
Windows Kernel Internals II
System Extensions

University of Tokyo – July 2004

Dave Probert, Ph.D.
Advanced Operating Systems Group

Windows Core Operating Systems Division
Microsoft Corporation

© Microsoft Corporation 2004 1

Kernel Extension Mechanisms
I/O Extensions

– File System Filters
– New File Systems
– Device Filter Drivers
– Device Drivers

Object Manager
– New object types

Registry
– Hook most operations

Notifications
– Image Loading
– Process Create/Exit
– Thread Create/Exit

Export Drivers
Random bit editing

© Microsoft Corporation 2004 2

Kernel Communication

• IOCTLs
• Handles on new object types
• LPC
• Most usermode-to-usermode mechanisms

– Shared memory
– Kernel synchronization objects
– NamedPipes

© Microsoft Corporation 2004 3

Kernel Extensions
Two main toolkits for writing extensions:

– IFSKit – for file system filters and file systems
– DDK – for all others, including device drivers

Generically called ‘drivers’ and use driver mechanisms
to wire into the system
– DriverEntry routine creates a device object for the

device
– Device object can be named in NT namespace
– Access via I/O ops (open/read/write/ioctl/close)

Service Control Manager loads/unloads drivers as
‘services’

© Microsoft Corporation 2004 4

Published Kernel Interfaces
I/O related

– IO object mgmt, security checks
– HW access, DMA, interrupts, DPCs, timers, worker threads
– IRPs, physical memory (MDLs), cancel support (include CSQs)
– Hardware configuration, plug-and-play, power, bus mgmt

Multithreading support
– Spinlocks, interlocked operations/queues

Kernel facilities
– Memory pool allocation, threads, synchronization, run-time,

object/handle management
Zw related (Kernel-mode version of native Nt APIs)

– Files, sections, registry, set/query file/process/thread info

© Microsoft Corporation 2004 5

Subsystems
NT originally mistaken for a microkernel

– Kernel was never micro, but …
– But OS personalities were defined by servers

Servers are called ‘subsystems’
– Primary subsystems OS/2, Windows, Posix, WoW
– Each subsystem has three main components:
– Subsystem service process (e.g. csrss)
– Subsystem API library (e.g. kernel32, et al)
– Hooks in the CreateProcess code

There are some pseudo-subsystems, e.g. lsass, CLR

© Microsoft Corporation 2004 6

Windows Subsystem

Hardware Abstraction Layer

Windows NT Kernel

Win32 Subsystem

Win32
APIs

Windows NT sys
admin, commands

& networking

Win95
GUI

winsock

Windows
NT

command
Shell

Windows
Appli-

cations

Windows
Appli-

cations

© Microsoft Corporation 2004 7

Posix Subsystem

Hardware Abstraction Layer

Windows NT Kernel

POSIX/UNIX Subsystem

UNIX /POSIX APIs
BSD

Sockets

UNIX, XPG,
POSIX.2

commands
& utilities

UNIX
shells

telnetd

Workshop
tools: gcc, g++

perl, Apache,
Tcl/Tk, bash, etc. X11

U
N
I
X

S
D
K

UNIX
Applications

NFS
Client Server Gateway

Motif

© Microsoft Corporation 2004 8

Subsystem Inter-operation

Hardware Abstraction Layer

Windows NT Kernel

POSIX/UNIX Subsystem

UNIX /POSIX APIs
BSD

Sockets

UNIX, XPG,
POSIX.2

commands
& utilities

UNIX
shells

telnetd

Workshop
tools: gcc, g++

perl, Apache,
Tcl/Tk, bash, etc. X11

U
N
I
X

S
D
K

UNIX
Applications

Win32 Subsystem

Win32
APIs

Windows NT sys
admin, commands

& networking

Win95
GUI

winsock

Windows
NT

command
Shell

X11
R6.3
server

Windows
Appli-

cations

NFS
Client Server Gateway

Windows
Appli-

cations

Motif

© Microsoft Corporation 2004 9

Services vs Kernels
Three sites of OS implementation

– In app’s container (libraries)
– In separate containers (services)
– In central, universally shared container (kernel)

Shared nature of kernels makes them less flexible
– Single sysentry mechanism
– Inter-op requires shared abstractions
– Access controls limited

Services have natural advantages
– Filtering and refinement of operations provides finer-

grained access control
– Easy to provide alternative abstractions

© Microsoft Corporation 2004 10

Example: Refining kernel privilege

Creating permanent objects in OB requires privilege
Drive letters are permanent objects (symlinks) in the

¥DosDevices directory
Q: So how does the DefineDosDevice API work?
A: It uses a privileged services (csrss) to create the symlink
csrss is only willing to create symlinks in ¥DosDevices

Subsystems can in general refine privileges for clients and
safely share state between clients – just like kernels

© Microsoft Corporation 2004 11

No kernels: Future of OS Design?

Operating systems as a collection of libraries and
services?

+ increased flexibility & extensibility
+ more robust, better failure isolation/recovery, better

security
- performance of current CPUs optimized for kernels

SPACE, Pebble
– Fundamental abstractions:

Processors, MMUs, trapvectors
vs. Processes, VM, IPC

© Microsoft Corporation 2004 12

Back to the present…

Windows is extended primarily by adding
apps and libraries (e.g. COM components)

Primary kernel extensions are for new
devices and filtering existing operations

Project I explores kernel extensions
Project II explores services

© Microsoft Corporation 2004 13

Project I – writing a kernel extension
Have the Windows DDK installed for WS03 (aka WNET)
Open a new command window

set DDK=C:¥WINDDK¥37901218 (for example)
Run command: %DDK%¥bin¥setenv %DDK% chk wnet
In the TrivialDriver directory type: build
Find trivial.sys and trivialapp.exe and copy to test machine
Run trivialapp.exe on the test machine
You’ll see a few messages (the driver loaded/unloaded)
Do the same with TrivialDriver2
This time it waits, so start/stop taskmgr.exe
You will see the names of registry values that were set
Use regedit.exe to write some new values in HKCU

© Microsoft Corporation 2004 14

Project I - 2
Read through Registry Callbacks.doc
Compare TrivialDriver and TrivialDriver2
Read in the DDK documentation about the API

PsSetCreateProcessNotifyRoutine
Have the SDK documentation handy
Modify the TrivialDriver2 driver to list the process ids of

processes as they are created and exit
Then modify the app to use to print out the name of the exe

for each process created (see the PSAPI functions)
This is a hit-or-miss procedure, what would be required for

it to be reliable?

© Microsoft Corporation 2004 15

Anatomy of Trivial.sys Driver

DriverEntry is called when driver is loaded
Creates Device object and symlink
Initializes a few dispatch entry points

TrivialCreateClose is called for create/close IRPs
Since driver not stacked, only opened by name
Routine does nothing but process IRP correctly

TrivialCleanup is also an effective no-op
TrivialUnload deletes the symlink, IOMgr deletes devobj
TrivialDriver2 adds read and ioctl functions, and then

Arranges for registry callbacks
Maintains a buffer which can be read out

© Microsoft Corporation 2004 16

Discussion

© Microsoft Corporation 2004 17

	Windows Kernel Internals IISystem Extensions University of Tokyo – July 2004
	Kernel Extension Mechanisms
	Kernel Communication
	Kernel Extensions
	Published Kernel Interfaces
	Subsystems
	Windows Subsystem
	Posix Subsystem
	Subsystem Inter-operation
	Services vs Kernels
	Example: Refining kernel privilege
	No kernels: Future of OS Design?
	Back to the present…
	Project I – writing a kernel extension
	Project I - 2
	Anatomy of Trivial.sys Driver
	Discussion

