
Windows Kernel Internals
Thread Scheduling
*David B. Probert, Ph.D.

Windows Kernel Development
Microsoft Corporation

© Microsoft Corporation 1

Process/Thread structure

Object
Manager

Any Handle
Table

Process
Object

Process’
Handle Table

Virtual
Address

Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

© Microsoft Corporation 2

Process
Container for an address space and threads
Associated User-mode Process Environment Block (PEB)
Primary Access Token
Quota, Debug port, Handle Table etc
Unique process ID
Queued to the Job, global process list and Session list
MM structures like the WorkingSet, VAD tree, AWE etc

© Microsoft Corporation 3

Thread
Fundamental schedulable entity in the system
Represented by ETHREAD that includes a KTHREAD
Queued to the process (both E and K thread)
IRP list
Impersonation Access Token
Unique thread ID
Associated User-mode Thread Environment Block (TEB)
User-mode stack
Kernel-mode stack
Processor Control Block (in KTHREAD) for cpu state when

not running

© Microsoft Corporation 4

CPU Control-flow
Thread scheduling occurs at PASSIVE or APC level

(IRQL < 2)
APCs (Asynchronous Procedure Calls) deliver I/O

completions, thread/process termination, etc (IRQL == 1)
Not a general mechanism like unix signals (user-mode code must

explicitly block pending APC delivery)
Interrupt Service Routines run at IRL > 2
ISRs defer most processing to run at IRQL==2 (DISPATCH

level) by queuing a DPC to their current processor
A pool of worker threads available for kernel components to

run in a normal thread context when user-mode thread is
unavailable or inappropriate

Normal thread scheduling is round-robin among priority
levels, with priority adjustments (except for fixed priority
real-time threads)

© Microsoft Corporation 5

Asynchronous Procedure Calls
APCs execute routine in thread context

not as general as UNIX signals
user-mode APCs run when blocked & alertable
kernel-mode APCs used extensively: timers,

notifications, swapping stacks, debugging, set
thread ctx, I/O completion, error reporting,
creating & destroying processes & threads, …

APCs generally blocked in critical sections
e.g. don’t want thread to exit holding resources

© Microsoft Corporation 6

Deferred Procedure Calls

© Microsoft Corporation 7

DPCs run a routine on a particular processor
DPCs are higher priority than threads
common usage is deferred interrupt processing
ISR queues DPC to do bulk of work

• long DPCs harm perf, by blocking threads
• Drivers must be careful to flush DPCs before unloading

also used by scheduler & timers (e.g. at quantum end)
kernel-mode APCs used extensively: timers,

notifications, swapping stacks, debugging, set thread
ctx, I/O completion, error reporting, creating &
destroying processes & threads, …

High-priority routines use IPI (inter-processor intr)
used by MM to flush TLB in other processors

System Threads
System threads have no user-mode context

Run in ‘system’ context, use system handle table
System thread examples

Dedicated threads
Lazy writer, modified page writer, balance set manager,

mapped pager writer, other housekeeping functions

General worker threads
Used to move work out of context of user thread
Must be freed before drivers unload
Sometimes used to avoid kernel stack overflows

Driver worker threads
Extends pool of worker threads for heavy hitters, like file server

© Microsoft Corporation 8

Scheduling
Windows schedules threads, not processes

Scheduling is preemptive, priority-based, and round-robin at the
highest-priority

16 real-time priorities above 16 normal priorities
Scheduler tries to keep a thread on its ideal processor/node to

avoid perf degradation of cache/NUMA-memory
Threads can specify affinity mask to run only on certain processors

Each thread has a current & base priority
Base priority initialized from process
Non-realtime threads have priority boost/decay from base
Boosts for GUI foreground, waking for event
Priority decays, particularly if thread is CPU bound (running at

quantum end)
Scheduler is state-driven by timer, setting thread priority,

thread block/exit, etc
Priority inversions can lead to starvation

balance manager periodically boosts non-running runnable threads
© Microsoft Corporation 9

© Microsoft Corporation 10

Thread
scheduling

states

Thread scheduling states

© Microsoft Corporation 11

• Main quasi-states:
– Ready – able to run
– Running – current thread on a processor
– Waiting – waiting an event

• For scalability Ready is three real states:
– DeferredReady – queued on any processor
– Standby – will be imminently start Running
– Ready – queue on target processor by priority

• Goal is granular locking of thread priority
queues

• Red states related to swapped stacks and
processes

KPRCB Fields
Per-processor ready summary and ready queues
• WaitListHead[F/B]
• ReadySummary
• SelectNextLast
• DispatcherReadyListHeads[F/B][MAXIMUM_PRIORITY]
• pDeferredReadyListHead
Processor information
• VendorString[], InitialApicId, Hyperthreading, MHz,

FeatureBits, CpuType, CpuID, CpuStep
• ProcessorNumber, Affinity SetMember
• ProcessorState, PowerState

© Microsoft Corporation 12

KPRCB Fields - cont.
Miscellaneous counters
• InterruptCount, KernelTime, UserTime, DpcTime,

DebugDpcTime, InterruptTime, Cc*Read*,
KeExceptionDispatchCount, KeFloatingEmulationCount,
KeSecondLevelTbFills, KeSystemCalls, ...

Per-processor pool lists and QueueLocks
• PP*LookasideList[], LockQueue[]
IPI and DPC related fields
• CurrentPacket, TargetSet, IPIWorkerRoutine,

RequestSummary, SignalDone, …
• DpcData[], pDpcStack, DpcRoutineActive,

ProcsGenericDPC, …

© Microsoft Corporation 13

KTHREAD
Scheduling-related fields

volatile UCHAR State;
volatile UCHAR DeferredProcessor;
SINGLE_LIST_ENTRY SwapListEntry;
LIST_ENTRY WaitListEntry;
SCHAR Priority;
BOOLEAN Preempted;
ULONG WaitTime;
volatile UCHAR SwapBusy;
KSPIN_LOCK ThreadLock;

APC-related fields
KAPC_STATE ApcState;
PKAPC_STATE ApcStatePointer[2];
KAPC_STATE SavedApcState;
KSPIN_LOCK ApcQueueLock;

© Microsoft Corporation 14

© Microsoft Corporation 15

Thread
scheduling

states
(yet again)

enum _KTHREAD_STATE
Ready Queued on Prcb-

>DispatcherReadyListHead
Running Pointed at by Prcb->CurrentThread

Standby Pointed at by Prcb->NextThread

Terminated
Waiting Queued on WaitList->WaitBlock

Transition Queued on KiStackInSwapList

Deferred
Ready

Pointed at by Prcb-
>DeferredReadyListHead

Initialized
© Microsoft Corporation 16

Where states are set

Ready Thread wakes up

Running KeInitThread, KiIdleSchedule,
KiSwapThread, KiExitDispatcher,
NtYieldExecution

Standby The thread selected to run next

Terminated Set by KeTerminateThread()

Waiting
Transition Awaiting inswap by KiReadyThread()

Deferred…
Initialized Set by KeInitThread()

© Microsoft Corporation 17

Idle processor preferences
(a) Select the thread's ideal processor – if idle, otherwise
consider the set of all processors in the thread’s hard

affinity set
(b) If the thread has a preferred affinity set with an idle

processor, consider only those processors
(c) If hyperthreaded and any physical processors in the set

are completely idle, consider only those processors
(d) if this thread last ran on a member of this remaining set,

select that processor, otherwise,
(e) if there are processors amongst the remainder which

are not sleeping, reduce to that subset.
(f) select the leftmost processor from this set.

© Microsoft Corporation 18

KiInsertDeferredReadyList ()
Prcb = KeGetCurrentPrcb();
Thread->State = DeferredReady;
Thread->DeferredProcessor = Prcb->Number;
PushEntryList(&Prcb->DeferredReadyListHead, &Thread-

>SwapListEntry);

© Microsoft Corporation 19

KiDeferredReadyThread()
// assign to idle processor or preempt a lower-pri thread
if boost requested, adjust pri under threadlock
if there are idle processors, pick processor

acquire PRCB locks for us and target processor
set thread as Standby on target processor
request dispatch interrupt of target processor
release both PRCB locks
return

© Microsoft Corporation 20

KiDeferredReadyThread() - cont

© Microsoft Corporation 21

target is the ideal processor
acquire PRCB locks for us and target
if (victim = target->NextThread)

if (thread->Priority <= victim->Priority)
insert thread on Ready list of target processor
release both PRCB locks and return
victim->Preempted = TRUE

set thread as Standby on target processor
set victim as DeferredReady on our processor
release both PRCB locks
target will pickup thread instead of victim
return

KiDeferredReadyThread() – cont2

victim = target->CurrentThread
acquire PRCB locks for us and target
if (thread->Priority <= victim->Priority)

insert thread on Ready list of target processor
release both PRCB locks and return

victim->Preempted = TRUE
set thread as Standby on target processor
release both PRCB locks
request dispatch interrupt of target processor
return

© Microsoft Corporation 22

KiInSwapProcesses()

// Called from only:
KeSwapProcessOrStack [System Thread]

For every process in swap-in list
Sets ProcessInSwap
Calls MmInSwapProcess
Sets ProcessInMemory

© Microsoft Corporation 23

KiQuantumEnd()
// Called at dispatch level
Raise to SYNCH level, acquire ThreadLock, PRCB Lock
if thread->Quantum <= 0

thread->Quantum = Process->ThreadQuantum
pri = thread->Priority = KiComputeNewPriority(thread)
if (Prcb->NextThread == NULL)

newThread = KiSelectReadyThread (pri, Prcb)
if (newThread)

newThread->State = Standby
Prcb->NextThread = newThread

else thread->Preempted = FALSE
© Microsoft Corporation 24

KiQuantumEnd() – cont.
release the ThreadLock
if (! Prcb->NextThread) release PrcbLock, return
thread->SwapBusy = TRUE
newThread = Prcb->NextThread
Prcb->NextThread = NULL
Prcb->CurrentThread = newThread
newThread->State = Running
thread->WaitReason = WrQuantumEnd
KxQueueReadyThread(thread, Prcb)
thread->WaitIrql = APC_LEVEL
KiSwapContext(thread, newThread)

© Microsoft Corporation 25

KxQueueReadyThread(Thread, Prcb)
if ((Thread->Affinity & Prcb->SetMember) != 0)

Thread->State = Ready
pri = Thread->Priority
Preempted = Thread->Preempted;
Thread->Preempted = 0
Thread->WaitTime = KiQueryLowTickCount()
insertfcn = Preempted? InsertHeadList : InsertTailList
Insertfcn(&Prcb->ReadyList [PRI],

&Thread->WaitListEntry)
Prcb->ReadySummary |= PRIORITY_MASK(PRI)
KiReleasePrcbLock(Prcb)

© Microsoft Corporation 26

KxQueueReadyThread … cont.
else

Thread->State = DeferredReady
Thread->DeferredProcessor = Prcb->Number
KiReleasePrcbLock(Prcb)
KiDeferredReadyThread(Thread)

© Microsoft Corporation 27

KiExitDispatcher(oldIrql)
// Called at SYNCH_LEVEL
Prcb = KeGetCurrentPrcb()
if (Prcb->DeferredReadyListHead.Next)

KiProcessDeferredReadyList(Prcb)
if (oldIrql >= DISPATCH_LEVEL)

if (Prcb->NextThread && !Prcb->DpcRoutineActive)
KiRequestSoftwareInterrupt(DISPATCH_LEVEL)

KeLowerIrql(oldIrql)
return

// oldIrql < DISPATCH_LEVEL
KiAcquirePrcbLock(Prcb)

© Microsoft Corporation 28

KiExitDispatcher(oldIrql) – cont.
NewThread = Prcb->NextThread
CurrentThread = Prcb->CurrentThread
thread->SwapBusy = TRUE
Prcb->NextThread = NULL
Prcb->CurrentThread = NewThread
NewThread->State = Running
KxQueueReadyThread(CurrentThread, Prcb)
CurrentThread->WaitIrql = OldIrql
Pending = KiSwapContext(CurrentThread, NewThread)
if (Pending != FALSE)

KeLowerIrql(APC_LEVEL);
KiDeliverApc(KernelMode, NULL, NULL);

© Microsoft Corporation 29

Kernel Thread Attach

Allows a thread in the kernel to temporarily move
to a different process’ address space

• Used heavily in VM system
• Used by object manager for kernel handles
• PspProcessDelete attaches before calling

ObKillProcess() so close/delete in process
context

• Used to query a process’ VM counters

© Microsoft Corporation 30

KiAttachProcess (Thread, Process,
APCLock, SavedApcState)

Process->StackCount++
KiMoveApcState(&Thread->ApcState, SavedApcState)
Re-initialize Thread->ApcState
if (SavedApcState == &Thread->SavedApcState)

Thread->ApcStatePointer[0] = &Thread->SavedApcState
Thread->ApcStatePointer[1] = &Thread->ApcState
Thread->ApcStateIndex = 1

// assume ProcessInMemory case and empty ReadyList
Thread->ApcState.Process = Process
KiUnlockDispatcherDatabaseFromSynchLevel()
KeReleaseInStackQueuedSpinLockFromDpcLevel(APCLock)
KiSwapProcess(Process, SavedApcState->Process)
KiExitDispatcher(LockHandle->OldIrql)

© Microsoft Corporation 31

Asynchronous Procedure Calls

© Microsoft Corporation 32

APCs execute code in context of a particular thread
APCs run only at PASSIVE or APC LEVEL (0 or 1)
Three kinds of APCs

User-mode: deliver notifications, such as I/O done
Kernel-mode: perform O/S work in context of a

process/thread, such as completing IRPs
Special kernel-mode: used for process termination

Multiple ‘environments’:
Original: The normal process for the thread (ApcState[0])
Attached: The thread as attached (ApcState[1])
Current: The ApcState[] as specified by the thread
Insert: The ApcState[] as specified by the KAPC block

KAPC

© Microsoft Corporation 33

KeInitializeApc()
// assume CurrentApcEnvironment case
Apc->ApcStateIndex = Thread->ApcStateIndex
Apc->Thread = Thread;
Apc->KernelRoutine = KernelRoutine
Apc->RundownRoutine = RundownRoutine // optional
Apc->NormalRoutine = NormalRoutine // optional
if NormalRoutine

Apc->ApcMode = ApcMode // user or kernel
Apc->NormalContext = NormalContext

else // Special kernel APC
Apc->ApcMode = KernelMode
Apc->NormalContext = NIL

Apc->Inserted = FALSE

© Microsoft Corporation 34

KiInsertQueueApc()

© Microsoft Corporation 35

Insert the APC object in the APC queue for specified mode
• Special APCs (! Normal) – insert after other specials
• User APC && KernelRoutine is PsExitSpecialApc() – set

UserAPCPending and insert at front of queue
• Other APCs – insert at back of queue
For kernel-mode APC

if thread is Running: KiRequestApcInterrupt(processor)
if Waiting at PASSIVE &&
(special APC && !Thread->SpecialAPCDisable ||
kernel APC && !Thread->KernelAPCDisable) call

KiUnwaitThread(thread)
If user-mode APC && threads in alertable user-mode wait

set UserAPCPending and call KiUnwaitThread(thread)

KiDeliverApc()
Called at APC level from the APC interrupt code
and at system exit (when either APC pending flag is set)

All special kernel APC's are delivered first
Then normal kernel APC's (unless one in progress)

Finally
if the user APC queue is not empty
&& Thread->UserAPCPending is set
&& previous mode is user

Then a user APC is delivered

© Microsoft Corporation 36

Scheduling Summary

Scheduler lock broken up per-processor
Achieves high-scalability for otherwise hot lock

Scheduling is preemptive by higher priority
threads, but otherwise round-robin

Boosting is used for non-realtime threads
Threads are swapped out by balance set

manager to reclaim memory (stack)
Balance Set Manager manages residence,

drives workingset trims, and fixes deadlocks

© Microsoft Corporation 37

Discussion

© Microsoft Corporation 38

	Windows Kernel InternalsThread Scheduling
	Process/Thread structure
	Process
	Thread
	CPU Control-flow
	Asynchronous Procedure Calls
	Deferred Procedure Calls
	System Threads
	Scheduling
	Thread scheduling states
	Thread scheduling states
	KPRCB Fields
	KPRCB Fields - cont.
	KTHREAD
	Thread scheduling states(yet again)
	enum _KTHREAD_STATE
	Where states are set
	Idle processor preferences
	KiInsertDeferredReadyList ()
	KiDeferredReadyThread()
	KiDeferredReadyThread() - cont
	KiDeferredReadyThread() – cont2
	KiInSwapProcesses()
	KiQuantumEnd()
	KiQuantumEnd() – cont.
	KxQueueReadyThread(Thread, Prcb)
	KxQueueReadyThread … cont.
	KiExitDispatcher(oldIrql)
	KiExitDispatcher(oldIrql) – cont.
	Kernel Thread Attach
	KiAttachProcess (Thread, Process, APCLock, SavedApcState)
	Asynchronous Procedure Calls
	KAPC
	KeInitializeApc()
	KiInsertQueueApc()
	KiDeliverApc()
	Discussion

