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Windows Driver Framework
A library atop WDM:

– Simpler interfaces
– Handles most PnP and Power operations
– Simplifies MP synchronization
– Provides OO interfaces to drivers
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Windows Driver Framework 
Architecture

WDF defines:
– Object properties 
– Object methods 
– Object event callbacks (into drivers)
– Object handles (used to reference objects)
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Simple Framework-based Driver
A DriverEntry routine which calls:

– WdfDriverCreate

An EvtDriverDeviceAdd event callback:
– called by PnP for hardware id match

An EvtIoStart event callback
– called when system has queued a request
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I/O Queue Event Callbacks
Corresponds to IRP major codes for:

– READ, WRITE, DEVICE_CONTROL, 
INTERNAL_DEVICE_CONTROL

and Cancellation

WdfFdoInitSetFilter
– Used to mark as driver as filter:

• Any operation without callback registered bypasses driver
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Toaster Filter Sample - 1
DriverEntry()

– Initialize driver config to control the attributes that are 
global to the driver.

– call WdfDriverCreate()
– call WdfCollectionCreate to create a collection object 

and store filter device objects.
FilterEvtDriverUnload() callback

– call WdfObjectDereference() to dereference collection
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Toaster Filter Sample - 2
FilterEvtDeviceAdd() callback

– EvtDeviceAdd() is called by the framework in 
response to AddDevice call from the PnP manager. 

– pDO = WdfFdoInitWdmGetPhysicalDevice().
– use IoGetDeviceProperty() to decide to attach.
– call WdfFdoInitSetFilter().
– call WdfDeviceCreate().
– call WdfCollectionAdd() to add to collection (while 

holding the lock).
– call our FilterCreateControlDevice() routine.

© Microsoft Corporation 2004 10



Toaster Filter Sample - 3
FilterCreateControlDevice() routine

– // create ctrl DO so app can talk to filter directly.
– call WdfCollectionGetCount() to determine if exists
– call WdfControlDeviceInitAllocate()
– call WdfDeviceInitSetExclusive(FALSE)
– call WdfDeviceInitUpdateName(NAME_STRING)
– call WdfDeviceCreate()
– call WdfDeviceCreateSymbolicLink()
– call WdfDeviceCreateDefaultQueue() to create device 

queue (callback is FilterEvtDeviceControlIoctl)
– call WdfDeviceFinishInitializing() to clear init flag in 

DO
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Toaster Filter Sample - 4
FilterEvtDeviceContextCleanup() callback

– acquire lock (WdfCollectionAcquireLock)
– call WdfCollectionRemoveItem()
– n = WdfCollectionGetCount()
– if n==0 call FilterDeleteControlDevice() routine 
– release lock (WdfCollectionReleaseLock)
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Toaster Filter Sample - 5
FilterDeleteControlDevice() callback

– call WdfObjectDereference(controlDevice)
FilterEvtDeviceControlIoctl() callback

– acquire lock (WdfCollectionAcquireLock)
– n = WdfCollectionGetCount()
– call WdfCollectionGetItem() n times 
– release lock (WdfCollectionReleaseLock)
– call WdfRequestCompleteWithInformation()
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Simple Toaster Function 
Sample

ToasterEvtDeviceAdd() –
– not sharing DO, so no collection needed
– call WdfDeviceCreateDeviceInterface()
– call WdfDeviceCreateDefaultQueue() to register IO 

callbacks, like ToasterEvtIoRead()

ToasterEvtIoRead() – do operation, then
– call WdfRequestCompleteWithInformation()
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Toaster Bus Sample - 1
DriverEntry()

– call WdfDriverCreate() w/ Bus_EvtDeviceAdd()
Bus_EvtDeviceAdd() callback

– WdfDeviceInitSetDeviceType (FILE_DEVICE_BUS_EXTENDER)
– call WdfDeviceInitSetExclusive(TRUE)
– set callbacks: Bus_EvtDeviceListCreatePdo, 

Bus_EvtDeviceListIdDescription{Duplicate, Compare, 
Cleanup}

– WdfFdoInitSetDefaultDeviceListConfig()
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Toaster Bus Sample - 2
Bus_EvtDeviceAdd() callback (cont)

– call WdfDeviceCreate()
– call WdfDeviceCreateDefaultQueue() [ioctl]
– call WdfDeviceCreateDeviceInterface() to create 

device interface
– call WdfFdoSetBusInformation()
– call our Bus_WmiRegistration() and 

Bus_DoStaticEnumeration()
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Toaster Bus Sample - 3
Bus_EvtDeviceControl() callback

– call WdfIoQueueGetDevice()
– call WdfRequestRetrieveBuffer()
– switch on IOCTL

PLUGIN_HARDWARE: Bus_PlugInDevice()
UNPLUG_HARDWARE: Bus_UnPlugDevice()
EJECT_HARDWARE: Bus_EjectDevice()

– call WdfRequestCompleteWithInformation()
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Toaster Bus Sample - 4
Bus_PlugInDevice() [simulation]

– init device description (descr)
– list = WdfFdoGetDefaultDeviceList()
– call WdfDeviceListAddOrUpdateChild-

DescriptionAsPresent (list, descr)
Bus_UnPlugDevice() [simulation]

– list = WdfFdoGetDefaultDeviceList()
– call WdfDeviceListUpdateChildDescription-AsMissing

(list, serialno)
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Toaster Bus Sample - 5
Bus_EjectDevice() [simulation]

– list = WdfFdoGetDefaultDeviceList()
– call WdfDeviceListRequestChildEject (list, serialno)

Bus_DoStaticEnumeration() [simulation]
– read devices from registry to simulate boot enum
– call Bus_PlugInDevice() on each ‘device’
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Toaster Bus Sample - 6
Bus_EvtDeviceListIdentificationDescription-

{Duplicate,Compare,Cleanup}() callbacks
– duplicate a descriptor, compare 2 descriptors (by 

serialno), and free memory
Bus_EvtDeviceListCreatePdo() callback

– calls our Bus_CreatePdo() routine
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Toaster Bus Sample - 7

Bus_CreatePdo() routine
– WdfDeviceInitSetDeviceType(FILE_DEVICE_BUS_EXTENDER)
– WdfDeviceInitSetCharacteristics (…)
– WdfDeviceInitSetExclusive(FALSE)
– WdfPdoInit{UpdateDevice,AddHardware, 

AddCompatible,UpdateInstance}ID (Ids) to satisfy 
IRP_MN_QUERY_ID IRPs

– call WdfPdoInitAddDeviceText()
– call WdfPdoInitSetDefaultLocale()
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Toaster Bus Sample - 8
– call WdfPdoInitSetEventCallbacks() for 

Bus_Pdo_EvtDeviceResourceRequirementsQuery

– call WdfDeviceCreate()
– init capabilities, call WdfPdoSetCapabilities()
– call WdfDeviceAddQueryInterface()
– call WdfDeviceFinishInitializing()
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Toaster Bus Sample - 9
Bus_Pdo_EvtDeviceResourceRequirementsQuery()

– call WdfCollectionCreate(), WdfResourceIoCreate(), 
and WdfCollectionAdd() to collect resources

– add our collection to the ‘collection of resource 
collections’
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Framework Objects
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WDFDRIVER: a driver 
WDFDEVICE: a device 
WDFILEOBJECT:
WDFMEMORY:
WDFQUEUE: queue of I/O requests 
WDFREQUEST: an I/O request
WDFDPC:
WDFTIMER:
WDFWORKITEM:
WDFINTERRUPT:



Framework Object Collections
Used to represent:

– resource requirement lists
– resource lists
– set of connected child devices
– set of exported device interfaces
– any set of framework objects in driver
– collections of collections
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WDFQUEUE Object
Supports numerous operations
Requests enqueuing and dequeuing
Controls concurrency of requests presented to the 

driver
Allows processing to pause and resume
Requests cancellation and cancel-safe queues
Synchronizes I/O operations with PnP/Power state 

transitions
Reports outstanding I/O operations to PnP/Power stage
Serializes event callbacks
Defers event callbacks to comply with 

PASSIVE_LEVEL constraints
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WDFQUEUE Request Events
WDFQUEUE objects use callbacks to notify driver of 

WDFREQUEST events
– EvtIoRead – IRP_MJ_READ requests
– EvtIoWrite – IRP_MJ_WRITE requests
– EvtIoDeviceControl – device control requests 
– EvtIoCancel – a request is cancelled
– EvtIoStop – a power state change requested
– EvtIoStart – request w/o a specific callback
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WDFQUEUE Concurrency
“in-flight” requests:

– received from queue, not yet completed
Concurrency control for “in-flight” requests

– Serial, single request model
– Parallel model 
– Manual model 

WDF may ask cancel/suspend “in-flight” requests
– due to IO cancel, PnP/Power events, dev removal
– driver implements EvtIoCancel/EvtIoStop callbacks

Auto cancel/suspend of queued requests
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WDFQUEUE Power 
Management

Power management of WDFQUEUEs
– Enabled by default
– Configurable on a per WDFQUEUE basis

Advantages of power-managed queues
– Notify PnP/Power stage of arriving I/O requests so 

that device power can be restored
– Notify PnP/Power stage of empty queue so that 

device can be powered down
– Notify driver of power-state changes for in-flight 

requests through the EvtIoStop callback
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WDFQUEUE Serialization
and Constraints

Outstanding I/O request serialization
– I/O requests received from a WDFQUEUE are asynchronous
– Requests completed in event callback or later
– Driver configures number of concurrent I/O operations per queue

Constraints on concurrent execution of event callbacks
– Set in WDF_OBJECT_CONSTRAINTS
– Control simultaneous event callbacks (not actual I/O operations)
– Help manage shared access to WDFQUEUE context memory

Callbacks can have PASSIVE_LEVEL constraint
– WDFQUEUE automatically invokes the callback from a system 

work item if required
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Object Context Memory
Can be associated with any WDF object
Similar to a device extension
Provides storage for a drivers object-specific 

information
Allocated from non-paged pool in driver-supplied size 

and type
Macros assist in defining the type from a C struct
Accessed through pointer stored/retrieved through the 

object handle 
Object’s can have more than one memory context, if 

the types differ
Optional event callback EvtObjectDestroy deallocates

context when the object handle is destroyed
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Asynchronous Processing
Objects used for asynchronous events

– WDFDPC, WDFTIMER, WDFWORKITEM
Associated with a WDFDEVICE or WDFQUEUE
Automatically handle race conditions 
Asynchronous processing can serialize with an 

object’s event callbacks
IRQL of the object must be compatible
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WDFINTERRUPT / WDFDPC
Supports

– Wire line and message signaled interrupts
– Notification of assignment of interrupt resources
– DIRQL synchronization functions
– Associated with WDFDEVICE object

EvtInterruptIsr callback
– services interrupt, stores in context memory
– after dismissing, calls WdfInterruptQueueDpcForIsr
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I/O Targets
Target for forwarding request

– local I/O target: next driver in stack
– remote I/O target: some other driver
– I/O targets list where requests went (for cancel)
– can be general or specialized (e.g. USB)

I/O target states:
– Started, Query-stop, Stopped, Query-remove, 

Removed, Surprise-removed, Closed
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WDF PnP/Power Design Goals
Remove as much boilerplate as possible
Driver callbacks only for “interesting” events
Automatically provide good default PnP behavior

– Rebalance, Removal, Surprise Removal
Automatically provide good default Power behavior

– Support Sleep/Hibernate, “Fast Resume”, idle-time 
power management

Provide clear error-handling paths
– Some software errors automatically handled
– Some hardware errors handled by resetting device 
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WDF PnP/Power Design Goals

Integrate driver primitives with PnP/Power 
actions

Automatically stop presenting requests when 
leaving D0 (high-power)

When leaving D0 disconnect interrupts, Stop 
DMA & I/O Targets

All PnP/Power callbacks at PASSIVE
Remove need for drivers to track state
Callback primitives small w/ straightline code
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WDF Bus Drivers Trivial to write
WDF can handle most of the details:

– Reporting children to WDM
– Coordinating scanning for children
– Maintaining the list of children

Drivers responsible for:
– Identifying children
– Generating IDs
– Generating resource requirements
– Identifying capabilities
– Notification that children have been removed
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Power Managed Queues
Queues (optionally) aware of device power state
Device hardware held in high-power state until 

requests completed or marked as “stopped”
Requests queued and not presented to driver until 

machine fully resumes from a sleep state and device 
is in D0

Not all queues are power-managed:
– Queues for requests that touch hardware should be 

power-managed
– Device Control queues and queues in software-only 

drivers usually should NOT be power-managed
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Power Policy Ownership
WDF provides a rich set of automatic behaviors
Device to low-power when the system goes to 

sleep/hibernate
Device to low-power when the device is idle
Device to high-power when there are requests to 

process
Automatic arming for wake while the system is running 

(device is idle)
Automatic arming for wake while the system is 

sleeping 
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Simplest WDF Driver
Only required PnP/PM fcn: EvtDeviceAdd

1. Set some device constraints
2. Create a WDFDEVICE object
3. Create queues for handling requests

WDF handles PnP/PM events automatically

[If EvtDeviceAdd allocates state, must provide 
EvtDeviceContextCleanup]
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Simple PnP/PM Callback Groups

For all devices with hardware
• EvtDeviceD0Entry – everytime device turned-on
• EvtDeviceD0Exit – everytime device turned-off
For all devices which use interrupts
• EvtInterruptEnable – called after EvtDeviceD0Entry
• EvtInterruptDisable – Called before EvtDeviceD0Exit 
For all devices which have memory-mapped registers
• EvtDevicePrepareHardware – one-time setup ops
• EvtDeviceReleaseHardware
For all USB devices
• EvtDevicePrepareHardware
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Advanced Power Management
Drivers opt into advanced PM

– Devices only in D0 when there is work
– Otherwise devices in a low-power state
– Devices ->D0 by power-managed queues
– Devices ->D0 when wake signals trigger

Very little code needed.  Driver provides:
– Arm/Disarm wake callbacks
– Info on idle detection and D-states for idle
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PnP Child Enumeration
Properties for static data

– Bus instance ID
– Compatible IDs
– Hardware IDs, etc. 

Callbacks for dynamic data and child specific actions
– Associated resources
– Eject
– Create child

Two conceptual API groupings
– “Software” child device APIs
– “Hardware” child device APIs
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Software (“static”) Children
Enumerated as result of 

– Request from user mode
– Registry setting
– Hard coded logic in the driver

Once enumerated, rarely reported missing
Simple API for reporting child to WDF
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Hardware (“dynamic”) Children
These devices come/go frequently
True physical dependents of the parent 
Enumeration driven by bus events
Redetection of child when parent ->D0 
WDFDEVICELIST simplifies enumeration

– Parent reports arrival/departure of child
– Reporting  asynchronous with scanning
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WDFDEVICELIST APIs
Scanning

– WdfDeviceList{Begin,End}Scan
Updating status

– WdfDeviceList{
AddOrUpdateChildDescriptionAsPresent, 

UpdateChildDescriptionAsMissing, 
RequestChildEject}

List Iteration
– WdfDeviceList{Begin,End}Iteration
– WdfDeviceListGetNextDevice
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Child Device Identification
WDFDEVICELIST uniquely ids children
Two types of identification:

– identification description:  how device is 
found on bus (fixed)

– address description:  how device is spoken 
to on bus (dynamic)
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WDFDEVICELIST Callbacks
Only the bus driver knows the following

– How big the ID description is
– If an address description is required
– How to compare two ID descriptions
– How to copy an ID
– How to cleanup an ID’s buffer
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Device Interface Generation
Replace IOCTL as programming model with something 

more client/server-like
Goals

– type-safety
– simplified driver code
– separate interfaces and implementation
– enable new transports (i.e. not just syscall) 
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What is a Device Interface
A contract between client and driver that defines:

– Operations, parameters, results, and constraints
– Access permission required, IRQ Level, etc

Interface Definition should drive the implementation
– Define the interface as “how the implementation works”

Interface Definition does not explicitly address:
– Transfer mode, transport mechanism, packet format
– Separate interface from its binding to a particular transport

© Microsoft Corporation 2004 53



DIG plan
Basic strategy

– Extract interfaces from the code
– Specify interfaces abstractly in XML
– “Regenerate” the interface code from XML

Advantages/opportunities
– DIG can generate interface code for multiple 

languages
– Provide help for static verification
– Use multiple IOCTL codes underneath to improve 

efficiency
– Generate wrappers (stubs) for clients
– Impedance-match 32-bit clients to 64-bit drivers

© Microsoft Corporation 2004 54



Discussion

© Microsoft Corporation 2004 55


	Windows Kernel Internals IIWindows Driver Foundation University of Tokyo – July 2004
	Topics
	Windows Driver Framework
	Request Pipeline
	Windows Driver Framework Architecture
	Simple Framework-based Driver
	I/O Queue Event Callbacks
	Topics
	Toaster Filter Sample - 1
	Toaster Filter Sample - 2
	Toaster Filter Sample - 3
	Toaster Filter Sample - 4
	Toaster Filter Sample - 5
	Simple Toaster Function Sample
	Toaster Bus Sample - 1
	Toaster Bus Sample - 2
	Toaster Bus Sample - 3
	Toaster Bus Sample - 4
	Toaster Bus Sample - 5
	Toaster Bus Sample - 6
	Toaster Bus Sample - 7
	Toaster Bus Sample - 8
	Toaster Bus Sample - 9
	Topics
	Framework Objects
	Framework Object Collections
	WDFQUEUE Object
	WDFQUEUE Request Events
	WDFQUEUE Concurrency
	WDFQUEUE Power Management
	WDFQUEUE Serializationand Constraints
	Object Context Memory
	Asynchronous Processing
	WDFINTERRUPT / WDFDPC
	I/O Targets
	Topics
	WDF PnP/Power Design Goals
	WDF PnP/Power Design Goals
	WDF Bus Drivers Trivial to write
	Power Managed Queues
	Power Policy Ownership
	Simplest WDF Driver
	Simple PnP/PM Callback Groups
	Advanced Power Management
	PnP Child Enumeration
	Software (“static”) Children
	Hardware (“dynamic”) Children
	WDFDEVICELIST APIs
	Child Device Identification
	WDFDEVICELIST Callbacks
	Topics
	Device Interface Generation
	What is a Device Interface
	DIG plan
	Discussion

