
Windows Kernel Internals
I/O Architecture

*David B. Probert, Ph.D.
Windows Kernel Development

Microsoft Corporation

© Microsoft Corporation 1

Windows I/O Model
Asychronous, Packet-based, Extensible
Device discovery supports plug-and-play

— volumes automatically detected and mounted
— power management support (ACPI)

Drivers attach to per device driver stacks
— Drivers can filter actions of other drivers in each stack

Integrated kernel support
— memory Manager provides DMA support
— HAL provides device access, PnP manages device resources
— Cache manager provides file-level caching via MM file-mapping

Multiple I/O completion mechanisms:
—synchronous
—update user-mode memory status
—signal events
—callbacks within initiating thread
—reaped by threads waiting on an I/O Completion Port

© Microsoft Corporation 2

IO Architecture Goals

• Provide consistent I/O abstraction to
applications.

• Provide a framework to do the following.
– Dynamic loading/unloading of drivers.
– Driver layering.
– Asynchronous I/O.
– Uniform enforcement of security.

© Microsoft Corporation 3

IO Manager Objects

• Driver objects represent loaded drivers.
• Drivers create device objects to represent

devices.
• All IO requests are made to device objects.
• File objects represent open instances of

device objects.

© Microsoft Corporation 4

Layering Drivers

• Device objects can be attached one on top
of another using IoAttachDevice* APIs to
create device stacks.

• IO manager sends IRP to top of the stack.

• Drivers store next lower device object in
their private data structure.

• Stack tear down done using
IoDetachDevice and IoDeleteDevice.

© Microsoft Corporation 5

Object Relationships
Driver Object

Device
Object

Device
Object

Device
Object

Device
Object

Device
Object

File ObjectDriver Object

File Object

© Microsoft Corporation 6

Loading Device Drivers
• Drivers can be loaded by,

– The boot loader at boot time.
– The IO manager at system initialization.
– The service control manager or PNP.

• Driver details are obtained from the registry.
• Driver object is created and DriverEntry for the

driver is invoked.
• Drivers provide dispatch routines for various IO

operations. (E.G., Create, read, write).
• Drivers can optionally provide fast path entry

points.

© Microsoft Corporation 7

Device Deletion and Driver Unload

• Drivers delete devices using IoDeleteDevice.
• Drivers are unloaded by calling NtUnloadDriver

or by PNP.
• No further opens/attaches allowed after a device

is marked for deletion or unload.
• Driver unload function is invoked when all its

device objects have no handles/attaches.
• Driver is unloaded when last reference to driver

object goes away.

© Microsoft Corporation 8

IO Request Packet (IRP)
• IO operations encapsulated in IRPs.
• IO requests travel down a driver stack in an IRP.
• Each driver gets a stack location which contains

parameters for that IO request.
• IRP has major and minor codes to describe IO

operations.
• Major codes include create, read, write, PNP,

devioctl, cleanup and close.
• Irps are associated with a thread that made the

IO request.

© Microsoft Corporation 9

Path of an Async IO request

© Microsoft Corporation 10

File
object

Devobj1

Devobj2

Security and
access validation

Allocate IRP

Devobj1
Dispatch routine

Devobj2
Dispatch routine Interrupt service

routine

DPC routine

IoCompleteRequest

User APCs
Completion ports

NtReadFile(Handle,
…..)

Handle
IO Special APC

Async IO (contd.)
• Applications can issue asynchronous IO requests to files

opened with FILE_FLAG_OVERLAPPED and passing
an LPOVERLAPPED parameter to the IO API (e.g.,
ReadFile(…))

• Methods available to wait for IO completion,
– Wait on the file handle
– Wait on an event handle passed in the overlapped

structure (e.g., GetOverlappedResult(…))
– Specify a routine to be called on IO completion.
– Use completion ports.

© Microsoft Corporation 11

Security and Access checks

© Microsoft Corporation 12

• Detailed security and access check is done at
the time of opening the file. Allowed access
rights are store in the object manager and
validated when an operation is performed on
the handle.

• If filename exactly matches a device object
then the IO manager performs the security
check or if the driver sets the
FILE_DEVICE_SECURE_OPEN in the
device object.

• Otherwise the security check should be done
by the driver.

Canceling IRPs
• IO manager provides a mechanism to cancel

IRPs queued for a long time. Canceling is done
on a per IRP basis.

• IO is canceled when a thread exits or when
CancelIo is called on the thread.

• Drivers can cancel IRPs using IoCancelIrp().
• Drivers which queue IRPs that can wait a long

time should set a cancel routine.
• Driver clears cancel routine before completing

IRP.

© Microsoft Corporation 13

NT IO APIs
Establish IO handles
• NtCreateFile
• NtOpenFile
• NtCreateNamedPipeFile
• NtCreateMailslotFile
IO Completion APIs
• NtCreateIoCompletion
• NtOpenIoCompletion
• NtQueryIoCompletion
• NtSetIoCompletion
• NtRemoveIoCompletion

Actual IO operations
• NtReadFile
• NtReadFileScatter
• NtWriteFile
• NtWriteFileGather
• NtCancelIoFile
• NtFlushBuffersFile
File operations
• NtLockFile
• NtUnlockFile
• NtDeleteFile

© Microsoft Corporation 14

NT IO APIs
Meta IO operations
• NtFsControlFile
• NtDeviceIoControlFile
• NtQueryDirectoryFile
• NtQueryAttributesFile
• NtQueryFullAttributesFile
• NtQueryEaFile
• NtSetEaFile
• NtQueryInformationFile
• NtSetInformationFile
• NtNotifyChangeDirectoryFile

Administrative operations
• NtLoadDriver
• NtUnloadDriver
• NtQueryVolumeInformationFile
• NtSetVolumeInformationFile
• NtQueryQuotaInformationFile
• NtSetQuotaInformationFile

© Microsoft Corporation 15

Debugging I/O Problems

© Microsoft Corporation 16

IO Architecture Overview
• IO APIs come from many components

– Classic IO manager
– Plug and play manager
– Power manager
– Dump and Partition APIs

• Why is the IO model complex ?
– Large number of devices to be supported
– PnP and Power mgmt state machines
– Lots of miniport APIs (storage, NDIS, TDI, Audio,

USB, 1394)

© Microsoft Corporation 17

IO Manager Objects

• Driver objects represent loaded drivers.
• Drivers create device objects to represent

devices.
• All IO requests are made to device objects.

– Device objects have names
– Device interface symbolic links to PDOs

• File objects represent open instances of
device objects.

© Microsoft Corporation 18

IO verifier
• IO verifier started off by thunking driver calls

to IO APIs (IO Verifier level 1)
– Allocates IRP from special pool
– Validates parameters to IO APIs
– No performance hit
– Path changes are local to the driver
– Support added to unload all drivers at shutdown
– Memory leaks caught when driver image is

unloaded

© Microsoft Corporation 19

IO verifier (contd.)

• IO verifier level 2
– Leverages IRP tracking code that was in checked

build.
– Allocates memory for each IRP and keeps track of its

path and validates the parameters.
– Catches lots of inconsistencies in the stack
– Perf impact in terms of memory usage and long paths
– Global to the system. Tests all drivers and reports

results for driver to be verified.

© Microsoft Corporation 20

Common driver problems that
crash in IO

• IOCTL system buffer already freed or
overrun

• Events in IRP are allocated from stacks
that have unwound. Kernel stacks pagable.

• Cancellation races
• Multiple IRP complete requests
• Driver left locked pages
• Hangs

© Microsoft Corporation 21

Driver loading issues

• Two drivers cannot be loaded from the
same image

• A driver which is also a DLL
(EXPORT_DRIVER) should be loaded as
a driver first

• If a component is loaded as a DLL
DllInitialize and DllUnload routines are
invoked

© Microsoft Corporation 22

Driver unloading issues
• Driver unload routine cannot fail
• Driver image can still remain after invocation of

unload routine
• Driver unload routine can race with other driver

routines
• Legacy drivers should properly detach and

delete device objects.
• Verifier checks for uncanceled timers and worker

threads after unload

© Microsoft Corporation 23

Miscellaneous Crashes
• Multiple IRP completes.

– Cancellation issue.
– Pending flag not set correctly. If a driver returns

STATUS_PENDING it should mark the IRP pending.
• System buffer already freed.
• MDL already freed.
• STATUS_MORE_PROCESSING_REQUIRED should

be used carefully.
• Drivers should watch out for IRP and MDL ownership.
• Spinlocks held in pageable code (verifier catches this)

© Microsoft Corporation 24

Crashes (Contd.)
• DRIVER_LEFT_LOCKED_PAGES bug check.

– Caused by lack of cancel routine
– Driver locked the pages and forgot to unlock it in

completion routine
• Memory leaks of IO tags

– File object leaks (caused by process not closing
handles)

– Completion packet leaks (caused by user process not
reading completion queues)

– Lack of quota enforcement with pool tagging causes
this.

– MDL and IRP leaks (Use !irpfind)

© Microsoft Corporation 25

Crashes (contd.)
• INACCESSIBLE_BOOT_DEVICE bug

check
– Status code is a bug check parameter that

helps narrow it to a file system or storage
problem

• KERNEL_DATA_INPAGE_ERROR bug
check
– Status code in bug check parameter helps

determine the problem

© Microsoft Corporation 26

Hangs

• Critical section timeouts. Process stuck in
kernel inside IO manager.
– !thread shows IRP and identifies driver.
– NPFS IRPs are usually hung because the

consumer is another process (Services hung
on another user process RPC).

– Not marking Pending flag causes hangs
(verifier catches this)

– Recursive locking (fs filter problems)

© Microsoft Corporation 27

Hangs (contd.)

• APC deadlocks. IO system uses APCs to
complete IRPs and will deadlock if IO is
issued at IRQL >= APC_LEVEL

• KeStackAttachProcess can also cause
deadlocks as it blocks APCs.

• DMA API hangs on PAE systems. Caused
by map registers allocated and not freed.

© Microsoft Corporation 28

Canceling IRPs
• IO manager provides a mechanism to cancel

IRPs queued for a long time. Canceling is done
on a per IRP basis.

• IO is canceled when a thread exits or when
CancelIo is called on the thread. IO manager
waits for 5 minutes for IRP to get canceled.

• Drivers can cancel IRPs using IoCancelIrp().
• Drivers which queue IRPs for a long time (> 1

second) should set a cancel routine in the IRP.
• Driver clears cancel routine before completing

IRP.
© Microsoft Corporation 29

Debugging notes

• !thread lists IRPs pending for thread
• !drvobj <ptr> prints out driver object
• !devobj <ptr> prints out device object
• !object ¥??¥ prints out interesting symbolic

links
• dt FILE_OBJECT <ptr> dumps fileobjects

© Microsoft Corporation 30

Discussion

© Microsoft Corporation 31

	Windows Kernel InternalsI/O Architecture
	Windows I/O Model
	IO Architecture Goals
	IO Manager Objects
	Layering Drivers
	Object Relationships
	Loading Device Drivers
	Device Deletion and Driver Unload
	IO Request Packet (IRP)
	Path of an Async IO request
	Async IO (contd.)
	Security and Access checks
	Canceling IRPs
	NT IO APIs
	NT IO APIs
	Debugging I/O Problems
	IO Architecture Overview
	IO Manager Objects
	IO verifier
	IO verifier (contd.)
	Common driver problems that crash in IO
	Driver loading issues
	Driver unloading issues
	Miscellaneous Crashes
	Crashes (Contd.)
	Crashes (contd.)
	Hangs
	Hangs (contd.)
	Canceling IRPs
	Debugging notes
	Discussion

