
Windows Kernel Internals II
Advanced File Systems
University of Tokyo – July 2004

Dave Probert, Ph.D.
Advanced Operating Systems Group

Windows Core Operating Systems Division
Microsoft Corporation

© Microsoft Corporation 2004 1

Disk Basics

Volume exported via device object
Addressed by byte offset and length
Enforced on sector boundaries
NTFS allocation unit - clusters
Round size down to clusters

© Microsoft Corporation 2004 2

Storage Management
Volumes may span multiple logical disks

Partitioning Description Benefits

spanned logical catenation of arbitrary
sized volumes

size

striped
(RAID-0)

interleaved same-sized
volumes

read/write perf

mirrored
(RAID-1)

redundant writes to same-
sized volume, alternate reads

reliability, read
perf

RAID-5 striped volumes w/ parity reliability, size,
read perf

© Microsoft Corporation 2004 3

File System Device Stack

© Microsoft Corporation 2004 4

NT I/O Manager

File System Filters

File System Driver
Cache Manager

Virtual Memory
Manager

Application

Kernel32 / ntdll
user
kernel

Partition/Volume
Storage Manager

Disk Class Manager

Disk Driver

DISK

NTFS Deals with files

Partition is collection of files
Common routines for all meta-data
Utilizes MM and Cache Manager
No specific on-disk locations

© Microsoft Corporation 2004 5

CacheManager overview
Cache manager

– kernel-mode routines
– asynchronous worker routines
– interface between filesystems and VM mgr

Functionality
– access methods for pages of file data on opened files
– automatic asynchronous read ahead
– automatic asynchronous write behind (lazy write)
– supports “Fast I/O” – IRP bypass

© Microsoft Corporation 2004 6

Datastructure Layout

K
e
r
n
e
l

Handle

File Object
Filesystem File Context

FS Handle Context (2)

Section Object Pointers

Data Section (Mm)

Image Section (Mm)

Shared Cache Map (Cc)

Private Cache Map (Cc)

File Object == Handle (U or K), not one per file
Section Object Pointers and FS File Context shared/stream

© Microsoft Corporation 2004 7

Datastructures
File Object

– FsContext – per physical stream context
– FsContext2 – per user handle stream context, not all

streams have handle context (metadata)
– SectionObjectPointers – the point of “single

instancing”
• DataSection – exists if the stream has had a mapped section

created (for use by Cc or user)
• SharedCacheMap – exists if the stream has been set up for

the cache manager
• ImageSection – exists for executables

– PrivateCacheMap – per handle Cc context
(readahead) that also serves as reference from this
file object to the shared cache map

© Microsoft Corporation 2004 8

Cache View Management
A Shared Cache Map has an array of View Access

Control Block (VACB) pointers which record the
base cache address of each view
– promoted to a sparse form for files > 32MB

Access interfaces map File+FileOffset to a cache
address

Taking a view miss results in a new mapping, possibly
unmapping an unreferenced view in another file
(views are recycled LRU)

Since a view is fixed size, mapping across a view is
impossible – Cc returns one address

Fixed size means no fragmentation …

© Microsoft Corporation 2004 9

View Mapping
File Offfset

0-256KB 256KB-512KB 512KB-768KB

c1000000 <NULL> cf0c0000

VACB Array

© Microsoft Corporation 2004 10

CacheManager Interface Summary

File objects start out unadorned
CcInitializeCacheMap to initiate caching via Cc on a file

object
– setup the Shared/Private Cache Map & Mm if

neccesary
Access methods (Copy, Mdl, Mapping/Pinning)
Maintenance Functions
CcUninitializeCacheMap to terminate caching on a file

object
– teardown S/P Cache Maps
– Mm lives on. Its data section is the cache!

© Microsoft Corporation 2004 11

CacheManager / FS Diagram

Cache Manager

Memory Manager

Filesystem

Storage Drivers

Disk

Fast IO Read/Write IRP-based Read/Write

Page
Fault

Cache
Access,
Flush,
Purge

Noncached
IO

Cached IO

© Microsoft Corporation 2004 12

File System Notes

Three basic types of IO
– cached, non-cached, paging

Three file sizes
– file size, allocation size, valid data length

Three worker threads
– Mm’s modified page writer (paging file)
– Mm’s mapped page writer (mapped files)
– Cc’s lazy writer pool (flushes views)

© Microsoft Corporation 2004 13

Cache Manager Summary
Virtual block cache for files not logical block cache for disks
Memory manager is the ACTUAL cache manager
Cache Manager context integrated into FileObjects
Cache Manager manages views on files in kernel virtual

address space
I/O has special fast path for cached accesses
The Lazy Writer periodically flushes dirty data to disk
Filesystems need two interfaces to CC: map and pin

© Microsoft Corporation 2004 14

NTFS on-disk structure

Some NTFS system files
$Bitmap
$BadClus
$Boot
. (root directory)
$Logfile
$Volume
$Mft
$MftMirr
$Secure

© Microsoft Corporation 2004 15

$Mft File

Data is entirely File Records
File Records are fixed size
Every file on volume has a File Record
File records are recycled
Reserved area for system files
Critical file records mirrored in $MftMirr

© Microsoft Corporation 2004 16

File Records

‘Base’ file record for each file
Header followed by ‘Attributes’
Additional file records as needed
Update Sequence Array
ID by offset and sequence number

© Microsoft Corporation 2004 17

File D:¥Letters (File ID 0x200)

A B C D E F G H I J K L M N O P Q R S T U V

File ¥$Mft

100
200

200
0

280
200

P Q R S TA B C D E F G H IJ K L M N O U V

Physical Disk

P Q R S T G H I
© Microsoft Corporation 2004 18

L M U V A B C D E F J K N O

File Basics
Timestamps
File attributes (DOS + NTFS)
Filename (+ hard links)
Data streams
ACL
Indexes

File Building Blocks
File Records
Ntfs Attributes
Allocated clusters

© Microsoft Corporation 2004 19

File Record Header

USA Header
Sequence Number
First Attribute Offset
First Free Byte and Size
Base File Record
IN_USE bit

© Microsoft Corporation 2004 20

NTFS Attributes

Type code and optional name
Resident or non-resident
Header followed by value
Sorted within file record
Common code for operations

© Microsoft Corporation 2004 21

MFT File Record

$STANDARD_INFORMATION
(Time Stamps, DOS Attributes)

$FILE_NAME - VeryLongFileName.Txt

$FILE_NAME - VERYLO~1.TXT

$DATA (Default Data Stream)

$DATA - “VeryLongFileName.Txt:A named stream”

© Microsoft Corporation 2004 22$END (Available for attribute growth or new attribute)

Attribute Header

Length
Form
Name and name length
Flags (Compressed, Encrypted, Sparse)

© Microsoft Corporation 2004 23

Resident Attributes

Data follows attribute header
‘Allocation Size’ on 8-byte boundary
May grow or shrink
Convert to non-resident

© Microsoft Corporation 2004 24

Non-Resident Attributes

Data stored in allocated disk clusters
May describe sub-range of stream
Sizes and stream properties
Mapping pairs for on-disk runs

© Microsoft Corporation 2004 25

Some Attribute Types
$STANDARD_INFORMATION
$FILE_NAME
$SECURITY_DESCRIPTOR
$DATA
$INDEX_ROOT
$INDEX_ALLOCATION
$BITMAP
$EA

© Microsoft Corporation 2004 26

Mapping Pairs

Stored in a byte optimal format
Represents allocation and holes
Each pair is relative to prior run
Used to represent compression/sparse

© Microsoft Corporation 2004 27

Indexes

File name and view indexes
Indexes are B-trees
Entries stored at each level
Intermediate nodes have down pointers
$INDEX_ROOT
$INDEX_ALLOCATION
$BITMAP

© Microsoft Corporation 2004 28

Index Implementation

Top level - $INDEX_ROOT
Index buckets - $INDEX_ALLOCATION
Available buckets - $BITMAP

© Microsoft Corporation 2004 29

$INDEX_ROOT

E J endR

A B C G I N P Q Z

$INDEX_ALLOCATION

A B CG I N P QZunused data

© Microsoft Corporation 2004 30
0x36 (00110110)

$BITMAP

$ATTRIBUTE_LIST

Needed for multi-file record file
Entry for each attribute in file
Resident or non-resident form
Must be in base file record

© Microsoft Corporation 2004 31

Attribute List (example)

• Base Record -
0x200

• 0x10 - Standard
• 0x20 - Attribute List
• 0x30 - FileName
• 0x80 - Default Data
• 0x80 - Data1 “Owner”

• Aux Record -
0x180

• 0x30 - FileName
• 0x80 - Data “Author”
• 0x80 - Data0 “Owner”
• 0x80 - Data “Writer”

© Microsoft Corporation 2004 32

Attribute List (example cont.)

© Microsoft Corporation 2004 33

Code FR VCN Name (Not Present)
0x10 0x200 $Standard
0x30 0x200 $Filename
0x30 0x180 $Filename
0x80 0x200 0 $Data
0x80 0x180 0 “Author” $Data
0x80 0x180 0 “Owner” $Data
0x80 0x200 40 “Owner” $Data
0x80 0x180 “Writer” $Data

Discussion

© Microsoft Corporation 2004 34

	Windows Kernel Internals IIAdvanced File Systems University of Tokyo – July 2004
	Disk Basics
	Storage Management
	File System Device Stack
	NTFS Deals with files
	CacheManager overview
	Datastructure Layout
	Datastructures
	Cache View Management
	View Mapping
	CacheManager Interface Summary
	CacheManager / FS Diagram
	File System Notes
	Cache Manager Summary
	NTFS on-disk structure
	$Mft File
	File Records
	File Basics
	File Record Header
	NTFS Attributes
	Attribute Header
	Resident Attributes
	Non-Resident Attributes
	Some Attribute Types
	Mapping Pairs
	Indexes
	Index Implementation
	$ATTRIBUTE_LIST
	Attribute List (example)
	Attribute List (example cont.)
	Discussion

