
Windows Kernel Internals
Virtual Memory Manager

*David B. Probert, Ph.D.
Windows Kernel Development

Microsoft Corporation

© Microsoft Corporation 1

Virtual Memory Manager
Features

• Provides 4 GB flat virtual address space (IA32)
• Manages process address space
• Handles pagefaults
• Manages process working sets
• Manages physical memory
• Provides memory-mapped files
• Supports shared memory and copy-on-write
• Facilities for I/O subsystem and device drivers
• Supports file system cache manager

© Microsoft Corporation 2

Virtual Memory Manager
Features

• Provide session space for Win32 GUI
applications

• Address Windowing Extensions (physical
overlays)

• Address space cloning (posix/fork() support)
• Kernel-mode memory heap allocator (pool)

– Paged Pool, Non-paged pool, Special pool/verifier

© Microsoft Corporation 3

Virtual Memory Manager
Windows Server 2003 enhancements

• Support for Large (4MB) page mappings
• Improved TB performance, remove

ContextSwap lock
• On-demand proto-PTE allocation for mapped

files
• Other performance & scalability

improvements
• Support for IA64 and Amd64 processors

© Microsoft Corporation 4

Virtual Memory Manager
NT Internal APIs

© Microsoft Corporation 5

NtCreatePagingFile
NtAllocateVirtualMemory (Proc, Addr, Size, Type,

Prot)
Process: handle to a process
Protection: NOACCESS, EXECUTE, READONLY,

READWRITE, NOCACHE
Flags: COMMIT, RESERVE, PHYSICAL, TOP_DOWN,

RESET, LARGE_PAGES, WRITE_WATCH

NtFreeVirtualMemory(Process, Address, Size,
FreeType)
FreeType: DECOMMIT or RELEASE

NtQueryVirtualMemory
NtProtectVirtualMemory

Virtual Memory Manager
NT Internal APIs

Pagefault

NtLockVirtualMemory, NtUnlockVirtualMemory
– locks a region of pages within the working set list
– requires PROCESS_VM_OPERATION on target

process and SeLockMemoryPrivilege
NtReadVirtualMemory, NtWriteVirtualMemory (

Proc, Addr, Buffer, Size)
NtFlushVirtualMemory

© Microsoft Corporation 6

Virtual Memory Manager
NT Internal APIs

NtCreateSection
– creates a section but does not map it

NtOpenSection
– opens an existing section

NtQuerySection
– query attributes for section

NtExtendSection
NtMapViewOfSection (Sect, Proc, Addr, Size, …)
NtUnmapViewOfSection

© Microsoft Corporation 7

Virtual Memory Manager
NT Internal APIs

© Microsoft Corporation 8

APIs to support AWE (Address Windowing Extensions)
– Private memory only
– Map only in current process
– Requires LOCK_VM privilege

NtAllocateUserPhysicalPages (Proc, NPages, &PFNs[])
NtMapUserPhysicalPages (Addr, NPages, PFNs[])
NtMapUserPhysicalPagesScatter
NtFreeUserPhysicalPages (Proc, &NPages, PFNs[])

NtResetWriteWatch
NtGetWriteWatch

Read out dirty bits for a section of memory since last
reset

Allocating kernel memory (pool)
• Tightest x86 system resource is KVA

Kernel Virtual Address space
• Pool allocates in small chunks:

< 4KB: 8B granulariy
>= 4KB: page granularity

• Paged and Non-paged pool
Paged pool backed by pagefile

• Special pool used to find corruptors
• Lots of support for debugging/diagnosis

© Microsoft Corporation 9

8000000080000000

© Microsoft Corporation 10

System code, initial non-paged pool
Session space (win32k.sys)

Sysptes overflow, cache overflow
Page directory self-map and page tables

Hyperspace (e.g. working set list)

System cache
Paged pool

Reusable system VA (sysptes)
Non-paged pool expansion
Crash dump information

HAL usage

A0000000A0000000

A4000000A4000000

C0000000C0000000

x86C0400000C0400000

C0800000C0800000 Unused – no access
System working set list

C1000000C1000000

C0C00000C0C00000

E1000000E1000000

E8000000E8000000

FFBE0000FFBE0000

FFC00000FFC00000

Looking at a pool page
kd> !pool e1001050
e1001000 size: 40 prev size: 0 (Allocated) MmDT
e1001040 size: 10 prev size: 40 (Free) Mm

*e1001050 size: 10 prev size: 10 (Allocated) *ObDi
e1001060 size: 10 prev size: 10 (Allocated) ObDi
e1001070 size: 10 prev size: 10 (Allocated) Symt
e1001080 size: 40 prev size: 10 (Allocated) ObDm
e10010c0 size: 10 prev size: 40 (Allocated) ObDi

MmDT - nt!mm - Mm debug
Mm - nt!mm - general Mm Allocations
ObDi - nt!ob - object directory
Symt - <unknown> - Symbolic link target strings
ObDm - nt!ob - object device map

© Microsoft Corporation 11

Layout of pool headers
31 23 16 15 7 0
+--+
| Current Size | PoolType+1 | Pool Index |Previous Size |
+--+
| ProcessCharged (NULL if not allocated with quota) |
+--+
| Zero or more longwords of pad such that the pool header |
| is on a cache line boundary and the pool body is also |
| on a cache line boundary. |
+--+

PoolBody:
+--+
| Used by allocator, or when free FLINK into sized list |
+--+
| Used by allocator, or when free BLINK into sized list |
+--+
... rest of pool block...

Size fields of pool headers expressed in units of smallest pool block size.

© Microsoft Corporation 12

Managing memory for I/O
Memory Descriptor Lists (MDL)
• Describes pages in a buffer in terms of physical

pages
typedef struct _MDL {

struct _MDL *Next;
CSHORT Size;
CSHORT MdlFlags;
struct _EPROCESS *Process;
PVOID MappedSystemVa;
PVOID StartVa;
ULONG ByteCount;
ULONG ByteOffset;

} MDL, *PMDL;

© Microsoft Corporation 13

MDL flags
MDL_MAPPED_TO_SYSTEM_VA 0x0001
MDL_PAGES_LOCKED 0x0002
MDL_SOURCE_IS_NONPAGED_POOL 0x0004
MDL_ALLOCATED_FIXED_SIZE 0x0008
MDL_PARTIAL 0x0010
MDL_PARTIAL_HAS_BEEN_MAPPED 0x0020
MDL_IO_PAGE_READ 0x0040
MDL_WRITE_OPERATION 0x0080
MDL_PARENT_MAPPED_SYSTEM_VA 0x0100
MDL_FREE_EXTRA_PTES 0x0200
MDL_DESCRIBES_AWE 0x0400
MDL_IO_SPACE 0x0800
MDL_NETWORK_HEADER 0x1000
MDL_MAPPING_CAN_FAIL 0x2000
MDL_ALLOCATED_MUST_SUCCEED 0x4000

© Microsoft Corporation 14

8000000080000000

© Microsoft Corporation 15

System code, initial non-paged pool
Session space (win32k.sys)

Sysptes overflow, cache overflow
Page directory self-map and page tables

Hyperspace (e.g. working set list)

System cache
Paged pool

Reusable system VA (sysptes)
Non-paged pool expansion
Crash dump information

HAL usage

KVAA0000000A0000000

A4000000A4000000

C0000000C0000000

C0400000C0400000

C0800000C0800000 x86Unused – no access
System working set list

C1000000C1000000

C0C00000C0C00000

E1000000E1000000

E8000000E8000000

FFBE0000FFBE0000

FFC00000FFC00000

Sysptes
Used to manage random use of kernel

virtual memory, e.g. by device drivers.
Kernel implements functions like:
• MiReserveSystemPtes (n, type)
• MiMapLockedPagesInUserSpace

(mdl, virtaddr, cachetype,basevirtaddr)

Often a critical resource!

© Microsoft Corporation 16

Process/Thread structure

Object
Manager

Any Handle
Table

Process
Object

Process’
Handle Table

Virtual
Address

Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

© Microsoft Corporation 17

Process
Container for an address space and threads
Associated User-mode Process Environment Block (PEB)
Primary Access Token
Quota, Debug port, Handle Table etc
Unique process ID
Queued to the Job, global process list and Session list
MM structures like the WorkingSet, VAD tree, AWE etc

© Microsoft Corporation 18

Thread
Fundamental schedulable entity in the system
Represented by ETHREAD that includes a KTHREAD
Queued to the process (both E and K thread)
IRP list
Impersonation Access Token
Unique thread ID
Associated User-mode Thread Environment Block (TEB)
User-mode stack
Kernel-mode stack
Processor Control Block (in KTHREAD) for cpu state when

not running

© Microsoft Corporation 19

Virtual Address Translation

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD PT page DATADATA

1024
PDEs

1024
PTEs

4096
bytes

© Microsoft Corporation 20

Windows Virtual Memory Model

© Microsoft Corporation 21

User-mode (2GB or 3GB with boot option)
• Code/data from executables (e.g. .exe, .dll)
• Thread/process environment blocks (TEB/PEB)
• User-mode stacks, heaps
Kernel-mode (2GB or 1GB)
• Kernel, hal, drivers
• Kernel-mode stacks, heap (i.e. pool), pagetables
• File-cache (cache and pool small if 1GB)
• Terminal-server session space (for Win32k)
• Kernel data structures and objects

Physical Memory Model (IA32)
Limit is 4GB (or 64GB w/ PAE support)
• PAE support requires 64-bit PTE entries

– Separate kernel needed as all MM data recompiled

• Thread/process environment blocks (TEB/PEB)
• User-mode stacks, heaps
Large server applications can use AWE
• Address Window Extension
• Processes allocate contiguous physical memory
• Memory Manager allows map/unmap via AWE APIs
Large (4MB) pages supported for TLB efficiency
64b Windows makes virtual/physical limits moot

© Microsoft Corporation 22

8000000080000000

© Microsoft Corporation 23

System code, initial non-paged pool
Session space (win32k.sys)

Sysptes overflow, cache overflow
Page directory self-map and page tables

Hyperspace (e.g. working set list)

System cache
Paged pool

Reusable system VA (sysptes)
Non-paged pool expansion
Crash dump information

HAL usage

KVAA0000000A0000000

A4000000A4000000

C0000000C0000000

C0400000C0400000

C0800000C0800000 Unused – no access
System working set list

C1000000C1000000

C0C00000C0C00000 x86
E1000000E1000000

E8000000E8000000

FFBE0000FFBE0000

FFC00000FFC00000

Self-mapping page tables
Normal Virtual Address Translation

© Microsoft Corporation 24
0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD PT page DATADATA

1024
PDEs

1024
PTEs

4096
bytes

Self-mapping page tables
Virtual Access to PageDirectory[0x300]

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 0000 0000 1100 0000 0000

CR3

PD

© Microsoft Corporation 25

PTEPTE

Phys: PD[0xc0300000>>22] = PD

Virt: *((0xc0300c00) == PD

0x300

Self-mapping page tables
Virtual Access to PTE for va 0xe4321000

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 1001 0000 1100 1000 0100

CR3

PD PT

© Microsoft Corporation 26

0x300

GetPteAddress:
0xe4321000
=> 0xc0390c84

0x321

PTEPTE0x390

Self-mapping page tables
• Page Table Entries (PTEs) and Page Directory Entries

(PDEs) contain Physical Frame Numbers (PFNs)
– But Kernel runs with Virtual Addresses

• To access PDE/PTE from kernel use the self-
map for the current process:
PageDirectory[0x300] uses PageDirectory as

PageTable
– GetPdeAddress(va): 0xc0300000[va>>20]

– GetPteAddress(va): 0xc0000000[va>>10]

• PDE/PTE formats are compatible!
• Access another process VA via thread ‘attach’

© Microsoft Corporation 27

Valid x86 Hardware PTEs
Reserved
Global
Dirty
Accessed
Cache disabled
Write through
Owner
Write

Pageframe 1R R R G WtR D A Cd O W
05 4 17 239 631 12 11 10 8

© Microsoft Corporation 28

x86 Invalid PTEs

© Microsoft Corporation 29

Page file
Page file offset Protection PFN 0

31 12 11 10 9 5 4 1 0

0

Transition
Prototype

Transition
Page file offset Protection HW ctrl 0

31 12 11 10 9 5 4 1 0

1

Transition
Prototype

Cache disable
Write through

Owner
Write

x86 Invalid PTEs

Demand zero: Page file PTE with zero offset and
PFN

Unknown: PTE is completely zero or Page Table
doesn’t exist yet. Examine VADs.

Pointer to Prototype PTE

pPte bits 7-27 pPte bits 0-6 0
014578931 12 11 10

© Microsoft Corporation 30

Prototype PTEs

• Kept in array in the segment structure
associated with section objects

• Six PTE states:
– Active/valid
– Transition
– Modified-no-write
– Demand zero
– Page file
– Mapped file

© Microsoft Corporation 31

Shared Memory Data Structures

© Microsoft Corporation 32

© Microsoft Corporation 33

Physical Memory Management

Process/System
Working Set

Modified
List

Standby
List

Free
List

Zero
List

Modified
Page-
writer

MM Low
Memory

Zero
Thread

Delete
Page

Soft
Fault

Trim
Dirty

Trim
Clean

Soft
Fault

Hardfault
(DISK)

Zerofault
(FILL)

Physical Page State
Changes

Paging Overview
Working Sets: list of valid pages for each process

(and the kernel)
Pages ‘trimmed’ from working set on lists

Standby list: pages backed by disk
Modified list: dirty pages to push to disk
Free list: pages not associated with disk
Zero list: supply of demand-zero pages

Modify/standby pages can be faulted back into a
working set w/o disk activity (soft fault)

Background system threads trim working sets,
write modified pages and produce zero pages
based on memory state and config parameters

© Microsoft Corporation 34

8000000080000000

© Microsoft Corporation 35

System code, initial non-paged pool
Session space (win32k.sys)

Sysptes overflow, cache overflow
Page directory self-map and page tables

Hyperspace (e.g. working set list)

System cache
Paged pool

Reusable system VA (sysptes)
Non-paged pool expansion
Crash dump information

HAL usage

A0000000A0000000

A4000000A4000000

C0000000C0000000

C0400000C0400000

C1000000C1000000

E1000000E1000000

E8000000E8000000

FFBE0000FFBE0000

FFC00000FFC00000

Unused – no access
System working set list

KVA
x86

C0800000C0800000

C0C00000C0C00000

Managing Working Sets
Aging pages: Increment age counts for pages

which haven't been accessed
Estimate unused pages: count in working set and

keep a global count of estimate
When getting tight on memory: replace rather

than add pages when a fault occurs in a working
set with significant unused pages

When memory is tight: reduce (trim) working sets
which are above their maximum

Balance Set Manager: periodically runs Working
Set Trimmer, also swaps out kernel stacks of
long-waiting threads

© Microsoft Corporation 36

© Microsoft Corporation 37

Thread
scheduling

states

Thread scheduling states

© Microsoft Corporation 38

• Main quasi-states:
– Ready – able to run
– Running – current thread on a processor
– Waiting – waiting an event

• For scalability Ready is three real states:
– DeferredReady – queued on any processor
– Standby – will be imminently start Running
– Ready – queue on target processor by priority

• Goal is granular locking of thread priority
queues

• Red states related to swapped stacks and
processes

8000000080000000

© Microsoft Corporation 39

System code, initial non-paged pool
Session space (win32k.sys)

Sysptes overflow, cache overflow
Page directory self-map and page tables

Hyperspace (e.g. working set list)

System cache
Paged pool

Reusable system VA (sysptes)
Non-paged pool expansion
Crash dump information

HAL usage

A0000000A0000000

A4000000A4000000

C0000000C0000000

C0400000C0400000

C1000000C1000000

E1000000E1000000

E8000000E8000000

FFBE0000FFBE0000

FFC00000FFC00000

Unused – no access
System working set list

KVA

x86C0800000C0800000

C0C00000C0C00000

File Cache Manager

Kernel APIs & worker threads that interface
the file systems to memory manager
– File-based, not block-based
– Access methods for pages of opened files
– Automatic asynch read ahead
– Automatic asynch write behind (lazy write)
– Supports “Fast I/O” – IRP bypass
– Works with file system metadata (pseudo files)

© Microsoft Corporation 40

Cache Manager Block Diagram

Cache Manager

Memory Manager

Filesystem

Storage Drivers

Disk

Fast IO Read/Write IRP-based Read/Write

Page
Fault

Cache
Access,
Flush,
Purge

Noncached
IO

Cached IO

© Microsoft Corporation 41

Cache Manager and MM

The Cache Manager sits between the file
systems and the memory manager
– Mapped stream model integrated with memory

management
– Cached streams are mapped with fixed-size

views (256KB)
– Pages are faulted into memory via MM
– Pages may be modified in memory and written

back
– MM manages global memory policy

© Microsoft Corporation 42

Pagefault Cluster Hints

• Taking a pagefault can result in Mm
opportunistically bringing surrounding
pages in (up 7/15 depending)

• Since Cc takes pagefaults on streams, but
knows a lot about which pages are useful,
Mm provides a hinting mechanism in the
TLS
– MmSetPageFaultReadAhead()

• Not exposed to usermode …

© Microsoft Corporation 43

Cache Manager Data Structures

• File Object == Handle (U or K), not one per file
• Section Object Pointers and FS File Context are the same

for all file objects for the same stream

K
e
r
n
e
l

Handle

File Object
Filesystem File Context

FS Handle Context (2)

Section Object Pointers

Data Section (Mm)

Image Section (Mm)

Shared Cache Map (Cc)

Private Cache Map (Cc)

© Microsoft Corporation 44

Cache View Management
• A Shared Cache Map has an array of View Access

Control Block (VACB) pointers which record the base
cache address of each view
– promoted to a sparse form for files > 32MB

• Access interfaces map File+FileOffset to a cache
address

• Taking a view miss results in a new mapping, possibly
unmapping an unreferenced view in another file (views
are recycled LRU)

• Since a view is fixed size, mapping across a view is
impossible – Cc returns one address

• Fixed size means no fragmentation …

© Microsoft Corporation 45

Cache View Mapping
File Offfset

0-256KB 256KB-512KB 512KB-768KB

c1000000 <NULL> cf0c0000

VACB Array

© Microsoft Corporation 46

Cache Manager Readahead

© Microsoft Corporation 47

• CcScheduleReadAhead detects patterns on a handle
and schedules readahead into the next suspected
ranges
– Regular motion, backwards and forwards, with gaps
– Private Cache Map contains the per-handle info
– Called by CcCopyRead and CcMdlRead

• Readahead granularity (64KB) controls the scheduling
trigger points and length
– Small IOs – don’t want readahead every 4KB
– Large IOs – ya get what ya need (up to 8MB, thanks to Jim

Gray)
• CcPerformReadAhead maps and touch-faults pages in a

Cc worker thread, will use the new Mm prefetch APIs in
a future release

Cache Manager Unmap Behind
• Views are managed on demand (by misses)
• On view miss, Cc will unmap two views behind

the current (missed) view before mapping
• Unmapped valid pages go to the standby list in

LRU order and can be soft-faulted
• Unmap behind logic is default due to large file

read/write operations causing huge swings in
working set.

• Mm’s working set trim falls down at the speed a
disk can produce pages, Cc must help.

© Microsoft Corporation 48

Cache Hints
• Cache hints affect both read ahead and unmap

behind
• Two flags specifiable at Win32 CreateFile()

– FILE_FLAG_SEQUENTIAL_SCAN
• doubles readahead unit on handle, unmaps to the

front of the standby list (MRU order) if all handles
are SEQUENTIAL

– FILE_FLAG_RANDOM_ACCESS
• turns off readahead on handle, turns off unmap

behind logic if any handle is RANDOM
• Unfortunately, there is no way to split the effect

© Microsoft Corporation 49

Cache Write Throttling
• Avoids out of memory problems by delaying writes to the

cache
– Filling memory faster than writeback speed is not useful, we may

as well run into it sooner
• Throttle limit is twofold

– CcDirtyPageThreshold – dynamic, but ~1500 on all current
machines (small, but see above)

– MmAvailablePages & pagefile page backlog
• CcCanIWrite sees if write is ok, optionally blocking, also

serving as the restart test
• CcDeferWrite sets up for callback when write should be

allowed (async case)
• !defwrites debugger extension triages and shows the

state of the throttle

© Microsoft Corporation 50

Writing Cached Data

• There are three basic sets of threads
involved, only one of which is Cc’s
– Mm’s modified page writer

• the paging file
– Mm’s mapped page writer

• almost anything else
– Cc’s lazy writer pool

• executing in the kernel critical work queue
• writes data produced through Cc interfaces

© Microsoft Corporation 51

The Lazy Writer
• Name is misleading, its really delayed
• All files with dirty data have been queued onto

CcDirtySharedCacheMapList
• Work queueing – CcLazyWriteScan()

– Once per second, queues work to arrive at writing 1/8th of dirty data
given current dirty and production rates

– Fairness considerations are interesting
• CcLazyWriterCursor rotated around the list, pointing at the

next file to operate on (fairness)
– 16th pass rule for user and metadata streams

• Work issuing – CcWriteBehind()
– Uses a special mode of CcFlushCache() which flushes front to back

(HotSpots – fairness again)

© Microsoft Corporation 52

Valid Data Length (VDL) Calls
• Cache Manager knows highest offset successfully

written to disk – via the lazy writer
• File system is informed by special

FileEndOfFileInformation call after each write
which extends/maintains VDL

• FS which persist VDL to disk (NTFS) push that
down here

• FS use it as a hint to update directory entries
(recall Fast IO extension, one among several)

• CcFlushCache() flushing front to back is important
so we move VDL on disk as soon as possible.

© Microsoft Corporation 53

Filesystem Cache Interfaces
• Two distinct access interfaces

– Map – given File+FileOffset, return a cache address
– Pin – same, but acquires synchronization – this is a

range lock on the stream
• Lazy writer acquires synchronization, allowing it to serialize

metadata production with metadata writing

• Pinning also allows setting of a log sequence
number (LSN) on the update, for transactional
FS
– FS receives an LSN callback from the lazy writer prior

to range flush

© Microsoft Corporation 54

Summary
• Manages physical memory and pagefiles
• Manages user/kernel virtual space
• Working-set based management
• Provides shared-memory
• Supports physical I/O
• Address Windowing Extensions for large memory
• Provides session-memory for Win32k GUI processes
• File cache based on shared sections
• Single implementation spans multiple architectures

© Microsoft Corporation 55

Discussion

© Microsoft Corporation 56

	Windows Kernel InternalsVirtual Memory Manager
	Virtual Memory ManagerFeatures
	Virtual Memory ManagerFeatures
	Virtual Memory Manager Windows Server 2003 enhancements
	Virtual Memory Manager NT Internal APIs
	Virtual Memory Manager NT Internal APIs
	Virtual Memory Manager NT Internal APIs
	Virtual Memory Manager NT Internal APIs
	Allocating kernel memory (pool)
	Looking at a pool page
	Layout of pool headers
	Managing memory for I/O
	MDL flags
	Sysptes
	Process/Thread structure
	Process
	Thread
	Virtual Address Translation
	Windows Virtual Memory Model
	Physical Memory Model (IA32)
	Self-mapping page tables Normal Virtual Address Translation
	Self-mapping page tables
	Valid x86 Hardware PTEs
	x86 Invalid PTEs
	x86 Invalid PTEs
	Prototype PTEs
	Shared Memory Data Structures
	Physical Memory Management
	Paging Overview
	Managing Working Sets
	Thread scheduling states
	Thread scheduling states
	File Cache Manager
	Cache Manager Block Diagram
	Cache Manager and MM
	Pagefault Cluster Hints
	Cache View Management
	Cache View Mapping
	Cache Manager Readahead
	Cache Manager Unmap Behind
	Cache Hints
	Cache Write Throttling
	Writing Cached Data
	The Lazy Writer
	Valid Data Length (VDL) Calls
	Filesystem Cache Interfaces
	Summary
	Discussion

