
Windows Kernel Internals
Object Manager & LPC

Dave Probert, Ph.D.
Advanced Operating Systems Group
Windows Core Operating Systems

Division
Microsoft Corporation

© Microsoft Corporation 2004 1

Kernel Object Manager (OB)
Provides underlying NT namespace
Unifies kernel data structure referencing
Unifies user-mode referencing via handles
Simplifies resource charging
Central facility for security protection

© Microsoft Corporation 2004 2

¥ObjectTypes
Adapter
Callback
Controller
DebugObject
Desktop
Device
Directory
Driver
Event
EventPair

File
IoCompletion
Job
Key
KeyedEvent
Mutant
Port
Process
Profile
Section

Semaphore
SymbolicLink
Thread
Timer
Token
Type
WaitablePort
WindowsStation
WMIGuid

© Microsoft Corporation 2004 3

¥ObjectTypes
Adapter
Callback
Controller
DebugObject
Desktop
Device
Directory
Driver
Event
EventPair

File
IoCompletion
Job
Key
KeyedEvent
Mutant
Port
Process
Profile
Section

Semaphore
SymbolicLink
Thread
Timer
Token
Type
WaitablePort
WindowsStation
WMIGuid

© Microsoft Corporation 2004 4

OBJECT_HEADER

© Microsoft Corporation 2004 5

Generic object services
• namespace ops: directories, symlinks
• NtQueryObject
• NtQuery/SetSecurityObject
• NtWaitForSingle/MultipleObjects
• ObOpenObjectByName/Pointer
• ObReferenceObjectbyName/Handle
• NtDuplicateObject
• NtClose
• ObDereferenceObject

© Microsoft Corporation 2004 6

OBJECT_DIRECTORY

© Microsoft Corporation 2004 7

ObpLookupDirectoryEntry(pD, s)

object = NULL
idx = HASH(s)
pE = pD->HashBuckets[idx]
LockDirectoryShared(pD)
while (pE && !eqs(s, pE->Object->Name))

pE = pE->pChainLink
if (pE)

ObpReferenceObject(object = pE->Object)
UnlockDirectory(pD)
return object

© Microsoft Corporation 2004 8

Object Methods

OPEN: Create/Open/Dup/Inherit handle
CLOSE: Called when each handle closed
DELETE: Called on last dereference
PARSE: Called looking up objects by name
SECURITY: Usually SeDefaultObjectMethod
QUERYNAME: Return object-specific name
OKAYTOCLOSE: Give veto on handle close

© Microsoft Corporation 2004 9

Object Manager Types
Directory - namespace object

Implementation hardwired

SymbolicLink - namespace object
DeleteProcedure = ObpDeleteSymbolicLink
ParseProcedure = ObpParseSymbolicLink

Type - represent object types
DeleteProcedure = ObpDeleteObjectType

© Microsoft Corporation 2004 10

Object Manager lookups

ObpLookupObjectName(Name,Context)
– Search a directory for specified object name
– Use ObpLookupDirectoryEntry() on Directories
– Otherwise call object-specific ParseProcedure

• Implements symbolic links (SymbolicLink type)
• Implements file systems (DeviceObject type)

© Microsoft Corporation 2004 11

I/O Manager Types

Adapter - ADAPTER_OBJECT
Controller - CONTROLLER_OBJECT
Device - DEVICE_OBJECT

ParseProcedure = IopParseDevice
DeleteProcedure = IopDeleteDevice
SecurityProcedure = IopGetSetSecurityObject

Driver - DRIVER_OBJECT
DeleteProcedure = IopDeleteDriver

IoCompletion - KQUEUE
DeleteProcedure = IopDeleteIoCompletion

© Microsoft Corporation 2004 12

I/O Manager File Type
File - FILE_OBJECT

CloseProcedure = IopCloseFile
DeleteProcedure = IopDeleteFile
ParseProcedure = IopParseFile
SecurityProcedure = IopGetSetSecurityObject
QueryNameProcedure = IopQueryName

© Microsoft Corporation 2004 13

IopParseDevice
(DeviceObject, Context, RemainingName)

– Call SeAccessCheck()
– If (!*RemainingName) directDeviceOpen = TRUE
– For file opens, get Volume from DeviceObject
– Update references on Volume and DeviceObject
– Construct an I/O Request Packet (IRP)
– FileObject = ObCreateObject(IoFileObjectType)
– Initialize FileObject
– Initiate I/O via IoCallDriver(VolumeDevice, IRP)
– Wait for I/O to signal FileObject->Event
– Return the FileObject to caller

© Microsoft Corporation 2004 14

FILE_OBJECT

© Microsoft Corporation 2004 15

Process/Thread Types

© Microsoft Corporation 2004 16

Job - JOB
DeleteProcedure = PspJobDelete
CloseProcedure = PspJobClose

Process - EPROCESS
DeleteProcedure = PspProcessDelete

Profile - EPROFILE
DeleteProcedure = ExpProfileDelete

Section - SECTION
DeleteProcedure = MiSectionDelete

Thread - ETHREAD
DeleteProcedure = PspThreadDelete

Token - TOKEN
DeleteProcedure = SepTokenDeleteMethod

Job methods - Close

© Microsoft Corporation 2004 17

PspJobClose - called by OB when a handle is closed
Return unless final close
Mark Job as closed
Acquire the job's lock
If job marked PS_JOB_FLAGS_CLOSE_DONE

Release the JobLock
Call PspTerminateAllProcessesInJob()
Reacquire the JobLock

Acquire the job's MemoryLimitsLock
Remove any completion port from the job
Release the MemoryLimitsLock
Release the JobLock
Dereference the completion port

Job methods - Delete
PspJobDelete - called by OB at final dereference

Holding the Joblock callout to ntuser
Acquire the PspJobListLock
If part of a jobset then we are the job pinning the jobset

tJob = next job in set and remove current job
Release the PspJobListLock
If (tJob) ObDereferenceObjectDeferDelete (tJob)
If (Job->Token) ObDereferenceObject (Job->Token)
Free pool allocated for job filters
Unlink our JobLock from the global list

© Microsoft Corporation 2004 18

Synchronization Types

© Microsoft Corporation 2004 19

Event - KEVENT
EventPair - EEVENT_PAIR
KeyedEvent - KEYED_EVENT_OBJECT
Mutant - KMUTANT

DeleteProcedure = ExpDeleteMutant

Port - LPCP_PORT_OBJECT
DeleteProcedure = LpcpDeletePort
CloseProcedure = LpcpClosePort

Semaphore - KSEMAPHORE
Timer - ETIMER

DeleteProcedure = ExpDeleteTimer

Win32k.sys
Callback - CALLBACK_OBJECT

DeleteProcedure = ExpDeleteCallback

WindowsStation, Desktop
CloseProcedure = ExpWin32CloseProcedure
DeleteProcedure = ExpWin32DeleteProcedure
OkayToCloseProcedure = ExpWin32OkayToCloseProcedure
ParseProcedure = ExpWin32ParseProcedure
OpenProcedure = ExpWin32OpenProcedure

© Microsoft Corporation 2004 20

ObCreateObjectType
TypeName – mostly for debugging
DefaultsCharges – amount of memory usage to charge

process
InvalidAttributes – restricts object instances, e.g. not

PERMANENT

GenericMapping – maps object-specific access rights
ValidAccessMask – restricts requested access
MaintainHandleCount – maintain database for debugging
Dispatch procedures – open, close, delete, parse,

queryname, …

© Microsoft Corporation 2004 21

Handle Table (Executive)
Efficient, scalable object index structure
One per process containing ‘open’ objects
Kernel handle table (system process)
Also used to allocate process/thread IDs

© Microsoft Corporation 2004 22

Process Handle Tables

© Microsoft Corporation 2004 23

One level: (to 512 handles)

© Microsoft Corporation 2004 24

Two levels: (to 512K handles)

© Microsoft Corporation 2004 25

Three levels: (to 16M handles)

© Microsoft Corporation 2004 26

Handle Table Data Structure
TablePointer/Level Points at handles
QuotaProcess Who to charge
UniqueProcessId Passed to callbacks
HandleTableLocks[N] Locks for handles
HandleTableList Global list of tables
HandleContentionEvent Event to block on
DebugInfo Stacktraces
ExtraInfoPages Parallel table for audits
FirstFree/LastFree The two handle free lists
NextHandleNeedingPool Handles w/ memory
HandleCount Handles in use

© Microsoft Corporation 2004 27

Handle Table Functions
ExCreateHandleTable – create non-process tables
ExDupHandleTable – called creating processes

ExSweepHandleTable – for process rundown
ExDestroyHandleTable – called destroying processes

ExCreateHandle – setup new handle table entry
ExChangeHandle – used to set inherit and/or protect
ExDestroyHandle – implements CloseHandle
ExMapHandleToPointer – reference underlying object

ExReferenceHandleDebugInfo – tracing handles
ExSnapShotHandleTables – handle searchers (oh.exe)

© Microsoft Corporation 2004 28

ExCreateHandle(table, entry)
NewHandleTableEntry = ExpAllocateHandleTableEntry()
KeEnterCriticalRegionThread()
*NewHandleTableEntry = *HandleTableEntry
ExUnlockHandleTableEntry()
KeLeaveCriticalRegionThread()

© Microsoft Corporation 2004 29

Object Manager Summary
• Manages the NT namespace
• Common scheme for managing resources
• Extensible method-based model for building

system objects
• Memory management based on reference

counting
• Uniform/centralized security model
• Support handle-based access of system objects
• Common, uniform mechanisms for using system

resources
© Microsoft Corporation 2004 30

Lightweight Procedure Calls

Most common local machine IPC
Built for subsystem communication
Local transport for RPC

RPC also uses named pipes

© Microsoft Corporation 2004 31

© Microsoft Corporation 2004 32

Connection Port
Handle

Server process Client process

Server
Comm
Handle

Kernel Address Space

Connection port
(named / unnamed)

Server
Comm Port

Client
Comm Port

Client
Comm
Handle

LPC Architecture

Client View
of Section

Server View
of Section

Shared

Section

LPC ports
Connection port (named / unnamed)

– Created by the server side.
– Used to accept connections, receive requests and to reply to

messages
Server communication port

– The server receives a handle to server port each time a new
connection is created.

– Used to terminate a connection, to impersonate the client or to
reply.

Client communication port
– The client receives a handle to a client port if the connection was

successfully accepted.
– Used to request/receive messages

© Microsoft Corporation 2004 33

LPC Data Transfer
The message is temporary copied to kernel (< 256

bytes*)
Using shared sections, mapped in both client and

server address spaces
The server can directly read from or write to a client

address space

© Microsoft Corporation 2004 34

LPC APIs
NtListenPort – server waits for connection request from

client (wrapper for NtReplyWaitReceive)
NtAcceptConnectPort – accept/reject client connection

request received by NtListenPort
NtCompleteConnectPort – server calls to wake up client

after NtAcceptConnectPort
NtConnectPort – used by clients to connect to server ports
NtCreatePort – create a port and give a name in OB

namespace
NtImpersonateClientOfPort – used by servers to

impersonate client credentials

© Microsoft Corporation 2004 35

LPC APIs - 2
NtReplyWaitReceivePort – reply to a message and wait

for next message
NtReplyPort – used by clients and servers to reply to

messages
NtReplyWaitReplyPort – replies and then waits for a

response
NtRead/WriteRequestData – copy message data to/from

user buffer
NtRequestPort – send a message
NtRequestWaitReplyPort – send a message and wait for

a response

© Microsoft Corporation 2004 36

Creating an LPC server
1. Create a named connection port (NtCreatePort)
2. Create one or more working threads listening to requests on that

LPC connection port (NtReplyWaitReceivePort)

{… if (NtCreatePort(&SrvConnHandle, “LPCPortName”)) {
CreateThread (ProcessLPCRequestProc)

} …
}
ProcessLPCRequestProc ()
{ ReplyMsg = NULL;

while (forever_or_so) {
NtReplyWaitReceivePort(SrvConnHandle, ReplyMsg, ReceiveMsg)
DoStuffWithTheReceivedMessage()
ReplyMsg = PrepareTheReply (IfAny)*

}
}

* Some servers launch a worker thread to process the request and reply to the client

© Microsoft Corporation 2004 37

Establishing an LPC connection
The Client initiates a connection (NtConnectPort)
The server receives a connection request message
The server decides to accept/reject the connection and

calls NtAcceptConnectPort

The server wakes up the client (NtCompleteConnectPort)

Servers cannot send messages to clients that are
not waiting for an LPC message
If a server dies, the client is not notified unless it
has threads waiting for a reply
No timeout for the LPC wait APIs

Common Issues

© Microsoft Corporation 2004 38

LPC Data Structures
LPC Port (paged)

– Port type, connection & connected port, owning
process, server process, port context

LPC Message (paged)
– MessageID, message type, ClientID

Thread LPC fields (non-paged)
– Wait state, request messageID, LCP port, received

message id, port rundown queue
Global data

– LpcpNextMessageId, LpcpLock

© Microsoft Corporation 2004 39

LPC Port Object

Object fields (name, ref count, type)

Port type (connection, server comm, client comm)

Connection and connected port
Creator CID
Message queue
Port context
Thread rundown queue

© Microsoft Corporation 2004 40

LPC Ports in Processes
DebugPort

– used to send debugger messages
ExceptionPort

– CsrCreateProcess assigns it to a win32 process
SecurityPort

– used by lsass (authentication system)
Where are messages found?

– on the caller stack
– in the port queue
– in the thread pending the reply

© Microsoft Corporation 2004 41

LPC Message Format

o Kernel side (Port context,
messages list)

o User side (PORT_MESSAGE)
– Message type (request, reply,

connection request, client died,
port closed)

– Message length, data offset
– Client ID
– Message ID

o Private data

U
se

r m
od

e
K

er
ne

l

© Microsoft Corporation 2004 42

PORT_MESSAGE
typedef struct _PORT_MESSAGE {
CSHORT DataLength;
CSHORT TotalLength;
CSHORT Type;
CSHORT DataInfoOffset;
LPC_CLIENT_ID ClientId;
ULONG MessageId;
ULONG CallbackId;

…
// UCHAR Data[];
} PORT_MESSAGE, *PPORT_MESSAGE;

© Microsoft Corporation 2004 43

LPC Fields in Threads
LpcReplyChain

– To wake up a client if a server port goes away
LpcReplySemaphore

– It gets signaled when the reply message is ready
LpcReplyMessageId

– The message ID at which the client is waiting a reply
LpcReplyMessage

– The reply message received
LpcWaitingOnPort

– The port object currently used for a LPC request
LpcReceivedMessageId

– The last message ID that a server received
© Microsoft Corporation 2004 44

!lpc KD debugger extension
!lpc message [MessageId]

!lpc port [PortAddress]

!lpc scan PortAddress

!lpc thread [ThreadAddr]

!lpc PoolSearch

© Microsoft Corporation 2004 45

Discussion

© Microsoft Corporation 2004 46

	Windows Kernel InternalsObject Manager & LPC
	Kernel Object Manager (OB)
	\ObjectTypes
	\ObjectTypes
	OBJECT_HEADER
	Generic object services
	OBJECT_DIRECTORY
	ObpLookupDirectoryEntry(pD, s)
	Object Methods
	Object Manager Types
	Object Manager lookups
	I/O Manager Types
	I/O Manager File Type
	IopParseDevice
	FILE_OBJECT
	Process/Thread Types
	Job methods - Close
	Job methods - Delete
	Synchronization Types
	Win32k.sys
	ObCreateObjectType
	Handle Table (Executive)
	Process Handle Tables
	One level: (to 512 handles)
	Two levels: (to 512K handles)
	Three levels: (to 16M handles)
	Handle Table Data Structure
	Handle Table Functions
	ExCreateHandle(table, entry)
	Object Manager Summary
	Lightweight Procedure Calls
	LPC ports
	LPC Data Transfer
	LPC APIs
	LPC APIs - 2
	Creating an LPC server
	Establishing an LPC connection
	LPC Data Structures
	LPC Port Object
	LPC Ports in Processes
	LPC Message Format
	PORT_MESSAGE
	LPC Fields in Threads
	!lpc KD debugger extension
	Discussion

