The	older	LPC	objects	are
set	as	aliases.

34.	 If	the	system	was	booted	with	boot	logging	(with	the	BCD	bootlog	option),
the	boot	log	file	is	initialized.	If	the	system	was	booted	in	safe	mode,	a	string
is	displayed	on	the	boot	screen	with	the	current	safe	mode	boot	type.

35.	 The	executive	is	called	to	execute	its	second	initialization	phase,	where	it
configures	part	of	the	Windows	licensing	functionality	in	the	kernel,	such	as
validating	the	registry	settings	that	hold	license	data.	Also,	if	persistent	data
from	boot	applications	is	present	(such	as	memory	diagnostic	results	or
resume	from	hibernation	information),	the	relevant	log	files	and	information
are	written	to	disk	or	to	the	registry.

36.	 The	MiniNT/WinPE	registry	keys	are	created	if	this	is	such	a	boot,	and	the
NLS	object	directory	is	created	in	the	namespace,	which	will	be	used	later	to
host	the	section	objects	for	the	various	memory-mapped	NLS	files.

37.	 The	power	manager	is	called	to	initialize	again.	This	time	it	sets	up	support
for	power	requests,	the	ALPC	channel	for	brightness	notifications,	and
profile	callback	support.

38.	 The	I/O	manager	initialization	now	takes	place.	This	stage	is	a	complex	phase
of	system	startup	that	accounts	for	most	of	the	boot	time.

The	I/O	manager	first	initializes	various	internal	structures	and	creates	the
driver	and	device	object	types.	It	then	calls	the	Plug	and	Play	manager,	power
manager,	and	HAL	to	begin	the	various	stages	of	dynamic	device
enumeration	and	initialization.	(Because	this	process	is	complex	and	specific
to	the	I/O	system,	we	cover	the	details	in	Chapter	8.)	Then	the	Windows
Management	Instrumentation	(WMI)	subsystem	is	initialized,	which	provides
WMI	support	for	device	drivers.	(See	the	section	“Windows	Management
Instrumentation”	in	Chapter	4	in	Part	1	for	more	information.)	This	also
initializes	Event	Tracing	for	Windows	(ETW).	Next,	all	the	boot-start	drivers
are	called	to	perform	their	driver-specific	initialization,	and	then	the	system-



start	device	drivers	are	loaded	and	initialized.	(Details	on	the	processing	of
the	driver	load	control	information	on	the	registry	are	also	covered	in
Chapter	8.)	Finally,	the	Windows	subsystem	device	names	are	created	as
symbolic	links	in	the	object	manager’s	namespace.

39.	 The	transaction	manager	sets	up	the	Windows	software	trace	preprocessor
(WPP)	and	ETW	and	initializes	with	WMI.	(ETW	and	WMI	are	described	in
Chapter	4	in	Part	1.)

40.	 Now	that	boot-start	and	system-start	drivers	are	loaded,	the	errata	manager
loads	the	INF	database	with	the	driver	errata	and	begins	parsing	it,	which
includes	applying	registry	PCI	configuration	workarounds.

41.	 If	the	computer	is	booting	in	safe	mode,	this	fact	is	recorded	in	the	registry.

42.	 Unless	explicitly	disabled	in	the	registry,	paging	of	kernel-mode	code	(in
Ntoskrnl	and	drivers)	is	enabled.

43.	 The	configuration	manager	makes	sure	that	all	processors	on	an	SMP	system
are	identical	in	terms	of	the	features	that	they	support;	otherwise,	it	crashes
the	system.

44.	 On	32-bit	systems,	VDM	(Virtual	Dos	Machine)	support	is	initialized,	which
includes	determining	whether	the	processor	supports	Virtual	Machine
Extensions	(VME).

45.	 The	process	manager	is	called	to	set	up	rate	limiting	for	jobs,	initialize	the
static	environment	for	protected	processes,	and	look	up	the	various	system-
defined	entry	points	in	the	user-mode	system	library	(Ntdll.dll).

46.	 The	power	manager	is	called	to	finalize	its	initialization.

47.	 The	rest	of	the	licensing	information	for	the	system	is	initialized,	including
caching	the	current	policy	settings	stored	in	the	registry.

48.	 The	security	reference	monitor	is	called	to	create	the	Command	Server
Thread	that	communicates	with	LSASS.	(See	the	section	“Security	System
Components”	in	Chapter	6	in	Part	1	for	more	on	how	security	is	enforced	in
Windows.)

49.	 The	Session	Manager	(Smss)	process	(introduced	in	Chapter	2,	“System
Architecture,”	in	Part	1)	is	started.	Smss	is	responsible	for	creating	the	user-



mode	environment	that	provides	the	visible	interface	to	Windows—its
initialization	steps	are	covered	in	the	next	section.

50.	 The	TPM	boot	entropy	values	are	queried.	These	values	can	be	queried	only
once	per	boot,	and	normally,	the	TPM	system	driver	should	have	queried
them	by	now,	but	if	this	driver	had	not	been	running	for	some	reason
(perhaps	the	user	disabled	it),	the	unqueried	values	would	still	be	available.
Therefore,	the	kernel	manually	queries	them	too	to	avoid	this	situation,	and	in
normal	scenarios,	the	kernel’s	own	query	should	fail.

51.	 All	the	memory	used	up	by	the	loader	parameter	block	and	all	its	references
is	now	freed.

As	a	final	step	before	considering	the	executive	and	kernel	initialization	complete,
the	phase	1	initialization	thread	waits	for	the	handle	to	the	Session	Manager
process	with	a	timeout	value	of	5	seconds.	If	the	Session	Manager	process	exits
before	the	5	seconds	elapse,	the	system	crashes	with	a
SESSION5_INITIALIZATION_FAILED	stop	code.

If	the	5-second	wait	times	out	(that	is,	if	5	seconds	elapse),	the	Session	Manager	is
assumed	to	have	started	successfully,	and	the	phase	1	initialization	function	calls
the	memory	manager’s	zero	page	thread	function	(explained	in	Chapter	10).	Thus,
this	system	thread	becomes	the	zero	page	thread	for	the	remainder	of	the	life	of	the
system.

Smss,	Csrss,	and	Wininit
Smss	is	like	any	other	user-mode	process	except	for	two	differences.	First,
Windows	considers	Smss	a	trusted	part	of	the	operating	system.	Second,	Smss	is	a
native	application.	Because	it’s	a	trusted	operating	system	component,	Smss	can
perform	actions	few	other	processes	can	perform,	such	as	creating	security	tokens.
Because	it’s	a	native	application,	Smss	doesn’t	use	Windows	APIs—it	uses	only
core	executive	APIs	known	collectively	as	the	Windows	native	API.	Smss	doesn’t
use	the	Win32	APIs	because	the	Windows	subsystem	isn’t	executing	when	Smss
launches.	In	fact,	one	of	Smss’s	first	tasks	is	to	start	the	Windows	subsystem.

Smss	then	calls	the	configuration	manager	executive	subsystem	to	finish	initializing
the	registry,	fleshing	the	registry	out	to	include	all	its	keys.	The	configuration



manager	is	programmed	to	know	where	the	core	registry	hives	are	stored	on	disk
(excluding	hives	corresponding	to	user	profiles),	and	it	records	the	paths	to	the
hives	it	loads	in	the	HKLM\SYSTEM\CurrentControlSet\Control\hivelist	key.

The	main	thread	of	Smss	performs	the	following	initialization	steps:

1.	 Marks	itself	as	a	critical	process	and	its	main	thread	as	a	critical	thread.	As
discussed	in	Chapter	5	in	Part	1,	this	will	cause	the	kernel	to	crash	the	system
if	Smss	quits	unexpectedly.	Smss	also	enables	the	automatic	affinity	update
mode	to	support	dynamic	processor	addition.	(See	Chapter	5	in	Part	1	for
more	information.)

2.	 Creates	protected	prefixes	for	the	mailslot	and	named	pipe	file	system
drivers,	creating	privileged	paths	for	administrators	and	service	accounts	to
communicate	through	those	paths.	See	Chapter	7,	“Networking,”	in	Part	1	for
more	information.

3.	 Calls	SmpInit,	which	tunes	the	maximum	concurrency	level	for	Smss,
meaning	the	maximum	number	of	parallel	sessions	that	will	be	created	by
spawning	copies	of	Smss	into	other	sessions.	This	is	at	least	four	and	at	most
the	number	of	active	CPUs.

4.	 SmpInit	then	creates	an	ALPC	port	object	(\SmApiPort)	to	receive	client
requests	(such	as	to	load	a	new	subsystem	or	create	a	session).

5.	 SmpInit	calls	SmpLoadDataFromRegistry,	which	starts	by	setting	up	the
default	environment	variables	for	the	system,	and	sets	the	SAFEBOOT
variable	if	the	system	was	booted	in	safe	mode.

6.	 SmpLoadDataFromRegistry	calls	SmpInitializeDosDevices	to	define	the
symbolic	links	for	MS-DOS	device	names	(such	as	COM1	and	LPT1).

7.	 SmpLoadDataFromRegistry	creates	the	\Sessions	directory	in	the	object
manager’s	namespace	(for	multiple	sessions).

8.	 SmpLoadDataFromRegistry	runs	any	programs	defined	in
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\BootExecute
with	SmpExecuteCommand.	Typically,	this	value	contains	one	command	to
run	Autochk	(the	boot-time	version	of	Chkdsk).

9.	 SmpLoadDataFromRegistry	calls	SmpProcessFileRenames	to	perform



delayed	file	rename	and	delete	operations	as	directed	by
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\PendingFileRenameOperations	and
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\PendingFileRenameOperations2.

10.	 SmpLoadDataFromRegistry	calls	SmpCreatePagingFiles	to	create	additional
paging	files.	Paging	file	configuration	is	stored	under
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\PagingFiles.

11.	 SmpLoadDataFromRegistry	initializes	the	registry	by	calling	the	native
function	NtInitializeRegistry.	The	configuration	manager	builds	the	rest	of
the	registry	by	loading	the	registry	hives	for	the	HKLM\SAM,
HKLM\SECURITY,	and	HKLM\SOFTWARE	keys.	Although
HKLM\SYSTEM\CurrentControlSet\Control\hivelist	locates	the	hive	files	on
disk,	the	configuration	manager	is	coded	to	look	for	them	in
\Windows\System32\Config.

12.	 SmpLoadDataFromRegistry	calls	SmpCreateDynamicEnvironmentVariables
to	add	system	environment	variables	that	are	defined	in
HKLM\SYSTEM\CurrentControlSet\Session	Manager\Environment,	as	well
as	processor-specific	environment	variables	such	as
NUMBER_PROCESSORS,	PROCESSOR_ARCHITECTURE,	and
PROCESSOR_LEVEL.

13.	 SmpLoadDataFromRegistry	runs	any	programs	defined	in
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\SetupExecute
with	SmpExecuteCommand.	Typically,	this	value	is	set	only	if	Windows	is
being	booted	as	part	of	the	second	stage	of	installation	and	Setupcl.exe	is	the
default	value.

14.	 SmpLoadDataFromRegistry	calls	SmpConfigureSharedSessionData	to
initialize	the	list	of	subsystems	that	will	be	started	in	each	session	(both
immediately	and	deferred)	as	well	as	the	Session	0	initialization	command
(which,	by	default,	is	to	launch	the	Wininit.exe	process).	The	initialization
command	can	be	overridden	by	creating	a	string	value	called
S0InitialCommand	in	HKLM\SYSTEM\CurrentControlSet\Control\Session



Manager	and	setting	it	as	the	path	to	another	program.

15.	 SmpLoadDataFromRegistry	calls	SmpInitializeKnownDlls	to	open	known
DLLs,	and	creates	section	objects	for	them	in	the	\Knowndlls	directory	of	the
object	manager	namespace.	The	list	of	DLLs	considered	known	is	located	in
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs,	and	the	path	to	the	directory	in	which	the	DLLs	are
located	is	stored	in	the	DllDirectory	value	of	the	key.	On	64-bit	systems,	32-
bit	DLLs	used	as	part	of	Wow64	are	stored	in	the	DllDirectory32	value.

16.	 Finally,	SmpLoadDataFromRegistry	calls
SmpTranslateSystemPartitionInformation	to	convert	the	SystemPartition
value	stored	in	HKLM\SYSTEM\Setup,	which	is	stored	in	native	NT	object
manager	path	format,	to	a	volume	drive	letter	stored	in	the	BootDir	value.
Among	other	components,	Windows	Update	uses	this	registry	key	to	figure
out	what	the	system	volume	is.

17.	 At	this	point,	SmpLoadDataFromRegistry	returns	to	SmpInit,	which	returns
to	the	main	thread	entry	point.	Smss	then	creates	the	number	of	initial
sessions	that	were	defined	(typically,	only	one,	session	0,	but	you	can	change
this	number	through	the	NumberOfInitialSessions	registry	value	in	the	Smss
registry	key	mentioned	earlier)	by	calling	SmpCreateInitialSession,	which
creates	an	Smss	process	for	each	user	session.	This	function’s	main	job	is	to
call	SmpStartCsr	to	start	Csrss	in	each	session.

18.	 As	part	of	Csrss’s	initialization,	it	loads	the	kernel-mode	part	of	the	Windows
subsystem	(Win32k.sys).	The	initialization	code	in	Win32k.sys	uses	the
video	driver	to	switch	the	screen	to	the	resolution	defined	by	the	default
profile,	so	this	is	the	point	at	which	the	screen	changes	from	the	VGA	mode
the	boot	video	driver	uses	to	the	default	resolution	chosen	for	the	system.

19.	 Meanwhile,	each	spawned	Smss	in	a	different	user	session	starts	the	other
subsystem	processes,	such	as	Psxss	if	the	Subsystem	for	Unix-based
Applications	feature	was	installed.	(See	Chapter	3	in	Part	1	for	more
information	on	subsystem	processes.)

20.	 The	first	Smss	from	session	0	executes	the	Session	0	initialization	command
(described	in	step	14),	by	default	launching	the	Windows	initialization



process	(Wininit).	Other	Smss	instances	start	the	interactive	logon	manager
process	(Winlogon),	which,	unlike	Wininit,	is	hardcoded.	The	startup	steps	of
Wininit	and	Winlogon	are	described	shortly.

PENDING	FILE	RENAME	OPERATIONS

The	fact	that	executable	images	and	DLLs	are	memory-mapped	when	they	are	used	makes	it	impossible	to
update	core	system	files	after	Windows	has	finished	booting	(unless	hotpatching	technology	is	used,	which
is	only	for	Microsoft	patches	to	the	operating	system).	The	MoveFileEx	Windows	API	has	an	option	to
specify	that	a	file	move	be	delayed	until	the	next	boot.	Service	packs	and	hotfixes	that	must	update	in-use
memory-mapped	files	install	replacement	files	onto	a	system	in	temporary	locations	and	use	the
MoveFileEx	API	to	have	them	replace	otherwise	in-use	files.	When	used	with	that	option,	MoveFileEx
simply	records	commands	in	the	PendingFileRenameOperations	and	PendingFileRenameOperations2	keys
under	HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager.	These	registry	values	are	of	type
MULTI_SZ,	where	each	operation	is	specified	in	pairs	of	file	names:	the	first	file	name	is	the	source
location,	and	the	second	is	the	target	location.	Delete	operations	use	an	empty	string	as	their	target	path.
You	can	use	the	Pendmoves	utility	from	Windows	Sysinternals
(http://www.microsoft.com/technet/sysinternals)	to	view	registered	delayed	rename	and	delete	commands.

After	performing	these	initialization	steps,	the	main	thread	in	Smss	waits	forever
on	the	process	handle	of	Winlogon,	while	the	other	ALPC	threads	wait	for
messages	to	create	new	sessions	or	subsystems.	If	either	Wininit	or	Csrss	terminate
unexpectedly,	the	kernel	crashes	the	system	because	these	processes	are	marked	as
critical.	If	Winlogon	terminates	unexpectedly,	the	session	associated	with	it	is
logged	off.

Wininit	then	performs	its	startup	steps,	such	as	creating	the	initial	window	station
and	desktop	objects.	It	also	configures	the	Session	0	window	hook,	which	is	used
by	the	Interactive	Services	Detection	service	(UI0Detect.exe)	to	provide	backward
compatibility	with	interactive	services.	(See	Chapter	4	in	Part	1	for	more
information	on	services.)	Wininit	then	creates	the	service	control	manager	(SCM)
process	(%SystemRoot%\System32\Services.exe),	which	loads	all	services	and
device	drivers	marked	for	auto-start,	and	the	Local	Security	Authority	subsystem
(LSASS)	process	(%SystemRoot%\System32\Lsass.exe).	Finally,	it	loads	the	local
session	manager	(%SystemRoot%\System32\Lsm.exe).	On	session	1	and	beyond,
Winlogon	runs	instead	and	loads	the	registered	credential	providers	for	the	system
(by	default,	the	Microsoft	credential	provider	supports	password-based	and
smartcard-based	logons)	into	a	child	process	called	LogonUI
(%SystemRoot%\System32\Logonui.exe),	which	is	responsible	for	displaying	the

http://www.microsoft.com/technet/sysinternals


logon	interface.	(For	more	details	on	the	startup	sequence	for	Wininit,	Winlogon,
and	LSASS,	see	the	section	“Winlogon	Initialization”	in	Chapter	6	in	Part	1.)

After	the	SCM	initializes	the	auto-start	services	and	drivers	and	a	user	has
successfully	logged	on	at	the	console,	the	SCM	deems	the	boot	successful.	The
registry’s	last	known	good	control	set	(as	indicated	by
HKLM\SYSTEM\Select\LastKnownGood)	is	updated	to	match
\CurrentControlSet.

NOTE

Because	noninteractive	servers	might	never	have	an	interactive	logon,	they	might	not	get	LastKnownGood
updated	to	reflect	the	control	set	used	for	a	successful	boot.	You	can	override	the	definition	of	a	successful
boot	by	setting	HKLM\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\Winlogon\ReportBootOk	to
0,	writing	a	custom	boot	verification	program	that	calls	the	NotifyBootConfigStatus	Windows	API	when	a
boot	is	successful,	and	entering	the	path	to	the	verification	program	in
HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram.

After	launching	the	SCM,	Winlogon	waits	for	an	interactive	logon	notification
from	the	credential	provider.	When	it	receives	a	logon	and	validates	the	logon	(a
process	for	which	you	can	find	more	information	in	the	section	“User	Logon
Steps”	in	Chapter	6	in	Part	1),	Winlogon	loads	the	registry	hive	from	the	profile	of
the	user	logging	on	and	maps	it	to	HKCU.	It	then	sets	the	user’s	environment
variables	that	are	stored	in	HKCU\Environment	and	notifies	the	Winlogon
notification	packages	registered	in	HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Notify	that	a	logon	has	occurred.

Winlogon	next	starts	the	shell	by	launching	the	executable	or	executables	specified
in	HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\WinLogon\Userinit	(with	multiple	executables	separated	by
commas)	that	by	default	points	at	\Windows\System32\Userinit.exe.	Userinit.exe
performs	the	following	steps:

1.	 Processes	the	user	scripts	specified	in
HKCU\Software\Policies\Microsoft\Windows\System\Scripts	and	the
machine	logon	scripts	in
HKLM\SOFTWARE\Policies\Microsoft\Windows\System\Scripts.	(Because
machine	scripts	run	after	user	scripts,	they	can	override	user	settings.)



2.	 If	Group	Policy	specifies	a	user	profile	quota,	starts
%SystemRoot%\System32\Proquota.exe	to	enforce	the	quota	for	the	current
user.

3.	 Launches	the	comma-separated	shell	or	shells	specified	in
HKCU\Software\Microsoft\Windows	NT\CurrentVersion\Winlogon\Shell.	If
that	value	doesn’t	exist,	Userinit.exe	launches	the	shell	or	shells	specified	in
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Shell,	which	is	by	default	Explorer.exe.

Winlogon	then	notifies	registered	network	providers	that	a	user	has	logged	on.	The
Microsoft	network	provider,	Multiple	Provider	Router
(%SystemRoot%\System32\Mpr.dll),	restores	the	user’s	persistent	drive	letter	and
printer	mappings	stored	in	HKCU\Network	and	HKCU\Printers,	respectively.
Figure	13-4	shows	the	process	tree	as	seen	in	Process	Monitor	after	a	logon	(using
its	boot	logging	capability).	Note	the	Smss	processes	that	are	dimmed	(meaning
that	they	have	since	exited).	These	refer	to	the	spawned	copies	that	initialized	each
session.



Figure	13-4.	Process	tree	during	logon

ReadyBoot
Windows	uses	the	standard	logical	boot-time	prefetcher	(described	in	Chapter	10)
if	the	system	has	less	than	700	MB	of	memory,	but	if	the	system	has	700	MB	or
more	of	RAM,	it	uses	an	in-RAM	cache	to	optimize	the	boot	process.	The	size	of
the	cache	depends	on	the	total	RAM	available,	but	it	is	large	enough	to	create	a
reasonable	cache	and	yet	allow	the	system	the	memory	it	needs	to	boot	smoothly.

After	every	boot,	the	ReadyBoost	service	(see	Chapter	10	for	information	on
ReadyBoost)	uses	idle	CPU	time	to	calculate	a	boot-time	caching	plan	for	the	next
boot.	It	analyzes	file	trace	information	from	the	five	previous	boots	and	identifies
which	files	were	accessed	and	where	they	are	located	on	disk.	It	stores	the
processed	traces	in	%SystemRoot%\Prefetch\Readyboot	as	.fx	files	and	saves	the
caching	plan	under



HKLM\SYSTEM\CurrentControlSet\Services\Rdyboost\Parameters	in
REG_BINARY	values	named	for	internal	disk	volumes	they	refer	to.

The	cache	is	implemented	by	the	same	device	driver	that	implements	ReadyBoost
caching	(Ecache.sys),	but	the	cache’s	population	is	guided	by	the	boot	plan
previously	stored	in	the	registry.	Although	the	boot	cache	is	compressed	like	the
ReadyBoost	cache,	another	difference	between	ReadyBoost	and	ReadyBoot	cache
management	is	that	while	in	ReadyBoot	mode,	the	cache	is	not	encrypted.	The
ReadyBoost	service	deletes	the	cache	50	seconds	after	the	service	starts,	or	if	other
memory	demands	warrant	it,	and	records	the	cache’s	statistics	in
HKLM\SYSTEM\CurrentControlSet\Services\Ecache\Parameters\ReadyBootStats,
as	shown	in	Figure	13-5.

Figure	13-5.	ReadyBoot	statistics

Images	That	Start	Automatically
In	addition	to	the	Userinit	and	Shell	registry	values	in	Winlogon’s	key,	there	are
many	other	registry	locations	and	directories	that	default	system	components	check
and	process	for	automatic	process	startup	during	the	boot	and	logon	processes.	The
Msconfig	utility	(%SystemRoot%\System32\Msconfig.exe)	displays	the	images
configured	by	several	of	the	locations.	The	Autoruns	tool,	which	you	can	download
from	Sysinternals	and	that	is	shown	in	Figure	13-6,	examines	more	locations	than
Msconfig	and	displays	more	information	about	the	images	configured	to
automatically	run.	By	default,	Autoruns	shows	only	the	locations	that	are



configured	to	automatically	execute	at	least	one	image,	but	selecting	the	Include
Empty	Locations	entry	on	the	Options	menu	causes	Autoruns	to	show	all	the
locations	it	inspects.	The	Options	menu	also	has	selections	to	direct	Autoruns	to
hide	Microsoft	entries,	but	you	should	always	combine	this	option	with	Verify
Image	Signatures;	otherwise,	you	risk	hiding	malicious	programs	that	include	false
information	about	their	company	name	information.

Figure	13-6.	The	Autoruns	tool	available	from	Sysinternals

EXPERIMENT:	AUTORUNS

Many	users	are	unaware	of	how	many	programs	execute	as	part	of	their	logon.	Original	equipment
manufacturers	(OEMs)	often	configure	their	systems	with	add-on	utilities	that	execute	in	the	background
using	registry	values	or	file	system	directories	processed	for	automatic	execution	and	so	are	not	normally
visible.	See	what	programs	are	configured	to	start	automatically	on	your	computer	by	running	the	Autoruns
utility	from	Sysinternals.	Compare	the	list	shown	in	Autoruns	with	that	shown	in	Msconfig	and	identify	any
differences.	Then	ensure	that	you	understand	the	purpose	of	each	program.



Troubleshooting	Boot	and	Startup	Problems
This	section	presents	approaches	to	solving	problems	that	can	occur	during	the
Windows	startup	process	as	a	result	of	hard	disk	corruption,	file	corruption,
missing	files,	and	third-party	driver	bugs.	First	we	describe	three	Windows	boot-
problem	recovery	modes:	last	known	good,	safe	mode,	and	Windows	Recovery
Environment	(WinRE).	Then	we	present	common	boot	problems,	their	causes,	and
approaches	to	solving	them.	The	solutions	refer	to	last	known	good,	safe	mode,
WinRE,	and	other	tools	that	ship	with	Windows.

Last	Known	Good
Last	known	good	(LKG)	is	a	useful	mechanism	for	getting	a	system	that	crashes
during	the	boot	process	back	to	a	bootable	state.	Because	the	system’s
configuration	settings	are	stored	in	HKLM\SYSTEM\CurrentControlSet\Control
and	driver	and	service	configuration	is	stored	in
HKLM\SYSTEM\CurrentControlSet\Services,	changes	to	these	parts	of	the
registry	can	render	a	system	unbootable.	For	example,	if	you	install	a	device	driver
that	has	a	bug	that	crashes	the	system	during	the	boot,	you	can	press	the	F8	key
during	the	boot	and	select	last	known	good	from	the	resulting	menu.	The	system
marks	the	control	set	that	it	was	using	to	boot	the	system	as	failed	by	setting	the
Failed	value	of	HKLM\SYSTEM\Select	and	then	changes
HKLM\SYSTEM\Select\Current	to	the	value	stored	in
HKLM\SYSTEM\Select\LastKnownGood.	It	also	updates	the	symbolic	link
HKLM\SYSTEM\CurrentControlSet	to	point	at	the	LastKnownGood	control	set.
Because	the	new	driver’s	key	is	not	present	in	the	Services	subkey	of	the
LastKnownGood	control	set,	the	system	will	boot	successfully.

Safe	Mode
Perhaps	the	most	common	reason	Windows	systems	become	unbootable	is	that	a
device	driver	crashes	the	machine	during	the	boot	sequence.	Because	software	or
hardware	configurations	can	change	over	time,	latent	bugs	can	surface	in	drivers	at
any	time.	Windows	offers	a	way	for	an	administrator	to	attack	the	problem:
booting	in	safe	mode.	Safe	mode	is	a	boot	configuration	that	consists	of	the



minimal	set	of	device	drivers	and	services.	By	relying	on	only	the	drivers	and
services	that	are	necessary	for	booting,	Windows	avoids	loading	third-party	and
other	nonessential	drivers	that	might	crash.

When	Windows	boots,	you	press	the	F8	key	to	enter	a	special	boot	menu	that
contains	the	safe-mode	boot	options.	You	typically	choose	from	three	safe-mode
variations:	Safe	Mode,	Safe	Mode	With	Networking,	and	Safe	Mode	With
Command	Prompt.	Standard	safe	mode	includes	the	minimum	number	of	device
drivers	and	services	necessary	to	boot	successfully.	Networking-enabled	safe	mode
adds	network	drivers	and	services	to	the	drivers	and	services	that	standard	safe
mode	includes.	Finally,	safe	mode	with	command	prompt	is	identical	to	standard
safe	mode	except	that	Windows	runs	the	Command	Prompt	application	(Cmd.exe)
instead	of	Windows	Explorer	as	the	shell	when	the	system	enables	GUI	mode.

Windows	includes	a	fourth	safe	mode—Directory	Services	Restore	mode—which
is	different	from	the	standard	and	networking-enabled	safe	modes.	You	use
Directory	Services	Restore	mode	to	boot	the	system	into	a	mode	where	the	Active
Directory	service	of	a	domain	controller	is	offline	and	unopened.	This	allows	you
to	perform	repair	operations	on	the	database	or	restore	it	from	backup	media.	All
drivers	and	services,	with	the	exception	of	the	Active	Directory	service,	load
during	a	Directory	Services	Restore	mode	boot.	In	cases	where	you	can’t	log	on	to
a	system	because	of	Active	Directory	database	corruption,	this	mode	enables	you
to	repair	the	corruption.

Driver	Loading	in	Safe	Mode
How	does	Windows	know	which	device	drivers	and	services	are	part	of	standard
and	networking-enabled	safe	mode?	The	answer	lies	in	the
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot	registry	key.	This	key
contains	the	Minimal	and	Network	subkeys.	Each	subkey	contains	more	subkeys
that	specify	the	names	of	device	drivers	or	services	or	of	groups	of	drivers.	For
example,	the	vga.sys	subkey	identifies	the	VGA	display	device	driver	that	the
startup	configuration	includes.	The	VGA	display	driver	provides	basic	graphics
services	for	any	PC-compatible	display	adapter.	The	system	uses	this	driver	as	the
safe-mode	display	driver	in	lieu	of	a	driver	that	might	take	advantage	of	an
adapter’s	advanced	hardware	features	but	that	might	also	prevent	the	system	from
booting.	Each	subkey	under	the	SafeBoot	key	has	a	default	value	that	describes



what	the	subkey	identifies;	the	vga.sys	subkey’s	default	value	is	“Driver”.

The	Boot	file	system	subkey	has	as	its	default	value	“Driver	Group”.	When
developers	design	a	device	driver’s	installation	script	(.inf	file),	they	can	specify
that	the	device	driver	belongs	to	a	driver	group.	The	driver	groups	that	a	system
defines	are	listed	in	the	List	value	of	the
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder	key.	A
developer	specifies	a	driver	as	a	member	of	a	group	to	indicate	to	Windows	at	what
point	during	the	boot	process	the	driver	should	start.	The	ServiceGroupOrder	key’s
primary	purpose	is	to	define	the	order	in	which	driver	groups	load;	some	driver
types	must	load	either	before	or	after	other	driver	types.	The	Group	value	beneath
a	driver’s	configuration	registry	key	associates	the	driver	with	a	group.

Driver	and	service	configuration	keys	reside	beneath
HKLM\SYSTEM\CurrentControlSet\Services.	If	you	look	under	this	key,	you’ll
find	the	VgaSave	key	for	the	VGA	display	device	driver,	which	you	can	see	in	the
registry	is	a	member	of	the	Video	Save	group.	Any	file	system	drivers	that
Windows	requires	for	access	to	the	Windows	system	drive	are	automatically	loaded
as	if	part	of	the	Boot	file	system	group.	Other	file	system	drivers	are	part	of	the
File	system	group,	which	the	standard	and	networking-enabled	safe-mode
configurations	also	include.

When	you	boot	into	a	safe-mode	configuration,	the	boot	loader	(Winload)	passes
an	associated	switch	to	the	kernel	(Ntoskrnl.exe)	as	a	command-line	parameter,
along	with	any	switches	you’ve	specified	in	the	BCD	for	the	installation	you’re
booting.	If	you	boot	into	any	safe	mode,	Winload	sets	the	safeboot	BCD	option
with	a	value	describing	the	type	of	safe	mode	you	select.	For	standard	safe	mode,
Winload	sets	minimal,	and	for	networking-enabled	safe	mode,	it	adds	network.
Winload	adds	minimal	and	sets	safebootalternateshell	for	safe	mode	with
command	prompt	and	dsrepair	for	Directory	Services	Restore	mode.

The	Windows	kernel	scans	boot	parameters	in	search	of	the	safe-mode	switches
early	during	the	boot,	during	the	InitSafeBoot	function,	and	sets	the	internal
variable	InitSafeBootMode	to	a	value	that	reflects	the	switches	the	kernel	finds.
The	kernel	writes	the	InitSafeBootMode	value	to	the	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue	so
that	user-mode	components,	such	as	the	SCM,	can	determine	what	boot	mode	the



system	is	in.	In	addition,	if	the	system	is	booting	in	safe	mode	with	command
prompt,	the	kernel	sets	the
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\UseAlternateShell
value	to	1.	The	kernel	records	the	parameters	that	Winload	passes	to	it	in	the	value
HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions.

When	the	I/O	manager	kernel	subsystem	loads	device	drivers	that
HKLM\SYSTEM\CurrentControlSet\Services	specifies,	the	I/O	manager	executes
the	function	IopLoadDriver.	When	the	Plug	and	Play	manager	detects	a	new
device	and	wants	to	dynamically	load	the	device	driver	for	the	detected	device,	the
Plug	and	Play	manager	executes	the	function	PipCallDriverAddDevice.	Both	these
functions	call	the	function	IopSafebootDriverLoad	before	they	load	the	driver	in
question.	IopSafebootDriverLoad	checks	the	value	of	InitSafeBootMode	and
determines	whether	the	driver	should	load.	For	example,	if	the	system	boots	in
standard	safe	mode,	IopSafebootDriverLoad	looks	for	the	driver’s	group,	if	the
driver	has	one,	under	the	Minimal	subkey.	If	IopSafebootDriverLoad	finds	the
driver’s	group	listed,	IopSafebootDriverLoad	indicates	to	its	caller	that	the	driver
can	load.	Otherwise,	IopSafebootDriverLoad	looks	for	the	driver’s	name	under	the
Minimal	subkey.	If	the	driver’s	name	is	listed	as	a	subkey,	the	driver	can	load.	If
IopSafebootDriverLoad	can’t	find	the	driver	group	or	driver	name	subkeys,	the
driver	will	not	be	loaded.	If	the	system	boots	in	networking-enabled	safe	mode,
IopSafebootDriverLoad	performs	the	searches	on	the	Network	subkey.	If	the
system	doesn’t	boot	in	safe	mode,	IopSafebootDriverLoad	lets	all	drivers	load.

NOTE

An	exception	exists	regarding	the	drivers	that	safe	mode	excludes	from	a	boot:	Winload,	rather	than	the
kernel,	loads	any	drivers	with	a	Start	value	of	0	in	their	registry	key,	which	specifies	loading	the	drivers	at
boot	time.	Winload	doesn’t	check	the	SafeBoot	registry	key	because	it	assumes	that	any	driver	with	a	Start
value	of	0	is	required	for	the	system	to	boot	successfully.	Because	Winload	doesn’t	check	the	SafeBoot
registry	key	to	identify	which	drivers	to	load,	Winload	loads	all	boot-start	drivers	(and	later	Ntoskrnl	starts
them).

Safe-Mode-Aware	User	Programs
When	the	service	control	manager	(SCM)	user-mode	component	(which
Services.exe	implements)	initializes	during	the	boot	process,	the	SCM	checks	the
value	of



HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue	to
determine	whether	the	system	is	performing	a	safe-mode	boot.	If	so,	the	SCM
mirrors	the	actions	of	IopSafebootDriverLoad.	Although	the	SCM	processes	the
services	listed	under	HKLM\SYSTEM\CurrentControlSet\Services,	it	loads	only
services	that	the	appropriate	safe-mode	subkey	specifies	by	name.	You	can	find
more	information	on	the	SCM	initialization	process	in	the	section	“Services”	in
Chapter	4	in	Part	1.

Userinit,	the	component	that	initializes	a	user’s	environment	when	the	user	logs	on
(%SystemRoot%\System32\Userinit.exe),	is	another	user-mode	component	that
needs	to	know	whether	the	system	is	booting	in	safe	mode.	It	checks	the	value	of
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\UseAlternateShell.
If	this	value	is	set,	Userinit	runs	the	program	specified	as	the	user’s	shell	in	the
value	HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell	rather
than	executing	Explorer.exe.	Windows	writes	the	program	name	Cmd.exe	to	the
AlternateShell	value	during	installation,	making	the	Windows	command	prompt
the	default	shell	for	safe	mode	with	command	prompt.	Even	though	the	command
prompt	is	the	shell,	you	can	type	Explorer.exe	at	the	command	prompt	to	start
Windows	Explorer,	and	you	can	run	any	other	GUI	program	from	the	command
prompt	as	well.

How	does	an	application	determine	whether	the	system	is	booting	in	safe	mode?
By	calling	the	Windows	GetSystemMetrics(SM_CLEANBOOT)	function.	Batch
scripts	that	need	to	perform	certain	operations	when	the	system	boots	in	safe	mode
look	for	the	SAFEBOOT_OPTION	environment	variable	because	the	system
defines	this	environment	variable	only	when	booting	in	safe	mode.

Boot	Logging	in	Safe	Mode
When	you	direct	the	system	to	boot	into	safe	mode,	Winload	hands	the	string
specified	by	the	bootlog	option	to	the	Windows	kernel	as	a	parameter,	together
with	the	parameter	that	requests	safe	mode.	When	the	kernel	initializes,	it	checks
for	the	presence	of	the	bootlog	parameter	whether	or	not	any	safe-mode	parameter
is	present.	If	the	kernel	detects	a	boot	log	string,	the	kernel	records	the	action	the
kernel	takes	on	every	device	driver	it	considers	for	loading.	For	example,	if
IopSafebootDriverLoad	tells	the	I/O	manager	not	to	load	a	driver,	the	I/O	manager
calls	IopBootLog	to	record	that	the	driver	wasn’t	loaded.	Likewise,	after



IopLoadDriver	successfully	loads	a	driver	that	is	part	of	the	safe-mode
configuration,	IopLoadDriver	calls	IopBootLog	to	record	that	the	driver	loaded.
You	can	examine	boot	logs	to	see	which	device	drivers	are	part	of	a	boot
configuration.

Because	the	kernel	wants	to	avoid	modifying	the	disk	until	Chkdsk	executes,	late	in
the	boot	process,	IopBootLog	can’t	simply	dump	messages	into	a	log	file.	Instead,
IopBootLog	records	messages	in	the
HKLM\SYSTEM\CurrentControlSet\BootLog	registry	value.	As	the	first	user-
mode	component	to	load	during	a	boot,	the	Session	Manager
(%SystemRoot%\System32\Smss.exe)	executes	Chkdsk	to	ensure	the	system
drives’	consistency	and	then	completes	registry	initialization	by	executing	the
NtInitializeRegistry	system	call.	The	kernel	takes	this	action	as	a	cue	that	it	can
safely	open	a	log	file	on	the	disk,	which	it	does,	invoking	the	function
IopCopyBootLogRegistryToFile.	This	function	creates	the	file	Ntbtlog.txt	in	the
Windows	system	directory	(%SystemRoot%)	and	copies	the	contents	of	the
BootLog	registry	value	to	the	file.	IopCopyBootLogRegistryToFile	also	sets	a	flag
for	IopBootLog	that	lets	IopBootLog	know	that	writing	directly	to	the	log	file,
rather	than	recording	messages	in	the	registry,	is	now	OK.	The	following	output
shows	the	partial	contents	of	a	sample	boot	log:

Microsoft (R) Windows (R) Version 6.1 (Build 7601)
10  4 2012 09:04:53.375
Loaded driver \SystemRoot\system32\ntkrnlpa.exe
Loaded driver \SystemRoot\system32\hal.dll
Loaded driver \SystemRoot\system32\kdcom.dll
Loaded driver \SystemRoot\system32\mcupdate_GenuineIntel.dll
Loaded driver \SystemRoot\system32\PSHED.dll
Loaded driver \SystemRoot\system32\BOOTVID.dll
Loaded driver \SystemRoot\system32\CLFS.SYS
Loaded driver \SystemRoot\system32\CI.dll
Loaded driver \SystemRoot\system32\drivers\Wdf01000.sys
Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS
Loaded driver \SystemRoot\system32\drivers\acpi.sys
Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS
Loaded driver \SystemRoot\system32\drivers\msisadrv.sys
Loaded driver \SystemRoot\system32\drivers\pci.sys
Loaded driver \SystemRoot\system32\drivers\volmgr.sys
Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys
Loaded driver \SystemRoot\system32\DRIVERS\BATTC.SYS
Loaded driver \SystemRoot\System32\drivers\mountmgr.sys
Loaded driver \SystemRoot\system32\drivers\intelide.sys
Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS
Loaded driver \SystemRoot\system32\DRIVERS\pciide.sys
Loaded driver \SystemRoot\System32\drivers\volmgrx.sys
Loaded driver \SystemRoot\system32\drivers\atapi.sys



Loaded driver \SystemRoot\system32\drivers\ataport.SYS
Loaded driver \SystemRoot\system32\drivers\fltmgr.sys
Loaded driver \SystemRoot\system32\drivers\fileinfo.sys
...
Did not load driver @battery.inf,%acpi\acpi0003.devicedesc%;Microsoft AC Adapter
Did not load driver @battery.inf,%acpi\pnp0c0a.devicedesc%;Microsoft ACPI-Compliant
Control Method Battery
Did not load driver @oem46.inf,%nvidia_g71.dev_0297.1%;NVIDIA GeForce Go 7950 GTX
Did not load driver @oem5.inf,%nic_mpciex%;Intel(R) PRO/Wireless 3945ABG Network 
Connectio
n
Did not load driver @netb57vx.inf,%bcm5750a1clnahkd%;Broadcom NetXtreme 57xx Gigabit
Contr
oller
Did not load driver @sdbus.inf,%pci\cc_080501.devicedesc%;SDA Standard Compliant
SD Host Controller
...

Windows	Recovery	Environment	(WinRE)
Safe	mode	is	a	satisfactory	fallback	for	systems	that	become	unbootable	because	a
device	driver	crashes	during	the	boot	sequence,	but	in	some	situations	a	safe-mode
boot	won’t	help	the	system	boot.	For	example,	if	a	driver	that	prevents	the	system
from	booting	is	a	member	of	a	Safe	group,	safe-mode	boots	will	fail.	Another
example	of	a	situation	in	which	safe	mode	won’t	help	the	system	boot	is	when	a
third-party	driver,	such	as	a	virus	scanner	driver,	that	loads	at	the	boot	prevents	the
system	from	booting.	(Boot-start	drivers	load	whether	or	not	the	system	is	in	safe
mode.)	Other	situations	in	which	safe-mode	boots	will	fail	are	when	a	system
module	or	critical	device	driver	file	that	is	part	of	a	safe-mode	configuration
becomes	corrupt	or	when	the	system	drive’s	Master	Boot	Record	(MBR)	is
damaged.

You	can	get	around	these	problems	by	using	the	Windows	Recovery	Environment.
The	Windows	Recovery	Environment	provides	an	assortment	of	tools	and
automated	repair	technologies	to	automatically	fix	the	most	common	startup
problems.	It	includes	five	main	tools:

Startup	Repair	An	automated	tool	that	detects	the	most	common	Windows
startup	problems	and	automatically	attempts	to	repair	them.

System	Restore	Allows	restoring	to	a	previous	restore	point	in	cases	in	which
you	cannot	boot	the	Windows	installation	to	do	so,	even	in	safe	mode.

System	Image	Recover	Called	Complete	PC	Restore,	as	well	as	ASR
(Automated	System	Recovery),	in	previous	versions	of	Windows,	this	restores	a



Windows	installation	from	a	complete	backup,	not	just	a	system	restore	point,
which	might	not	contain	all	damaged	files	and	lost	data.

Windows	Memory	Diagnostic	Tool	Performs	memory	diagnostic	tests	that
check	for	signs	of	faulty	RAM.	Faulty	RAM	can	be	the	reason	for	random
kernel	and	application	crashes	and	erratic	system	behavior.

Command	Prompt	For	cases	where	troubleshooting	or	repair	requires	manual
intervention	(such	as	copying	files	from	another	drive	or	manipulating	the
BCD),	you	can	use	the	command	prompt	to	have	a	full	Windows	shell	that	can
launch	almost	any	Windows	program	(as	long	as	the	required	dependencies	can
be	satisfied)—unlike	the	Recovery	Console	on	earlier	versions	of	Windows,
which	only	supported	a	limited	set	of	specialized	commands.

When	you	boot	a	system	from	the	Windows	CD	or	boot	disks,	Windows	Setup
gives	you	the	choice	of	installing	Windows	or	repairing	an	existing	installation.	If
you	choose	to	repair	an	installation,	the	system	displays	a	dialog	box	called	System
Recovery	Options,	shown	in	Figure	13-7.

Figure	13-7.	The	System	Recovery	Options	dialog	box

Newer	versions	of	Windows	also	install	WinRE	to	a	recovery	partition	on	a	clean
system	installation.	On	these	systems,	you	can	access	WinRE	by	using	the	F8
option	to	access	advanced	boot	options	during	Bootmgr	execution.	If	you	see	an
option	Repair	Your	Computer,	your	machine	has	a	local	hard	disk	copy.	If	for
some	reason	yours	does	not,	you	can	follow	the	instructions	at	the	Microsoft
WinRE	blog	(http://blogs.msdn.com/winre)	to	install	WinRE	on	the	hard	disk
yourself	from	your	Windows	installation	media	and	Windows	Automated

http://blogs.msdn.com/winre


Installation	Kit	(AIK).

If	you	select	the	first	option,	WinRE	will	then	display	the	dialog	box	in	Figure	13-
8,	which	has	the	various	recovery	options.	Choosing	the	second	option,	on	the
other	hand,	is	equivalent	to	the	System	Image	Recovery	option	shown	in
Figure	13-8.

Figure	13-8.	The	Advanced	System	Recovery	Options	dialog	box

Additionally,	if	your	system	failed	to	boot	as	the	result	of	damaged	files	or	for	any
other	reason	that	Winload	can	understand,	it	instructs	Bootmgr	to	automatically
start	WinRE	at	the	next	reboot	cycle.	Instead	of	the	dialog	box	shown	in	Figure	13-
8,	the	recovery	environment	will	automatically	launch	the	Startup	Repair	tool,
shown	in	Figure	13-9.



Figure	13-9.	The	Startup	Repair	tool

At	the	end	of	the	scan	and	repair	cycle,	the	tool	will	automatically	attempt	to	fix
any	damage	found,	including	replacing	system	files	from	the	installation	media.
You	can	click	the	details	link	to	see	information	about	the	damage	that	was	fixed.
For	example,	in	Figure	13-10,	the	Startup	Repair	tool	fixed	a	damaged	boot	sector.

Figure	13-10.	Details	view	of	the	Startup	Repair	tool

If	the	Startup	Repair	tool	cannot	automatically	fix	the	damage,	or	if	you	cancel	the
operation,	you’ll	get	a	chance	to	try	other	methods	and	the	System	Recovery
Options	dialog	box	will	be	displayed.



BOOT	STATUS	FILE

Windows	uses	a	boot	status	file	(%SystemRoot%\Bootstat.dat)	to	record	the	fact	that	it	has	progressed
through	various	stages	of	the	system	life	cycle,	including	boot	and	shutdown.	This	allows	the	Boot	Manager,
Windows	loader,	and	the	Startup	Repair	tool	to	detect	abnormal	shutdown	or	a	failure	to	shut	down	cleanly
and	offer	the	user	recovery	and	diagnostic	boot	options,	like	Last	Known	Good	and	Safe	Mode.	This	binary
file	contains	information	through	which	the	system	reports	the	success	of	the	following	phases	of	the	system
life	cycle:

Boot	(the	definition	of	a	successful	boot	is	the	same	as	the	one	used	for	determining	Last	Known	Good
status,	which	was	described	earlier)

Shutdown

Resume	from	hibernate	or	suspend

The	boot	status	file	also	indicates	whether	a	problem	was	detected	the	last	time	the	user	attempted	to	boot
the	operating	system	and	the	recovery	options	shown,	indicating	that	the	user	has	been	made	aware	of	the
problem	and	taken	action.	Runtime	Library	APIs	(Rtl)	in	Ntdll.dll	contain	the	private	interfaces	that
Windows	uses	to	read	from	and	write	to	the	file.	Like	the	BCD,	it	cannot	be	edited	by	users.

Solving	Common	Boot	Problems
This	section	describes	problems	that	can	occur	during	the	boot	process,	describing
their	symptoms,	what	caused	them,	and	approaches	to	solving	them.	To	help	you
locate	a	problem	that	you	might	encounter,	they	are	organized	according	to	the
place	in	the	boot	at	which	they	occur.	Note	that	for	most	of	these	problems,	you
should	be	able	to	simply	boot	into	the	Windows	Recovery	Environment	and	allow
the	Startup	Repair	tool	to	scan	your	system	and	perform	any	automated	repair
tasks.

MBR	Corruption
Symptoms	A	system	that	has	Master	Boot	Record	(MBR)	corruption	will
execute	the	BIOS	power-on	self	test	(POST),	display	BIOS	version	information
or	OEM	branding,	switch	to	a	black	screen,	and	then	hang.	Depending	on	the
type	of	corruption	the	MBR	has	experienced,	you	might	see	one	of	the
following	messages:	“Invalid	partition	table”,	“Error	loading	operating	system”,
or	“Missing	operating	system”.

Cause	The	MBR	can	become	corrupt	because	of	hard-disk	errors,	disk
corruption	as	a	result	of	a	driver	bug	while	Windows	is	running,	or	intentional
scrambling	as	a	result	of	a	virus.



Resolution	Boot	into	the	Windows	Recovery	Environment,	choose	the
Command	Prompt	option,	and	then	execute	the	bootrec	/fixmbr	command.	This
command	replaces	the	executable	code	in	the	MBR.

Boot	Sector	Corruption
Symptoms	Boot	sector	corruption	can	look	like	MBR	corruption,	where	the
system	hangs	after	BIOS	POST	at	a	black	screen,	or	you	might	see	the	messages
“A	disk	read	error	occurred”,	“BOOTMGR	is	missing”,	or	“BOOTMGR	is
compressed”	displayed	on	a	black	screen.

Cause	The	boot	sector	can	become	corrupt	because	of	hard-disk	errors,	disk
corruption	as	a	result	of	a	driver	bug	while	Windows	is	running,	or	intentional
scrambling	as	a	result	of	a	virus.

Resolution	Boot	into	the	Windows	Recovery	Environment,	choose	the
Command	Prompt	option,	and	then	execute	the	bootrec	/fixboot	command.
This	command	rewrites	the	boot	sector	of	the	volume	that	you	specify.	You
should	execute	the	command	on	both	the	system	and	boot	volumes	if	they	are
different.

BCD	Misconfiguration
Symptom	After	BIOS	POST,	you’ll	see	a	message	that	begins	“Windows	could
not	start	because	of	a	computer	disk	hardware	configuration	problem”,	“Could
not	read	from	selected	boot	disk”,	or	“Check	boot	path	and	disk	hardware”.

Cause	The	BCD	has	been	deleted,	become	corrupt,	or	no	longer	references	the
boot	volume	because	the	addition	of	a	partition	has	changed	the	name	of	the
volume.

Resolution	Boot	into	the	Windows	Recovery	Environment,	choose	the
Command	Prompt	option,	and	then	execute	the	bootrec	/scanos	and	bootrec
/rebuildbcd	commands.	These	commands	will	scan	each	volume	looking	for
Windows	installations.	When	they	discover	an	installation,	they	will	ask	you
whether	they	should	add	it	to	the	BCD	as	a	boot	option	and	what	name	should
be	displayed	for	the	installation	in	the	boot	menu.	For	other	kinds	of	BCD-
related	damage,	you	can	also	use	Bcdedit.exe	to	perform	tasks	such	as	building
a	new	BCD	from	scratch	or	cloning	an	existing	good	copy.



System	File	Corruption
Symptoms	There	are	several	ways	the	corruption	of	system	files—which
include	executables,	drivers,	or	DLLs—can	manifest.	One	way	is	with	a
message	on	a	black	screen	after	BIOS	POST	that	says,	“Windows	could	not
start	because	the	following	file	is	missing	or	corrupt”,	followed	by	the	name	of
a	file	and	a	request	to	reinstall	the	file.	Another	way	is	with	a	blue	screen	crash
during	the	boot	with	the	text,	“STOP:	0xC0000135	{Unable	to	Locate
Component}”.

Causes	The	volume	on	which	a	system	file	is	located	is	corrupt	or	one	or	more
system	files	have	been	deleted	or	become	corrupt.

Resolution	Boot	into	the	Windows	Recovery	Environment,	choose	the
Command	Prompt	option,	and	then	execute	the	chkdsk	command.	Chkdsk	will
attempt	to	repair	volume	corruption.	If	Chkdsk	does	not	report	any	problems,
obtain	a	backup	copy	of	the	system	file	in	question.	One	place	to	check	is	in	the
%SystemRoot%\winsxs\Backup	directory,	in	which	Windows	places	copies	of
many	system	files	for	access	by	Windows	Resource	Protection.	(See	the
Windows	Resource	Protection	sidebar.)	If	you	cannot	find	a	copy	of	the	file
there,	see	if	you	can	locate	a	copy	from	another	system	in	the	network.	Note
that	the	backup	file	must	be	from	the	same	service	pack	or	hotfix	as	the	file
that	you	are	replacing.

In	some	cases,	multiple	system	files	are	deleted	or	become	corrupt,	so	the	repair
process	can	involve	multiple	reboots	and	boot	failures	as	you	repair	the	files	one	by
one.	If	you	believe	the	system	file	corruption	to	be	extensive,	you	should	consider
restoring	the	system	from	a	backup	image,	such	as	one	generated	by	Windows
Backup	and	Restore	or	from	a	system	restore	point.

When	you	run	Backup	and	Restore	(located	in	the	Maintenance	folder	on	the	Start
menu),	you	can	generate	a	System	Image	Recovery	image,	which	includes	all	the
files	on	the	system	and	boot	volumes,	plus	a	floppy	disk	on	which	it	stores
information	about	the	system’s	disks	and	volumes.	To	restore	a	system	from	such
an	image,	boot	from	the	Windows	setup	media	and	select	the	appropriate	option
when	prompted	(or	use	the	recovery	environment	shown	earlier).

If	you	do	not	have	a	backup	from	which	to	restore,	a	last	resort	is	to	execute	a



Windows	repair	install:	boot	from	the	Windows	setup	media,	and	follow	the
wizard	as	if	you	were	going	to	perform	a	new	installation.	The	wizard	will	ask	you
whether	you	want	to	perform	a	repair	or	fresh	install.	When	you	tell	it	that	you
want	to	repair,	Setup	reinstalls	all	system	files,	leaving	your	application	data	and
registry	settings	intact.

WINDOWS	RESOURCE	PROTECTION

To	preserve	the	integrity	of	the	many	components	involved	in	the	boot	process,	as	well	as	other	critical
Windows	files,	libraries,	and	applications,	Windows	implements	a	technology	called	Windows	Resource
Protection	(WRP).	WRP	is	implemented	through	access	control	lists	(ACLs)	that	protect	critical	system
files	on	the	machine.	It	is	also	exposed	through	an	API	(located	in	%SystemRoot%\System32\Sfc.dll	and
%SystemRoot%\System32\Sfc_os.dll)	that	can	be	accessed	by	the	Sfc.exe	utility	to	manually	check	a	file
for	corruption	and	restore	it.

WRP	will	also	protect	entire	critical	folders	if	required,	even	locking	down	the	folder	so	that	it	is
inaccessible	by	administrators	(without	modifying	the	access	control	list	on	the	folder).	The	only	supported
way	to	modify	WRP-protected	files	is	through	the	Windows	Modules	Installer	service,	which	can	run	under
the	TrustedInstaller	account.	This	service	is	used	for	the	installation	of	patches,	service	packs,	hotfixes,	and
Windows	Update.	This	account	has	access	to	the	various	protected	files	and	is	trusted	by	the	system	(as	its
name	implies)	to	modify	critical	files	and	replace	them.	WRP	also	protects	critical	registry	keys,	and	it	may
even	lock	entire	registry	trees	if	all	the	values	and	subkeys	are	considered	to	be	critical.

WRP	sets	the	ACL	on	protected	files,	directories,	or	registry	keys	such	that	only	the	TrustedInstaller
account	is	able	to	modify	or	delete	these	files.	Application	developers	can	use	the	SfcIsFileProtected	or
SfcIsKeyProtected	APIs	to	check	whether	a	file	or	registry	key	is	locked	down.

For	backward	compatibility,	certain	installers	are	considered	well-known—an	application	compatibility
shim	exists	that	will	suppress	the	“access	denied”	error	that	certain	installers	would	receive	while	attempting
to	modify	WRP-protected	resources.	Instead,	the	installer	receives	a	fake	“success”	code,	but	the
modification	isn’t	made.	This	virtualization	is	similar	to	the	User	Access	Control	(UAC)	virtualization
technology	discussed	in	Chapter	6	in	Part	1,	but	it	applies	to	write	operations	as	well.	It	applies	if	the
following	are	true:

The	application	is	a	legacy	application,	meaning	that	it	does	not	contain	a	manifest	file	compatible	with
the	requestedExecutionLevel	value	set.

The	application	is	trying	to	modify	a	WRP-protected	resource	(the	file	or	registry	key	contains	the
TrustedInstaller	SID).

The	application	is	being	run	under	an	administrator	account	(always	true	on	systems	with	UAC	enabled
because	of	automatic	installer	program	detection).

WRP	copies	files	that	are	needed	to	restart	Windows	to	the	cache	directory	located	at
%SystemRoot%\winsxs\Backup.	Critical	files	that	are	not	needed	to	restart	Windows	are	not	copied	to	the
cache	directory.	The	size	of	the	cache	directory	and	the	list	of	files	copied	to	the	cache	cannot	be	modified.
To	recover	a	file	from	the	cache	directory,	you	can	use	the	System	File	Checker	(Sfc.exe)	tool,	which	can
scan	your	system	for	modified	protected	files	and	restore	them	from	a	good	copy.



System	Hive	Corruption
Symptoms	If	the	System	registry	hive	(which	is	discussed	along	with	hive	files
in	the	section	“The	Registry”	in	Chapter	4	in	Part	1)	is	missing	or	corrupted,
Winload	will	display	the	message	“Windows	could	not	start	because	the
following	file	is	missing	or	corrupt:
\WINDOWS\SYSTEM32\CONFIG\SYSTEM”,	on	a	black	screen	after	the
BIOS	POST.

Causes	The	System	registry	hive,	which	contains	configuration	information
necessary	for	the	system	to	boot,	has	become	corrupt	or	has	been	deleted.

Resolution	Boot	into	the	Windows	Recovery	Environment,	choose	the
Command	Prompt	option,	and	then	execute	the	chkdsk	command.	If	the
problem	is	not	corrected,	obtain	a	backup	of	the	System	registry	hive.	Windows
makes	copies	of	the	registry	hives	every	12	hours	(keeping	the	immediately
previous	copy	with	a	.OLD	extension)	in	a	folder	called
%SystemRoot%\System32\Config\RegBack,	so	copy	the	file	named	System	to
%SystemRoot%\System32\Config.

If	System	Restore	is	enabled	(System	Restore	is	discussed	in	Chapter	12),	you	can
often	obtain	a	more	recent	backup	of	the	registry	hives,	including	the	System	hive,
from	the	most	recent	restore	point.	You	can	choose	System	Restore	from	the
Windows	Recovery	Environment	to	restore	your	registry	from	the	last	restore
point.

Post–Splash	Screen	Crash	or	Hang
Symptoms	Problems	that	occur	after	the	Windows	splash	screen	displays,	the
desktop	appears,	or	you	log	on	fall	into	this	category	and	can	appear	as	a	blue
screen	crash	or	a	hang,	where	the	entire	system	is	frozen	or	the	mouse	cursor
tracks	the	mouse	but	the	system	is	otherwise	unresponsive.

Causes	These	problems	are	almost	always	a	result	of	a	bug	in	a	device	driver,
but	they	can	sometimes	be	the	result	of	corruption	of	a	registry	hive	other	than
the	System	hive.

Resolution	You	can	take	several	steps	to	try	and	correct	the	problem.	The	first
thing	you	should	try	is	the	last	known	good	configuration.	Last	known	good



(LKG),	which	is	described	earlier	in	this	chapter	and	in	the	“Services”	section
of	Chapter	4	in	Part	1,	consists	of	the	registry	control	set	that	was	last	used	to
boot	the	system	successfully.	Because	a	control	set	includes	core	system
configuration	and	the	device	driver	and	services	registration	database,	using	a
version	that	does	not	reflect	changes	or	newly	installed	drivers	or	services	might
avoid	the	source	of	the	problem.	You	access	last	known	good	by	pressing	the
F8	key	early	in	the	boot	process	to	access	the	same	menu	from	which	you	can
boot	into	safe	mode.

As	stated	earlier	in	the	chapter,	when	you	boot	into	LKG,	the	system	saves	the
control	set	that	you	are	avoiding	and	labels	it	as	the	failed	control	set.	You	can
leverage	the	failed	control	set	in	cases	where	LKG	makes	a	system	bootable	to
determine	what	was	causing	the	system	to	fail	to	boot	by	exporting	the	contents	of
the	current	control	set	of	the	successful	boot	and	the	failed	control	set	to	.reg	files.
You	do	this	by	using	Regedit’s	export	functionality,	which	you	access	under	the
File	menu:

1.	 Run	Regedit,	and	select	HKLM\SYSTEM\CurrentControlSet.

2.	 Select	Export	from	the	File	menu,	and	save	to	a	file	named	good.reg.

3.	 Open	HKLM\SYSTEM\Select,	read	the	value	of	Failed,	and	select	the
subkey	named	HKLM\SYSTEM\ControlXXX,	where	XXX	is	the	value	of
Failed.

4.	 Export	the	contents	of	the	control	set	to	bad.reg.

5.	 Use	WordPad	(which	is	found	under	Accessories	on	the	Start	menu)	to
globally	replace	all	instances	of	CurrentControlSet	in	good.reg	with
ControlSet.

6.	 Use	WordPad	to	change	all	instances	of	ControlXXX	(replacing	XXX	with
the	value	of	the	Failed	control	set)	in	bad.reg	with	ControlSet.

7.	 Run	Windiff	from	the	Support	Tools,	and	compare	the	two	files.

The	differences	between	a	failed	control	set	and	a	good	one	can	be	numerous,	so
you	should	focus	your	examination	on	changes	beneath	the	Control	subkey	as	well
as	under	the	Parameters	subkeys	of	drivers	and	services	registered	in	the	Services
subkey.	Ignore	changes	made	to	Enum	subkeys	of	driver	registry	keys	in	the



Services	branch	of	the	control	set.

If	the	problem	you’re	experiencing	is	caused	by	a	driver	or	service	that	was	present
on	the	system	since	before	the	last	successful	boot,	LKG	will	not	make	the	system
bootable.	Similarly,	if	a	problematic	configuration	setting	changed	outside	the
control	set	or	was	made	before	the	last	successful	boot,	LKG	will	not	help.	In	those
cases,	the	next	option	to	try	is	safe	mode	(described	earlier	in	this	section).	If	the
system	boots	successfully	in	safe	mode	and	you	know	what	particular	driver	was
causing	the	normal	boot	to	fail,	you	can	disable	the	driver	by	using	the	Device
Manager	(accessible	from	the	System	Control	Panel	item).	To	do	so,	select	the
driver	in	question	and	choose	Disable	from	the	Action	menu.	If	you	recently
updated	the	driver,	and	believe	that	the	update	introduced	a	bug,	you	can	choose	to
roll	back	the	driver	to	its	previous	version	instead,	also	with	the	Device	Manager.
To	restore	a	driver	to	its	previous	version,	double-click	on	the	device	to	open	its
Properties	dialog	box	and	click	Roll	Back	Driver	on	the	Driver	tab.

On	systems	with	System	Restore	enabled,	an	option	when	LKG	fails	is	to	roll	back
all	system	state	(as	defined	by	System	Restore)	to	a	previous	point	in	time.	Safe
mode	detects	the	existence	of	restore	points,	and	when	they	are	present	it	will	ask
you	whether	you	want	to	log	on	to	the	installation	to	perform	a	manual	diagnosis
and	repair	or	launch	the	System	Restore	Wizard.	Using	System	Restore	to	make	a
system	bootable	again	is	attractive	when	you	know	the	cause	of	a	problem	and
want	the	repair	to	be	automatic	or	when	you	don’t	know	the	cause	but	do	not	want
to	invest	time	to	determine	the	cause.

If	System	Restore	is	not	an	option	or	you	want	to	determine	the	cause	of	a	crash
during	the	normal	boot	and	the	system	boots	successfully	in	safe	mode,	attempt	to
obtain	a	boot	log	from	the	unsuccessful	boot	by	pressing	F8	to	access	the	special
boot	menu	and	choosing	the	boot	logging	option.	As	described	earlier	in	this
chapter,	Session	Manager	(%SystemRoot%\System32\Smss.exe)	saves	a	log	of	the
boot	that	includes	a	record	of	device	drivers	that	the	system	loaded	and	chose	not
to	load	to	%SystemRoot%\ntbtlog.txt,	so	you’ll	obtain	a	boot	log	if	the	crash	or
hang	occurs	after	Session	Manager	initializes.	When	you	reboot	into	safe	mode,	the
system	appends	new	entries	to	the	existing	boot	log.	Extract	the	portions	of	the	log
file	that	refer	to	the	failed	attempt	and	safe-mode	boots	into	separate	files.	Strip
out	lines	that	contain	the	text	“Did	not	load	driver”,	and	then	compare	them	with	a



text	comparison	tool	such	as	Windiff.	One	by	one,	disable	the	drivers	that	loaded
during	the	normal	boot	but	not	in	the	safe-mode	boot	until	the	system	boots
successfully	again.	(Then	reenable	the	drivers	that	were	not	responsible	for	the
problem.)

If	you	cannot	obtain	a	boot	log	from	the	normal	boot	(for	instance,	because	the
system	is	crashing	before	Session	Manager	initializes),	if	the	system	also	crashes
during	the	safe-mode	boot,	or	if	a	comparison	of	boot	logs	from	the	normal	and
safe-mode	boots	do	not	reveal	any	significant	differences	(for	example,	when	the
driver	that’s	crashing	the	normal	boot	starts	after	Session	Manager	initializes),	the
next	tool	to	try	is	Driver	Verifier	combined	with	crash	dump	analysis.	(See
Chapter	14,	for	more	information	on	both	these	topics.)



Shutdown
If	someone	is	logged	on	and	a	process	initiates	a	shutdown	by	calling	the	Windows
ExitWindowsEx	function,	a	message	is	sent	to	that	session’s	Csrss	instructing	it	to
perform	the	shutdown.	Csrss	in	turn	impersonates	the	caller	and	sends	an	RPC
message	to	Winlogon,	telling	it	to	perform	a	system	shutdown.	Winlogon	then
impersonates	the	currently	logged-on	user	(who	might	or	might	not	have	the	same
security	context	as	the	user	who	initiated	the	system	shutdown)	and	calls
ExitWindowsEx	with	some	special	internal	flags.	Again	this	call	causes	a	message
to	be	sent	to	the	Csrss	process	inside	that	session,	requesting	a	system	shutdown.

This	time,	Csrss	sees	that	the	request	is	from	Winlogon	and	loops	through	all	the
processes	in	the	logon	session	of	the	interactive	user	(again,	not	the	user	who
requested	a	shutdown)	in	reverse	order	of	their	shutdown	level.	A	process	can
specify	a	shutdown	level,	which	indicates	to	the	system	when	it	wants	to	exit	with
respect	to	other	processes,	by	calling	SetProcessShutdownParameters.	Valid
shutdown	levels	are	in	the	range	0	through	1023,	and	the	default	level	is	640.
Explorer,	for	example,	sets	its	shutdown	level	to	2	and	Task	Manager	specifies	1.
For	each	process	that	owns	a	top-level	window,	Csrss	sends	the
WM_QUERYENDSESSION	message	to	each	thread	in	the	process	that	has	a
Windows	message	loop.	If	the	thread	returns	TRUE,	the	system	shutdown	can
proceed.	Csrss	then	sends	the	WM_ENDSESSION	Windows	message	to	the
thread	to	request	it	to	exit.	Csrss	waits	the	number	of	seconds	defined	in
HKCU\Control	Panel\Desktop\HungAppTimeout	for	the	thread	to	exit.	(The
default	is	5,000	milliseconds.)

If	the	thread	doesn’t	exit	before	the	timeout,	Csrss	fades	out	the	screen	and	displays
the	hung-program	screen	shown	in	Figure	13-11.	(You	can	disable	this	screen	by
creating	the	registry	value	HKCU\Control	Panel\Desktop\AutoEndTasks	and
setting	it	to	1.)	This	screen	indicates	which	programs	are	currently	running	and,	if
available,	their	current	state.	Windows	indicates	which	program	isn’t	shutting	down
in	a	timely	manner	and	gives	the	user	a	choice	of	either	killing	the	process	or
aborting	the	shutdown.	(There	is	no	timeout	on	this	screen,	which	means	that	a
shutdown	request	could	wait	forever	at	this	point.)	Additionally,	third-party
applications	can	add	their	own	specific	information	regarding	state—for	example,	a



virtualization	product	could	display	the	number	of	actively	running	virtual
machines.

Figure	13-11.	Hung	program	screen

EXPERIMENT:	WITNESSING	THE	HUNGAPPTIMEOUT

You	can	see	the	use	of	the	HungAppTimeout	registry	value	by	running	Notepad,	entering	text	into	its
editor,	and	then	logging	off.	After	the	amount	of	time	specified	by	the	HungAppTimeout	registry	value	has
expired,	Csrss.exe	presents	a	prompt	that	asks	you	whether	or	not	you	want	to	end	the	Notepad	process,
which	has	not	exited	because	it’s	waiting	for	you	to	tell	it	whether	or	not	to	save	the	entered	text	to	a	file.	If
you	click	the	Cancel	button,	Csrss.exe	aborts	the	shutdown.

As	a	second	experiment,	if	you	try	shutting	down	again	(with	Notepad’s	query	dialog	box	still	open),
Notepad	will	display	its	own	message	box	to	inform	you	that	shutdown	cannot	cleanly	proceed.	However,
this	dialog	box	is	merely	an	informational	message	to	help	users—Csrss.exe	will	still	consider	that	Notepad
is	“hung”	and	display	the	user	interface	to	terminate	unresponsive	processes.

If	the	thread	does	exit	before	the	timeout,	Csrss	continues	sending	the
WM_QUERYENDSESSION/WM_ENDSESSION	message	pairs	to	the	other



threads	in	the	process	that	own	windows.	Once	all	the	threads	that	own	windows	in
the	process	have	exited,	Csrss	terminates	the	process	and	goes	on	to	the	next
process	in	the	interactive	session.

If	Csrss	finds	a	console	application,	it	invokes	the	console	control	handler	by
sending	the	CTRL_LOGOFF_EVENT	event.	(Only	service	processes	receive	the
CTRL_SHUTDOWN_EVENT	event	on	shutdown.)	If	the	handler	returns	FALSE,
Csrss	kills	the	process.	If	the	handler	returns	TRUE	or	doesn’t	respond	by	the
number	of	seconds	defined	by	HKCU\Control
Panel\Desktop\WaitToKillAppTimeout	(the	default	is	20,000	milliseconds),	Csrss
displays	the	hung-program	screen	shown	in	Figure	13-11.

Next,	Winlogon	calls	ExitWindowsEx	to	have	Csrss	terminate	any	COM	processes
that	are	part	of	the	interactive	user’s	session.

At	this	point,	all	the	processes	in	the	interactive	user’s	session	have	been
terminated.	Wininit	next	calls	ExitWindowsEx,	which	this	time	executes	within	the
system	process	context.	This	causes	Wininit	to	send	a	message	to	the	Csrss	part	of
session	0,	where	the	services	live.	Csrss	then	looks	at	all	the	processes	belonging	to
the	system	context	and	performs	and	sends	the
WM_QUERYENDSESSION/WM_ENDSESSION	messages	to	GUI	threads	(as
before).	Instead	of	sending	CTRL_LOGOFF_EVENT,	however,	it	sends	CTRL_
SHUTDOWN_EVENT	to	console	applications	that	have	registered	control
handlers.	Note	that	the	SCM	is	a	console	program	that	does	register	a	control
handler.	When	it	receives	the	shutdown	request,	it	in	turn	sends	the	service
shutdown	control	message	to	all	services	that	registered	for	shutdown	notification.
For	more	details	on	service	shutdown	(such	as	the	shutdown	timeout	Csrss	uses	for
the	SCM),	see	the	“Services”	section	in	Chapter	4	in	Part	1.

Although	Csrss	performs	the	same	timeouts	as	when	it	was	terminating	the	user
processes,	it	doesn’t	display	any	dialog	boxes	and	doesn’t	kill	any	processes.	(The
registry	values	for	the	system	process	timeouts	are	taken	from	the	default	user
profile.)	These	timeouts	simply	allow	system	processes	a	chance	to	clean	up	and
exit	before	the	system	shuts	down.	Therefore,	many	system	processes	are	in	fact
still	running	when	the	system	shuts	down,	such	as	Smss,	Wininit,	Services,	and
LSASS.

Once	Csrss	has	finished	its	pass	notifying	system	processes	that	the	system	is



shutting	down,	Winlogon	finishes	the	shutdown	process	by	calling	the	executive
subsystem	function	NtShutdownSystem.	This	function	calls	the	function
PoSetSystemPowerState	to	orchestrate	the	shutdown	of	drivers	and	the	rest	of	the
executive	subsystems	(Plug	and	Play	manager,	power	manager,	executive,	I/O
manager,	configuration	manager,	and	memory	manager).

For	example,	PoSetSystemPowerState	calls	the	I/O	manager	to	send	shutdown	I/O
packets	to	all	device	drivers	that	have	requested	shutdown	notification.	This	action
gives	device	drivers	a	chance	to	perform	any	special	processing	their	device	might
require	before	Windows	exits.	The	stacks	of	worker	threads	are	swapped	in,	the
configuration	manager	flushes	any	modified	registry	data	to	disk,	and	the	memory
manager	writes	all	modified	pages	containing	file	data	back	to	their	respective	files.
If	the	option	to	clear	the	paging	file	at	shutdown	is	enabled,	the	memory	manager
clears	the	paging	file	at	this	time.	The	I/O	manager	is	called	a	second	time	to
inform	the	file	system	drivers	that	the	system	is	shutting	down.	System	shutdown
ends	in	the	power	manager.	The	action	the	power	manager	takes	depends	on
whether	the	user	specified	a	shutdown,	a	reboot,	or	a	power	down.



Conclusion
In	this	chapter,	we’ve	examined	the	detailed	steps	involved	in	starting	and	shutting
down	Windows	(both	normally	and	in	error	cases).	We’ve	examined	the	overall
structure	of	Windows	and	the	core	system	mechanisms	that	get	the	system	going,
keep	it	running,	and	eventually	shut	it	down.	The	final	chapter	of	this	book	explains
how	to	deal	with	an	unusual	type	of	shutdown:	system	crashes.



Chapter	14.	Crash	Dump	Analysis
Almost	every	Windows	user	has	heard	of,	if	not	experienced,	the	infamous	“blue
screen	of	death.”	This	ominous	term	refers	to	the	blue	screen	that	is	displayed
when	Windows	crashes,	or	stops	executing,	because	of	a	catastrophic	fault	or	an
internal	condition	that	prevents	the	system	from	continuing	to	run.

In	this	chapter,	we’ll	cover	the	basic	problems	that	cause	Windows	to	crash,
describe	the	information	presented	on	the	blue	screen,	and	explain	the	various
configuration	options	available	to	create	a	crash	dump,	a	record	of	system	memory
at	the	time	of	a	crash	that	can	help	you	figure	out	which	component	caused	the
crash	and	why.	This	section	is	not	intended	to	provide	detailed	troubleshooting
information	on	how	to	analyze	a	Windows	system	crash.	This	section	will	also
show	you	how	to	analyze	a	crash	dump	to	identify	a	faulty	driver	or	component.
The	effort	required	to	perform	basic	crash	dump	analysis	is	minimal	and	takes	a
few	minutes.	Even	if	an	analysis	ascertains	the	problematic	driver	for	only	one	out
of	every	five	or	ten	crash	dumps,	it’s	still	worth	doing:	one	successful	analysis	can
avoid	future	data	loss,	system	downtime,	and	frustration.



Why	Does	Windows	Crash?
Windows	crashes	(stops	execution	and	displays	the	blue	screen)	for	many	possible
reasons.	A	common	source	is	a	reference	to	a	memory	address	that	causes	an
access	violation,	either	a	write	operation	to	read-only	memory	or	a	read	operation
on	an	address	that	is	not	mapped.	Another	common	cause	is	an	unexpected
exception	or	trap.	Crashes	also	occur	when	a	kernel	subsystem	(such	as	the
memory	manager	or	power	manager)	or	a	driver	(such	as	a	USB	or	display	driver)
detect	inconsistencies	in	their	operation.

When	a	kernel-mode	device	driver	or	subsystem	causes	an	illegal	exception,
Windows	faces	a	difficult	dilemma.	It	has	detected	that	a	part	of	the	operating
system	with	the	ability	to	access	any	hardware	device	and	any	valid	memory	has
done	something	it	wasn’t	supposed	to	do.

But	why	does	that	mean	Windows	has	to	crash?	Couldn’t	it	just	ignore	the
exception	and	let	the	device	driver	or	subsystem	continue	as	if	nothing	had
happened?	The	possibility	exists	that	the	error	was	isolated	and	that	the	component
will	somehow	recover.	But	what’s	more	likely	is	that	the	detected	exception
resulted	from	deeper	problems—for	example,	from	a	general	corruption	of
memory	or	from	a	hardware	device	that’s	not	functioning	properly.	Permitting	the
system	to	continue	operating	would	probably	result	in	more	exceptions,	and	data
stored	on	disk	or	other	peripherals	could	become	corrupt—a	risk	that’s	too	high	to
take.	So	Windows	adopts	a	fail	fast	policy	in	attempting	to	prevent	the	corruption
in	RAM	from	spreading	to	disk.



The	Blue	Screen
Regardless	of	the	reason	for	a	system	crash,	the	function	that	actually	performs	the
crash	is	KeBugCheckEx,	documented	in	the	Windows	Driver	Kit	(WDK).	This
function	takes	a	stop	code	(sometimes	called	a	bugcheck	code)	and	four
parameters	that	are	interpreted	on	a	per–stop	code	basis.	After	KeBugCheckEx
masks	out	all	interrupts	on	all	processors	of	the	system,	it	switches	the	display	into
a	low-resolution	VGA	graphics	mode	(one	implemented	by	all	Windows-supported
video	cards),	paints	a	blue	background,	and	then	displays	the	stop	code,	followed
by	some	text	suggesting	what	the	user	can	do.	Finally,	KeBugCheckEx	calls	any
registered	device	driver	bugcheck	callbacks	(registered	by	calling	the
KeRegisterBugCheckCallback	function),	allowing	drivers	an	opportunity	to	stop
their	devices.	It	then	calls	registered	reason	callbacks	(registered	with
KeRegisterBugCheckReasonCallback),	which	allow	drivers	to	append	data	to	the
crash	dump	or	write	crash	dump	information	to	alternate	devices.

The	first	line	in	the	Technical	information	section	in	the	sample	Windows	blue
screen	shown	in	Figure	14-1	lists	the	stop	code	and	the	four	additional	parameters
passed	to	KeBugCheckEx.	A	text	line	near	the	top	of	the	screen	provides	the	text
equivalent	of	the	stop	code’s	numeric	identifier.	According	to	the	example	in
Figure	14-1,	the	stop	code	0x000000D1	is	a
DRIVER_IRQL_NOT_LESS_OR_EQUAL	crash.	When	a	parameter	contains	an
address	of	a	piece	of	operating	system	or	device	driver	code	(as	in	Figure	14-1),
Windows	displays	the	base	address	of	the	module	the	address	falls	in,	the	date
stamp,	and	the	file	name	of	the	device	driver.	This	information	alone	might	help
you	pinpoint	the	faulty	component.



Figure	14-1.	Example	of	a	blue	screen

Although	there	are	more	than	300	unique	stop	codes,	most	are	rarely,	if	ever,	seen
on	production	systems.	Instead,	just	a	few	common	stop	codes	represent	the
majority	of	Windows	system	crashes.	Also,	the	meaning	of	the	four	additional
parameters	depends	on	the	stop	code	(and	not	all	stop	codes	have	extended
parameter	information).	Nevertheless,	looking	up	the	stop	code	and	the	meaning	of
the	parameters	(if	applicable)	might	at	least	assist	you	in	diagnosing	the	component
that	is	failing	(or	the	hardware	device	that	is	causing	the	crash).

You	can	find	stop	code	information	in	the	section	“Bug	Checks	(Blue	Screens)”	in
the	Debugging	Tools	for	Windows	help	file.	(For	information	on	the	Debugging
Tools	for	Windows,	see	Chapter	1,	“Concepts	and	Tools,”	in	Part	1.)	You	can	also
search	Microsoft’s	Knowledge	Base	(http://support.microsoft.com)	for	the	stop
code	and	the	name	of	the	suspect	hardware	or	driver.	You	might	find	information
about	a	workaround,	an	update,	or	a	service	pack	that	fixes	the	problem	you’re
having.	The	Bugcodes.h	file	in	the	WDK	contains	a	complete	list	of	the	300	or	so
stop	codes,	with	some	additional	details	on	the	reasons	for	some	of	them.	Last	but
not	least,	these	stop	codes	are	listed	and	documented	at
http://msdn.microsoft.com/en-
us/library/windows/hardware/hh406232(v=vs.85).aspx.

http://support.microsoft.com
http://msdn.microsoft.com/en-us/library/windows/hardware/hh406232(v=vs.85).aspx


Causes	of	Windows	Crashes
Based	on	data	collected	from	the	release	of	Windows	7	through	the	release	of
Windows	7	SP1,	the	top	20	stop	codes	account	for	91	percent	of	crashes	and	can
be	grouped	into	the	following	categories:

Page	fault	A	page	fault	on	memory	backed	by	data	in	a	paging	file	or	a
memory-mapped	file	occurs	at	an	IRQL	of	DPC/dispatch	level	or	above,	which
would	require	the	memory	manager	to	have	to	wait	for	an	I/O	operation	to
occur.	The	kernel	cannot	wait	or	reschedule	threads	at	an	IRQL	of
DPC/dispatch	level	or	higher.	(See	Chapter	3,	“System	Mechanisms,”	in	Part	1
for	details	on	IRQLs.)	The	common	stop	codes	are:

—	0xA	-	IRQL_NOT_LESS_OR_EQUAL

—	0xD1	-	DRIVER_IRQL_NOT_LESS_OR_EQUAL

Power	management	A	device	driver	or	an	operating	system	function	running	in
kernel	mode	is	in	an	inconsistent	or	invalid	power	state.	Most	frequently,	some
component	has	failed	to	complete	a	power	management	I/O	request	operation
within	the	default	period	of	10	minutes.	The	common	stop	code	is:

0x9F	-	DRIVER_POWER_STATE_FAILURE

Exceptions	and	traps	A	device	driver	or	an	operating	system	function	running
in	kernel	mode	incurs	an	unexpected	exception	or	trap.	The	common	stop	codes
are:

0x1E	-	KMODE_EXCEPTION_NOT_HANDLED

0x3B	-	SYSTEM_SERVICE_EXCEPTION

0x7E	-	SYSTEM_THREAD_EXCEPTION_NOT_HANDLED

0x7F	-	UNEXPECTED_KERNEL_MODE_TRAP

0x8E	-	KERNEL_MODE_EXCEPTION_NOT_HANDLED	with	P1	!=
0xC0000005	STATUS_ACCESS_VIOLATION

Access	violations	A	device	driver	or	an	operating	system	function	running	in
kernel	mode	incurs	a	memory	access	violation,	which	is	caused	either	by
attempting	to	write	to	a	read-only	page	or	by	attempting	to	read	an	address	that
isn’t	currently	mapped	and	therefore	is	not	a	valid	memory	location.	The	common



stop	codes	are:

0x50	-	PAGE_FAULT_IN_NONPAGED_AREA

0x8E	-	KERNEL_MODE_EXCEPTION_NOT_HANDLED	with	P1	=
0xC0000005	STATUS_ACCESS_VIOLATION

Display	The	display	device	driver	detects	that	it	can	no	longer	control	the
graphics	processing	unit.	This	indicates	that	an	attempt	to	reset	the	display	driver
failed.	The	common	stop	code	is:

0x116	-	VIDEO_TDR_FAILURE

Pool	The	kernel	pool	manager	detects	a	corrupt	pool	header	or	an	improper	pool
reference.	The	common	stop	codes	are:

0x19	-	BAD_POOL_HEADER

0xC2	-	BAD_POOL_CALLER

0xC5	-	DRIVER_CORRUPTED_EXPOOL

Memory	management	The	kernel	memory	manager	detects	a	corruption	of
memory	management	data	structures	or	an	improper	memory	management	request.
The	common	stop	codes	are:

0x1A	-	MEMORY_MANAGEMENT

0x4E	-	PFN_LIST_CORRUPT

Hardware	A	hardware	error,	such	as	a	machine	check	or	a	nonmaskable
interrupt	(NMI),	occurs.	This	category	also	includes	disk	failures	when	the
memory	manager	is	attempting	to	read	data	to	satisfy	page	faults.	The	common
stop	codes	are:

0x7A	-	KERNEL_DATA_INPAGE_ERROR

0x124	-	WHEA_UNCORRECTABLE_ERROR

USB	An	unrecoverable	error	occurs	in	a	universal	serial	bus	operation.	The
common	stop	code	is:

0xFE	-	BUGCODE_USB_DRIVER

Critical	object	A	fatal	error	occurs	in	a	critical	object	without	which	Windows
cannot	continue	to	run.	The	common	stop	code	is:



0xF4	-	CRITICAL_OBJECT_TERMINATION

NTFS	file	system	A	fatal	error	is	detected	by	the	NTFS	file	system.	The
common	stop	code	is:

0x24	-	NTFS_FILE_SYSTEM

Figure	14-2	shows	the	distribution	of	these	categories	for	Windows	7	and
Windows	7	SP1	in	May	2012:

Figure	14-2.	Distribution	of	top	20	stop	codes	by	category	for	Windows	7	and
Windows	7	SP1	in	May	2012.



Troubleshooting	Crashes
You	often	begin	seeing	blue	screens	after	you	install	a	new	software	product	or
piece	of	hardware.	If	you’ve	just	added	a	driver,	rebooted,	and	gotten	a	blue	screen
early	in	system	initialization,	you	can	reset	the	machine,	press	the	F8	key	when
instructed,	and	then	select	Last	Known	Good	Configuration.	Enabling	last	known
good	causes	Windows	to	revert	to	a	copy	of	the	registry’s	device	driver	registration
key	(HKLM\SYSTEM\CurrentControlSet\Services)	from	the	last	successful	boot
(before	you	installed	the	driver).	From	the	perspective	of	last	known	good,	a
successful	boot	is	one	in	which	all	services	and	drivers	have	finished	loading	and	at
least	one	logon	has	succeeded.	(Last	known	good	is	further	described	in
Chapter	13.)

During	the	reboot	after	a	crash,	the	Boot	Manager	(Bootmgr)	will	automatically
detect	that	Windows	did	not	shut	down	properly	and	display	a	Windows	Error
Recovery	message	similar	to	the	one	shown	in	Figure	14-3.	This	screen	gives	you
the	option	to	attempt	booting	into	safe	mode	so	that	you	can	disable	or	uninstall
the	software	component	that	might	be	broken.

Figure	14-3.	An	example	of	a	Windows	Error	Recovery	message



If	you	keep	getting	blue	screens,	an	obvious	approach	is	to	uninstall	the
components	you	added	just	before	the	first	blue	screen	appeared.	If	some	time	has
passed	since	you	added	something	new	or	you	added	several	things	at	about	the
same	time,	you	need	to	note	the	names	of	the	device	drivers	referenced	in	any	of
the	parameters.	If	you	recognize	any	of	the	names	as	being	related	to	something
you	just	added	(such	as	Storport.sys	if	you	installed	a	new	SCSI	drive),	you’ve
possibly	found	your	culprit.

Many	device	drivers	have	cryptic	names,	but	one	approach	you	can	take	to	figure
out	which	application	or	hardware	device	is	associated	with	a	name	is	to	find	out
the	name	of	the	service	in	the	registry	associated	with	a	device	driver	by	searching
for	the	name	of	the	device	driver	under	the
HKLM\SYSTEM\CurrentControlSet\Services	key.	This	branch	of	the	registry	is
where	Windows	stores	registration	information	for	every	device	driver	in	the
system.	If	you	find	a	match,	look	for	values	named	DisplayName	and	Description.
Some	drivers	fill	in	these	values	to	describe	the	device	driver’s	purpose.	For
example,	you	might	find	the	string	“Virus	Scanner”	in	the	DisplayName	value,
which	can	implicate	the	antivirus	software	you	have	running.	The	list	of	drivers	can
be	displayed	in	the	System	Information	tool	(from	the	Start	menu,	select	All
Programs,	Accessories,	System	Tools,	System	Information).	In	System
Information,	expand	Software	Environment,	and	then	select	System	Drivers.
Process	Explorer	also	lists	the	currently	loaded	drivers,	including	their	version
numbers	and	load	addresses,	in	the	DLL	view	of	the	System	process.	Another
option	is	to	open	the	Properties	dialog	box	for	the	driver	file	and	examine	the
information	on	the	Details	tab,	which	often	contains	the	description	and	company
information	for	the	driver.	Keep	in	mind	that	the	registry	information	and	file
description	are	provided	by	the	driver	manufacturer,	and	there	is	nothing	to
guarantee	their	accuracy.

More	often	than	not,	however,	the	stop	code	and	the	four	associated	parameters
aren’t	enough	information	to	troubleshoot	a	system	crash.	For	example,	you	might
need	to	examine	the	kernel-mode	call	stack	to	pinpoint	the	driver	or	system
component	that	triggered	the	crash.	Also,	because	the	default	behavior	on	Windows
systems	is	to	automatically	reboot	after	a	system	crash,	it’s	unlikely	that	you	would
have	time	to	record	the	information	displayed	on	the	blue	screen.	That	is	why,	by



default,	Windows	attempts	to	record	information	about	the	system	crash	to	the	disk
for	later	analysis,	which	takes	us	to	our	next	topic,	crash	dump	files.



Crash	Dump	Files
By	default,	all	Windows	systems	are	configured	to	attempt	to	record	information
about	the	state	of	the	system	when	the	system	crashes.	You	can	see	these	settings
by	opening	the	System	Properties	tool	in	Control	Panel	(under	System,	Advanced
System	Settings),	clicking	the	Advanced	tab,	and	then	clicking	the	Settings	button
under	Startup	And	Recovery.	The	default	settings	for	a	Windows	system	are	shown
in	Figure	14-4.

Figure	14-4.	Crash	dump	settings

Three	levels	of	information	can	be	recorded	on	a	system	crash:

Complete	memory	dump	A	complete	memory	dump	contains	all	physical
memory	accessible	by	Windows	at	the	time	of	the	crash.	This	type	of	dump
requires	that	a	page	file	be	at	least	the	size	of	physical	memory	plus	1	MB	for
the	header.	Device	drivers	can	add	up	to	256	MB	for	secondary	crash	dump
data,	so	to	be	safe,	it’s	recommended	to	increase	the	size	of	the	page	file	by	an
additional	256	MB.	Because	it	can	require	an	inordinately	large	page	file	on
large	memory	systems,	this	type	of	dump	file	is	the	least	common	setting.	If	the
system	has	more	than	2	GB	of	RAM,	this	option	will	be	disabled	in	the	UI,	but



you	can	manually	enable	it	by	running	the	following	command	from	an	elevated
command	prompt:

wmic recoveros set DebugInfoType=1

When	using	Wmic.exe	to	enable	a	complete	dump,	the	WMI	Win32	Provider
sets	the	CrashDumpEnabled	value	to	1	in	the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl	registry	key.	At
initialization	time,	Windows	will	check	whether	the	page-file	size	is	large
enough	for	a	complete	dump	and	automatically	switch	to	creating	a	small
memory	dump	if	not.

Kernel	memory	dump	A	kernel	memory	dump	contains	only	the	kernel-mode
pages	allocated	by	the	operating	system	and	device	drivers	that	are	present	in
physical	memory	at	the	time	of	the	crash.	This	type	of	dump	doesn’t	contain
pages	belonging	to	user	processes.	Because	only	kernel-mode	code	can	directly
cause	Windows	to	crash,	however,	it’s	unlikely	that	user	process	pages	are
necessary	to	debug	a	crash.	In	addition,	all	data	structures	relevant	for	crash
dump	analysis—including	the	list	of	running	processes,	the	kernel-mode	stack
of	the	current	thread,	and	list	of	loaded	drivers—are	stored	in	nonpaged
memory	that	saves	in	a	kernel	memory	dump.	There	is	no	way	to	predict	the
size	of	a	kernel	memory	dump	because	its	size	depends	on	the	amount	of
kernel-mode	memory	allocated	by	the	operating	system	and	drivers	present	on
the	machine.	This	is	the	default	setting	for	both	Windows	client	and	server
systems.

Small	memory	dump	A	small	memory	dump,	which	is	typically	between	128
KB	and	1	MB	in	size	and	is	also	called	a	minidump	or	triage	dump,	contains
the	stop	code	and	parameters,	the	list	of	loaded	device	drivers,	the	data
structures	that	describe	the	current	process	and	thread	(called	the	EPROCESS
and	ETHREAD—described	in	Chapter	5,	“Processes,	Threads,	and	Jobs,”	in
Part	1),	the	kernel	stack	for	the	thread	that	caused	the	crash,	and	additional
memory	considered	potentially	relevant	by	crash	dump	heuristics,	such	as	the
pages	referenced	by	processor	registers	that	contain	memory	addresses	and
secondary	dump	data	added	by	drivers.

NOTE



Device	drivers	can	register	a	secondary	dump	data	callback	routine	by	calling
KeRegisterBugCheckReasonCallback.	The	kernel	invokes	these	callbacks	after	a	crash	and	a	callback
routine	can	add	additional	data	to	a	crash	dump	file,	such	as	device	hardware	memory	or	device	information
for	easier	debugging.	Up	to	256	MB	can	be	added	systemwide	by	all	drivers,	depending	on	the	space
required	to	store	the	dump	and	the	size	of	the	file	into	which	the	dump	is	written,	and	each	callback	can	add
at	most	one-eighth	of	the	available	additional	space.	Once	the	additional	space	is	consumed,	drivers
subsequently	called	are	not	offered	the	chance	to	add	data.

The	debugger	indicates	that	it	has	limited	information	available	to	it	when	it	loads	a
minidump,	and	basic	commands	like	!process,	which	lists	active	processes,	don’t
have	the	data	they	need.	Here	is	an	example	of	!process	executed	on	a	minidump:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\Minidump\100911-22965-01.dmp]
Mini Kernel Dump File: Only registers and stack trace are available

...
0: kd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
GetPointerFromAddress: unable to read from fffff800030c5000
Error in reading nt!_EPROCESS at 0000000000000000

A	kernel	memory	dump	includes	more	information,	but	switching	to	a	different
process’s	address	space	mappings	won’t	work	because	required	data	isn’t	in	the
dump	file.	Here	is	an	example	of	the	debugger	loading	a	kernel	memory	dump,
followed	by	an	attempt	to	switch	process	address	spaces:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\MEMORY.DMP]
Kernel Summary Dump File: Only kernel address space is available
...
0: kd> !process 0 0 explorer.exe
PROCESS fffffa8009b47540 ...

0: kd> .process fffffa8009b47540
Process fffffa80`09b47540 has invalid page directories

While	a	complete	memory	dump	is	a	superset	of	the	other	options,	it	has	the
drawback	that	its	size	tracks	the	amount	of	physical	memory	on	a	system	and	can
therefore	become	unwieldy.	Because	user-mode	code	and	data	are	not	used	during
the	analysis	of	most	crashes	(because	crashes	originate	as	a	result	of	problems	in
kernel	memory,	and	system	data	structures	reside	in	kernel	memory),	much	of	the
data	stored	in	a	complete	memory	dump	is	not	relevant	to	crash	analysis	and
therefore	contributes	wastefully	to	the	size	of	a	dump	file.	A	final	disadvantage	is



that	the	paging	file	must	be	at	least	as	large	as	the	amount	of	physical	memory	on
the	system	plus	1	MB	for	the	dump	header,	plus	up	to	an	additional	256	MB	for
secondary	crash	dump	data.	Because	the	size	of	the	paging	files	required,	in
general,	inversely	tracks	the	amount	of	physical	memory	present,	this	requirement
can	force	the	paging	file	to	be	unnecessarily	large.	You	should	therefore	consider
the	advantages	offered	by	the	small	and	kernel	memory	dump	options.

An	advantage	of	a	minidump	is	its	small	size,	which	makes	it	convenient	for
exchange	via	e-mail,	for	example.	In	addition,	each	crash	generates	a	file	in	the
directory	%SystemRoot%\Minidump	with	a	unique	file	name	consisting	of	the
date,	the	number	of	milliseconds	that	have	elapsed	since	the	system	was	started,
and	a	sequence	number	(for	example,	040712-24835-01.dmp).	If	there’s	a	conflict,
the	system	will	attempt	to	create	additional	unique	file	names	by	calling	the
Windows	GetTickCount	function	to	return	an	updated	system	tick	count,	and	it
will	also	increment	the	sequence	number.	By	default,	Windows	saves	the	last	50
minidumps.	The	number	of	minidumps	saved	is	configurable	by	modifying	the
MinidumpsCount	value	under	the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl	registry	key.

A	disadvantage	of	minidumps	is	that	to	analyze	them,	you	must	have	access	to	the
exact	images	used	on	the	system	that	generated	the	dump	at	the	time	of	analysis.
(At	a	minimum,	a	copy	of	the	matching	Ntoskrnl.exe	is	needed	to	perform	the
most	basic	analysis.)	This	can	be	problematic	if	you	want	to	analyze	a	dump	on	a
system	different	from	the	system	that	generated	the	dump.	However,	the	Microsoft
symbol	server	contains	images	(and	symbols)	for	all	recent	Windows	versions,	so
you	can	set	the	symbol	path	in	the	debugger	to	point	to	the	symbol	server,	and	the
debugger	will	automatically	download	the	needed	images.	(Of	course,	the
Microsoft	symbol	server	won’t	have	images	for	third-party	drivers	you	have
installed.)

A	more	significant	disadvantage	is	that	the	limited	amount	of	data	stored	in	the
dump	can	hamper	effective	analysis.	You	can	also	get	the	advantages	of	minidumps
even	when	you	configure	a	system	to	generate	kernel	or	complete	crash	dumps	by
opening	the	larger	crash	with	WinDbg	and	using	the	.dump	/m	command	to	extract
a	minidump.	Note	that	a	minidump	is	automatically	created	even	if	the	system	is
set	for	full	or	kernel	dumps.



NOTE

You	can	use	the	.dump	command	from	within	LiveKd	to	generate	a	memory	image	of	a	live	system	that
you	can	analyze	offline	without	stopping	the	system.	This	approach	is	useful	when	a	system	is	exhibiting	a
problem	but	is	still	delivering	services,	and	you	want	to	troubleshoot	the	problem	without	interrupting
service.	To	prevent	creating	crash	images	that	aren’t	necessarily	fully	consistent	because	the	contents	of
different	regions	of	memory	reflect	different	points	in	time,	LiveKd	supports	the	–m	flag.	The	mirror	dump
option	produces	a	consistent	snapshot	of	kernel-mode	memory	by	leveraging	the	memory	manager’s
memory	mirroring	APIs,	which	give	a	point-in-time	view	of	the	system.	For	information	about	using
LiveKd	with	Hyper-V	guests,	refer	to	the	“Dumping	Hyper-V	Guests	Using	LiveKd” 	experiment	later	in	the
chapter.

The	kernel	memory	dump	option	offers	a	practical	middle	ground.	Because	it
contains	all	of	kernel-mode-owned	physical	memory,	it	has	the	same	level	of
analysis-related	data	as	a	complete	memory	dump,	but	it	omits	the	usually
irrelevant	user-mode	data	and	code,	and	therefore	can	be	significantly	smaller.	As
an	example,	on	a	system	running	a	64-bit	version	of	Windows	with	4	GB	of	RAM,
a	kernel	memory	dump	was	294	MB	in	size.

When	you	configure	kernel	memory	dumps,	the	system	checks	whether	the	paging
file	is	large	enough,	as	described	earlier.	Some	general	recommendations	follow	in
Table	14-1,	but	these	are	only	estimated	sizes	because	there	is	no	way	to	predict
the	size	of	a	kernel	memory	dump.	The	reason	you	can’t	predict	the	size	of	a	kernel
memory	dump	is	that	its	size	depends	on	the	amount	of	kernel-mode	memory	in
use	by	the	operating	system	and	drivers	present	on	the	machine	at	the	time	of	the
crash.

Therefore,	it	is	possible	that	at	the	time	of	the	crash,	the	paging	file	is	too	small	to
hold	a	kernel	dump,	in	which	case	the	system	will	switch	to	generating	a
minidump.	If	you	want	to	see	the	size	of	a	kernel	dump	on	your	system,	force	a
manual	crash	either	by	configuring	the	option	to	allow	you	to	initiate	a	manual
system	crash	from	the	console	or	by	using	the	Notmyfault	tool.	(Both	Notmyfault
and	initiating	a	crash	are	described	later	in	the	chapter.)	When	you	reboot,	you	can
check	to	make	sure	that	a	kernel	dump	was	generated	and	check	its	size	to	gauge
how	large	to	make	your	paging	file.	To	be	conservative,	on	32-bit	systems	you	can
choose	a	page	file	size	of	2	GB	plus	up	to	256	MB,	because	2	GB	is	the	maximum
kernel-mode	address	space	available	(unless	you	are	booting	with	the
increaseuserva	boot	option,	in	which	case	this	can	be	as	low	as	1	GB).	If	you	do



not	have	enough	space	on	the	boot	volume	for	saving	the	Memory.dmp	file,	you
can	choose	a	location	on	any	other	local	hard	disk	through	the	dialog	box	shown
earlier	in	Figure	14-4.

Table	14-1.	Default	Minimum	Paging	File	Sizes	for	Kernel	Dumps

System	Memory	Size Minimum	Page	File	Size	for	Kernel	Dumps

<	4	GB 200	MB

<	8	GB 400	MB

>=	8	GB 800	MB

To	limit	the	amount	of	disk	space	that	is	taken	up	by	crash	dumps,	Windows	needs
to	determine	whether	it	should	maintain	a	copy	of	the	last	kernel	or	complete
dump.	After	reporting	the	kernel	fault	(described	later),	Windows	uses	the
following	algorithm	to	decide	if	it	should	keep	the	Memory.dmp	file.	If	the	system
is	a	server,	Windows	will	always	store	the	dump	file.	On	a	Windows	client	system,
only	domain-joined	machines	will	store	a	crash	dump	by	default.	For	a	non-
domain-joined	machine,	Windows	will	maintain	a	copy	of	the	crash	dump	only	if
there	is	more	than	25	GB	of	free	disk	space	on	the	destination	volume—that	is,	the
volume	where	the	system	is	configured	to	write	the	Memory.dmp	file.	If	the
system,	due	to	disk	space	constraints,	is	unable	to	keep	a	copy	of	the	crash	dump
file,	an	event	is	written	to	the	System	event	log	indicating	that	the	dump	file	was
deleted,	as	shown	in	Figure	14-5.	This	behavior	can	be	overridden	by	creating	the
DWORD	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\AlwaysKeepMemoryDump
and	setting	it	to	1,	in	which	case	Windows	will	always	keep	a	crash	dump,
regardless	of	the	amount	of	free	disk	space.



Figure	14-5.	Dump	file	deletion	event	log	entry

EXPERIMENT:	VIEWING	DUMP	FILE	INFORMATION

Each	crash	dump	file	contains	a	dump	header	that	describes	the	stop	code	and	its	parameters,	the	type	of
system	the	crash	occurred	on	(including	version	information),	and	a	list	of	pointers	to	important	kernel-
mode	structures	required	during	analysis.	The	dump	header	also	contains	the	type	of	crash	dump	that	was
written	and	any	information	specific	to	that	type	of	dump.	The	.dumpdebug	debugger	command	can	be
used	to	display	the	dump	header	of	a	crash	dump	file.	For	example,	the	following	output	is	from	a	crash	of	a
system	that	was	configured	for	a	kernel	(or	summary)	dump:

0: kd> .dumpdebug
----- 64 bit Kernel Summary Dump Analysis

DUMP_HEADER64:
MajorVersion        0000000f
MinorVersion        00001db1
KdSecondaryVersion  00000000
DirectoryTableBase  00000001`ad6a2000
PfnDataBase         fffffa80`00000000
PsLoadedModuleList  fffff800`02a47670
PsActiveProcessHead fffff800`02a29350
MachineImageType    00008664
NumberProcessors    00000002
BugCheckCode        000000d1
BugCheckParameter1  fffff8a0`027475c0
BugCheckParameter2  00000000`00000002
BugCheckParameter3  00000000`00000000
BugCheckParameter4  fffff880`0343a361
KdDebuggerDataBlock fffff800`029f30a0
SecondaryDataState  00000000
ProductType         00000001



SuiteMask           00000110

SUMMARY_DUMP64:
DumpOptions         504d4453
HeaderSize          00049000
BitmapSize          00230000
Pages               000151f0
Bitmap.SizeOfBitMap 00230000

KiProcessorBlock at fffff800`02ab1c40
  2 KiProcessorBlock entries:
  fffff800`029f4e80 fffff880`009ec180

The	.enumtag	command	displays	all	secondary	dump	data	stored	within	a	crash	dump.	For	each	callback	of
secondary	data,	the	tag,	the	length	of	the	data,	and	the	data	itself	(in	byte	and	ASCII	format)	are	displayed.
Developers	can	utilize	Debugger	Extension	APIs	to	create	custom	debugger	extensions	to	also	read
secondary	dump	data.	(See	the	Debugging	Tools	for	Windows	help	file	for	more	information.)

0: kd> .enumtag
{270A33FD-3DA6-460D-BA893C1BAE21E39B} - 0xfc8 bytes
  09 00 00 00 00 00 00 00 48 00 00 00 13 00 00 00  ........H.......
  48 08 00 00 14 00 00 00 C8 0F 00 00 15 00 00 00  H...............
  C8 0F 00 00 17 00 00 00 00 00 00 00 00 00 00 00  ................
  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  00 00 00 00 00 00 00 00 EF B2 01 00 00 00 00 00  ................
...

Crash	Dump	Generation
When	the	system	boots,	it	checks	the	crash	dump	options	configured	by	reading
the	HKLM\SYSTEM\CurrentControlSet\Control\CrashControl	registry	key.	If	a
dump	is	configured,	it	makes	a	copy	of	the	disk	miniport	driver	used	to	write	to	the
volume	in	memory	and	gives	it	the	same	name	as	the	miniport	with	the	word
“dump_”	prefixed.	The	system	also	queries	the	DumpFilters	value	for	any	filter
drivers	that	are	required	for	writing	to	the	volume,	an	example	being	Dumpfve.sys,
the	BitLocker	Drive	Encryption	Crashdump	Filter	driver.	(See	Chapter	9,	for	more
details	on	BitLocker	Drive	Encryption.)	It	also	collects	information	related	to	the
components	involved	with	writing	a	crash	dump—including	the	name	of	the	disk
miniport	driver,	the	I/O	manager	structures	that	are	necessary	to	write	the	dump,
and	the	map	of	where	the	paging	file	is	on	disk—and	saves	two	copies	of	the	data
in	dump-context	structures.

When	the	system	crashes,	the	crash	dump	driver
(%SystemRoot%\System32\Drivers\Crashdmp.sys)	verifies	the	integrity	of	the	two
dump-context	structures	obtained	at	boot	by	performing	a	memory	comparison.	If
there’s	not	a	match,	it	does	not	write	a	crash	dump,	because	doing	so	would	likely



fail	or	corrupt	the	disk.	Upon	a	successful	verification	match,	Crashdmp.sys,	with
support	from	the	disk	miniport	driver	and	any	required	filter	drivers,	writes	the
dump	information	directly	to	the	sectors	on	disk	occupied	by	the	paging	file,
bypassing	the	file	system	driver	and	storage	driver	stack	(which	might	be	corrupted
or	even	have	caused	the	crash).

NOTE

Because	the	page	file	is	opened	early	during	system	startup	for	crash	dump	use,	most	crashes	that	are
caused	by	bugs	in	system-start	driver	initialization	result	in	a	dump	file.	Crashes	in	early	Windows	boot
components	such	as	the	HAL	or	the	initialization	of	boot	drivers	occur	too	early	for	the	system	to	have	a
page	file,	so	using	another	computer	to	debug	the	startup	process	is	the	only	way	to	perform	crash	analysis
in	those	cases.	(See	the	EXPERIMENT:	Attaching	a	Kernel	Debugger	experiment	later	in	the	chapter.)

During	the	boot	process,	the	Session	Manager	(Smss.exe)	checks	the	registry	value
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management\ExistingPageFiles	for	a	list	of	existing	page	files	from	the	previous
boot.	(See	Chapter	10,	for	more	information	on	page	files.)	It	then	cycles	through
the	list,	calling	the	function	SmpCheckForCrashDump	on	each	file	present,
looking	to	see	whether	it	contains	crash	dump	data.	It	checks	by	searching	the
header	at	the	top	of	each	paging	file	for	the	signature	PAGEDUMP	or	PAGEDU64
on	32-bit	or	64-bit	systems,	respectively.	(A	match	indicates	that	the	paging	file
contains	crash	dump	information.)	If	crash	dump	data	is	present,	the	Session
Manager	then	reads	a	set	of	crash	parameters	from	the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl	registry	key,	one	of
which	contains	the	name	of	the	target	dump	file	(typically
%SystemRoot%\Memory.dmp,	unless	configured	otherwise).

Smss.exe	then	checks	whether	the	target	dump	file	is	on	a	different	volume	than
the	paging	file.	If	so,	it	checks	whether	the	target	volume	has	enough	free	disk
space	(the	size	required	for	the	crash	dump	is	stored	in	the	dump	header	of	the
page	file)	before	truncating	the	paging	file	to	the	size	of	the	crash	data	and
renaming	it	to	a	temporary	dump	file	name.	(A	new	page	file	will	be	created	later
when	the	Session	Manager	calls	the	NtCreatePagingFile	function.)	The	temporary
dump	file	name	takes	the	format	DUMPxxxx.tmp,	where	xxxx	is	the	current	low-
word	value	of	the	system’s	tick	count.	(The	system	will	attempt	100	times	to	find	a
nonconflicting	value.)	After	renaming	the	page	file,	the	system	removes	both	the



hidden	and	system	attributes	from	the	file	and	sets	the	appropriate	security
descriptors	to	secure	the	crash	dump.

Next	the	Session	Manager	creates	the	volatile	registry	key
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\MachineCrash	and
stores	the	temporary	dump	file	name	in	the	value	DumpFile.	It	then	writes	a
DWORD	to	the	TempDestination	value	indicating	whether	the	dump	file	location
is	only	a	temporary	destination.	If	the	paging	file	is	on	the	same	volume	as	the
destination	dump	file,	a	temporary	dump	file	isn’t	used,	because	the	paging	file	is
truncated	and	directly	renamed	to	the	target	dump	file	name.	In	this	case,	the
DumpFile	value	will	be	that	of	the	target	dump	file	and	TempDestination	will	be	0.

Later	in	the	boot,	Wininit	checks	for	the	presence	of	the	MachineCrash	key,	and	if
it	exists,	Wininit	launches	WerFault	(described	in	the	next	section),	which	reads	the
TempDestination	and	DumpFile	values.	If	the	TempDestination	value	is	set	to	1,
which	indicates	a	temporary	file	was	used,	WerFault	moves	the	temporary	file	to
its	target	location	and	secures	the	target	file	by	allowing	only	the	System	account
and	the	local	Administrators	group	access.	WerFault	then	writes	the	final	dump	file
name	to	the	FinalDumpFileLocation	value	in	the	MachineCrash	key.	These	steps
are	shown	in	Figure	14-6.

Figure	14-6.	Crash	dump	file	generation

To	provide	more	control	over	where	the	dump	file	data	is	written	to,	for	example
on	systems	that	boot	from	a	SAN	or	systems	with	insufficient	disk	space	on	the
volume	where	the	paging	file	is	configured,	Windows	also	supports	the	use	of	a



dedicated	dump	file	that	is	configured	in	the	DedicatedDumpFile	and
DumpFileSize	values	under	the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl	registry	key.	When	a
dedicated	dump	file	is	specified,	the	crash	dump	driver	creates	the	dump	file	of	the
specified	size	and	writes	the	crash	data	there	instead	of	to	the	paging	file.	If	no
DumpFileSize	value	is	given,	Windows	creates	a	dedicated	dump	file	using	the
largest	file	size	that	would	be	required	to	store	a	complete	dump.	Windows
calculates	the	required	size	as	the	size	of	the	total	number	of	physical	pages	of
memory	present	in	the	system	plus	the	size	required	for	the	dump	header	(one	page
on	32-bit	systems,	and	two	pages	on	64-bit),	plus	the	maximum	value	for
secondary	crash	dump	data,	which	is	256	MB.	If	a	full	or	kernel	dump	is
configured	but	there	is	not	enough	space	on	the	target	volume	to	create	the
dedicated	dump	file	of	the	required	size,	the	system	falls	back	to	writing	a
minidump.



Windows	Error	Reporting
As	mentioned	in	Chapter	3	in	Part	1,	Windows	includes	a	facility	called	Windows
Error	Reporting	(WER),	which	facilitates	the	automatic	submission	of	process	and
system	failures	(such	as	crashes	and/or	hangs)	to	Microsoft	(or	an	internal	error
reporting	server)	for	analysis.	This	feature	is	enabled	by	default,	but	it	can	be
modified	by	changing	WER’s	behavior	since	WER	takes	the	additional	step	of
determining	whether	the	system	is	configured	to	send	a	crash	dump	to	Microsoft
(or	a	private	server,	explained	further	in	the	Online	Crash	Analysis	section	later	in
the	chapter)	for	analysis	on	a	reboot	following	a	crash.	The	main	Problem
Reporting	Settings	page,	which	you	access	from	the	Control	Panel’s	Action	Center
applet	by	following	the	Change	Action	Center	Settings	link,	is	shown	in	Figure	14-
7.	This	page	allows	you	to	configure	the	system’s	error	reporting	settings.

Figure	14-7.	Problem	reporting	configuration	page

As	mentioned	earlier,	if	Wininit.exe	finds	the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\MachineCrash	key,	it
executes	WerFault.exe	with	the	–k	–c	flags	(the	k	flag	indicates	kernel	error
reporting,	and	the	c	flag	indicates	that	the	full	or	kernel	dump	should	be	converted
to	a	minidump)	to	have	WerFault.exe	check	for	the	kernel-mode	crash	dump	file.



WerFault	takes	the	following	steps	in	preparing	to	send	a	crash	dump	report	to	the
Microsoft	Online	Crash	Analysis	(OCA)	site	(or,	if	configured,	an	internal	error
reporting	server):

1.	 If	the	type	of	dump	generated	was	not	a	minidump,	it	extracts	a	minidump
from	the	dump	file	and	stores	it	in	the	default	location	of
%SystemRoot%\Minidump,	unless	otherwise	configured	through	the
MinidumpDir	value	in	the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl	key.

2.	 It	writes	the	name	of	the	minidump	files	to
HKLM\SOFTWARE\Microsoft\Windows\Windows	Error
Reporting\KernelFaults\Queue.

3.	 It	adds	a	command	to	execute	WerFault.exe
(%SystemRoot%\System32\WerFault.exe)	with	the	–k	–qr	flags	(the	qr	flag
specifies	to	use	queued	reporting	mode	and	that	WerFault	should	be
restarted)	to
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce	so	that
WerFault	is	executed	during	the	first	user’s	logon	to	the	system	for	purposes
of	actually	sending	the	error	report.



Online	Crash	Analysis
When	the	WerFault	utility	executes	during	logon,	as	a	result	of	having	configured
itself	to	start,	it	launches	itself	again	using	the	–k	–q	flags	(the	q	flag	on	its	own
specifies	queued	reporting	mode)	and	terminates	the	previous	instance.	It	does	this
to	prevent	the	Windows	shell	from	waiting	on	WerFault	by	returning	control	to
RunOnce	as	quickly	as	possible.	The	newly	launched	WerFault.exe	checks	the
HKLM\SOFTWARE\Microsoft\Windows\Windows	Error
Reporting\KernelFaults\Queue	key	to	look	for	queued	reports	that	may	have	been
added	in	the	previous	dump	conversion	phase.	It	also	checks	whether	there	are
previously	unsent	crash	reports	from	previous	sessions.	If	there	are,	WerFault.exe
generates	two	XML-formatted	files:

The	first	contains	a	basic	description	of	the	system,	including	the	operating
system	version,	a	list	of	drivers	installed	on	the	machine,	and	the	list	of	devices
present	in	the	system.

The	second	contains	metadata	used	by	the	OCA	service,	including	the	event
type	that	triggered	WER	and	additional	configuration	information	such	as	the
system	manufacturer.

If	configured	to	ask	for	user	input	(which	is	the	default),	it	then	presents	the	dialog
box	shown	in	Figure	14-8,	which	prompts	the	user	whether	he	or	she	wants	to
check	online	for	a	solution	to	the	problem.	If	the	user	chooses	to	check	for	a
solution,	and	unless	overridden	by	Group	Policy,	WerFault	sends	a	copy	of	the	two
XML	files	and	the	minidump	to	https://oca.microsoft.com,	which	forwards	the
data	to	a	server	farm	for	automated	analysis,	described	in	the	next	section.

https://oca.microsoft.com


Figure	14-8.	Crash	dump	error	reporting	dialog	box

The	server	farm’s	automated	analysis	uses	the	same	analysis	engine	that	the
Microsoft	kernel	debuggers	use	when	you	load	a	crash	dump	file	into	them
(described	shortly).	The	analysis	generates	a	bucket	ID	,	which	is	a	signature	that
identifies	a	particular	crash	type.	The	server	farm	queries	a	database	using	the
bucket	ID	to	see	whether	a	resolution	has	been	found	for	the	crash,	and	it	sends	a
URL	back	to	WerFault	that	refers	it	to	the	WER	website
(https://wer.microsoft.com).	Any	solutions	are	made	available	on	the	main	Action
Center	page	of	Control	Panel	under	System	And	Security.	When	browsing	for
solutions,	the	Action	Center	contains	an	Internet	browser	frame	to	open	the	page
on	the	WER	website	that	reports	the	preliminary	crash	analysis.	If	a	resolution	is
available,	the	page	instructs	the	user	where	to	obtain	a	hotfix,	service	pack,	or
third-party	driver	update.

https://wer.microsoft.com


Basic	Crash	Dump	Analysis
If	OCA	fails	to	identify	a	resolution	or	you	are	unable	to	submit	the	crash	to	OCA,
an	alternative	is	analyzing	crashes	yourself.	As	mentioned	earlier,	WinDbg	and	Kd
both	execute	the	same	analysis	engine	used	by	OCA	when	you	load	a	crash	dump
file,	and	the	basic	analysis	can	sometimes	pinpoint	the	problem.	As	a	result,	you
might	be	fortunate	and	have	the	crash	dump	solved	by	the	automatic	analysis.	If
not,	there	are	some	straightforward	techniques	to	try	to	solve	the	crash.

This	section	explains	how	to	perform	basic	crash	analysis	steps,	followed	by	tips	on
leveraging	Driver	Verifier	(which	is	introduced	in	Chapter	8)	to	catch	buggy
drivers	when	they	corrupt	the	system	so	that	a	crash	dump	analysis	pinpoints	them.

NOTE

OCA’s	automated	analysis	may	occasionally	identify	a	highly	likely	cause	of	a	crash	but	not	be	able	to
inform	you	of	the	suspected	driver.	This	happens	because	it	only	reports	the	cause	for	crashes	that	have
their	bucket	ID	entry	populated	in	the	OCA	database,	and	entries	are	created	only	when	Microsoft	crash-
analysis	engineers	have	verified	the	cause.	If	there’s	no	bucket	ID	entry,	OCA	reports	that	the	crash	was
caused	by	“unknown	driver.”

Notmyfault
You	can	use	the	Notmyfault	utility	from	Windows	Sysinternals
(http://technet.microsoft.com/en-us/sysinternals/bb963901)	to	generate	the	crashes
described	here.	Notmyfault	consists	of	an	executable	named	Notmyfault.exe	and	a
driver	named	Myfault.sys.	When	you	run	the	Notmyfault	executable,	it	loads	the
driver	and	presents	the	dialog	box	shown	in	Figure	14-9,	which	allows	you	to	crash
or	hang	the	system	in	various	ways	or	to	cause	the	driver	to	leak	paged	or
nonpaged	pool.	The	crash	types	offered	represent	the	ones	most	commonly	seen	by
Microsoft’s	Customer	Service	and	Support	group.	Selecting	an	option	and	clicking
the	Crash,	Hang,	Leak	Paged,	or	Leak	Nonpaged	button	causes	the	executable	to
tell	the	driver,	by	using	the	DeviceIoControl	Windows	API,	which	type	of	bug	to
trigger.

NOTE

You	should	execute	Notmyfault	crashes	on	a	test	system	or	on	a	virtual	machine	because	there	is	a	small

http://technet.microsoft.com/en-us/sysinternals/bb963901


risk	that	memory	it	corrupts	will	be	written	to	disk	and	result	in	file	or	disk	corruption.

NOTE

The	names	of	the	Notmyfault	executable	and	driver	highlight	the	fact	that	user	mode	cannot	directly	cause
the	system	to	crash.	The	Notmyfault	executable	can	cause	a	crash	only	by	loading	a	driver	to	perform	an
illegal	operation	for	it	in	kernel	mode.

Figure	14-9.	Notmyfault

Basic	Crash	Dump	Analysis
The	most	straightforward	Notmyfault	crash	to	debug	is	the	one	caused	by	selecting
the	High	IRQL	Fault	(Kernel-Mode)	option	and	clicking	the	Crash	button.	This
causes	the	driver	to	allocate	a	page	of	paged	pool,	free	the	pool,	raise	the	IRQL	to
DPC/dispatch	level,	and	then	touch	the	page	it	has	freed.	(See	Chapter	3	in	Part	1
for	more	information	on	IRQLs.)	If	that	doesn’t	cause	a	crash,	the	process
continues	by	reading	memory	past	the	end	of	the	page	until	it	causes	a	crash	by
accessing	invalid	pages.	The	driver	performs	several	illegal	operations	as	a	result:

1.	 It	references	memory	that	doesn’t	belong	to	it.

2.	 It	references	paged	pool	at	an	IRQL	that’s	DPC/dispatch	level	or	higher,
which	is	illegal	because	page	faults	are	not	permitted	when	the	processor



IRQL	is	DPC/dispatch	level	or	higher.

3.	 When	it	goes	past	the	end	of	the	memory	that	it	had	allocated,	it	tries	to
reference	memory	that	is	potentially	invalid.

The	reason	the	first	page	reference	might	not	cause	a	crash	is	that	it	won’t	generate
a	page	fault	if	the	page	that	the	driver	frees	remains	in	the	system	working	set.	(See
Chapter	10	for	information	on	the	system	working	set.)

When	you	load	a	crash	generated	with	this	bug	into	WinDbg,	the	tool’s	analysis
displays	something	like	this:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\MEMORY.DMP]
Kernel Complete Dump File: Full address space is available

Symbol search path is: srv*c:\symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:
Windows 7 Kernel Version 7601 (Service Pack 1) MP (2 procs) Free x86 compatible
Product: WinNt, suite: TerminalServer SingleUserTS
Built by: 7601.17514.x86fre.win7sp1_rtm.101119-1850
Machine Name:
Kernel base = 0x82814000 PsLoadedModuleList = 0x8295e850
Debug session time: Wed Mar 21 08:12:50.194 2012 (UTC - 7:00)
System Uptime: 8 days 8:54:38.580
Loading Kernel Symbols
...............................................................
...........
Loading User Symbols
......................
Loading unloaded module list
.....
*******************************************************************************
                                                                             
*                        Bugcheck Analysis                                    *
                                                                             
*******************************************************************************

Use !analyze -v to get detailed debugging information.

BugCheck D1, {946ae800, 2, 0, 91df15ab}

*** ERROR: Module load completed but symbols could not be loaded for myfault.sys
Probably caused by : myfault.sys ( myfault+5ab )

Followup: MachineOwner
---------

The	first	thing	to	note	is	that	WinDbg	reports	errors	trying	to	load	symbols	for
Myfault.sys.	This	is	expected	because	the	symbol	file	for	Myfault.sys	is	not	stored
in	the	symbol-file	path	(which	is	configured	to	point	at	the	Microsoft	symbol



server).	You’ll	see	similar	errors	for	third-party	drivers	that	do	not	ship	with	the
operating	system.

The	analysis	text	itself	is	terse,	showing	the	numeric	stop	code	and	bug-check
parameters	followed	by	a	“Probably	caused	by”	line	that	shows	the	analysis
engine’s	best	guess	at	the	offending	driver.	In	this	case	it’s	on	the	mark	and	points
directly	at	Myfault.sys,	so	there’s	no	need	for	manual	analysis.

The	“Followup”	line	is	not	generally	useful	except	within	Microsoft,	where	the
debugger	looks	for	the	module	name	in	the	Triage.ini	file	that’s	located	within	the
Triage	directory	of	the	Debugging	Tools	for	Windows	installation	directory.	The
Microsoft-internal	version	of	that	file	lists	the	developer	or	group	responsible	for
handling	crashes	in	a	specific	driver,	and	the	debugger	displays	the	developer’s	or
group’s	name	in	the	Followup	line	when	appropriate.

Verbose	Analysis
Even	though	the	basic	analysis	of	the	Notmyfault	crash	identifies	the	faulty	driver,
you	should	always	have	the	debugger	execute	a	verbose	analysis	by	entering	the
command:

!analyze	-v

The	first	obvious	difference	between	the	verbose	and	default	analysis	is	the
description	of	the	stop	code	and	its	parameters.	Following	is	the	output	of	the
command	when	executed	on	the	same	dump:

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high.  This is usually
caused by drivers using improper addresses.
If kernel debugger is available get stack backtrace.
Arguments:
Arg1: 946ae800, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 91df15ab, address which referenced memory

This	saves	you	the	trouble	of	opening	the	help	file	to	find	the	same	information,
and	the	text	sometimes	suggests	troubleshooting	steps,	an	example	of	which	you’ll
see	in	the	next	section	on	advanced	crash	dump	analysis.

The	other	potentially	useful	information	in	a	verbose	analysis	is	the	stack	trace	of
the	thread	that	was	executing	on	the	processor	that	crashed	at	the	time	of	the	crash.



Here’s	what	it	looks	like	for	the	same	complete	dump:
STACK_TEXT:
93cdbb3c 91df15ab badb0d00 84f3e380 946ad800 nt!KiTrap0E+0x2cf
WARNING: Stack unwind information not available. Following frames may be wrong.
93cdbbb8 91df19db 86d77900 93cdbbfc 91df1b26 myfault+0x5ab
93cdbbc4 91df1b26 85e38488 00000001 00000000 myfault+0x9db
93cdbbfc 8284b593 86c9a510 86d77900 86d77900 myfault+0xb26
93cdbc14 82a3f99f 85e38488 86d77900 86d77970 nt!IofCallDriver+0x63
93cdbc34 82a42b71 86c9a510 85e38488 00000000 nt!IopSynchronousServiceTail+0x1f8
93cdbcd0 82a893f4 86c9a510 86d77900 00000000 nt!IopXxxControlFile+0x6aa
93cdbd04 828521ea 000000c4 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
93cdbd04 77af70b4 000000c4 00000000 00000000 nt!KiFastCallEntry+0x12a
0009f370 77af5864 75cb989d 000000c4 00000000 ntdll!KiFastSystemCallRet
0009f374 75cb989d 000000c4 00000000 00000000 ntdll!NtDeviceIoControlFile+0xc
0009f3d4 77a1a671 000000c4 83360018 00000000 KERNELBASE!DeviceIoControl+0xf6
0009f400 00c421f9 000000c4 83360018 00000000 
kernel32!DeviceIoControlImplementation+0x80
0009f4a0 7749c4e7 000201ec 00000111 000003f9 NotMyfault+0x21f9

The	preceding	stack	shows	that	the	Notmyfault	executable	image,	shown	at	the
bottom,	invoked	the	DeviceIoControlImplementation	function	in	Kernel32.dll,
which	in	turn	invoked	DeviceIoControl	in	Kernelbase.dll,	and	so	on,	until	finally
the	system	crashed	with	the	execution	of	an	instruction	in	the	Myfault	image.	A
stack	trace	like	this	can	be	useful	because	crashes	sometimes	occur	as	the	result	of
one	driver	passing	another	one	data	that	is	improperly	formatted	or	corrupt	or
contains	illegal	parameters.	The	driver	that’s	passed	the	invalid	data	might	cause	a
crash	and	get	the	blame	in	an	analysis,	when	the	stack	reveals	that	another	driver
was	involved.	In	this	sample	trace,	no	driver	other	than	Myfault	is	listed.	(The
module	“nt”	is	Ntoskrnl.)

If	the	driver	singled	out	by	an	analysis	is	unfamiliar	to	you,	use	the	lm	(list
modules)	command	to	look	at	the	driver’s	version	information.	Add	the	k	(kernel
modules)	and	v	(verbose)	options	along	with	the	m	(match)	option	followed	by	the
name	of	the	driver:

0: kd> lm kv m myfault
start    end        module name
91df1000 91df2880   myfault    (no symbols)
    Loaded symbol image file: myfault.sys
    Image path: \??\C:\Windows\system32\drivers\myfault.sys
    Image name: myfault.sys
    Timestamp:        Sat Apr 07 09:34:40 2012 (4F806CA0)
    CheckSum:         00003871
    ImageSize:        00001880
    File version:     4.0.0.0
    Product version:  4.0.0.0
    File flags:       0 (Mask 3F)
    File OS:          40004 NT Win32
    File type:        3.7 Driver



    File date:        00000000.00000000
    Translations:     0409.04b0
    CompanyName:      Sysinternals
    ProductName:      Sysinternals Myfault
    InternalName:     myfault.sys
    OriginalFilename: myfault.sys
    ProductVersion:   4.0
    FileVersion:      4.0 (sysinternals.com)
    FileDescription:  Crash Test Driver
    LegalCopyright:   Copyright © 2002-2012 Mark Russinovich

Before	you	spend	additional	time	and	energy	further	analyzing	crashes,	you	should
ensure	that	your	system’s	kernel	and	drivers	are	the	most	recent	available	by	using
the	services	of	Windows	Update	and	third-party	driver	support	sites.

In	addition	to	using	the	description	to	identify	the	purpose	of	a	driver,	you	can	also
use	the	file	and	product	version	numbers	to	see	whether	the	version	installed	is	the
most	up-to-date	version	available.	If	version	information	isn’t	present	(because	it
might	have	been	paged	out	of	physical	memory	at	the	time	of	the	crash),	look	at
the	driver	image	file’s	properties	in	Windows	Explorer	on	the	system	that	crashed.

To	use	Windows	Update	to	check	for	a	newer	version	of	a	driver,	open	Device
Manager	and	locate	the	device	that	the	driver	is	associated	with.	Right-click	on	the
device,	and	select	Update	Driver	Software.	If	Windows	Update	reports	that	no
newer	version	of	the	driver	is	available	for	download,	it	may	be	worthwhile
checking	the	website	of	the	original	equipment	manufacturer	(OEM)	for	the
system.	Finally,	since	both	Windows	Update	and	the	OEM	may	not	have	the	latest
drivers,	also	check	the	website	of	the	actual	driver	author	for	a	newer	version.



Using	Crash	Troubleshooting	Tools
The	crash	generated	in	the	preceding	section	with	Notmyfault’s	High	IRQL	Fault
(Kernel-Mode)	option	poses	no	challenge	for	the	debugger’s	automated	analysis.
Unfortunately,	most	crashes	are	not	so	easy	and	sometimes	are	impossible	to
debug.	There	are	several	levels	of	increasing	severity	in	terms	of	system
performance	degradation	that	might	help	turn	system	crashes	that	cannot	be
analyzed	into	ones	that	can	be.	If	the	crashes	generated	after	you	configure	a	level
and	reboot	aren’t	revealing	the	cause,	try	the	next	level.

1.	 If	there	are	one	or	more	drivers	you	consider	likely	sources	of	the	crashes—
because	they	were	introduced	into	the	system	relatively	recently,	they	were
recently	updated,	or	the	circumstances	of	the	crash	implicate	them—enable
them	for	verification	using	Driver	Verifier	and	check	all	the	verification
options	except	for	low	resources	simulation.	(See	Chapter	8	for	more
information	on	Driver	Verifier.)

2.	 If	the	computer	is	running	a	32-bit	version	of	Windows,	enable	the	same
level	of	verification	as	in	level	1	on	all	unsigned	drivers	in	the	system.	(All
drivers	on	a	64-bit	system	must	be	signed	unless	this	restriction	is	disabled
manually	at	boot	time	by	pressing	F8	and	choosing	the	advanced	boot	option
Disable	Driver	Signature	Enforcement.)

3.	 Enable	the	same	verification	as	in	level	1	on	all	drivers	in	the	system.	To
maintain	reasonable	performance,	you	may	want	to	divide	the	drivers	into
groups,	enabling	Driver	Verifier	on	one	group	at	a	time	between	reboots.

NOTE

If	your	system	becomes	unbootable	because	Driver	Verifier	detects	a	driver	error	and	crashes	the	system,
start	in	safe	mode	(where	verification	is	disabled),	run	Driver	Verifier,	and	delete	the	verification	settings.

The	following	sections	demonstrate	how	Driver	Verifier	can	make	impossible-to-
debug	crashes	into	ones	that	you	can	solve.

Buffer	Overruns,	Memory	Corruption,	and	Special
Pool



One	of	the	most	common	sources	of	crashes	on	Windows	is	pool	corruption.	Pool
corruption	usually	occurs	when	a	driver	suffers	from	a	buffer	overrun	or	buffer
underrun	bug	that	causes	it	to	overwrite	data	past	either	the	end	or	start	of	a	buffer
it	has	allocated	from	paged	or	nonpaged	pool.	The	Executive’s	pool-tracking
structures	reside	on	either	side	of	a	pool	buffer	and	separate	buffers	from	each
other.	These	bugs,	therefore,	cause	corruption	to	the	pool	tracking	structures,	to
buffers	owned	by	other	drivers,	or	to	both.	You	can	often	catch	the	culprit	of	a
pool	overrun	by	using	the	!pool	command	to	examine	the	surrounding	pool	tags.
Find	the	address	at	which	the	corruption	occurred,	and	use	!pool
address_of_corruption	.	This	command	will	display	all	the	pool	allocations	that	are
on	the	same	page	as	the	corruption.	Looking	in	the	left	column,	find	the	range	of
the	corrupted	address	and	then	look	at	the	allocation	just	previous	to	it	and	find	its
pool	tag.	This	will	likely	be	the	culprit	in	a	buffer	overrun.	You	can	use	the
Pooltag.txt	file	in	the	Triage	folder	of	the	Debugging	Tools	for	Windows
installation	directory	to	find	the	driver	that	owns	the	pool	tag,	or	use	the	Strings
utility	from	Sysinternals.

Pool	corruption	can	also	occur	when	a	driver	writes	to	pool	it	had	previously
owned	but	subsequently	freed.	This	is	called	a	use	after	free	bug	and	is	usually
caused	by	a	race	condition	in	a	driver.	These	bugs	are	particularly	hard	to	debug
because	the	driver	that	corrupts	memory	no	longer	has	any	traceable	ties	to	the
memory,	such	as	a	neighboring	pool	tag	as	in	a	buffer	overrun.	Another	fairly
common	cause	of	pool	corruption	is	direct	memory	access	(DMA).	DMA	occurs
when	hardware	writes	directly	to	RAM	instead	of	going	through	a	driver;	however,
the	driver	is	still	responsible	for	coordinating	the	whole	process	by	allocating	the
memory	that	the	hardware	will	write	to	and	programming	the	hardware	registers	of
the	device	with	the	details	of	the	operation.	If	a	driver	has	a	bug	that	releases	the
memory	it	is	using	for	DMA	before	the	hardware	writes	to	it,	the	memory	can	be
given	to	another	driver	or	even	to	a	user-mode	application,	which	will	certainly	not
expect	to	have	hardware	writing	to	it.

The	crashes	caused	by	pool	corruption	are	virtually	impossible	to	debug	because
the	system	crashes	when	corrupted	data	is	referenced,	not	when	the	corruption
occurs.	However,	sometimes	you	can	take	steps	to	at	least	obtain	a	clue	about	what
corrupted	the	memory.	The	first	step	is	to	try	to	determine	the	size	of	the
corruption	by	looking	at	the	corrupted	data.	If	the	corruption	is	a	single	bit,	it	was



likely	caused	by	bad	RAM	or	a	faulty	processor.	If	the	corruption	is	fairly	small,	it
could	be	caused	by	hardware	or	software,	and	finding	a	root	cause	will	be	nearly
impossible.	In	the	case	of	large	corruptions,	you	can	look	for	patterns	in	the
corruption,	like	strings	(for	example,	HTTP	packet	payloads,	file	contents	of	text-
based	files,	and	so	on).

NOTE

To	assist	in	catching	pool	corruptions,	Windows	checks	the	consistency	of	a	buffer’s	pool-tracking
structures,	and	those	of	the	buffer’s	immediate	neighbors,	on	every	pool	allocation	and	free	operation.	Thus,
buffer	overruns	are	likely	to	be	detected	shortly	after	the	corruption	and	identified	with	a	crash	that	has	the
BAD_POOL_HEADER	(0x19)	stop	code.

You	can	generate	a	pool	corruption	crash	by	running	Notmyfault	and	selecting	the
Buffer	Overflow	bug.	This	causes	Myfault	to	allocate	a	buffer	and	then	overwrite
the	48	bytes	following	the	buffer.	There	can	be	a	significant	delay	between	the	time
you	click	the	Crash	button	and	when	a	crash	occurs,	and	you	might	even	have	to
generate	pool	usage	by	exercising	applications	before	a	crash	occurs,	which
highlights	the	distance	between	a	corruption	and	its	effect	on	system	stability.	An
analysis	of	the	resultant	crash	almost	always	reports	Ntoskrnl	or	another	driver	as
being	the	likely	cause,	which	demonstrates	the	usefulness	of	a	verbose	analysis	with
its	description	of	the	stop	code:

DRIVER_CORRUPTED_EXPOOL (c5)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high.  This is
caused by drivers that have corrupted the system pool.  Run the driver
verifier against any new (or suspect) drivers, and if that doesn't turn up
the culprit, then use gflags to enable special pool.
Arguments:
Arg1: 4f4f4f53, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 829234a7, address which referenced memory

The	advice	in	the	description	is	to	run	Driver	Verifier	against	any	new	or	suspect
drivers	or	to	use	Gflags	to	enable	special	pool.	Both	accomplish	the	same	thing:	to
have	the	system	detect	a	potential	corruption	when	it	occurs	and	crash	the	system
in	a	way	that	makes	the	automated	analysis	point	at	the	driver	causing	the
corruption.

If	Driver	Verifier’s	special	pool	option	is	enabled,	verified	drivers	use	special	pool,
rather	than	paged	or	nonpaged	pool,	for	any	allocations	they	make	for	buffers



slightly	less	than	a	page	in	size.	A	buffer	allocated	from	special	pool	is	sandwiched
between	two	invalid	pages	and	by	default	is	aligned	against	the	top	of	the	page.	The
special	pool	routines	also	fill	the	unused	portions	of	the	page	in	which	the	buffer
resides	with	a	random	pattern	(based	on	the	system’s	tick	count).	See	Chapter	10
for	more	information	on	special	pool.

The	system	detects	any	buffer	overruns	of	under	a	page	in	size	at	the	time	of	the
overrun	because	they	cause	a	page	fault	on	the	invalid	page	following	the	buffer.
The	signature	serves	to	catch	buffer	underruns	at	the	time	the	driver	frees	a	buffer
because	the	integrity	of	the	pattern	placed	there	at	the	time	of	allocation	will	have
been	compromised.

EXPERIMENT:	ENABLING	SPECIAL	POOL	WITH	DRIVER	VERIFIER

To	see	how	the	use	of	special	pool	causes	a	crash	that	the	analysis	engine	easily	diagnoses,	run	the	Driver
Verifier	Manager	to	configure	the	special	pool	option.	The	Driver	Verifier	Manager	provides	the	ability	to
activate	most	verification	features	without	having	to	restart	the	system.	The	following	steps	show	how	to	use
the	Driver	Verifier	Manager	to	enable	the	special	pool	feature,	without	requiring	a	restart:

1.	 From	the	Start	menu,	type	verifier,	and	then	press	Enter	to	run	the	Driver	Verifier	Manager.

2.	 Select	the	option	Display	Information	About	The	Currently	Verified	Drivers,	and	then	click	Next.

3.	 Click	the	Change	button,	select	Special	Pool,	and	click	OK	to	enable	the	special	pool	option.	(The
Enabled?	option	will	read	No	until	you	select	a	driver	for	verification.)

4.	 Next,	click	the	Add	button,	type	myfault.sys	in	the	File	Name	field,	and	then	click	Open.	(You	do
not	have	to	find	Myfault.sys	in	the	dialog	box;	just	enter	its	name.)

5.	 Click	the	Next	button	to	progress	to	where	the	Driver	Verifier	Manager	displays	a	list	of	global
counters	for	any	currently	verified	drivers.	Clicking	the	Next	button	again	shows	you	a	list	of
counters	specific	to	each	verified	driver.	You	should	see	Myfault.sys	in	the	list.

6.	 Finally,	click	the	Finish	button	to	complete	the	wizard.

Drivers	that	are	verified	using	the	No	Reboot	feature	of	Driver	Verifier	are	not	monitored	as	thoroughly	as
drivers	that	are	loaded	after	a	reboot.	Whenever	possible,	enable	the	driver	for	verification,	and	then	restart
the	system.	Running	the	following	command	from	an	elevated	command	prompt	causes	Driver	Verifier	to
preserve	verification	settings	across	reboots:

C:\>verifier flags 0x1 driver myfault.sys

New verifier settings:

Special pool: Enabled
Pool tracking: Disabled
Force IRQL checking: Disabled
I/O verification: Disabled
Deadlock detection: Disabled
DMA checking: Disabled
Security checks: Disabled



Force pending I/O requests: Disabled
Low resources simulation: Disabled
IRP Logging: Disabled
Miscellaneous checks: Disabled

Verified drivers:

myfault.sys

You must restart this computer for the changes to take effect.

When	you	run	Notmyfault	and	cause	a	buffer	overflow,	the	system	will	immediately	crash	and	the	analysis
of	the	dump	reports	this:

Probably caused by : myfault.sys ( myfault+61d )

A	verbose	analysis	describes	the	stop	code	like	this:

DRIVER_PAGE_FAULT_BEYOND_END_OF_ALLOCATION (d6)
N bytes of memory was allocated and more than N bytes are being referenced.
This cannot be protected by try-except.
When possible, the guilty driver's name (Unicode string) is printed on
the bugcheck screen and saved in KiBugCheckDriver.
Arguments:
Arg1: beb50000, memory referenced
Arg2: 00000001, value 0 = read operation, 1 = write operation
Arg3: 9201161d, if non-zero, the address which referenced memory.
Arg4: 00000000, (reserved)

Special	pool	made	an	elusive	bug	into	one	that	instantly	reveals	itself	and	makes	the	analysis	trivial.

Code	Overwrite	and	System	Code	Write
Protection
A	driver	with	a	bug	that	causes	corruption	or	misinterpretation	of	its	own	data
structures	can	reference	memory	the	driver	doesn’t	own	when	it	interprets
corrupted	data	as	a	memory	pointer	value.	The	target	of	the	pointer	can	be
anything	in	the	virtual	address	space,	including	data	belonging	to	other	drivers,
invalid	memory,	or	the	code	of	other	drivers	or	the	kernel.	As	with	buffer	overruns,
by	the	time	that	corruption	is	detected	and	the	system	crashes,	it’s	usually
impossible	to	identify	the	driver	that	caused	the	corruption.	Enabling	special	pool
increases	the	chance	of	catching	wild-pointer	bugs,	but	it	does	not	catch	code
corruption.

When	you	run	Notmyfault	and	select	the	Code	Overwrite	option,	the	Myfault
driver	corrupts	the	entry	point	to	the	NtReadFile	kernel	function.	One	of	two
things	will	happen	at	this	point:	if	your	system	has	2	GB	or	less	of	physical
memory,	you’ll	get	a	crash	for	which	an	analysis	points	at	Myfault.sys.	The	stop



code	description	that	a	verbose	analysis	displays	tells	you	that	Myfault	attempted	to
write	to	readonly	memory:

ATTEMPTED_WRITE_TO_READONLY_MEMORY (be)
An attempt was made to write to readonly memory.  The guilty driver is on the
stack trace (and is typically the current instruction pointer).
When possible, the guilty driver's name (Unicode string) is printed on
the bugcheck screen and saved in KiBugCheckDriver.
Arguments:
Arg1: 826a023c, Virtual address for the attempted write.
Arg2: 026a0121, PTE contents.
Arg3: 90f83b4c, (reserved)
Arg4: 0000000b, (reserved)

However,	if	you	have	more	than	2	GB	of	memory,	you’ll	get	a	different	type	of
crash	because	the	attempt	to	corrupt	the	memory	isn’t	caught.	Because	NtReadFile
is	a	commonly	executed	system	service	that	is	used	by	Windows,	the	system	will
almost	immediately	crash	as	a	thread	attempts	to	execute	the	corrupted	code	and
generates	an	illegal	instruction	fault.	The	analysis	of	crashes	generated	with	this
bug	is	always	wrong,	but	it	might	vary,	with	Win32k.sys	and	Ntoskrnl.exe
commonly	being	the	analyzer’s	best	guess	as	to	what’s	responsible.	The	bugcheck
description	for	these	crashes	is:

KERNEL_MODE_EXCEPTION_NOT_HANDLED (8e)
This is a very common bugcheck.    Usually the exception address pinpoints
the driver/function that caused the problem.    Always note this address
as well as the link date of the driver/image that contains this address.
Some common problems are exception code 0x80000003.    This means a hard
coded breakpoint or assertion was hit, but this system was booted
NODEBUG.  This is not supposed to happen as developers should never have
hardcoded breakpoints in retail code, but ...
If this happens, make sure a debugger gets connected, and the
system is booted DEBUG.    This will let us see why this breakpoint is
happening.
Arguments:
Arg1: c0000005, The exception code that was not handled
Arg2: 826a0240, The address that the exception occurred at
Arg3: 978eb9c4, Trap Frame
Arg4: 00000000

The	reason	for	the	different	behaviors	on	different	configurations	relates	to	a
mechanism	called	system	code	write	protection.	If	system	code	write	protection	is
enabled,	the	memory	manager	maps	Ntoskrnl.exe,	the	HAL,	and	boot	drivers
using	standard	physical	pages	(4	KB	on	x86	and	x64,	and	8	KB	on	IA64).	Because
the	granularity	of	protection	in	an	image	is	the	standard	page	size,	the	memory
manager	can	write-protect	code	pages	so	that	an	attempt	to	modify	them	generates
an	access	fault	(as	seen	in	the	first	crash).	However,	when	system	code	write
protection	is	disabled	on	systems	with	more	than	2	GB	of	RAM,	the	memory



manager	uses	large	pages	(4	MB	on	x86,	and	16	MB	on	IA64	and	x64)	to	map
Ntoskrnl.exe	and	the	HAL.

If	system	code	write	protection	is	off	and	crash	analysis	reports	unlikely	causes	for
a	crash	or	you	suspect	code	corruption,	you	should	enable	it.	Verifying	at	least	one
driver	with	Driver	Verifier	is	the	easiest	way	to	enable	it.	You	can	also	enable	it
manually	by	adding	a	registry	value	under
HKLM\SYSTEM\CurrentControlSet\Control\Session	Manager\Memory
Management.	You	need	to	specify	the	amount	of	RAM	at	which	the	memory
manager	uses	large	pages	instead	of	standard	pages	to	map	Ntoskrnl.exe	as	an
effectively	infinite	value.	You	do	this	by	creating	a	DWORD	value	called
LargePageMinimum	and	setting	it	to	0xFFFFFFFF.	You	must	reboot	for	the
changes	to	take	effect.



Advanced	Crash	Dump	Analysis
The	preceding	section	leverages	Driver	Verifier	to	create	crashes	that	the
debugger’s	automated	analysis	engine	can	resolve.	You	might	still	encounter	cases
where	you	cannot	get	a	system	to	produce	easily	analyzable	crashes,	and,	if	so,	you
will	need	to	execute	manual	analysis	to	try	to	determine	what	the	problem	is.	Here
are	some	examples	of	basic	commands	that	can	provide	clues	during	crash	analysis.
The	Debugging	Tools	for	Windows	help	file	provides	complete	documentation	on
these	and	other	commands	as	well	as	examples	of	how	to	use	them	during	crash
analysis:

Use	the	!cpuinfo	command	to	display	a	list	of	processors	the	system	is
configured	to	use.

Use	the	processor	ID	with	the	k	command	to	display	the	stack	trace	of	each
processor	in	the	system—for	example,	1k	.	Be	sure	you	recognize	each	of	the
modules	listed	in	the	stack	trace	and	that	you	have	the	most	recent	versions.

Use	the	!thread	command	to	display	information	about	the	current	thread	on
each	processor.	The	~s	command	can	be	used	with	the	processor	ID	to	change
the	current	processor	(such	as	~1s	).	Look	for	any	pending	I/O	request	packets
(explained	in	the	next	section).

Use	the	.time	command	to	display	information	about	the	system	time,	including
when	the	system	crashed	and	for	how	long	it	had	been	running.	A	short	uptime
value	can	indicate	frequent	problems.

Use	the	lm	command	with	the	k	t	option	(the	t	flag	specifies	to	display	time
stamp	information—that	is,	when	the	file	was	compiled,	not	what	appears	on
the	file	system,	which	might	differ)	to	list	the	loaded	kernel-mode	drivers.	Be
sure	you	understand	the	purpose	of	any	third-party	drivers	and	that	you	have
the	most	recent	versions.

Use	the	!vm	command	to	see	whether	the	system	has	exhausted	virtual
memory,	paged	pool,	or	nonpaged	pool.	If	virtual	memory	is	exhausted,	the
committed	pages	will	be	close	to	the	commit	limit,	so	try	to	identify	a	potential
memory	leak	by	examining	the	list	of	processes	to	see	which	one	reports	high
commit	usage.	If	nonpaged	pool	or	paged	pool	is	exhausted	(that	is,	the	usage	is



close	to	the	maximum),	see	the	EXPERIMENT:	Troubleshooting	a	Pool	Leak
experiment	in	Chapter	10.

Use	the	!process	0	0	debugger	command	to	look	at	the	processes	running,	and
be	sure	that	you	understand	the	purpose	of	each	one.	Try	disabling	or
uninstalling	unnecessary	applications	and	services.

There	are	other	debugging	commands	that	can	prove	useful,	but	more	advanced
knowledge	is	required	to	apply	them.	The	!irp	command	is	one	of	them.	The	next
section	shows	the	use	of	this	command	to	identify	a	suspect	driver.

Stack	Trashes
Stack	overruns	or	stack	trashing	typically	results	from	a	buffer	overrun	or	underrun
or	when	a	driver	passes	a	buffer	address	located	on	the	stack	to	a	lower	driver	on
the	device	stack,	which	then	performs	the	work	asynchronously.

In	the	case	of	a	stack	overrun	or	underrun,	instead	of	residing	in	pool,	as	you	saw
with	Notmyfault’s	buffer	overrun	bug,	the	target	buffer	is	on	the	stack	of	the	thread
that	executes	the	bug.	This	type	of	bug	is	another	one	that’s	difficult	to	debug
because	the	stack	is	the	foundation	for	any	crash	dump	analysis.

In	the	case	of	passing	buffers	on	the	stack	to	lower	drivers,	if	the	lower	driver
returns	to	the	caller	immediately	because	it	used	a	completion	routine	to	perform
the	work,	instead	of	returning	synchronously,	when	the	completion	routine	is
called,	it	will	use	the	stack	address	that	was	passed	previously,	which	could	now
correspond	to	a	different	state	on	the	caller’s	stack	and	result	in	corruption.

When	you	run	Notmyfault	and	select	Stack	Trash,	the	Myfault	driver	overruns	a
buffer	it	allocates	on	the	kernel	stack	of	the	thread	that	executes	it.	When	Myfault
tries	to	return	control	to	the	Ntoskrnl	function	that	was	invoked,	it	reads	the	return
address,	which	is	the	address	at	which	it	should	continue	executing,	from	the	stack.
The	address	was	corrupted	by	the	stack-buffer	overrun,	so	the	thread	continues
execution	at	some	different	address	in	memory—an	address	that	might	not	even
contain	code.	An	illegal	exception	and	crash	occur	when	the	thread	executes	an
illegal	CPU	instruction	or	it	references	invalid	memory.

The	driver	that	the	crash	dump	analysis	of	a	stack	overrun	points	the	blame	at	will
vary	from	crash	to	crash,	but	the	stop	code	will	almost	always	be



KERNEL_MODE_EXCEPTION_NOT_HANDLED	(0x8E)	on	a	32-bit	system
and	KMODE_EXCEPTION_NOT_HANDLED	(0x1E)	on	a	64-bit	one.	If	you
execute	a	verbose	analysis,	the	stack	trace	looks	like	this:

STACK_TEXT:
9569b6b4 828c108c 0000008e c0000005 00000000 nt!KeBugCheckEx+0x1e
9569badc 8284add6 9569baf8 00000000 9569bb4c nt!KiDispatchException+0x1ac
9569bb44 8284ad8a 00000000 00000000 badb0d00 nt!CommonDispatchException+0x4a
9569bbfc 82843593 853422b0 86b99278 86b99278 nt!Kei386EoiHelper+0x192
00000000 00000000 00000000 00000000 00000000 nt!IofCallDriver+0x63

Notice	how	the	call	to	IofCallDriver	leads	immediately	to	Kei386EoiHelper	and
into	an	exception,	instead	of	a	driver’s	IRP	dispatch	routine.	This	is	consistent	with
the	stack	having	been	corrupted	and	the	IRP	dispatch	routine	causing	an	exception
when	attempting	to	return	to	its	caller	by	referencing	a	corrupted	return	address.
Unfortunately,	mechanisms	like	special	pool	and	system	code	write	protection	can’t
catch	this	type	of	bug.	Instead,	you	must	take	some	manual	analysis	steps	to
determine	indirectly	which	driver	was	operating	at	the	time	of	the	corruption.	One
way	is	to	examine	the	IRPs	that	are	in	progress	for	the	thread	that	was	executing	at
the	time	of	the	stack	trash.	When	a	thread	issues	an	I/O	request,	the	I/O	manager
stores	a	pointer	to	the	outstanding	IRP	on	the	IRP	list	of	the	ETHREAD	structure
for	the	thread.	The	!thread	debugger	command	dumps	the	IRP	list	of	the	target
thread.	(If	you	don’t	specify	a	thread	object	address,	!thread	dumps	the	processor’s
current	thread.)	Then	you	can	look	at	the	IRP	with	the	!irp	command:

0: kd> !thread
THREAD 8527fa58  Cid 0d0c.0d10  Teb: 7ffdf000 Win32Thread: fe4ec4f8 RUNNING on 
processor 0
IRP List:
    86b99278: (0006,0094) Flags: 00060000    Mdl: 00000000
Not impersonating
...

0: kd> !irp 86b99278
Irp is active with 1 stacks 1 is current (= 0x86b992e8)
 No Mdl: No System Buffer: Thread 8527fa58:  Irp stack trace.
     cmd  flg cl Device   File     Completion-Context
>[  e, 0]  5  0 853422b0 85e3aed8 00000000-00000000
             \Driver\MYFAULT
                  Args: 00000000 00000000 83360010 00000000

The	output	shows	that	the	IRP’s	current	and	only	stack	location	(designated	with
the	“>”	prefix)	is	owned	by	the	Myfault	driver.	If	this	were	a	real	crash,	the	next
steps	would	be	to	ensure	that	the	driver	version	installed	is	the	most	recent
available,	install	the	new	version	if	it	isn’t,	and	if	it	is,	to	enable	Driver	Verifier	on



the	driver	(with	all	settings	except	low	memory	simulation).

NOTE

Most	newer	drivers	built	using	the	WDK	are	compiled	by	default	to	use	the	/GS	(Buffer	Security	Check)
compiler	flag.	When	the	Buffer	Security	Check	option	is	enabled,	the	compiler	reserves	space	before	the
return	address	on	the	stack,	which,	when	the	function	executes,	is	filled	with	a	security	cookie	.	On	function
exit,	the	security	cookie	is	verified.	A	mismatch	indicates	that	a	stack	overwrite	may	have	occurred,	in
which	case,	the	compiler-generated	code	will	call	KeBugCheckEx,	passing	the
DRIVER_OVERRAN_STACK_BUFFER	(0xF7)	stop	code.

Manually	analyzing	the	stack	is	often	the	most	powerful	technique	when	dealing
with	crashes	such	as	these.	Typically,	this	involves	dumping	the	current	stack
pointer	register	(for	example,	esp	and	rsp	on	x86	and	x64	processors,	respectively).
However,	because	the	code	responsible	for	crashing	the	system	itself	might	modify
the	stack	in	ways	that	make	analysis	difficult,	the	processor	responsible	for	crashing
the	system	provides	a	backing	store	for	the	current	data	in	the	stack,	called
KiPreBugcheckStackSaveArea,	which	contains	a	copy	of	the	stack	before	any	code
in	KeBugCheckEx	executes.	By	using	the	dps	(dump	pointer	with	symbols)
command	in	the	debugger,	you	can	dump	this	area	(instead	of	the	CPU’s	stack
pointer	register)	and	resolve	symbols	in	an	attempt	to	discover	any	potential	stack
traces.	In	this	crash,	here’s	what	dumping	the	stack	area	eventually	revealed	on	a
32-bit	system:

0: kd> dps KiPreBugcheckStackSaveArea KiPreBugcheckStackSaveArea+3000
81d7dd20  881fcc44
81d7dd24  98fcf406 myfault+0x406
81d7dd28  badb0d00

Although	this	data	was	located	among	many	other	different	functions,	it	is	of
special	interest	because	it	mentions	a	function	in	the	Myfault	driver,	which	as
we’ve	seen	was	currently	executing	an	IRP,	that	doesn’t	show	on	the	stack.	For
more	information	on	manual	stack	analysis,	see	the	Debugging	Tools	for	Windows
help	file	and	the	additional	resources	referenced	later	in	this	chapter.

Hung	or	Unresponsive	Systems
If	a	system	becomes	unresponsive	(that	is,	you	are	receiving	no	response	to
keyboard	or	mouse	input),	the	mouse	freezes,	or	you	can	move	the	mouse	but	the
system	doesn’t	respond	to	clicks,	the	system	is	said	to	have	hung	.	A	number	of



things	can	cause	the	system	to	hang:

A	device	driver	does	not	return	from	its	interrupt	service	(ISR)	routine	or
deferred	procedure	call	(DPC)	routine

A	high	priority	real-time	thread	preempts	the	windowing	system	driver’s	input
threads

A	deadlock	(when	two	threads	or	processors	hold	resources	each	other	wants
and	neither	will	yield	what	they	have)	occurs	in	kernel	mode

You	can	check	for	deadlocks	by	using	the	Driver	Verifier	option	called	deadlock
detection	.	Deadlock	detection	monitors	the	use	of	spinlocks,	mutexes,	and	fast
mutexes,	looking	for	patterns	that	could	result	in	a	deadlock.	(For	more
information	on	these	and	other	synchronization	primitives,	see	Chapter	3	in	Part
1.)	If	one	is	found,	Driver	Verifier	crashes	the	system	with	an	indication	of	which
driver	causes	the	deadlock.	The	simplest	form	of	deadlock	occurs	when	two
threads	hold	resources	each	other	thread	wants	and	neither	will	yield	what	they
have	or	give	up	waiting	for	the	one	they	want.	The	first	step	to	troubleshooting
hung	systems	is	therefore	to	enable	deadlock	detection	on	suspect	drivers,	then
unsigned	drivers,	and	then	all	drivers,	until	you	get	a	crash	that	pinpoints	the	driver
causing	the	deadlock.

There	are	two	ways	to	approach	a	hanging	system	so	that	you	can	apply	the	manual
crash	troubleshooting	techniques	described	in	this	chapter	to	determine	what	driver
or	component	is	causing	the	hang:	the	first	is	to	crash	the	hung	system	and	hope
that	you	get	a	dump	that	you	can	analyze,	and	the	second	is	to	break	into	the
system	with	a	kernel	debugger	and	analyze	the	system’s	activity.	Both	approaches
require	prior	setup	and	a	reboot.	You	use	the	same	exploration	of	system	state	with
both	approaches	to	try	to	determine	the	cause	of	the	hang.

To	manually	crash	a	hung	system,	you	must	first	add	the	DWORD	registry	value
HKLM\SYSTEM\CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll
and	set	it	to	1.	After	rebooting,	the	i8042	port	driver,	which	is	the	port	driver	for
PS/2	keyboard	input,	monitors	keystrokes	in	its	ISR	(discussed	further	in	Chapter	3
in	Part	1)	looking	for	two	presses	of	the	Scroll	Lock	key	while	the	right	Control
key	is	depressed.	When	the	driver	sees	that	sequence,	it	calls	KeBugCheckEx	with
the	MANUALLY_INITIATED_CRASH	(0xE2)	stop	code	that	indicates	a



manually	initiated	crash.	When	the	system	reboots,	open	the	crash	dump	file	and
apply	the	techniques	mentioned	earlier	to	try	to	determine	why	the	system	was
hung	(for	example,	determining	what	thread	was	running	when	the	system	hung,
what	the	kernel	stack	indicates	was	happening,	and	so	on).	Note	that	this	works	for
most	hung	system	scenarios,	but	it	won’t	work	if	the	i8042	port	driver’s	ISR	doesn’t
execute.	(The	i8042	port	driver’s	ISR	won’t	execute	if	all	processors	are	hung	as	a
result	of	their	IRQL	being	higher	than	the	ISR’s	IRQL,	or	if	corruption	of	system
data	structures	extends	to	interrupt-related	code	or	data.)

NOTE

Manually	crashing	a	hung	system	by	using	the	support	provided	in	the	i8042	port	driver	does	not	work	with
USB	keyboards.	It	works	with	PS/2	keyboards	only.	See	http://msdn.microsoft.com/en-
us/library/windows/hardware/ff545499.aspx	for	information	about	enabling	USB	keyboard	support.

You	can	also	trigger	a	crash	if	your	hardware	has	a	built-in	“crash”	button.	(Some
high-end	servers	have	these	embedded	on	their	motherboards	or	exposed	via
remote	management	interfaces.)	In	this	case,	the	crash	is	initiated	by	signaling	the
nonmaskable	interrupt	(NMI)	pin	of	the	system’s	motherboard.	To	enable	this,	set
the	registry	DWORD	value
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\NMICrashDump	to	1.
Then,	when	you	press	the	dump	switch,	an	NMI	is	delivered	to	the	system	and	the
kernel’s	NMI	interrupt	handler	calls	KeBugCheckEx	.	This	works	in	more	cases
than	the	i8042	port	driver	mechanism	because	the	NMI	IRQL	is	always	higher
than	that	of	the	i8042	port	driver	interrupt.	See
http://support.microsoft.com/kb/927069	for	more	information.

If	you	are	unable	to	manually	generate	a	crash	dump,	you	can	attempt	to	break	into
the	hung	system	by	first	making	the	system	boot	into	debugging	mode.	You	do	this
in	one	of	two	ways.	You	can	press	the	F8	key	during	the	boot	and	select
Debugging	Mode,	or	you	can	create	a	debugging-mode	boot	option	in	the	BCD	by
copying	an	existing	boot	entry	and	adding	the	debug	option.	When	using	the	F8
approach,	the	system	will	use	the	default	connection	(serial	port	COM1	and
115200	baud),	but	you	can	use	the	F10	key	to	display	the	Edit	Boot	Options
screen	to	edit	debug-related	boot	options.	With	the	debug	option	enabled,	you	must
also	configure	the	connection	mechanism	to	be	used	between	the	host	system

http://msdn.microsoft.com/en-us/library/windows/hardware/ff545499.aspx
http://support.microsoft.com/kb/927069


running	the	kernel	debugger	and	the	target	system	booting	in	debugging	mode	and
then	configure	the	transport	parameters	appropriately	for	the	connection	type.	The
three	connection	types	are	a	null	modem	cable	using	a	serial	port,	an	IEEE	1394
(FireWire)	cable	using	1394	ports	on	each	system,	or	a	USB	2.0	host-to-host
dongle	using	USB	ports	on	each	system.	For	details	on	configuring	the	host	and
target	system	for	kernel	debugging,	see	the	Debugging	Tools	for	Windows	help	file
and	the	EXPERIMENT:	Attaching	a	Kernel	Debugger	experiment	later	in	the
chapter.

When	booting	in	debugging	mode,	the	system	loads	the	kernel	debugger	at	boot
time	and	makes	it	ready	for	a	connection	from	a	kernel	debugger	running	on	a
different	computer	connected	through	a	serial	cable,	IEEE	1394	cable,	or	USB	2.0
host-to-host	dongle.	Note	that	the	kernel	debugger’s	presence	does	not	affect
performance.	When	the	system	hangs,	run	the	WinDbg	or	Kd	debugger	on	the
connected	system,	establish	a	kernel	debugging	connection,	and	break	into	the	hung
system.	This	approach	will	not	work	if	interrupts	are	disabled	or	the	kernel
debugger	has	become	corrupted.

NOTE

Booting	a	system	in	debugging	mode	does	not	affect	performance	if	it’s	not	connected	to	another	system.
Also,	if	a	system	booted	in	debugging	mode	is	configured	to	automatically	reboot	after	a	crash,	it	will	not
wait	for	a	connection	from	another	system	if	a	debugger	isn’t	already	connected.

Instead	of	leaving	the	system	in	its	halted	state	while	you	perform	analysis,	you	can
also	use	the	debugger	.dump	command	to	create	a	crash	dump	file	on	the	host
debugger	machine.	Then	you	can	reboot	the	hung	system	and	analyze	the	crash
dump	offline	(or	submit	it	to	Microsoft).	Note	that	this	can	take	a	long	time	if	you
are	connected	using	a	serial	null	modem	cable	or	USB	2.0	connection	(versus	a
higher	speed	1394	connection),	so	you	might	want	to	just	capture	a	minidump
using	the	.dump	/m	command.	Alternatively,	if	the	target	machine	is	capable	of
writing	a	crash	dump,	you	can	force	it	to	do	so	by	issuing	the	.crash	command
from	the	debugger.	This	will	cause	the	target	machine	to	create	a	dump	on	its	local
hard	drive	that	you	can	examine	after	the	system	reboots.

EXPERIMENT:	DUMPING	HYPER-V	GUESTS	USING	LIVEKD

The	LiveKd	tool,	in	addition	to	allowing	the	use	of	the	.dump	command	on	a	live	system,	also	permits	a



crash	dump	of	a	running	Hyper-V	guest	to	be	created.	To	query	the	list	of	running	guests	on	a	Hyper-V
host,	the	–hvl	option	can	be	specified.	LiveKd	will	display	both	the	name	of	the	guest	virtual	machine	and
its	partition	GUID:

C:\Users\Administrator>livekd -hvl

LiveKd v5.2 - Execute kd/windbg on a live system
Sysinternals - www.sysinternals.com
Copyright (C) 2000-2012 Mark Russinovich and Ken Johnson

Partition GUID                         Name
7EB669F2-EB6E-405D-94EA-21CB2ABD0A52   Windows Server 2008
D57D7601-D154-473B-847D-C3C77413AD0B   Windows Server 2003

Once	the	name	or	the	partition	GUID	of	the	target	Hyper-V	guest	has	been	obtained,	it	can	be	passed	to
LiveKd	using	the	–hv	option,	along	with	the	–o	switch,	specifying	where	to	write	the	crash	dump	file.
LiveKd	will	write	a	complete	dump,	which	requires	enough	free	disk	space	on	the	destination	volume	equal
to	the	amount	of	memory	assigned	to	the	virtual	machine.	Because	the	Hyper-V	guest	is	still	running,
LiveKd	might	run	into	situations	in	which	data	structures	are	in	the	middle	of	being	changed	by	the	system
and	are	inconsistent.	To	prevent	such	an	event	from	occurring,	LiveKd	is	able	to	pause	the	Hyper-V	guest
before	writing	the	crash	dump	by	specifying	the	–p	option.

LiveKd	takes	the	additional	step	of	writing	a	comment	to	the	header	of	the	crash	dump	file,	specifying	that
a	live	system	view	was	taken—notifying	the	user	performing	analysis	of	any	possible	inconsistencies.	After
LiveKd	finishes	writing	the	crash	dump	file,	the	file	can	then	be	analyzed	using	any	of	the	kernel	debuggers
and	techniques	described	earlier	in	the	chapter.	If	the	Hyper-V	guest	was	previously	in	the	running	state,
LiveKd	will	automatically	resume	the	target	system.

You	can	cause	a	hang	by	running	Notmyfault	and	selecting	the	Hang	With	DPC
option.	This	causes	the	Myfault	driver	to	queue	a	DPC	on	each	processor	of	the
system	that	executes	an	infinite	loop.	Because	the	IRQL	of	the	processor	while
executing	DPC	functions	is	DPC/dispatch	level,	the	keyboard	ISR	will	respond	to
the	special	keyboard	crashing	sequence.

Once	you’ve	broken	into	a	hung	system	or	loaded	a	manually	generated	dump	from



a	hung	system	into	a	debugger,	you	should	execute	the	!analyze	command	with	the
–hang	option.	This	causes	the	debugger	to	examine	the	locks	on	the	system	and	try
to	determine	whether	there’s	a	deadlock	and,	if	so,	what	driver	or	drivers	are
involved.	However,	for	a	hang	like	the	one	that	Notmyfault’s	Hang	With	DPC
option	generates,	the	!analyze	analysis	command	will	report	nothing	useful.

If	the	!analyze	command	doesn’t	pinpoint	the	problem,	execute	!thread	and
!process	in	each	of	the	dump’s	CPU	contexts	to	see	what	each	processor	is	doing.
(Switch	CPU	contexts	with	the	~s	command—for	example,	use	~1s	to	switch	to
processor	1’s	context.)	If	a	thread	has	hung	the	system	by	executing	in	an	infinite
loop	at	an	IRQL	of	DPC/dispatch	level	or	higher,	you’ll	see	the	driver	module	in
which	it	has	become	stuck	in	the	stack	trace	of	the	!thread	command.	The	stack
trace	of	the	crash	dump	you	get	when	you	crash	a	system	experiencing	the
Notmyfault	hang	bug	looks	like	this:

STACK_TEXT:
8078ae30 8cb49160 000000e2 00000000 00000000 nt!KeBugCheckEx+0x1e
8078ae60 8cb49768 00527658 010001c6 00000000 i8042prt!I8xProcessCrashDump+0x251
8078aeac 8287c7ad 851c8780 855275a0 8078aed8 
i8042prt!I8042KeyboardInterruptService+0x2ce
8078aeac 91d924ca 851c8780 855275a0 8078aed8 nt!KiInterruptDispatch+0x6d
WARNING: Stack unwind information not available. Following frames may be wrong.
8078afa4 828a5218 82966d20 86659780 00000000 myfault+0x4ca
...

The	top	few	lines	of	the	stack	trace	reference	the	routines	that	execute	when	you
type	the	i8042	port	driver’s	crash	key	sequence.	The	presence	of	the	Myfault	driver
indicates	that	it	might	be	responsible	for	the	hang.	Another	command	that	might	be
revealing	is	!locks	,	which	dumps	the	status	of	all	executive	resource	locks.	By
default,	the	command	lists	only	resources	that	are	under	contention	,	which	means
that	they	are	both	owned	and	have	at	least	one	thread	waiting	to	acquire	them.
Examine	the	thread	stacks	of	the	owners	with	the	!thread	command	to	see	what
driver	they	might	be	executing	in.	Sometimes	you	will	find	that	the	owner	of	one
of	the	locks	is	waiting	for	an	IRP	to	complete	(a	list	of	IRPs	related	to	a	thread	is
displayed	in	the	!thread	output).	In	these	cases	it	is	very	hard	to	tell	why	an	IRP	is
not	making	forward	progress.	(IRPs	are	usually	queued	to	privately	managed	driver
queues	before	they	are	completed).	One	thing	you	can	do	is	examine	the	IRP	with
the	!irp	command	and	find	the	driver	that	pended	the	IRP	(it	will	have	the	word
“pending”	displayed	in	its	stack	location	from	the	!irp	output).	Once	you	have	the
driver	name,	you	can	use	the	!stacks	command	to	look	for	other	threads	that	the



driver	might	be	running	on,	which	often	provides	clues	about	what	the	lock-owning
driver	is	doing.	Much	of	the	time	you	will	find	the	driver	is	deadlocked	or	waiting
on	some	other	resource	that	is	blocked	waiting	for	the	driver.

When	There	Is	No	Crash	Dump
In	this	section,	we’ll	address	how	to	troubleshoot	systems	that	for	some	reason	are
not	recording	a	crash	dump.	One	reason	why	a	crash	dump	might	not	be	recorded
is	if	no	paging	file	is	configured	to	hold	the	dump.	This	can	easily	be	remedied	by
creating	a	paging	file	of	the	required	size.	A	second	reason	why	there	might	not	be
a	crash	dump	recorded	is	because	the	kernel	code	and	data	structures	needed	to
write	the	crash	dump	have	been	corrupted	at	the	time	of	the	crash.	As	described
earlier,	this	data	is	captured	when	the	system	boots,	and	if	the	integrity	verification
check	made	at	the	time	of	the	crash	does	not	match,	the	system	does	not	even
attempt	to	save	the	crash	dump	(so	as	not	to	risk	corrupting	data	on	the	disk).	So	in
this	case,	you	need	to	catch	the	system	as	it	crashes	and	then	try	to	determine	the
reason	for	the	crash.

Another	reason	occurs	when	the	disk	subsystem	for	the	system	disk	is	not	able	to
process	disk	write	requests	(a	condition	that	might	have	triggered	the	system	failure
itself).	One	such	condition	would	be	a	hardware	failure	in	the	disk	controller	or
maybe	a	cabling	issue	near	the	hard	disk.

Yet	another	possibility	occurs	when	the	system	has	drivers	that	have	registered
callbacks	that	are	invoked	before	the	crash	dump	is	written.	When	the	driver
callbacks	are	called,	they	might	incorrectly	access	data	structures	located	in	paged
memory	(for	example),	which	will	lead	to	a	second	crash.	In	the	case	of	a	crash
inside	of	a	secondary	dump	callback,	the	system	should	still	have	a	valid	crash
dump	file	but	any	secondary	crash	dump	data	may	be	missing	or	incomplete.

One	simple	option	is	to	turn	off	the	Automatically	Restart	option	in	the	Startup
And	Recovery	settings	so	that	if	the	system	crashes,	you	can	examine	the	blue
screen	on	the	console.	However,	only	the	most	straightforward	crashes	can	be
solved	from	just	the	blue-screen	text.

To	perform	more	in-depth	analysis,	you	need	to	use	the	kernel	debugger	to	look	at
the	system	at	the	time	of	the	crash.	This	can	be	done	by	booting	the	system	in
debugging	mode,	which	is	described	in	the	previous	section.	When	a	system	is



booted	in	debugging	mode	(with	a	debugger	attached)	and	crashes,	instead	of
painting	the	blue	screen	and	attempting	to	record	the	dump,	it	will	break	into	the
host	kernel	debugger.	In	this	way,	you	can	see	the	reason	for	the	crash	and	perhaps
perform	some	basic	analysis	using	the	kernel	debugger	commands	described
earlier.	As	mentioned	in	the	previous	section,	you	can	use	the	.dump	command	in
the	debugger	to	save	a	copy	of	the	crashed	system’s	memory	space	for	later
debugging,	thus	allowing	you	to	reboot	the	crashed	system	and	debug	the	problem
offline.

EXPERIMENT:	ATTACHING	A	KERNEL	DEBUGGER

Connecting	a	kernel	debugger	to	a	live,	running	system	requires	two	computers—a	target	and	a	host.	The
target,	the	system	being	debugged,	must	be	booted	in	debugging	mode	by	pressing	F8	during	the	boot
process	and	selecting	Debugging	Mode	or	by	modifying	the	boot	configuration	database	from	within	an
elevated	command	prompt	using	the	BCDEdit	tool:

bcdedit /debug on

The	system	will	use	the	default	settings	of	serial	port	COM1	and	baud	rate	115200	if	no	other	settings	are
specified.	On	the	host	system—the	computer	running	the	debugger—the	symbol	path	option	needs	to	be	set
so	that	the	debugger	can	locate	the	required	symbol	files.	One	option	for	configuring	the	symbol	path	is	to
use	the	systemwide	environment	variable	NTSYMBOL_PATH.	Setting	the	systemwide	variable	allows	for
other	applications,	such	as	Process	Explorer	and	Process	Monitor,	to	take	advantage	of	the	symbol	path
without	requiring	additional	configuration.	The	symbol	path	can	be	set	via	an	elevated	command	prompt	by
using	the	following	command:

setx NTSYMBOL_PATH srv*c:\symbols*http://msdl.microsoft.com/download/symbols /m

The	/m	switch	specifies	that	the	variable	should	be	set	system	wide.	Without	it,	the	default	option	is	to	set	it
only	for	the	current	user.	One	final	step	that’s	required	is	to	configure	the	transport	layer.	If	two	physical
computers	are	being	used,	this	is	done	by	connecting	the	serial	ports	of	the	computers	to	each	other	by
using	a	null	modem	cable.

In	the	following	example,	a	Hyper-V	guest	has	been	selected	as	the	target.	Hyper-V	(as	is	the	case	with
other	virtual-machine	technologies)	supports	the	option	of	configuring	a	virtual	serial	port	to	communicate
with	a	physical	computer	through	a	named	pipe.	If	you	are	using	multiple	named	pipes,	each	pipe	name
should	be	unique	to	avoid	a	conflict.



Before	restarting	the	target	system,	the	debugger	on	the	host	needs	to	be	configured	to	specify	the	named
pipe	that	should	be	used	as	a	transport.	Both	the	resets=0	and	reconnect	options	specified	in	the	following
command	are	required	when	connecting	to	Hyper-V	guests.	(For	other	virtual-machine	technologies,	refer
to	the	Debugging	Tools	for	Windows	help	file.)	The	command	shown	here	will	start	a	debugging	session	on
a	virtual	machine,	which	is	running	on	the	same	physical	computer	as	the	debugger:

windbg -k com:pipe,port=\\.\pipe\debugger,resets=0,reconnect

The	WinDbg	command	window	should	appear	with	a	prompt	that	the	debugger	is	waiting	to	connect:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Waiting for pipe \\.\pipe\debugger
Waiting to reconnect...

At	this	point,	the	target	system	should	be	restarted.	After	a	brief	period,	the	two	systems	should	connect	via
the	named	pipe.	The	following	output	confirms	that	the	host	is	now	connected	to	the	target	system	through
the	kernel	debugger:

Connected to Windows 7 7601 x86 compatible target at
     (Mon Mar 12 19:34:01.295 2012 (UTC - 7:00)), ptr64 FALSE
Kernel Debugger connection established.
Symbol search path is: srv*c:\symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:
Windows 7 Kernel Version 7601 (Service Pack 1) MP (1 procs) Free x86 compatible
Built by: 7601.17514.x86fre.win7sp1_rtm.101119-1850
Machine Name:
Kernel base = 0x82813000 PsLoadedModuleList = 0x8295d850
System Uptime: not available

To	verify	that	the	system	will	break	into	the	debugger	when	a	crash	occurs,	the	/bugcheck	option	of
Notmyfault	can	be	used	to	crash	the	system.	As	is	the	case	with	other	Notmyfault	functions,	a	control	code
is	sent	to	the	Myfault.sys	driver.	The	control	code	specifies	that	the	KeBugCheckEx	routine	should	be
called,	passing	it	a	reference	to	the	stop	code.	Here	is	an	example	of	using	a	user-defined	stop	code:



notmyfault /bugcheck 0xdeaddead

When	a	debugger	is	connected	to	the	system	and	a	crash	occurs,	control	is	given	to	the	debugger	before
painting	the	blue	screen	and	any	bugcheck	callbacks	have	been	called.	This	allows	for	further	analysis	to	be
performed	or	for	breakpoints	to	be	set:

*** Fatal System Error: 0xdeaddead
                       (0x00000000,0x00000000,0x00000000,0x00000000)

Break instruction exception - code 80000003 (first chance)

A fatal system error has occurred.
Debugger entered on first try; Bugcheck callbacks have not been invoked.

A fatal system error has occurred.
...

The	operating	system	code	and	data	structures	that	handle	processor	exceptions	can
become	corrupted	such	that	a	series	of	recursive	faults	occur.	One	example	of	this
would	be	if	the	operating	system	trap	handler	got	corrupted	and	caused	a	page
fault.	This	would	invoke	the	page	fault	handler,	which	would	fault	again,	and	so	on.
If	such	a	situation	occurred,	the	system	would	be	hopelessly	stuck.	To	prevent	such
a	situation	from	occurring,	CPUs	have	a	built-in	recursive	fault	protection
mechanism,	which	sets	a	hard	limit	on	the	depth	of	a	recursive	fault.	On	most	x86
processors,	a	fault	can	nest	to	two	levels	deep.	When	the	third	recursive	fault
occurs,	the	processor	resets	itself	and	the	machine	reboots.	This	is	called	a	triple
fault	.	This	can	happen	when	there’s	a	faulty	hardware	component	as	well.	Even	a
kernel	debugger	won’t	be	invoked	in	a	triple	fault	situation.	However,	sometimes
the	mere	fact	that	the	kernel	debugger	doesn’t	activate	can	confirm	that	there’s	a
problem	with	newly	added	hardware	or	drivers.

NOTE

You	can	use	the	kernel	debugger	to	trigger	a	triple	fault	on	a	machine	by	setting	a	breakpoint	on	the	kernel
debugger	dispatch	routine	KiDispatchException	.	This	happens	because	the	exception	dispatcher	now
causes	a	breakpoint	exception,	which	invokes	the	exception	dispatcher,	and	so	on.



Analysis	of	Common	Stop	Codes
The	following	sections	provide	a	walkthrough	of	common	stop	codes	reported	to
Microsoft’s	Online	Crash	Analysis	service.	For	each	stop	code	presented,	the
analysis	begins	with	the	verbose	output	of	the	analysis	engine’s	!analyze	–v
command.

The	reasons	for	each	type	of	crash	may	vary,	as	will	the	commands	and	techniques
used	to	analyze	them.	For	more	information	on	analyzing	common	stop	codes,	see
the	Debugging	Tools	for	Windows	help	file	and	the	additional	resources	referenced
later	in	this	chapter.

0xD1	-	DRIVER_IRQL_NOT_LESS_OR_EQUAL
The	DRIVER_IRQL_NOT_LESS_OR_EQUAL	(0xD1)	stop	code	is	the	result	of
a	device	driver	attempting	to	access	a	pageable	or	invalid	address	at	an	interrupt
request	level	that	is	too	high.	This	stop	code	is	usually	the	result	of	device	drivers
using	improper	addresses.

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high.  This is usually
caused by drivers using improper addresses.
If kernel debugger is available get stack backtrace.
Arguments:
Arg1: a0a91660, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 85701579, address which referenced memory

In	analyzing	a	stop	DRIVER_IRQL_NOT_LESS_OR_EQUAL	(0xD1),	viewing
the	stack	trace	of	the	thread	that	was	executing	at	the	time	of	the	crash	will	reveal
the	device	driver	that	was	referencing	pageable	or	invalid	memory:

STACK_TEXT:
8b94bb3c 85701579 badb0d00 84f40600 a0a4f660 nt!KiTrap0E+0x2cf
WARNING: Stack unwind information not available. Following frames may be wrong.
8b94bbb8 85701849 86ffe5d8 8b94bbfc 857018ac myfault+0x579
8b94bbc4 857018ac 850d6890 00000001 00000000 myfault+0x849
8b94bbfc 8283e593 86efaa98 86ffe5d8 86ffe5d8 myfault+0x8ac
8b94bc14 82a3299f 850d6890 86ffe5d8 86ffe648 nt!IofCallDriver+0x63
8b94bc34 82a35b71 86efaa98 850d6890 00000000 nt!IopSynchronousServiceTail+0x1f8
8b94bcd0 82a7c3f4 86efaa98 86ffe5d8 00000000 nt!IopXxxControlFile+0x6aa
8b94bd04 828451ea 000000b8 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
8b94bd04 776f70b4 000000b8 00000000 00000000 nt!KiFastCallEntry+0x12a
0012f994 00000000 00000000 00000000 00000000 0x776f70b4



The	debugger’s	analysis	engine	is	able	to	locate	and	display	the	trap	frame	that	was
created	when	the	exception	that	caused	the	crash	occurred.	The	trap	frame
contains	the	kernel	thread’s	machine	state,	which	includes	the	register	values	of	the
CPU	that	the	thread	was	executing	on.	The	instruction	pointer	register	(eip	on	an
x86	processor	and	rip	on	an	x64)	contains	the	address	of	the	instruction	that,	when
executed,	generated	the	trap.	The	lower	line	of	the	output	from	the	.trap	command
in	the	debugger	lists	the	address	of	the	instruction	that	caused	the	crash,	its	binary
code,	assembly	language	mnemonic,	and	assembly	language	details:

TRAP_FRAME:  8b94bb3c -- (.trap 0xffffffff8b94bb3c)
ErrCode = 00000000
eax=a0a91660 ebx=86ffe5f0 ecx=00200073 edx=84f40600 esi=a0a4f660 edi=00000000
eip=85701579 esp=8b94bbb0 ebp=8b94bbb8 iopl=0         nv up ei ng nz na pe nc
cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00010286
myfault+0x579:
85701579 8b08            mov     ecx,dword ptr [eax]  ds:0023:a0a91660 =????????

The	first	bugcheck	parameter	of	a	stop
DRIVER_IRQL_NOT_LESS_OR_EQUAL	(0xD1)	points	to	the	memory	address
that	was	being	referenced	by	the	device	driver.	If	the	debugger	is	unable	to	display
an	address	(because	it	is	invalid	or	not	present	in	the	dump	file),	a	series	of
question	marks	is	displayed.	In	the	trap	frame	just	shown,	the	debugger	has	been
unable	to	resolve	the	address	of	the	memory	referenced	by	the	device	driver.

Viewing	the	output	of	the	!pte	command	for	the	address	that	was	referenced
confirms	that	the	valid	bit	for	the	page	table	entry	is	not	set,	which	indicates	that
the	address	does	not	map	to	a	page	in	physical	memory:

0: kd> !pte a0a91660
                    VA a0a91660
PDE at C0602828            PTE at C0505488
contains 0000000010BE6863  contains 00007A1800000000
pfn 10be6     ---DA--KWEV   not valid
                            PageFile:  0
                            Offset: 7a18
                            Protect: 0

0x8E	-
KERNEL_MODE_EXCEPTION_NOT_HANDLED
The	KERNEL_MODE_EXCEPTION_NOT_HANDLED	(0x8E)	stop	message	is
caused	by	a	kernel-mode	thread	generating	an	exception	that	was	not	handled.	The
first	bugcheck	parameter	identifies	the	exception	code	for	which	a	handler	was	not
found.	Common	exception	codes	are	STATUS_BREAKPOINT	(0x80000003)	and



STATUS_ACCESS_VIOLATION	(0xC0000005).
KERNEL_MODE_EXCEPTION_NOT_HANDLED (8e)
This is a very common bugcheck.  Usually the exception address pinpoints
the driver/function that caused the problem.  Always note this address
as well as the link date of the driver/image that contains this address.
Some common problems are exception code 0x80000003.  This means a hard
coded breakpoint or assertion was hit, but this system was booted
NODEBUG.  This is not supposed to happen as developers should never have
hardcoded breakpoints in retail code, but ...
If this happens, make sure a debugger gets connected, and the
system is booted DEBUG.  This will let us see why this breakpoint is
happening.Arguments:
Arg1: 80000003, The exception code that was not handled
Arg2: 92c70a78, The address that the exception occurred at
Arg3: 9444fb4c, Trap Frame
Arg4: 00000000

Viewing	the	stack	trace	of	the	crashed	thread	can	give	an	indication	of	the	driver	or
function	that	caused	the	problem.	If	there’s	nothing	that	looks	suspicious,	viewing
the	address	where	the	exception	occurred	should	provide	more	details.	The	stack
trace	from	a	crashed	system	looks	like	this:

STACK_TEXT:
9444f6b4 828ba08c 0000008e 80000003 92c70a78 nt!KeBugCheckEx+0x1e
9444fadc 82843dd6 9444faf8 00000000 9444fb4c nt!KiDispatchException+0x1ac
9444fb44 82844678 9444fbc4 92c70a79 badb0d00 nt!CommonDispatchException+0x4a
9444fb44 92c70a79 9444fbc4 92c70a79 badb0d00 nt!KiTrap03+0xb8
WARNING: Stack unwind information not available. Following frames may be wrong.
9444fbc4 92c70b1c 8730f980 00000001 00000000 myfault+0xa79
9444fbfc 8283c593 87314a08 87279950 87279950 myfault+0xb1c
9444fc14 82a3099f 8730f980 87279950 872799c0 nt!IofCallDriver+0x63
9444fc34 82a33b71 87314a08 8730f980 00000000 nt!IopSynchronousServiceTail+0x1f8
9444fcd0 82a7a3f4 87314a08 87279950 00000000 nt!IopXxxControlFile+0x6aa
9444fd04 828431ea 000000c4 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
9444fd04 772c70b4 000000c4 00000000 00000000 nt!KiFastCallEntry+0x12a
0012f2ac 00000000 00000000 00000000 00000000 0x772c70b4

The	second	bugcheck	parameter	contains	the	location	in	memory	that	the
exception	occurred	at.	In	the	case	of	a	STATUS_BREAKPOINT	exception,
unassembling	the	address	will	confirm	the	presence	of	a	breakpoint	instruction.
The	processor	instruction	INT	3	is	called	the	trap	to	debugger	instruction.	An	INT
3	instruction,	when	executed,	causes	the	system	to	call	the	kernel’s	debugger
exception	handler.	If	a	debugger	is	attached	to	the	computer,	the	system	will	break
in.

0: kd> u 92c70a78
myfault+0xa78:
92c70a78 cc              int     3
...

Breakpoints	shouldn’t	usually	appear	in	retail	versions	of	device	drivers.	Using	the



lm	command,	it’s	sometimes	possible	to	determine	which	environment	a	device
driver	was	targeted	for.	When	compiling	a	driver	for	release	(and	unless	overridden
by	the	developer),	a	flag	is	set	indicating	the	release	type.	When	viewing	the	File
flags	property,	the	presence	of	the	word	Debug	indicates	that	the	driver	was	built
using	a	checked	(or	debug)	environment:

0: kd> lm kv m myfault
start    end        module name
92c70000 92c71880   myfault    (no symbols)
    Loaded symbol image file: myfault.sys
    Image path: \??\C:\Windows\system32\drivers\myfault.sys
    Image name: myfault.sys
    Timestamp:        Sat Apr 07 09:34:40 2012 (4F806CA0)
    CheckSum:         00004227
    ImageSize:        00001880
    File version:     4.0.0.0
    Product version:  4.0.0.0
    File flags:       1 (Mask 3F)  Debug
    File OS:          40004 NT Win32
...

A	breakpoint	in	a	debug	version	of	a	driver	could	also	indicate	the	failure	of	an
ASSERT	macro.	If	a	kernel	debugger	is	attached	to	the	system,	a	message	would
be	displayed	followed	by	a	prompt	asking	the	user	what	to	do	about	the	assertion
failure.

0x7F	-	UNEXPECTED_KERNEL_MODE_TRAP
An	UNEXPECTED_KERNEL_MODE_TRAP	(0x7F)	stop	code	indicates	that	the
CPU	generated	a	trap	that	the	Windows	kernel	failed	to	handle.	The	trap	could	be
the	result	of	a	bound	trap	(which	the	kernel	is	not	permitted	to	catch)	or	a	double
fault	(a	fault	that	occurs	while	the	kernel	is	processing	an	earlier	fault).	The	first
bugcheck	parameter	defines	the	type	of	trap.

UNEXPECTED_KERNEL_MODE_TRAP (7f)
This means a trap occurred in kernel mode, and it's a trap of a kind
that the kernel isn't allowed to have/catch (bound trap) or that
is always instant death (double fault).  The first number in the
bugcheck params is the number of the trap (8 = double fault, etc)
Consult an Intel x86 family manual to learn more about what these
traps are. Here is a portion of those codes:
If kv shows a taskGate
        use .tss on the part before the colon, then kv.
Else if kv shows a trapframe
        use .trap on that value
Else
        .trap on the appropriate frame will show where the trap was taken
        (on x86, this will be the ebp that goes with the procedure KiTrap)
Endif
kb will then show the corrected stack.



Arguments:
Arg1: 00000008, EXCEPTION_DOUBLE_FAULT
Arg2: 801db000
Arg3: 00000000
Arg4: 00000000

Most	traps	in	this	category	are	the	result	of	faulty	or	failed	hardware.	If	you
recently	added	new	hardware	to	the	computer,	try	removing	it	to	see	whether	the
problem	no	longer	occurs.	Remove	any	existing	hardware	that	may	have	failed	and
have	it	replaced.	It’s	also	recommended	to	run	any	manufacturer-supplied
hardware-diagnostic	tools	to	determine	which	components	may	have	failed.

There	are,	however,	certain	traps	that	are	the	result	of	software	errors.	Viewing	the
trap	frame	that	was	generated	or	the	task	gate	(depending	on	the	type	of	trap)
displays	the	instruction	that	generated	the	trap:

TSS:  00000028 -- (.tss 0x28)
eax=8336001c ebx=86d57388 ecx=83360044 edx=00000000 esi=86d57388 edi=00000000
eip=96890918 esp=92985000 ebp=92987bc4 iopl=0         nv up ei pl zr na pe nc
cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00010246
myfault+0x918:
96890918 e8f9ffffff      call    myfault+0x916 (96890916)

The	type	of	trap	described	earlier,	an	EXCEPTION_DOUBLE_FAULT,	is	usually
the	result	of	one	of	two	common	causes—a	kernel	stack	overflow	or	faulty
hardware.	A	kernel	stack	overflow	occurs	when	a	kernel	thread’s	guard	page	is	hit,
as	a	result	of	having	exhausted	all	of	the	current	thread’s	stack	allocation.	The
kernel	attempts	to	push	a	trap	frame	onto	the	stack—for	which	no	more	space
exists—causing	a	double	fault.

Using	the	!thread	command	to	verify	the	stack	limits	of	the	thread	that	was
executing	confirms	whether	the	double	fault	was	caused	by	a	kernel	stack
overflow:

0: kd> !thread
THREAD 850e3918  Cid 0fb8.0fbc  Teb: 7ffde000 Win32Thread: fe4f0dd8 RUNNING on 
processor 0
IRP List:
    86d57370: (0006,0094) Flags: 00060000  Mdl: 00000000
Not impersonating
DeviceMap                 8fa3b8e8
Owning Process            85100670       Image:         NotMyfault.exe
Attached Process          N/A            Image:         N/A
Wait Start TickCount      21664          Ticks: 0
Context Switch Count      461
UserTime                  00:00:00.000
KernelTime                00:00:00.046
Win32 Start Address 0x00fe27ff
Stack Init 92987fd0 Current 92987af8 Base 92988000 Limit 92985000 Call 0



Priority 12 BasePriority 8 UnusualBoost 0 ForegroundBoost 2 IoPriority 2 
PagePriority 5
ChildEBP RetAddr  Args to Child
00000000 96890918 00000000 00000000 00000000 nt!KiTrap08+0x75 (FPO: TSS 28:0)
WARNING: Stack unwind information not available. Following frames may be wrong.
92987bc4 96890b1c 87015038 00000001 00000000 myfault+0x918
92987bfc 82845593 85154158 86d57370 86d57370 myfault+0xb1c
92987c14 82a3999f 87015038 86d57370 86d573e0 nt!IofCallDriver+0x63
92987c34 82a3cb71 85154158 87015038 00000000 nt!IopSynchronousServiceTail+0x1f8
92987cd0 82a833f4 85154158 86d57370 00000000 nt!IopXxxControlFile+0x6aa
92987d04 8284c1ea 000000c4 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
92987d04 779a70b4 000000c4 00000000 00000000 nt!KiFastCallEntry+0x12a (FPO: [0,3]
    TrapFrame @ 92987d34)
0012f424 00000000 00000000 00000000 00000000 0x779a70b4

The	two	values	of	interest	are	the	stack	base	and	the	stack	limit.	Comparing	the
value	of	the	stack	limit	with	the	value	stored	in	the	stack	pointer	register	(esp	in
this	case)	of	the	task	state	segment	shown	earlier	confirms	that	the	lower	limit	of
the	stack	has	been	reached.	(Both	locations	contain	the	same	value.)

To	understand	what	component	has	used	all	of	the	kernel	thread’s	stack	allocation
requires	the	two	values	obtained	earlier—the	stack	base	and	the	stack	limit.	Using
the	dps	command	with	both	values	displays	the	thread’s	stack,	using	symbols	to
resolve	any	function	names:

0: kd> dps 92985000  92988000
92985000  9689091d myfault+0x91d
92985004  9689091d myfault+0x91d
92985008  9689091d myfault+0x91d
...

In	this	output,	a	repeating	address	is	shown	for	the	Myfault.sys	driver.	This	is
consistent	with	a	device	driver	that	is	recursively	calling	into	itself.	Each	call	to	a
function	pushes	the	return	address	onto	the	stack—growing	the	stack	and
contributing	to	the	thread’s	overall	stack	limit.	The	return	address	is	popped	off	the
stack	only	when	the	function	returns.	In	the	case	of	a	driver	or	function	recursively
calling	itself,	each	function	called	never	returns.

0xC5	-	DRIVER_CORRUPTED_EXPOOL
Diagnosing	the	cause	of	pool	corruption	can	be	difficult,	if	not	virtually	impossible,
without	the	use	of	additional	tools.	The	recommended	course	of	action	for
troubleshooting	any	type	of	pool	corruption	issue	is	to	enable	the	special	pool
option	of	Driver	Verifier	against	any	new	or	suspect	drivers.	Before	you	enable
Driver	Verifier,	spending	a	few	extra	minutes	analyzing	the	crash	may	yield	some
interesting	results.



The	cause	of	a	DRIVER_CORRUPTED_EXPOOL	(0xC5)	stop	code	is	the	result
of	an	attempt	to	access	a	pageable	or	invalid	address	at	an	IRQL	that	is	too	high.
The	stop	code	originates	from	the	kernel	as	a	stop
IRQL_NOT_LESS_OR_EQUAL	(0xA).	Inside	the	kernel’s	KeBugCheck2
function	(for	which	KeBugCheckEx	is	just	a	stub),	the	system	checks	the	value	of
the	stop	code.	If	the	stop	code’s	value	is	equal	to	IRQL_NOT_LESS_OR_EQUAL
(0xA),	the	system	queries	the	fourth	bugcheck	parameter,	which	is	the	address	that
referenced	the	memory	that	led	to	the	crash.	If	the	address	lies	between	the	regions
of	memory	that	contain	the	Windows	executive’s	pool	functions,	the	system
changes	the	stop	code	to	DRIVER_CORRUPTED_EXPOOL	(0xC5).	The	reason
for	modifying	the	stop	code	is	to	highlight	that	it’s	not	the	fault	of	the	pool
routines,	but	rather	that	one	of	the	pool	structures	they	manage	has	been	corrupted.

DRIVER_CORRUPTED_EXPOOL (c5)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high.  This is
caused by drivers that have corrupted the system pool.  Run the driver
verifier against any new (or suspect) drivers, and if that doesn't turn up
the culprit, then use gflags to enable special pool.
Arguments:
Arg1: 4f4f4f53, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 829234a7, address which referenced memory

In	the	case	of	pool	corruption,	a	stack	trace	almost	always	points	to	Ntoskrnl	or
another	device	driver	as	being	the	likely	cause	of	the	crash.	In	the	following
example,	the	stack	trace	of	the	thread	that	was	executing	when	the	system	crashed
lists	only	Windows	operating	system	functions:

STACK_TEXT:
8b8e3554 829234a7 badb0d00 00000000 91470d90 nt!KiTrap0E+0x2cf
8b8e3610 8288d2c6 00000000 00000280 76615358 nt!ExAllocatePoolWithTag+0x49d
8b8e3620 8288d19d 00000001 00000053 8b8e38a8 nt!KeAllocateXStateContext+0x25
8b8e3644 8288d6b5 00000003 00000000 8b8e37b4 nt!KeSaveExtendedProcessorState+0x104
8b8e3658 9139b443 8b8e37b4 fe7b8010 8288d038 nt!KeSaveFloatingPointState+0x14
8b8e3864 9139bfdb fe8af408 ffbbd540 00000000 win32k!EngAlphaBlend+0x230
8b8e38d0 9139c394 fe7b8010 fe989010 fe1c0010 win32k!SURFREFDC::vUnlock+0x1e5
8b8e3974 913a4a2f fe7b8010 fe989010 00000000 win32k!SURFREFDC::vUnlock+0x59e
8b8e39d4 913a4981 fe7b8010 fe989010 00000000 win32k!EngNineGrid+0x6e
8b8e3a34 913a4847 fe7b8010 fe989010 00000000 win32k!EngDrawStream+0x109
8b8e3aa8 913a13a3 8b8e3ba4 00000000 fe989000 win32k!NtGdiDrawStreamInternal+0x232
8b8e3bd4 913a0e09 3a010231 00000000 fe9ef140 win32k!GreDrawStream+0x557
8b8e3d20 828401ea 3a010231 00000060 0012f628 win32k!NtGdiDrawStream+0x8c
8b8e3d20 774570b4 3a010231 00000060 0012f628 nt!KiFastCallEntry+0x12a
0012f49c 75c973a5 75c9738f 3a010231 00000060 ntdll!KiFastSystemCallRet
0012f4a0 75c9738f 3a010231 00000060 0012f628 GDI32!NtGdiDrawStream+0xc
0012f5a4 74243efa 3a010231 00000060 0012f628 GDI32!GdiDrawStream+0x432



The	trap	frame	that	was	generated	when	the	attempt	to	access	pageable	or	invalid
memory	was	made	displays	the	processor	instruction	that	was	executed	and	the
register	values	of	the	CPU	the	thread	was	executing	on.	The	debugger,	with	the
assistance	of	the	symbol	file	for	the	kernel	image,	is	able	to	display	the	name	of	the
function	that	crashed,	using	the	instruction	pointer	as	a	reference:

TRAP_FRAME:  8b8e3554 -- (.trap 0xffffffff8b8e3554)
eax=8b8e35f8 ebx=82939940 ecx=4f4f4f4f edx=00000000 esi =82939da8 edi=82939944
eip=829234a7 esp=8b8e35c8 ebp=8b8e3610 iopl=0         ov up ei ng nz na po cy
cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00010a83
nt!ExAllocatePoolWithTag+0x49d:
829234a7 8b4104          mov     eax,dword ptr [ecx+4] ds:0023:4f4f4f53=????????

As	with	previous	examples,	the	series	of	question	marks	is	used	to	represent	invalid
addresses	that	were	unable	to	be	displayed	by	the	debugger.	In	the	case	of	the
preceding	instruction,	the	processor	read	the	address	stored	in	the	ecx	register,
added	a	value	of	four	to	it,	and	then	attempted	to	reference	the	memory	pointed	to
by	that	address	(for	storage	into	the	eax	register).	The	resulting	address	to	be
fetched	was	invalid,	causing	an	exception	to	be	raised	by	the	processor.

To	understand	why	the	invalid	value	was	stored	in	the	ecx	register,	analyzing	the
set	of	instructions	that	executed	prior	to	the	crash	may	give	an	indication.	The
following	output	shows	the	results	of	unassembling	the	instruction	stream	of	the
crashed	thread,	backward	from	the	current	instruction	pointer:

0: kd> ub 829234a7
nt!ExAllocatePoolWithTag+0x479:
...
829234a5 8b0e            mov     ecx,dword ptr [esi]

Analysis	reveals	that	the	address	in	the	ecx	register	was	written	to	by	an	instruction
that	read	the	value	pointed	to	by	the	esi	register.	Using	the	dc	command	with	the
address	stored	in	the	esi	register	of	the	trap	frame	shows	from	where	the	value
4f4f4f4f	originated.	What	is	of	interest	in	the	output	of	the	command	is	that	each
of	the	addresses	listed	appears	as	a	pair	and	that	the	first	value—the	one	that
contains	the	invalid	address—doesn’t	match	the	value	adjacent	to	it:

0: kd> dc 82939da8
82939da8  4f4f4f4f 85045810 82939db0 82939db0  OOOO.X..........
82939db8  82939db8 82939db8 86f749f8 86f749f8  .........I...I..
82939dc8  82939dc8 82939dc8 82939dd0 82939dd0  ................
82939dd8  82939dd8 82939dd8 82939de0 82939de0  ................
82939de8  82939de8 82939de8 82939df0 82939df0  ................
...

Following	the	suspicion	that	these	values	are	address	pairs	and	that	the	first	value	is



invalid,	displaying	the	address	next	to	the	corrupted	value	leads	toward	determining
the	cause	of	the	corruption.	The	value	4f4f4f4f	is	OOOO	in	ASCII,	which	is
apparent	in	the	output	shown	here:

0: kd> dc 85045810
85045810  4f4f4f4f 4f4f4f4f 4f4f4f4f 4f4f4f4f  OOOOOOOOOOOOOOOO
85045820  4f4f4f4f 4f4f4f4f 4f4f4f4f 4f4f4f4f  OOOOOOOOOOOOOOOO
85045830  46524556 00574f4c 00000000 00000000  VERFLOW.........
85045840  00000000 00000000 00000000 00000000  ................
85045850  00000000 00000000 00000000 00000000  ................
...

Checking	the	pool	allocation	with	the	!pool	command	confirms	that	the	allocation,
along	with	its	pool	headers,	have	been	corrupted:

0: kd> !pool 85045810
Pool page 85045810 region is Nonpaged pool
 85045000 size:  808 previous size:    0  (Allocated)  None
85045808 is not a valid large pool allocation, checking large session pool...
85045808 is freed (or corrupt) pool
Bad previous allocation size @85045808, last size was 101

It’s	important	to	note	that	although	corruption	has	been	identified,	it	may	or	may
not	have	directly	caused	the	crash	currently	being	analyzed.	Any	pool	corruption
that	has	been	discovered	requires	further	investigation.	Pool	corruption	left
undiagnosed	risks	further	crashes	to	the	system	or	corruption	of	data	stored	on
disk.

Of	further	interest	in	the	output	of	the	corrupted	pool	allocation	is	a	reference	to
the	string	OVERFLOW	.	Using	the	!for_each_module	command,	it’s	possible	to
search	each	loaded	module	for	any	occurrences	of	the	suspect	string.	The	following
debugger	command	displays	the	name	of	any	loaded	drivers	that	contain	a	match
for	the	search	phrase:

0: kd> !for_each_module .foreach (address {s -[1]a @#Base @#End "OVERFLOW"}) {lm 1m 
a a
ddress}
BTHUSB
CLASSPNP
CLASSPNP
rfcomm
rfcomm
rfcomm
...
myfault

Further	analysis	of	a	crash	dump	that	appears	at	first	to	be	virtually	impossible	to
diagnose	has	narrowed	down	the	list	of	suspect	drivers.	The	next	step	would	be	to
enable	the	special	pool	option	of	Driver	Verifier	with	the	device	drivers	listed.



Hardware	Malfunctions
Another	type	of	stop	message	is	the	hardware	malfunction	screen.	This	type	of
screen	is	displayed	when	the	processor	detects	a	hardware	condition.	Figure	14-10
shows	a	sample	hardware	malfunction	screen.	Depending	on	the	type	of	condition
that	generated	the	hardware	malfunction,	the	system	might	display	additional
information	indicating	the	cause	of	the	error.	When	displaying	the	hardware
malfunction	screen,	the	system	ignores	the	AutoReboot	value	of	the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl	registry	key	and	will
display	the	screen	indefinitely.

Figure	14-10.	Example	of	a	hardware	malfunction	screen

As	you	should	with	any	stop	messages	that	are	suspected	to	be	caused	by	hardware
failures,	run	any	manufacturer-supplied	hardware-diagnostic	tools	to	determine
which	components,	if	any,	may	have	failed.	If	you	recently	added	new	hardware	to
the	computer,	try	removing	it	to	see	whether	the	problem	no	longer	occurs.
Remove	any	existing	hardware	that	may	have	failed,	and	have	it	replaced.

Signaling	the	nonmaskable	interrupt	(NMI)	pin	of	the	system’s	motherboard	when
the	HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\NMICrashDump
registry	value	isn’t	set	will	also	generate	a	hardware	malfunction	screen.	If	the
intention	was	to	generate	a	manual	crash	dump	using	an	NMI	button	for	offline
analysis,	verify	that	the	NMICrashDump	value	is	configured	correctly.

EXPERIMENT:	THE	BLUE	SCREEN	SCREEN	SAVER

A	great	way	to	remind	yourself	of	what	a	blue	screen	looks	like	or	to	fool	your	office	workers	and	friends	is
to	run	the	Sysinternals	Blue	Screen	screen	saver	from	Sysinternals.	The	screen	saver	simulates	authentic
looking	blue	screens	that	reflect	the	version	of	Windows	on	which	you	run	it,	generating	all	blue	screen	text
using	actual	system	information,	such	as	the	list	of	loaded	drivers.	It	also	mimics	an	automatic	reboot,
complete	with	the	Windows	startup	splash	screen.	Note	that	unlike	other	screen	savers,	where	a	mouse
movement	dismisses	them,	the	Blue	Screen	screen	saver	requires	a	key	press.

By	using	the	following	syntax	for	the	Psexec	tool	from	Sysinternals,	you	can	even	run	the	screen	saver	on
another	system:



psexec \\computername -c -f -i -d "SysInternalsBluescreen.scr" -s -accepteula

The	command	requires	that	you	have	administrative	privilege	on	the	remote	system.	(You	can	use	the	–u
and	–p	Psexec	switches	to	specify	alternate	credentials.)	Make	sure	that	your	coworker	has	a	sense	of
humor!



Conclusion
Although	many	crashes	can	be	analyzed	with	some	of	the	techniques	described	in
this	chapter,	many	require	analysis	that	goes	beyond	the	scope	of	this	book.	Here
are	some	additional	resources	that	may	be	useful	if	you	want	to	learn	more
advanced	crash	analysis	techniques	and	information:

The	Microsoft	Platforms	Global	Escalation	Services	team	blog,	at
http://blogs.msdn.com/ntdebugging,	provides	various	tips	and	tricks	and	real-
life	scenarios	encountered	by	the	team.

The	website	http://www.dumpanalysis.org	provides	hundreds	of	patterns	and
advanced	analysis	scenarios	and	hints.

http://blogs.msdn.com/ntdebugging
http://www.dumpanalysis.org
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