
Windows Kernel Internals II
Windows Driver Foundation

University of Tokyo – July 2004

Dave Probert, Ph.D.
Advanced Operating Systems Group

Windows Core Operating Systems Division
Microsoft Corporation

© Microsoft Corporation 2004 1

Topics

WDF Overview
Toaster samples
Framework objects (incl DEVQUEUES)
PnP/Power
Device Interface Generation (DIG)

© Microsoft Corporation 2004 2

Windows Driver Framework
A library atop WDM:

– Simpler interfaces
– Handles most PnP and Power operations
– Simplifies MP synchronization
– Provides OO interfaces to drivers

© Microsoft Corporation 2004 3

Request Pipeline

Legend
Framework

Driver

C
om

pl
et

e
C

om
pl

et
e

––
C

an
ce

l
C

an
ce

l ––
Fo

rw
ar

d
Fo

rw
ar

d

Methods IRP
flow

EventsProperties

R
eq

ue
st

s
R

eq
ue

st
s PnP/PMPnP/PM I/O TargetI/O TargetWMIWMI I/OI/O

© Microsoft Corporation 2004 4

Windows Driver Framework
Architecture

WDF defines:
– Object properties
– Object methods
– Object event callbacks (into drivers)
– Object handles (used to reference objects)

© Microsoft Corporation 2004 5

Simple Framework-based Driver
A DriverEntry routine which calls:

– WdfDriverCreate

An EvtDriverDeviceAdd event callback:
– called by PnP for hardware id match

An EvtIoStart event callback
– called when system has queued a request

© Microsoft Corporation 2004 6

I/O Queue Event Callbacks
Corresponds to IRP major codes for:

– READ, WRITE, DEVICE_CONTROL,
INTERNAL_DEVICE_CONTROL

and Cancellation

WdfFdoInitSetFilter
– Used to mark as driver as filter:

• Any operation without callback registered bypasses driver

© Microsoft Corporation 2004 7

Topics

WDF Overview
Toaster samples
Framework objects (incl DEVQUEUES)
PnP/Power
Device Interface Generation (DIG)

© Microsoft Corporation 2004 8

Toaster Filter Sample - 1
DriverEntry()

– Initialize driver config to control the attributes that are
global to the driver.

– call WdfDriverCreate()
– call WdfCollectionCreate to create a collection object

and store filter device objects.
FilterEvtDriverUnload() callback

– call WdfObjectDereference() to dereference collection

© Microsoft Corporation 2004 9

Toaster Filter Sample - 2
FilterEvtDeviceAdd() callback

– EvtDeviceAdd() is called by the framework in
response to AddDevice call from the PnP manager.

– pDO = WdfFdoInitWdmGetPhysicalDevice().
– use IoGetDeviceProperty() to decide to attach.
– call WdfFdoInitSetFilter().
– call WdfDeviceCreate().
– call WdfCollectionAdd() to add to collection (while

holding the lock).
– call our FilterCreateControlDevice() routine.

© Microsoft Corporation 2004 10

Toaster Filter Sample - 3
FilterCreateControlDevice() routine

– // create ctrl DO so app can talk to filter directly.
– call WdfCollectionGetCount() to determine if exists
– call WdfControlDeviceInitAllocate()
– call WdfDeviceInitSetExclusive(FALSE)
– call WdfDeviceInitUpdateName(NAME_STRING)
– call WdfDeviceCreate()
– call WdfDeviceCreateSymbolicLink()
– call WdfDeviceCreateDefaultQueue() to create device

queue (callback is FilterEvtDeviceControlIoctl)
– call WdfDeviceFinishInitializing() to clear init flag in

DO

© Microsoft Corporation 2004 11

Toaster Filter Sample - 4
FilterEvtDeviceContextCleanup() callback

– acquire lock (WdfCollectionAcquireLock)
– call WdfCollectionRemoveItem()
– n = WdfCollectionGetCount()
– if n==0 call FilterDeleteControlDevice() routine
– release lock (WdfCollectionReleaseLock)

© Microsoft Corporation 2004 12

Toaster Filter Sample - 5
FilterDeleteControlDevice() callback

– call WdfObjectDereference(controlDevice)
FilterEvtDeviceControlIoctl() callback

– acquire lock (WdfCollectionAcquireLock)
– n = WdfCollectionGetCount()
– call WdfCollectionGetItem() n times
– release lock (WdfCollectionReleaseLock)
– call WdfRequestCompleteWithInformation()

© Microsoft Corporation 2004 13

Simple Toaster Function
Sample

ToasterEvtDeviceAdd() –
– not sharing DO, so no collection needed
– call WdfDeviceCreateDeviceInterface()
– call WdfDeviceCreateDefaultQueue() to register IO

callbacks, like ToasterEvtIoRead()

ToasterEvtIoRead() – do operation, then
– call WdfRequestCompleteWithInformation()

© Microsoft Corporation 2004 14

Toaster Bus Sample - 1
DriverEntry()

– call WdfDriverCreate() w/ Bus_EvtDeviceAdd()
Bus_EvtDeviceAdd() callback

– WdfDeviceInitSetDeviceType (FILE_DEVICE_BUS_EXTENDER)
– call WdfDeviceInitSetExclusive(TRUE)
– set callbacks: Bus_EvtDeviceListCreatePdo,

Bus_EvtDeviceListIdDescription{Duplicate, Compare,
Cleanup}

– WdfFdoInitSetDefaultDeviceListConfig()

© Microsoft Corporation 2004 15

Toaster Bus Sample - 2
Bus_EvtDeviceAdd() callback (cont)

– call WdfDeviceCreate()
– call WdfDeviceCreateDefaultQueue() [ioctl]
– call WdfDeviceCreateDeviceInterface() to create

device interface
– call WdfFdoSetBusInformation()
– call our Bus_WmiRegistration() and

Bus_DoStaticEnumeration()

© Microsoft Corporation 2004 16

Toaster Bus Sample - 3
Bus_EvtDeviceControl() callback

– call WdfIoQueueGetDevice()
– call WdfRequestRetrieveBuffer()
– switch on IOCTL

PLUGIN_HARDWARE: Bus_PlugInDevice()
UNPLUG_HARDWARE: Bus_UnPlugDevice()
EJECT_HARDWARE: Bus_EjectDevice()

– call WdfRequestCompleteWithInformation()

© Microsoft Corporation 2004 17

Toaster Bus Sample - 4
Bus_PlugInDevice() [simulation]

– init device description (descr)
– list = WdfFdoGetDefaultDeviceList()
– call WdfDeviceListAddOrUpdateChild-

DescriptionAsPresent (list, descr)
Bus_UnPlugDevice() [simulation]

– list = WdfFdoGetDefaultDeviceList()
– call WdfDeviceListUpdateChildDescription-AsMissing

(list, serialno)

© Microsoft Corporation 2004 18

Toaster Bus Sample - 5
Bus_EjectDevice() [simulation]

– list = WdfFdoGetDefaultDeviceList()
– call WdfDeviceListRequestChildEject (list, serialno)

Bus_DoStaticEnumeration() [simulation]
– read devices from registry to simulate boot enum
– call Bus_PlugInDevice() on each ‘device’

© Microsoft Corporation 2004 19

Toaster Bus Sample - 6
Bus_EvtDeviceListIdentificationDescription-

{Duplicate,Compare,Cleanup}() callbacks
– duplicate a descriptor, compare 2 descriptors (by

serialno), and free memory
Bus_EvtDeviceListCreatePdo() callback

– calls our Bus_CreatePdo() routine

© Microsoft Corporation 2004 20

Toaster Bus Sample - 7

Bus_CreatePdo() routine
– WdfDeviceInitSetDeviceType(FILE_DEVICE_BUS_EXTENDER)
– WdfDeviceInitSetCharacteristics (…)
– WdfDeviceInitSetExclusive(FALSE)
– WdfPdoInit{UpdateDevice,AddHardware,

AddCompatible,UpdateInstance}ID (Ids) to satisfy
IRP_MN_QUERY_ID IRPs

– call WdfPdoInitAddDeviceText()
– call WdfPdoInitSetDefaultLocale()

© Microsoft Corporation 2004 21

Toaster Bus Sample - 8
– call WdfPdoInitSetEventCallbacks() for

Bus_Pdo_EvtDeviceResourceRequirementsQuery

– call WdfDeviceCreate()
– init capabilities, call WdfPdoSetCapabilities()
– call WdfDeviceAddQueryInterface()
– call WdfDeviceFinishInitializing()

© Microsoft Corporation 2004 22

Toaster Bus Sample - 9
Bus_Pdo_EvtDeviceResourceRequirementsQuery()

– call WdfCollectionCreate(), WdfResourceIoCreate(),
and WdfCollectionAdd() to collect resources

– add our collection to the ‘collection of resource
collections’

© Microsoft Corporation 2004 23

Topics

WDF Overview
Toaster samples
Framework objects (incl DEVQUEUES)
PnP/Power
Device Interface Generation (DIG)

© Microsoft Corporation 2004 24

Framework Objects

© Microsoft Corporation 2004 25

WDFDRIVER: a driver
WDFDEVICE: a device
WDFILEOBJECT:
WDFMEMORY:
WDFQUEUE: queue of I/O requests
WDFREQUEST: an I/O request
WDFDPC:
WDFTIMER:
WDFWORKITEM:
WDFINTERRUPT:

Framework Object Collections
Used to represent:

– resource requirement lists
– resource lists
– set of connected child devices
– set of exported device interfaces
– any set of framework objects in driver
– collections of collections

© Microsoft Corporation 2004 26

WDFQUEUE Object
Supports numerous operations
Requests enqueuing and dequeuing
Controls concurrency of requests presented to the

driver
Allows processing to pause and resume
Requests cancellation and cancel-safe queues
Synchronizes I/O operations with PnP/Power state

transitions
Reports outstanding I/O operations to PnP/Power stage
Serializes event callbacks
Defers event callbacks to comply with

PASSIVE_LEVEL constraints

© Microsoft Corporation 2004 27

WDFQUEUE Request Events
WDFQUEUE objects use callbacks to notify driver of

WDFREQUEST events
– EvtIoRead – IRP_MJ_READ requests
– EvtIoWrite – IRP_MJ_WRITE requests
– EvtIoDeviceControl – device control requests
– EvtIoCancel – a request is cancelled
– EvtIoStop – a power state change requested
– EvtIoStart – request w/o a specific callback

© Microsoft Corporation 2004 28

WDFQUEUE Concurrency
“in-flight” requests:

– received from queue, not yet completed
Concurrency control for “in-flight” requests

– Serial, single request model
– Parallel model
– Manual model

WDF may ask cancel/suspend “in-flight” requests
– due to IO cancel, PnP/Power events, dev removal
– driver implements EvtIoCancel/EvtIoStop callbacks

Auto cancel/suspend of queued requests

© Microsoft Corporation 2004 29

WDFQUEUE Power
Management

Power management of WDFQUEUEs
– Enabled by default
– Configurable on a per WDFQUEUE basis

Advantages of power-managed queues
– Notify PnP/Power stage of arriving I/O requests so

that device power can be restored
– Notify PnP/Power stage of empty queue so that

device can be powered down
– Notify driver of power-state changes for in-flight

requests through the EvtIoStop callback

© Microsoft Corporation 2004 30

WDFQUEUE Serialization
and Constraints

Outstanding I/O request serialization
– I/O requests received from a WDFQUEUE are asynchronous
– Requests completed in event callback or later
– Driver configures number of concurrent I/O operations per queue

Constraints on concurrent execution of event callbacks
– Set in WDF_OBJECT_CONSTRAINTS
– Control simultaneous event callbacks (not actual I/O operations)
– Help manage shared access to WDFQUEUE context memory

Callbacks can have PASSIVE_LEVEL constraint
– WDFQUEUE automatically invokes the callback from a system

work item if required
© Microsoft Corporation 2004 31

Object Context Memory
Can be associated with any WDF object
Similar to a device extension
Provides storage for a drivers object-specific

information
Allocated from non-paged pool in driver-supplied size

and type
Macros assist in defining the type from a C struct
Accessed through pointer stored/retrieved through the

object handle
Object’s can have more than one memory context, if

the types differ
Optional event callback EvtObjectDestroy deallocates

context when the object handle is destroyed

© Microsoft Corporation 2004 32

Asynchronous Processing
Objects used for asynchronous events

– WDFDPC, WDFTIMER, WDFWORKITEM
Associated with a WDFDEVICE or WDFQUEUE
Automatically handle race conditions
Asynchronous processing can serialize with an

object’s event callbacks
IRQL of the object must be compatible

© Microsoft Corporation 2004 33

WDFINTERRUPT / WDFDPC
Supports

– Wire line and message signaled interrupts
– Notification of assignment of interrupt resources
– DIRQL synchronization functions
– Associated with WDFDEVICE object

EvtInterruptIsr callback
– services interrupt, stores in context memory
– after dismissing, calls WdfInterruptQueueDpcForIsr

© Microsoft Corporation 2004 34

I/O Targets
Target for forwarding request

– local I/O target: next driver in stack
– remote I/O target: some other driver
– I/O targets list where requests went (for cancel)
– can be general or specialized (e.g. USB)

I/O target states:
– Started, Query-stop, Stopped, Query-remove,

Removed, Surprise-removed, Closed

© Microsoft Corporation 2004 35

Topics

WDF Overview
Toaster samples
Framework objects (incl DEVQUEUES)
PnP/Power
Device Interface Generation (DIG)

© Microsoft Corporation 2004 36

WDF PnP/Power Design Goals
Remove as much boilerplate as possible
Driver callbacks only for “interesting” events
Automatically provide good default PnP behavior

– Rebalance, Removal, Surprise Removal
Automatically provide good default Power behavior

– Support Sleep/Hibernate, “Fast Resume”, idle-time
power management

Provide clear error-handling paths
– Some software errors automatically handled
– Some hardware errors handled by resetting device

© Microsoft Corporation 2004 37

WDF PnP/Power Design Goals

Integrate driver primitives with PnP/Power
actions

Automatically stop presenting requests when
leaving D0 (high-power)

When leaving D0 disconnect interrupts, Stop
DMA & I/O Targets

All PnP/Power callbacks at PASSIVE
Remove need for drivers to track state
Callback primitives small w/ straightline code

© Microsoft Corporation 2004 38

WDF Bus Drivers Trivial to write
WDF can handle most of the details:

– Reporting children to WDM
– Coordinating scanning for children
– Maintaining the list of children

Drivers responsible for:
– Identifying children
– Generating IDs
– Generating resource requirements
– Identifying capabilities
– Notification that children have been removed

© Microsoft Corporation 2004 39

Power Managed Queues
Queues (optionally) aware of device power state
Device hardware held in high-power state until

requests completed or marked as “stopped”
Requests queued and not presented to driver until

machine fully resumes from a sleep state and device
is in D0

Not all queues are power-managed:
– Queues for requests that touch hardware should be

power-managed
– Device Control queues and queues in software-only

drivers usually should NOT be power-managed

© Microsoft Corporation 2004 40

Power Policy Ownership
WDF provides a rich set of automatic behaviors
Device to low-power when the system goes to

sleep/hibernate
Device to low-power when the device is idle
Device to high-power when there are requests to

process
Automatic arming for wake while the system is running

(device is idle)
Automatic arming for wake while the system is

sleeping

© Microsoft Corporation 2004 41

Simplest WDF Driver
Only required PnP/PM fcn: EvtDeviceAdd

1. Set some device constraints
2. Create a WDFDEVICE object
3. Create queues for handling requests

WDF handles PnP/PM events automatically

[If EvtDeviceAdd allocates state, must provide
EvtDeviceContextCleanup]

© Microsoft Corporation 2004 42

Simple PnP/PM Callback Groups

For all devices with hardware
• EvtDeviceD0Entry – everytime device turned-on
• EvtDeviceD0Exit – everytime device turned-off
For all devices which use interrupts
• EvtInterruptEnable – called after EvtDeviceD0Entry
• EvtInterruptDisable – Called before EvtDeviceD0Exit
For all devices which have memory-mapped registers
• EvtDevicePrepareHardware – one-time setup ops
• EvtDeviceReleaseHardware
For all USB devices
• EvtDevicePrepareHardware

© Microsoft Corporation 2004 43

Advanced Power Management
Drivers opt into advanced PM

– Devices only in D0 when there is work
– Otherwise devices in a low-power state
– Devices ->D0 by power-managed queues
– Devices ->D0 when wake signals trigger

Very little code needed. Driver provides:
– Arm/Disarm wake callbacks
– Info on idle detection and D-states for idle

© Microsoft Corporation 2004 44

PnP Child Enumeration
Properties for static data

– Bus instance ID
– Compatible IDs
– Hardware IDs, etc.

Callbacks for dynamic data and child specific actions
– Associated resources
– Eject
– Create child

Two conceptual API groupings
– “Software” child device APIs
– “Hardware” child device APIs

© Microsoft Corporation 2004 45

Software (“static”) Children
Enumerated as result of

– Request from user mode
– Registry setting
– Hard coded logic in the driver

Once enumerated, rarely reported missing
Simple API for reporting child to WDF

© Microsoft Corporation 2004 46

Hardware (“dynamic”) Children
These devices come/go frequently
True physical dependents of the parent
Enumeration driven by bus events
Redetection of child when parent ->D0
WDFDEVICELIST simplifies enumeration

– Parent reports arrival/departure of child
– Reporting asynchronous with scanning

© Microsoft Corporation 2004 47

WDFDEVICELIST APIs
Scanning

– WdfDeviceList{Begin,End}Scan
Updating status

– WdfDeviceList{
AddOrUpdateChildDescriptionAsPresent,

UpdateChildDescriptionAsMissing,
RequestChildEject}

List Iteration
– WdfDeviceList{Begin,End}Iteration
– WdfDeviceListGetNextDevice

© Microsoft Corporation 2004 48

Child Device Identification
WDFDEVICELIST uniquely ids children
Two types of identification:

– identification description: how device is
found on bus (fixed)

– address description: how device is spoken
to on bus (dynamic)

© Microsoft Corporation 2004 49

WDFDEVICELIST Callbacks
Only the bus driver knows the following

– How big the ID description is
– If an address description is required
– How to compare two ID descriptions
– How to copy an ID
– How to cleanup an ID’s buffer

© Microsoft Corporation 2004 50

Topics

WDF Overview
Toaster samples
Framework objects (incl DEVQUEUES)
PnP/Power
Device Interface Generation (DIG)

© Microsoft Corporation 2004 51

Device Interface Generation
Replace IOCTL as programming model with something

more client/server-like
Goals

– type-safety
– simplified driver code
– separate interfaces and implementation
– enable new transports (i.e. not just syscall)

© Microsoft Corporation 2004 52

What is a Device Interface
A contract between client and driver that defines:

– Operations, parameters, results, and constraints
– Access permission required, IRQ Level, etc

Interface Definition should drive the implementation
– Define the interface as “how the implementation works”

Interface Definition does not explicitly address:
– Transfer mode, transport mechanism, packet format
– Separate interface from its binding to a particular transport

© Microsoft Corporation 2004 53

DIG plan
Basic strategy

– Extract interfaces from the code
– Specify interfaces abstractly in XML
– “Regenerate” the interface code from XML

Advantages/opportunities
– DIG can generate interface code for multiple

languages
– Provide help for static verification
– Use multiple IOCTL codes underneath to improve

efficiency
– Generate wrappers (stubs) for clients
– Impedance-match 32-bit clients to 64-bit drivers

© Microsoft Corporation 2004 54

Discussion

© Microsoft Corporation 2004 55

	Windows Kernel Internals IIWindows Driver Foundation University of Tokyo – July 2004
	Topics
	Windows Driver Framework
	Request Pipeline
	Windows Driver Framework Architecture
	Simple Framework-based Driver
	I/O Queue Event Callbacks
	Topics
	Toaster Filter Sample - 1
	Toaster Filter Sample - 2
	Toaster Filter Sample - 3
	Toaster Filter Sample - 4
	Toaster Filter Sample - 5
	Simple Toaster Function Sample
	Toaster Bus Sample - 1
	Toaster Bus Sample - 2
	Toaster Bus Sample - 3
	Toaster Bus Sample - 4
	Toaster Bus Sample - 5
	Toaster Bus Sample - 6
	Toaster Bus Sample - 7
	Toaster Bus Sample - 8
	Toaster Bus Sample - 9
	Topics
	Framework Objects
	Framework Object Collections
	WDFQUEUE Object
	WDFQUEUE Request Events
	WDFQUEUE Concurrency
	WDFQUEUE Power Management
	WDFQUEUE Serializationand Constraints
	Object Context Memory
	Asynchronous Processing
	WDFINTERRUPT / WDFDPC
	I/O Targets
	Topics
	WDF PnP/Power Design Goals
	WDF PnP/Power Design Goals
	WDF Bus Drivers Trivial to write
	Power Managed Queues
	Power Policy Ownership
	Simplest WDF Driver
	Simple PnP/PM Callback Groups
	Advanced Power Management
	PnP Child Enumeration
	Software (“static”) Children
	Hardware (“dynamic”) Children
	WDFDEVICELIST APIs
	Child Device Identification
	WDFDEVICELIST Callbacks
	Topics
	Device Interface Generation
	What is a Device Interface
	DIG plan
	Discussion

